WO2020192661A1 - 压力传感器及其封装方法 - Google Patents

压力传感器及其封装方法 Download PDF

Info

Publication number
WO2020192661A1
WO2020192661A1 PCT/CN2020/080932 CN2020080932W WO2020192661A1 WO 2020192661 A1 WO2020192661 A1 WO 2020192661A1 CN 2020080932 W CN2020080932 W CN 2020080932W WO 2020192661 A1 WO2020192661 A1 WO 2020192661A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive chip
pressure sensor
sealing member
thin
electrode
Prior art date
Application number
PCT/CN2020/080932
Other languages
English (en)
French (fr)
Inventor
聂泳忠
Original Assignee
西人马联合测控(泉州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西人马联合测控(泉州)科技有限公司 filed Critical 西人马联合测控(泉州)科技有限公司
Priority to US17/598,333 priority Critical patent/US20220178773A1/en
Publication of WO2020192661A1 publication Critical patent/WO2020192661A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • G01L1/2262Measuring circuits therefor involving simple electrical bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/007Interconnections between the MEMS and external electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/145Housings with stress relieving means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/095Feed-through, via through the lid

Definitions

  • This application relates to the technical field of microelectronic mechanical systems, and in particular to a pressure sensor and its packaging method.
  • Thin-film pressure sensors have the advantages of good stability, high accuracy, and suitable for harsh environments. They are widely used in the measurement of pressure parameters in various fields such as national defense, aerospace, industrial production, and automatic control.
  • the absolute pressure type membrane pressure sensor uses the low air pressure in the absolute pressure cavity as the reference air pressure of the sensor zero.
  • the packaging structure of the absolute pressure cavity package will directly affect the size of the sensor and the environmental adaptability.
  • the packaging method of the metal film pressure sensor is basically a leaded packaging method. This requires a larger space for operation and assembly and a larger package size.
  • the embodiments of the present application provide a pressure sensor, which aims to adopt a leadless form, reduce the package size, and form an absolute pressure package structure.
  • a pressure sensor including: a sensitive chip, including a thin-walled portion and a support portion connected to the outer periphery of the thin-walled portion, the support portion is provided with electrodes; a sealing member sleeved on the sensitive chip, and Partially surrounds the sensitive chip to form a sealed cavity, the sealing member is provided with a through hole corresponding to the electrode; the conductive member is sealed in the through hole and electrically connected to the electrode, and the conductive member and the sealing member are insulated and arranged, wherein, The conductive member includes a filling part and a lead part buried in the filling part.
  • the sealing element includes a main body and an extension connected to the main body.
  • the main body and the extension are enclosed to form a accommodating cavity.
  • the sealing element is sleeved on the sensitive chip through the accommodating cavity, and the extension covers On the outer surface of the supporting part; the main body part is provided with a groove, the groove faces the accommodating cavity, and the thin wall part covers the opening of the groove to form a sealed cavity.
  • the through holes are opened in the main body, and more than four through holes are distributed at intervals on the circumferential side of the groove; the through holes are tapered.
  • the support portion has a notch recessed from the outer surface toward the inner surface of the support portion, and the extension portion has a protrusion that matches the notch.
  • the supporting portion has a stepped structure with one end away from the thin-walled portion protruding outward.
  • the extension part abuts the step and forms a seal.
  • the filling part is a conductive paste
  • the lead part is a metal lead pin
  • the filling part is electrically connected to the electrode.
  • the sealing member is sleeved on the sensitive chip, a sealed cavity is formed between the thin-walled portion of the sensitive chip and the sealing member, and the conductive member provided in the through hole on the sealing member is electrically connected to the electrode on the sensitive chip.
  • an electrical connection is formed with the electrode through the conductive member, and the lead wire is not used to draw the electric signal, which reduces the packaging size of the pressure sensor and realizes the absolute pressure packaging.
  • a pressure sensor packaging method including the following steps: providing a sensitive chip, the sensitive chip includes a thin-walled portion and a support portion connected to the outer periphery of the thin-walled portion, the support portion is provided with electrodes; The part is sleeved on the sensitive chip for pre-assembly processing. The sealing part is partially surrounded with the sensitive chip to form a sealed cavity. The sealing part is provided with a through hole corresponding to the electrode; the filling part is injected into the through hole and the lead part is inserted into the filling part In the process, the filling part is vacuum sintered and solidified; the sensitive chip and the sealing element are absolute pressure packaged to form a pressure sensor.
  • the step of socketing the sealing member on the sensitive chip for pre-assembly processing includes: positioning the notch on the sensitive chip and the protrusion on the sealing member to perform the pre-assembly processing.
  • the step of sealing the sensitive chip and the sealing element includes: using an electron beam welding device in which the gas in the chamber is replaced with dry argon, and when the vacuum of the electron beam welding device drops below a predetermined value, the sensitive The chip and the seal are welded and sealed.
  • the provided sealing element is sleeved on the sensitive chip, a sealed cavity is formed between the thin-walled portion of the sensitive chip and the sealing element, and the conductive member provided in the through hole on the sealing element is electrically connected to the electrode on the sensitive chip. Connection, wherein the filling part of the conductive member is injected into the through hole and the lead part of the conductive member is inserted into the filling part, and then the filling part is vacuum sintered and solidified.
  • the conductive member is formed with the electrode Electrical connection, and the use of leadless form, reduces the packaging size of the pressure sensor, and achieves absolute pressure packaging.
  • Fig. 1 is a schematic structural diagram of a pressure sensor according to an embodiment of the present application
  • Figure 2 is a bottom view of the seal of the embodiment of the present application.
  • Fig. 3 is a three-dimensional schematic diagram of the sealing element of the embodiment of the present application.
