WO2020194709A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2020194709A1
WO2020194709A1 PCT/JP2019/013790 JP2019013790W WO2020194709A1 WO 2020194709 A1 WO2020194709 A1 WO 2020194709A1 JP 2019013790 W JP2019013790 W JP 2019013790W WO 2020194709 A1 WO2020194709 A1 WO 2020194709A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core
rotor core
electric machine
rotary electric
Prior art date
Application number
PCT/JP2019/013790
Other languages
English (en)
French (fr)
Inventor
研太 元吉
秀徳 佐々木
広大 岡崎
紘子 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/429,355 priority Critical patent/US20220149681A1/en
Priority to JP2019556991A priority patent/JP6641545B1/ja
Priority to EP19921895.9A priority patent/EP3952066A4/en
Priority to CN201980094371.1A priority patent/CN113615042A/zh
Priority to PCT/JP2019/013790 priority patent/WO2020194709A1/ja
Publication of WO2020194709A1 publication Critical patent/WO2020194709A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotary electric machine provided with an embedded magnet type rotor.
  • Patent Document 1 describes an embedded magnet type motor. On the annular surface of the rotor in this embedded magnet type motor, 1/2 rectangular slit with the number of motor poles P and the same number of rectangular permanent magnets as the slits alternate in the circumferential direction at predetermined intervals. It is located in. A segment region at P is formed between each slit and the permanent magnet. The segment region is magnetized alternately with north and south poles along the circumferential direction.
  • the two segment regions adjacent to each other with the slit in between are via a connecting portion located on the inner peripheral side of the slit and a connecting portion located on the outer peripheral side of the slit.
  • the rotor is formed with a closed magnetic path in which magnetic flux flows in the circumferential direction through these connecting portions. Therefore, there is a problem that the torque output of the motor is lowered because the circumferential leakage flux that does not interlock with the stator increases.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a rotary electric machine capable of improving torque output.
  • the rotary electric machine includes a stator and a rotor rotatably provided with respect to the stator, and the rotor has a plurality of holes arranged in the circumferential direction of the rotor. It has a rotor core and at least one permanent magnet, the number of magnetic poles of the rotor is p which is an even number of 2 or more, and the permanent magnet is inserted in the plurality of holes.
  • the p / 2 first hole and the p / 2 second hole into which the permanent magnet is not inserted are included, and the first hole and the second hole alternate in the circumferential direction.
  • the permanent magnets are magnetized so that the magnetic pole surfaces facing each other in the circumferential direction across the second hole are opposite poles, and the second hole is formed by the second hole. It has a first opening that opens toward the stator in the radial direction of the rotor.
  • the torque output of the rotary electric machine can be improved.
  • FIG. 1 is a cross-sectional view showing a configuration in which the rotary electric machine 100 according to the present embodiment is cut perpendicularly to the axial direction.
  • the direction along the axial center of the rotor 20 is the axial direction
  • the direction along the radius of the rotor 20 is the radial direction in the cross section perpendicular to the axial direction
  • the direction along the rotation direction of the rotor 20 in the same cross section. Circumferential direction.
  • the rotary electric machine 100 has a stator 10 and a rotor 20 rotatably provided with respect to the stator 10.
  • the stator 10 is provided so as to surround the outer periphery of the rotor 20 via a gap 15 that serves as a magnetic gap.
  • the stator 10 has a stator core 11.
  • the stator core 11 has a core back 12 formed in an annular shape, and a plurality of teeth 13 protruding from the core back 12 toward the inner peripheral side.
  • the stator 10 has a plurality of windings 14 wound around the plurality of teeth 13 by a centralized winding method. In the configuration shown in FIG. 1, 12 teeth 13 and 12 windings 14 are provided.
  • the core back 12 may be formed by a plurality of arc-shaped core blocks.
  • the rotor 20 has a rotor core 21 and a permanent magnet 22 provided inside the rotor core 21.
  • the rotor 20 is a vertically embedded type embedded magnet type rotor in which permanent magnets 22 are radially arranged inside the rotor core 21.
  • the vertically embedded type embedded magnet type rotor is sometimes called a spoke type rotor.
  • the rotor 20 is a concave pole type rotor having p / 2 permanent magnets 22 when the number of magnetic poles is p.
  • p is an even number of 2 or more. In the configuration shown in FIG. 1, since the number of magnetic poles p of the rotor 20 is 10, the number of permanent magnets 22 is 5.
  • the rotor core 21 has a configuration in which a plurality of core plates are laminated in the axial direction.
  • a plurality of holes 30 penetrating in the axial direction are formed in the rotor core 21.
  • the plurality of holes 30 are arranged in the circumferential direction of the rotor 20.
  • each of the plurality of holes 30 has a rectangular shape.
  • each of the plurality of holes 30 is radially arranged so that the longitudinal direction is along the radial direction.
  • the number of holes 30 is p, which is equal to the number of magnetic poles of the rotor 20.
  • a permanent magnet 22 is inserted in some of the holes 30. That is, the plurality of holes 30 include a plurality of first holes 31 into which the permanent magnet 22 is inserted, and a plurality of second holes 32 into which the permanent magnet 22 is not inserted.
  • the number of the first holes 31 and the number of the second holes 32 are both p / 2.
  • the plurality of first holes 31 and the plurality of second holes 32 are alternately arranged in the circumferential direction of the rotor 20.
  • the inside of the second hole 32 may be a space.
  • a non-magnetic member formed of a non-magnetic material such as a resin or a non-magnetic metal may be inserted inside the second hole 32.
  • the rotor core 21 may be held by a non-magnetic member inserted into the second hole 32.
  • the plurality of permanent magnets 22 are magnetized so that two magnetic pole surfaces adjacent to each other in the circumferential direction with the second hole 32 interposed therebetween have different poles.
  • each of the plurality of permanent magnets 22 is magnetized so that the magnetic pole surface facing the counterclockwise direction in FIG. 1 is the north pole and the magnetic pole surface facing the clockwise direction in FIG. 1 is the south pole. There is.
  • the second hole 32 has a first opening 33 that opens toward the stator 10 side in the radial direction.
  • the first opening 33 opens outward in the radial direction.
  • the first opening 33 becomes a magnetic gap in the circumferential direction at the outer peripheral portion of the rotor core 21.
  • the first opening 33 may be a space.
  • the first opening 33 may be filled with a non-magnetic member.
  • the second hole 32 has a second opening 34 that opens in the radial direction toward the side opposite to the stator 10.
  • the second opening 34 opens inward in the radial direction.
  • the second opening 34 becomes a magnetic gap in the circumferential direction at the inner peripheral portion of the rotor core 21.
  • the second opening 34 may be a space.
  • the second opening 34 may be filled with a non-magnetic member.
  • FIG. 2 is a cross-sectional view showing a configuration in which the rotary electric machine 200 according to the comparative example of the present embodiment is cut perpendicular to the axial direction.
  • the rotary electric machine 200 of this comparative example is different from the rotary electric machine 100 shown in FIG. 1 in that the first opening 33 and the second opening 34 are not formed. That is, in the rotary electric machine 200 of this comparative example, the radial outer side of the second hole 32 is closed by the connecting portion 201, and the radial inner side of the second hole 32 is closed by the connecting portion 202.
  • the core back 12 of this comparative example is formed by a plurality of arcuate core blocks, but the core back 12 may be formed in an integral annular shape as shown in FIG.
  • FIG. 3 is an enlarged view of a part of FIG. 2.
  • the effective magnetic flux ⁇ 1 that interlinks with the stator 10 and contributes to torque is represented by a solid arrow
  • the circumferential leakage magnetic flux ⁇ 2 that passes through a closed magnetic path in the circumferential direction in the rotor core 21 is indicated by a broken line arrow. It is represented by.
  • the radial outer side and the radial inner side of the second hole 32 are closed by the connecting portion 201 and the connecting portion 202, respectively.
  • the reluctance of the connection portion 201 and the connection portion 202 is much lower than the reluctance of the gap 15.
  • FIG. 4 is an enlarged view of a part of FIG.
  • the effective magnetic flux ⁇ 1 is represented by a solid line arrow
  • the circumferential leakage flux ⁇ 2 is represented by a broken line arrow.
  • the circumferential leakage flux ⁇ 2 can be reduced and the effective magnetic flux ⁇ 1 interlinking with the stator 10 can be increased, particularly near the outer periphery of the rotor core 21. Therefore, in the rotary electric machine 100 of the present embodiment, the torque output can be improved as compared with the rotary electric machine 200 of the comparative example.
  • FIG. 5 is a graph showing the torque obtained by the rotary electric machine 100 of the present embodiment and the torque obtained by the rotary electric machine 200 of the comparative example.
  • the vertical axis of the graph is the torque standardized with the torque of the rotary electric machine 100 of the present embodiment as 1 [p. u. ] Is represented.
  • the torque obtained by the rotary electric machine 100 of the present embodiment is 1, the torque obtained by the rotary electric machine 200 of the comparative example is about 0.91. Therefore, it can be seen that the rotary electric machine 100 of the present embodiment can obtain a higher torque than the rotary electric machine 200 of the comparative example.
  • the opening width of the first opening 33 is an opening of the second hole 32 that opens toward the stator 10 side in the radial direction.
  • the first opening 33 since the stator 10 is provided on the outer peripheral side of the rotor 20, the first opening 33 opens outward in the radial direction.
  • the opening width of the first opening 33 in the tangential direction along the circumferential direction of the rotor 20 is Lo1.
  • the distance between the rotor 20 and the stator 10 in the radial direction is Gm.
  • the interval Gm is the radial width of the gap 15 that is the magnetic gap between the rotor 20 and the stator 10.
  • FIG. 6 is a graph showing the relationship between the magnitude relationship of the opening width Lo1 and the interval Gm and the torque in the rotary electric machine 100 according to the present embodiment.
  • the vertical axis of the graph is the torque standardized with the torque of the rotary electric machine 100 when the opening width Lo1 and the interval Gm are equal as 1. [p. u. ] Is represented.
  • the torque when the opening width Lo1 is larger than the interval Gm (Lo1> Gm) is about 1. It is 58.
  • FIG. 7 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 1-1 of the present embodiment is cut perpendicular to the axial direction.
  • the stator 10 is not shown in FIGS. 7 and subsequent drawings, the stator 10 is provided on the outer peripheral side of the rotor 20.
  • the rotor core 21 shown in FIGS. 1 and 4 has a perfect circular shape when viewed perpendicularly to the axial direction.
  • the rotor core 21 of the rotor 20 according to the present modification has a non-perfect circular shape when viewed perpendicular to the axial direction.
  • FIG. 7 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 1-1 of the present embodiment is cut perpendicular to the axial direction.
  • the circumscribed circle circumscribing the rotor core 21 is shown by a broken line.
  • the radius of this circumscribed circle be R0.
  • the outer peripheral surface of the rotor core 21 is formed in an arc shape at each of the sections sandwiched between the two holes 30 adjacent to each other in the circumferential direction.
  • the centers of curvature of the outer peripheral surfaces 21a of each section are different from each other and also different from the center of the circumscribed circle.
  • the radius of curvature R1 of the outer peripheral surface 21a of each section is smaller than the radius R0 of the circumscribed circle (R1 ⁇ R0).
  • the distance Gm between the rotor 20 and the stator 10 differs depending on the circumferential position of the rotor 20.
  • the opening width Lo1 of the first opening 33 is larger than the maximum value Gmmax of the interval Gm (Lo1> Gmmax).
  • FIG. 8 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 1-2 of the present embodiment is cut perpendicular to the axial direction.
  • the width of the first hole 31 in the tangential direction along the circumferential direction and the width of the second hole 32 in the tangential direction along the circumferential direction are the same.
  • the width Lh1 of the first hole 31 in the tangential direction along the circumferential direction is the width Lh1 of the second hole 32 in the tangential direction along the circumferential direction. It is narrower than the width Lh2 (Lh1 ⁇ Lh2). The same effect as that of the rotor 20 shown in FIGS. 1 and 4 can be obtained also by this modification.
  • FIG. 9 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 1-3 of the present embodiment is cut perpendicular to the axial direction.
  • the width Lh1 of the first hole 31 in the tangential direction along the circumferential direction is larger than the width Lh2 of the second hole 32 in the tangential direction along the circumferential direction. It is wide (Lh1> Lh2).
  • the same effect as that of the rotor 20 shown in FIGS. 1 and 4 can be obtained also by this modification.
  • FIG. 10 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 1-4 of the present embodiment is cut perpendicular to the axial direction.
