WO2020191837A1 - 梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法 - Google Patents

梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法 Download PDF

Info

Publication number
WO2020191837A1
WO2020191837A1 PCT/CN2019/083188 CN2019083188W WO2020191837A1 WO 2020191837 A1 WO2020191837 A1 WO 2020191837A1 CN 2019083188 W CN2019083188 W CN 2019083188W WO 2020191837 A1 WO2020191837 A1 WO 2020191837A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
gradient
metal oxide
flow rate
spray pyrolysis
Prior art date
Application number
PCT/CN2019/083188
Other languages
English (en)
French (fr)
Inventor
汪福宪
郭鹏然
张芳
梁维新
Original Assignee
广东省测试分析研究所(中国广州分析测试中心)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省测试分析研究所(中国广州分析测试中心) filed Critical 广东省测试分析研究所(中国广州分析测试中心)
Publication of WO2020191837A1 publication Critical patent/WO2020191837A1/zh
Priority to AU2021100535A priority Critical patent/AU2021100535A4/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material

Definitions

  • the invention relates to a spray pyrolysis preparation method of a gradient self-doped multi-element metal oxide semiconductor film.
  • Multi-element metal oxide semiconductor film is one of the widely used functional film materials, and low photoelectric separation efficiency is the most critical factor restricting its development.
  • Gradient self-doping can create a built-in electric field throughout the entire photoelectrode film, which promotes its development. Photoelectric separation and an effective way to improve the photoelectric catalytic performance.
  • Gradient self-doping is a new type of semiconductor modification technology first proposed by Wang et al in 2017, and it has been proven to effectively improve the photoelectric properties of semiconductor thin films.
  • the existing gradient self-doping technology is realized by the thermal diffusion assisted spray pyrolysis method.
  • This preparation method has the following defects: (1) The A/B concentration gradient is formed assisted by thermal diffusion, but is restricted by the thermal diffusion of A and B It can only prepare thin films with a thickness of ⁇ 550nm, and it is difficult to achieve controllable control of the A/B concentration gradient. The bottom and top of the film are prone to phase separation, which will form carrier recombination centers and reduce the efficiency of carrier photoelectric separation; 2) Thermal diffusion assistance inevitably needs to react at high temperatures; the above-mentioned defects severely restrict the development and application of the existing gradient self-doping technology.
  • the purpose of the present invention is to provide a method for preparing gradient self-doped multi-element metal oxide A x B y O z semiconductor thin film by spray pyrolysis, which uses a gradual flow rate controller to accurately control the supply of A and B precursor solutions. Rate, by adjusting the initial feed rate and the gradual rate of the feed rate, the proportion of metal ions is adjusted during the coating process, and the bottom to the top of the film with different thicknesses can be achieved under the premise of inhibiting the precipitation of the unary metal oxide of A or B.
  • the A/B ratio gradient between the metal ions can be adjusted to prepare a gradient self-doped multi-metal oxide AxByOz semiconductor film with a controllable A/B ratio gradient and thickness from the bottom to the top of the film.
  • This technology does not need to rely on high temperature heat Diffusion-assisted formation of a metal ion A/B controllable ratio gradient can effectively avoid the uncontrollable A/B ratio gradient in the high-temperature thermal-assisted spray pyrolysis method, and the problem of A or B mono-metal oxide phase separation is prone to occur.
  • the spray pyrolysis preparation method of gradient self-doped multi-element metal oxide semiconductor thin film through precise control of the initial flow rate of the metal A and B precursor solutions and the gradual rate of the flow rate of the liquid, the adjustment is performed on the surface of the substrate at 100-550 °C
  • the ratio of metal ions in the spray pyrolysis deposition coating process is to prepare a gradient self-doped multi-element metal oxide (A x B y O z , metal A, metal B, oxygen atom O with a chemical dose ratio of x:y:z) Oxide) film, from the bottom of the film to the top of the film, a gradient of the ratio of metal ions A/B is formed.
  • the precise control of the initial feed flow rate and the gradient rate of the feed flow rate of the metal A and B precursor solutions means that the metal salt solutions of metals A and B are prepared as the precursor solutions, and the metals A and B are set by the gradient controller.