  • FIG. 4 is a three-dimensional schematic diagram of the sensitive chip of the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a sensitive chip according to an embodiment of the present application.
  • Fig. 6 is a flowchart of a pressure sensor packaging method according to an embodiment of the present application.
  • FIG. 1 is a pressure sensor provided by an embodiment of the application, which includes a sensitive chip 10, a sealing member 20, and a conductive member 30.
  • the sensitive chip 10 includes a thin-walled portion 12 and a supporting portion 11 connected to the outer periphery of the thin-walled portion 12, and the supporting portion 11 is provided with electrodes.
  • the sealing member 20 is sleeved on the sensitive chip 10 and partially surrounds the sensitive chip 10 to form a sealed cavity 40.
  • the sealing member 20 is provided with a through hole 21 corresponding to the electrode.
  • the conductive member 30 is sealed in the through hole 21 and electrically connected to the electrode.
  • the conductive member 30 and the sealing member 20 are insulated from each other.
  • the conductive member 30 includes a filling part 31 and a lead part 32 embedded in the filling part 31.
  • the shape of the thin-walled portion 12 is not specifically limited, and it may be a disc shape, a square sheet shape, an oval sheet shape, etc., preferably a disc shape.
  • the supporting portion 11 is connected to the outer circumference of the thin-walled portion 12.
  • the supporting portion 11 may be cylindrical, and the thin-walled portion 12 may be a disc.
  • the thin-walled portion 12 is located at one end of the cylinder of the supporting portion 11 and The contour of the inner wall of this end cylinder is completely matched and contacted, and together with the supporting portion 11, a cavity with an opening facing downward (in the direction shown) is formed.
  • the thin-walled portion 12 and the supporting portion 11 are integrally formed into a cup shape.
  • An electrode is provided on the end surface of the supporting portion 11 where the thin-walled portion 12 is provided, and the electrode is insulated from the supporting portion 11.
  • an insulating layer is provided between the electrode and the supporting portion 11.
  • the filling part 31 or the lead part 32 is electrically connected to the electrode, or both the filling part 31 and the lead part 32 are electrically connected to the electrode.
  • the lead part 32 is partially buried in the filling part 31, and the other part is exposed.
  • the filling part 31 is electrically connected to the electrode.
  • the electrical signal is transmitted to the filling part 31 through the electrode and then to the lead part 32, and then through a wire such as a wire. Other media are transferred to other structures.
  • the shape and number of the lead-out portion 32 are not limited.
  • the lead-out portion 32 can be cylindrical, needle-shaped, flat, etc., and the lead-out portion 32 can be a single integrated structure or multiple ones.
  • the combined structure composed of a plurality of parts may also be a plurality of separate structures arranged at intervals, and these are all within the protection scope of the present application.
  • the shape and properties of the filling part 31 are also not limited. Before the embedded lead part 32 is fixed to the through hole 21, the filling part 31 may be powdery or fluid. After the lead part 32 is fixed to the through hole 21, fill The portion 31 may be solid.
  • the sealing member 20 is sleeved on the sensitive chip 10, a sealed cavity is formed between the thin-walled portion 12 of the sensitive chip 10 and the sealing member 20, and the conductive member 30 disposed in the through hole 21 of the sealing member 20 and The electrodes on the sensitive chip 10 are electrically connected.
  • the conductive member 30 is electrically connected to the electrodes. Leads and corresponding adapter plates are not used, which reduces the packaging size of the pressure sensor and realizes absolute pressure packaging. , And also avoid the risk of breakage due to the soft lead material in extreme shock and vibration environments.
  • the sealing member 20 includes a main body and an extension 22 connected to the main body.
  • the main body and the extension 22 are enclosed to form an accommodating cavity and seal
  • the component 20 is sleeved on the sensitive chip 10 through the accommodating cavity, and the extension portion 22 is wrapped on the outer surface of the support portion 11.
  • the inner lateral profile (direction shown in FIG. 1) enclosed by the extension portion 22 and the sensitive chip
  • the outer lateral contour of 10 is matched and corresponding, and the inner surface of the receiving cavity of the main body part can be joined with the upper surface of the sensitive chip 10.
  • the main body is provided with a groove, the groove faces the accommodating cavity, and the thin-walled portion 12 covers the opening of the groove to form a sealed cavity 40.
  • the transverse profile of the groove is consistent with and corresponds to the transverse profile of the thin-walled portion 12, and preferably both are circular.
  • main body part and the extension part 22 may be integrally provided, or two separate structures may be integrated by bonding, welding, adhesion or other joining methods.
  • the through holes 21 are opened in the main body, and more than four through holes 21 are distributed at intervals on the circumferential side of the groove.
  • the through hole 21 is tapered.
  • the number of through holes 21 may be four, five, six, etc., and four are shown in the figure.
  • a plurality of through holes 21 may be arranged at even intervals.
  • the shape of the through hole 21 may be a taper whose cross-sectional area gradually decreases from top to bottom, so as to facilitate the arrangement of the filling portion 31.
  • the support portion 11 has a notch 13 that is recessed from the outer surface toward the inner surface of the support portion 11, and the extension portion 22 has a protrusion 23 matching the notch 13.
  • the specific shapes of the notch 13 and the protrusion 23 are not limited.
  • the notch 13 is a straight notch
  • the protrusion 23 is a straight protrusion
  • the straight notch and the straight protrusion match each other.
  • the supporting portion 11 has a stepped structure with one end away from the thin-walled portion 12 protruding outward. Specifically, as shown in FIG. 1, the outer side wall of the lower end of the supporting portion 11 protrudes outwardly into a step, and a step surface is formed.
  • the extension 22 abuts the step and forms a seal.
  • the lower surface of the extension portion 22 faces the stepped surface of the supporting portion 11, and abuts against the stepped surface to form a seal. It can be understood that welding, bonding, bonding, etc., and other sealing joints known in the prior art may be used between the lower surface of the extension portion 22 and the stepped surface of the supporting portion 11.
  • the filling part 31 is a conductive paste
  • the lead part 32 is a metal lead pin
  • the filling part 31 is electrically connected to the electrode.