  • the first opening 33 which opens toward the stator 10 side in the radial direction and the first opening 33 which opens toward the stator 10 side in the radial direction face the side opposite to the stator 10.
  • a second opening 34, which is opened, is formed.
  • only the first opening 33 is formed in the second hole 32 of the rotor 20 of the present modification, and the second opening 34 is not formed.
  • the rotary electric machine 100 includes a stator 10 and a rotor 20 rotatably provided with respect to the stator 10.
  • the rotor 20 has a rotor core 21 in which a plurality of holes 30 arranged in the circumferential direction of the rotor 20 are formed, and at least one permanent magnet 22.
  • the number of magnetic poles of the rotor 20 is p, which is an even number of 2 or more.
  • the plurality of holes 30 include p / 2 first holes 31 into which the permanent magnets 22 are inserted, and p / 2 second holes 32 into which the permanent magnets 22 are not inserted.
  • the first hole 31 and the second hole 32 are provided so as to be arranged alternately in the circumferential direction.
  • the permanent magnets 22 are magnetized so that the magnetic pole surfaces facing each other in the circumferential direction with the second hole 32 interposed therebetween have different poles.
  • the second hole 32 has a first opening 33 that opens toward the stator 10 in the radial direction of the rotor 20.
  • the magnetic resistance in the closed magnetic path in the circumferential direction can be increased.
  • the circumferential leakage flux ⁇ 2 can be reduced in the radial direction portion of the rotor core 21 on the stator 10 side, and the effective magnetic flux ⁇ 1 interlinking with the stator 10 can be increased. Therefore, the torque output of the rotary electric machine 100 can be improved.
  • the rotor 20 of the p pole is formed by using the p / 2 permanent magnets 22, the amount of the permanent magnets 22 used can be reduced.
  • the second hole 32 has a second opening 34 which is opened on the side opposite to the stator 10 in the radial direction.
  • the magnetic resistance in the closed magnetic path in the circumferential direction can be increased in the portion of the rotor core 21 on the side opposite to the stator 10 in the radial direction.
  • the circumferential leakage flux ⁇ 2 can be reduced even in the portion of the rotor core 21 on the side opposite to the stator 10 in the radial direction, so that the effective magnetic flux ⁇ 1 interlinking with the stator 10 is further increased. be able to.
  • the opening width of the first opening 33 is Lo1 and the maximum value of the distance between the stator 10 and the rotor 20 in the radial direction is Gmmax, Lo1> Gmmax. Relationship is satisfied. According to this configuration, the reluctance of the path passing through the first opening 33 tends to be larger than the reluctance of the path passing through the void 15, so that the effective magnetic flux ⁇ 1 interlinking with the stator 10 is further increased. be able to.
  • FIG. 11 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the present embodiment is cut perpendicular to the axial direction.
  • the components having the same functions and functions as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the second hole 32 has a first portion 32a and a second portion 32b located on the stator 10 side in the radial direction from the first portion 32a, that is, on the outer peripheral side in FIG. are doing.
  • the width of the first portion 32a in the tangential direction along the circumferential direction is L1 and the width of the second portion 32b in the tangential direction is L2, the relationship L1> L2 is satisfied.
  • the torque output of the rotary electric machine 100 can be improved in the first embodiment.
  • the circumferential leakage flux ⁇ 2 since it is difficult to set the circumferential leakage flux ⁇ 2 to zero, the circumferential leakage flux ⁇ 2 also exists in the first embodiment as shown by the broken line arrow in FIG.
  • the circumferential leakage flux ⁇ 2 In the rotor 20 of the first embodiment shown in FIGS. 1 and 4, the circumferential leakage flux ⁇ 2 is large on the inner peripheral side where the distance from the stator 10 is long, and the circumferential on the outer peripheral side when the distance from the stator 10 is short. It is considered that the directional leakage flux ⁇ 2 is small.
  • the inventors of the present application can make the width L1 on the inner peripheral side. It was considered that the effective magnetic flux ⁇ 1 could be increased because the circumferential leakage flux ⁇ 2 could be reduced.
  • FIG. 12 is a graph showing the relationship between the magnitude relationship of the width L1 and the width L2 and the torque in the rotary electric machine 100 according to the present embodiment.
  • the torque output of the rotary electric machine 100 can be further increased by making the width L1 of the first portion 32a wider than the width L2 of the second portion 32b.
  • FIG. 13 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 2-1 of the present embodiment is cut perpendicularly to the axial direction.
  • the second hole 32 has a first portion 32a, a second portion 32b located radially outside the first portion 32a, and a second portion 32b located further radially outward than the second portion 32b. It has a third portion 32c, which is located.
  • the width of the first portion 32a in the tangential direction along the circumferential direction is L1
  • the width of the second portion 32b in the tangential direction is L2
  • the width of the third portion 32c in the tangential direction is L3, L1>
  • the relationship of L2> L3 is satisfied. In this way, the width of the second hole 32 may change in three or more steps.
  • FIG. 14 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 2-2 of the present embodiment is cut perpendicular to the axial direction.
  • the width of the second hole 32 increases monotonically as the distance from the stator 10 increases in the radial direction.
  • the second hole 32 is sandwiched in the circumferential direction by a pair of edge portions 32d and 32e formed in the rotor core 21.
  • the pair of edge portions 32d and 32e are both formed in a straight line.
  • FIG. 15 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 2-3 of the present embodiment is cut perpendicular to the axial direction.
  • the width of the second hole 32 does not necessarily increase monotonically as the distance from the stator 10 increases in the radial direction. However, the width of the second hole 32 increases roughly in the radial direction as the distance from the stator 10 increases.
  • the pair of edges 32d and 32e of the rotor core 21 are both formed in a concave curve shape.
  • FIG. 16 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 2-4 of the present embodiment is cut perpendicular to the axial direction.
  • the width of the second hole 32 increases monotonically as the distance from the stator 10 increases in the radial direction.
  • the pair of edges 32d and 32e of the rotor core 21 are both formed in a convex curve shape.
  • the torque output of the rotary electric machine 100 can also be improved by the configurations shown in FIGS. 13 to 16 as in the configuration shown in FIG.
  • the second hole 32 includes the first portion 32a and the second portion 32b located on the stator 10 side in the radial direction from the first portion 32a. ,have.
  • the width of the first portion 32a in the tangential direction along the circumferential direction is L1 and the width of the second portion 32b in the tangential direction is L2, the relationship L1> L2 is satisfied. According to this configuration, since the circumferential leakage flux ⁇ 2 in the portion far from the stator 10 can be reduced, the torque output of the rotary electric machine 100 can be further improved.
  • the second hole 32 is formed so that the width in the tangential direction becomes wider as the distance from the stator 10 increases in the radial direction. According to this configuration, since the circumferential leakage flux ⁇ 2 in the portion far from the stator 10 can be reduced, the torque output of the rotary electric machine 100 can be further improved.
  • FIG. 17 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the present embodiment is cut perpendicularly to the axial direction.
  • the components having the same functions and functions as those of the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the rotor core 21 has a plurality of core portions 40 sandwiched between two second holes 32 adjacent to each other in the circumferential direction.
  • the permanent magnets 22 are provided for each of the plurality of core portions 40.
  • Each of the permanent magnets 22 is magnetized so that the magnetic pole surface facing the counterclockwise direction in FIG. 17 is the north pole and the magnetic pole surface facing the clockwise direction in FIG. 17 is the south pole.
  • Each of the plurality of core portions 40 has a first core portion 41 located on the S pole side of the permanent magnet 22 and a second core portion 42 located on the north pole side of the permanent magnet 22. Since the rotor core 21 shown in FIG. 17 is provided with five core portions 40, the first core portion 41 and the second core portion 42 are provided with five each.
  • the rotor core 21 has a connecting portion 43 (hereinafter, may be referred to as “first connecting portion 43”) that connects a plurality of first core portions 41 to each other.
  • the connecting portion 43 is arranged inside the plurality of core portions 40 in the radial direction.
  • a plurality of connecting portions 43 extend radially from the annular portion 44 and the annular portion 44 toward the plurality of first core portions 41, respectively, and connect the annular portion 44 and the plurality of first core portions 41. It has a radial portion 45 of the above. As a result, the plurality of first core portions 41 are magnetically connected to each other via the connecting portion 43.
  • each of the plurality of second core portions 42 is not directly connected to the radial portion 45 of the connecting portion 43.
  • Each of the plurality of second core portions 42 is connected to the connecting portion 43 only via the first core portion 41 adjacent to the permanent magnet 22.
  • the connecting portion 43 since a plurality of first core portions 41 having the same poles are connected to each other via the connecting portion 43, it is possible to suppress the generation of the circumferential leakage flux ⁇ 2. Further, since the plurality of core portions 40 are integrated via the connecting portion 43, the mechanical strength of the rotor 20 can be improved and the productivity of the rotor 20 can be improved.
  • the width of the second hole 32 becomes wider as the distance from the stator 10 increases in the radial direction, but the width of the second hole 32 becomes the radial position as in the first embodiment. It may be constant regardless.
  • FIG. 18 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 3-1 of the present embodiment is cut perpendicular to the axial direction.
  • the rotor core 21 of this modification has a connecting portion 46 (hereinafter, may be referred to as “second connecting portion 46”) that connects a plurality of second core portions 42 to each other.
  • the connecting portion 46 extends radially from the annular portion 44 and the annular portion 44 toward the plurality of second core portions 42, respectively, and connects the annular portion 44 and the plurality of second core portions 42. It has a radial portion 45 of the above.
  • the plurality of second core portions 42 are magnetically connected to each other via the connecting portion 46.
  • each of the plurality of first core portions 41 is not directly connected to the radial portion 45 of the connecting portion 46.
  • Each of the plurality of first core portions 41 is connected to the connecting portion 46 only via the second core portion 42 adjacent to the permanent magnet 22. Even with this modification, the same effect as the configuration shown in FIG. 17 can be obtained.
  • the rotor 20 of the present embodiment may have a configuration in which the rotor core 21 shown in FIG. 17 and the rotor core 21 shown in FIG. 18 are laminated in the axial direction.
  • the rotor core 21 shown in FIG. 17 and the rotor core 21 shown in FIG. 18 are alternately laminated in the axial direction. Thereby, the mechanical strength of the rotor 20 can be further improved.
  • FIG. 19 is an exploded perspective view showing the configuration of the rotor 20 of the rotary electric machine 100 according to the modified example 3-2 of the present embodiment.
  • the rotor 20 of this modification has a configuration in which the first rotor core 51, the second rotor core 52, and the third rotor core 53 are vertically laminated.
  • the first rotor core 51, the second rotor core 52, and the third rotor core 53 are laminated so that the positions of the first holes 31 in the circumferential direction coincide with each other.
  • the first hole 31 of each of the first rotor core 51, the second rotor core 52, and the third rotor core 53 has the first rotor core 51, the second rotor core 52, and the third rotor core 53.
  • a permanent magnet 22 is inserted so as to penetrate the.
  • the first rotor core 51 has the same configuration as the rotor core 21 shown in FIG. 17 when viewed from the inner side of the drawing along the axial direction.
  • the second rotor core 52 has the same configuration as the rotor core 21 shown in FIG. 18 when viewed from the inner side of the drawing along the axial direction.
  • FIG. 20 is a cross-sectional view showing a configuration in which the third rotor core 53 of the rotary electric machine 100 according to the present modification is cut perpendicular to the axial direction.
  • the third rotor core 53 has a plurality of core portions 40, similarly to the first rotor core 51 and the second rotor core 52.
  • Each of the plurality of core portions 40 has a first core portion 41 located on the S pole side of the permanent magnet 22 and a second core portion 42 located on the north pole side of the permanent magnet 22.
  • the third rotor core 53 is not provided with a connecting portion 43. Therefore, the plurality of core portions 40 of the third rotor core 53 are separated from each other.
  • the rotor 20 has a configuration in which the first rotor core 51, the third rotor core 53, and the second rotor core 52 are laminated in this order in the axial direction.
