WO2020192558A1 - RGB全彩InGaN基LED及其制备方法 - Google Patents

RGB全彩InGaN基LED及其制备方法 Download PDF

Info

Publication number
WO2020192558A1
WO2020192558A1 PCT/CN2020/080291 CN2020080291W WO2020192558A1 WO 2020192558 A1 WO2020192558 A1 WO 2020192558A1 CN 2020080291 W CN2020080291 W CN 2020080291W WO 2020192558 A1 WO2020192558 A1 WO 2020192558A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ingan
substrate
epitaxial
rgb full
Prior art date
Application number
PCT/CN2020/080291
Other languages
English (en)
French (fr)
Inventor
王晓靁
刘家桓
宋高梅
Original Assignee
王晓靁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王晓靁 filed Critical 王晓靁
Priority to US17/439,095 priority Critical patent/US20220149238A1/en
Publication of WO2020192558A1 publication Critical patent/WO2020192558A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the invention relates to the technical field of LEDs, in particular to an RGB full-color InGaN-based LED prepared by introducing an ultra-thin middle layer of 2D materials and a preparation method.
  • red, green and blue (RGB) three primary color light-emitting diodes are used to form the pixels of the unit.
  • the main manufacturing technology needs to mix Nitrides and phosphides. (Phosphides) series of light-emitting diodes can meet the needs of the three primary colors.
  • RGB red, green, and blue
  • Indium gallium nitride In x Ga 1-x N epitaxy material is currently one of the material systems for making mainstream blue light emitting diodes. Theoretically, the entire visible light emission range can be covered by the indium gallium solid solution ratio control, and indium gallium nitride benefits With direct energy gap (energy gap) characteristics, it is also expected to have better luminous efficiency, especially the blue mass production technology is sophisticated, so it has received more attention than other material systems. In the production of direct red with similar control conditions and good performance Green and blue light-emitting diodes (RGB direct LED) have great potential. However, at present, the green and red light-emitting diodes of In x Ga 1-x N series epitaxial materials are facing technical bottlenecks.
  • In x Ga 1-x In order to achieve the appropriate emission bands of green and red light, In x Ga 1-x must be added.
  • the In content ratio of N-series epitaxial crystals faces obstacles such as poor epitaxial quality.
  • the main reason is that although In x Ga 1-x N has solid solubility in the entire composition (x) range, the gap between In and Ga ion radii is large. As a result, the solid solubility is more sensitive to stress conditions and the probability of phase separation is higher.
  • Zinc oxide (ZnO) single crystal material is a more suitable substrate material choice in the previous item in terms of crystal structure, thermal properties and lattice constant, so it has attracted technology developers to invest in research.
  • zinc oxide is not widely used in the technical field today. The main reason is that zinc oxide has high chemical activity and is easily corroded by hydrogen-containing substances in the subsequent epitaxy process, resulting in poor epitaxial layer quality, as shown in Figure 2.
  • hydrogen etches the zinc oxide substrate while zinc rapidly diffuses into the epitaxial layer, resulting in poor epitaxial quality. Adjusting the process to improve the epitaxial quality still occurs diffusion of zinc and oxygen and doping into the light-emitting diode crystal grains, causing light emission The characteristics do not meet expectations, making this structure unable to meet actual market demand.
  • the substrate materials used are single crystal sapphire (Sapphire), single crystal zinc oxide (ZnO), or even single crystal gallium nitride (GaN) substrates, they cannot be successfully produced with practical applications.
  • the French company Soitec announced in 2017 that it has developed a substrate material suitable for the above-mentioned purposes.
  • the company released the developed substrate crystal.
  • the lattice constant can reach up to 0.3205 nanometers (nm).
  • the highest value of the substrate lattice constant released by the company remains unchanged at 0.3205 nanometers. (nm), the company's substrate development not only achieved specific results, but also proved that the substrate lattice constant is the key to the successful realization of In x Ga 1-x N direct green/red LEDs.
  • the substrate technology uses complex and complicated manufacturing processes and high manufacturing costs, which may hinder widespread adoption by the market.
  • Two-dimensional materials (two-dimensional (2D) materials) is a rapidly developing emerging field.
  • 2D materials family the first and most well-known material that attracted a large amount of R&D investment is graphene. Its two-dimensional layered structure has special or Excellent physical/chemical/mechanical/optical properties. There is no strong bond between the layers. Only Van der Waals forces are combined. This also means that there are no dangling bonds on the surface of the layered structure.
  • graphene, hBN, and MoS 2 which is one of the TMDs materials, are all considered to have excellent diffusion barrier properties, as well as varying degrees of high temperature stability.
  • hBN has excellent chemical passivation. (Inertness) and high temperature oxidation resistance.
  • FIGS 6a and 6b are schematic diagrams of mechanical composition lamination, as shown in Figures 7a and 7b. It is a schematic diagram of physical or chemical vapor deposition.
  • van der Waals epitaxy may be beneficial to heterogeneous epitaxy comes from the direct chemical bond of the traditional epitaxial interface is replaced by van der Waals force bonding, which will relieve the stress or strain energy from the lattice and thermal expansion mismatch in the epitaxial process to a certain extent. Therefore, the quality of the epitaxial layer is improved, or the introduction of 2D materials and van der Waals epitaxy can make some hetero-epitaxial technologies that were previously impossible to be practical.
  • the above-mentioned 2D layered material has a hexagon or honeycomb structure, and is considered structurally compatible with Wurtzite and Zinc-Blende structural materials in the external delay.
  • the related fields of the present invention are mainly The epitaxial materials all belong to this kind of structure.