  • the initial feed rate (0.1 ⁇ 10L/min) and the gradient rate of the feed flow rate (0.01 ⁇ 10L/min 2 ) of the precursor solution are changed according to the set parameters.
  • the spray pyrolytic deposition coating is carried out at 100-550°C, and a gradient of the ratio of metal ions A/B is formed from the bottom of the film to the top of the film.
  • the initial flow rate of the metal A and B precursor solutions in the spray pyrolysis deposition coating process is 0.1-10 L/min, and the gradual rate of the flow rate is 0.01-10 L/min 2 .
  • the metal salts of the metal A and B precursor solutions include, but are not limited to, the nitrates, acetates, and chlorides of A and B; the solvents include, but are not limited to, acetic acid, methanol, ethanol, acetone, and water.
  • a stabilizer is added to the metal A and B precursor solution, and the stabilizer includes but is not limited to polyethylene glycol and trimethyl orthoformate.
  • the metal A and B ion concentrations C A and C B of the metal A and B precursor solutions are respectively 1-1000 mM.
  • the feed rates of the metal A and B precursor solutions V A and V B need to satisfy 0 ⁇ V A ⁇ 10L/min, 0 ⁇ V B ⁇ 10L/min, and 0.5 ⁇ (x:y) ⁇ C B V B /C A V A ⁇ 2 ⁇ (x:y).
  • the distance between the nozzle of the ultrasonic atomizer and the substrate is 1-100 cm, and the carrier pressure is 0.1-10 bar.
  • the thickness of the prepared oxide film is controllable from 10 nm to 10 ⁇ m.
  • the spray pyrolysis preparation method of gradient self-doped multi-element metal oxide semiconductor film specifically includes the following steps:
  • a controller is provided by the gradient A metal precursor solution mixing vessel inflow velocity V A starting start, the final flow rate V A final, provided by the gradient controller B metal precursor solution B flows into mixing vessel The initial flow rate V B begins, the final flow rate V B ends, and the coating time T.
  • Set the ultrasonic atomization power to 50 ⁇ 500W, the carrier pressure to 0.1 ⁇ 10Bar, and the distance between the ultrasonic atomizer nozzle and the substrate is 1 ⁇ 100cm and the heating temperature of the sample table is 100 ⁇ 550°C;
  • the carrier gas starts to spray.
  • the metal A and B precursor solutions start to enter the mixing container according to the set initial flow rate and the gradual rate of the liquid feed flow rate. After being evenly mixed, the ultrasonic atomization is carried out.
  • the carrier gas and heating are turned off, and samples are collected after cooling to room temperature.
  • the nozzle of the ultrasonic atomization ultrasonic atomizer is equipped with a fairing, and the atomized micro-droplets can be uniformly ejected at a certain speed by using a carrier gas.
  • the carrier gas includes but is not limited to more than one of compressed air, oxygen, nitrogen, and argon.
  • the present invention realizes the A/B ratio gradient change from the bottom to the top of the film through the gradual change of the A and B feed rates, and solves the problem of thermally assisting the formation of the metal A/B ratio gradient in the thermal diffusion assisted spray pyrolysis method, which is restricted by the metal
  • the thermal diffusivity of A and B cannot be adjusted for the metal A/B ratio gradient.
  • films with different thicknesses (10nm ⁇ 10 ⁇ m) they can be created from bottom to top without precipitating impurities. Accurately adjustable metal A/B ratio gradient.
  • the present invention does not require high-temperature heating to complete the thermal diffusion of metals A and B, and only requires an appropriate temperature for the metal salt to form an oxide.
  • the application range is wide.
  • the thermal diffusion assisted spray pyrolysis method is suitable for preparing binary metal oxide thin films, and the method can be used for the preparation of gradient self-doping multi-element metal oxide thin films.
  • the present invention has a wide application range, and for films with different thicknesses (10nm-10 ⁇ m), it can create a metal A/B ratio gradient that can be precisely adjusted from bottom to top while avoiding impurity precipitation. There is no need to rely on high-temperature thermal diffusion to assist the formation of a controllable metal ion ratio gradient, which can effectively avoid the uncontrollable metal ion ratio gradient in the high-temperature heat-assisted spray pyrolysis method, and the problem of uncontrollable metal oxide phase separation of metal A or B.
  • FIG. 1 is a schematic structural diagram of an apparatus for preparing a self-doped multi-element metal oxide semiconductor thin film with a solution-controllable blending gradient according to an embodiment of the invention