  • the conductive paste (that is, the filling portion 31) before curing may be a mixture of silver powder, epoxy resin and glass powder, or a mixture of copper powder, epoxy resin and glass powder, or other conductive paste Components or mixtures.
  • the lead portion 32 may be a metal material such as copper and silver.
  • the base material of the sensitive chip 10 can be metal (such as stainless steel), the upper surface of the sensitive chip 10 (shown in Figures 1 and 5) is covered with an insulating layer 15, and the insulating layer 15 is provided with electrodes ( Shown as electrode 14) and functional layer 16.
  • the functional layer 16 is provided on the thin-walled portion 12.
  • the functional layer 16 is an example of a Wheatstone bridge.
  • the thin-walled portion 12 When there is a pressure change on the lower surface of the thin-walled portion 12 (shown in Figure 1), the thin-walled portion 12 will be deformed, causing The arm resistance of the Wheatstone bridge (functional layer 16) on the thin-walled portion 12 changes, which in turn causes a change in the output of the Wheatstone bridge, thereby causing a change in the electrical signal output through the electrode and the conductive member 30 to achieve pressure ⁇ sensing.
  • the material of the sealing member 20 may be metal or non-metal.
  • the inner wall of the through hole 21 is provided with an insulating layer.
  • the insulating layer may be sintered. Glass or ceramic material on the inner wall of the through hole 21.
  • FIG. 6 is a flowchart of a pressure sensor packaging method provided by an embodiment of the application, including the following steps:
  • a sensitive chip 10 is provided.
  • the sensitive chip 10 includes a thin-walled portion 12 and a support portion 11 connected to the outer periphery of the thin-walled portion 12, and the support portion 11 is provided with electrodes.
  • the thin-walled portion 12 and the supporting portion 11 may be integrally formed.
  • the sealing member 20 is sleeved on the sensitive chip 10 for pre-assembly processing.
  • the sealing member 20 partially surrounds the sensitive chip 10 to form a sealed cavity 40.
  • the sealing member 20 is provided with a through hole 21 corresponding to the electrode.
  • the filling part 31 is injected into the through hole 21 and the lead part 32 is inserted into the filling part 31, and then the filling part 31 is vacuum sintered and solidified.
  • the sensitive chip 10 and the sealing member 20 are absolute pressure packaged to form a pressure sensor.
  • the provided sealing member 20 is sleeved on the sensitive chip 10, a sealed cavity is formed between the thin-walled portion 12 of the sensitive chip 10 and the sealing member 20, and the conductive member disposed in the through hole 21 on the sealing member 20 30 is electrically connected to the electrode on the sensitive chip 10, wherein the filling part 31 in the conductive member 30 is injected into the through hole 21 and the lead part 32 in the conductive member 30 is inserted into the filling part 31, and then the filling part 31 is vacuumed Sintering and solidification, in the pressure sensor packaging method, an electrical connection is formed with the electrode in the form of a conductive member, and no lead is used, which reduces the packaging size of the pressure sensor and realizes an absolute pressure packaging.
  • the step of fitting the sealing member 20 to the sensitive chip 10 for pre-assembly processing includes: positioning the notch 13 on the sensitive chip 10 and the protrusion 23 on the sealing member 20 in cooperation with each other. For pre-equipment processing. By cooperating and positioning the notch 13 with the protrusion 23, the through hole 21 on the sealing member 20 and the electrode on the sensitive chip 10 can be aligned simply and conveniently during the pre-assembly process, which is convenient for subsequent operations.
  • the steps of sealing the sensitive chip 10 and the sealing member 20 include: using an electron beam welding device that replaces the gas in the chamber with dry argon, and the vacuum of the electron beam welding device drops below a predetermined value In this case, the sensitive chip 10 and the sealing member 20 are welded and sealed.
  • a pressure sensor packaging method provided by an embodiment of the invention includes the following steps:
  • S10 Provide a steel cup, a metal seal 20 and a metal lead part 32;
  • S20 Depositing an insulating layer, a functional layer, and an electrode layer on the steel cup in order, and obtaining a sensitive chip 10 with electrodes after photolithography, aging, and screening processes;
  • S30 Provide a through hole 21 on the sealing member 20, and lay an insulating layer at the through hole 21; the insulating layer may be a glass or ceramic layer sintered on the inner wall of the through hole 21.
  • the filling part 31 may be silver powder
  • the mixture of epoxy resin and glass powder can also be a mixture of copper powder, epoxy resin and glass powder, or other conductive paste components or mixtures.
  • soldering surface may be a bonding surface formed by bonding the stepped surface of the sensitive chip 10 and the lower surface (shown in FIG. 1) of the extension 22 of the sealing member 20.
  • step S10 includes:
  • step S40 includes:
  • S42 Perform circumferential spot welding on the welding surface of the sensitive chip 10 and the sealing member 20 for fixing.
  • the solder joint penetration depth does not exceed 0.2 mm, and the solder joint positions are required to be evenly distributed in the circumferential direction.
  • step S60 includes:
  • S61 Use dry argon to replace the gas in the chamber of the electron beam welding equipment; to reduce the water vapor content in the chamber;
  • S62 Reduce the vacuum degree of the electron beam welding equipment below the required value; optionally, the required value is 1kPa;
  • S63 Use electron beam welding equipment to weld the welding surface to form an absolute pressure package structure.
  • the embodiment of the present application provides a pressure sensor packaging method.
  • the electrodes and conductive paste of the sensitive chip 10 do not need to reserve operating space during the bonding process.
  • the diameter of the packaging structure is consistent with the structure of the sensitive chip 10, thereby reducing the packaging of the pressure sensor.
  • the size of the diameter because the pressure sensor packaging structure does not require an adapter plate, so the packaging height can be reduced by 5mm to 10mm.
  • the pressure sensor packaging structure does not have a lead structure, there is no risk of lead breakage in extreme shock and vibration environments, thereby enhancing the adaptability of the sensor in harsh environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压力传感器及其封装方法,压力传感器包括:敏感芯片(10),包括薄壁部(12)和与薄壁部外周相连接的支承部(11),支承部(11)设置有电极(14);密封件(20),套接于敏感芯片(10),并且部分地与敏感芯片(10)一起围绕形成密封腔(40),密封件(20)上对应于电极(14)开设有通孔(21);导电构件(30),密封设置于通孔(21)中,并与电极(14)电连接,导电构件(30)与密封件(20)之间绝缘设置,其中导电构件(30)包括填充部(31)和埋设于填充部(31)中的引出部(32)。通过导电构件(30)与电极(14)形成电连接,不采用引线,减小了压力传感器的封装尺寸,并且实现了绝压封装。