  • the In x Ga 1-x N epitaxial layer of direct green and red LED belongs to the wurtzite structure; in fact, as shown in Figure 8
  • high-quality gallium nitride (GaN) epitaxial layers have been successfully implemented on different substrate materials with 2D materials (mainly graphene) as interposers, including silicon carbide (SiC), sapphire and fused silica (fused silica, SiO 2 ), etc.
  • SiC silicon carbide
  • SiO 2 fused silica
  • the application feasibility of van der Waals Epitaxy or Quasi van der Waals Epitaxy technology has obtained many verifications.
  • the purpose of the present invention is to provide a RGB full-color InGaN-based LED, and a preparation method, by applying an ultra-thin layer of 2D material to realize direct light-emitting RGB (red, green and blue) three primary color light emitting diodes on the same material system.
  • the solution of the present invention is:
  • the surface of the substrate material is covered with a lattice-matched 2D material ultra-thin layer as an intermediary layer.
  • the InGaN-based material epitaxial layer is grown on the 2D material ultra-thin layer, which is composed of a single material or More than one material is laminated.
  • the 2D material is hexagonal boron nitride hBN, graphene, hBNC, WS 2 , WSe 2 , MoS 2 or MoSe 2 and the like.
  • the thickness of the ultra-thin 2D material layer ranges from 0.5 nm to 1000 nm.
  • the ultra-thin 2D material layer is a single material, such as WSe 2 or MoSe 2 .
  • the 2D material ultra-thin layer is a composite layer structure
  • the top layer is made of 2D materials with good lattice matching with InGaN, such as WSe 2 or MoSe 2
  • the bottom layer is made of 2D materials with good barrier effects, such as hexagonal boron nitride hBN, graphene (graphene).
  • the substrate is a single crystal substrate, such as sapphire sapphire, zinc oxide ZnO, single crystal silicon Si, SiC, GaN and other single crystal materials; the substrate is ceramics or glass glass and other materials.
  • a metal catalyst layer is added between the substrate and the intermediate layer.
  • the total thickness of the metal catalyst layer ranges from 0.5 nm to 3000 nm.
  • the metal catalyst layer includes Fe, Co, Ni, Au, Ag, Cu, W, Mo, Ru, or Pt.
  • RGB full-color InGaN-based LED, InGaN-based materials and substrate epitaxy steps are as follows:
  • the substrate (chip) material is subjected to epitaxial growth grade polishing, and appropriate pre-treatment (including chip cleaning) is used as preparation for subsequent manufacturing procedures;
  • the second step is to use van der Waals Epitaxy or Quasi van der Waals Epitaxy technology to cover the surface of the substrate with a lattice-matched 2D material as an interlayer for the epitaxy of InGaN-based materials;
  • the third step is to use van der Waals Epitaxy or Quasi van der Waals Epitaxy technology to grow an epitaxial layer of InGaN-based materials on the interposer.
  • a single layer or a composite layer of 2D material is covered on the surface of the substrate material.
  • the 2D material covering the surface of the substrate material adopts growth, deposition, transfer or coating processes, and the total thickness of a single layer or multiple layers ranges from 0.5 nm to 1000 nm .
  • a metal catalyst layer and other manufacturing processes are added at an appropriate time.
  • the total thickness of the metal catalyst layer ranges from 0.5 nm to 3000 nm.
  • the growth or deposition process of the 2D material covering the surface of the substrate material may require a metal catalyst layer including Fe, Co, Ni, Au, Ag, Cu, W, Mo, Ru, or Pt to be grown or deposited on the surface of the substrate first. A heat treatment process is required.
  • the 2D material interposer in the second step should be divided into domains by photolithography and other processes to relieve stress.
  • the size can be 1 ⁇ 1mm 2 to 1000 ⁇ 1000mm 2 .
  • the present invention uses 2D material to cover the surface of the substrate material as an interlayer for In x Ga 1-x N epitaxy, and performs van der Waals epitaxy or quasi Van der Waals epitaxy technology application, so that the crystal lattice and thermal expansion are not matched in the epitaxy process. Therefore, the stress or strain energy can be relieved to a certain extent, and high-quality and high In content In x Ga 1-x N epitaxy can be realized on the surface of currently available substrates, and high-efficiency direct green/red light emitting diodes can be realized. /red LED).
  • the present invention can replace the InGaN temple substrate developed by Soitec, realize direct light-emitting RGB (red, green, and blue) three primary color light-emitting diodes on the same material system, simplify the epitaxial and component processes, and make the choice of substrate materials more broad. Low manufacturing cost is conducive to market promotion and application.
  • RGB red, green, and blue
  • Figure 1 is a graph of the band gap energy-lattice constant-wavelength relationship of conventional indium gallium nitride
  • Figure 2 is a schematic diagram of the conventional zinc oxide substrate being corroded during the epitaxy process
  • Figure 3 is a manufacturing process diagram of a substrate developed by a conventional French company Soitec;
  • Figure 4 is a schematic diagram of the structure of a conventional two-dimensional material transition metal dichalcogenide TMDs
  • FIG. 5 is a schematic diagram of the structure of the conventional two-dimensional material hexagonal boron nitride hBN;
  • Figures 6a and 6b are schematic diagrams of conventional mechanical composition lamination
  • Figures 7a and 7b are schematic diagrams of conventional physical or chemical vapor deposition
  • FIG. 8 is a schematic diagram of the structure of conventional gallium nitride/graphene/silicon carbide
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Fig. 10 is a schematic structural diagram of the second embodiment of the present invention.
  • Substrate 1 epitaxial layer 2, ultra-thin 2D material layer 3, top layer 31, bottom layer 32, and metal catalytic layer 4.
