WO2020192486A1 - 微晶玻璃及其制备方法和终端 - Google Patents
微晶玻璃及其制备方法和终端 Download PDFInfo
- Publication number
- WO2020192486A1 WO2020192486A1 PCT/CN2020/079632 CN2020079632W WO2020192486A1 WO 2020192486 A1 WO2020192486 A1 WO 2020192486A1 CN 2020079632 W CN2020079632 W CN 2020079632W WO 2020192486 A1 WO2020192486 A1 WO 2020192486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- ceramic
- ceramics
- zro
- ion exchange
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
Definitions
- the embodiment of the present invention relates to the technical field of glass preparation, in particular to a glass-ceramic and a preparation method and terminal thereof.
- the embodiments of the present invention provide a glass-ceramic, which has high hardness and fracture toughness, and can be chemically strengthened efficiently. After strengthening, the surface compressive stress is high, the depth of the exchange layer is large, and the hardness and fracture toughness are high. It is further improved, and the glass-ceramic has a higher transmittance, which can meet the strength requirements of large-size, ultra-thin touch screen displays for protective glass.
- the first aspect of the embodiments of the present invention provides a glass-ceramic, and the glass-ceramic includes the following components in terms of mole percentage:
- the glass-ceramics include the following components based on mole percentage: SiO 2 60-63%; Al 2 O 3 17-18%; B 2 O 3 2-5%; Na 2 O 16-17%; ZnO 0-0.5%; MgO 0-0.5%; ZrO 2 2-2.5%.
- the glass-ceramic in terms of mole percentage, includes the following components: SiO 2 58-59%; Al 2 O 3 18-20%; B 2 O 3 3-5%; Na 2 O 16-17%; ZnO 0-0.5%; MgO 0-0.5%; ZrO 2 2-2.2%.
- the glass-ceramic in terms of mole percentage, includes the following components: SiO 2 55-57%; Al 2 O 3 20-22%; B 2 O 3 2-5%; Na 2 O 16-18%; ZnO 0-2%; MgO 0-2%; ZrO 2 2-3%.
- the glass-ceramic in terms of mole percentage, includes the following components: SiO 2 55%-60%; Al 2 O 3 17%-20%; B 2 O 3 3%-5% ; Na 2 O 16%-18%; ZnO 0-1%; MgO 0-1%; ZrO 2 2%-2.5%.
- the glass ceramic includes a glass phase and a crystal phase
- the crystal phase includes ZrO 2 nanocrystals
- the crystal phase is uniformly distributed inside the glass ceramic.
- the size of the ZrO 2 nanocrystals is in the range of 3 nm-10 nm. Since ZrO 2 nanocrystals are ultrafine crystals, the crystal grain size is much lower than the visible light wavelength range, so the glass-ceramics can have a higher transmittance.
- the transmittance of the glass-ceramic with a thickness of 1 mm in the visible light band is greater than or equal to 90%.
- the glass-ceramics can be chemically strengthened by ion exchange with high efficiency, and the depth of the ion exchange layer increases with the precipitation of ZrO 2 .
- the surface compressive stress of the glass-ceramics is in the range of 1.013GPa-1.656GPa.
- the Vickers hardness of the glass ceramics is greater than 680Kgf/mm 2 , and the crack initiation threshold is greater than 10Kgf.
- the glass-ceramic of the embodiment of the present invention has higher strength than ordinary glass. There are two main reasons: one is that the elastic modulus of the glass-ceramic is larger than that of ordinary glass; the other is that the crystal grains in the glass-ceramic can cause cracks.
- the bending and passivation of the tip increases the work of rupture and can effectively inhibit the propagation of cracks.
- the glass-ceramics provided by the first aspect of the embodiments of the present invention are based on the soda-alumina-silicon system. Through the adjustment of the components, the precipitation of ultrafine ZrO 2 crystals can be controlled during the crystallization process, and the glass has a high permeability. High efficiency, high-efficiency ion exchange can be carried out, and the strength of the glass can be strengthened twice.
- an embodiment of the present invention also provides a method for preparing glass ceramics, including:
- the raw materials corresponding to each component are mixed according to the proportion, and after melting, molding, and annealing, the glass raw material is obtained, and then the glass raw material is heat treated to crystallize the glass raw material to obtain the glass-ceramics, in terms of mole percentage,
- the glass ceramic includes the following components:
- the melting temperature is 1550°C-1650°C.
- the annealing temperature is 500°C-750°C.
- the heat treatment is a one-step method or a two-step method, and the temperature of the heat treatment is 600° C.-1100° C., and the time is 15 min-20 h.
- the preparation method further includes after the heat treatment, chemically strengthening the glass ceramics by using a one-step ion exchange process or a two-step ion exchange process.
- the method for preparing glass ceramics provided in the second aspect of the embodiments of the present invention has a simple process.
- An embodiment of the present invention also provides a terminal, including a housing assembled on the outside of the terminal, and a circuit board located inside the housing, the housing including a display screen assembled on the front side and a back cover assembled on the rear side ,
- the display screen includes a cover plate and a display module arranged inside the cover plate, the cover plate and/or the back cover adopts glass-ceramics, in mole percentage, the glass-ceramics include the following groups Minute:
- the inside of the glass ceramic includes a glass phase and ZrO 2 nanocrystals, and the ZrO 2 nanocrystals are uniformly distributed inside the glass ceramic.
- the size of the ZrO 2 nanocrystals is in the range of 3 nm-10 nm.
- the thickness of the glass ceramics is 0.4 mm-1 mm.
- the transmittance of the glass ceramics in the visible light band is greater than or equal to 90%.
- an ion exchange layer is formed on the surface of the glass ceramic, and the surface compressive stress of the glass ceramic is in the range of 1.013 GPa to 1.656 GPa.
- an ion exchange layer is formed on the surface of the glass-ceramic, the Vickers hardness of the glass-ceramic is greater than 680Kgf/mm 2 , and the crack initiation threshold is greater than 10Kgf.
- FIG. 1 is a schematic structural diagram of a terminal provided by an embodiment of the present invention.
- Figure 2 is a schematic structural diagram of a terminal provided by an embodiment of the present invention.
- Fig. 3 is an XRD pattern of ZrO 2 crystals precipitated in Example 1 of the present invention.
- Example 4 is a transmission electron microscope image of ZrO 2 precipitated in Example 1 of the present invention.
- Figure 5 is the transmittance curve of the glass ceramics after heat treatment in Example 8 of the present invention.
- EPMA electron probe
- Fig. 7 is an indentation diagram of a glass sample before ion exchange in Example 3 of the present invention under the action of 1 Kgf;
- Figure 8 is the indentation diagram of the glass sample after ion exchange in Example 3 of the present invention under the action of 10Kgf
- an embodiment of the present invention provides a terminal 100.
- the terminal 100 may be a mobile phone, a tablet computer, a smart wearable product, and other electronic products.
- the terminal 100 includes a casing assembled on the outside of the terminal. And a circuit board located inside the housing.
- the housing includes a display screen 200 assembled on the front side and a back cover 400 assembled on the rear side.
- the display screen 200 includes a cover plate 201 and a display module 202 arranged inside the cover plate 201, wherein,
- the cover plate 201 and/or the back cover 400 are made of glass-ceramics.
- the cover plate 201 and the back cover 400 may be all glass-ceramics, or only partially glass-ceramics.
- the display screen 200 may be a touch display screen.
- the terminal 100 may further include a middle frame 300 connected between the stacked display screen 200 and the back cover 400.
- the display screen 200, the middle frame 300 and the back cover 400 are jointly enclosed to form an enclosed space.
- Circuit boards and other components are arranged in the enclosed space.
- the specific arrangement of the middle frame 300 is not limited.
- the middle frame 300 may be integrated with the back cover 400, or the middle frame 300 may be built into the terminal 100 and housed in the space enclosed by the display screen 200 and the back cover 400.
