CN110217996A - 微晶玻璃及其制备方法和终端 - Google Patents

微晶玻璃及其制备方法和终端 Download PDF

Info

Publication number
CN110217996A
CN110217996A CN201910581319.0A CN201910581319A CN110217996A CN 110217996 A CN110217996 A CN 110217996A CN 201910581319 A CN201910581319 A CN 201910581319A CN 110217996 A CN110217996 A CN 110217996A
Authority
CN
China
Prior art keywords
devitrified glass
glass
zro
devitrified
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910581319.0A
Other languages
English (en)
Other versions
CN110217996B (zh
Inventor
刘超
郭云岚
黄义宏
许文彬
陈石峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN110217996A publication Critical patent/CN110217996A/zh
Priority to PCT/CN2020/079632 priority Critical patent/WO2020192486A1/zh
Application granted granted Critical
Publication of CN110217996B publication Critical patent/CN110217996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明实施例提供一种微晶玻璃,以摩尔百分比计,包括如下组分:SiO255‑63%;Al2O317‑22%;B2O32‑5%;Na2O 16‑18%;ZnO 0‑2%;MgO 0‑2%;ZrO22‑3%,其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3‑Na2O≤6%,72%≤SiO2+Al2O3‑B2O3≤78%。该微晶玻璃可进行高效离子交换获得高硬度和高断裂韧性,且具有较高透过率,可满足大尺寸、超薄触屏显示器对保护玻璃的强度需求。本发明实施例还提供了该微晶玻璃的制备方法和终端。