Description

压力传感器及其封装方法
相关申请的交叉引用
本申请要求享有于2019年03月27日提交的名称为“压力传感器及其封装方法”的中国专利申请201910236827.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及微电子机械系统技术领域,特别是涉及一种压力传感器及其封装方法。
背景技术
薄膜压力传感器具有稳定性好、精度高、可适用于恶劣环境等优点,广泛应用于国防、航空航天、工业生产和自动控制等各领域压力参数的测量。其中,绝压型薄膜压力传感器以绝压腔中的低气压作为传感器零位的参考气压。绝压腔封装的封装结构会直接影响到传感器的尺寸大小和环境适应性优劣等。
而现有技术中,金属薄膜压力传感器的封装方式基本上是采用有引线的封装方法。这需要预留较大的操作装配空间,封装尺寸较大。
因此,亟需一种新的压力传感器。
发明内容
本申请实施例提供一种压力传感器,旨在采用无引线的形式,减小封装尺寸,并形成了绝压封装结构。
本申请实施例一方面提供了一种压力传感器,包括:敏感芯片,包括薄壁部和与薄壁部外周相连接的支承部,支承部设置有电极;密封件,套接于敏感芯片,并且部分地与敏感芯片一起围绕形成密封腔,密封件上对 应于电极开设有通孔;导电构件,密封设置于通孔中,并与电极电连接,导电构件与密封件之间绝缘设置,其中,导电构件包括填充部和埋设于填充部中的引出部。
根据本申请的一个方面,密封件包括主体部和与主体部相连接的延伸部,主体部与延伸部一并围合形成容纳腔,密封件通过容纳腔套接于敏感芯片,延伸部包覆在支承部的外侧表面;主体部开设有凹槽,凹槽朝向容纳腔,薄壁部盖设于凹槽的开口以形成密封腔。
根据本申请的一个方面,通孔开设于主体部,四个以上通孔在凹槽周侧间隔分布;通孔为锥形。
根据本申请的一个方面,支承部具有从外侧表面朝向支承部内侧表面凹陷的缺口,并且延伸部具有与缺口相匹配的突出部。
根据本申请的一个方面,支承部具有远离薄壁部的一端向外突出的台阶结构。
根据本申请的一个方面,延伸部与台阶抵接并形成密封。
根据本申请的一个方面,填充部为导电浆料,引出部为金属引针,填充部与电极电连接。
在本申请实施例中,密封件套接于敏感芯片,敏感芯片的薄壁部与密封件之间形成密封腔,设置于密封件上通孔中的导电构件与敏感芯片上的电极电连接,压力传感器的结构中通过导电构件与电极形成电连接,并不采用引线引出电信号,减小了压力传感器的封装尺寸,并且实现了绝压封装。
本申请实施例另一方面,提供一种压力传感器封装方法,包括以下步骤:提供敏感芯片,敏感芯片包括薄壁部和与薄壁部外周相连接的支承部,支承部设置有电极;将密封件套接于敏感芯片进行预装配处理,密封件部分地与敏感芯片一起围绕形成密封腔,密封件上对应于电极开设有通孔;将填充部注入至通孔并把引出部插入填充部中,再对填充部进行真空烧结固化;将敏感芯片和密封件进行绝压封装,以形成压力传感器。
根据本申请的另一个方面,将密封件套接于敏感芯片进行预装配处理的步骤包括:使敏感芯片上的缺口与密封件上的突出部相配合定位以进行 预装备处理。
根据本申请的另一个方面,密封敏感芯片和密封件的步骤包括:使用腔室内气体置换为干燥氩气的电子束焊接设备,在电子束焊接设备真空度降到预定值以下的情况下将敏感芯片与密封件焊接密封。
在本申请实施例中,提供的密封件套接于敏感芯片,敏感芯片的薄壁部与密封件之间形成密封腔,设置于密封件上通孔中的导电构件与敏感芯片上的电极电连接,其中,将导电构件中的填充部注入至通孔并把导电构件中的引出部插入填充部中,再对填充部进行真空烧结固化,压力传感器封装方法中以导电构件的形式与电极形成电连接,并采用无引线的形式,减小了压力传感器的封装尺寸,并且实现了绝压封装。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请实施例的一种压力传感器的结构示意图;
图2是本申请实施例的密封件的仰视图;
图3是本申请实施例的密封件的三维示意图;
图4是本申请实施例的敏感芯片的三维示意图;
图5是本申请实施例的敏感芯片的结构示意图;
图6是本申请实施例的一种压力传感器封装方法的流程图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