  • liquid storage tank A 1. liquid storage tank A; 2. liquid storage tank B; 3. feed liquid flow rate gradient controller A; 4. feed liquid flow rate gradient controller B; 5. flow rate controller A; 6. flow rate controller B; 7. Mixing container; 8. Ultrasonic atomizer; 9. Ultrasonic power controller; 10. Fairing; 11. Spray zone; 12. Gradient self-doping AxByOz film; 13. Substrate; 14. Sample stage; 15. Temperature Controller.
  • Figure 2 is a graph of the sample results of Example 1, in which (a), scanning electron microscope (SEM) pictures; (b), glow discharge emission spectroscopy (GDOS) test results, in which the molar ratio of the ordinate is compared to A Means A/(A+B), for B means B/(A+B), the molar ratio of A and B A/B is the test result of glow discharge emission spectroscopy (GDOS), and Depth is the distance from the top of the film The distance and scatter plots are the results of the test experiment, and the solid line is the linear fitting; (c) X-ray diffraction spectrum (XRD) graph of gradient self-doped AxByOz.
  • SEM scanning electron microscope
  • GDOS glow discharge emission spectroscopy
  • a solution-controllable blending gradient self-doping multi-element metal oxide semiconductor thin film preparation device includes a spray zone, and the spray zone is provided with a heated sample stage, which is used to fix the cleaned substrate.
  • the temperature of the sample stage is controlled by a temperature controller.
  • a mixing container, an ultrasonic atomizer and a fairing are arranged directly above the sample stage.
  • the device also includes a liquid storage tank A, a liquid storage tank B, an ultrasonic power controller, and a liquid supply Rate gradient controller, flow controller, liquid storage tank A and liquid storage tank B are respectively filled with metal A, B precursor solutions, metal A, B precursor solutions enter the mixing vessel under the control of the flow controller
  • the ultrasonic atomizer is atomized into fine droplets and then ejected through the nozzle with the carrier gas through the fairing, and deposited on the fixed substrate of the sample stage in the spray zone; the initial feed rate of the metal A and B precursor solutions and the sputtering process
  • the gradual change rate of the liquid can be set by the corresponding gradual change controller A and B, which can be realized by controlling the flow rate controller; the ultrasonic power controller is used to control the power of the ultrasonic atomizer, and the nozzle of the ultrasonic atomizer is The distance between the substrates is 1-100 cm.
  • the spray pyrolysis preparation method of gradient self-doped multi-element metal oxide semiconductor film specifically includes the following steps:
  • solutes include but are not limited to the nitrates and acetic acid of A and B Salt, chloride; solvents include but are not limited to acetic acid, methanol, ethanol, acetone, water.
  • a controller is provided by the gradient A metal precursor solution mixing vessel inflow velocity V A starting start, the final flow rate V A final, provided by the gradient controller B metal precursor solution B flows into mixing vessel The initial flow rate V B begins, the final flow rate V B ends, and the coating time T.
  • Set the ultrasonic atomization power to 50 ⁇ 500W, the carrier pressure to 0.1 ⁇ 10Bar, and the distance between the atomization nozzle and the substrate to 1 ⁇ 100cm and the heating temperature of the sample stage is 100 ⁇ 550°C;
  • the initial flow rate of the metal A precursor solution is 12ml/min
  • the initial flow rate of the metal B precursor solution is 8ml/min
  • the metal A precursor The body solution is based on the initial feeding rate, and the feeding rate is gradually decreased at a gradual rate of 0.4 mL/min 2
  • B is based on the initial feeding rate, and the feeding rate is gradually increasing at a gradual rate of 0.4 mL/min 2
  • the coating time is 10min.
  • the ultrasonic power is set to 100W, the distance between the atomizer nozzle and the substrate is 20cm, the carrier pressure is 0.6Bar, and the sample stage heating temperature is 300°C.
  • the difference is that: the metal A and B ion concentrations of the metal A and B precursor solutions are 20-1000 mM.
  • the difference is that the power of the ultrasonic atomizer is 100-500W.
  • the difference is that the distance between the nozzle of the ultrasonic atomizer and the substrate is 20-50 cm.
  • the difference is that the carrier pressure is 0.6-10 Bar.
  • the difference is that the heating temperature of the sample stage is 300-550°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Chemically Coating (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