  • the RGB full-color InGaN-based LED disclosed in the present invention is covered with a lattice-matched 2D material ultra-thin layer 3 on the material surface of the substrate 1 as an interlayer of In x Ga 1-x N epitaxy, and an epitaxial layer of InGaN series material 2 Grows on the 2D material ultra-thin layer 3, this 2D material ultra-thin layer 3 is composed of a single material as shown in FIG. 9 or formed by stacking more than one material as shown in FIG.
  • the 2D material ultra-thin layer 3 and the InGaN-based material epitaxial layer 2 and the substrate 1 achieve stress relaxation through lattice matching or van der Waals epitaxy (VDWE).
  • the substrate 1 of the present invention may be a single crystal substrate, including but not limited to single crystal materials such as sapphire, zinc oxide ZnO, single crystal silicon Si, SiC, GaN, etc.; or the substrate 1 may be a material such as ceramics or glass.
  • the 2D material of the present invention can use hexagonal boron nitride hBN, graphene, hBNC, WS 2 , WSe 2 , MoS 2 or MoSe 2 and the like.
  • the thickness of the ultra-thin 2D material layer 3 ranges from 0.5 nm to 1000 nm.
  • the ultra-thin 2D material layer 3 shown in FIG. 9 is a single material with good lattice matching, such as WSe 2 or MoSe 2 .
  • the 2D material ultra-thin layer 3 shown in FIG. 10 is a composite interposer.
  • the top layer 31 is made of a 2D material with good lattice matching with InGaN, such as WSe 2 or MoSe 2
  • the bottom layer 32 is made of a 2D material with good barrier effect, such as hexagonal nitrogen. Boron hBN, graphene (graphene).
  • the lattice constants of various materials are shown in Table 2.
  • the ultra-thin 2D material layer of the bottom layer 32 acts as a barrier to prevent defects in the substrate material from causing damage to the quality of the epitaxial layer and component performance.
  • the defects in the substrate include point defects (such as oxygen ions or other impurities) and line defects (Such as misalignment).
  • the present invention can add a metal catalytic layer 4 on the surface of the 2D material covering the substrate 1, and the metal catalytic layer 4 can include Fe, Co, Ni, Au, Ag, Cu, W, Mo, Ru or Pt. Etc., the metal catalytic layer 4 is grown or deposited on the surface of the substrate 1, and a heat treatment process may also be required.
  • the total thickness of the metal catalytic layer 4 ranges from 0.5 nm to 3000 nm.
  • the present invention also discloses the preparation method of RGB full-color InGaN-based LED, and the InGaN-based material and substrate epitaxy steps are as follows:
  • the substrate 1 (chip) material is subjected to epitaxial growth grade polishing, and appropriate pre-treatment (including chip cleaning) is used as preparation for subsequent manufacturing procedures.
  • manufacturing processes such as the metal catalyst layer 4 can be added in due course according to the growth requirements of the 2D material.
  • the growth or deposition process of the 2D material covering the surface of the substrate 1 may require a metal catalyst layer 4 including Fe, Co, Ni, Au, Ag, Cu, W, Mo, Ru, or Pt to be grown or deposited on the surface of the substrate 1. , May also need heat treatment process.
  • the total thickness of the metal catalytic layer 4 ranges from 0.5 nm to 3000 nm.
  • the second step is to use van der Waals epitaxy or quasi-van der Waals epitaxy technology to cover the surface of the substrate 1 with a 2D material with good lattice matching as an intermediary layer for the epitaxial InGaN material; it can be a single layer or a composite layer 2D material ultra-thin layer 2 covering .
  • the 2D material covering the surface of the substrate 1 can adopt existing processes, including growth, deposition, transfer, coating, etc., and related necessary pre-treatment and post-treatment processes.
  • the total thickness of a single layer or multiple layers ranges from 0.5 nm to 1000 nm.
  • the 2D material interposer in the second step can be divided into blocks by photolithography and other processes to relieve the stress.
  • the block size can be 1 ⁇ 1mm 2 to 1000 ⁇ 1000mm 2 .
  • the third step is to use van der Waals epitaxy or quasi Van der Waals epitaxy technology to grow an epitaxial layer 2 of InGaN-based material on the interposer.
  • the lattice constant can be as high as 0.3283nm or 0.3297nm, which perfectly matches the InGaN epitaxial layer of the red light emission range.
  • Simplification of the epitaxy and assembly process will also make the choice of substrate materials wider.
  • the 2D material when the substrate material has any chemical composition or micro-defects that may affect the quality of the epitaxy, can adopt hetero-structures, and choose a material with strong chemical stability or diffusion barrier performance as the bottom layer, for example hBN is bonded to the substrate, and the surface layer uses a material that matches well with the epitaxial layer.
  • the InGaN temple epitaxial growth at the beginning of the French Soitec InGaN temple substrate manufacturing process already includes the basic material and epitaxial process costs. This part of the cost evaluation is no less than the process cost of the method of the present invention; and its subsequent steps must go through the InGaN twice.
  • the layer peeling-bonding process also includes stress relaxation lithography as a necessary process. Regardless of the impact of multiple processes on the yield, the related processes can significantly increase the manufacturing cost of the finished InGaN temple substrate; however, according to According to the company’s announcement, the current upper limit of the lattice constant of its InGaN temple substrate is only 0.3205 nanometers (nm).
  • the present invention adopts van der Waals epitaxy or quasi-van der Waals epitaxy technology, mismatched stress or strain energy can be relieved to a certain extent, and the lattice constant value of the top layer of the substrate It can also reach about 0.329 nanometers (nm), which is ideally matched with the green and red InGaN range of Figure 1, which is conducive to a simpler and more robust green and red InGaN light-emitting component process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种RGB全彩InGaN基LED及其制备方法,在基板(1)材料表面覆盖晶格匹配的2D材料超薄层(3)作为中介层,InGaN系材料外延层(2)成长于2D材料超薄层(3)上,此2D材料超薄层(3)由单一材料构成或者一种以上材料迭层形成。采用2D材料覆盖基板(1)材料表面作为In xGa 1-xN外延的中介层,进行范德华外延或准范德华外延技术应用,使得来自于外延工序中晶格以及热膨胀不匹配的应力或应变能获得一定程度的舒缓,能在目前可用的基板(1)表面实现高质量的高In含量In xGa 1-xN外延,并实现高效能的直接绿光/红光发光二极管,将外延及组件工序简化,使得采用的基板(1)材料选择可能性更为宽广,制造成本低,有利于市场推广应用。