10-敏感芯片;11-支承部;12-薄壁部;13-缺口;14-电极;15-绝缘层;16-功能层;20-密封件;21-通孔;22-延伸部;23-突出部;30-导电构件;31-填充部;32-引出部;40-密封腔。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下 实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的实施例的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图5根据本申请实施例的压力传感器进行详细描述。
图1为本申请实施例提供的一种压力传感器,包括:敏感芯片10、密封件20和导电构件30。敏感芯片10包括薄壁部12和与薄壁部12外周相连接的支承部11,支承部11设置有电极。密封件20套接于敏感芯片10,并且部分地与敏感芯片10一起围绕形成密封腔40,密封件20上对应于电极开设有通孔21。导电构件30密封设置于通孔21中,并与电极电连接,导电构件30与密封件20之间绝缘设置,其中,导电构件30包括填充部31和埋设于填充部31中的引出部32。
其中,对薄壁部12的形状不做具体限定,其可以为圆片状、方形片状、椭圆形片状等,优选为圆片状。支承部11连接于薄壁部12外周,例如,支承部11可以是圆筒状,薄壁部12为圆片状,如图1所示,薄壁部12位于支承部11的圆筒一端并完全匹配接触此端圆筒的内壁轮廓,并与 支承部11一起形成开口朝下(图示方向)的腔。在一个优选地示例中,薄壁部12与支承部11一体成型为杯状。
在支承部11的设置有薄壁部12的端面上设置有电极,电极与支承部11之间绝缘设置,可选地,电极与支承部11之间设置有绝缘层。
导电构件30中,填充部31或引出部32与电极电连接,也可以是填充部31和引出部32都与电极电连接。在一个示例中,引出部32部分埋设于填充部31中,另一部分露出,填充部31与电极电连接,电信号经由电极传到至填充部31再传导到引出部32,再经由如导线的其他介质传递到其他结构。
其中,对引出部32的形状和数量不做限定,对应于一个导电构件30,引出部32可以是圆柱状、针状、扁平状等,引出部32可以是单个的一体结构,也可以是多个部分组成的组合结构,还可以是多个间隔排布的单独结构,诸如此均在本申请的保护范围之内。对填充部31的形状和性状也不做限定,在埋设引出部32固定到通孔21之前,填充部31可以是粉状、流体状等,在将引出部32固定到通孔21之后,填充部31可以是固体状。
在本申请实施例中,密封件20套接于敏感芯片10,敏感芯片10的薄壁部12与密封件20之间形成密封腔,设置于密封件20上通孔21中的导电构件30与敏感芯片10上的电极电连接,压力传感器的结构中通过导电构件30与电极形成电连接,并不采用引线和相应的转接板,减小了压力传感器的封装尺寸,并实现了绝压封装,并且也避免在极端的冲击、振动环境中由于引线材质较软而断裂的风险。
在一些可选的实施例中,请一并参阅图1-3,密封件20包括主体部和与主体部相连接的延伸部22,主体部与延伸部22一并围合形成容纳腔,密封件20通过容纳腔套接于敏感芯片10,延伸部22包覆在支承部11的外侧表面,如图1所示,延伸部22包围成的内部横向轮廓(图1所示方向)与敏感芯片10的外部横向轮廓相匹配对应,并且主体部的容纳腔内表面可与敏感芯片10上表面接合。主体部开设有凹槽,凹槽朝向容纳腔,薄壁部12盖设于凹槽的开口以形成密封腔40。可选地,该凹槽的横 向轮廓与薄壁部12的横向轮廓相一致并对应,优选地都为圆形。
可以理解的是,主体部与延伸部22可以为一体设置,也可以两个单独的结构通过键合、焊接、粘合等接合方式组成一体。
在一些可选的实施例中,继续参阅图1-3,通孔21开设于主体部,四个以上通孔21在凹槽周侧间隔分布。优选地,通孔21为锥形。
可以理解的是,通孔21的数量可以是四个、五个、六个等,图中示出为四个。可选地,多个通孔21之间可以均匀间隔排布。如图1所示,通孔21的形状可以为截面面积自上向下逐渐变小的锥形,以便于设置填充部31。
在一些可选的实施例中,如图2-4所示,支承部11具有从外侧表面朝向支承部11内侧表面凹陷的缺口13,并且延伸部22具有与缺口13相匹配的突出部23。可以理解的是,对缺口13与突出部23的具体形状不做限定,在密封件20套接在敏感芯片10上的情况下,缺口13与突出部23相互配合以阻止敏感芯片10相对于密封件20枢转。可选地,缺口13为平直缺口,突出部23为平直突出,该平直缺口与该平直突出相互匹配。
在一些可选的实施例中,支承部11具有远离薄壁部12的一端向外突出的台阶结构。具体地,如图1所示,支承部11下端外侧壁向外突出成台阶,并形成有台阶面。