一种梯度自掺杂多元金属氧化物A xB yO z半导体薄膜的喷雾热解制备方法,利用给液流速渐控制器变精确控制A、B前驱体溶液的给液速率,通过调节起始给液速率和给液流速渐变速率,在镀膜过程中调控金属离子的比例,在抑制A或B的一元金属氧化物杂相析出的前提下,实现不同厚度薄膜底部至顶部之间金属离子A/B比例梯度的可控调节,制备从薄膜底部至顶部A/B比例梯度、厚度皆可控的梯度自掺杂多元金属氧化物AxByOz半导体薄膜,该技术不需要依靠高温热扩散辅助形成金属离子A/B可控比例梯度,可以有效避免高温热辅助喷雾热解法中A/B比例梯度不可控、容易出现A或B的一元金属氧化物相分离问题。

Description

梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法 技术领域:
本发明涉及梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法。
背景技术:
多元金属氧化物半导体薄膜是广泛应用的功能薄膜材料之一,而光电分离效率低是制约其发展的最关键因素,通过梯度自掺杂可创建贯穿整个光电极薄膜的内建电场,是促进其光电分离并提升光电催化性能的有效途径。梯度自掺杂是2017年由wang et al在国际上首次提出的新型半导体改性技术,被证实能有效提高半导体薄膜的光电特性。然而现有的梯度自掺杂技术是通过热扩散辅助喷雾热解法实现,该制备方法存在以下缺陷:(1)通过热扩散辅助形成A/B浓度梯度,然而受制于A和B的热扩散系数,仅能制备厚度<550nm的薄膜,很难实现A/B浓度梯度的可控调控,薄膜底部和顶部容易出现相分离,会形成载流子复合中心,降低载流子光电分离效率;(2)热扩散辅助不可避免的需要在高温下反应;上述缺陷严重制约了现有梯度自掺杂技术的发展和应用。
发明内容:
本发明的目的是提供一种梯度自掺杂多元金属氧化物A xB yO z半导体薄膜的喷雾热解制备方法,利用给液流速渐控制器变精确控制A、B前驱体溶液的给液速率,通过调节起始给液速率和给液流速渐变速率,在镀膜过程中调控金属离子的比例,在抑制A或B的一元金属氧化物杂相析出的前提下,实现不同厚度薄膜底部至顶部之间金属离子A/B比例梯度的可控 调节,制备从薄膜底部至顶部A/B比例梯度、厚度皆可控的梯度自掺杂多元金属氧化物AxByOz半导体薄膜,该技术不需要依靠高温热扩散辅助形成金属离子A/B可控比例梯度,可以有效避免高温热辅助喷雾热解法中A/B比例梯度不可控、容易出现A或B的一元金属氧化物相分离问题。
本发明是通过以下技术方案予以实现的:
梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,通过精确控制金属A、B前驱体溶液的起始给液流速和给液流速渐变速率,调控在基片表面100~550℃进行喷雾热解沉积镀膜过程中金属离子的比例,制备梯度自掺杂多元金属氧化物(A xB yO z,金属A,金属B,氧原子O以化学剂量比为x:y:z组成的氧化物)薄膜,从薄膜底部至薄膜顶部形成金属离子A/B比例的梯度变化。
所述通过精确控制金属A、B前驱体溶液的起始给液流速和给液流速渐变速率,是指配制金属A和B的金属盐溶液作为前驱体溶液,通过渐变控制器设置金属A和B的前驱体溶液在喷雾热解沉积镀膜过程的起始给液流速(0.1~10L/min)和给液流速渐变速率(0.01~10L/min 2),镀膜过程中给液流速按照设置参数渐变,在100~550℃进行喷雾热解沉积镀膜,从薄膜底部至薄膜顶部形成金属离子A/B比例的梯度变化。
其中,金属A、B的前驱体溶液在喷雾热解沉积镀膜过程的起始给液流速为0.1~10L/min,给液流速渐变速率为0.01~10L/min 2
金属A、B前驱体溶液的金属盐包括但不限于A和B的硝酸盐、醋酸盐、氯化物;溶剂包括但不限于醋酸、甲醇、乙醇、丙酮、水。