- the glass-ceramic includes the following components:
- the glass-ceramics of the embodiments of the present invention can effectively control the crystallization of ZrO 2 by reasonably adjusting the components and the proportions, especially the environment where the sodium ions exist, so that the glass is microcrystallized, and the strength of the glass is obtained. Enhancement; At the same time, through reasonable adjustment of the components and ratios, the glass-ceramics of the system can perform efficient ion exchange, so that the strength of the glass can be enhanced for the second time.
- the crystallization of ZrO 2 is related to the distribution state of sodium ions (Na + ) in the glass. ZrO 2 mainly exists in the glass as a [ZrO 6 ] octahedron structure.
- the octahedron carries two negative charges around the octahedron, and Na + is required for charge compensation to achieve a balanced state.
- Na + is required for charge compensation to achieve a balanced state.
- Na + used for charge compensation in the glass is left, ZrO 2 will not precipitate in the glass
- all the Na + in the glass is used for charge compensation and there is no surplus, ZrO 2 crystals will be precipitated.
- ZrO 2 exists as [ZrO 6 ] octahedron in the glass before precipitation, with two units of negative charge. At this time, Na + ions are needed for neutralization to achieve charge balance.
- the surrounding [ZrO 6 ] na + will be transferred to the [AlO 4] - tetrahedra around, is more conducive to ion exchange, so can exchange layer depth increases.
- the ion exchange is commonly referred to as chemical toughening.
- the main principle is to exchange ions with a larger radius in the molten salt (such as K + ) and ions with a smaller radius in the glass (such as Na + ) to form a layer of compressive stress on the surface through the "crowding effect", and An ion exchange layer with a certain depth is formed.
- the fracture of glass is generally caused by the tensile stress of the crack exceeding its bearing range. When subjected to external force, the cracks existing on the glass surface not only extend to the surroundings, but also extend to the inside of the glass.
- ⁇ 0 (a) 1/2 is also a constant, indicating the tensile stress ⁇ 0 that the glass can withstand when the glass is broken It is inversely proportional to the square root of the crack depth a.
- the tensile stress ⁇ 0 that the glass can withstand will increase accordingly, that is, the strength of the glass will increase .
- a certain compressive stress can be obtained on the glass surface.
- the glass is subjected to external force, it is first necessary to offset the surface compressive stress, and then put the glass in a state of tension, so its strength is significantly improved; on the other hand, due to ion exchange A certain depth of compressive stress layer will also be formed on the glass surface. In this way, even if an external force forms a crack on the glass surface, the formed ion exchange layer will effectively prevent the further propagation of the crack, thus greatly improving the ability of the glass to resist external forces. The strength of the glass is significantly improved.
- SiO 2 is the main oxide forming glass, and its content has a direct effect on the performance of the glass. The more the content, the better the connectivity of the glass network structure, the higher the glass density, the stronger the mechanical properties .
- the melting point of pure SiO 2 glass is relatively high, and other network modifiers and co-solvents need to be added to prepare glass with economic benefits.
- the embodiment of the present invention controls the molar content of SiO 2 at 55%. -63%. Specifically, in some embodiments of the present invention, the molar content of SiO 2 can be 55%-60%. In other embodiments of the present invention, the molar content of SiO 2 can also be 60.5%-63%. In some other embodiments of the invention, the molar content of SiO 2 can also be 58%-59%, 55%-57%.
- Al 2 O 3 plays different roles in different glass environments.
- the alkali metal ion R R is Li, Na, K, etc.
- R 2 O/Al 2 O 3 >1 (mol%) aluminum ions (Al 3+ ) are all located in the tetrahedron and participate in the network structure.
- Al 2 O 3 increases, the glass
- R 2 O/Al 2 O 3 ⁇ 1 the excess Al 2 O 3 will exist in the form of octa-coordination and act as a network external body.
- the influence of Al 2 O 3 on the glass structure is particularly significant in ion exchange.
- the main reason is that the volume of [AlO 4 ] tetrahedron is larger than that of [SiO 4 ] tetrahedron, which can increase the network gap and exchange ions. It is easier to move, so the ion exchange performance can be improved.
- Al 3+ ions will exist in the form of 5-coordination or even 6-coordination, which strengthens the network structure and adversely affects ion exchange. Therefore, the embodiment of the present invention controls The molar content of Al 2 O 3 ranges from 17% to 22%.
- the molar content of Al 2 O 3 can be 17%-20%, and in other embodiments of the present invention, the molar content of Al 2 O 3 can also be 17%-18%, 18%. %-20%, 20%-22%.
- B 2 O 3 has a good fluxing effect.
- the main reason is that in a high-temperature molten state, B 2 O 3 is difficult to form a [BO 4 ] structure, but can only exist in a [BO 3 ] structure.
- B 3+ has a tendency to deprive free oxygen to form [BO 4 ], which makes the structure more compact. Therefore, on the whole, the main function of B 2 O 3 is to reduce the high temperature viscosity and increase the low temperature viscosity.
- B 3+ ions exist as [BO 4 ] tetrahedrons.
- the embodiment of the present invention considering the crystallization of ZrO 2 , the content of alkali metal oxide is relatively low compared to Al 2 O 3 , so the content of B 2 O 3 should not be too high.
- the embodiment of the present invention controls the molar content to 2% -5%, and further, the molar content of B 2 O 3 can be controlled at 2%-4% or 3%-5%.
- B 2 O 3 ratio with respect to the total amount of both the 2 O 3 SiO 2 and Al need to be reasonable control, if the B 2 O 3 content is too high, the glass stability is deteriorated, if the content is too low, insoluble material, The viscosity of the glass liquid is higher, and the glass bubbles are more.
- the suitable content of the embodiment of the present invention is 72% ⁇ SiO 2 +Al 2 O 3 -B 2 O 3 ⁇ 78%, and further, 73% ⁇ SiO 2 + Al 2 O 3 -B 2 O 3 ⁇ 77%, and further, 74% ⁇ SiO 2 +Al 2 O 3 -B 2 O 3 ⁇ 76%.
- Na 2 O is the main network modifier, which can provide excess oxygen, play a role in breaking the network, thereby reducing the density and chemical stability of the glass.
- the introduction of Na 2 O can also reduce the high temperature viscosity and play a role in fluxing.
- Na 2 O is the main carrier of ion exchange, and its content directly affects the process of ion exchange.
- the suitable molar content of Na 2 O in the embodiment of the present invention is 16%-18%. Specifically, the molar content of Na 2 O can be They are 16%, 16.5%, 17%, 17.5%, 18%.
- the relative content of Na 2 O and Al 2 O 3 needs to be controlled within an appropriate range. If the content of Na 2 O is too much, it is not conducive to the formation of ZrO 2 ; if the content of Na 2 O is too small, the ion exchange effect will be affected. In the embodiments of the present invention, in order to well control the effect of microcrystallization and ion exchange, the relative content of Na 2 O and Al 2 O 3 is controlled to be 0 ⁇ Al 2 O 3 -Na 2 O ⁇ 6%.
- 0 ⁇ Al 2 O 3 -Na 2 O ⁇ 4% can be controlled, and further, 0.1% ⁇ Al 2 O 3 -Na 2 O ⁇ 2% can be controlled. In other embodiments of the present invention, 1% ⁇ Al 2 O 3 -Na 2 O ⁇ 4% can also be controlled. In some other embodiments of the present invention, 2% ⁇ Al 2 O 3 -Na 2 O ⁇ 3% can also be controlled.
- ZnO mainly exists as [ZnO 4 ] in the alkali silicate glass, acting as a network former, and ZnO has a fluxing effect.
- ZnO can significantly increase the surface compressive stress after ion exchange, but it has an adverse effect on the depth of the stress layer, and too much ZnO has a tendency to increase glass crystallization and reduce the solubility of ZrO 2 in glass
- the embodiment of the present invention controls the molar content of ZnO to be 0-2%, and further, the molar content of ZnO can be controlled to be 0-1%.
- the molar content of ZnO can be controlled at 0-0.5%, 0.5-1%, 0.2-1.5%.