Description

微晶玻璃及其制备方法和终端
技术领域
本发明实施例涉及玻璃制备技术领域,特别是涉及一种微晶玻璃及其制备方法和终端。
背景技术
随着智能手机、平板电脑等电子产品的普及,触屏显示器的大尺寸化及超薄化的需求日益突出,这也对触屏保护玻璃的机械性能提出了更高的要求。普通玻璃由于质地较脆,并且表面存在微裂纹,其断裂韧性、耐划伤性能均较低,很难满足实际应用。因此,有必要开发一种具有高硬度和高断裂韧性的触屏保护玻璃。
发明内容
鉴于此,本发明实施例提供一种微晶玻璃,该微晶玻璃具有较高硬度和断裂韧性,并可进行高效的化学强化,强化后表面压应力高,交换层深度大,硬度和断裂韧性得到进一步提高,且该微晶玻璃具有较高透过率,可满足大尺寸、超薄触屏显示器对保护玻璃的强度需求。
具体地,本发明实施例第一方面提供一种微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
SiO2 55-63%;
Al2O3 17-22%;
B2O3 2-5%;
Na2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO2 2-3%;
其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明实施方式中,0<Al2O3-Na2O≤4%。进一步地,0.1%≤Al2O3-Na2O≤2%。
本发明一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO2 60-63%;Al2O317-18%;B2O3 2-5%;Na2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO2 2-2.5%。
本发明另一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO2 58-59%;Al2O3 18-20%;B2O3 3-5%;Na2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO2 2-2.2%。
本发明另一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO2 55-57%;Al2O3 20-22%;B2O3 2-5%;Na2O 16-18%;ZnO 0-2%;MgO 0-2%;ZrO2 2-3%。
本发明另一实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO255%-60%;Al2O3 17%-20%;B2O3 3%-5%;Na2O 16%-18%;ZnO 0-1%;MgO 0-1%;ZrO22%-2.5%。
本发明实施方式中,所述微晶玻璃包括玻璃相和晶体相,所述晶体相包括ZrO2纳米晶,所述晶体相均匀分布在所述微晶玻璃内部。本发明实施方式中,所述ZrO2纳米晶的尺寸在3nm-10nm的范围内。由于ZrO2纳米晶为超细晶体,晶粒尺寸远低于可见光波长范围,因此可以使得微晶玻璃具有较高的透过率。
本发明实施方式中,1mm厚度所述微晶玻璃在可见光波段的透过率大于或等于90%。
本发明实施方式中,由于微晶玻璃中的氧化钠和氧化铝不参与析晶,因此所述微晶玻璃可进行高效的离子交换化学强化,且随着ZrO2的析出,离子交换层深度增加。经化学强化后,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
本发明实施方式中,经化学强化后,所述微晶玻璃的维氏硬度大于680Kgf/mm2,裂纹引发阈值大于10Kgf。
本发明实施例的微晶玻璃,相对普通玻璃具有更高强度,其原因主要有两点:一是微晶玻璃的弹性模量要大于普通玻璃;二是微晶玻璃中的晶粒可以造成裂纹尖端的弯曲和钝化,增加了破裂功,可有效抑制裂纹的扩展。玻璃的机械强度σ可以由公式σ=(2Eγ/πC)1/2来确定,可以看出,玻璃强度的增加是依靠弹性模量E或断裂表面能γ的增加或微裂纹的临界长度C的减小来实现的。微晶玻璃能够有效减小裂纹临界长度而使玻璃强度提高。
本发明实施例第一方面提供的微晶玻璃,以钠铝硅体系为基础,通过组分的调整,在晶化过程中可控制ZrO2超细晶体的析出,保证玻璃具有较高的透过率,且可以进行高效离子交换,使玻璃强度得到二次增强。
第二方面,本发明实施例还提供了一种微晶玻璃的制备方法,包括:
将各组分对应的原料按配比进行混合,经熔化、成型、退火后,得到玻璃原材,再经热处理,使所述玻璃原材晶化,得到所述微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
SiO2 55-63%;
Al2O3 17-22%;
B2O3 2-5%;
Na2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO2 2-3%;
其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明实施方式中,所述熔化的温度为1550℃-1650℃。
本发明实施方式中,所述退火的温度为500℃-750℃。
本发明实施方式中,所述热处理为一步法或两步法,所述热处理的温度为600℃-1100℃,时间为15min-20h。
本发明实施方式中,所述制备方法还包括在所述热处理后,采用一步离子交换工艺或两步离子交换工艺对所述微晶玻璃进行化学强化。
本发明实施例第二方面提供的微晶玻璃的制备方法,工艺简单。
本发明实施例还提供了一种终端,包括组装在所述终端外侧的外壳,以及位于所述外壳内部的电路板,所述外壳包括组装在前侧的显示屏和组装在后侧的后盖,所述显示屏包括盖板和设置在所述盖板内侧的显示模组,所述盖板和/或所述后盖采用微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
SiO2 55-63%;
Al2O3 17-22%;
B2O3 2-5%;
Na2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO2 2-3%;
其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明实施方式中,所述微晶玻璃内部包括玻璃相和ZrO2纳米晶,所述ZrO2纳米晶均匀分布在所述微晶玻璃内部。
本发明实施方式中,所述ZrO2纳米晶的尺寸在3nm-10nm的范围内。
本发明实施方式中,所述微晶玻璃的厚度为0.4mm-1mm。
本发明实施方式中,所述微晶玻璃在可见光波段的透过率大于或等于90%。