Description

RGB全彩InGaN基LED及其制备方法 技术领域
本发明涉及LED的技术领域,特别涉及应用2D材料超薄中层导入制备的RGB全彩InGaN基LED,以及制备方法。
背景技术
在Micro-LED的显示器(Displays)制造过程中,需采用红绿蓝(RGB)三原色发光二极管来构成单元的像素(pixels),目前主要的制造技术需混和采用氮化物(Nitrides)系和磷化物(Phosphides)系的发光二极管,才能满足三原色的需求。不同材料系统发光二极管混用时,不同的发热及衰减特性直接影响了影像呈现的质量;不同的电气驱动特性,则直接导致了显示模块驱动设计上的复杂度。因此,如果在同一材料系统上,实现直接发光RGB(红绿蓝)三原色发光二极管,除了有利于上述问题解决外,也同时因为省去荧光物等色光转换机制将降低工序复杂度以及转换所致能效损失,将对Micro LED技术的发展有利。
氮化铟镓In xGa 1-xN系磊晶材料是目前制作主流蓝光发光二极管的材料系统之一,理论上可藉由铟镓固溶比例调控覆盖整个可见光发光范围,氮化铟镓受益于具有直接能隙(energy gap)特性也预期将有较佳的发光效能,尤其蓝光量产技术纯熟,因此受到比其他材料系统更多的关注,在制作具有近似控制条件同时效能佳的直接红绿蓝发光二极管(RGB direct LED)深具潜能。然而,目前在In xGa 1-xN系磊晶材料的绿光及红光发光二极管却面临技术瓶颈,由于要达到绿光及红光合适的发光波段时,需增加In xGa 1-xN系磊晶的In含量比例,却面临外延质量不佳等阻碍,其主因在于In xGa 1-xN虽然具有整个成分(x)范围的固溶性,但In、Ga离子半径差距较大,使得固溶性对应力状况较为敏感而发生相分离(phase separation)的机率较高,In含量增加时外延层晶格常数(lattice constant)随之增大,与基板材料不匹配所致的应变(strain)也同时增大,导致In xGa 1-xN固溶性受影响而发生InN的相分离,原本预期的发光特性则因此受到严重冲击,因此, 解决绿光及红光直接发光二极管direct LED技术发展主要办法之一是要找出晶格常数合适的外延基板材料。参见图1,是氮化铟镓带隙能量-晶格常数-波长关系图。
氧化锌(ZnO)单晶材料以结晶构造、热性质和晶格常数而言都是前项中较为合适的基板材料选择,因此吸引了技术开发者投入研究。不过氧化锌今日在技术领域中并不被广泛采用,其中主要的原因包括氧化锌的化学活性高,容易在随后的外延过程中受到含氢物质的侵蚀导致外延层质量低劣,如图2所示,在外延工序时会发生氢蚀刻氧化锌基板同时锌快速扩散进入外延层导致外延品质不佳,调整制程改善外延质量却仍然发生锌与氧扩散、掺杂入发光二极管的晶粒中,造成发光特性不符合预期,使得该种结构无法符合实际市场需求。
表1
Figure PCTCN2020080291-appb-000001
如表1所示,依照目前技术,采用的基板材料不论是单晶的蓝宝石(Sapphire),单晶氧化锌(ZnO)、甚至单晶氮化镓(GaN)基板等,均无法成功制作具有实用性的In xGa 1-xN系磊晶材料的直接绿光及红光发光二极管。无法在micro LED技术上实现同一材料系统、直接发光、高效能的三原色RGB LED芯片。
有鉴于此,法国Soitec公司于2017年宣布开发出适用于上述目的的基板材料,同一年度发布使用该基板成功制作的直接绿光发光二 极管(direct green LED),该公司发布所开发出的基板晶格常数最高可以达到0.3205奈米(nm),2018年则发布了成功制作的直接红光发光二极管(direct red LED),该公司所发布的基板晶格常数最高值仍维持不变为0.3205奈米(nm),该公司的基板开发除了获得具体成效,也再次证明基板晶格常数为成功实现In xGa 1-xN直接绿光/红光发光二极管(direct green/red LED)的关键,然而,如图3所示,该项基板技术采用复杂繁复的制造工序,制造成本偏高,为市场广泛采纳时可能的阻碍。
二维材料(two-dimensional(2D)materials)是一个快速发展的新兴领域,2D材料家族中最早吸引大量研发投入也最知名的材料为石墨烯(graphene),其二维层状结构具备特殊或优异的物理/化学/机械/光电特性,层与层间则没有强力的键结存在仅以范德华力结合,这也表示层状结构表面没有空悬键(dangling bond)存在,目前石墨烯已被确认具有广泛而优异的应用潜能,石墨烯研发工作于全球普遍开展,同时也带动更多2D材料的研发,包括六方氮化硼hBN(hexagonal Boron Nitride),过渡金属二硫族化物TMDs(transition metal dichalcogenides)以及黑磷black phosphorus等也是2D材料家族中累积较多研发成果者,如图4和图5所示,上述材料均各自具备特异的材料特性与应用潜能,相关材料的制造技术开发也持续积极推展中。除了优异的光电特性之外,石墨烯、hBN以及TMDs材料之一的MoS 2都被视为具有优异的扩散阻障特性,也有程度不一的高温稳定性,尤其hBN更具有绝佳的化学钝性(inertness)以及高温耐氧化性。
由于具备上述层状结构本质以及层间范德华力结合特性,将2D材料家族中两种或多种材料制作成层状堆栈异质结构(hetero-structures)技术可行性大开,异质结构除了结合不同特性更创造出新的应用特性或制作出新的组件成为可能,目前光电及半导体领域的研发相当积极,如图6a、6b所示是机械性组成迭层的示意图,图7a、7b所示是物理或化学气相沉积的示意图。