- MgO also has two coordination states (4-coordination and 6-coordination) in glass, but most of them exist as [MgO 6 ] octahedrons, making the glass structure more dense.
- MgO can also increase the surface compressive stress after ion exchange, while reducing the depth of the exchange layer.
- the appropriate molar content of MgO is 0-2%. Further, the molar content of MgO can be controlled within 0-1%, and further, the molar content of MgO can be controlled within 0.5-1.0%, 0.2-1.5%.
- ZrO 2 exists in the glass as [ZrO 6 ] octahedrons.
- the introduction of ZrO 2 will increase the viscosity of the glass, reduce the thermal expansion coefficient of the glass, and improve the alkali resistance of the glass.
- ZrO 2 is used as a nucleating agent. Since electronic products have higher requirements for the permeability of cover glass, the selected glass-ceramics must meet the requirements of transmittance.
- ZrO 2 is colorless and transparent, and has high hardness, so it is suitable for the preparation of highly transparent glass ceramics. Considering that the solubility of ZrO 2 in silicate glass is limited, too high content will devitrify the glass.
- the appropriate molar content of ZrO 2 is controlled at 2-3%. Furthermore, the molar content of ZrO 2 The percentage can be 2-2.5%, 2-2.2%.
- the glass-ceramic in terms of mole percentage, includes the following components: SiO 2 60-63%; Al 2 O 3 17-18%; B 2 O 3 2-5%; Na 2 O 16-17%; ZnO 0-0.5%; MgO 0-0.5%; ZrO 2 2-2.5%; and Al 2 O 3 +0.7(ZnO+MgO)>Na 2 O, 0 ⁇ Al 2 O 3 -Na 2 O ⁇ 6%, 72% ⁇ SiO 2 +Al 2 O 3 -B 2 O 3 ⁇ 78%.
- the glass-ceramic in terms of mole percentage, includes the following components: SiO 2 58-59%; Al 2 O 3 18-20%; B 2 O 3 3-5%; Na 2 O 16-17%; ZnO 0-0.5%; MgO 0-0.5%; ZrO 2 2-2.2%; and Al 2 O 3 +0.7(ZnO+MgO)>Na 2 O, 0 ⁇ Al 2 O 3- Na 2 O ⁇ 6%, 72% ⁇ SiO 2 +Al 2 O 3 -B 2 O 3 ⁇ 78%.
- the glass-ceramics include the following components: SiO 2 55-57%; Al 2 O 3 20-22%; B 2 O 3 2-5%; Na 2 O 16-18%; ZnO 0-2%; MgO 0-2%; ZrO 2 2-3%; and Al 2 O 3 +0.7(ZnO+MgO)>Na 2 O, 0 ⁇ Al 2 O 3- Na 2 O ⁇ 6%, 72% ⁇ SiO 2 +Al 2 O 3 -B 2 O 3 ⁇ 78%.
- the glass-ceramic in terms of mole percentage, includes the following components: SiO 2 55%-60%; Al 2 O 3 17%-20%; B 2 O 3 3%-5 %; Na 2 O 16%-18%; ZnO 0-1%; MgO 0-1%; ZrO 2 2%-2.5%; and Al 2 O 3 +0.7(ZnO+MgO)>Na 2 O, 0 ⁇ Al 2 O 3 -Na 2 O ⁇ 6%, 72% ⁇ SiO 2 +Al 2 O 3 -B 2 O 3 ⁇ 78%.
- the glass-ceramic includes a glass phase and a crystal phase
- the crystal phase includes ZrO 2 nanocrystals
- the ZrO 2 nanocrystals are uniformly distributed inside the glass-ceramic.
- the size of the ZrO 2 nanocrystal is in the range of 3nm-10nm, further, the size of the ZrO 2 nanocrystal is in the range of 3nm-8nm, and further, the size of the ZrO 2 nanocrystal is in the range of 3nm- Within 6nm.
- the glass-ceramics can have higher transmittance.
- the transmittance of the glass-ceramics in the visible light band is greater than Or equal to 90%.
- the glass-ceramic of this system does not contain any coloring substances, and there is no absorption of a certain wavelength band to color the glass.
- the thickness of the glass ceramic used as the cover plate 201 or the back cover 400 may be 0.4 mm-1 mm, more specifically, it may be 0.5 mm-1 mm, 0.6 mm-1 mm.
- the glass-ceramics can be shaped into 2D, 2.5D flat products, or into 3D curved products.
- the glass-ceramics are chemically strengthened glass-ceramics, that is, ion-exchanged glass-ceramics.
- the surface of the glass-ceramics has an ion exchange layer formed after high-efficiency ion exchange, and the strength of the glass is enhanced for the second time. After ion exchange, the surface compressive stress of glass-ceramic is in the range of 1.013GPa-1.656GPa, which is much higher than the surface compressive stress of general ion exchange glass.
- the depth of the ion exchange layer can be in the range of 25 ⁇ m-108 ⁇ m, so that the glass has high hardness and fracture toughness, in addition, after the ion-exchanged glass Vickers hardness of greater than 680Kgf / mm 2, to improve 120-150Kgf / mm 2 ratio prior to ion exchange, and, after the ion exchange is greater than a threshold crack initiation 10Kgf, so that the terminal having the final Excellent anti-drop performance.
- a certain amount of clarifying agent can be added on the basis of the total molar ratio of 100% of the above-mentioned oxides.
- the percentage can be 0.1-3%.
- the clarifying agent may be, but not limited to, antimony trioxide, Glauber's salt, tin dioxide, etc., and the selection of the clarifying agent may be a combination of one or more.
- the glass-ceramics provided by the embodiments of the present invention are not only suitable for electronic information terminal products, but also for transportation, construction and other fields. Specifically, it can be used for the protection of transportation tools, household appliances, and construction protective glass, such as displays, instrument panels, etc. glass.
- the embodiment of the present invention also provides a method for preparing the above-mentioned crystallized glass, including:
- the raw materials corresponding to each component are mixed according to the proportion, and the glass raw material is obtained after melting, molding, and annealing, and then heat treatment to crystallize the glass raw material to obtain the glass-ceramics.
- the melting temperature is 1550°C-1650°C.
- the annealing temperature is 500°C-750°C.
- the temperature of the heat treatment may be 600°C-1100°C, and the time may be 15min-20h. Further, the temperature of the heat treatment may be 750°C-900°C, and the time may be 10h-15h. Furthermore, the heat treatment temperature may be 750-850°C.
- the heat treatment can be accomplished by a one-step method or a two-step method.
- the specific process of one-step heat treatment can be to heat the sample to a temperature near the crystallization temperature or higher and keep it for a certain period of time to make the crystals fully grow;
- the specific process of two-step heat treatment can be to first heat the sample to the glass transition temperature (T g ) to a temperature range of about T g +50°C and holding for a certain period of time to fully nucleate the glass, and then heating to near the crystallization temperature and holding for a certain period of time to make the crystal grow.
- a one-step ion exchange process or a two-step ion exchange process is used to chemically strengthen the glass ceramics.
- the ion exchange process in the embodiment of the present invention is a low-temperature ion exchange.
- the one-step ion exchange process can use pure potassium nitrate molten salt, the strengthening temperature can be 460°C, and the time can be 4h; in the two-step ion exchange process, the first step can use 90.9% KNO 3 +9.1% NaNO 3 (wt %) salt bath, the strengthening temperature can be 480°C, and the time can be 8h; the second step can use 98.3%KNO 3 +1%K 2 CO 3 +0.4%KOH+0.3%KCl(wt%) salt bath, strengthening temperature It can be 440°C and the time can be 2h.
- the method for preparing the above-mentioned crystallized glass provided by the embodiment of the present invention has a simple process and is suitable for industrial production.
- AP means glass raw material; one-step ion exchange process: pure KNO 3 molten salt, 460°C/4h; two-step ion exchange process: first step: 90.9% KNO 3 +9.1% NaNO 3 (wt%), 480°C/8h; second step: 98.3% KNO 3 +1% K 2 CO 3 +0.4% KOH+0.3% KCl (wt%), 440°C/2h. Among them, no cracks appeared in the sample after the ion exchange under 10Kgf pressure.