  • first rotor cores 51 or second rotor cores 52 are stacked, for example, the first rotor core 51, the third rotor core 53, the second rotor core 52, and the third rotor core 53, the first rotor core 51, the third rotor core 53, the second rotor core 52, ... Are laminated in this order.
  • a third rotor core 53 is sandwiched between the first rotor core 51 and the second rotor core 52.
  • the thickness of the first rotor core 51 in the axial direction is thicker than the thickness of the third rotor core 53 in the axial direction.
  • the thickness of the second rotor core 52 in the axial direction is thicker than the thickness of the third rotor core 53 in the axial direction.
  • the leakage flux in the axial direction of the rotor 20 can be suppressed, and the mechanical strength of the rotor 20 can be increased.
  • FIG. 21 is an exploded perspective view showing the configuration of the rotor 20 of the rotary electric machine 100 according to the modified example 3-3 of the present embodiment.
  • the rotor 20 of this modification further has a pair of end plates 54 and 55.
  • the end plate 54 and the end plate 55 are arranged at both ends in the axial direction of the rotor core in which the first rotor core 51, the second rotor core 52, and the third rotor core 53 are laminated, respectively.
  • the end plate 54 and the end plate 55 are axially tightened together with the first rotor core 51, the second rotor core 52, and the third rotor core 53 by using tightening members such as a plurality of bolts 56.
  • tightening members such as a plurality of bolts 56.
  • the rotor core 21 has a plurality of core portions 40 sandwiched between two second holes 32 adjacent to each other in the circumferential direction.
  • Each of the plurality of core portions 40 has a first core portion 41 located on one magnetic pole surface side of the permanent magnet 22 and a second core portion 42 located on the other magnetic pole surface side of the permanent magnet 22.
  • the rotor core 21 further has a connecting portion 43 for connecting the first core portions 41 of the plurality of core portions 40 to each other.
  • the connecting portion 43 since a plurality of first core portions 41 having the same poles are connected to each other via the connecting portion 43, it is possible to suppress the generation of the circumferential leakage flux ⁇ 2. Therefore, the torque of the rotary electric machine 100 can be improved. Further, since the plurality of core portions 40 are integrated via the connecting portion 43, the mechanical strength of the rotor 20 can be improved.
  • the rotor core 21 has a first rotor core 51 and a second rotor core 52 that are laminated in the axial direction with each other.
  • Each of the first rotor core 51 and the second rotor core 52 has a plurality of core portions 40 sandwiched between two second holes 32 adjacent to each other in the circumferential direction.
  • Each of the plurality of core portions 40 has a first core portion 41 located on one magnetic pole surface side of the permanent magnet 22 and a second core portion 42 located on the other magnetic pole surface side of the permanent magnet 22.
  • the first rotor core 51 further includes a first connecting portion 43 that connects the first core portions 41 of the first rotor core 51 to each other.
  • the second rotor core 52 further includes a second connecting portion 46 that connects the second core portions 42 of the second rotor core 52 to each other.
  • a second connecting portion 46 that connects the second core portions 42 of the second rotor core 52 to each other.
  • the rotor core 21 has a first rotor core 51, a second rotor core 52, and a third rotor core 53 that are laminated in the axial direction with each other.
  • Each of the first rotor core 51, the second rotor core 52, and the third rotor core 53 has a plurality of core portions 40 sandwiched between two second holes 32 adjacent to each other in the circumferential direction.
  • Each of the plurality of core portions 40 has a first core portion 41 located on one magnetic pole surface side of the permanent magnet 22 and a second core portion 42 located on the other magnetic pole surface side of the permanent magnet 22. ing.
  • the first rotor core 51 further includes a first connecting portion 43 that connects the first core portions 41 of the first rotor core 51 to each other.
  • the second rotor core 52 further includes a second connecting portion 46 that connects the second core portions 42 of the second rotor core 52 to each other.
  • the plurality of core portions 40 included in the third rotor core 53 are not connected to each other in the third rotor core 53. In the axial direction, the third rotor core 53 is arranged between the first rotor core 51 and the second rotor core 52.
  • the generation of the circumferential leakage flux ⁇ 2 can be suppressed.
  • the second rotor core 52 since the plurality of second core portions 42 having the same poles are connected to each other via the connecting portion 46, the generation of the circumferential leakage flux ⁇ 2 can be suppressed.
  • the third rotor core 53 in which the plurality of core portions 40 are not connected to each other is arranged between the first rotor core 51 and the second rotor core 53, leakage in the axial direction The generation of magnetic flux can be suppressed. Therefore, the torque of the rotary electric machine 100 can be improved.
  • FIG. 22 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the present embodiment is cut perpendicularly to the axial direction.
  • the components having the same functions and functions as those of the first to third embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the first hole 31 into which the permanent magnet 22 is inserted has a third opening 35 that opens to the stator 10 side in the radial direction, that is, outward in the radial direction.
  • the third opening 35 becomes a magnetic gap in the circumferential direction at the outer peripheral portion of the rotor core 21.
  • the third opening 35 may be a space.
  • the third opening 35 may be filled with a non-magnetic member.
  • the width of the first hole 31 in the tangential direction along the circumferential direction is narrower than the width of the second hole 32 in the tangential direction along the circumferential direction, as in the configuration shown in FIG. It has become.
  • the radial outer side of the first hole 31 is closed.
  • the first core portion 41 located on the S pole side of the permanent magnet 22 is magnetized to the S pole, and the second core portion 42 located on the N pole side of the permanent magnet 22 is magnetized to the N pole. Therefore, a closed magnetic path is formed between the second core portion 42 and the first core portion 41 so that the magnetic flux emitted from the permanent magnet 22 passes through the radial outside of the first hole 31 and returns to the permanent magnet 22.
  • the magnetic flux passing through this closed magnetic path becomes a leakage flux that does not interlink with the stator 10. If this leakage flux can be suppressed, the effective magnetic flux ⁇ 1 interlinking with the stator 10 can be increased, so that the torque output of the rotary electric machine 100 can be improved.
  • the third opening 35 is formed on the radial outer side of the first hole 31, the magnetic resistance of the closed magnetic path is increased. As a result, the leakage flux as shown by the broken line arrow in FIG. 22 can be suppressed, so that the torque output of the rotary electric machine 100 can be improved.
  • the width of the first hole 31 is narrower than the width of the second hole 32, the leakage flux is likely to occur.
  • the third opening 35 is formed in the present embodiment, the leakage flux is effectively suppressed even when the width of the first hole 31 is narrower than the width of the second hole 32. it can.
  • FIG. 23 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 4-1 of the present embodiment is cut perpendicular to the axial direction.
  • the first hole 31 of this modification has a fourth opening 36 that is radially opposite to the stator 10, that is, is opened inward in the radial direction.
  • a closed magnetic path in which the magnetic flux emitted from the permanent magnet 22 returns to the permanent magnet 22 is also formed inside the first hole 31 in the radial direction.
  • the magnetic resistance of the closed magnetic path formed inside the first hole 31 in the radial direction increases. As a result, the leakage flux as shown by the broken line arrow in FIG. 23 can be suppressed, so that the torque output of the rotary electric machine 100 can be improved.
  • the width of the first hole 31 is narrower than the width of the second hole 32.
  • the fourth opening 36 is formed, the above leakage flux is effective even when the width of the first hole 31 is narrower than the width of the second hole 32. Can be suppressed.
  • FIG. 24 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the modified example 4-2 of the present embodiment is cut perpendicular to the axial direction.
  • the first hole 31 of this modification has both the third opening 35 and the fourth opening 36. According to this modification, both of the above two effects can be obtained, so that the torque output of the rotary electric machine 100 can be further improved.
  • the width of the first hole 31 is narrower than the width of the second hole 32.
  • the third opening 35 and the fourth opening 36 are formed, even if the width of the first hole 31 is narrower than the width of the second hole 32, the above Leakage magnetic flux can be effectively suppressed.
  • the first hole 31 is the third opening 35 that opens to the stator 10 side in the radial direction, or the side opposite to the stator 10 in the radial direction. It has a fourth opening 36 that is open to the sea. According to this configuration, the leakage flux can be suppressed, so that the torque output of the rotary electric machine 100 can be improved.
  • FIG. 25 is a cross-sectional view showing a configuration in which the rotor 20 of the rotary electric machine 100 according to the present embodiment is cut perpendicularly to the axial direction.
  • the components having the same functions and functions as those of the first to third embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the rotor core 21 is separated into a plurality of core portions 40 by the second hole 32.
  • the second hole 32 is sandwiched by the edge portion 32d and the edge portion 32e in the circumferential direction.
  • One edge portion 32d is formed in the core portion 40 adjacent to the second hole 32 in the counterclockwise direction in FIG. 25.
  • a concave portion 37 cut out in a concave shape is formed in a part of the edge portion 32d.
  • the edge portion 32d other than the recess 37 is formed in a straight line.
  • the other edge portion 32e is formed in the core portion 40 adjacent to the second hole 32 in the clockwise direction in FIG. 25.
  • a concave portion 38 notched in a concave shape is formed in a part of the edge portion 32e.
  • the edge portion 32e other than the recess 38 is formed in a straight line.
  • a centrifugal force is generated in the rotor 20 during rotation toward the outside in the radial direction. Therefore, the plurality of core portions 40 separated from each other may protrude to the outer peripheral side during rotation. If the core portion 40 protrudes to the outer peripheral side, it may come into contact with the stator 10 and lead to the stop of the rotary electric machine 100.
  • a holding member (not shown) formed of a non-magnetic material such as a resin or a non-magnetic metal is inserted into the second hole 32.
  • the holding member is formed with a convex portion that is fitted into the concave portion 37 and another convex portion that is fitted into the concave portion 38. Since each core portion 40 is held by the holding member, it is possible to prevent the core portion 40 from protruding to the outer peripheral side. Further, the holding member improves the positioning accuracy of the rotor core 21 in the circumferential direction. Further, the holding member improves the positioning accuracy of the rotor core 21, so that the increase in torque ripple due to the influence of the rotor variation is suppressed.
  • the opening width Lo1 of the first opening 33 in the tangential direction along the circumferential direction is wider than the opening width Lo2 of the second opening 34 in the tangential direction along the circumferential direction ( Lo1> Lo2).
  • the width of the second hole 32 may be changed stepwise as shown in FIGS. 11 and 13.
  • the present invention is not limited to the above embodiment and can be modified in various ways.
  • the 10-pole rotor 20 is taken as an example, but the present invention is not limited to this. Even if the number of magnetic poles p of the rotor 20 (however, p is an even number of 2 or more) is other than 10, the same effect as that of the above embodiment can be obtained.
  • the stator 10 provided with 12 teeth 13 and 12 windings 14 is given as an example, but the present invention is not limited to this. The number of teeth 13 and the number of windings 14 may be set to appropriate numbers according to the number of magnetic poles of the rotor 20, respectively.
  • the rotary electric machine 100 in which the rotor 20 is arranged on the inner peripheral side of the stator 10 is given as an example, but in the present invention, the rotor 20 is arranged on the outer peripheral side of the stator 10. It can also be applied to rotary electric machines.
  • stator 11 stator core, 12 core back, 13 teeth, 14 winding, 15 void, 20 rotor, 21 rotor core, 21a outer peripheral surface, 22 permanent magnet, 30 holes, 31 first hole, 32nd 2 holes, 32a 1st part, 32b 2nd part, 32c 3rd part, 32d, 32e edge, 33 1st opening, 34 2nd opening, 35 3rd opening, 36 4th opening, 37, 38 concave part, 40 core part, 41 first core part, 42 second core part, 43, 46 connecting part, 44 annular part, 45 radial part, 51 first rotor core, 52 second rotor core, 53 third Rotor core, 54, 55 end plate, 56 bolt, 100, 200 rotating electric machine, 201, 202 connection part, ⁇ 1 effective magnetic flux, ⁇ 2 circumferential leakage magnetic flux.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電機は、固定子と、固定子に対して回転自在に設けられた回転子と、を備え、回転子は、回転子の周方向に配列した複数の孔が形成された回転子コアと、少なくとも1つの永久磁石と、を有しており、回転子の磁極数は、2以上の偶数であるpであり、複数の孔は、永久磁石が挿入されたp/2個の第1孔と、永久磁石が挿入されていないp/2個の第2孔と、を含んでおり、第1孔及び第2孔は、周方向で交互に配列するように設けられており、永久磁石は、第2孔を挟んで周方向で互いに向き合う磁極面が異極となるように着磁されており、第2孔は、回転子の径方向で固定子側に開口した第1開口部を有している。