2D材料的范德华力结合特性也获得应用于传统3D材料的外延基板用途的关注,其着眼点在于外延技术中外延材料在晶体结构、晶格常数(lattice constant)、热膨胀系数(CTE,coefficient of  thermal expansion)必须与基板材料匹配非常良好,但现实上常遭遇如本发明主题欠缺适合基板材料,或者是理想的基板材料成本偏高或不容易取得等情形,此时2D材料对于异质外延基板提供了另一种解决方案,也就是所谓的范德华外延(van der Waals Epitaxy)。范德华外延可能有利于异质外延的机制来自于传统外延接口直接的化学键改由范德华力结合所取代,将使得来自于外延工序中晶格以及热膨胀不匹配的应力或应变能因此获得一定程度的舒缓,从而使得外延层质量获得改善,或者说藉由2D材料以及范德华外延导入可以使某些原先无法实用化的异质外延技术成为可能。相关研究也指出,当上述2D材料相互迭层异质结构时,相互间作用力以范德华力为主;而在2D材料上进行3D材料的外延时,由于接口上3D材料的空悬键(dangling bond)存在同时对接口的结合力有贡献,这种外延实质上并非纯粹范德华外延(van der Waals Epitaxy)或者更精确地可视为准范德华外延(Quasi van der Waals Epitaxy);不论何种情形,晶格与热膨胀的匹配程度,无疑地仍对最终的外延质量起了一定的作用,2D材料中介层与基板材料都对整体的匹配度有所贡献。上述2D层状材料具有六角形或蜂巢状(hexagon or honeycomb)结构,与纤锌矿(Wurtzite)和闪锌矿(Zinc-Blende)结构材料在外延时被视为结构兼容,本发明相关领域主要外延材料均属此类结构,作为直接绿光、红光发光二极管(direct green,red LED)的In xGa 1-xN外延层则属于纤锌矿(Wurtzite)结构;实际上,如图8所示,高质量的氮化镓(GaN)外延层已经成功实现于以2D材料(主要为石墨烯)中介层的不同基板材料上,包括碳化硅(SiC)、蓝宝石以及熔融石英(fused silica,SiO 2)等,范德华外延(van der Waals Epitaxy)或准范德华外延(Quasi van der Waals Epitaxy)技术应用可行性已获得许多验证。
发明内容
本发明的目的在于提供一种RGB全彩InGaN基LED,以及制备方法,通过应用2D材料超薄层导入,在同一材料系统上实现直接发光RGB(红绿蓝)三原色发光二极管。
为了达成上述目的,本发明的解决方案是:
RGB全彩InGaN基LED,在基板材料表面覆盖晶格匹配的2D材料 超薄层作为中介层,InGaN系材料外延层成长于2D材料超薄层上,此2D材料超薄层由单一材料构成或者一种以上材料迭层形成。
所述2D材料是六方氮化硼hBN、石墨烯(graphene)、hBNC、WS 2、WSe 2、MoS 2或MoSe 2等。所述2D材料超薄层的厚度范围在0.5nm到1000nm。
所述2D材料超薄层为单一材料,如WSe 2或MoSe 2
所述2D材料超薄层为复合层结构,顶层采用与InGaN晶格匹配佳的2D材料,如WSe 2或MoSe 2,而底层采用阻隔效果佳的2D材料,如六方氮化硼hBN、石墨烯(graphene)。
所述基板为单晶基板,如蓝宝石sapphire、氧化锌ZnO、单晶硅Si、SiC、GaN等单晶材料;基板为陶瓷ceramics或玻璃glass等材料。
所述基板和中介层之间加入金属催化层,金属催化层总厚度范围在0.5nm到3000nm,金属催化层包括Fe、Co、Ni、Au、Ag、Cu、W、Mo、Ru或Pt等。
RGB全彩InGaN基LED的制备方法,InGaN系材料与基板外延步骤如下:
第一步,对基板(芯片)材料进行外延成长等级抛光,并经由适当前处理(含芯片清洗)作为后续制造程序的准备;
第二步,利用范德华外延(van der Waals Epitaxy)或准范德华外延(Quasi van der Waals Epitaxy)技术,将晶格匹配的2D材料覆盖在基板材料表面作为InGaN系材料外延的中介层;
第三步,利用范德华外延(van der Waals Epitaxy)或准范德华外延(Quasi van der Waals Epitaxy)技术,在中介层上成长InGaN系材料外延层。
所述第二步,在基板材料表面进行单层或复合层2D材料覆盖。
所述第二步,2D材料覆盖基板材料表面是采用成长(growth)、沉积(deposition)、转移(transfer)或涂覆(coating)等工序,单层或多层总厚度范围在0.5nm到1000nm。
所述第一步和第二步之间,根据2D材料成长需求,在适时加入金属催化层等制造工序。金属催化层总厚度范围在0.5nm到3000nm。所述2D材料覆盖基板材料表面的成长或沉积工序可能需要有包括 Fe、Co、Ni、Au、Ag、Cu、W、Mo、Ru或Pt等金属催化层先行成长或沉积在基板表面,也可能需要热处理工序。
所述第二步和第三步之间,根据第三步的外延质量需求,得适时将第二步的2D材料中介层进行光刻等工序划分成区块(domain)以舒缓应力,区块尺寸大小可以是1×1mm 2到1000×1000mm 2
采用上述方案后,本发明采用2D材料覆盖基板材料表面作为In xGa 1-xN外延的中介层,进行范德华外延或准范德华外延技术应用,使得来自于外延工序中晶格以及热膨胀不匹配的应力或应变能因此获得一定程度的舒缓,能在目前可用的基板表面实现高质量的高In含量In xGa 1-xN外延,并实现高效能的直接绿光/红光发光二极管(direct green/red LED)。
本发明可替代Soitec公司所开发的InGaN temple基板,在同一材料系统上实现直接发光RGB(红绿蓝)三原色发光二极管,将外延及组件工序简化,使得采用的基板材料选择可能性更为宽广,制造成本低,有利于市场推广应用。
附图说明
图1是习知氮化铟镓带隙能量-晶格常数-波长关系图;
图2是习知氧化锌基板在外延过程中受侵蚀示意图;