- FIG. 3 shows the XRD pattern of the ZrO 2 crystals precipitated in the embodiment 1 of the present invention. It can be seen from Figure 3 that the composition of the glass-ceramic of Example 1 adopts three different heat treatment temperatures of 800°C/10h, 850°C/10h, and 900°C/10h to precipitate ZrO 2 crystals, and as the heat treatment temperature increases High, the degree of ZrO 2 crystallization increases, and the crystal grain size increases.
- Example 8 shows the transmittance curve of the glass-ceramic after heat treatment in Example 8 of the present invention. It can be seen from FIG. 5 that the glass-ceramic after heat treatment and crystallized in the embodiment of the present invention is at 380nm- The transmittance of visible light at 780nm reaches 90%.
- the glass-ceramics of the embodiments of the present invention can perform high-efficiency ion exchange. This is because during the heat treatment, the Zr-O-Si bond gradually breaks and the Na + ions originally used to neutralize [ZrO 6 ] 2- are released Into the glass network structure, further, due to the Al>Na in the system, at first part of Al 3+ exists in the form of a charge compensator.
- Fig. 6 shows an electron probe (EPMA) diagram of the ion exchange layer depth after two-step ion exchange in Example 1 of the present invention. It can be seen from Fig.
- Figure 7 is the indentation diagram of the glass sample before ion exchange under the action of 1Kgf in Example 3 of the present invention
- Figure 8 is the indentation diagram of the glass sample under the action of 10Kgf after ion exchange in Example 3 of the present invention. 7 It can be seen that crack propagation is formed outside the indentation area, while Figure 8 shows that there is no crack propagation outside the indentation area. Therefore, it can be seen that the fracture toughness of the glass sample after ion exchange is further improved, and the crack initiation threshold is greater than 10Kgf.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
一种微晶玻璃及其制备方法和终端,微晶玻璃以摩尔百分比计,包括如下组分:SiO 2 55-63%;Al 2O 317-22%;B 2O 3 2-5%;Na 2O 16-18%;ZnO 0-2%;MgO 0-2%;ZrO 2 2-3%,其中,Al 2O 3+0.7(ZnO+MgO)>Na 2O,0<Al 2O 3-Na 2O≤6%,72%≤SiO 2+Al 2O 3-B 2O 3≤78%。该微晶玻璃可进行离子交换获得高硬度和高断裂韧性,且具有较高透过率,可满足大尺寸、超薄触屏显示器对保护玻璃的强度需求。
Description
本申请要求在2019年3月25日提交中国国家知识产权局、申请号为201910228749.4、发明名称为“一种可化学强化的透明微晶玻璃及制备方法”的中国专利申请的优先权,在2019年6月29日提交中国国家知识产权局、申请号为201910581319.0、发明名称为“微晶玻璃及其制备方法和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明实施例涉及玻璃制备技术领域,特别是涉及一种微晶玻璃及其制备方法和终端。
随着智能手机、平板电脑等电子产品的普及,触屏显示器的大尺寸化及超薄化的需求日益突出,这也对触屏保护玻璃的机械性能提出了更高的要求。普通玻璃由于质地较脆,并且表面存在微裂纹,其断裂韧性、耐划伤性能均较低,很难满足实际应用。因此,有必要开发一种具有高硬度和高断裂韧性的触屏保护玻璃。
发明内容
鉴于此,本发明实施例提供一种微晶玻璃,该微晶玻璃具有较高硬度和断裂韧性,并可进行高效的化学强化,强化后表面压应力高,交换层深度大,硬度和断裂韧性得到进一步提高,且该微晶玻璃具有较高透过率,可满足大尺寸、超薄触屏显示器对保护玻璃的强度需求。
具体地,本发明实施例第一方面提供一种微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
SiO
2 55-63%;
Al
2O
3 17-22%;
B
2O
3 2-5%;
Na
2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO
2 2-3%;
其中,Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明实施方式中,0<Al
2O
3-Na
2O≤4%。进一步地,0.1%≤Al
2O
3-Na
2O≤2%。
本发明一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 60-63%;Al
2O
3 17-18%;B
2O
3 2-5%;Na
2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO
2 2-2.5%。
本发明另一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 58-59%;Al
2O
3 18-20%;B
2O
3 3-5%;Na
2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO
2 2-2.2%。
本发明另一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 55-57%;Al
2O
3 20-22%;B
2O
3 2-5%;Na
2O 16-18%;ZnO 0-2%;MgO 0-2%;ZrO
2 2-3%。
本发明另一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 55%-60%; Al
2O
3 17%-20%;B
2O
3 3%-5%;Na
2O 16%-18%;ZnO 0-1%;MgO 0-1%;ZrO
2 2%-2.5%。
本发明实施方式中,所述微晶玻璃包括玻璃相和晶体相,所述晶体相包括ZrO
2纳米晶,所述晶体相均匀分布在所述微晶玻璃内部。本发明实施方式中,所述ZrO
2纳米晶的尺寸在3nm-10nm的范围内。由于ZrO
2纳米晶为超细晶体,晶粒尺寸远低于可见光波长范围,因此可以使得微晶玻璃具有较高的透过率。
本发明实施方式中,1mm厚度所述微晶玻璃在可见光波段的透过率大于或等于90%。
本发明实施方式中,由于微晶玻璃中的氧化钠和氧化铝不参与析晶,因此所述微晶玻璃可进行高效的离子交换化学强化,且随着ZrO
2的析出,离子交换层深度增加。经化学强化后,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