本发明实施方式中,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
本发明实施方式中,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的维氏硬度大于680Kgf/mm2,裂纹引发阈值大于10Kgf。
附图说明
图1为本发明一实施例提供的终端的结构示意图;
图2为本发明一实施例提供的终端的结构示意图;
图3为本发明实施例1析出ZrO2晶体的XRD图;
图4为本发明实施例1析出的ZrO2透射电子显微镜图;
图5为本发明实施例8热处理后微晶玻璃的透过率曲线;
图6为本发明实施例1经两步法离子交换后离子交换层深度的电子探针(EPMA)图;
图7为本发明实施例3中离子交换前的玻璃样品经1Kgf作用下的压痕图;
图8为本发明实施例3中离子交换后的玻璃样品经10Kgf作用下的压痕图
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行说明。
如图1和图2所示,本发明实施例提供了一种终端100,该终端100可以是手机、也可以是平板电脑、智能穿戴产品等电子产品,终端100包括组装在终端外侧的外壳,以及位于外壳内部的电路板,外壳包括组装在前侧的显示屏200和组装在后侧的后盖400,显示屏200包括盖板201和设置在盖板201内侧的显示模组202,其中,盖板201和/或后盖400采用微晶玻璃制成。本发明实施例中,盖板201和后盖400可以是全部采用微晶玻璃,也可以只是局部采用微晶玻璃。本发明实施方式中,显示屏200可以是触摸显示屏。本发明一些实施方式中,终端100还可以包括连接在层叠设置的显示屏200和后盖400之间的中框300,显示屏200、中框300和后盖400共同围设形成包围空间,电池、电路板等元器件设置于该包围空间内。中框300的具体设置方式不限,中框300可以是与后盖400融合在一起,也可以是中框300内置于终端100内部,收容于显示屏200和后盖400围成的空间中。
本发明实施方式中,以摩尔百分比计,微晶玻璃包括如下组分:
SiO2 55-63%;
Al2O3 17-22%;
B2O3 2-5%;
Na2O 16-18%;
ZnO 0-2%;
MgO 0-2%;
ZrO2 2-3%;
其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明实施例的微晶玻璃,通过合理调控各组分及配比,尤其是对钠离子存在环境的调节,可以有效地调控ZrO2的析晶,使玻璃微晶化,从而使玻璃强度得到增强;同时,通过合理调控各组分及配比,使得该体系微晶玻璃能够进行高效的离子交换,使玻璃的强度能够得到第二次增强。具体地,由于ZrO2的析晶与钠离子(Na+)在玻璃中的分布状态有关。ZrO2在玻璃中主要以[ZrO6]八面体结构存在,八面体周围带两个单位负电荷,需要Na+进行电荷补偿达到平衡状态。而玻璃中的Na+有两种存在方式,其存在方式决定于Al2O3、ZnO、MgO等能参与网络形成的氧化物与Na2O之间的相对含量,这些能参与网络形成的氧化物的四面体周围往往会带有负电荷,需要玻璃中的网络外体离子(Na+)进行电荷补偿,当玻璃中用于电荷补偿的Na+有剩余时,ZrO2不会在玻璃中析出,当玻璃中的Na+全部用于电荷补偿没有剩余时,就会析出ZrO2晶体。因此,为保证ZrO2晶体的析出,需满足Al2O3+0.7(ZnO+MgO)>Na2O。此外,由于本发明实施例的微晶玻璃中Na2O和Al2O3不参与析晶,因此可进行高效的离子交换,并且在ZrO2析出的过程中,伴随着碱金属离子的转移,ZrO2析出前在玻璃中以[ZrO6]八面体存在,带两个单位负电荷,此时需要Na+离子进行中和以实现电荷平衡,而当ZrO2析出时,[ZrO6]周围的Na+会转移到[AlO4]-四面体周围,更有利于离子交换的进行,因此可使交换层深度增加。
本发明实施方式中,所述离子交换,即通常所说的化学钢化。其主要原理是通过将熔盐中半径较大的离子(如K+)与玻璃中半径较小的离子(如Na+)进行交换,通过“挤塞效应”在表面形成一层压缩应力,并形成具有一定深度的离子交换层。玻璃的断裂一般是由于裂纹所承受的张应力超过其承受范围引起的。当受到外力作用时,存在于玻璃表面的裂纹不但向四周延伸,还会向玻璃内部扩展。裂纹尖端所受的应力由下式决定:σr=2σ0(a/r)1/2,其中,a为表面裂纹深度,σ0为纵向施加的拉应力;当裂纹尖端向前扩展时,扩展方向上距离为r处的应力为σr。可以看出,裂纹尖端所受的应力要比σ0大得多。对于给定的玻璃试样,如果断裂时起决定作用的距离r和应力σr是固定的话,则σ0(a)1/2也是一常数,说明玻璃断裂时所能承受的拉应力σ0与裂纹深度a的平方根成反比,换言之,如果能够有效的控制裂纹向玻璃内部延伸的深度(即减小a),那么玻璃所能承受的拉应力σ0就会相应提高,即玻璃的强度提高。通过离子交换可以使玻璃表面获得一定的压缩应力,当玻璃受到外力作用时,首先需要抵消掉表面的压应力,然后使玻璃处于张力状态,因此其强度得到明显提高;另一方面,由于离子交换还会在玻璃表面形成一定深度的压应力层,这样,即便是外力在玻璃表面形成裂纹,所形成的离子交换层也会有效地阻止裂纹的进一步扩展,因此大大提高了玻璃抵抗外力的能力,使玻璃强度明显提高。
本发明实施方式中,SiO2是玻璃形成主要氧化物,其含量的多少对玻璃的性能有直接的影响,含量越多,玻璃网络结构的连通性越好,玻璃密度越高,机械性能越强。但是纯SiO2玻璃的熔点较高,需要加入其它的网络修饰体和助溶剂等才能制备出具有经济效益的玻璃,综合考虑各方面影响,本发明实施例将SiO2的摩尔含量控制在55%-63%,具体地,本发明一些实施例中,SiO2的摩尔含量可以为55%-60%,本发明另一些实施例中,SiO2的摩尔含量也可以为60.5%-63%,本发明其他一些实施例中,SiO2的摩尔含量还可以为58%-59%、55%-57%。
本发明实施方式中,Al2O3在不同的玻璃环境中扮演着不同的角色,尤其是玻璃中的碱金属离子R(R为Li,Na,K等)对Al2O3的存在形式有较大影响。一般情况下,当R2O/Al2O3>1(mol%)时,铝离子(Al3+)均位于四面体,参与到网络结构当中,随着Al2O3含量的增加,玻璃的强度提高,机械性能向好的方向发展;当R2O/Al2O3<1时,多余的Al2O3会以八配位的形式存在,充当网络外体。此外,Al2O3对玻璃结构的影响在离子交换方面表现得尤为显著,原因主要是[AlO4]四面体的体积要比[SiO4]四面体大,能够增大网络空隙,使交换离子更容易移动,因此可以提高离子交换性能。但是随着Al2O3含量的继续增大,Al3+离子会以5配位甚至6配位形式存在,加强网络结构,反而会对离子交换有不利的影响,因此,本发明实施例控制Al2O3摩尔含量范围为17%-22%。且为了给ZrO2提供良好的析晶环境,同时需满足Al2O3+0.7(ZnO+MgO)>Na2O。具体地,本发明一些实施例中,Al2O3的摩尔含量可以为17%-20%,本发明另一些实施例中,Al2O3的摩尔含量也可以为17%-18%、18%-20%、20%-22%。