Description

回転電機
 本発明は、埋込磁石形回転子を備えた回転電機に関する。
 特許文献1には、埋込磁石式モータが記載されている。この埋込磁石式モータにおけるロータの環状の表面には、モータ極数Pの1/2個の長方形状のスリットと、スリットと同数の長方形状の永久磁石とが、周方向に所定間隔で交互に配置されている。各々のスリットと永久磁石との間には、P箇所のセグメント領域が形成されている。セグメント領域は、周方向に沿ってN極とS極とに交互に磁化されている。
特開2010-200480号公報
 上記の埋込磁石式モータのロータにおいて、スリットを挟んで隣り合う2つのセグメント領域は、スリットよりも内周側に位置する接続部分と、スリットよりも外周側に位置する接続部分と、を介して互いに接続されている。このため、ロータには、これらの接続部分を通って周方向に磁束が流れる閉磁路が形成されてしまう。したがって、ステータに鎖交しない周方向漏洩磁束が増加するため、モータのトルク出力が低下してしまうという課題があった。
 本発明は、上述のような課題を解決するためになされたものであり、トルク出力を向上させることができる回転電機を提供することを目的とする。
 本発明に係る回転電機は、固定子と、前記固定子に対して回転自在に設けられた回転子と、を備え、前記回転子は、前記回転子の周方向に配列した複数の孔が形成された回転子コアと、少なくとも1つの永久磁石と、を有しており、前記回転子の磁極数は、2以上の偶数であるpであり、前記複数の孔は、前記永久磁石が挿入されたp/2個の第1孔と、前記永久磁石が挿入されていないp/2個の第2孔と、を含んでおり、前記第1孔及び前記第2孔は、前記周方向で交互に配列するように設けられており、前記永久磁石は、前記第2孔を挟んで前記周方向で互いに向き合う磁極面が異極となるように着磁されており、前記第2孔は、前記回転子の径方向で前記固定子側に開口した第1開口部を有している。
 本発明によれば、回転電機のトルク出力を向上させることができる。
本発明の実施の形態1に係る回転電機を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態1の比較例に係る回転電機を軸方向と垂直に切断した構成を示す断面図である。 図2の一部を拡大して示す図である。 図1の一部を拡大して示す図である。 本発明の実施の形態1の回転電機で得られるトルクと比較例の回転電機で得られるトルクとを示すグラフである。 本発明の実施の形態1に係る回転電機において、開口幅Lo1及び間隔Gmの大小関係とトルクとの関係を示すグラフである。 本発明の実施の形態1の変形例1-1に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態1の変形例1-2に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態1の変形例1-3に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態1の変形例1-4に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態2に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態2に係る回転電機において、幅L1及び幅L2の大小関係とトルクとの関係を示すグラフである。 本発明の実施の形態2の変形例2-1に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態2の変形例2-2に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態2の変形例2-3に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態2の変形例2-4に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態3に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態3の変形例3-1に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態3の変形例3-2に係る回転電機の回転子の構成を示す分解斜視図である。 本発明の実施の形態3の変形例3-2に係る回転電機の第3回転子コアを軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態3の変形例3-3に係る回転電機の回転子の構成を示す分解斜視図である。 本発明の実施の形態4に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態4の変形例4-1に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態4の変形例4-2に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。 本発明の実施の形態5に係る回転電機の回転子を軸方向と垂直に切断した構成を示す断面図である。
実施の形態1.
 本発明の実施の形態1に係る回転電機について説明する。図1は、本実施の形態に係る回転電機100を軸方向と垂直に切断した構成を示す断面図である。ここで、回転子20の軸心に沿う方向を軸方向とし、軸方向に垂直な断面において回転子20の半径に沿う方向を径方向とし、同断面において回転子20の回転方向に沿う方向を周方向とする。
 図1に示すように、回転電機100は、固定子10と、固定子10に対して回転自在に設けられた回転子20と、を有している。固定子10は、磁気的ギャップとなる空隙15を介して回転子20の外周を囲むように設けられている。固定子10は、固定子コア11を有している。固定子コア11は、円環状に形成されたコアバック12と、コアバック12から内周側に向かって突出した複数のティース13と、を有している。また、固定子10は、集中巻き方式で複数のティース13にそれぞれ巻き付けられた複数の巻線14を有している。図1に示す構成では、12個のティース13と12個の巻線14とが設けられている。後述する図2に示すように、コアバック12は、複数の円弧状のコアブロックにより形成されていてもよい。
 回転子20は、回転子コア21と、回転子コア21の内部に設けられた永久磁石22と、を有している。回転子20は、回転子コア21の内部に放射状に永久磁石22が配置された縦埋込型の埋込磁石形回転子である。縦埋込型の埋込磁石形回転子は、スポーク型回転子と呼ばれる場合もある。また、回転子20は、磁極数をpとしたときp/2個の永久磁石22を有するコンシクエントポール型の回転子である。ここで、pは2以上の偶数である。図1に示す構成では、回転子20の磁極数pは10であるため、永久磁石22の個数は5個である。
 回転子コア21は、複数のコア板が軸方向に積層された構成を有している。回転子コア21には、軸方向に貫通した複数の孔30が形成されている。複数の孔30は、回転子20の周方向に配列している。軸方向に垂直な断面において、複数の孔30のそれぞれは、長方形状の形状を有している。同断面において、複数の孔30のそれぞれは、長手方向が径方向に沿うように放射状に配置されている。孔30の個数は、回転子20の磁極数と等しいp個である。
 複数の孔30のうちの一部の孔には、永久磁石22が挿入されている。すなわち、複数の孔30には、永久磁石22が挿入された複数の第1孔31と、永久磁石22が挿入されていない複数の第2孔32と、が含まれている。第1孔31の個数及び第2孔32の個数は、いずれもp/2個である。複数の第1孔31と複数の第2孔32とは、回転子20の周方向で交互に配列している。第2孔32の内部は空間であってもよい。あるいは、第2孔32の内部には、樹脂、非磁性金属等の非磁性材料により形成された非磁性部材が挿入されていてもよい。また、回転子コア21は、第2孔32に挿入された非磁性部材によって保持されていてもよい。
 複数の永久磁石22は、第2孔32を挟んで周方向に隣り合う2つの磁極面が異極となるように着磁されている。例えば、複数の永久磁石22のそれぞれは、図1で反時計回り方向を向いた磁極面がN極となり、図1で時計回り方向を向いた磁極面がS極となるように着磁されている。
 第2孔32は、径方向で固定子10側に向かって開口した第1開口部33を有している。本実施の形態では、第1開口部33は、径方向で外側に向かって開口している。第1開口部33は、回転子コア21の外周部において周方向の磁気的空隙となる。第1開口部33は空間であってもよい。あるいは、第1開口部33には、非磁性部材が充填されていてもよい。
 また、第2孔32は、径方向で固定子10とは反対側に向かって開口した第2開口部34を有している。本実施の形態では、第2開口部34は、径方向で内側に向かって開口している。第2開口部34は、回転子コア21の内周部において周方向の磁気的空隙となる。第2開口部34は空間であってもよい。あるいは、第2開口部34には、非磁性部材が充填されていてもよい。
 図2は、本実施の形態の比較例に係る回転電機200を軸方向と垂直に切断した構成を示す断面図である。図2に示すように、本比較例の回転電機200は、第1開口部33及び第2開口部34が形成されていない点で、図1に示した回転電機100と異なっている。すなわち、本比較例の回転電機200では、第2孔32の径方向外側は接続部201によって閉じられており、第2孔32の径方向内側は接続部202によって閉じられている。なお、本比較例のコアバック12は、複数の円弧状のコアブロックにより形成されているが、コアバック12は、図1に示したように一体的な円環状に形成されていてもよい。
 図3は、図2の一部を拡大して示す図である。図3では、固定子10に鎖交してトルクに寄与する有効磁束Φ1を実線矢印で表しており、回転子コア21内で閉じた周方向の閉磁路を通る周方向漏洩磁束Φ2を破線矢印で表している。図3に示すように、第2孔32の径方向外側及び径方向内側は、それぞれ接続部201及び接続部202によって閉じられている。接続部201及び接続部202の磁気抵抗は、空隙15の磁気抵抗よりも非常に低い。このため、回転子コア21内で閉じた周方向の閉磁路が積極的に形成され、固定子10に磁束を鎖交させる磁路が形成されにくくなる。これにより、永久磁石22の使用量に対して、接続部201及び接続部202を通る周方向漏洩磁束Φ2が相対的に多くなってしまうため、空隙15を通って固定子10に鎖交する有効磁束Φ1が少なくなってしまう。したがって、本比較例のような構成では、回転電機200のトルク出力を向上させるのが困難であった。