本发明实施方式中,经化学强化后,所述微晶玻璃的维氏硬度大于680Kgf/mm
2,裂纹引发阈值大于10Kgf。
本发明实施例的微晶玻璃,相对普通玻璃具有更高强度,其原因主要有两点:一是微晶玻璃的弹性模量要大于普通玻璃;二是微晶玻璃中的晶粒可以造成裂纹尖端的弯曲和钝化,增加了破裂功,可有效抑制裂纹的扩展。玻璃的机械强度σ可以由公式σ=(2Eγ/πC)
1/2来确定,可以看出,玻璃强度的增加是依靠弹性模量E或断裂表面能γ的增加或微裂纹的临界长度C的减小来实现的。微晶玻璃能够有效减小裂纹临界长度而使玻璃强度提高。
本发明实施例第一方面提供的微晶玻璃,以钠铝硅体系为基础,通过组分的调整,在晶化过程中可控制ZrO
2超细晶体的析出,保证玻璃具有较高的透过率,且可以进行高效离子交换,使玻璃强度得到二次增强。
第二方面,本发明实施例还提供了一种微晶玻璃的制备方法,包括:
将各组分对应的原料按配比进行混合,经熔化、成型、退火后,得到玻璃原材,再经热处理,使所述玻璃原材晶化,得到所述微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
SiO
2 55-63%;
Al
2O
3 17-22%;
B
2O
3 2-5%;
Na
2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO
2 2-3%;
其中,Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明实施方式中,所述熔化的温度为1550℃-1650℃。
本发明实施方式中,所述退火的温度为500℃-750℃。
本发明实施方式中,所述热处理为一步法或两步法,所述热处理的温度为600℃-1100℃,时间为15min-20h。
本发明实施方式中,所述制备方法还包括在所述热处理后,采用一步离子交换工艺或两步离子交换工艺对所述微晶玻璃进行化学强化。
本发明实施例第二方面提供的微晶玻璃的制备方法,工艺简单。
本发明实施例还提供了一种终端,包括组装在所述终端外侧的外壳,以及位于所述外壳内部的电路板,所述外壳包括组装在前侧的显示屏和组装在后侧的后盖,所述显示屏包括盖 板和设置在所述盖板内侧的显示模组,所述盖板和/或所述后盖采用微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
SiO
2 55-63%;
Al
2O
3 17-22%;
B
2O
3 2-5%;
Na
2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO
2 2-3%;
其中,Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明实施方式中,所述微晶玻璃内部包括玻璃相和ZrO
2纳米晶,所述ZrO
2纳米晶均匀分布在所述微晶玻璃内部。
本发明实施方式中,所述ZrO
2纳米晶的尺寸在3nm-10nm的范围内。
本发明实施方式中,所述微晶玻璃的厚度为0.4mm-1mm。
本发明实施方式中,所述微晶玻璃在可见光波段的透过率大于或等于90%。
本发明实施方式中,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
本发明实施方式中,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的维氏硬度大于680Kgf/mm
2,裂纹引发阈值大于10Kgf。
图1为本发明一实施例提供的终端的结构示意图;
图2为本发明一实施例提供的终端的结构示意图;
图3为本发明实施例1析出ZrO
2晶体的XRD图;
图4为本发明实施例1析出的ZrO
2透射电子显微镜图;
图5为本发明实施例8热处理后微晶玻璃的透过率曲线;
图6为本发明实施例1经两步法离子交换后离子交换层深度的电子探针(EPMA)图;
图7为本发明实施例3中离子交换前的玻璃样品经1Kgf作用下的压痕图;
图8为本发明实施例3中离子交换后的玻璃样品经10Kgf作用下的压痕图
下面将结合本发明实施例中的附图,对本发明实施例进行说明。
如图1和图2所示,本发明实施例提供了一种终端100,该终端100可以是手机、也可以是平板电脑、智能穿戴产品等电子产品,终端100包括组装在终端外侧的外壳,以及位于外壳内部的电路板,外壳包括组装在前侧的显示屏200和组装在后侧的后盖400,显示屏200包括盖板201和设置在盖板201内侧的显示模组202,其中,盖板201和/或后盖400采用微晶玻璃制成。本发明实施例中,盖板201和后盖400可以是全部采用微晶玻璃,也可以只是局部采用微晶玻璃。本发明实施方式中,显示屏200可以是触摸显示屏。本发明一些实施方式中,终端100还可以包括连接在层叠设置的显示屏200和后盖400之间的中框300,显示屏200、中框300和后盖400共同围设形成包围空间,电池、电路板等元器件设置于该包围 空间内。中框300的具体设置方式不限,中框300可以是与后盖400融合在一起,也可以是中框300内置于终端100内部,收容于显示屏200和后盖400围成的空间中。
本发明实施方式中,以摩尔百分比计,微晶玻璃包括如下组分:
SiO
2 55-63%;
Al
2O
3 17-22%;
B
2O
3 2-5%;
Na
2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO
2 2-3%;
其中,Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明实施例的微晶玻璃,通过合理调控各组分及配比,尤其是对钠离子存在环境的调节,可以有效地调控ZrO
2的析晶,使玻璃微晶化,从而使玻璃强度得到增强;同时,通过合理调控各组分及配比,使得该体系微晶玻璃能够进行高效的离子交换,使玻璃的强度能够得到第二次增强。具体地,由于ZrO
2的析晶与钠离子(Na
+)在玻璃中的分布状态有关。ZrO
2在玻璃中主要以[ZrO
6]八面体结构存在,八面体周围带两个单位负电荷,需要Na
+进行电荷补偿达到平衡状态。而玻璃中的Na
+有两种存在方式,其存在方式决定于Al
2O
3、ZnO、MgO等能参与网络形成的氧化物与Na
2O之间的相对含量,这些能参与网络形成的氧化物的四面体周围往往会带有负电荷,需要玻璃中的网络外体离子(Na
+)进行电荷补偿,当玻璃中用于电荷补偿的Na
+有剩余时,ZrO
2不会在玻璃中析出,当玻璃中的Na
+全部用于电荷补偿没有剩余时,就会析出ZrO
2晶体。因此,为保证ZrO
2晶体的析出,需满足Al
2O
3+0.7(ZnO+MgO)>Na
2O。此外,由于本发明实施例的微晶玻璃中Na
2O和Al
2O
3不参与析晶,因此可进行高效的离子交换,并且在ZrO
2析出的过程中,伴随着碱金属离子的转移,ZrO
2析出前在玻璃中以[ZrO
6]八面体存在,带两个单位负电荷,此时需要Na
+离子进行中和以实现电荷平衡,而当ZrO
2析出时,[ZrO
6]周围的Na
+会转移到[AlO
4]
-四面体周围,更有利于离子交换的进行,因此可使交换层深度增加。
本发明实施方式中,所述离子交换,即通常所说的化学钢化。其主要原理是通过将熔盐中半径较大的离子(如K
+)与玻璃中半径较小的离子(如Na
+)进行交换,通过“挤塞效应”在表面形成一层压缩应力,并形成具有一定深度的离子交换层。玻璃的断裂一般是由于裂纹所承受的张应力超过其承受范围引起的。当受到外力作用时,存在于玻璃表面的裂纹不但向四周延伸,还会向玻璃内部扩展。裂纹尖端所受的应力由下式决定:σ
r=2σ
0(a/r)
1/2,其中,a为表面裂纹深度,σ
0为纵向施加的拉应力;当裂纹尖端向前扩展时,扩展方向上距离为r处的应力为σ
r。可以看出,裂纹尖端所受的应力要比σ
0大得多。对于给定的玻璃试样,如果断裂时起决定作用的距离r和应力σ
r是固定的话,则σ
0(a)
1/2也是一常数,说明玻璃断裂时所能承受的拉应力σ
0与裂纹深度a的平方根成反比,换言之,如果能够有效的控制裂纹向玻璃内部延伸的深度(即减小a),那么玻璃所能承受的拉应力σ
0就会相应提高,即玻璃的强度提高。通过离子交换可以使玻璃表面获得一定的压缩应力,当玻璃受到外力作用时,首先需要抵消掉表面的压应力,然后使玻璃处于张力状态,因此其强度得到明显提高;另一方面,由于离子交换还会在玻璃表面形成一定深度的压应力层,这样,即便是外力在玻璃表面形成裂纹,所形成的离子交换层也会有效地阻止裂纹的进一步扩展,因此大大提高了玻璃抵抗外力的能 力,使玻璃强度明显提高。
本发明实施方式中,SiO
2是玻璃形成主要氧化物,其含量的多少对玻璃的性能有直接的影响,含量越多,玻璃网络结构的连通性越好,玻璃密度越高,机械性能越强。但是纯SiO
2玻璃的熔点较高,需要加入其它的网络修饰体和助溶剂等才能制备出具有经济效益的玻璃,综合考虑各方面影响,本发明实施例将SiO
2的摩尔含量控制在55%-63%,具体地,本发明一些实施例中,SiO
2的摩尔含量可以为55%-60%,本发明另一些实施例中,SiO
2的摩尔含量也可以为60.5%-63%,本发明其他一些实施例中,SiO
2的摩尔含量还可以为58%-59%、55%-57%。
本发明实施方式中,Al
2O
3在不同的玻璃环境中扮演着不同的角色,尤其是玻璃中的碱金属离子R(R为Li,Na,K等)对Al
2O
3的存在形式有较大影响。一般情况下,当R
2O/Al