本发明实施方式中,B2O3具有良好的助熔效果,主要原因是在高温熔融状态,B2O3很难形成[BO4]结构,而只能以[BO3]结构存在。在低温状态,B3+有夺取游离氧形成[BO4]的趋势,使结构趋向紧密。因此,综合来看,B2O3的主要作用是能够降低高温粘度而提高低温黏度。一般情况下,当玻璃中的Na2O/B2O3>1(摩尔比)时,B3+离子以[BO4]四面体存在,随着B2O3含量的增加,玻璃的密度,机械性能提高,当Na2O/B2O3<1(摩尔比)时,多余的B3+会以[BO3]三角体存在,这种层状结构会使玻璃的密度,机械性能等降低。但是,当玻璃中有Al2O3存在时,由于[AlO4]比[BO4]稳定,所以Al2O3引入时,先形成[AlO4],当玻璃中含Na2O足够多时,才能使B3+处于[BO4]结构。本发明实施例考虑到ZrO2的析晶,相对于Al2O3、碱金属氧化物含量偏低,因此B2O3含量不宜过高,具体地本发明实施例将摩尔含量控制在2%-5%,进一步地,可将B2O3摩尔含量控制在2%-4%或3%-5%。另外,B2O3相对于SiO2和Al2O3两者总量的比值需进行合理控制,若B2O3含量过高,玻璃稳定性变差,若含量过低,原料难溶,玻璃液粘度较大,玻璃气泡就较多,本发明实施例合适的含量为72%≤SiO2+Al2O3-B2O3≤78%,进一步地,可以是73%≤SiO2+Al2O3-B2O3≤77%,更进一步地,可以是74%≤SiO2+Al2O3-B2O3≤76%。
本发明实施方式中,Na2O是主要的网络修饰体,可提供多余的氧,起到断网作用,从而降低玻璃的密度及化学稳定性。Na2O的引入还可以降低高温粘度,起到助熔的作用。另外Na2O是离子交换的主要载体,其含量的多寡直接影响着离子交换的进程,本发明实施例Na2O合适的摩尔含量为16%-18%,具体地,Na2O摩尔含量可以是16%、16.5%、17%、17.5%、18%。另外,为了促进ZrO2的析晶,Na2O的含量与Al2O3,ZnO,MgO等之间有一定的关系,具体如上所述。并且Na2O与Al2O3的相对含量需要控制在合适的区间,如果Na2O含量过多,不利于ZrO2生成;Na2O含量过少,影响离子交换效果。本发明实施例为了很好地控制微晶化和离子交换效果,将Na2O和Al2O3的相对含量控制在0<Al2O3-Na2O≤6%,进一步地,本发明一些实施例中,可控制0<Al2O3-Na2O≤4%,进一步地可控制0.1%≤Al2O3-Na2O≤2%。本发明另一些实施例中,也可控制1%≤Al2O3-Na2O≤4%。本发明其他一些实施例中,还可控制2%≤Al2O3-Na2O≤3%。
本发明实施方式中,ZnO在碱硅酸盐玻璃中主要以[ZnO4]存在,充当网络形成体角色,ZnO有助熔作用。在离子交换中ZnO能够明显的提高离子交换后的表面压应力,但是对应力层深度有不利的影响,并且过多的ZnO有增大玻璃析晶的趋势,并降低ZrO2在玻璃中的溶解度,综合考虑上述影响,本发明实施例将ZnO的摩尔含量控制在0-2%,进一步地,ZnO的摩尔含量可控制在0-1%。更进一步地,ZnO的摩尔含量可控制在0-0.5%、0.5-1%、0.2-1.5%。另外,还需考虑与Al2O3、MgO、Na2O等之间的相对含量,以利于ZrO2的析晶,具体如上所述。
本发明实施方式中,MgO在玻璃中也存在着两种配位状态(4配位和6配位),但大多以[MgO6]八面体存在,使玻璃结构更加致密。在离子交换中MgO也能提高离子交换后的表面压应力,同时降低交换层深度,本发明实施例中,合适的MgO摩尔含量为0-2%。进一步地,MgO的摩尔含量可控制在0-1%,更进一步地,MgO的摩尔含量可控制在0.5-1.0%、0.2-1.5%。
本发明实施方式中,ZrO2在玻璃中以[ZrO6]八面体存在,ZrO2的引入会增大玻璃的粘度,降低玻璃热膨胀系数,并提高玻璃的耐碱性。在微晶玻璃中ZrO2作为晶核剂,由于电子产品对盖板玻璃透过性要求较高,因此所选用的微晶玻璃必须满足透过率要求。而ZrO2无色透明,且硬度较高,因此适用于高透明微晶玻璃的制备。考虑到ZrO2在硅酸盐玻璃中的溶解度有限,过高的含量会使玻璃失透,本发明实施例中,合适的ZrO2摩尔含量控制在2-3%,进一步地,ZrO2的摩尔百分比可以为2-2.5%、2-2.2%。
本发明一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO260-63%;Al2O3 17-18%;B2O3 2-5%;Na2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO2 2-2.5%;且Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明另一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO258-59%;Al2O3 18-20%;B2O3 3-5%;Na2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO22-2.2%;且Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明另一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO255-57%;Al2O3 20-22%;B2O3 2-5%;Na2O 16-18%;ZnO 0-2%;MgO 0-2%;ZrO2 2-3%;且Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明另一具体实施方式中,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO255%-60%;Al2O3 17%-20%;B2O3 3%-5%;Na2O 16%-18%;ZnO 0-1%;MgO 0-1%;ZrO22%-2.5%;且Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