图3是习知法国Soitec公司研制的基板制造工序图;
图4是习知二维材料过渡金属二硫族化物TMDs的结构示意图;
图5是习知二维材料六方氮化硼hBN的结构示意图;
图6a、6b是习知机械性组成迭层的示意图;
图7a、7b是习知物理或化学气相沉积的示意图;
图8是习知氮化镓/石墨烯/碳化硅的结构示意图;
图9是本发明的实施例一结构示意图;
图10是本发明的实施例二结构示意图。
标号说明
基板1,外延层2,2D材料超薄层3,顶层31,底层32,金属催化层4。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
如图9和图10所示。本发明揭示的RGB全彩InGaN基LED,结构方面,是在基板1的材料表面覆盖晶格匹配的2D材料超薄层3作为In xGa 1-xN外延的中介层,InGaN系材料外延层2成长于2D材料超薄层3上,此2D材料超薄层3由图9所示的单一材料构成或者图10所示的一种以上材料迭层形成。2D材料超薄层3和InGaN系材料外延层2、基板1之间借助晶格匹配或范德华外延(VDWE)来达到应力松驰。
其中,本发明所述基板1可以为单晶基板,包括但不限于蓝宝石sapphire、氧化锌ZnO、单晶硅Si、SiC、GaN等单晶材料;或者基板1为陶瓷ceramics或玻璃glass等材料。本发明所述2D材料可使用六方氮化硼hBN、石墨烯(graphene)、hBNC、WS 2、WSe 2、MoS 2或MoSe 2等。所述2D材料超薄层3的厚度范围在0.5nm到1000nm。
图9所示的2D材料超薄层3为晶格匹配佳的单一材料,如WSe 2或MoSe 2
图10所示的2D材料超薄层3为复合中介层,顶层31采用与InGaN晶格匹配佳的2D材料,如WSe 2或MoSe 2,而底层32采用阻隔效果佳的2D材料,如六方氮化硼hBN、石墨烯(graphene)。各种材料晶格常数如表2。
表2
材料 晶格常数a(nm)
六方氮化硼hBN 0.25
石墨烯graphene 0.246
WSe 2 0.3297
MoSe 2 0.3283
底层32的2D材料超薄层作为阻障层(barrier)来阻隔基板材料中的缺陷对外延层质量以及组件性能造成损害,基板中的缺陷包括点缺陷(如氧离子或其它杂质)和线缺陷(如错位)。
为了获得更佳的结构,本发明可在2D材料覆盖基板1材料的表面增加金属催化层4,金属催化层4可以包括Fe、Co、Ni、Au、Ag、Cu、W、Mo、Ru或Pt等,金属催化层4先行成长或沉积在基板1表 面,也可能需要热处理工序,金属催化层4总厚度范围在0.5nm到3000nm。
本发明还揭示了RGB全彩InGaN基LED的制备方法,其InGaN系材料与基板外延步骤如下:
第一步,对基板1(芯片)材料进行外延成长等级抛光,并经由适当前处理(含芯片清洗)作为后续制造程序的准备。
第一步之后,第二步之前,可根据2D材料成长需求,在适时加入金属催化层4等制造工序。所述2D材料覆盖基板1材料表面的成长或沉积工序可能需要有包括Fe、Co、Ni、Au、Ag、Cu、W、Mo、Ru或Pt等金属催化层4先行成长或沉积在基板1表面,也可能需要热处理工序。金属催化层4总厚度范围在0.5nm到3000nm。
第二步,利用范德华外延或准范德华外延技术,将晶格匹配佳的2D材料覆盖在基板1材料表面作为InGaN系材料外延的中介层;可以是单层或复合层2D材料超薄层2覆盖。2D材料覆盖基板1材料表面可以采用既存的工序,包括成长、沉积、转移、涂覆等,以及相关必要的前处理与后处理工序。单层或多层总厚度范围在0.5nm到1000nm。
第二步之后,第三步之前,可根据第三步的外延质量需求,适时将第二步的2D材料中介层进行光刻等工序划分成区块以舒缓应力,区块尺寸大小可以是1×1mm 2到1000×1000mm 2
第三步,利用范德华外延或准范德华外延技术,在中介层上成长InGaN系材料外延层2。
本发明的2D材料最外层采用MoSe 2或WSe 2时,晶格常数可上达0.3283nm或0.3297nm,完全匹配于红光发光范围的InGaN外延层,除了确保外延层质量之外,有机会将外延及组件工序简化,也将使得采用的基板材料选择可能性更为宽广。
本发明当基板材料存在任何化学成分或微观缺陷有影响外延质量疑虑时,2D材料可采用异质结构(hetero-structures),选择以化学稳定性或扩散阻障性能较强的材料作为底层,例如hBN,与基板接合,表层则采用与外延层匹配较好的材料。
法国Soitec公司的InGaN temple基板制造工序起始的InGaN temple外延成长已包含基本的材料与外延工序成本,此部分成本评 估已不低于本发明方法之工序成本;而其后续须经由两次的InGaN层剥离-键结工序,也将应力松弛的光刻(lithography)列为必要工序,先不论多道工序良品率影响问题,相关工序均可观地拉高其InGaN temple基板成品制造成本;然而,依据该公司的公告其InGaN temple基板晶格常数目前上限仅达0.3205奈米(nm),此晶格常数值参照图1事实上仅略高于GaN仍然明显低于绿光及红光InGaN发光范围,以直接采用GaN作为基板仍不能成功制作稳健的绿光产品来看,该公司的技术成效说明了提高基板晶格常数有明确帮助,但在组件制作上显然仍需要较繁复较长的外延工序来渐进过度到适当外延主动层,这将使组件制造端成本较高;本发明采用范德华外延或准范德华外延技术,不匹配的应力或应变能可因此获得一定程度的舒缓,基板顶层晶格常数值也能达到0.329奈米(nm)左右,理想地和图1的绿光与红光InGaN范围匹配,有利于更简单与稳健的绿光及红光InGaN发光组件工序。
以上所述仅为本发明的较佳实施例,并非对本发明的限制。应当指出,本领域的技术人员在阅读完本说明书后,依本案的设计思路所做的等同变化,均落入本案的保护范围。