2O
3>1(mol%)时,铝离子(Al
3+)均位于四面体,参与到网络结构当中,随着Al
2O
3含量的增加,玻璃的强度提高,机械性能向好的方向发展;当R
2O/Al
2O
3<1时,多余的Al
2O
3会以八配位的形式存在,充当网络外体。此外,Al
2O
3对玻璃结构的影响在离子交换方面表现得尤为显著,原因主要是[AlO
4]四面体的体积要比[SiO
4]四面体大,能够增大网络空隙,使交换离子更容易移动,因此可以提高离子交换性能。但是随着Al
2O
3含量的继续增大,Al
3+离子会以5配位甚至6配位形式存在,加强网络结构,反而会对离子交换有不利的影响,因此,本发明实施例控制Al
2O
3摩尔含量范围为17%-22%。且为了给ZrO
2提供良好的析晶环境,同时需满足Al
2O
3+0.7(ZnO+MgO)>Na
2O。具体地,本发明一些实施例中,Al
2O
3的摩尔含量可以为17%-20%,本发明另一些实施例中,Al
2O
3的摩尔含量也可以为17%-18%、18%-20%、20%-22%。
本发明实施方式中,B
2O
3具有良好的助熔效果,主要原因是在高温熔融状态,B
2O
3很难形成[BO
4]结构,而只能以[BO
3]结构存在。在低温状态,B
3+有夺取游离氧形成[BO
4]的趋势,使结构趋向紧密。因此,综合来看,B
2O
3的主要作用是能够降低高温粘度而提高低温黏度。一般情况下,当玻璃中的Na
2O/B
2O
3>1(摩尔比)时,B
3+离子以[BO
4]四面体存在,随着B
2O
3含量的增加,玻璃的密度,机械性能提高,当Na
2O/B
2O
3<1(摩尔比)时,多余的B
3+会以[BO
3]三角体存在,这种层状结构会使玻璃的密度,机械性能等降低。但是,当玻璃中有Al
2O
3存在时,由于[AlO
4]比[BO
4]稳定,所以Al
2O
3引入时,先形成[AlO
4],当玻璃中含Na
2O足够多时,才能使B
3+处于[BO
4]结构。本发明实施例考虑到ZrO
2的析晶,相对于Al
2O
3、碱金属氧化物含量偏低,因此B
2O
3含量不宜过高,具体地本发明实施例将摩尔含量控制在2%-5%,进一步地,可将B
2O
3摩尔含量控制在2%-4%或3%-5%。另外,B
2O
3相对于SiO
2和Al
2O
3两者总量的比值需进行合理控制,若B
2O
3含量过高,玻璃稳定性变差,若含量过低,原料难溶,玻璃液粘度较大,玻璃气泡就较多,本发明实施例合适的含量为72%≤SiO
2+Al
2O
3-B
2O
3≤78%,进一步地,可以是73%≤SiO
2+Al
2O
3-B
2O
3≤77%,更进一步地,可以是74%≤SiO
2+Al
2O
3-B
2O
3≤76%。
本发明实施方式中,Na
2O是主要的网络修饰体,可提供多余的氧,起到断网作用,从而降低玻璃的密度及化学稳定性。Na
2O的引入还可以降低高温粘度,起到助熔的作用。另外Na
2O是离子交换的主要载体,其含量的多寡直接影响着离子交换的进程,本发明实施例Na
2O合适的摩尔含量为16%-18%,具体地,Na
2O摩尔含量可以是16%、16.5%、17%、17.5%、18%。另外,为了促进ZrO
2的析晶,Na
2O的含量与Al
2O
3,ZnO,MgO等之间有一定的关系,具体如上所述。并且Na
2O与Al
2O
3的相对含量需要控制在合适的区间,如果Na
2O含量过多,不利于ZrO
2生成;Na
2O含量过少,影响离子交换效果。本发明实施例为了很好地控制微晶化和离子交换效果,将Na
2O和Al
2O
3的相对含量控制在0<Al
2O
3-Na
2O≤6%,进一步地,本 发明一些实施例中,可控制0<Al
2O
3-Na
2O≤4%,进一步地可控制0.1%≤Al
2O
3-Na
2O≤2%。本发明另一些实施例中,也可控制1%≤Al
2O
3-Na
2O≤4%。本发明其他一些实施例中,还可控制2%≤Al
2O
3-Na
2O≤3%。
本发明实施方式中,ZnO在碱硅酸盐玻璃中主要以[ZnO
4]存在,充当网络形成体角色,ZnO有助熔作用。在离子交换中ZnO能够明显的提高离子交换后的表面压应力,但是对应力层深度有不利的影响,并且过多的ZnO有增大玻璃析晶的趋势,并降低ZrO
2在玻璃中的溶解度,综合考虑上述影响,本发明实施例将ZnO的摩尔含量控制在0-2%,进一步地,ZnO的摩尔含量可控制在0-1%。更进一步地,ZnO的摩尔含量可控制在0-0.5%、0.5-1%、0.2-1.5%。另外,还需考虑与Al
2O
3、MgO、Na
2O等之间的相对含量,以利于ZrO
2的析晶,具体如上所述。
本发明实施方式中,MgO在玻璃中也存在着两种配位状态(4配位和6配位),但大多以[MgO
6]八面体存在,使玻璃结构更加致密。在离子交换中MgO也能提高离子交换后的表面压应力,同时降低交换层深度,本发明实施例中,合适的MgO摩尔含量为0-2%。进一步地,MgO的摩尔含量可控制在0-1%,更进一步地,MgO的摩尔含量可控制在0.5-1.0%、0.2-1.5%。
本发明实施方式中,ZrO
2在玻璃中以[ZrO
6]八面体存在,ZrO
2的引入会增大玻璃的粘度,降低玻璃热膨胀系数,并提高玻璃的耐碱性。在微晶玻璃中ZrO
2作为晶核剂,由于电子产品对盖板玻璃透过性要求较高,因此所选用的微晶玻璃必须满足透过率要求。而ZrO
2无色透明,且硬度较高,因此适用于高透明微晶玻璃的制备。考虑到ZrO
2在硅酸盐玻璃中的溶解度有限,过高的含量会使玻璃失透,本发明实施例中,合适的ZrO
2摩尔含量控制在2-3%,进一步地,ZrO
2的摩尔百分比可以为2-2.5%、2-2.2%。
本发明一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 60-63%;Al
2O
3 17-18%;B
2O
3 2-5%;Na
2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO
2 2-2.5%;且Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明另一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 58-59%;Al
2O
3 18-20%;B
2O
3 3-5%;Na
2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO
2 2-2.2%;且Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明另一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 55-57%;Al
2O
3 20-22%;B
2O
3 2-5%;Na
2O 16-18%;ZnO 0-2%;MgO 0-2%;ZrO
2 2-3%;且Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明另一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO
2 55%-60%;Al
2O
3 17%-20%;B
2O
3 3%-5%;Na
2O 16%-18%;ZnO 0-1%;MgO 0-1%;ZrO
2 2%-2.5%;且Al
2O
3+0.7(ZnO+MgO)>Na
2O,0<Al
2O
3-Na
2O≤6%,72%≤SiO
2+Al
2O
3-B
2O
3≤78%。
本发明实施方式中,微晶玻璃包括玻璃相和晶体相,晶体相包括ZrO
2纳米晶,ZrO
2纳米晶均匀分布在微晶玻璃内部。本发明实施方式中,ZrO
2纳米晶的尺寸在3nm-10nm的范围内,进一步地,ZrO
2纳米晶的尺寸在3nm-8nm的范围内,更进一步地,ZrO
2纳米晶的尺寸在3nm-6nm的范围内。由于ZrO
2纳米晶为超细晶体,晶粒尺寸远低于可见光波长,因此可以使得微晶玻璃具有较高的透过率,本发明实施方式中,微晶玻璃在可见光波段的透过率大于或等于90%。此外,该体系微晶玻璃不含任何着色物质,不存在对某一波段的吸收而使玻璃着色。本发明实施方式中,作为盖板201或后盖400使用的微晶玻璃的厚度可以是0.4mm-1mm, 更具体地,可以是0.5mm-1mm、0.6mm-1mm。该微晶玻璃可以成型为2D、2.5D平面状产品,也可以成型为3D曲面状产品。
本发明实施方式中,微晶玻璃为化学强化微晶玻璃,即离子交换后微晶玻璃,微晶玻璃表面具有经高效离子交换后形成的离子交换层,玻璃强度得到第二次增强。离子交换后微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内,远高于一般离子交换玻璃的表面压应力,离子交换层的深度可以在25μm-108μm的范围内,从而使得玻璃具有较高硬度及断裂韧性,另外,离子交换后玻璃的维氏硬度大于680Kgf/mm
2,比离子交换之前提高120-150Kgf/mm
2,并且,离子交换后裂纹引发阈值大于10Kgf,最终使得终端具有优异的抗跌落性能。
另外,为实现更好的熔制效果,本发明实施方式中,还可以在100%摩尔总比的上述各氧化物基础上,外加一定量的澄清剂,澄清剂相对各种氧化物总和的摩尔百分比可为0.1-3%。具体地,所述澄清剂可以是但不限于三氧化二锑、芒硝、二氧化锡等,澄清剂的选用可以是一种或多种的组合。