本发明实施方式中,微晶玻璃包括玻璃相和晶体相,晶体相包括ZrO2纳米晶,ZrO2纳米晶均匀分布在微晶玻璃内部。本发明实施方式中,ZrO2纳米晶的尺寸在3nm-10nm的范围内,进一步地,ZrO2纳米晶的尺寸在3nm-8nm的范围内,更进一步地,ZrO2纳米晶的尺寸在3nm-6nm的范围内。由于ZrO2纳米晶为超细晶体,晶粒尺寸远低于可见光波长,因此可以使得微晶玻璃具有较高的透过率,本发明实施方式中,微晶玻璃在可见光波段的透过率大于或等于90%。此外,该体系微晶玻璃不含任何着色物质,不存在对某一波段的吸收而使玻璃着色。本发明实施方式中,作为盖板201或后盖400使用的微晶玻璃的厚度可以是0.4mm-1mm,更具体地,可以是0.5mm-1mm、0.6mm-1mm。该微晶玻璃可以成型为2D、2.5D平面状产品,也可以成型为3D曲面状产品。
本发明实施方式中,微晶玻璃为化学强化微晶玻璃,即离子交换后微晶玻璃,微晶玻璃表面具有经高效离子交换后形成的离子交换层,玻璃强度得到第二次增强。离子交换后微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内,远高于一般离子交换玻璃的表面压应力,离子交换层的深度可以在25μm-108μm的范围内,从而使得玻璃具有较高硬度及断裂韧性,另外,离子交换后玻璃的维氏硬度大于680Kgf/mm2,比离子交换之前提高120-150Kgf/mm2,并且,离子交换后裂纹引发阈值大于10Kgf,最终使得终端具有优异的抗跌落性能。
另外,为实现更好的熔制效果,本发明实施方式中,还可以在100%摩尔总比的上述各氧化物基础上,外加一定量的澄清剂,澄清剂相对各种氧化物总和的摩尔百分比可为0.1-3%。具体地,所述澄清剂可以是但不限于三氧化二锑、芒硝、二氧化锡等,澄清剂的选用可以是一种或多种的组合。
本发明实施例提供的微晶玻璃不仅适用于电子信息终端产品,还可用于交通运输、建筑等领域,具体可以用于交通工具、家用电器、建筑用保护玻璃,如显示器、仪表盘等的保护玻璃。
相应地,本发明实施例还提供了上述微晶玻璃的制备方法,包括:
将各组分对应的原料按配比进行混合,经熔化、成型、退火后,得到玻璃原材,再经热处理,使玻璃原材晶化,即得到所述微晶玻璃。
本发明实施方式中,所述熔化的温度为1550℃-1650℃。
本发明实施方式中,所述退火的温度为500℃-750℃。
本发明实施方式中,所述热处理的温度可以为600℃-1100℃,时间可以为15min-20h。进一步地,所述热处理的温度可为750℃-900℃,时间可为10h-15h。更进一步地,热处理温度可以为750-850℃。所述热处理可以通过一步法完成,也可以通过两步法完成。一步法热处理的具体过程可以是,将样品加热到析晶温度或更高的温度附近并保温一定时间,使晶体充分生长;两步法热处理的具体过程可以是,先将样品加热到玻璃转变温度(Tg)至约Tg+50℃的温度范围并保温一定时间,使玻璃充分形核,再升温至析晶温度附近并保温一定时间,使晶体长大。
本发明实施方式中,在热处理使玻璃原材晶化之后,采用一步离子交换工艺或两步离子交换工艺对微晶玻璃进行化学强化,本发明实施例的离子交换工艺为低温型离子交换。具体地,一步离子交换工艺可采用纯硝酸钾熔盐,强化温度可为460℃,时间可为4h;两步离子交换工艺中,第一步可采用90.9%KNO3+9.1%NaNO3(wt%)盐浴,强化温度可为480℃,时间可为8h;第二步可采用98.3%KNO3+1%K2CO3+0.4%KOH+0.3%KCl(wt%)盐浴,强化温度可为440℃,时间可为2h。
本发明实施例提供的上述微晶玻璃的制备方法,工艺简单,适合工业化生产。
下面分多个实施例对本发明实施例进行进一步的说明,列举的实施例1-8的玻璃组分和性能参数如表1和表2所示:
表1
表2
表1和表2中:AP表示玻璃原材;一步法离子交换工艺为:纯KNO3熔盐,460℃/4h;两步法离子交换工艺为:第一步:90.9%KNO3+9.1%NaNO3(wt%),480℃/8h;第二步:98.3%KNO3+1%K2CO3+0.4%KOH+0.3%KCl(wt%),440℃/2h。其中,离子交换后样品经10Kgf压力作用仍无裂纹出现。
本发明实施例通过合理调控各组分及配比,经热处理晶化使玻璃内部析出了ZrO2晶体,图3显示为本发明实施例1析出ZrO2晶体的XRD图。从图3可以看出,实施例1的微晶玻璃组分采用800℃/10h、850℃/10h、900℃/10h三种不同热处理温度均析出了ZrO2晶体,且随着热处理温度的升高,ZrO2析晶程度增加,晶粒尺寸增大。从表1和表2的离子交换前性能数据结果可以获知,经热处理晶化后,玻璃的维氏硬度和断裂韧性相比玻璃原材均有一定的提高。另外,图4的透射电子显微镜图显示,晶体的晶面间距d为进一步证实析出的晶体为ZrO2晶体,且从图4可以看出,ZrO2晶体(图中虚线圈出)的尺寸为5nm左右。由于ZrO2晶粒尺寸远低于可见光波长,使得微晶玻璃具有较高的透过率。具体地,如图5所示为本发明实施例8经热处理后微晶玻璃的透过率曲线,从图5可看出,本发明实施例经热处理晶化后的微晶玻璃,在380nm-780nm的可见光波段的透过率达到90%。
本发明实施例的微晶玻璃,可进行高效离子交换,这是由于,在热处理过程中,Zr-O-Si键逐渐断裂,原来用于中和[ZrO6]2-的Na+离子得到释放进入到玻璃网络结构中,进一步地,由于体系中的Al>Na,起初部分Al3+以电荷补偿剂的形式存在,当热处理过程中的Na+离子得到释放后,会促进原来充当电荷补偿剂的Al3+进入到玻璃网络结构中形成[AlO4]-四面体,而被释放的Na+分布于其周围进行电荷补偿,这样,一方面参与到网络结构中的Al增多,使玻璃网络体积增加,另一方面分布于[AlO4]-周围的Na+含量相对增多,而分布于[AlO4]-附近的Na+具有较好的移动性,这两个方面都会使离子交换层深度增大。从表1和表2的数据可以获知,本发明实施例的微晶玻璃在离子交换后所得到的表面压应力可达1.656GPa,远高于一般离子交换玻璃的表面压应力,离子交换层的深度可达108μm,从而可以有效地提高玻璃的硬度及断裂韧性,提高玻璃抵抗外力的能力,离子交换后玻璃的维氏硬度大于680Kgf/mm2,比离子交换之前提高120-150Kgf/mm2。图6显示为本发明实施例1经两步法离子交换后离子交换层深度的电子探针(EPMA)图,从图6可获知,离子交换层深度达到106μm。图7为本发明实施例3中离子交换前的玻璃样品经1Kgf作用下的压痕图,图8为本发明实施例3中离子交换后的玻璃样品经10Kgf作用下的压痕图,从图7可以看出,压痕区域外形成有裂纹扩展,而图8显示,压痕区域外无裂纹扩展,因此可知,离子交换后的玻璃样品断裂韧性进一步提升,裂纹引发阈值大于10Kgf。