优选地,金属A、B前驱体溶液中加入稳定剂,所述稳定剂包括但不限于聚乙二醇、原甲酸三甲酯。
金属A、B前驱体溶液的金属A、B离子浓度C A、C B分别为1~1000mM。
优选地,当所述多元金属氧化物为A xB yO z,金属A、B前驱体溶液的给液速率V A、V B需满足0<V A≤10L/min,0<V B≤10L/min,且0.5×(x:y)<C BV B/C AV A<2×(x:y)。
喷雾热解沉积镀膜过程中,超声雾化器喷嘴至基片之间的距离为1~100cm,载气压强为0.1~10bar。
所制得的氧化物薄膜厚度为10nm~10μm可控。
梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,具体包括以下步骤:
1)制备金属A、B的前驱体溶液分别置于储液罐A、B中;
2)前驱体溶液参数设置:通过渐变控制器A设置金属A前驱体溶液流入混容器的起始流速V A始,最终流速V A终,通过渐变控制器B设置金属B前驱体溶液流入混容器的起始流速V B始,最终流速V B终,以及镀膜时间T,设置超声雾化功率为50~500W、载气压强为0.1~10Bar、超声雾化器喷嘴至基片之间的距离为1~100cm以及样品台加热温度100~550℃;
3)加热样品台,到达指定温度稳定后通载气开始喷雾,金属A、B前驱体溶液开始按照设置的起始流速和给液流速渐变速率进入混容器,混合均匀后经超声雾化随载气喷出在样品台固定的基片上沉积;喷雾过程中,A和B的给液速率分别按照设置的渐变速率(V A终-V A始)/T、(V B终-V B始)/T变化,精确控制雾化器中混合液A和B的比例,从而实现薄膜底部(t=0)至薄膜顶部(t=T)A/B比例梯度的可控构筑;当时间t达到T时,镀膜终止,关闭载气和加热,冷却至室温后收集样品。
特别地,所述超声雾化的超声雾化器喷嘴外配有整流罩,可以利用载气将雾化后的微液滴以一定的速度均匀喷出。
所述载气包括但不限于压缩空气、氧气、氮气、氩气中一种以上气体。
本发明的有益效果如下:
(1)本发明通过A、B给液速率渐变实现薄膜底部至顶部之间A/B比例梯度变化,解决了热扩散辅助喷雾热解法中热辅助形成金属A/B比例梯度,受制于金属A和B的热扩散系数,无法对金属A/B比例梯度进行调控的问题,对不同厚度(10nm~10μm级)的薄膜,均可在避免杂相析出的前提下创建从底部到顶部之间可精确调控的金属A/B比例梯度。
(2)本发明不需要高温加热完成金属A和B的热扩散,仅需要适当温度使金属盐形成氧化物。
(3)适用范围广,热扩散辅助喷雾热解法适用于制备二元金属氧化物薄膜,本方法可用于梯度自掺杂多元金属氧化物薄膜的制备。
总之,本发明适用范围广,对不同厚度(10nm~10μm级)的薄膜,均可在避免杂相析出的前提下创建从底部到顶部之间可精确调控的金属A/B比例梯度。不需要依靠高温热扩散辅助形成金属离子可控比例梯度,可以有效避免高温热辅助喷雾热解法中金属离子比例梯度不可控、容易出现金属A或B的一元金属氧化物相分离问题。
附图说明:
图1是本发明实施例溶液可控共混梯度自掺杂多元金属氧化物半导体薄膜制备装置的结构示意图;
其中,1、储液罐A;2、储液罐B;3、给液流速渐变控制器A;4、给液流速渐变控制器B;5、流速控制器A;6、流速控制器B;7、混容器;8、超声雾化器;9、超声功率控制器;10、整流罩;11、喷雾区;12、梯度自掺杂AxByOz薄膜;13、基片;14、样品台;15、温度控制器。
图2是实施例1的样品结果图,其中,(a)、扫描电子显微镜(SEM)图片;(b)、辉光放电发射光谱法(GDOS)测试结果,其中,纵坐标摩尔比,对A是指A/(A+B),对B是指B/(A+B),A和B的摩尔比例A/B为辉光放电发射光谱法(GDOS)测试结果,Depth为距离薄膜顶部的距离,散点图为测试实验结果,实线为线性拟合;(c)梯度自掺杂AxByOz的X-射线衍射光谱(XRD)图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