本发明实施例提供的微晶玻璃不仅适用于电子信息终端产品,还可用于交通运输、建筑等领域,具体可以用于交通工具、家用电器、建筑用保护玻璃,如显示器、仪表盘等的保护玻璃。
相应地,本发明实施例还提供了上述微晶玻璃的制备方法,包括:
将各组分对应的原料按配比进行混合,经熔化、成型、退火后,得到玻璃原材,再经热处理,使玻璃原材晶化,即得到所述微晶玻璃。
本发明实施方式中,所述熔化的温度为1550℃-1650℃。
本发明实施方式中,所述退火的温度为500℃-750℃。
本发明实施方式中,所述热处理的温度可以为600℃-1100℃,时间可以为15min-20h。进一步地,所述热处理的温度可为750℃-900℃,时间可为10h-15h。更进一步地,热处理温度可以为750-850℃。所述热处理可以通过一步法完成,也可以通过两步法完成。一步法热处理的具体过程可以是,将样品加热到析晶温度或更高的温度附近并保温一定时间,使晶体充分生长;两步法热处理的具体过程可以是,先将样品加热到玻璃转变温度(T
g)至约T
g+50℃的温度范围并保温一定时间,使玻璃充分形核,再升温至析晶温度附近并保温一定时间,使晶体长大。
本发明实施方式中,在热处理使玻璃原材晶化之后,采用一步离子交换工艺或两步离子交换工艺对微晶玻璃进行化学强化,本发明实施例的离子交换工艺为低温型离子交换。具体地,一步离子交换工艺可采用纯硝酸钾熔盐,强化温度可为460℃,时间可为4h;两步离子交换工艺中,第一步可采用90.9%KNO
3+9.1%NaNO
3(wt%)盐浴,强化温度可为480℃,时间可为8h;第二步可采用98.3%KNO
3+1%K
2CO
3+0.4%KOH+0.3%KCl(wt%)盐浴,强化温度可为440℃,时间可为2h。
本发明实施例提供的上述微晶玻璃的制备方法,工艺简单,适合工业化生产。
下面分多个实施例对本发明实施例进行进一步的说明,列举的实施例1-8的玻璃组分和性能参数如表1和表2所示:
表1
表2
表1和表2中:AP表示玻璃原材;一步法离子交换工艺为:纯KNO
3熔盐,460℃/4h;两步法离子交换工艺为:第一步:90.9%KNO
3+9.1%NaNO
3(wt%),480℃/8h;第二步:98.3%KNO
3+1%K
2CO
3+0.4%KOH+0.3%KCl(wt%),440℃/2h。其中,离子交换后样品经10Kgf压力作用仍无裂纹出现。
本发明实施例通过合理调控各组分及配比,经热处理晶化使玻璃内部析出了ZrO
2晶体,图3显示为本发明实施例1析出ZrO
2晶体的XRD图。从图3可以看出,实施例1的微晶玻璃组分采用800℃/10h、850℃/10h、900℃/10h三种不同热处理温度均析出了ZrO
2晶体,且随着热处理温度的升高,ZrO
2析晶程度增加,晶粒尺寸增大。从表1和表2的离子交换前性能数据结果可以获知,经热处理晶化后,玻璃的维氏硬度和断裂韧性相比玻璃原材均有一定的提高。另外,图4的透射电子显微镜图显示,晶体的晶面间距d为
进一步证实析出的晶体为ZrO
2晶体,且从图4可以看出,ZrO
2晶体(图中虚线圈出)的尺寸为5nm左右。由于ZrO
2晶粒尺寸远低于可见光波长,使得微晶玻璃具有较高的透过率。具体地,如图5所示为本发明实施例8经热处理后微晶玻璃的透过率曲线,从图5可看出,本发明实施例经热处理晶化后的微晶玻璃,在380nm-780nm的可见光波段的透过率达到90%。
本发明实施例的微晶玻璃,可进行高效离子交换,这是由于,在热处理过程中,Zr-O-Si键逐渐断裂,原来用于中和[ZrO
6]
2-的Na
+离子得到释放进入到玻璃网络结构中,进一步地,由于体系中的Al>Na,起初部分Al
3+以电荷补偿剂的形式存在,当热处理过程中的Na
+离子得到释放后,会促进原来充当电荷补偿剂的Al
3+进入到玻璃网络结构中形成[AlO
4]
-四面体,而被释放的Na
+分布于其周围进行电荷补偿,这样,一方面参与到网络结构中的Al增多,使玻璃网络体积增加,另一方面分布于[AlO
4]
-周围的Na
+含量相对增多,而分布于[AlO
4]
-附近的Na
+具有较好的移动性,这两个方面都会使离子交换层深度增大。从表1和表2的数据可以获知,本发明实施例的微晶玻璃在离子交换后所得到的表面压应力可达1.656GPa,远高于一般离子交换玻璃的表面压应力,离子交换层的深度可达108μm,从而可以有效地提高玻璃的硬度及断裂韧性,提高玻璃抵抗外力的能力,离子交换后玻璃的维氏硬度大于680Kgf/mm
2,比离子交换之前提高120-150Kgf/mm
2。图6显示为本发明实施例1经两步法离子交换后离子交换层深度的电子探针(EPMA)图,从图6可获知,离子交换层深度达到106μm。图7为本发明实施例3中离子交换前的玻璃样品经1Kgf作用下的压痕图,图8为本发明实施例3中离子交换后的玻璃样品经10Kgf作用下的压痕图,从图7可以看出,压痕区域外形成有裂纹扩展,而图8显示,压痕区域外无裂纹扩展,因此可知,离子交换后的玻璃样品断裂韧性进一步提升,裂纹引发阈值大于10Kgf。
Claims (24)
- 如权利要求1所述的微晶玻璃,其特征在于,0<Al 2O 3-Na 2O≤4%。
- 如权利要求1所述的微晶玻璃,其特征在于,0.1%≤Al 2O 3-Na 2O≤2%。
- 如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO 2 60-63%;Al 2O 3 17-18%;B 2O 3 2-5%;Na 2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO 2 2-2.5%。
- 如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO 2 58-59%;Al 2O 3 18-20%;B 2O 3 3-5%;Na 2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO 2 2-2.2%。
- 如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO 2 55-57%;Al 2O 3 20-22%;B 2O 3 2-5%;Na 2O 16-18%;ZnO 0-2%;MgO 0-2%;ZrO 2 2-3%。
- 如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO 2 55%-60%;Al 2O 3 17%-20%;B 2O 3 3%-5%;Na 2O 16%-18%;ZnO 0-1%;MgO 0-1%;ZrO 2 2%-2.5%。
- 如权利要求1所述的微晶玻璃,其特征在于,所述微晶玻璃包括玻璃相和晶体相,所述晶体相包括ZrO 2纳米晶,所述晶体相均匀分布在所述微晶玻璃内部。
- 如权利要求8所述的微晶玻璃,其特征在于,所述ZrO 2纳米晶的尺寸在3nm-10nm的范围内。
- 如权利要求1所述的微晶玻璃,其特征在于,1mm厚度所述微晶玻璃在可见光波段的透过率大于或等于90%。
- 如权利要求1所述的微晶玻璃,其特征在于,所述微晶玻璃可进行离子交换化学强化,经化学强化后,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
- 如权利要求1所述的微晶玻璃,其特征在于,所述微晶玻璃可进行离子交换化学强化,经化学强化后,所述微晶玻璃的维氏硬度大于680Kgf/mm 2,裂纹引发阈值大于10Kgf。
- 如权利要求13所述的制备方法,其特征在于,所述熔化的温度为1550℃-1650℃。
- 如权利要求13所述的制备方法,其特征在于,所述退火的温度为500℃-750℃。
- 如权利要求13所述的制备方法,其特征在于,所述热处理为一步法或两步法,所述热处理的温度为600℃-1100℃,时间为15min-20h。
- 如权利要求13所述的制备方法,其特征在于,所述制备方法还包括在所述热处理后,采用一步离子交换工艺或两步离子交换工艺对所述微晶玻璃进行化学强化。
- 如权利要求18所述的终端,其特征在于,所述微晶玻璃内部包括玻璃相和ZrO 2纳米晶,所述ZrO 2纳米晶均匀分布在所述微晶玻璃内部。
- 如权利要求19所述的终端,其特征在于,所述ZrO 2纳米晶的尺寸在3nm-10nm的范围内。
- 如权利要求18所述的终端,其特征在于,所述微晶玻璃的厚度为0.4mm-1mm。
- 如权利要求21所述的终端,其特征在于,所述微晶玻璃在可见光波段的透过率大于或等于90%。
- 如权利要求18所述的终端,其特征在于,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
- 如权利要求18所述的终端,其特征在于,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的维氏硬度大于680Kgf/mm 2,裂纹引发阈值大于10Kgf。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910228749 | 2019-03-25 | ||
CN201910228749.4 | 2019-03-25 | ||
CN201910581319.0 | 2019-06-29 | ||