 これに対し、本実施の形態では、第2孔32の径方向外側及び径方向内側には、それぞれ第1開口部33及び第2開口部34が形成されている。図4は、図1の一部を拡大して示す図である。図4では、図3と同様に、有効磁束Φ1を実線矢印で表しており、周方向漏洩磁束Φ2を破線矢印で表している。図4に示すように、回転子コア21内で閉じた周方向の閉磁路は、第2孔32、第1開口部33又は第2開口部34を必ず通過するため、当該閉磁路の磁気抵抗が高くなる。これにより、特に回転子コア21の外周寄りにおいて周方向漏洩磁束Φ2を減少させることができるとともに、固定子10に鎖交する有効磁束Φ1を増加させることができる。したがって、本実施の形態の回転電機100では、比較例の回転電機200よりもトルク出力を向上させることができる。
 図5は、本実施の形態の回転電機100で得られるトルクと比較例の回転電機200で得られるトルクとを示すグラフである。グラフの縦軸は、本実施の形態の回転電機100のトルクを1として規格化したトルク[p.u.]を表している。図5に示すように、本実施の形態の回転電機100で得られるトルクを1とすると、比較例の回転電機200で得られるトルクは約0.91である。したがって、本実施の形態の回転電機100では、比較例の回転電機200よりも高いトルクが得られることが分かる。
 次に、第1開口部33の開口幅について説明する。ここで、第1開口部33とは、径方向で固定子10側に向かって開口した第2孔32の開口部のことである。本実施の形態では、固定子10が回転子20の外周側に設けられているため、第1開口部33は径方向外側に向かって開口している。図4に示すように、回転子20の周方向に沿った接線方向における第1開口部33の開口幅をLo1とする。また、径方向における回転子20と固定子10との間隔をGmとする。間隔Gmは、回転子20と固定子10との間の磁気的ギャップとなる空隙15の径方向幅である。
 図6は、本実施の形態に係る回転電機100において、開口幅Lo1及び間隔Gmの大小関係とトルクとの関係を示すグラフである。グラフの縦軸は、開口幅Lo1と間隔Gmとが等しい場合の回転電機100のトルクを1として規格化したトルク[p.u.]を表している。図6に示すように、開口幅Lo1と間隔Gmとが等しい場合(Lo1=Gm)のトルクを1とすると、開口幅Lo1が間隔Gmよりも大きい場合(Lo1>Gm)のトルクは約1.58である。したがって、開口幅Lo1が間隔Gmよりも大きい場合の方が、開口幅Lo1と間隔Gmとが等しい場合よりも高いトルクを得られることが分かる。これは、永久磁石22から出た磁束は、磁気抵抗がより小さい経路を通るためである。開口幅Lo1が間隔Gmよりも大きい場合、第1開口部33を通る経路の磁気抵抗が、空隙15を通る経路の磁気抵抗と比較して大きくなりやすい。このため、永久磁石22から出た磁束のうち、より多くの磁束が、固定子10に鎖交する有効磁束Φ1となる。
 図7は、本実施の形態の変形例1-1に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。ここで、図7及びそれ以降の図面では固定子10を図示していないが、固定子10は、回転子20の外周側に設けられるものとする。図1及び図4に示した回転子コア21は、軸方向と垂直に見たときに真円状の形状を有している。これに対し、本変形例に係る回転子20の回転子コア21は、図7に示すように、軸方向と垂直に見たときに非真円状の形状を有している。図7では、回転子コア21に外接する外接円を破線で示している。この外接円の半径をR0とする。回転子コア21の外周面は、周方向で隣り合う2つの孔30に挟まれた区間のそれぞれで、円弧状に形成されている。各区間の外周面21aのそれぞれの曲率中心は、互いに異なっており、かつ外接円の中心とも異なっている。各区間の外周面21aの曲率半径R1は、外接円の半径R0よりも小さくなっている(R1<R0)。回転子コア21の形状を真円形状ではなく図7に示すような形状とすることにより、コギングトルク及びトルクリップルを低減することができる。
 ここで、図7に示すような非真円形状の回転子20が用いられる場合、回転子20と固定子10との間隔Gmは、回転子20の周方向位置毎に異なる。このような場合、第1開口部33の開口幅Lo1は、間隔Gmの最大値Gmmaxよりも大きいことが望ましい(Lo1>Gmmax)。
 図8は、本実施の形態の変形例1-2に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図1及び図4に示した回転子20では、周方向に沿った接線方向における第1孔31の幅と、周方向に沿った接線方向における第2孔32の幅とが同一である。これに対し、本変形例の回転子20では、図8に示すように、周方向に沿った接線方向における第1孔31の幅Lh1は、周方向に沿った接線方向における第2孔32の幅Lh2よりも狭くなっている(Lh1<Lh2)。本変形例によっても、図1及び図4に示した回転子20と同様の効果を得ることができる。
 図9は、本実施の形態の変形例1-3に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図9に示すように、本変形例の回転子20では、周方向に沿った接線方向における第1孔31の幅Lh1は、周方向に沿った接線方向における第2孔32の幅Lh2よりも広くなっている(Lh1>Lh2)。本変形例によっても、図1及び図4に示した回転子20と同様の効果を得ることができる。
 図10は、本実施の形態の変形例1-4に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図1及び図4に示した回転子20の第2孔32には、径方向で固定子10側に向かって開口した第1開口部33と、径方向で固定子10とは反対側に向かって開口した第2開口部34と、が形成されている。これに対し、本変形例の回転子20の第2孔32には、図10に示すように、第1開口部33のみが形成されており、第2開口部34が形成されていない。本変形例によっても、図2及び図3に示した比較例の構成と比較して、回転子コア21のうち特に径方向で固定子10側の部分、すなわち径方向で外側の部分における周方向漏洩磁束Φ2を低減することができる。したがって、本変形例によっても、有効磁束Φ1を増加させることができ、回転電機100のトルク出力を向上させることができる。
 以上説明したように、本実施の形態に係る回転電機100は、固定子10と、固定子10に対して回転自在に設けられた回転子20と、を備えている。回転子20は、回転子20の周方向に配列した複数の孔30が形成された回転子コア21と、少なくとも1つの永久磁石22と、を有している。回転子20の磁極数は、2以上の偶数であるpである。複数の孔30は、永久磁石22が挿入されたp/2個の第1孔31と、永久磁石22が挿入されていないp/2個の第2孔32と、を含んでいる。第1孔31及び第2孔32は、周方向で交互に配列するように設けられている。永久磁石22は、第2孔32を挟んで周方向で互いに向き合う磁極面が異極となるように着磁されている。第2孔32は、回転子20の径方向で固定子10側に開口した第1開口部33を有している。
 この構成によれば、回転子コア21のうち少なくとも径方向で固定子10側の部分において、周方向の閉磁路での磁気抵抗を高くすることができる。これにより、回転子コア21のうち径方向で固定子10側の部分において周方向漏洩磁束Φ2を減少させることができるとともに、固定子10に鎖交する有効磁束Φ1を増加させることができる。したがって、回転電機100のトルク出力を向上させることができる。また、上記構成によれば、p/2個の永久磁石22を用いてp極の回転子20が構成されるため、永久磁石22の使用量を削減することができる。
 また、本実施の形態に係る回転電機100において、第2孔32は、径方向で固定子10とは反対側に開口した第2開口部34を有している。この構成によれば、回転子コア21のうち径方向で固定子10とは反対側の部分において、周方向の閉磁路での磁気抵抗を高くすることができる。これにより、回転子コア21のうち径方向で固定子10とは反対側の部分においても周方向漏洩磁束Φ2を減少させることができるため、固定子10に鎖交する有効磁束Φ1をより増加させることができる。
 また、本実施の形態に係る回転電機100において、第1開口部33の開口幅をLo1とし、径方向における固定子10と回転子20との間隔の最大値をGmmaxとしたとき、Lo1>Gmmaxの関係が満たされる。この構成によれば、第1開口部33を通る経路の磁気抵抗が、空隙15を通る経路の磁気抵抗と比較して大きくなりやすいため、固定子10に鎖交する有効磁束Φ1をより増加させることができる。
実施の形態2.
 本発明の実施の形態2に係る回転電機について説明する。図11は、本実施の形態に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図11に示すように、第2孔32は、第1部分32aと、第1部分32aよりも径方向で固定子10側、すなわち図11では外周側に位置する第2部分32bと、を有している。周方向に沿った接線方向における第1部分32aの幅をL1とし、同接線方向における第2部分32bの幅をL2としたとき、L1>L2の関係が満たされている。
 図1及び図4を用いて説明したように、上記実施の形態1では回転電機100のトルク出力を向上させることができる。しかしながら、周方向漏洩磁束Φ2をゼロにすることは困難であるため、図4中の破線矢印で示すように、実施の形態1においても周方向漏洩磁束Φ2が存在する。回転電機100のトルク出力をさらに向上させるためには、この周方向漏洩磁束Φ2をさらに低減する必要がある。図1及び図4に示した実施の形態1の回転子20において、固定子10からの距離が遠い内周側では周方向漏洩磁束Φ2が多く、固定子10からの距離が近い外周側では周方向漏洩磁束Φ2が少ないと考えられる。そこで、本願発明者らは、第2孔32の第1部分32aの幅L1を、第1部分32aよりも外周側に位置する第2部分32bの幅L2よりも広くすれば、内周側での周方向漏洩磁束Φ2を低減できるため、有効磁束Φ1を増加させることができると考えた。
 図12は、本実施の形態に係る回転電機100において、幅L1及び幅L2の大小関係とトルクとの関係を示すグラフである。グラフの縦軸は、L1=L2の場合のトルクを1として規格化したトルク[p.u.]を表している。図12に示すように、L1=L2の場合に得られるトルクを1とすると、L1>L2の場合に得られるトルクは約1.036である。したがって、第1部分32aの幅L1を第2部分32bの幅L2よりも広くすることによって、回転電機100のトルク出力をさらに高めることができることが分かる。