在一些可选的实施例中,延伸部22与台阶抵接并形成密封。具体地址,延伸部22的下表面朝向支承部11台阶的台阶面,并与该台阶面抵接并形成密封。可以理解的是,延伸部22的下表面与支承部11台阶的台阶面之间可以采用焊接、键合、粘接等,以及其他现有技术中已知的密封接合方式。
在上述任一实施例中,填充部31为导电浆料,引出部32为金属引针,填充部31与电极电连接。示例地,该导电浆料(即填充部31)在固化前可以是银粉、环氧树脂与玻璃粉的混合物,也可以是铜粉、环氧树脂与玻璃粉的混合物,或者是其他导电浆料组分或混合物。引出部32可以是铜、银等金属材料。
在上述任一实施例中,敏感芯片10的基体材料可以是金属(如不锈 钢),敏感芯片10的上表面(图1、5所示)敷设有绝缘层15,绝缘层15上设置有电极(图示为电极14)和功能层16。
功能层16设置在薄壁部12上,功能层16示例为惠斯通电桥,当薄壁部12的下表面(图1所示)有压力变化时,薄壁部12会发生形变,从而引起薄壁部12上的惠斯通电桥(功能层16)的桥臂电阻变化,进而引起惠斯通电桥输出的变化,从而引起经由电极和导电构件30输出的电信号的变化,以实现对压力的感测。
在上述任一实施例中,密封件20的材料可以为金属或非金属,在密封件20为金属的情况下,通孔21的内壁设置有绝缘层,可选地,该绝缘层可以是烧结在通孔21的内壁的玻璃或陶瓷材料。
下面结合图1至图6根据本申请实施例的压力传感器封装方法进行详细描述。
图6为本申请实施例提供的一种压力传感器封装方法的流程图,包括以下步骤:
提供敏感芯片10,敏感芯片10包括薄壁部12和与薄壁部12外周相连接的支承部11,支承部11设置有电极。可选地,薄壁部12与支承部11可以为一体成型。
将密封件20套接于敏感芯片10进行预装配处理,密封件20部分地与敏感芯片10一起围绕形成密封腔40,密封件20上对应于电极开设有通孔21。
将填充部31注入至通孔21并把引出部32插入填充部31中,再对填充部31进行真空烧结固化。
将敏感芯片10和密封件20进行绝压封装,以形成压力传感器。
在本申请实施例中,提供的密封件20套接于敏感芯片10,敏感芯片10的薄壁部12与密封件20之间形成密封腔,设置于密封件20上通孔21中的导电构件30与敏感芯片10上的电极电连接,其中,将导电构件30中的填充部31注入至通孔21并把导电构件30中的引出部32插入填充部31中,再对填充部31进行真空烧结固化,压力传感器封装方法中以导电构件的形式与电极形成电连接,并不采用引线,减小了压力传感器的封装尺 寸,并实现了绝压封装。
在一些可选的实施例中,将密封件20套接于敏感芯片10进行预装配处理的步骤中包括有:使敏感芯片10上的缺口13与密封件20上的突出部23相配合定位以进行预装备处理。通过缺口13与突出部23相配合定位可以在预装配过程中简单方便地将密封件20上的通孔21与敏感芯片10上的电极对准,便于进行后续操作。
在一些可选的实施例中,密封敏感芯片10和密封件20的步骤种包括有:使用腔室内气体置换为干燥氩气的电子束焊接设备,在电子束焊接设备真空度降到预定值以下的情况下将敏感芯片10与密封件20焊接密封。
在本申请另一个实施例中,发明实施例提供的一种压力传感器封装方法,包括以下步骤:
S10:提供钢杯、金属的密封件20和金属的引出部32;
S20:在钢杯上依次沉积绝缘层、功能层、电极层,并经过光刻、老化、筛选处理后得具有电极的敏感芯片10;
S30:在密封件20上提供通孔21,并在通孔21处敷设绝缘层;该绝缘层可以是烧结在通孔21内壁上的玻璃或陶瓷层。
S40:将敏感芯片10与密封件20进行预装备操作并固定;
S50:将填充部31注入到密封件20的通孔21中,然后将引出部32插入填充部31中并固定,然后对填充部31进行真空烧结;可选地,填充部31可以是银粉、环氧树脂与玻璃粉的混合物,也可以是铜粉、环氧树脂与玻璃粉的混合物,或者其他导电浆料组分或混合物。
S60:对敏感芯片10和密封件20的焊接面进行焊接。可选地,焊接面可以是敏感芯片10台阶的台阶面与密封件20的延伸部22的下表面(图1所示)相接合后形成的接合面。
在一些可选的实施例中,步骤S10包括:
S11:以机械加工的方式制备钢杯、金属的密封件20和金属的引出部32;
S12:清洗钢杯、密封件20和引出部32;
S13:对钢杯进行研磨、抛光。
在一些可选的实施例中,步骤S40包括:
S41:将敏感芯片10上的缺口13和密封件20上的突出部23相配合进行定位,以实现预装备;
S42:对敏感芯片10和密封件20的焊接面进行周圈点焊,以固定。可选地,该点焊工艺的焊点为3~10个,焊点熔深不超过0.2mm,且焊点位置要求在圆周方向上均布。