Claims (10)

  1. RGB全彩InGaN基LED,其特征在于:在基板材料表面覆盖晶格匹配的2D材料超薄层作为中介层,InGaN系材料外延层成长于2D材料超薄层上,此2D材料超薄层由单一材料构成或者一种以上材料迭层形成。
  2. 如权利要求1所述的RGB全彩InGaN基LED,其特征在于:所述2D材料是六方氮化硼hBN、石墨烯、hBNC、WS 2、WSe 2、MoS 2或MoSe 2
  3. 如权利要求1所述的RGB全彩InGaN基LED,其特征在于:所述2D材料超薄层的厚度范围在0.5nm到1000nm。
  4. 如权利要求1所述的RGB全彩InGaN基LED,其特征在于:所述2D材料超薄层为复合层结构,顶层采用与InGaN晶格匹配的2D材料,而底层采用阻隔效果佳的2D材料。
  5. 如权利要求1所述的RGB全彩InGaN基LED,其特征在于:所述基板为蓝宝石、氧化锌ZnO、单晶硅Si、SiC、GaN、陶瓷或玻璃。
  6. 如权利要求1所述的RGB全彩InGaN基LED,其特征在于:所述基板和中介层之间加入金属催化层,金属催化层总厚度范围在0.5nm到3000nm,金属催化层包括Fe、Co、Ni、Au、Ag、Cu、W、Mo、Ru或Pt。
  7. 如权利要求1至6任一项所述的RGB全彩InGaN基LED的制备方法,其特征在于InGaN系材料与基板外延步骤如下:
    第一步,对基板材料进行外延成长等级抛光,并经由适当前处理作为后续制造程序的准备;
    第二步,利用范德华外延或准范德华外延技术,将晶格匹配的2D材料覆盖在基板材料表面作为InGaN系材料外延的中介层;
    第三步,利用范德华外延或准范德华外延技术,在中介层上成长InGaN系材料外延层。
  8. 如权利要求7所述的RGB全彩InGaN基LED的制备方法,其特征在于:所述第二步,在基板材料表面进行单层或复合层2D材料覆盖,单层或多层总厚度范围在0.5nm到1000nm。
  9. 如权利要求7所述的RGB全彩InGaN基LED的制备方法,其特征在于:所述第一步和第二步之间,根据2D材料成长需求,在加 入金属催化层制造工序,金属催化层总厚度范围在0.5nm到3000nm,所述金属催化层先行成长或沉积在基板表面。
  10. 如权利要求7所述的RGB全彩InGaN基LED的制备方法,其特征在于:所述第二步和第三步之间,根据第三步的外延质量需求,将第二步的2D材料中介层进行光刻划分成区块,区块尺寸大小是1×1mm 2到1000×1000mm 2
PCT/CN2020/080291 2019-03-28 2020-03-20 RGB全彩InGaN基LED及其制备方法 WO2020192558A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/439,095 US20220149238A1 (en) 2019-03-28 2020-03-20 RGB FULL-COLOR InGaN-BASED LED AND METHOD FOR PREPARING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910240892.5A CN110010729A (zh) 2019-03-28 2019-03-28 RGB全彩InGaN基LED及其制备方法
CN201910240892.5 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020192558A1 true WO2020192558A1 (zh) 2020-10-01

Family

ID=67168525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080291 WO2020192558A1 (zh) 2019-03-28 2020-03-20 RGB全彩InGaN基LED及其制备方法

Country Status (4)

Country Link
US (1) US20220149238A1 (zh)
CN (1) CN110010729A (zh)
TW (2) TWM597986U (zh)
WO (1) WO2020192558A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022089181A1 (zh) * 2020-10-29 2022-05-05 王晓靁 具有2D材料中间层的硅上氮化镓GaN-on-Si外延基板
WO2022089182A1 (zh) * 2020-11-02 2022-05-05 王晓靁 具有2d材料中介层的氮化镓外延基板
DE102021118463A1 (de) 2021-07-16 2023-01-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer vielzahl oberflächenemittierender halbleiterlaserdioden

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010729A (zh) * 2019-03-28 2019-07-12 王晓靁 RGB全彩InGaN基LED及其制备方法
CN109980061A (zh) * 2019-04-10 2019-07-05 王晓靁 采用2d材料磊晶去疵单晶基板及其制备方法和制作组件
CN111009602B (zh) * 2020-01-03 2023-03-28 王晓靁 具有2d材料中介层的外延基板及制备方法和制作组件
WO2021243653A1 (zh) * 2020-06-04 2021-12-09 英诺赛科(珠海)科技有限公司 半导体装置及其制造方法
WO2022013910A1 (ja) * 2020-07-13 2022-01-20 日本電信電話株式会社 発光素子およびその製造方法
WO2022088093A1 (zh) * 2020-10-30 2022-05-05 京东方科技集团股份有限公司 发光二极管基板及其制作方法、显示装置
CN113644168B (zh) * 2021-08-12 2024-04-23 王晓靁 一种RGB InGaN基micro LED的制作方法及其制作的器件
TWI818845B (zh) * 2022-12-29 2023-10-11 台亞半導體股份有限公司 發光二極體
CN115832135B (zh) * 2023-02-14 2023-05-02 江西兆驰半导体有限公司 硅基发光二极管外延片及其制备方法、发光二极管
CN115986022A (zh) * 2023-03-17 2023-04-18 江西兆驰半导体有限公司 深紫外led外延片及其制备方法、深紫外led
CN116885067A (zh) * 2023-09-06 2023-10-13 江西兆驰半导体有限公司 发光二极管外延片及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769081A (zh) * 2011-05-03 2012-11-07 山东华光光电子有限公司 一种以石墨烯作为缓冲层外延GaN的结构及其制备方法
CN103456677A (zh) * 2012-06-05 2013-12-18 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
CN107452841A (zh) * 2017-09-04 2017-12-08 湘能华磊光电股份有限公司 基于石墨烯的led外延生长方法
CN107706274A (zh) * 2017-10-25 2018-02-16 中国工程物理研究院电子工程研究所 一种基于六方氮化硼‑石墨烯复合层作为缓冲层的氮化镓外延结构的制备方法
CN108010995A (zh) * 2017-12-01 2018-05-08 北京大学 一种基于石墨烯蓝宝石衬底的高光效led芯片
CN108767079A (zh) * 2018-05-31 2018-11-06 扬州乾照光电有限公司 基于石墨烯衬底的led外延结构及生长方法和led
CN110010729A (zh) * 2019-03-28 2019-07-12 王晓靁 RGB全彩InGaN基LED及其制备方法
CN209843740U (zh) * 2019-03-28 2019-12-24 王晓靁 RGB全彩InGaN基LED