Claims (24)

1.一种微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:
其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
2.如权利要求1所述的微晶玻璃,其特征在于,0<Al2O3-Na2O≤4%。
3.如权利要求1所述的微晶玻璃,其特征在于,0.1%≤Al2O3-Na2O≤2%。
4.如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO2 60-63%;Al2O3 17-18%;B2O3 2-5%;Na2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO2 2-2.5%。
5.如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO2 58-59%;Al2O3 18-20%;B2O3 3-5%;Na2O 16-17%;ZnO 0-0.5%;MgO 0-0.5%;ZrO2 2-2.2%。
6.如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO2 55-57%;Al2O3 20-22%;B2O3 2-5%;Na2O 16-18%;ZnO 0-2%;MgO 0-2%;ZrO2 2-3%。
7.如权利要求1所述的微晶玻璃,其特征在于,以摩尔百分比计,所述微晶玻璃包括如下组分:SiO2 55%-60%;Al2O3 17%-20%;B2O3 3%-5%;Na2O 16%-18%;ZnO 0-1%;MgO0-1%;ZrO2 2%-2.5%。
8.如权利要求1所述的微晶玻璃,其特征在于,所述微晶玻璃包括玻璃相和晶体相,所述晶体相包括ZrO2纳米晶,所述晶体相均匀分布在所述微晶玻璃内部。
9.如权利要求8所述的微晶玻璃,其特征在于,所述ZrO2纳米晶的尺寸在3nm-10nm的范围内。
10.如权利要求1所述的微晶玻璃,其特征在于,1mm厚度所述微晶玻璃在可见光波段的透过率大于或等于90%。
11.如权利要求1所述的微晶玻璃,其特征在于,所述微晶玻璃可进行离子交换化学强化,经化学强化后,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
12.如权利要求1所述的微晶玻璃,其特征在于,所述微晶玻璃可进行离子交换化学强化,经化学强化后,所述微晶玻璃的维氏硬度大于680Kgf/mm2,裂纹引发阈值大于10Kgf。
13.一种微晶玻璃的制备方法,其特征在于,包括:
将各组分对应的原料按配比进行混合,经熔化、成型、退火后,得到玻璃原材,再经热处理,使所述玻璃原材晶化,得到所述微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
14.如权利要求13所述的制备方法,其特征在于,所述熔化的温度为1550℃-1650℃。
15.如权利要求13所述的制备方法,其特征在于,所述退火的温度为500℃-750℃。
16.如权利要求13所述的制备方法,其特征在于,所述热处理为一步法或两步法,所述热处理的温度为600℃-1100℃,时间为15min-20h。
17.如权利要求13所述的制备方法,其特征在于,所述制备方法还包括在所述热处理后,采用一步离子交换工艺或两步离子交换工艺对所述微晶玻璃进行化学强化。
18.一种终端,其特征在于,包括组装在所述终端外侧的外壳,以及位于所述外壳内部的电路板,所述外壳包括组装在前侧的显示屏和组装在后侧的后盖,所述显示屏包括盖板和设置在所述盖板内侧的显示模组,所述盖板和/或所述后盖采用微晶玻璃,以摩尔百分比计,所述微晶玻璃包括如下组分:
其中,Al2O3+0.7(ZnO+MgO)>Na2O,0<Al2O3-Na2O≤6%,72%≤SiO2+Al2O3-B2O3≤78%。
19.如权利要求18所述的终端,其特征在于,所述微晶玻璃内部包括玻璃相和ZrO2纳米晶,所述ZrO2纳米晶均匀分布在所述微晶玻璃内部。
20.如权利要求19所述的终端,其特征在于,所述ZrO2纳米晶的尺寸在3nm-10nm的范围内。
21.如权利要求18所述的终端,其特征在于,所述微晶玻璃的厚度为0.4mm-1mm。
22.如权利要求21所述的终端,其特征在于,所述微晶玻璃在可见光波段的透过率大于或等于90%。
23.如权利要求18所述的终端,其特征在于,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的表面压应力在1.013GPa-1.656GPa的范围内。
24.如权利要求18所述的终端,其特征在于,所述微晶玻璃表面形成有离子交换层,所述微晶玻璃的维氏硬度大于680Kgf/mm2,裂纹引发阈值大于10Kgf。
CN201910581319.0A 2019-03-25 2019-06-29 微晶玻璃及其制备方法和终端 Active CN110217996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079632 WO2020192486A1 (zh) 2019-03-25 2020-03-17 微晶玻璃及其制备方法和终端