在一些可选的实施例中,步骤S60包括:
S61:使用干燥的氩气对电子束焊接设备的腔室内的气体进行置换;以降低腔室内的水汽含量;
S62:将电子束焊接设备的真空度降到要求值以下;可选地,该要求值为1kPa;
S63:使用电子束焊接设备焊接焊接面,以形成绝压封装结构。
本申请实施例提供一种压力传感器封装方法,敏感芯片10的电极和导电浆料在接合过程中不需要预留操作空间,封装结构的直径与敏感芯片10结构一致,从而降低了压力传感器的封装尺寸的直径,由于该压力传感器的封装结构不需要转接板,因此在封装高度上可以降低5mm~10mm。并且由于该压力传感器的封装结构不存在着引线结构,在极端的冲击、振动环境中无引线断裂的风险,因此增强了传感器在恶劣环境中的适应性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种压力传感器,其中,包括:
    敏感芯片,包括薄壁部和与所述薄壁部外周相连接的支承部,所述支承部设置有电极;
    密封件,套接于所述敏感芯片,并且部分地与所述敏感芯片一起围绕形成密封腔,所述密封件上对应于所述电极开设有通孔;
    导电构件,密封设置于所述通孔中,并与所述电极电连接,所述导电构件与所述密封件之间绝缘设置,其中,所述导电构件包括填充部和埋设于所述填充部中的引出部。
  2. 根据权利要求1所述的压力传感器,其中,所述密封件包括主体部和与所述主体部相连接的延伸部,所述主体部与所述延伸部一并围合形成容纳腔,所述密封件通过所述容纳腔套接于所述敏感芯片,所述延伸部包覆在所述支承部的外侧表面;
    所述主体部开设有凹槽,所述凹槽朝向所述容纳腔,所述薄壁部盖设于所述凹槽的开口以形成所述密封腔。
  3. 根据权利要求2所述的压力传感器,其中,所述通孔开设于所述主体部,四个以上所述通孔在所述凹槽周侧间隔分布;
    所述通孔为锥形。
  4. 根据权利要求1所述的压力传感器,其中,所述支承部具有从外侧表面朝向所述支承部内侧表面凹陷的缺口,并且所述延伸部具有与所述缺口相匹配的突出部。
  5. 根据权利要求1所述的压力传感器,其中,所述支承部具有远离所述薄壁部的一端向外突的台阶结构。
  6. 根据权利要求5所述的压力传感器,其中,所述延伸部与所述台阶抵接并形成密封。
  7. 根据权利要求1所述的压力传感器,其中,所述填充部为导电浆料,所述引出部为金属引针,所述填充部与所述电极电连接。
  8. 一种压力传感器封装方法,其中,包括以下步骤:
    提供敏感芯片,所述敏感芯片包括薄壁部和与所述薄壁部外周相连接 的支承部,所述支承部设置有电极;
    将密封件套接于所述敏感芯片进行预装配处理,所述密封件部分地与所述敏感芯片一起围绕形成密封腔,所述密封件上对应于所述电极开设有通孔;
    将填充部注入至所述通孔并把引出部插入所述填充部中,再对所述填充部进行真空烧结固化;
    将所述敏感芯片和所述密封件进行绝压封装,以形成压力传感器。
  9. 根据权利要求8所述的压力传感器封装方法,其中,将所述密封件套接于所述敏感芯片进行预装配处理的步骤包括:使所述敏感芯片上的缺口与所述密封件上的突出部相配合定位以进行预装备处理。
  10. 根据权利要求8所述的压力传感器封装方法,其中,密封所述敏感芯片和所述密封件的步骤包括:使用腔室内气体置换为干燥氩气的电子束焊接设备,在所述电子束焊接设备真空度降到预定值以下的情况下将所述敏感芯片与所述密封件焊接密封。
PCT/CN2020/080932 2019-03-27 2020-03-24 压力传感器及其封装方法 WO2020192661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/598,333 US20220178773A1 (en) 2019-03-27 2020-03-24 Pressure sensor and packaging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910236827.5A CN110054141A (zh) 2019-03-27 2019-03-27 压力传感器及其封装方法
CN201910236827.5 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020192661A1 true WO2020192661A1 (zh) 2020-10-01