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522534B (en) * 2001-09-11 2003-03-01 Hsiu-Hen Chang Light source of full color LED using die bonding and packaging technology
US20100006873A1 (en) * 2008-06-25 2010-01-14 Soraa, Inc. HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN
US8409366B2 (en) * 2009-06-23 2013-04-02 Oki Data Corporation Separation method of nitride semiconductor layer, semiconductor device, manufacturing method thereof, semiconductor wafer, and manufacturing method thereof
US9574287B2 (en) * 2013-09-26 2017-02-21 Globalfoundries Inc. Gallium nitride material and device deposition on graphene terminated wafer and method of forming the same
CN104638071B (zh) * 2015-01-27 2017-03-15 江苏巨晶新材料科技有限公司 一种使用复合衬底的氮化物led外延片结构及其制备方法
EP4105966A3 (en) * 2015-09-08 2023-06-21 Massachusetts Institute Of Technology Systems and methods for graphene based layer transfer
WO2018156876A1 (en) * 2017-02-24 2018-08-30 Kim, Jeehwan Methods and apparatus for vertically stacked multicolor light-emitting diode (led) display
FR3068994B1 (fr) * 2017-07-11 2021-12-10 Commissariat Energie Atomique Procede de realisation d'une couche cristalline en un compose iii-n par epitaxie van der waals a partir de graphene
CN108321076A (zh) * 2018-03-21 2018-07-24 华南理工大学 一种二维AlN材料及其制备方法与应用
CN109103314A (zh) * 2018-08-24 2018-12-28 北京石墨烯研究院 石墨烯紫外led及其制备方法
CN109285758A (zh) * 2018-08-30 2019-01-29 中国科学院半导体研究所 在图形衬底上生长氮化物薄膜的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769081A (zh) * 2011-05-03 2012-11-07 山东华光光电子有限公司 一种以石墨烯作为缓冲层外延GaN的结构及其制备方法
CN103456677A (zh) * 2012-06-05 2013-12-18 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
CN107452841A (zh) * 2017-09-04 2017-12-08 湘能华磊光电股份有限公司 基于石墨烯的led外延生长方法
CN107706274A (zh) * 2017-10-25 2018-02-16 中国工程物理研究院电子工程研究所 一种基于六方氮化硼‑石墨烯复合层作为缓冲层的氮化镓外延结构的制备方法
CN108010995A (zh) * 2017-12-01 2018-05-08 北京大学 一种基于石墨烯蓝宝石衬底的高光效led芯片
CN108767079A (zh) * 2018-05-31 2018-11-06 扬州乾照光电有限公司 基于石墨烯衬底的led外延结构及生长方法和led
CN110010729A (zh) * 2019-03-28 2019-07-12 王晓靁 RGB全彩InGaN基LED及其制备方法
CN209843740U (zh) * 2019-03-28 2019-12-24 王晓靁 RGB全彩InGaN基LED

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022089181A1 (zh) * 2020-10-29 2022-05-05 王晓靁 具有2D材料中间层的硅上氮化镓GaN-on-Si外延基板
WO2022089182A1 (zh) * 2020-11-02 2022-05-05 王晓靁 具有2d材料中介层的氮化镓外延基板
DE102021118463A1 (de) 2021-07-16 2023-01-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer vielzahl oberflächenemittierender halbleiterlaserdioden

Also Published As

Publication number Publication date
US20220149238A1 (en) 2022-05-12
TWI766256B (zh) 2022-06-01
TWM597986U (zh) 2020-07-01
TW202105771A (zh) 2021-02-01
CN110010729A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2020192558A1 (zh) RGB全彩InGaN基LED及其制备方法
US7737429B2 (en) Nitride based semiconductor device using nanorods and process for preparing the same
US7981767B2 (en) Methods for relaxation and transfer of strained layers and structures fabricated thereby
WO2020207234A1 (zh) 采用2d材料磊晶去疵单晶基板及其制备方法和制作组件
WO2021135953A1 (zh) 具有2d材料中介层的外延基板及制备方法和制作组件
JP5113120B2 (ja) 半導体装置の製造方法およびその構造
CN209843740U (zh) RGB全彩InGaN基LED
TWI766403B (zh) 一種微發光二極體外延結構及其製備方法
CN105591004A (zh) 基于图形化Si衬底的LED外延片及其制备方法
TW201030849A (en) Manufacture method of a multilayer structure having non-polar a-plane {11-20} III-nitride layer
CN210120150U (zh) 采用2d材料磊晶去疵单晶基板
TW202308151A (zh) RGB InGaN基micro LED的製作方法及其製作的組件
WO2022089181A1 (zh) 具有2D材料中间层的硅上氮化镓GaN-on-Si外延基板
WO2024056041A1 (zh) 一种外延芯片结构
TW201403790A (zh) 堆疊半導體裝置及其製作方法
CN117410405A (zh) 深紫外发光二极管外延片及其制备方法、深紫外led
CN105098000B (zh) 磁场调控led发光亮度的复合结构及制作方法
CN105870278A (zh) 一种氮化镓基发光二极管及其制备方法
CN100568550C (zh) 氮化物半导体发光器件
WO2022089182A1 (zh) 具有2d材料中介层的氮化镓外延基板
CN210984756U (zh) 具有2d材料中介层的外延基板
CN106169523B (zh) 一种采用L-MBE和MOCVD技术在Si衬底上生长的LED外延片及其制备方法
CN210575998U (zh) 一种高质量外延结构
CN106158592A (zh) 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用
CN207800632U (zh) 基于GaN材料的双色LED芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779820

Country of ref document: EP

Kind code of ref document: A1