 図11に示した構成では第2孔32の幅が2段階で変化しているが、それ以外の構成も考えられる。図13は、本実施の形態の変形例2-1に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図13に示す構成では、第2孔32は、第1部分32aと、第1部分32aよりも径方向で外側に位置する第2部分32bと、第2部分32bよりもさらに径方向で外側に位置する第3部分32cと、を有している。周方向に沿った接線方向における第1部分32aの幅をL1とし、同接線方向における第2部分32bの幅をL2とし、同接線方向における第3部分32cの幅をL3としたとき、L1>L2>L3の関係が満たされている。このように、第2孔32の幅は、3段階以上で変化していてもよい。
 図14は、本実施の形態の変形例2-2に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図14に示す構成では、第2孔32の幅は、径方向で固定子10から離れるほど単調に増加している。第2孔32は、回転子コア21に形成された一対の縁部32d、32eによって周方向で挟まれている。一対の縁部32d、32eは、いずれも直線状に形成されている。
 図15は、本実施の形態の変形例2-3に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図15に示す構成では、第2孔32の幅は、径方向で固定子10から離れるに従って、必ずしも単調には増加していない。しかしながら、第2孔32の幅は、大まかには径方向で固定子10から離れるほど増加している。回転子コア21の一対の縁部32d、32eは、いずれも凹曲線状に形成されている。
 図16は、本実施の形態の変形例2-4に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図16に示す構成では、第2孔32の幅は、径方向で固定子10から離れるほど単調に増加している。回転子コア21の一対の縁部32d、32eは、いずれも凸曲線状に形成されている。
 図13~図16に示す構成によっても、図11に示した構成と同様に、回転電機100のトルク出力を向上させることができる。
 以上説明したように、本実施の形態に係る回転電機100において、第2孔32は、第1部分32aと、第1部分32aよりも径方向で固定子10側に位置する第2部分32bと、を有している。周方向に沿った接線方向における第1部分32aの幅をL1とし、接線方向における第2部分32bの幅をL2としたとき、L1>L2の関係が満たされる。この構成によれば、固定子10からの距離が遠い部分での周方向漏洩磁束Φ2を低減できるため、回転電機100のトルク出力をさらに向上させることができる。
 また、本実施の形態に係る回転電機100において、第2孔32は、径方向で固定子10から離れるほど接線方向における幅が広くなるように形成されている。この構成によれば、固定子10からの距離が遠い部分での周方向漏洩磁束Φ2を低減できるため、回転電機100のトルク出力をさらに向上させることができる。
実施の形態3.
 本発明の実施の形態3に係る回転電機について説明する。図17は、本実施の形態に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。なお、実施の形態1又は2と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図17に示すように、回転子コア21は、周方向で隣り合う2つの第2孔32に挟まれた複数のコア部40を有している。永久磁石22は、複数のコア部40毎に設けられている。永久磁石22のそれぞれは、図17で反時計回り方向を向いた磁極面がN極となり、図17で時計回り方向を向いた磁極面がS極となるように着磁されている。
 複数のコア部40のそれぞれは、永久磁石22のS極側に位置する第1コア部41と、永久磁石22のN極側に位置する第2コア部42と、を有している。図17に示す回転子コア21では、5個のコア部40が設けられているため、第1コア部41及び第2コア部42はそれぞれ5個ずつ設けられている。
 回転子コア21は、複数の第1コア部41同士を連結する連結部43(以下、「第1連結部43」という場合がある)を有している。連結部43は、複数のコア部40よりも径方向で内側に配置されている。連結部43は、環状に形成された環状部44と、環状部44から複数の第1コア部41に向かってそれぞれ放射状に延び、環状部44と複数の第1コア部41とを接続する複数の放射状部45と、を有している。これにより、複数の第1コア部41同士は、連結部43を介して磁気的に接続されている。
 一方、複数の第2コア部42のそれぞれは、連結部43の放射状部45に対して直接には接続されていない。複数の第2コア部42のそれぞれは、永久磁石22を挟んで隣接する第1コア部41を介してのみ、連結部43に接続されている。
 本実施の形態によれば、同極となる複数の第1コア部41同士が連結部43を介して連結されるため、周方向漏洩磁束Φ2の発生を抑制することが可能である。また、連結部43を介して複数のコア部40が一体化されるため、回転子20の機械的強度を向上させることができるとともに、回転子20の生産性を向上させることができる。
 ここで、本実施の形態では、径方向で固定子10から離れるほど第2孔32の幅が広くなっているが、実施の形態1と同様に、第2孔32の幅は径方向位置によらず一定であってもよい。
 図18は、本実施の形態の変形例3-1に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。本変形例の回転子コア21は、複数の第2コア部42同士を連結する連結部46(以下、「第2連結部46」という場合がある)を有している。連結部46は、環状に形成された環状部44と、環状部44から複数の第2コア部42に向かってそれぞれ放射状に延び、環状部44と複数の第2コア部42とを接続する複数の放射状部45と、を有している。これにより、複数の第2コア部42同士は、連結部46を介して磁気的に接続されている。
 一方、複数の第1コア部41のそれぞれは、連結部46の放射状部45に対して直接には接続されていない。複数の第1コア部41のそれぞれは、永久磁石22を挟んで隣接する第2コア部42を介してのみ、連結部46に接続されている。本変形例によっても、図17に示した構成と同様の効果を得ることができる。
 また、本実施の形態の回転子20は、図17に示した回転子コア21と、図18に示した回転子コア21と、が軸方向に積層された構成を有していてもよい。例えば、図17に示した回転子コア21と、図18に示した回転子コア21とは、軸方向に交互に積層される。これにより、回転子20の機械的強度をさらに向上させることができる。
 図19は、本実施の形態の変形例3-2に係る回転電機100の回転子20の構成を示す分解斜視図である。図19に示すように、本変形例の回転子20は、第1回転子コア51、第2回転子コア52及び第3回転子コア53が軸方向に積層された構成を有している。第1回転子コア51、第2回転子コア52及び第3回転子コア53は、それぞれの第1孔31の周方向位置が一致するように積層されている。第1回転子コア51、第2回転子コア52及び第3回転子コア53のそれぞれの第1孔31には、第1回転子コア51、第2回転子コア52及び第3回転子コア53を貫通するように永久磁石22が挿入されている。
 第1回転子コア51は、軸方向に沿って図中奥側から見ると、図17に示した回転子コア21と同様の構成を有している。第2回転子コア52は、軸方向に沿って図中奥側から見ると、図18に示した回転子コア21と同様の構成を有している。
 図20は、本変形例に係る回転電機100の第3回転子コア53を軸方向と垂直に切断した構成を示す断面図である。図20に示すように、第3回転子コア53は、第1回転子コア51及び第2回転子コア52と同様に、複数のコア部40を有している。複数のコア部40のそれぞれは、永久磁石22のS極側に位置する第1コア部41と、永久磁石22のN極側に位置する第2コア部42と、を有している。
 第3回転子コア53には、第1回転子コア51及び第2回転子コア52と異なり、連結部43が設けられていない。このため、第3回転子コア53の複数のコア部40は、互いに分離されている。
 図19に戻り、回転子20は、第1回転子コア51、第3回転子コア53及び第2回転子コア52が軸方向でこの順に積層された構成を有している。第1回転子コア51又は第2回転子コア52が複数積層される場合には、例えば、第1回転子コア51、第3回転子コア53、第2回転子コア52、第3回転子コア53、第1回転子コア51、第3回転子コア53、第2回転子コア52、・・・がこの順に積層される。第1回転子コア51と第2回転子コア52との間には、第3回転子コア53が挟まれている。軸方向における第1回転子コア51の厚さは、軸方向における第3回転子コア53の厚さよりも厚くなっている。同様に、軸方向における第2回転子コア52の厚さは、軸方向における第3回転子コア53の厚さよりも厚くなっている。これにより、第1回転子コア51に設けられた連結部43、及び第2回転子コア52に設けられた連結部43はいずれも、一定の厚さを有している。
 本変形例によれば、回転子20の軸方向への漏洩磁束を抑制できるとともに、回転子20の機械的強度を高めることができる。
 図21は、本実施の形態の変形例3-3に係る回転電機100の回転子20の構成を示す分解斜視図である。図21に示すように、本変形例の回転子20は、一対の端板54、55をさらに有している。端板54及び端板55はそれぞれ、第1回転子コア51、第2回転子コア52及び第3回転子コア53が積層された回転子コアの軸方向両端に配置されている。端板54及び端板55は、複数のボルト56等の締付け部材を用いて、第1回転子コア51、第2回転子コア52及び第3回転子コア53と共に軸方向に締め付けられる。本変形例によれば、回転子20の機械的強度をさらに高めることができるとともに、回転子20を一体化することができる。
 以上説明したように、本実施の形態に係る回転電機100において、回転子コア21は、周方向で隣り合う2つの第2孔32に挟まれた複数のコア部40を有している。複数のコア部40のそれぞれは、永久磁石22の一方の磁極面側に位置する第1コア部41と、永久磁石22の他方の磁極面側に位置する第2コア部42と、を有している。回転子コア21は、複数のコア部40の第1コア部41同士を連結する連結部43をさらに有している。この構成によれば、同極となる複数の第1コア部41同士が連結部43を介して連結されるため、周方向漏洩磁束Φ2の発生を抑制することが可能である。したがって、回転電機100のトルクを向上させることができる。また、連結部43を介して複数のコア部40が一体化されるため、回転子20の機械的強度を向上させることができる。