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019102287494 2019-03-25
CN201910228749 2019-03-25

Publications (2)

Publication Number Publication Date
CN110217996A true CN110217996A (zh) 2019-09-10
CN110217996B CN110217996B (zh) 2021-09-14

Family

ID=67815527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910581319.0A Active CN110217996B (zh) 2019-03-25 2019-06-29 微晶玻璃及其制备方法和终端

Country Status (2)

Country Link
CN (1) CN110217996B (zh)
WO (1) WO2020192486A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320392A (zh) * 2020-03-05 2020-06-23 科立视材料科技有限公司 微晶玻璃、强化微晶玻璃及其制备方法
CN111620555A (zh) * 2020-05-27 2020-09-04 维达力实业(赤壁)有限公司 微晶玻璃及其钢化方法和应用
WO2020192486A1 (zh) * 2019-03-25 2020-10-01 华为技术有限公司 微晶玻璃及其制备方法和终端
CN111763012A (zh) * 2020-05-27 2020-10-13 维达力实业(赤壁)有限公司 微晶玻璃及其钢化方法和应用
CN112125526A (zh) * 2020-09-26 2020-12-25 湖北蓝晶元光电科技发展有限公司 一种微晶玻璃盖板及其制备方法
CN112679095A (zh) * 2020-12-25 2021-04-20 醴陵旗滨电子玻璃有限公司 一种微晶玻璃及其制备方法、智能终端和显示器
CN113880438A (zh) * 2020-07-01 2022-01-04 华为技术有限公司 微晶玻璃和终端
CN114772936A (zh) * 2021-10-26 2022-07-22 武汉理工大学 一种可化学强化的微晶玻璃及其制备方法与化学强化玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000998A (en) * 1975-03-19 1977-01-04 Corning Glass Works Spontaneously-formed nepheline-carnegieite glass-ceramics
CN106660860A (zh) * 2014-05-13 2017-05-10 康宁股份有限公司 透明玻璃‑陶瓷制品,玻璃‑陶瓷前体玻璃及其形成方法
CN107963815A (zh) * 2017-12-01 2018-04-27 成都光明光电股份有限公司 微晶玻璃及其基板
CN108558216A (zh) * 2018-05-28 2018-09-21 河北省沙河玻璃技术研究院 一种微晶玻璃和化学强化微晶玻璃及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217996B (zh) * 2019-03-25 2021-09-14 华为技术有限公司 微晶玻璃及其制备方法和终端
CN110577365A (zh) * 2019-09-09 2019-12-17 深圳精匠云创科技有限公司 一种纳米晶玻璃陶瓷及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000998A (en) * 1975-03-19 1977-01-04 Corning Glass Works Spontaneously-formed nepheline-carnegieite glass-ceramics
CN106660860A (zh) * 2014-05-13 2017-05-10 康宁股份有限公司 透明玻璃‑陶瓷制品,玻璃‑陶瓷前体玻璃及其形成方法
CN107963815A (zh) * 2017-12-01 2018-04-27 成都光明光电股份有限公司 微晶玻璃及其基板
CN108558216A (zh) * 2018-05-28 2018-09-21 河北省沙河玻璃技术研究院 一种微晶玻璃和化学强化微晶玻璃及其应用