如图1所示溶液可控共混梯度自掺杂多元金属氧化物半导体薄膜制备装置,该装置包括喷雾区,喷雾区设有可加热的样品台,样品台用来固定经清洗后基片,样品台的温度通过温度控制器控制,样品台的正上方设有混容器、超声雾化器和整流罩,所述装置还包括储液罐A、储液罐B、超声功率控制器、给液速率渐变控制器、流速控制器,储液罐A、储液罐B分别装有金属A、B前驱体溶液,金属A、B前驱体溶液在流速控制器的控制下进入混容器混合均匀后在超声雾化器中雾化成细小的雾滴后通过喷嘴随载气经过整流罩喷出,在喷雾区样品台固定的基片上沉积;金属A、B前驱体溶液起始给液速率和溅射过程中的给液渐变速 率均可通过对应的给液速率渐变控制器A和B来联动设置,通过控制流速控制器实现;超声功率控制器用来控制超声雾化器的功率,超声雾化器喷嘴至基片之间的距离为1~100cm。
梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,具体包括以下步骤:
1)制备金属A、B离子浓度分别为C A、C B的金属A、B的前驱体溶液分别置于储液罐A、B中;溶质包括但不限于A和B的硝酸盐、醋酸盐、氯化物;溶剂包括但不限于醋酸、甲醇、乙醇、丙酮、水。
2)前驱体溶液参数设置:通过渐变控制器A设置金属A前驱体溶液流入混容器的起始流速V A始,最终流速V A终,通过渐变控制器B设置金属B前驱体溶液流入混容器的起始流速V B始,最终流速V B终,以及镀膜时间T,设置超声雾化功率为50~500W、载气压强为0.1~10Bar、雾化喷嘴至基片之间的距离为1~100cm以及样品台加热温度100~550℃;
3)开启加热样品台,到达指定温度稳定后通载气开始喷雾,金属A、B前驱体溶液开始按照设置的起始流速vA始、vB始进入混容器,混合均匀,在超声雾化器中雾化成细小的雾滴后通过喷嘴随载气喷出在喷雾区样品台固定的基片上沉积;喷雾过程中,A和B的给液速率分别按照设置的渐变速率(V A终-V A始)/T、(V B终-V B始)/T变化,精确控制雾化器中混合液A和B的比例,从而实现薄膜底部(t=0)至薄膜顶部(t=T)A/B比例梯度的可控构筑;当时间t达到T时,A和B的速率分别渐变为V A终、V B终,镀膜终止,关闭载气和加热台,冷却至室温后收集样品。
实施例1:以化学计量比x:y:z=1:1:4的梯度自掺杂ABO 4为例
参考具体实施方式,金属A前驱体溶液(金属A离子浓度20mM)的起始流速为12ml/min,金属B前驱体溶液(金属B离子浓度20mM)的起始流速为8ml/min,金属A 前驱体溶液以起始给液速率为基准,给液速率以0.4mL/min 2的渐变速率逐渐递减,B以起始给液速率为基准,给液速率以0.4mL/min 2的渐变速率逐渐递增,镀膜时间为10min。设置超声功率为100W,雾化器喷嘴至基片之间的距离为20cm,载气压强为0.6Bar,样品台加热温度为300℃。
实施例2:
参考实施例1,不同之处在于:金属A前驱体溶液以起始给液速率为基准,给液速率以0.1~1mL/min 2的渐变速率逐渐递减(或递增),金属B前驱体溶液以起始给液速率为基准,给液速率无变化。
实施例3:
参考实施例1,不同之处在于:金属A、B前驱体溶液的金属A、B离子浓度为20~1000mM。
实施例4:
参考实施例1,不同之处在于:超声雾化器功率为100~500W。
实施例5:
参考实施例1,不同之处在于:超声雾化器喷嘴至基片之间的距离为20~50cm。
实施例6:
参考实施例1,不同之处在于:载气压强为0.6~10Bar。
实施例7:
参考实施例1,不同之处在于:样品台加热温度为300~550℃。