 また、本実施の形態に係る回転電機100において、回転子コア21は、互いに軸方向に積層される第1回転子コア51及び第2回転子コア52を有している。第1回転子コア51及び第2回転子コア52のそれぞれは、周方向で隣り合う2つの第2孔32に挟まれた複数のコア部40を有している。複数のコア部40のそれぞれは、永久磁石22の一方の磁極面側に位置する第1コア部41と、永久磁石22の他方の磁極面側に位置する第2コア部42と、を有している。第1回転子コア51は、第1回転子コア51が有する第1コア部41同士を連結する第1連結部43をさらに有している。第2回転子コア52は、第2回転子コア52が有する第2コア部42同士を連結する第2連結部46をさらに有している。この構成によれば、第1回転子コア51では、同極となる複数の第1コア部41同士が連結部43を介して連結されるため、周方向漏洩磁束Φ2の発生を抑制できる。また、第2回転子コア52では、同極となる複数の第2コア部42同士が連結部46を介して連結されるため、周方向漏洩磁束Φ2の発生を抑制できる。したがって、回転電機100のトルクを向上させることができる。また、第1回転子コア51及び第2回転子コア52が軸方向に積層されるため、回転子20の機械的強度をさらに向上させることができる。
 また、本実施の形態に係る回転電機100において、回転子コア21は、互いに軸方向に積層される第1回転子コア51、第2回転子コア52及び第3回転子コア53を有している。第1回転子コア51、第2回転子コア52及び第3回転子コア53のそれぞれは、周方向で隣り合う2つの第2孔32に挟まれた複数のコア部40を有している。複数のコア部40のそれぞれは、永久磁石22の一方の磁極面側に位置する第1コア部41と、永久磁石22の他方の磁極面側に位置する第2コア部42と、を有している。第1回転子コア51は、第1回転子コア51が有する第1コア部41同士を連結する第1連結部43をさらに有している。第2回転子コア52は、第2回転子コア52が有する第2コア部42同士を連結する第2連結部46をさらに有している。第3回転子コア53が有する複数のコア部40は、第3回転子コア53内で互いに連結されていない。軸方向において、第1回転子コア51と第2回転子コア52との間には第3回転子コア53が配置されている。この構成によれば、第1回転子コア51では、同極となる複数の第1コア部41同士が連結部43を介して連結されるため、周方向漏洩磁束Φ2の発生を抑制できる。また、第2回転子コア52では、同極となる複数の第2コア部42同士が連結部46を介して連結されるため、周方向漏洩磁束Φ2の発生を抑制できる。さらに、第1回転子コア51と第2回転子コア53との間には、複数のコア部40同士が連結されていない第3回転子コア53が配置されているため、軸方向での漏洩磁束の発生を抑制できる。したがって、回転電機100のトルクを向上させることができる。
実施の形態4.
 本発明の実施の形態4に係る回転電機について説明する。図22は、本実施の形態に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。なお、実施の形態1~3のいずれかと同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図22に示すように、本実施の形態では、永久磁石22が挿入された第1孔31は、径方向で固定子10側、すなわち径方向で外側に向かって開口した第3開口部35を有している。第3開口部35には永久磁石22が挿入されていないため、第3開口部35は、回転子コア21の外周部において周方向の磁気的空隙となる。第3開口部35は空間であってもよい。あるいは、第3開口部35には、非磁性部材が充填されていてもよい。図22に示す構成では、図8に示した構成と同様に、周方向に沿った接線方向における第1孔31の幅は、周方向に沿った接線方向における第2孔32の幅よりも狭くなっている。
 上記実施の形態1~3の構成では、第1孔31の径方向外側は閉じられている。永久磁石22のS極側に位置する第1コア部41はS極に磁化され、永久磁石22のN極側に位置する第2コア部42はN極に磁化される。このため、第2コア部42と第1コア部41との間には、永久磁石22から出た磁束が第1孔31の径方向外側を通って当該永久磁石22に戻る閉磁路が形成される。この閉磁路を通る磁束は、固定子10に鎖交しない漏洩磁束となる。この漏洩磁束を抑制することができれば、固定子10に鎖交する有効磁束Φ1を増加させることができるため、回転電機100のトルク出力を向上させることができる。
 本実施の形態では、第1孔31の径方向外側に第3開口部35が形成されているため、上記の閉磁路の磁気抵抗が増加する。これにより、図22に破線矢印で示すような漏洩磁束を抑制することができるため、回転電機100のトルク出力を向上させることができる。第1孔31の幅が第2孔32の幅よりも狭い場合、上記の漏洩磁束が生じやすい。しかしながら、本実施の形態では第3開口部35が形成されているため、第1孔31の幅が第2孔32の幅よりも狭い場合であっても、上記の漏洩磁束を効果的に抑制できる。
 図23は、本実施の形態の変形例4-1に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図23に示すように、本変形例の第1孔31は、径方向で固定子10と反対側、すなわち径方向で内側に向かって開口した第4開口部36を有している。永久磁石22から出た磁束が当該永久磁石22に戻る閉磁路は、第1孔31の径方向内側にも形成される。本変形例では、第1孔31の径方向内側に形成される閉磁路の磁気抵抗が増加する。これにより、図23に破線矢印で示すような漏洩磁束を抑制することができるため、回転電機100のトルク出力を向上させることができる。
 本変形例の構成においても、第1孔31の幅が第2孔32の幅よりも狭くなっている。しかしながら、本変形例の構成では、第4開口部36が形成されているため、第1孔31の幅が第2孔32の幅よりも狭い場合であっても、上記の漏洩磁束を効果的に抑制できる。
 図24は、本実施の形態の変形例4-2に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。図24に示すように、本変形例の第1孔31は、第3開口部35及び第4開口部36の双方を有している。本変形例によれば、上記の2つの効果の両方を得ることができるため、回転電機100のトルク出力をさらに向上させることができる。
 本変形例の構成においても、第1孔31の幅が第2孔32の幅よりも狭くなっている。しかしながら、本変形例の構成では、第3開口部35及び第4開口部36が形成されているため、第1孔31の幅が第2孔32の幅よりも狭い場合であっても、上記の漏洩磁束を効果的に抑制できる。
 以上説明したように、本実施の形態に係る回転電機100において、第1孔31は、径方向で固定子10側に開口した第3開口部35、又は径方向で固定子10とは反対側に開口した第4開口部36を有している。この構成によれば、漏洩磁束を抑制することができるため、回転電機100のトルク出力を向上させることができる。
実施の形態5.
 本発明の実施の形態5に係る回転電機について説明する。図25は、本実施の形態に係る回転電機100の回転子20を軸方向と垂直に切断した構成を示す断面図である。なお、実施の形態1~3のいずれかと同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図25に示すように、回転子コア21は、第2孔32によって複数のコア部40に分離されている。第2孔32は、縁部32d及び縁部32eによって周方向で挟まれている。一方の縁部32dは、第2孔32に対し図25で反時計回り方向に隣接するコア部40に形成されている。縁部32dの一部には、凹形状に切り欠かれた凹部37が形成されている。凹部37以外の縁部32dは、直線状に形成されている。他方の縁部32eは、第2孔32に対し図25で時計回り方向に隣接するコア部40に形成されている。縁部32eの一部には、凹形状に切り欠かれた凹部38が形成されている。凹部38以外の縁部32eは、直線状に形成されている。
 回転時の回転子20には、径方向外側に向かう遠心力が生じる。このため、互いに分離されている複数のコア部40は、回転時に外周側に飛び出してしまうおそれがある。コア部40が外周側に飛び出した場合、固定子10と接触してしまい、回転電機100の停止に繋がってしまう可能性がある。
 本実施の形態では、樹脂、非磁性金属等の非磁性材料により形成された不図示の保持部材が第2孔32に挿入される。保持部材には、凹部37に嵌め込まれる凸部と、凹部38に嵌め込まれる別の凸部と、が形成されている。保持部材によって各コア部40が保持されるため、コア部40が外周側に飛び出してしまうのが防止される。また、保持部材により、周方向での回転子コア21の位置決め精度が向上する。さらに、保持部材によって回転子コア21の位置決め精度が向上することにより、回転子ばらつきの影響によるトルクリップルの増加が抑制される。
 図25に示す構成では、周方向に沿った接線方向における第1開口部33の開口幅Lo1は、周方向に沿った接線方向における第2開口部34の開口幅Lo2よりも広くなっている(Lo1>Lo2)。しかしながら、第1開口部33の開口幅Lo1は、第2開口部34の開口幅Lo2と同一であってもよい(Lo1=Lo2)。また、第2孔32の幅は、図11及び図13に示したように段階的に変化していてもよい。
 本発明は、上記実施の形態に限らず種々の変形が可能である。例えば、上記実施の形態では10極の回転子20を例に挙げたが、本発明はこれに限られない。回転子20の磁極数p(ただし、pは2以上の偶数)が10以外であっても、上記実施の形態と同様の効果が得られる。また、上記実施の形態では、12個のティース13と12個の巻線14とを備えた固定子10を例に挙げたが、本発明はこれに限られない。ティース13の数及び巻線14の数はそれぞれ、回転子20の磁極数に応じて適切な数に設定されるようにしてもよい。
 また、上記実施の形態では、固定子10の内周側に回転子20が配置された回転電機100を例に挙げたが、本発明は、固定子10の外周側に回転子20が配置された回転電機にも適用できる。
 上記の各実施の形態1~5及び各変形例は、互いに組み合わせて実施することが可能である。
 10 固定子、11 固定子コア、12 コアバック、13 ティース、14 巻線、15 空隙、20 回転子、21 回転子コア、21a 外周面、22 永久磁石、30 孔、31 第1孔、32 第2孔、32a 第1部分、32b 第2部分、32c 第3部分、32d、32e 縁部、33 第1開口部、34 第2開口部、35 第3開口部、36 第4開口部、37、38 凹部、40 コア部、41 第1コア部、42 第2コア部、43、46 連結部、44 環状部、45 放射状部、51 第1回転子コア、52 第2回転子コア、53 第3回転子コア、54、55 端板、56 ボルト、100、200 回転電機、201、202 接続部、Φ1 有効磁束、Φ2 周方向漏洩磁束。