CN201910581319.0A CN110217996B (zh) | 2019-03-25 | 2019-06-29 | 微晶玻璃及其制备方法和终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020192486A1 true WO2020192486A1 (zh) | 2020-10-01 |
Family
ID=67815527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/079632 WO2020192486A1 (zh) | 2019-03-25 | 2020-03-17 | 微晶玻璃及其制备方法和终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110217996B (zh) |
WO (1) | WO2020192486A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110217996B (zh) * | 2019-03-25 | 2021-09-14 | 华为技术有限公司 | 微晶玻璃及其制备方法和终端 |
CN111320392B (zh) * | 2020-03-05 | 2022-09-06 | 科立视材料科技有限公司 | 微晶玻璃、强化微晶玻璃及其制备方法 |
CN111763012B (zh) * | 2020-05-27 | 2022-07-08 | 维达力实业(赤壁)有限公司 | 微晶玻璃及其钢化方法和应用 |
CN111620555B (zh) * | 2020-05-27 | 2022-07-29 | 维达力实业(赤壁)有限公司 | 微晶玻璃及其钢化方法和应用 |
CN113880438B (zh) * | 2020-07-01 | 2022-12-27 | 华为技术有限公司 | 微晶玻璃和终端 |
CN112125526B (zh) * | 2020-09-26 | 2022-10-14 | 湖北蓝晶元光电科技发展有限公司 | 一种微晶玻璃盖板及其制备方法 |
CN112679095B (zh) * | 2020-12-25 | 2022-03-11 | 醴陵旗滨电子玻璃有限公司 | 一种微晶玻璃及其制备方法、智能终端和显示器 |
CN114772936A (zh) * | 2021-10-26 | 2022-07-22 | 武汉理工大学 | 一种可化学强化的微晶玻璃及其制备方法与化学强化玻璃 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4000998A (en) * | 1975-03-19 | 1977-01-04 | Corning Glass Works | Spontaneously-formed nepheline-carnegieite glass-ceramics |
CN106660860A (zh) * | 2014-05-13 | 2017-05-10 | 康宁股份有限公司 | 透明玻璃‑陶瓷制品,玻璃‑陶瓷前体玻璃及其形成方法 |
CN107963815A (zh) * | 2017-12-01 | 2018-04-27 | 成都光明光电股份有限公司 | 微晶玻璃及其基板 |
CN108558216A (zh) * | 2018-05-28 | 2018-09-21 | 河北省沙河玻璃技术研究院 | 一种微晶玻璃和化学强化微晶玻璃及其应用 |
CN110217996A (zh) * | 2019-03-25 | 2019-09-10 | 华为技术有限公司 | 微晶玻璃及其制备方法和终端 |
CN110577365A (zh) * | 2019-09-09 | 2019-12-17 | 深圳精匠云创科技有限公司 | 一种纳米晶玻璃陶瓷及其制备方法 |
-
2019
- 2019-06-29 CN CN201910581319.0A patent/CN110217996B/zh active Active
-
2020
- 2020-03-17 WO PCT/CN2020/079632 patent/WO2020192486A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4000998A (en) * | 1975-03-19 | 1977-01-04 | Corning Glass Works | Spontaneously-formed nepheline-carnegieite glass-ceramics |
CN106660860A (zh) * | 2014-05-13 | 2017-05-10 | 康宁股份有限公司 | 透明玻璃‑陶瓷制品,玻璃‑陶瓷前体玻璃及其形成方法 |
CN107963815A (zh) * | 2017-12-01 | 2018-04-27 | 成都光明光电股份有限公司 | 微晶玻璃及其基板 |
CN108558216A (zh) * | 2018-05-28 | 2018-09-21 | 河北省沙河玻璃技术研究院 | 一种微晶玻璃和化学强化微晶玻璃及其应用 |
CN110217996A (zh) * | 2019-03-25 | 2019-09-10 | 华为技术有限公司 | 微晶玻璃及其制备方法和终端 |
CN110577365A (zh) * | 2019-09-09 | 2019-12-17 | 深圳精匠云创科技有限公司 | 一种纳米晶玻璃陶瓷及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110217996B (zh) | 2021-09-14 |
CN110217996A (zh) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020192486A1 (zh) | 微晶玻璃及其制备方法和终端 | |
CN110217994B (zh) | 化学强化用微晶玻璃、化学强化玻璃、其应用及电子设备 | |
WO2022048377A1 (zh) | 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用 | |
CN110316974B (zh) | 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用 | |
CN109608047B (zh) | 一种高结晶度钠霞石透明微晶玻璃及其制备方法 | |
KR20220065854A (ko) | 리튬-지르코늄계 알루미노실리케이트 유리, 강화유리, 이의 제조방법 및 표시장치 | |
US20240217871A1 (en) | Low warping tempered microcrystalline glass, preparation method therefor and application thereof | |
WO2012108417A1 (ja) | 強化ガラス板 | |
WO2021121404A1 (zh) | 一种多晶核复合透明玻璃陶瓷及其制备方法 | |
WO2010111850A1 (zh) | 适于化学钢化的玻璃及化学钢化玻璃 | |
CN111592224A (zh) | 镁铝硅酸盐纳米晶透明陶瓷、其制备方法及产品 | |
WO2020121888A1 (ja) | 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器 | |
CN108975688B (zh) | 一种玻璃及制备方法 | |
CN107935378A (zh) | 一种用于显示器件的高强度玻璃及其制备方法 | |
WO2023082935A1 (zh) | 一种结晶玻璃、强化结晶玻璃及其制备方法 | |
CN111606572A (zh) | 钠铝硅酸盐纳米晶透明陶瓷、其制备方法及产品 | |
WO2023082936A1 (zh) | 一种结晶玻璃、强化结晶玻璃及其制备方法 | |
CN113880438B (zh) | 微晶玻璃和终端 | |
WO2024130985A1 (zh) | 一种具有高耐划伤性的强化微晶玻璃 | |
JP5413817B2 (ja) | 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法 | |
CN112851122A (zh) | 一种手机背板用高断裂韧性微晶玻璃及其制备方法 | |
CN112919812A (zh) | 微晶玻璃、化学强化微晶玻璃、其制备方法及电子设备 | |
CN113831019B (zh) | 一种微晶玻璃及防护件 | |
CN112408803B (zh) | 一种晶种增韧锂铝硅酸微晶玻璃复合材料及其制备方法 | |
WO2022141274A1 (zh) | 玻璃、强化玻璃及其制备方法和电子产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20776879 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20776879 Country of ref document: EP Kind code of ref document: A1 |