Claims (10)

  1. 梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,通过精确控制金属A、B前驱体溶液的起始给液流速和给液流速渐变速率,调控在基片表面100~550℃进行喷雾热解沉积镀膜过程中金属离子的比例,制备梯度自掺杂多元金属氧化物薄膜,从薄膜底部至薄膜顶部形成金属离子A/B比例的梯度变化;所制得的氧化物薄膜厚度为10nm~10μm可控;所述多元金属氧化物为A xB yO z,其中,A为金属A,B为金属B,O为氧原子,x、y、z指金属A,金属B,氧原子O的化学剂量。
  2. 根据权利要求1所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,所述通过精确控制金属A、B前驱体溶液的起始给液流速和给液流速渐变速率,是指配制金属A、B的金属盐溶液作为前驱体溶液,通过渐变控制器设置金属A和B的前驱体溶液在喷雾热解沉积镀膜过程的起始给液流速和给液流速渐变速率,镀膜过程中给液流速按照设置参数渐变,在100~550℃进行喷雾热解沉积镀膜,从薄膜底部至薄膜顶部形成金属离子A/B比例的梯度变化。
  3. 根据权利要求2所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,金属A、B的前驱体溶液在喷雾热解沉积镀膜过程的起始给液流速为0.1~10L/min,给液流速渐变速率为0.01~10L/min 2
  4. 根据权利要求2所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,金属A、B前驱体溶液的金属盐包括A、B的硝酸盐、醋酸盐、氯化物中的任一种;溶剂包括醋酸、甲醇、乙醇、丙酮、水中的任一种。
  5. 根据权利要求1或2所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法, 其特征在于,金属A、B前驱体溶液中加入稳定剂,所述稳定剂包括聚乙二醇、原甲酸三甲酯。
  6. 根据权利要求1或2所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,金属A、B前驱体溶液的金属A、B离子的浓度分别为1~1000mM。
  7. 根据权利要求1或2所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,当金属A、B前驱体溶液的给液速率V A、V B需满足0<V A≤10L/min,0<V B≤10L/min,且0.5×(x:y)<C BV B/C AV A<2×(x:y),C A、C B分别为金属A、B离子在前驱体溶液的浓度。
  8. 根据权利要求1或2所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,喷雾热解沉积镀膜过程中,超声雾化器喷嘴至基片之间的距离为1~100cm。
  9. 根据权利要求1或2所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,具体包括以下步骤:
    1)制备金属A、B离子浓度分别为C A、C B的金属A、B的前驱体溶液分别置于储液罐A、B中;
    2)前驱体溶液参数设置:通过渐变控制器A设置金属A前驱体溶液流入混容器的起始流速V A始,最终流速V A终,通过渐变控制器B设置金属B前驱体溶液流入混容器的起始流速V B始,最终流速V B终,以及镀膜时间T,设置超声雾化功率为50~500W、载气压强为0.1~10Bar、超声雾化器喷嘴至基片之间的距离为1~100cm以及样品台加热温度100~550℃;
    3)加热样品台,到达指定温度稳定后通载气开始喷雾,金属A、B前驱体溶液开始按照设置的起始流速和给液流速渐变速率进入混容器,混合均匀后经超声雾化随载气喷出在样品 台固定的基片上沉积;喷雾过程中,A和B的给液速率分别按照设置的渐变速率(V A终-V A始)/T、(V B终-V B始)/T变化,精确控制雾化器中混合液A和B的比例,从而实现薄膜底部(t=0)至薄膜顶部(t=T)A/B比例梯度的可控构筑;当时间t达到T时,镀膜终止,关闭载气和加热,冷却至室温后收集样品。
  10. 根据权利要求9所述梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法,其特征在于,所述超声雾化的超声雾化器喷嘴外配有整流罩,所述载气包括压缩空气、氧气、氮气、氩气中一种以上气体,载气压强为0.1~10bar。
PCT/CN2019/083188 2019-03-28 2019-04-18 梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法 WO2020191837A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021100535A AU2021100535A4 (en) 2019-03-28 2021-01-28 Spray pyrolysis preparation method of gradient self-doping multi metal oxide semiconductor thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910245436.X 2019-03-28
CN201910245436.XA CN109930135A (zh) 2019-03-28 2019-03-28 梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021100535A Division AU2021100535A4 (en) 2019-03-28 2021-01-28 Spray pyrolysis preparation method of gradient self-doping multi metal oxide semiconductor thin film