Claims (9)

  1.  固定子と、
     前記固定子に対して回転自在に設けられた回転子と、
     を備え、
     前記回転子は、
     前記回転子の周方向に配列した複数の孔が形成された回転子コアと、
     少なくとも1つの永久磁石と、を有しており、
     前記回転子の磁極数は、2以上の偶数であるpであり、
     前記複数の孔は、前記永久磁石が挿入されたp/2個の第1孔と、前記永久磁石が挿入されていないp/2個の第2孔と、を含んでおり、
     前記第1孔及び前記第2孔は、前記周方向で交互に配列するように設けられており、
     前記永久磁石は、前記第2孔を挟んで前記周方向で互いに向き合う磁極面が異極となるように着磁されており、
     前記第2孔は、前記回転子の径方向で前記固定子側に開口した第1開口部を有している回転電機。
  2.  前記第2孔は、前記径方向で前記固定子とは反対側に開口した第2開口部を有している請求項1に記載の回転電機。
  3.  前記第2孔は、第1部分と、前記第1部分よりも前記径方向で前記固定子側に位置する第2部分と、を有しており、
     前記周方向に沿った接線方向における前記第1部分の幅をL1とし、前記接線方向における前記第2部分の幅をL2としたとき、L1>L2の関係が満たされる請求項1又は請求項2に記載の回転電機。
  4.  前記第2孔は、前記径方向で前記固定子から離れるほど前記接線方向における幅が広くなるように形成されている請求項3に記載の回転電機。
  5.  前記第1開口部の開口幅をLo1とし、前記径方向における前記固定子と前記回転子との間隔の最大値をGmmaxとしたとき、Lo1>Gmmaxの関係が満たされる請求項1~請求項4のいずれか一項に記載の回転電機。
  6.  前記回転子コアは、周方向で隣り合う2つの前記第2孔に挟まれた複数のコア部を有しており、
     前記複数のコア部のそれぞれは、前記永久磁石の一方の磁極面側に位置する第1コア部と、前記永久磁石の他方の磁極面側に位置する第2コア部と、を有しており、
     前記回転子コアは、前記複数のコア部の前記第1コア部同士を連結する連結部をさらに有している請求項1~請求項5のいずれか一項に記載の回転電機。
  7.  前記回転子コアは、互いに軸方向に積層される第1回転子コア及び第2回転子コアを有しており、
     前記第1回転子コア及び前記第2回転子コアのそれぞれは、周方向で隣り合う2つの前記第2孔に挟まれた複数のコア部を有しており、
     前記複数のコア部のそれぞれは、前記永久磁石の一方の磁極面側に位置する第1コア部と、前記永久磁石の他方の磁極面側に位置する第2コア部と、を有しており、
     前記第1回転子コアは、前記第1回転子コアが有する前記第1コア部同士を連結する第1連結部をさらに有しており、
     前記第2回転子コアは、前記第2回転子コアが有する前記第2コア部同士を連結する第2連結部をさらに有している請求項1~請求項5のいずれか一項に記載の回転電機。
  8.  前記回転子コアは、互いに軸方向に積層される第1回転子コア、第2回転子コア及び第3回転子コアを有しており、
     前記第1回転子コア、前記第2回転子コア及び前記第3回転子コアのそれぞれは、周方向で隣り合う2つの前記第2孔に挟まれた複数のコア部を有しており、
     前記複数のコア部のそれぞれは、前記永久磁石の一方の磁極面側に位置する第1コア部と、前記永久磁石の他方の磁極面側に位置する第2コア部と、を有しており、
     前記第1回転子コアは、前記第1回転子コアが有する前記第1コア部同士を連結する第1連結部をさらに有しており、
     前記第2回転子コアは、前記第2回転子コアが有する前記第2コア部同士を連結する第2連結部をさらに有しており、
     前記第3回転子コアが有する前記複数のコア部は、前記第3回転子コア内で互いに連結されておらず、
     前記軸方向において、前記第1回転子コアと前記第2回転子コアとの間には前記第3回転子コアが配置されている請求項1~請求項5のいずれか一項に記載の回転電機。
  9.  前記第1孔は、前記径方向で前記固定子側に開口した第3開口部、又は前記径方向で前記固定子とは反対側に開口した第4開口部を有している請求項1~請求項8のいずれか一項に記載の回転電機。
PCT/JP2019/013790 2019-03-28 2019-03-28 回転電機 WO2020194709A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/429,355 US20220149681A1 (en) 2019-03-28 2019-03-28 Rotating electric machine
JP2019556991A JP6641545B1 (ja) 2019-03-28 2019-03-28 回転電機
EP19921895.9A EP3952066A4 (en) 2019-03-28 2019-03-28 ELECTRIC LATHE
CN201980094371.1A CN113615042A (zh) 2019-03-28 2019-03-28 旋转电机
PCT/JP2019/013790 WO2020194709A1 (ja) 2019-03-28 2019-03-28 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013790 WO2020194709A1 (ja) 2019-03-28 2019-03-28 回転電機

Publications (1)

Publication Number Publication Date
WO2020194709A1 true WO2020194709A1 (ja) 2020-10-01

Family

ID=69320976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013790 WO2020194709A1 (ja) 2019-03-28 2019-03-28 回転電機

Country Status (5)

Country Link
US (1) US20220149681A1 (ja)
EP (1) EP3952066A4 (ja)
JP (1) JP6641545B1 (ja)
CN (1) CN113615042A (ja)
WO (1) WO2020194709A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862614B1 (ja) * 2020-03-23 2021-04-21 三菱電機株式会社 回転子及び回転電機
JP7066310B1 (ja) * 2020-08-20 2022-05-13 三菱電機株式会社 回転電機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153472A (ja) * 2001-08-30 2003-05-23 Yukio Kinoshita 回転電機及び電磁機器
WO2013094075A1 (ja) * 2011-12-23 2013-06-27 三菱電機株式会社 永久磁石型モータ
JP2014204504A (ja) * 2013-04-02 2014-10-27 三菱電機株式会社 回転電機の回転子、回転電機、回転子の積層コアの製造方法
JP2017201853A (ja) * 2016-05-02 2017-11-09 株式会社ミツバ ロータおよびモータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564779B2 (en) * 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor
KR101331654B1 (ko) * 2012-04-23 2013-11-20 삼성전기주식회사 로터 어셈블리
US9099905B2 (en) * 2012-10-15 2015-08-04 Regal Beloit America, Inc. Radially embedded permanent magnet rotor and methods thereof
KR20150072450A (ko) * 2012-11-30 2015-06-29 아세릭 에이. 에스 스포크 영구 자석 로터
CN108880035B (zh) * 2018-07-16 2019-10-18 珠海格力电器股份有限公司 交替极电机转子和交替极电机
US20200083767A1 (en) * 2018-09-06 2020-03-12 Adlee Powertronic Co., Ltd. Permanent magnet motor
CN109347229B (zh) * 2018-11-14 2024-05-14 珠海格力电器股份有限公司 电机转子结构及永磁电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153472A (ja) * 2001-08-30 2003-05-23 Yukio Kinoshita 回転電機及び電磁機器
WO2013094075A1 (ja) * 2011-12-23 2013-06-27 三菱電機株式会社 永久磁石型モータ
JP2014204504A (ja) * 2013-04-02 2014-10-27 三菱電機株式会社 回転電機の回転子、回転電機、回転子の積層コアの製造方法
JP2017201853A (ja) * 2016-05-02 2017-11-09 株式会社ミツバ ロータおよびモータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952066A4 *

Also Published As

Publication number Publication date
CN113615042A (zh) 2021-11-05
JPWO2020194709A1 (ja) 2021-04-08
US20220149681A1 (en) 2022-05-12
EP3952066A4 (en) 2022-04-06
EP3952066A1 (en) 2022-02-09
JP6641545B1 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
CN112838693B (zh) 旋转电机
US20170104376A1 (en) Rotary electric machine and rotor core manufacturing method
WO2016047078A1 (ja) 永久磁石式回転子および永久磁石式同期回転電機
US11038388B2 (en) Rotor of rotary electric machine
US20110043070A1 (en) Electric machine and rotor arrangement
JP2017085818A (ja) 永久磁石型モータ
JP4854867B2 (ja) 電動機
JP6748852B2 (ja) ブラシレスモータ
WO2017195498A1 (ja) 回転子および回転電機
JP5067365B2 (ja) モータ
WO2020194709A1 (ja) 回転電機
JP2017204906A (ja) スイッチトリラクタンスモータ
JP5702118B2 (ja) ロータの構造及びモータ
WO2021065687A1 (ja) 回転子、モータ
JP6112970B2 (ja) 永久磁石式回転電機
US11901773B2 (en) Rotating electric machine
JP5672149B2 (ja) 回転電機用ロータ、および、これを用いた回転電機
JP6357859B2 (ja) 永久磁石埋め込み式回転電機
JP7066310B1 (ja) 回転電機
JP2007259514A (ja) 分割形固定子鉄心を採用した回転電機
JP6862614B1 (ja) 回転子及び回転電機
US20240136874A1 (en) Rotating electrical machine
WO2023084590A1 (ja) 回転電機
WO2023276680A1 (ja) 回転電機
WO2022114176A1 (ja) 電動機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019556991

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019921895

Country of ref document: EP

Effective date: 20211028