Family

ID=67317420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080932 WO2020192661A1 (zh) 2019-03-27 2020-03-24 压力传感器及其封装方法

Country Status (3)

Country Link
US (1) US20220178773A1 (zh)
CN (1) CN110054141A (zh)
WO (1) WO2020192661A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054141A (zh) * 2019-03-27 2019-07-26 西人马联合测控(泉州)科技有限公司 压力传感器及其封装方法
CN115159444B (zh) * 2022-08-30 2022-12-20 之江实验室 一种无引线的三维异构集成结构及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455233A (zh) * 2010-10-18 2012-05-16 上海复莱信息技术有限公司 一种基于soi芯片的压力传感器
US20130277772A1 (en) * 2010-09-20 2013-10-24 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
CN104773705A (zh) * 2014-01-14 2015-07-15 罗伯特·博世有限公司 微机械压力传感器装置以及相应的制造方法
CN105021328A (zh) * 2015-07-13 2015-11-04 厦门大学 Cmos工艺兼容的压阻式压力传感器及其制备方法
CN110054141A (zh) * 2019-03-27 2019-07-26 西人马联合测控(泉州)科技有限公司 压力传感器及其封装方法
CN209841242U (zh) * 2019-05-13 2019-12-24 龙微科技无锡有限公司 一种具有应力消除结构的mems压力传感器封装结构
CN110749394A (zh) * 2019-11-21 2020-02-04 龙微科技无锡有限公司 一种高可靠压力传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3089853B2 (ja) * 1992-09-21 2000-09-18 富士電機株式会社 半導体感圧素子
JP4027655B2 (ja) * 2001-12-10 2007-12-26 株式会社不二工機 圧力センサ装置
US7516668B2 (en) * 2006-06-29 2009-04-14 Kulite Semiconductor Products, Inc. Silicon carbide piezoresistive pressure transducer and method of fabrication
CN102221429B (zh) * 2011-06-16 2013-01-02 沈阳市传感技术研究所 高温压力与温度的复合传感器及制备方法
DE102011055562A1 (de) * 2011-11-21 2013-05-23 Technische Universität Darmstadt Mikrosystem-Bauteil und Verfahren zu dessen Herstellung
CN102928150B (zh) * 2012-10-26 2014-11-19 中国电子科技集团公司第四十八研究所 一种无引线封装的金属薄膜压力传感器及其制备方法
KR20160133227A (ko) * 2015-05-12 2016-11-22 세종공업 주식회사 차량용 압력센서
JP2018136229A (ja) * 2017-02-22 2018-08-30 ミツミ電機株式会社 半導体センサ装置
US20180335360A1 (en) * 2017-05-16 2018-11-22 Honeywell International Inc. Ported Pressure Sensor With No Internally Trapped Fluid
CN108414132A (zh) * 2018-06-04 2018-08-17 陈荣国 一种流体压力检测传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130277772A1 (en) * 2010-09-20 2013-10-24 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
CN102455233A (zh) * 2010-10-18 2012-05-16 上海复莱信息技术有限公司 一种基于soi芯片的压力传感器
CN104773705A (zh) * 2014-01-14 2015-07-15 罗伯特·博世有限公司 微机械压力传感器装置以及相应的制造方法
CN105021328A (zh) * 2015-07-13 2015-11-04 厦门大学 Cmos工艺兼容的压阻式压力传感器及其制备方法
CN110054141A (zh) * 2019-03-27 2019-07-26 西人马联合测控(泉州)科技有限公司 压力传感器及其封装方法
CN209841242U (zh) * 2019-05-13 2019-12-24 龙微科技无锡有限公司 一种具有应力消除结构的mems压力传感器封装结构
CN110749394A (zh) * 2019-11-21 2020-02-04 龙微科技无锡有限公司 一种高可靠压力传感器

Also Published As

Publication number Publication date
CN110054141A (zh) 2019-07-26
US20220178773A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2020192661A1 (zh) 压力传感器及其封装方法
JP5998379B2 (ja) センサデバイスパッケージ及び方法
CN1311228C (zh) 具有流体隔离阻障的传感器
US6176137B1 (en) Pressure sensor
JP3136087B2 (ja) 半導体圧力センサ
US20080277747A1 (en) MEMS device support structure for sensor packaging
JP3824964B2 (ja) 絶対圧型圧力センサ
JP2012225925A (ja) 封止構造を有するセンサデバイス
CN205580628U (zh) 一种绝压压力传感器
CN102928150B (zh) 一种无引线封装的金属薄膜压力传感器及其制备方法
JPS61176832A (ja) トランスジユーサ・インサート、その製造方法、および機械的変動測定センサ
US4864470A (en) Mounting device for an electronic component
JP6809284B2 (ja) 物理量センサ装置の製造方法および物理量センサ装置
JP2017037039A (ja) 物理量センサ装置および物理量センサ装置の製造方法
JPH11160176A (ja) 圧力検出装置
CN114132885A (zh) 一种耐高温传感器的无引线封装结构及方法
CN205580609U (zh) 一种压力传感器一体化绝压基座
CN212567745U (zh) 一种无引线封装压力传感器
JP3232486U (ja) 物理量センサ装置
CN205580662U (zh) 一种压力传感器一体化表压基座
CN111157153A (zh) 一种智能高精度力敏传感器
JP2020008396A (ja) 圧力センサ
CN104501878B (zh) 一种复合传感器敏感芯体的填充陶瓷结构及安装方法
JPS6316240A (ja) 圧力検出器
JPH09178595A (ja) 圧力センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776536

Country of ref document: EP

Kind code of ref document: A1