Publications (1)

Publication Number Publication Date
WO2020191837A1 true WO2020191837A1 (zh) 2020-10-01

Family

ID=66988610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083188 WO2020191837A1 (zh) 2019-03-28 2019-04-18 梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法

Country Status (2)

Country Link
CN (1) CN109930135A (zh)
WO (1) WO2020191837A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316637A (zh) * 2021-12-28 2022-04-12 南开大学 一种梯度复合膜的可控制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060924A1 (en) * 2010-09-09 2012-03-15 Alion, Inc. Methods and systems for forming functionally graded films by spray pyrolysis
CN103037976A (zh) * 2010-06-30 2013-04-10 联邦科学与工业研究组织 液滴产生系统和方法
US20130236646A1 (en) * 2005-04-14 2013-09-12 Malle Krunks Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis
CN104911706A (zh) * 2015-06-15 2015-09-16 上海应用技术学院 一种超快闪烁ZnO薄膜的制备方法
CN107710422A (zh) * 2014-12-15 2018-02-16 中国建材国际工程集团有限公司 通过喷雾热解形成梯度薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130236646A1 (en) * 2005-04-14 2013-09-12 Malle Krunks Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis
CN103037976A (zh) * 2010-06-30 2013-04-10 联邦科学与工业研究组织 液滴产生系统和方法
US20120060924A1 (en) * 2010-09-09 2012-03-15 Alion, Inc. Methods and systems for forming functionally graded films by spray pyrolysis
CN107710422A (zh) * 2014-12-15 2018-02-16 中国建材国际工程集团有限公司 通过喷雾热解形成梯度薄膜的方法
CN104911706A (zh) * 2015-06-15 2015-09-16 上海应用技术学院 一种超快闪烁ZnO薄膜的制备方法

Also Published As

Publication number Publication date
CN109930135A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
JP4699092B2 (ja) 酸化亜鉛膜の成膜方法
CN101203948B (zh) 通过化学喷雾热解在基材上制备氧化锌纳米棒的方法
US5316579A (en) Apparatus for forming a thin film with a mist forming means
AU2006290162B2 (en) Film forming apparatus and method of film formation
CN1120249C (zh) 用化学汽相沉积制作薄膜的方法和装置
JP4234930B2 (ja) 成膜装置及び成膜方法
JP2007182605A (ja) 薄膜形成方法及び薄膜
US20100055340A1 (en) Method for Coating Core Ceramic Particles by Emulsion Flame Spray Pyrolysis
JP2002522902A (ja) ミスト状前駆体堆積装置、ならびに改良されたミストおよびミスト流を用いた方法
WO2020191837A1 (zh) 梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法
JPWO2009031423A1 (ja) 金属酸化物半導体薄膜の製造方法、これを用いた薄膜トランジスタ
Taziwa et al. Fabrication of TiO2 nanoparticles and thin films by ultrasonic spray pyrolysis: design and optimization
Nonaka et al. Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method
CN1776013A (zh) 一种五氧化二钒薄膜的制备方法-超声喷雾法
Salaün et al. The incorporation of preformed metal nanoparticles in zinc oxide thin films using aerosol assisted chemical vapour deposition
JP2017022118A (ja) 積層体およびそれの製造方法
JP2003147529A (ja) 金属酸化物薄膜の製造方法及び製造装置
JPS6018090B2 (ja) 導電薄膜の形成方法
Bocquet et al. A new TiO2 film deposition process in a supercritical fluid
CN108970601B (zh) 一种具有氧化锌/二氧化钛异质结构的光催化涂层及其制备方法和应用
AU2021100535A4 (en) Spray pyrolysis preparation method of gradient self-doping multi metal oxide semiconductor thin film
ES2854982T3 (es) Dispositivo y método para realizar una deposición química en fase vapor asistida por plasma a presión atmosférica a baja temperatura
US20110041556A1 (en) Glass surface modification process
RU2730725C1 (ru) Способ получения пленок феррита висмута и установка для электростатического распыления
Huang et al. Preparation and characterization of rutile TiO2 thin films by mist plasma evaporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920854

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 22.02.22.