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192486A1 (zh) * 2019-03-25 2020-10-01 华为技术有限公司 微晶玻璃及其制备方法和终端
CN111320392B (zh) * 2020-03-05 2022-09-06 科立视材料科技有限公司 微晶玻璃、强化微晶玻璃及其制备方法
CN111320392A (zh) * 2020-03-05 2020-06-23 科立视材料科技有限公司 微晶玻璃、强化微晶玻璃及其制备方法
CN111763012B (zh) * 2020-05-27 2022-07-08 维达力实业(赤壁)有限公司 微晶玻璃及其钢化方法和应用
CN111620555A (zh) * 2020-05-27 2020-09-04 维达力实业(赤壁)有限公司 微晶玻璃及其钢化方法和应用
CN111763012A (zh) * 2020-05-27 2020-10-13 维达力实业(赤壁)有限公司 微晶玻璃及其钢化方法和应用
CN111620555B (zh) * 2020-05-27 2022-07-29 维达力实业(赤壁)有限公司 微晶玻璃及其钢化方法和应用
CN113880438A (zh) * 2020-07-01 2022-01-04 华为技术有限公司 微晶玻璃和终端
CN112125526A (zh) * 2020-09-26 2020-12-25 湖北蓝晶元光电科技发展有限公司 一种微晶玻璃盖板及其制备方法
CN112125526B (zh) * 2020-09-26 2022-10-14 湖北蓝晶元光电科技发展有限公司 一种微晶玻璃盖板及其制备方法
CN112679095B (zh) * 2020-12-25 2022-03-11 醴陵旗滨电子玻璃有限公司 一种微晶玻璃及其制备方法、智能终端和显示器
CN112679095A (zh) * 2020-12-25 2021-04-20 醴陵旗滨电子玻璃有限公司 一种微晶玻璃及其制备方法、智能终端和显示器
CN114772936A (zh) * 2021-10-26 2022-07-22 武汉理工大学 一种可化学强化的微晶玻璃及其制备方法与化学强化玻璃

Also Published As

Publication number Publication date
CN110217996B (zh) 2021-09-14
WO2020192486A1 (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
CN110217996A (zh) 微晶玻璃及其制备方法和终端
CN110217994B (zh) 化学强化用微晶玻璃、化学强化玻璃、其应用及电子设备
CN108147657B (zh) 一种素玻璃、强化玻璃及制备方法
US20210292225A1 (en) Chemically strengthened glass plate, and cover glass and electronic device comprising chemically strengthened glass
US11479503B2 (en) Chemically strengthened glass and method for manufacturing chemically strengthened glass
TWI820267B (zh) 玻璃、化學強化玻璃及包含其之電子機器
KR102667262B1 (ko) 유리 재료 및 이의 제조 방법과 이의 제조품
CN107840570A (zh) 铝硅酸盐玻璃及其制备方法、电子设备
WO2016104446A1 (ja) ガラス及び化学強化ガラス
CN108975688B (zh) 一种玻璃及制备方法
JP2013249222A (ja) 化学強化結晶化ガラス物品及びその製造方法
JP2014040353A (ja) 化学強化結晶化ガラス物品
CN106517772A (zh) 用于拉板成型制备光纤面板的低折射率玻璃及其制备方法
JPWO2019202885A1 (ja) 曲面形状を有する結晶化ガラス部材の製造方法
CN109020196A (zh) 一种易于离子交换的化学强化玻璃
WO2023082936A1 (zh) 一种结晶玻璃、强化结晶玻璃及其制备方法
CN112851122B (zh) 一种手机背板用高断裂韧性微晶玻璃及其制备方法
CN113880438B (zh) 微晶玻璃和终端
JP5413817B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
CN113831019B (zh) 一种微晶玻璃及防护件
CN109796130A (zh) 高透、提升离子交换深度的中铝玻璃
CN108689598A (zh) 化学钢化后具有低膨胀的铝硅酸盐玻璃
WO2022141274A1 (zh) 玻璃、强化玻璃及其制备方法和电子产品
CN105837030B (zh) 一种玻璃用组合物和玻璃及其制备方法和应用
Li et al. Effect of substituting Li2O with ZnO on the crystallization and properties of Li2O–Al2O3–SiO2 transparent glass ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant