WO2020189568A1 - Adhesive sheet and semiconductor device production method - Google Patents

Adhesive sheet and semiconductor device production method Download PDF

Info

Publication number
WO2020189568A1
WO2020189568A1 PCT/JP2020/011177 JP2020011177W WO2020189568A1 WO 2020189568 A1 WO2020189568 A1 WO 2020189568A1 JP 2020011177 W JP2020011177 W JP 2020011177W WO 2020189568 A1 WO2020189568 A1 WO 2020189568A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive layer
adhesive sheet
layer
Prior art date
Application number
PCT/JP2020/011177
Other languages
French (fr)
Japanese (ja)
Inventor
康彦 垣内
高志 阿久津
慎弥 高岡
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020217026249A priority Critical patent/KR20210141929A/en
Priority to JP2021507314A priority patent/JPWO2020189568A1/ja
Priority to CN202080020753.2A priority patent/CN113613893B/en
Publication of WO2020189568A1 publication Critical patent/WO2020189568A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation

Definitions

  • the present invention relates to an adhesive sheet and a method for manufacturing a semiconductor device using the adhesive sheet.
  • Adhesive sheets are not only used for semi-permanently fixing members, but also for processing and inspection of building materials, interior materials, electronic parts, etc. (hereinafter, “adhesion”). It may be used as a temporary fixing sheet for temporarily fixing (also called “body”). For example, in the manufacturing process of a semiconductor device, a temporary fixing sheet is used when processing a semiconductor wafer.
  • a semiconductor wafer is processed into a semiconductor chip through a grinding process of reducing the thickness by grinding, an individualizing process of cutting and separating and individualizing.
  • the semiconductor wafer is subjected to a predetermined process in a state of being temporarily fixed to the temporary fixing sheet.
  • the semiconductor chips obtained by performing the predetermined processing are separated from the temporary fixing sheet, and then, if necessary, an expanding step of widening the distance between the semiconductor chips and a re-arrangement of a plurality of semiconductor chips having the widened distances.
  • an inversion process for inverting the front and back of the semiconductor chip, and the like are appropriately performed, the semiconductor chip is mounted on the substrate.
  • a temporary fixing sheet suitable for each application can be used.
  • Patent Document 1 discloses a heat-release type pressure-sensitive adhesive sheet for temporary fixing at the time of cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a base material. .. According to the document, the heat-removable adhesive sheet can secure a contact area of a predetermined size with respect to the adherend when cutting an electronic component, and thus exhibits adhesiveness capable of preventing adhesive defects such as chip skipping. On the other hand, there is a description that it can be easily peeled off by reducing the contact area with the adherend by expanding the heat-expandable microspheres by heating after use.
  • the pressure-sensitive adhesive layer contains the heat-expandable particles as in the pressure-sensitive adhesive sheet disclosed in Patent Document 1
  • the residue derived from the heat-expandable particles adheres to the surface of the adherend and heat.
  • the surface of the adherend after being peeled off by heating due to the adhesion of some of the pressure-sensitive adhesive layers to the surface of the adherend due to the deformation and alteration of the pressure-sensitive adhesive layer due to the expansion of the expansive particles (so-called "glue residue"). Is concerned that it will be contaminated.
  • the present invention has been made in view of the above problems, and the temporarily fixed adherend can be easily peeled off by heating, and the contamination of the adherend surface after peeling can be suppressed. It is an object of the present invention to provide an adhesive sheet capable of being formed and a method for manufacturing a semiconductor device using the adhesive sheet.
  • the present inventors arranged the structure of the pressure-sensitive adhesive sheet in this order: (1) a pressure-sensitive adhesive layer, a heat-expandable base material layer containing heat-expandable particles, and a non-heat-expandable base material layer. Having a laminated structure, (2) adjusting the Young ratio of the pressure-sensitive adhesive layer to a specific range, and (3) the Young ratio of the pressure-sensitive adhesive layer and the Young ratio of the non-thermally expandable base material layer.
  • the present invention relates to the following [1] to [15].
  • [1] A laminated structure in which a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable base material layer (Y2) are arranged in this order.
  • Have and The Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is 5.0 MPa or less.
  • a pressure-sensitive adhesive sheet in which the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. is higher than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C.
  • Adhesive sheet described in Crab [5] The pressure-sensitive adhesive sheet according to the above [4], wherein the isocyanate-based cross-linking agent contains an isocyanurate-type modified product having an isocyanurate ring. [6] The pressure-sensitive adhesive sheet according to any one of [1] to [5] above, wherein the non-thermally expandable base material layer (Y2) has a Young's modulus of 700 MPa or more at 23 ° C. [7] The pressure-sensitive adhesive sheet according to any one of [1] to [6] above, wherein the non-thermally expandable base material layer (Y2) is a polyethylene terephthalate film.
  • the non-thermally expandable base material layer (Y2) further has an adhesive layer (X2) on a surface opposite to the laminated surface of the heat expandable base material layer (Y1). ] To [7]. [9] The pressure-sensitive adhesive sheet according to any one of [1] to [7] above, wherein the thermally expandable particles have an expansion start temperature (t) of 50 ° C. or higher and lower than 125 ° C. [10] The pressure-sensitive adhesive sheet according to the above [8], wherein the thermally expandable particles have an expansion start temperature (t) of 50 ° C. or higher and lower than 125 ° C.
  • the object to be processed and inspected is attached to the adhesive sheet according to any one of [1] to [11] above.
  • a method for manufacturing a semiconductor device including.
  • Step 1A A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet
  • Step 2A For the object to be processed
  • Step 3A A process of performing one or more treatments selected from a grinding process and an individualization process
  • Step 3A A thermocurable surface of the processed object to be processed, which is opposite to the pressure-sensitive adhesive layer (X2).
  • First separation step The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the support.
  • Second separation step Step of separating the pressure-sensitive adhesive layer (X2) from the object to be processed [14] Using the pressure-sensitive adhesive sheet according to the above [10] or [11], the following steps 1B to 3B, the following A method for manufacturing a semiconductor device including a first separation step and the following second separation step.
  • Step 1B A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet
  • Step 2B For the object to be processed
  • Step 3B A process of performing one or more treatments selected from a grinding treatment and an individualizing treatment. The surface of the processed object to which the treatment has been subjected to the treatment is heat-curable on the surface opposite to the adhesive layer (X1).
  • First separation step The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C., and the pressure-sensitive adhesive layer (X1) and the object to be processed are separated from each other.
  • Second separation step Step of separating the pressure-sensitive adhesive layer (X2) and the support [15] Using the pressure-sensitive adhesive sheet according to the above [11], The method for manufacturing a semiconductor device according to the above [13] or [14], wherein the second separation step includes a step of curing the pressure-sensitive adhesive layer (X2) by irradiating the pressure-sensitive adhesive layer (X2) with energy rays. ..
  • the adhesive sheet of the present invention can easily peel off the temporarily fixed adherend by heating, and can suppress contamination of the surface of the adherend after peeling.
  • the "active ingredient” refers to an ingredient contained in the target composition excluding the diluting solvent.
  • Mw mass average molecular weight
  • GPC gel permeation chromatography
  • (meth) acrylic acid means both “acrylic acid” and “methacrylic acid”, and other similar terms are also used.
  • the lower limit value and the upper limit value described stepwise with respect to a preferable numerical range can be independently combined. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the “favorable lower limit value (10)” and the “more preferable upper limit value (60)” are combined to obtain “10 to 60". You can also do it.
  • the "energy beam” means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include ultraviolet rays, radiation, and electron beams.
  • Ultraviolet rays can be irradiated by using, for example, an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, a UV-LED, or the like as an ultraviolet source.
  • the electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
  • the term "energy ray polymerizable” means the property of polymerizing by irradiating with energy rays.
  • whether the "layer” is a "non-thermally expanding layer” or a “thermally expanding layer” is determined as follows.
  • the layer to be judged contains the heat-expandable particles
  • the layer is heat-treated at the expansion start temperature (t) of the heat-expandable particles for 3 minutes. If the volume change rate calculated from the following formula is less than 5%, the layer is judged to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer”. Judge that there is.
  • volume change rate (%) ⁇ (volume of the layer after heat treatment-volume of the layer before heat treatment) / volume of the layer before heat treatment ⁇ ⁇ 100
  • the layer containing no thermally expandable particles is referred to as a "non-thermally expandable layer”.
  • the "front surface” of the semiconductor wafer and the semiconductor chip refers to the surface on which the circuit is formed (hereinafter, also referred to as the “circuit surface”), and the "back surface” of the semiconductor wafer and the semiconductor chip is the circuit formed. Refers to the surface that is not.
  • a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable base material layer (Y2) are arranged in this order.
  • the pressure-sensitive adhesive layer (X1) has a young ratio of 5.0 MPa or less at 23 ° C.
  • the non-thermally expandable base material layer (Y2) has a young ratio at 23 ° C. It is an adhesive sheet having a higher Young's ratio of the agent layer (X1) at 23 ° C.
  • the heat-expandable particles contained in the heat-expandable base material layer (Y1) are heated to a temperature equal to or higher than the expansion start temperature (t) to expand, and the pressure-sensitive adhesive layer (X1) is adhered.
  • the contact area between the adherend attached to the adhesive surface of the adhesive layer (X1) and the adhesive surface is greatly reduced.
  • the adherend can be easily peeled off from the adhesive sheet.
  • the heat-expandable particles are contained in the heat-expandable base material layer (Y1), contamination of the adherend surface due to the heat-expandable particles is suppressed.
  • the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is adjusted to 5.0 MPa or less. Therefore, the pressure-sensitive adhesive layer (X1) firmly follows the unevenness of the surface of the heat-expandable base material layer (Y1) on the pressure-sensitive adhesive layer (X1) side caused by the expansion of the heat-expandable particles, and the pressure-sensitive adhesive layer (X1) Unevenness is well formed on the adhesive surface of X1).
  • the pressure-sensitive adhesive layer (X1) cannot sufficiently follow the unevenness of the surface, and the surface unevenness on the pressure-sensitive adhesive layer (X1) side of the heat-expandable base material layer (Y1) is formed by the pressure-sensitive adhesive layer (X1). By at least one of being suppressed, unevenness is less likely to be formed on the adhesive surface of the adhesive layer (X1). Further, since the coefficient of thermal expansion of the non-thermally expandable base material layer (Y2) at 23 ° C.
  • the pressure-sensitive adhesive sheet of the present invention is heated to a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles contained in the heat-expandable base material layer (Y1) so that the pressure-sensitive adhesive sheet and the adherend can be brought together. Adhesion can be significantly reduced. Therefore, when the pressure-sensitive adhesive sheet according to one aspect of the present invention is peeled off by heating, the pressure-sensitive adhesive sheet can be peeled off from the adherend without applying a force for peeling off the pressure-sensitive adhesive sheet. Specifically, in a laminated body in which an adhesive sheet is attached to an adherend, when the adhesive sheet is peeled off by heating, the adhesive sheet side is directed downward and the adhesive sheet is dropped from the adherend by gravity to peel off.
  • self-peeling property the state in which the adhesive sheet is peeled off from the adherend or peeled off without applying the force for peeling off the adhesive sheet. Moreover, such a property is called “self-peeling property”.
  • the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. enhances the followability of the pressure-sensitive adhesive layer (X1) to the deformation of the heat-expandable base material layer (Y1) and thermally expands. From the viewpoint of facilitating the formation of irregularities on the adhesive surface of the pressure-sensitive adhesive layer (X1) when the sex particles are expanded, it is preferably 4.5 MPa or less, more preferably 4.0 MPa or less, still more preferably 3.5 MPa or less.
  • the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is measured by the method described in Examples described later.
  • a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable base material layer (Y2) are arranged in this order.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention may have a laminated structure, but the pressure-sensitive adhesive sheet (X1), the heat-expandable base material layer (Y1), and the non-heat-expandable base material layer (Y2) It may have only, or it may have other layers, if desired.
  • a non-expandable base material layer is used from the viewpoint of improving the processability and inspectability of the adherend.
  • the pressure-sensitive adhesive layer (X2) is further provided on the surface of (Y2) opposite to the laminated surface of the heat-expandable base material layer (Y1).
  • the "double-sided pressure-sensitive adhesive sheet” refers to a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable group. It is assumed that the material layer (Y2) and the pressure-sensitive adhesive layer (X2) mean a pressure-sensitive adhesive sheet having a laminated structure arranged in this order.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention may have a release material on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1). Further, when the pressure-sensitive adhesive sheet according to one aspect of the present invention has the structure of a double-sided pressure-sensitive adhesive sheet, it has a release material on the pressure-sensitive adhesive surface of at least one of the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2). May be good.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention includes a pressure-sensitive adhesive layer (X1) as shown in FIG.
  • An adhesive sheet 1a having a laminated structure in which the base material layer (Y2) is arranged in this order can be mentioned.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention may have a structure in which the release material 10 is further provided on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1), as in the pressure-sensitive adhesive sheet 1b shown in FIG. 1 (b).
  • the pressure-sensitive adhesive sheet of the present invention those having the structure of the double-sided pressure-sensitive adhesive sheet can be mentioned.
  • the pressure-sensitive adhesive sheet having such a structure include a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and non-heat as shown in FIG.
  • Examples thereof include a pressure-sensitive adhesive sheet 2a having a laminated structure in which an expandable base material layer (Y2) and a pressure-sensitive adhesive layer (X2) are arranged in this order.
  • the release material 10a is further provided on the adhesive surface of the adhesive layer (X1), and the release material is further provided on the adhesive surface of the adhesive layer (X2). It may be configured to have 10b.
  • both release materials are pulled outward and attempted to be peeled off, a phenomenon may occur in which the pressure-sensitive adhesive layer is divided and peeled off along with the two release materials. From the viewpoint of suppressing such a phenomenon, it is preferable to use two types of release materials designed so that the release forces from the pressure-sensitive adhesive layers attached to the two release materials 10a and 10b are different from each other.
  • the double-sided pressure-sensitive adhesive sheet 2a shown in FIG. 2A is peeled off on both sides of the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2).
  • a double-sided adhesive sheet having a structure in which the treated release material is laminated in a roll shape may be used.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention is between the pressure-sensitive adhesive layer (X1) and the heat-expandable base material layer (Y1), and between the heat-expandable base material layer (Y1) and the non-heat-expandable base material layer (Y2). It may or may not have another layer between at least one of the layers between and.
  • a heat-expandable base material layer is provided between the pressure-sensitive adhesive layer (X1) and the heat-expandable base material layer (Y1).
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention has the viewpoint of transmitting the deformation of the heat-expandable base material layer (Y1) due to the expansion of the heat-expandable particles to the pressure-sensitive adhesive layer (X1) satisfactorily.
  • the heat-expandable base material layer (Y1) are preferably directly laminated.
  • the pressure-sensitive adhesive sheet of the present invention after explaining the heat-expandable particles required for forming irregularities on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1) by heating, the pressure-sensitive adhesive layer (X1) and the heat-expanding
  • the sex substrate layer (Y1), the non-thermally expandable substrate layer (Y2), and the pressure-sensitive adhesive layer (X2) will be described.
  • the thermally expandable particles used in the pressure-sensitive adhesive sheet of the present invention may be particles that expand by heating, and the expansion start temperature (t) is appropriately selected according to the use of the pressure-sensitive adhesive sheet.
  • thermosetting film-like adhesive called a die attach film (hereinafter, also referred to as "DAF").
  • DAF die attach film
  • the process is adopted.
  • the DAF is attached to one surface of the semiconductor wafer or a plurality of fragmented semiconductor chips, and is divided into the same shape as the semiconductor chip at the same time as the semiconductor wafer is fragmented or after being attached to the semiconductor chip.
  • the semiconductor chip with DAF obtained by individualizing is attached (diatached) to the substrate from the DAF side, and then the semiconductor chip and the substrate are fixed by thermosetting the DAF.
  • the DAF needs to retain the property of adhering by pressure sensitivity or heating until it is attached to the substrate.
  • the DAF is cured before the die attachment due to the heating when the thermally expandable particles are expanded, and the DAF with respect to the substrate is cured.
  • Adhesive strength may decrease. It is desirable to suppress the decrease in the adhesive strength of the DAF because it causes a decrease in the bonding reliability between the semiconductor chip and the substrate. That is, it is desirable that the thermal change of the adherend is suppressed at the time of heat peeling.
  • the expansion start temperature (t) of the heat-expandable particles is preferably less than 125 ° C., more preferably 120 ° C. or lower, still more preferably 115 ° C. or lower, still more preferable. Is 110 ° C. or lower, more preferably 105 ° C. or lower.
  • the expansion start temperature (t) of the heat-expandable particles is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, still more preferably. Is 70 ° C. or higher.
  • the expansion start temperature (t) of a heat-expandable particle means a value measured based on the following method.
  • the thermally expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an contained component contained in the outer shell and vaporized when heated to a predetermined temperature. It is preferable to have.
  • the thermoplastic resin constituting the outer shell of the microencapsulating foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone and the like.
  • Examples of the contained component which is a component contained in the outer shell of the microencapsulating foaming agent include propane, propylene, butene, n-butane, isopentane, isopentane, neopentane, n-pentane, n-hexane, isohexane, and n-.
  • Examples thereof include low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane and petroleum ether.
  • the inclusion components are preferably propane, isobutane, n-pentane, and cyclopropane.
  • propane, isobutane, n-pentane, and cyclopropane One of these inclusion components may be used alone, or two or more thereof may be used in combination.
  • the expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of the inclusion component.
  • the average particle diameter of the heat-expandable particles used in one embodiment of the present invention before expansion at 23 ° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, still more preferably 10 to 10. It is 50 ⁇ m.
  • the average particle size of the heat-expandable particles before expansion is the volume medium particle size (D 50 ), and is a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name “Mastersizer 3000”).
  • the cumulative volume frequency calculated from the smaller particle size of the heat-expandable particles before expansion means the particle size corresponding to 50%.
  • the 90% particle diameter (D 90 ) of the thermally expandable particles used in one embodiment of the present invention before expansion at 23 ° C. is preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m, still more preferably 20 to 90 ⁇ m. Even more preferably, it is 25 to 80 ⁇ m.
  • the 90% particle size (D 90 ) of the thermally expandable particles before expansion is the expansion measured using a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name "Mastersizer 3000"). In the particle distribution of the previous heat-expandable particles, it means the particle size in which the cumulative volume frequency calculated from the smaller particle size of the heat-expandable particles before expansion corresponds to 90%.
  • the maximum volume expansion rate when the thermally expandable particles used in one embodiment of the present invention are heated to a temperature equal to or higher than the expansion start temperature (t) is preferably 1.5 to 200 times, more preferably 2 to 150 times, and further. It is preferably 2.5 to 120 times, and even more preferably 3 to 100 times.
  • the pressure-sensitive adhesive layer (X1) contained in the pressure-sensitive adhesive sheet of the present invention has a Young's modulus of 5.0 MPa or less at 23 ° C. Further, the adhesive layer (X1) of the pressure-sensitive adhesive sheet of the present invention has a Young's modulus at 23 ° C. lower than that of the non-thermally expandable base material layer (Y2) at 23 ° C.
  • the pressure-sensitive adhesive layer (X1) may be a heat-expandable layer or a non-heat-expandable layer, but is preferably a non-heat-expandable layer.
  • the volume change rate (%) of the pressure-sensitive adhesive layer (X1) calculated from the above formula is less than 5%, preferably less than 2%. It is preferably less than 1%, more preferably less than 0.1%, and even more preferably less than 0.01%.
  • the pressure-sensitive adhesive layer (X1) preferably does not contain thermal-expandable particles, but may contain thermal-expandable particles within a range not contrary to the object of the present invention.
  • the pressure-sensitive adhesive layer (X1) contains thermally expandable particles
  • the pressure-sensitive adhesive layer (X1) contained in the pressure-sensitive adhesive sheet of the present invention can be formed from the pressure-sensitive adhesive composition (x-1) containing a pressure-sensitive adhesive resin.
  • x-1 a pressure-sensitive adhesive resin
  • Adhesive resin examples include polymers having adhesiveness by themselves and having a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2 million, more preferably 20,000 to 1.5 million, still more preferably 30,000 to 100, from the viewpoint of improving the adhesive strength of the pressure-sensitive adhesive layer (X1). It is ten thousand.
  • the adhesive resin include rubber-based resins such as acrylic resins, urethane-based resins, and polyisobutylene-based resins, polyester-based resins, olefin-based resins, silicone-based resins, and polyvinyl ether-based resins.
  • Rubber-based resins such as acrylic resins, urethane-based resins, and polyisobutylene-based resins
  • polyester-based resins such as acrylic resins, urethane-based resins, and polyisobutylene-based resins
  • olefin-based resins such as polypropylene-based resins
  • silicone-based resins such as polyvinyl ether-based resins
  • polyvinyl ether-based resins such as polyvinyl ether-based resins.
  • One type of these adhesive resins may be used alone, or two or more types may be used in combination.
  • the form of the copolymer is not particularly limited, and block copolymers, random copolymers,
  • the adhesive resin may be an energy ray-curable adhesive resin in which a polymerizable functional group is introduced into the side chain.
  • the polymerizable functional group include those having a carbon-carbon double bond such as a (meth) acryloyl group, a vinyl group and an allyl group.
  • the energy ray among the above-mentioned ones, ultraviolet rays that are easy to handle are preferable.
  • the adhesive resin is acrylic from the viewpoint of exhibiting excellent adhesive strength in the pressure-sensitive adhesive layer (X1) and adjusting the Young's modulus of the pressure-sensitive adhesive layer (X1) within the above range. It is preferable to contain a based resin.
  • the content of the acrylic resin in the adhesive resin is preferably 30 with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x-1) or the adhesive layer (X1). It is -100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, still more preferably 85 to 100% by mass.
  • the acrylic resin that can be used as the adhesive resin includes, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, and a cyclic structure. Examples thereof include polymers containing a structural unit derived from (meth) acrylate having.
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1.5 million, more preferably 200,000 to 1.3 million, still more preferably 350,000 to 1.2 million, and even more preferably 500,000 to 1.1 million. ..
  • the acrylic resin used in one embodiment of the present invention includes a structural unit (a1) derived from an alkyl (meth) acrylate (a1') (hereinafter, also referred to as “monomer (a1')”) and a functional group-containing monomer (a2).
  • An acrylic copolymer (A1) having a structural unit (a2) derived from') hereinafter, also referred to as “monomer (a2')
  • A1 having a structural unit (a2) derived from')
  • the number of carbon atoms of the alkyl group of the monomer (a1') is preferably from the viewpoint of exhibiting excellent adhesive strength in the pressure-sensitive adhesive layer (X1) and adjusting the Young's modulus of the pressure-sensitive adhesive layer (X1) within the above range. Is 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and even more preferably 4 to 8.
  • the alkyl group contained in the monomer (a1') may be a straight chain alkyl group or a branched chain alkyl group.
  • Examples of the monomer (a1') include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (). Examples thereof include meta) acrylate and stearyl (meth) acrylate. One of these monomers (a1') may be used alone, or two or more thereof may be used in combination. As the monomer (a1'), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
  • the content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, and even more preferably 80 to 95.0% by mass.
  • Examples of the functional group contained in the monomer (a2') include a hydroxyl group, a carboxy group, an amino group, an epoxy group and the like. That is, examples of the monomer (a2') include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer. One of these monomers (a2') may be used alone, or two or more thereof may be used in combination. Among these, as the monomer (a2'), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl (meth).
  • Hydroxyalkyl (meth) acrylates such as acrylates and 4-hydroxybutyl (meth) acrylates
  • hydroxyl group-containing compounds such as unsaturated alcohols such as vinyl alcohols and allyl alcohols.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid, and citraconic acid, and their anhydrides. , 2- (Acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like.
  • the content of the structural unit (a2) is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 1.0 to 15% by mass, and even more preferably 3.0 to 10% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
  • the total content of the structural units (a1) and (a2) is preferably relative to the total structural units (100% by mass) of the acrylic copolymer (A1). It is 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and even more preferably 95 to 100% by mass.
  • Examples of the monomer (a3') include olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene and chloroprene; cyclohexyl (meth) acrylates, It has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and imide (meth) acrylate.
  • olefins such as ethylene, propylene and isobutylene
  • halogenated olefins such as vinyl chloride and vinylidene chloride
  • diene monomers such as butadiene, isoprene and chlor
  • (Meta) Acrylate examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloylmorpholine, and N-vinylpyrrolidone.
  • the acrylic copolymer (A1) may be an energy ray-curable acrylic copolymer in which a polymerizable functional group is introduced into at least one of a main chain and a side chain.
  • the polymerizable functional group and the energy ray are as described above.
  • the polymerizable functional group is a substituent capable of binding to the acrylic copolymer having the above-mentioned structural units (a1) and (a2) and the functional group of the structural unit (a2) of the acrylic copolymer. It can be introduced by reacting with a polymerizable compound (Xa) having a polymerizable functional group.
  • Examples of the polymerizable compound (Xa) include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate, and (meth). Acrylic acid and the like can be mentioned.
  • the pressure-sensitive adhesive composition (x-1) contains a pressure-sensitive adhesive resin having a functional group like the above-mentioned acrylic copolymer (A1), it further contains a cross-linking agent. Is preferable.
  • the cross-linking agent reacts with a tacky resin having a functional group to cross-link the tacky resins with the functional group as a cross-linking starting point.
  • cross-linking agent examples include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • One of these cross-linking agents may be used alone, or two or more thereof may be used in combination.
  • isocyanate-based cross-linking agents are preferable from the viewpoint of increasing the cohesive force to improve the adhesive force and the availability.
  • isocyanate-based cross-linking agent examples include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; dicyclohexylmethane-4,4'-diisocyanate, bicycloheptane triisocyanate, cyclopentylene diisocyanate, and cyclohexylene diisocyanate.
  • Methylcyclohexylene diisocyanate Methylcyclohexylene diisocyanate, methylenebis (cyclohexylisocyanate), 3-isocyanatemethyl-3,5,5-trimethylcyclohexylisocyanate, and alicyclic polyisocyanates such as hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, And polyisocyanate compounds such as acyclic aliphatic polyisocyanates such as lysine diisocyanate; and the like.
  • the isocyanate-based cross-linking agent examples include a trimethylolpropane adduct-type modified product of the polyhydric isocyanate compound, a burette-type modified product reacted with water, and an isocyanurate-type modified product containing an isocyanurate ring.
  • the isocyanurate ring is used from the viewpoint of suppressing the decrease in elastic modulus of the pressure-sensitive adhesive layer (X1) during heating and suppressing the adhesion of the residue derived from the pressure-sensitive adhesive layer (X1) to the adherend.
  • an isocyanurate-type modified product containing isocyanurate more preferably an isocyanurate-type modified product of an acyclic aliphatic polyisocyanate, and further preferably use an isocyanurate-type modified product of hexamethylene diisocyanate.
  • the content of the cross-linking agent is appropriately adjusted according to the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass.
  • the Young's modulus of the pressure-sensitive adhesive layer (X1) can be easily adjusted to the above range.
  • the pressure-sensitive adhesive composition (x-1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the "tacking agent” refers to a component that supplementarily improves the adhesive strength of the adhesive resin and has a mass average molecular weight (Mw) of less than 10,000, and the above-mentioned adhesive resin. Is distinct from.
  • the mass average molecular weight (Mw) of the tackifier is less than 10,000, preferably 400 to 9000, more preferably 500 to 8000, and even more preferably 800 to 5000.
  • the tackifier for example, it is obtained by copolymerizing a C5 distillate such as rosin resin, terpene resin, styrene resin, penten, isoprene, piperin, 1,3-pentadiene produced by thermal decomposition of petroleum naphtha.
  • a C5 distillate such as rosin resin, terpene resin, styrene resin, penten, isoprene, piperin, 1,3-pentadiene produced by thermal decomposition of petroleum naphtha.
  • C5-based petroleum resins C9-based petroleum resins obtained by copolymerizing C9 distillates such as inden and vinyl toluene produced by thermal decomposition of petroleum naphtha
  • hydrides obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and even more preferably 70 to 150 ° C.
  • the "softening point" of the tackifier means a value measured in accordance with JIS K 2531.
  • the tackifier one type may be used alone, or two or more types having different softening points, structures, etc. may be used in combination.
  • the weighted average of the softening points of the plurality of tackifiers belongs to the above range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, based on the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x-1). %, More preferably 1 to 40% by mass, still more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (x-1) contains an energy ray-curable pressure-sensitive adhesive resin as the pressure-sensitive adhesive resin, it preferably further contains a photopolymerization initiator.
  • a photopolymerization initiator By preparing a pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive resin and a photopolymerization initiator, the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition can be subjected to irradiation with relatively low-energy energy rays. The curing reaction can be sufficiently advanced, and the adhesive strength can be adjusted to a desired range.
  • Examples of the photopolymerization initiator used in one embodiment of the present invention include 1-hydroxy-cyclohexyl-phenylketone, benzoin, benzoinmethyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, and tetramethylthium. Examples thereof include monosulfide, azobisisobutyrolnitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like. One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and further preferably 0.% by mass with respect to 100 parts by mass of the energy ray-curable adhesive resin. It is 05 to 2 parts by mass.
  • the pressure-sensitive adhesive composition (x-1) is an additive for a pressure-sensitive adhesive used in a general pressure-sensitive adhesive in addition to the above-mentioned additives as long as the effect of the present invention is not impaired. May be contained.
  • additives for adhesives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers and the like. These adhesive additives may be used alone or in combination of two or more.
  • each additive for adhesive is independently, preferably 0.0001 to 20 parts by mass, based on 100 parts by mass of the adhesive resin. It is preferably 0.001 to 10 parts by mass.
  • the thickness of the pressure-sensitive adhesive layer (X1) at 23 ° C. exhibits good adhesive strength, and when the heat-expandable particles are expanded by heating, the thickness of the pressure-sensitive adhesive layer (X1) is increased. From the viewpoint of satisfactorily forming irregularities on the adhesive surface, it is preferably 3 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, and even more preferably 3 to 7 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer (X1) at 23 ° C. is a value measured by the method described in Examples described later.
  • the product of the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. and the thickness of the pressure-sensitive adhesive layer (X1) at 23 ° C. is thermally expandable.
  • the content is preferably 0.3 to 50, more preferably 1.0 to 30. It is more preferably 1.5 to 20, and even more preferably 2.0 to 10.
  • the heat-expandable base material layer (Y1) is a base material layer having heat-expandable particles, and is provided between the pressure-sensitive adhesive layer (X1) and the non-heat-expandable base material layer (Y2).
  • the heat-expandable base material layer (Y1) preferably satisfies the following requirement (1).
  • the storage elastic modulus E'of the heat-expandable base material layer (Y1) at a predetermined temperature means a value measured by the method described in Examples.
  • the above requirement (1) can be said to be an index showing the rigidity of the heat-expandable base material layer (Y1) immediately before the heat-expandable particles expand.
  • the storage elastic modulus E'of the thermally expandable base material layer (Y1) decreases as the temperature rises.
  • the thermally expandable particles start to expand, so that the decrease in the storage elastic modulus E'of the thermally expandable base material layer (Y1) is suppressed.
  • the heat-expandable base material layer (Y1) is adhered by heating to a temperature equal to or higher than the expansion start temperature (t). It is necessary to make it easy for irregularities to be formed on the surface on the agent layer (X1) side.
  • the heat-expandable base layer (Y1) that satisfies the above requirement (1), the heat-expandable particles expand at the expansion start temperature (t) to become sufficiently large, and the pressure-sensitive adhesive of the heat-expandable base layer (Y1). Unevenness is likely to be formed on the surface on the layer (X1) side. Therefore, unevenness is likely to be formed on the adhesive surface of the adhesive layer (X1).
  • the storage elastic modulus E'(t) defined in the requirement (1) of the heat-expandable base material layer (Y1) is preferably 9.0 ⁇ 10 6 Pa or less from the above viewpoint. It is preferably 8.0 ⁇ 10 6 Pa or less, more preferably 6.0 ⁇ 10 6 Pa or less, and even more preferably 4.0 ⁇ 10 6 Pa or less.
  • the storage elastic modulus E'(t) specified in the requirement (1) of the thermally expandable base material layer (Y1) is preferably 1.0 ⁇ . It is 10 3 Pa or more, more preferably 1.0 ⁇ 10 4 Pa or more, and further preferably 1.0 ⁇ 10 5 Pa or more.
  • the content of the heat-expandable particles in the heat-expandable base material layer (Y1) is the heat-expandable base material layer (Y1). It is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably 10 to 30% by mass, still more preferably 15 to 25% by mass, based on the total mass (100% by mass) of the above.
  • the Young's modulus of the heat-expandable base material layer (Y1) at 23 ° C. is larger than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C., and the non-heat-expandable base material layer. It is preferably larger than the Young's modulus of (Y2) at 23 ° C.
  • the Young's modulus of the heat-expandable base material layer (Y1) at 23 ° C. is preferably 100 MPa or more, more preferably 200 MPa or more, still more preferably 300 MPa or more. Further, it is usually 600 MPa or less, preferably 500 MPa or less.
  • the surface of the heat-expandable base material layer (Y1) is subjected to an oxidation method, an unevenness method, or the like.
  • Surface treatment, easy adhesion treatment, or primer treatment may be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment
  • the unevenness method include sandblasting method and solvent treatment method. And so on.
  • the heat-expandable base material layer (Y1) is preferably formed from a resin composition (y-1) containing a resin and heat-expandable particles.
  • the resin composition (y-1) may contain an additive for a base material, if necessary, as long as the effects of the present invention are not impaired.
  • the base material additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant. These base material additives may be used alone or in combination of two or more. When these base material additives are contained, the content of each base material additive is independently, preferably 0.0001 to 20 parts by mass, more preferably 0.0001 to 20 parts by mass with respect to 100 parts by mass of the resin. Is 0.001 to 10 parts by mass.
  • the heat-expandable particles contained in the resin composition (y-1), which is a material for forming the heat-expandable base material layer (Y1), are as described above.
  • the content of the heat-expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably, with respect to the total amount (100% by mass) of the active ingredient of the resin composition (y-1). Is 10 to 30% by mass, more preferably 15 to 25% by mass.
  • the resin contained in the resin composition (y-1) which is the material for forming the heat-expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin. That is, even if the resin contained in the resin composition (y-1) is an adhesive resin, the adhesiveness is obtained in the process of forming the heat-expandable base material layer (Y1) from the resin composition (y-1). It is sufficient that the resin polymerizes with the polymerizable compound, the obtained resin becomes a non-adhesive resin, and the heat-expandable base material layer (Y1) containing the resin becomes non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y-1) is preferably 10 to 1,000,000, more preferably 10 to 700,000, and even more preferably 10 to 500,000.
  • the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer can be used. It may be.
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 65% by mass, based on the total amount (100% by mass) of the active ingredient of the resin composition (y-1). It is 90% by mass, more preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y-1) is selected from acrylic urethane-based resin and olefin-based resin. It is preferable to include one or more of these. Further, as the acrylic urethane resin, the following resin (U1) is preferable. -Acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
  • urethane prepolymer (UP) that serves as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a multivalent isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
  • Examples of the polyol which is a raw material of the urethane prepolymer (UP) include an alkylene type polyol, an ether type polyol, an ester type polyol, an ester amide type polyol, an ester ether type polyol, and a carbonate type polyol.
  • One of these polyols may be used alone, or two or more thereof may be used in combination.
  • a diol is preferable, an ester type diol, an alkylene type diol and a carbonate type diol are more preferable, and an ester type diol and a carbonate type diol are further preferable.
  • ester-type diol examples include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, and the like.
  • diols such as diethylene glycol, alkylene glycol such as dipropylene glycol; and phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4.
  • 4'-dicarboxylic acid succinic acid, adipic acid, azelaic acid, sebacic acid, hetic acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa
  • dicarboxylic acids such as hydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, and methylhexahydrophthalic acid, and one or more selected from these anhydrides.
  • alkylene-type diol examples include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, and the like.
  • alkylene glycols such as diethylene glycol and dipropylene glycol
  • polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol
  • polyoxyalkylene glycols such as polytetramethylene glycol.
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. , 2,2-Dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
  • polyisocyanate used as a raw material for the urethane prepolymer (UP) examples include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
  • aromatic polyisocyanates aliphatic polyisocyanates
  • alicyclic polyisocyanates One of these polyvalent isocyanates may be used alone, or two or more thereof may be used in combination. Further, these polyvalent isocyanates may be a trimethylolpropane adduct-type modified product, a biuret-type modified product reacted with water, or an isocyanurate-type modified product containing an isocyanurate ring.
  • diisocyanate is preferable as the polyvalent isocyanate used in one embodiment of the present invention
  • diisocyanate 4,4'-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6.
  • MDI 4,4'-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6 2,6.
  • -One or more selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate are more preferable.
  • alicyclic diisocyanate examples include 3-isocyanate methyl-3,5,5-trimethylcyclohexylisocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexanediisocyanate, and 1,4-cyclohexane.
  • IPDI isophorone diisocyanate
  • Examples thereof include diisocyanate, methyl-2,4-cyclohexanediisocyanate and methyl-2,6-cyclohexanediisocyanate, but isophorone diisocyanate (IPDI) is preferable.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends.
  • Urethane prepolymers are preferred.
  • an NCO group at the terminal of the linear urethane prepolymer formed by reacting a diol and a diisocyanate compound and a hydroxyalkyl (meth) acrylate There is a method of reacting with.
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy.
  • examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the vinyl compound that forms the side chain of the acrylic urethane resin (U1) contains at least (meth) acrylic acid ester.
  • the (meth) acrylic acid ester one or more selected from alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate is preferable, and alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are more preferably used in combination.
  • the blending ratio of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass. It is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and even more preferably 1.5 to 10 parts by mass.
  • the alkyl group of the alkyl (meth) acrylate has preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 8 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • hydroxyalkyl (meth) acrylate the same hydroxyalkyl (meth) acrylate used for introducing an ethylenically unsaturated group into both ends of the above-mentioned linear urethane prepolymer can be mentioned.
  • vinyl compounds other than (meth) acrylic acid ester include aromatic hydrocarbon-based vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. , (Meta) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, polar group-containing monomers such as meta (acrylamide); and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • the content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, still more preferably, based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of the alkyl (meth) acrylate and the hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, based on the total amount (100% by mass) of the vinyl compound. It is 100% by mass, more preferably 80 to 100% by mass, and even more preferably 90 to 100% by mass.
  • the acrylic urethane resin (U1) used in one embodiment of the present invention is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester and polymerizing both. In the polymerization, it is preferable to further add a radical initiator.
  • the olefin-based resin suitable as the resin contained in the resin composition (y-1) is a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specific examples thereof include ethylene, propylene, butylene, isobutylene, and 1-hexene. Among these, ethylene and propylene are preferable.
  • VLDPE ultra low density polyethylene
  • LDPE low density polyethylene
  • MDPE Medium density polyethylene
  • HDPE high density polyethylene
  • PP polypropylene resin
  • PB Polybutene resin
  • Ethylene-propylene copolymer Olefin-based elastomer
  • PMP Poly (4-methyl-1-pentene)
  • Ethylene-vinyl acetate copolymer Ethylene -Vinyl alcohol copolymer (EVOH); olefin-based ternary copolymer such as
  • the olefin resin may be a modified olefin resin further subjected to one or more modifications selected from acid modification, hydroxyl group modification, and acrylic modification.
  • the acid-modified olefin-based resin obtained by acid-modifying an olefin-based resin is a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or an anhydride thereof with the above-mentioned non-modified olefin-based resin.
  • the unsaturated carboxylic acid or its anhydride include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, and itaconic anhydride.
  • the unsaturated carboxylic acid or its anhydride may be used alone or in combination of two or more.
  • the acrylic-modified olefin-based resin obtained by subjecting the olefin-based resin to acrylic modification is a modification obtained by graft-polymerizing an alkyl (meth) acrylate as a side chain to the above-mentioned non-modified olefin-based resin which is the main chain.
  • the alkyl group of the above alkyl (meth) acrylate has preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and further preferably 1 to 12 carbon atoms.
  • Examples of the above-mentioned alkyl (meth) acrylate include the same compounds as those that can be selected as the monomer (a1') described later.
  • Examples of the hydroxyl group-modified olefin resin obtained by subjecting the olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound on the above-mentioned non-modified olefin resin which is the main chain.
  • Examples of the above-mentioned hydroxyl group-containing compound include the same as the above-mentioned hydroxyl group-containing compound.
  • the resin composition (y-1) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
  • resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene co-weight.
  • cellulose triacetate polycarbonate; polyurethane not applicable to acrylic urethane resin; polysulfone; polyether ether ketone; polyether sulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; Fluorine-based resin and the like can be mentioned.
  • the content of the acrylic urethane resin and the resin other than the olefin resin in the resin composition (y-1) is determined. Less is preferable.
  • the content of the resin other than the acrylic urethane resin and the olefin resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y-1). It is less than parts by mass, more preferably less than 10 parts by mass, still more preferably less than 5 parts by mass, and even more preferably less than 1 part by mass.
  • solvent-free resin composition (y-1a) As one aspect of the resin composition (y-1) used in one aspect of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray-polymerizable monomer, and the above-mentioned heat. Examples thereof include a solvent-free resin composition (y-1a) containing expandable particles and not containing a solvent. In the solvent-free resin composition (y-1a), no solvent is blended, but the energy ray-polymerizable monomer contributes to the improvement of the plasticity of the oligomer. By irradiating the coating film formed from the solvent-free resin composition (y-1a) with energy rays, it is easy to form a heat-expandable base material layer (Y1) satisfying the above requirement (1).
  • the types and shapes of the heat-expandable particles to be blended in the solvent-free resin composition (y-1a) and the blending amount (content) are as described above.
  • the mass average molecular weight (Mw) of the oligomer contained in the solvent-free resin composition (y-1a) is 50,000 or less, preferably 1000 to 50,000, more preferably 2000 to 40,000, still more preferably 3000 to 35,000. , Even more preferably 4000 to 30,000.
  • the oligomer may be any resin contained in the above-mentioned resin composition (y-1) having an ethylenically unsaturated group having a mass average molecular weight of 50,000 or less, and the above-mentioned urethane prepolymer. (UP) is preferable.
  • UP urethane prepolymer
  • a modified olefin resin having an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is based on the total amount (100% by mass) of the solvent-free resin composition (y-1a). It is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and even more preferably 70 to 85% by mass.
  • Examples of the energy ray-polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, and adamantan ().
  • Alicyclic polymerizable compounds such as meta) acrylates and tricyclodecane acrylates; aromatic polymerizable compounds such as phenylhydroxypropyl acrylates, benzyl acrylates and phenolethylene oxide modified acrylates; tetrahydrofurfuryl (meth) acrylates, morpholine acrylates, N- Examples thereof include heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam.
  • One of these energy ray-polymerizable monomers may be used alone, or two or more thereof may be used in combination.
  • the content ratio [oligomer / energy ray-polymerizable monomer] of the oligomer to the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is preferably 20/80 to 20/80 in mass ratio. It is 90/10, more preferably 30/70 to 85/15, and even more preferably 35/65 to 80/20.
  • the solvent-free resin composition (y-1a) is preferably further blended with a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with relatively low energy energy rays.
  • photopolymerization initiator examples include the same photopolymerization initiators that the pressure-sensitive adhesive composition (x-1) may contain. One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, and further, based on the total amount (100 parts by mass) of the oligomer and the energy ray-polymerizable monomer. It is preferably 0.02 to 3 parts by mass.
  • the thickness of the heat-expandable substrate layer (Y1) is preferably 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m, still more preferably 25 to 400 ⁇ m, still more preferably 30 to 300 ⁇ m. ..
  • Non-thermally expandable base material layer (Y2) contained in the pressure-sensitive adhesive sheet of the present invention is provided on the surface of the heat-expandable base material layer (Y1) opposite to the laminated surface of the pressure-sensitive adhesive layer (X1).
  • the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. is higher than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C.
  • the heat-expandable base layer (Y1) is more adherent than the surface of the heat-expandable base layer (Y1) on the non-heat-expandable base layer (Y2) side. Unevenness is likely to be formed on the surface of the agent layer (X1) side. Therefore, unevenness is satisfactorily formed on the adhesive surface of the adhesive layer (X1).
  • the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. is preferably 700 MPa or more, more preferably 1000 MPa or more, still more preferably 1300 MPa or more, still more preferably 1600 MPa or more, still more preferably. It is 1800 MPa or more. In addition, it is usually 10,000 MPa or less.
  • Examples of the material for forming the non-thermally expandable base material layer (Y2) include resins, metals, and paper materials, which can be appropriately selected depending on the use of the pressure-sensitive adhesive sheet according to one aspect of the present invention.
  • the resin examples include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate and poly.
  • polyolefin resins such as polyethylene and polypropylene
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer
  • polyethylene terephthalate and poly examples include polyethylene terephthalate and poly.
  • Polyimide-based resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resins such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyether sulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; fluorine resin and the like can be mentioned.
  • the metal include aluminum, tin, chromium, titanium and the like.
  • the paper material examples include thin-leaf paper, medium-quality paper, high-quality paper, impregnated paper, coated paper, art paper, parchment paper, and glassin paper.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferable.
  • forming materials may be composed of one kind, or two or more kinds may be used in combination.
  • a paper material laminated with a thermoplastic resin such as polyethylene, or a metal film is formed on the surface of a resin film or sheet containing the resin. Examples thereof include those formed.
  • a method for forming the metal layer for example, a method of vapor-depositing the metal by a PVD method such as vacuum vapor deposition, sputtering, or ion plating, or a method of attaching a metal foil made of the metal by using a general adhesive. The method of doing this can be mentioned.
  • the non-thermally expandable base material layer (Y2) contains a resin
  • it is a non-thermally expandable group from the viewpoint of improving the interlayer adhesion between the non-thermally expandable base material layer (Y2) and other layers to be laminated.
  • the surface of the material layer (Y2) may also be subjected to surface treatment, easy adhesion treatment, or primer treatment by an oxidation method, an unevenness method, or the like, similarly to the above-mentioned thermal expansion base material layer (Y1). ..
  • the non-thermally expandable base material layer (Y2) contains a resin
  • the above-mentioned base material additive which can be contained in the resin composition (y-1) may be contained together with the resin.
  • the non-thermally expandable base material layer (Y2) is a non-thermally expandable layer determined based on the above method. Therefore, the volume change rate (%) of the non-thermally expandable base material layer (Y2) calculated from the above formula is less than 5%, but preferably less than 2%, more preferably less than 1%, and further. It is preferably less than 0.1%, and even more preferably less than 0.01%.
  • the non-thermally expandable base material layer (Y2) may contain thermally expandable particles as long as the volume change rate is within the above range.
  • the resin contained in the non-thermally expandable base material layer (Y2) it is possible to adjust the volume change rate within the above range even if the thermally expandable particles are contained.
  • the smaller the content of the heat-expandable particles in the non-heat-expandable base material layer (Y2) the more preferable.
  • the specific content of the heat-expandable particles is usually less than 3% by mass, preferably less than 1% by mass, more preferably with respect to the total mass (100% by mass) of the non-heat-expandable base material layer (Y2). Is less than 0.1% by mass, more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass. Even more preferably, it does not contain thermally expandable particles.
  • the storage elastic modulus E'(23) of the non-thermally expandable substrate layer (Y2) at 23 ° C. is preferably 5.0 ⁇ 10 7 to 5.0 ⁇ 10 9 Pa, more preferably 5.0 ⁇ 10 8. It is ⁇ 4.5 ⁇ 10 9 Pa, more preferably 1.0 ⁇ 10 9 to 4.0 ⁇ 10 9 Pa.
  • the storage elastic modulus E of the non-heat-expandable base material layer (Y2) '(23) is 5.0 ⁇ 10 7 Pa or more, heat-expandable base layer non-intumescent base material layer (Y1) ( It is easy to effectively suppress the expansion of the surface on the Y2) side, and it is easy to improve the deformation resistance of the adhesive sheet.
  • non-heat-expandable base material layer (Y2) of the storage modulus E '(23) is less than 5.0 ⁇ 10 9 Pa, to improve the handling properties of the pressure-sensitive adhesive sheet easily.
  • the storage elastic modulus E'(23) of the non-thermally expandable base material layer (Y2) means a value measured by the method described in Examples.
  • the coefficient of thermal expansion E'(t) at the expansion start temperature (t) of the thermally expandable particles of the non-thermally expandable substrate layer (Y2) is preferably 5.0 ⁇ 10 7 to 3.0 ⁇ 10 9 Pa. It is more preferably 2.0 ⁇ 10 8 to 2.5 ⁇ 10 9 Pa, and even more preferably 5.0 ⁇ 10 8 to 2.0 ⁇ 10 9 Pa.
  • the storage elastic modulus E of the non-heat-expandable base material layer (Y2) '(t) is 5.0 ⁇ 10 7 Pa or more, heat-expandable base layer non-intumescent base material layer (Y1) ( It is easy to effectively suppress the expansion of the surface on the Y2) side, and it is easy to improve the deformation resistance of the adhesive sheet.
  • heat-expandable base layer non-intumescent base material layer (Y1) It is easy to effectively suppress the expansion of the surface on the Y2) side, and it is easy to improve the deformation resistance of the adhesive sheet.
  • non-heat-expandable base material layer (Y2) storage modulus E '(t) is 3.0 ⁇ 10 9 Pa or less, to improve the handling properties of the pressure-sensitive adhesive sheet easily.
  • the storage elastic modulus E'(t) of the non-thermally expandable base material layer (Y2) means a value measured by the method described in Examples.
  • the thickness of the non-thermally expandable base material layer (Y2) is preferably 5 to 500 ⁇ m, more preferably 15 to 300 ⁇ m, and even more preferably 20 to 200 ⁇ m.
  • the thickness of the non-thermally expandable base material layer (Y2) is 5 ⁇ m or more, the deformation resistance of the pressure-sensitive adhesive sheet can be easily improved.
  • the thickness of the non-thermally expandable base material layer (Y2) is 500 ⁇ m or less, the handleability of the pressure-sensitive adhesive sheet can be easily improved.
  • the thickness of the non-thermally expandable base material layer (Y2) means the value measured by the method described in Example.
  • the pressure-sensitive adhesive layer (X2) is a layer arbitrarily provided on a surface of the non-thermally expandable base material layer (Y2) opposite to the laminated surface of the heat-expandable base material layer (Y1).
  • the pressure-sensitive adhesive layer (X2) may be a thermally expandable layer or a non-thermally expandable layer, but is preferably a non-thermally expandable layer.
  • the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2) have different action mechanisms for reducing the adhesive strength of the pressure-sensitive adhesive layer, whereby the treatment for reducing the adhesive strength of one of the pressure-sensitive adhesive layers is performed. When doing so, it is possible to prevent the adhesive strength of the other adhesive layer from being unintentionally reduced.
  • the volume change rate (%) of the pressure-sensitive adhesive layer (X2) calculated from the above formula is less than 5%, preferably less than 2%. It is preferably less than 1%, more preferably less than 0.1%, and even more preferably less than 0.01%.
  • the pressure-sensitive adhesive layer (X2) preferably does not contain heat-expandable particles, but may contain heat-expandable particles within a range not contrary to the object of the present invention.
  • the pressure-sensitive adhesive layer (X2) contains thermally expandable particles, the smaller the content is, the more preferable, and the content is preferably less than 3% by mass, based on the total mass (100% by mass) of the pressure-sensitive adhesive layer (X2). It is preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
  • the pressure-sensitive adhesive layer (X2) is preferably formed from the pressure-sensitive adhesive composition (x-2) containing a pressure-sensitive adhesive resin.
  • a pressure-sensitive adhesive resin containing a pressure-sensitive adhesive resin.
  • the pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive resin, and if necessary, a cross-linking agent, a pressure-sensitive adhesive, a polymerizable compound, a polymerization initiator, and general pressure-sensitive adhesive other than the above-mentioned components. It may contain an additive for a pressure-sensitive adhesive used in the agent.
  • the adhesive resin may be a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2 million, more preferably 20,000 to 1.5 million, and further preferably 30,000 from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X2). ⁇ 1 million.
  • Examples of the adhesive resin include those similar to the adhesive composition contained in the adhesive composition (x-1). One type of these adhesive resins may be used alone, or two or more types may be used in combination. When these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer. There may be.
  • the adhesive resin contained in the pressure-sensitive adhesive composition (x-2) has a pressure-sensitive adhesive composition containing the pressure-sensitive adhesive resin from the viewpoint of differentiating the mechanism of action of reducing the adhesive strength with the pressure-sensitive adhesive layer (X1).
  • x-2) is preferably a pressure-sensitive adhesive composition that is cured by irradiation with energy rays, and more preferably a pressure-sensitive adhesive composition having an energy ray-polymerizable functional group in the side chain.
  • the pressure-sensitive adhesive layer (X2) can be made into a pressure-sensitive adhesive layer that is cured by energy ray irradiation and whose adhesive strength is reduced.
  • the adhesive surface of the pressure-sensitive adhesive layer (X1) can be in a mode in which the adhesive strength is reduced by heating, and the adhesive surface of the pressure-sensitive adhesive layer (X2) can be in a mode in which the adhesive strength is reduced by irradiation with energy rays.
  • the mechanism of action that reduces the adhesive strength of the pressure-sensitive adhesive layer can be different. Therefore, it is possible to prevent the adhesive strength of one of the pressure-sensitive adhesive layers from being unintentionally reduced when the treatment is performed to reduce the adhesive strength of the other pressure-sensitive adhesive layer.
  • the energy ray-polymerizable functional group include those having a carbon-carbon double bond such as a (meth) acryloyl group, a vinyl group, and an allyl group.
  • ultraviolet rays ultraviolet rays, which are easy to handle, are preferable.
  • the pressure-sensitive adhesive composition (x-2) is a pressure-sensitive adhesive composition that is cured by irradiation with energy rays
  • the pressure-sensitive adhesive composition preferably further contains a photopolymerization initiator.
  • the photopolymerization initiator include the same photopolymerization initiators that may be contained in the pressure-sensitive adhesive composition (x-1).
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, based on 100 parts by mass of the total amount of the adhesive resin having an energy ray-polymerizable functional group. More preferably, it is 0.05 to 2 parts by mass.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength.
  • the content of the acrylic resin in the pressure-sensitive adhesive composition (x-2) is preferably 30 to 30% with respect to the total amount (100% by mass) of the pressure-sensitive resin contained in the pressure-sensitive adhesive composition (x-2). It is 100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and even more preferably 85 to 100% by mass.
  • the content of the pressure-sensitive resin in the pressure-sensitive adhesive composition (x-2) is preferably 35 to 100% by mass, based on the total amount (100% by mass) of the active ingredients of the pressure-sensitive adhesive composition (x-2). It is more preferably 50 to 100% by mass, further preferably 60 to 98% by mass, and even more preferably 70 to 95% by mass.
  • the pressure-sensitive adhesive composition (x-2) when the pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x-2) preferably further contains a cross-linking agent.
  • the cross-linking agent reacts with a tacky resin having a functional group to cross-link the tacky resins with the functional group as a cross-linking starting point.
  • Examples of the cross-linking agent that may be contained in the pressure-sensitive adhesive composition (x-2) include those equivalent to the cross-linking agent that may be contained in the pressure-sensitive adhesive composition (x-1), but have a cohesive force.
  • An isocyanate-based cross-linking agent is preferable from the viewpoint of increasing the adhesive strength and improving the adhesive strength, and from the viewpoint of easy availability.
  • the content of the cross-linking agent is appropriately adjusted according to the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x-2) may further contain a pressure-sensitive adhesive from the viewpoint of further improving the adhesive strength.
  • a pressure-sensitive adhesive from the viewpoint of further improving the adhesive strength.
  • the same pressure-imparting agent that may be contained in the pressure-sensitive adhesive composition (x-1) may be used. it can.
  • Examples of the pressure-sensitive adhesive additive include the same pressure-sensitive adhesive additives that the pressure-sensitive adhesive composition (x-1) may contain.
  • the pressure-sensitive adhesive composition (x-2) can be produced by mixing a pressure-sensitive resin, a cross-linking agent used as necessary, a pressure-sensitive adhesive, an additive for pressure-sensitive adhesive, and the like.
  • the thickness of the pressure-sensitive adhesive layer (X2) at 23 ° C. is preferably 5 to 150 ⁇ m, more preferably 8 to 100 ⁇ m, still more preferably 12 to 70 ⁇ m, and even more preferably 15 to 50 ⁇ m. If the thickness of the pressure-sensitive adhesive layer (X2) at 23 ° C. is 5 ⁇ m or more, sufficient adhesive strength can be easily obtained, and unintentional peeling from the adherend during temporary fixing, misalignment of the adherend, etc. can occur. It tends to be suppressed. On the other hand, if the thickness of the pressure-sensitive adhesive layer (X2) at 23 ° C. is 150 ⁇ m or less, the pressure-sensitive adhesive sheet tends to be easy to handle.
  • Examples of the release material include a release sheet that has undergone double-sided release treatment, a release sheet that has undergone single-sided release treatment, and the like, in which a release agent is applied onto a base material for the release material.
  • Examples of the base material for the release material include plastic films and papers.
  • Examples of the plastic film include polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin and polyethylene naphthalate resin; and olefin resin films such as polypropylene resin and polyethylene resin.
  • Examples of papers include high-quality paper. , Glassin paper, kraft paper, etc.
  • the release agent examples include rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins; long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
  • rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins
  • long-chain alkyl-based resins alkyd-based resins
  • fluorine-based resins fluorine-based resins
  • the thickness of the release material is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 35 to 80 ⁇ m.
  • the method for producing the pressure-sensitive adhesive sheet of the present invention is not particularly limited, and examples thereof include a method for manufacturing a pressure-sensitive adhesive sheet having the following steps (1a) to (3a).
  • Step (1a) A step of applying the pressure-sensitive adhesive composition (x-1) on the peeling-treated surface of the release material to form the pressure-sensitive adhesive layer (X1).
  • Step (4a) A step of applying the pressure-sensitive adhesive composition (x-2) on the peeling-treated surface of the release material to form the pressure-sensitive adhesive layer (X2).
  • Step (5a) A step of adhering the adhesive surface of the pressure-sensitive adhesive layer (X2) formed in step (4a) to the surface of the non-thermally expandable base material layer (Y2) of the pressure-sensitive adhesive sheet formed in step (3a).
  • the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) are further blended with a diluting solvent to form a solution.
  • a diluting solvent to form a solution.
  • the coating method include a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, and a gravure coating method.
  • the step of drying the coating film formed from the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) causes the expansion of the heat-expandable particles.
  • the drying temperature is lower than the expansion start temperature (t) of the thermally expandable particles.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention can be easily peeled off by heating the temporarily fixed adherend, and can suppress contamination of the adherend surface after peeling, and is applicable to various applications. It is possible. Specifically, for example, a dicing sheet used when dicing an adherend such as a semiconductor wafer, a back grind sheet used in a process of grinding an adherend, a substrate such as a semiconductor chip individualized by dicing. Expanding tape used to increase the distance between wafers, transfer tape used to invert the front and back of adherends such as semiconductor chips, and temporary fixing used to temporarily fix an object to be inspected. Suitable for fixing sheets and the like.
  • the adherend of the pressure-sensitive adhesive sheet according to one aspect of the present invention is not particularly limited, and examples thereof include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, sapphire substrates, displays, and panel substrates.
  • the expansion start temperature (t) of the heat-expandable particles is set to less than 125 ° C. as in the pressure-sensitive adhesive sheet of one aspect of the present invention, heat peeling is possible at a low temperature, so that heat of a semiconductor chip with DAF or the like can be obtained. It is suitable for temporarily fixing a variable adherend. Further, when the expansion start temperature (t) of the heat-expandable particles is set to 50 ° C.
  • thermal expansion due to temperature rise such as when grinding the adherend is performed. Since it can suppress the unintended expansion of the sex particles, it is suitable for use as a back grind sheet used in the process of grinding an adherend.
  • the heating temperature at which the pressure-sensitive adhesive sheet according to one aspect of the present invention is heat-peeled from the adherend is equal to or higher than the expansion start temperature (t) of the heat-expandable particles, and is preferably “a temperature higher than the expansion start temperature (t)”. , More preferably “expansion start temperature (t) + 2 ° C.” or higher, further preferably “expansion start temperature (t) + 4 ° C.” or higher, and even more preferably "expansion start temperature (t) + 5 ° C.” or higher.
  • the heating temperature at the time of heat peeling is preferably less than 125 ° C., more preferably 120 ° C. or lower, and further, within the range of the expansion start temperature (t) or higher, from the viewpoint of suppressing the thermal change of the adherend. It is preferably 115 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 105 ° C. or lower.
  • the heating method is not particularly limited as long as it can be heated to a temperature higher than the temperature at which the thermally expandable particles expand, and for example, an electric heater; dielectric heating; magnetic heating; near infrared rays, mid infrared rays, and far infrared rays. It is possible to appropriately use heating by electromagnetic waves such as infrared rays.
  • the heating method may be any of a contact type heating method such as a heating roller and a heating press, and a non-contact type heating method such as an atmosphere heating device and infrared irradiation.
  • the present invention also provides a method for manufacturing a semiconductor device using the pressure-sensitive adhesive sheet according to one aspect of the present invention.
  • the adhesive sheet of one aspect of the present invention is used as a temporary fixing sheet for performing at least one of processing and inspection of an adherend (hereinafter referred to as an aspect).
  • a method for manufacturing a semiconductor device of the first aspect also referred to as "a method for manufacturing a semiconductor device of the first aspect”.
  • a semiconductor device refers to a device in general that can function by utilizing semiconductor characteristics. For example, wafers with integrated circuits, thinned wafers with integrated circuits, chips with integrated circuits, thinned chips with integrated circuits, electronic components including these chips, and electronic components with the electronic components. kind and the like.
  • a processing inspection object is attached to the pressure-sensitive adhesive sheet of one aspect of the present invention, and the processing inspection object is selected from processing and inspection.
  • a method for manufacturing a semiconductor device which includes a step of heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher after applying the above-mentioned one or more.
  • the processing inspection object include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, LED elements, sapphire substrates, displays, panel substrates, and the like.
  • the processing performed on the object to be inspected is not particularly limited, and examples thereof include grinding processing and individualization processing.
  • the inspection performed on the object to be processed is not particularly limited, but for example, defect inspection using an optical microscope or laser (for example, dust inspection, surface scratch inspection, wiring pattern inspection, etc.), visual surface inspection, etc. Can be mentioned.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet to which the processing inspection object is attached may be the pressure-sensitive adhesive layer (X1), and when the pressure-sensitive adhesive sheet is a double-sided pressure-sensitive adhesive sheet, it is pressure-sensitive. It may be an agent layer (X2).
  • the pressure-sensitive adhesive sheet is a double-sided pressure-sensitive adhesive sheet, it is preferable that the object to be processed and inspected is attached to one of the pressure-sensitive adhesive layers and the support is attached to the other pressure-sensitive adhesive layer.
  • the support may be attached to the pressure-sensitive adhesive layer (X1) and the object to be processed and inspected may be attached to the pressure-sensitive adhesive layer (X2), or the object to be processed and inspected may be attached to the pressure-sensitive adhesive layer (X1).
  • the support may be attached to the pressure-sensitive adhesive layer (X2).
  • the pressure-sensitive adhesive layer (X1) has excellent peelability after heat treatment.
  • the adhesive sheet and the support can be heat-peeled without bending.
  • the composition of the pressure-sensitive adhesive layer (X2) may be appropriately selected according to the type of the object to be processed and inspected.
  • the pressure-sensitive adhesive layer (X2) may be a pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with energy rays. Then, the object to be processed can be peeled off without being contaminated by the residue derived from the thermal expansion particles.
  • the object to be processed and inspected is attached to the pressure-sensitive adhesive layer (X1) and the support is attached to the pressure-sensitive adhesive layer (X2)
  • the object to be processed and inspected is an adhesive having excellent peelability after heat treatment.
  • the layer (X1) when heat peeling is performed after processing, it is not necessary to pick up the objects to be processed and inspected individually, and the objects can be easily peeled at once, so that the productivity of the semiconductor device is excellent. ..
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention is used as a temporary fixing sheet for inspecting a processing inspection object as part of a manufacturing process, a plurality of processing inspections are performed on the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet.
  • the inspection can be carried out with the object attached.
  • a part of the adhesive sheet to which the plurality of processing inspection objects are attached is locally heated to selectively select a specific processing inspection object attached to the portion. It can also be peeled off by heating.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention can be heat-peeled at a low temperature, it is excellent in workability and energy saving of the heat-peeling work, and the object to be processed and inspected is easily changed by heat. However, it is possible to suppress the thermal change of the processing inspection object due to heating at the time of heat peeling.
  • ⁇ Manufacturing method of semiconductor device of the second aspect> As a method for manufacturing the semiconductor device of the second aspect, as the adhesive sheet of one aspect of the present invention, a double-sided adhesive sheet in which the expansion start temperature (t) of the heat-expandable particles is 50 ° C. or higher and lower than 125 ° C. is used, and the following steps are taken. Examples thereof include 1A to 3A, a manufacturing method including the following first separation step and the following second separation step (hereinafter, also referred to as “manufacturing method A”). Step 1A: Attaching the object to be processed to the pressure-sensitive adhesive layer (X2) and attaching the support to the adhesive layer (X1) Step 2A: Select from grinding and individualizing the object to be processed.
  • Step 3A A step of sticking a thermosetting film on the surface of the processed object to be treated, which is opposite to the adhesive layer (X2).
  • First separation step The above. Step of separating the pressure-sensitive adhesive layer (X1) from the support by heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or more and less than 125 ° C. Second separation step: The pressure-sensitive adhesive layer (X2) and the processing target The process of separating things
  • Step 1A is a step of attaching the object to be processed to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet and attaching the support to the pressure-sensitive adhesive layer (X1).
  • FIG. 3 is a cross-sectional view illustrating a step of attaching the semiconductor wafer W to the adhesive layer (X2) of the adhesive sheet 2b and attaching the support 3 to the adhesive layer (X1). The semiconductor wafer W is attached so that the surface W1 which is the circuit surface is on the adhesive layer (X2) side.
  • the semiconductor wafer W may be a silicon wafer, a wafer such as gallium arsenide, silicon carbide, sapphire, lithium tantalate, lithium niobate, gallium nitride, indium phosphorus, or a glass wafer.
  • the thickness of the semiconductor wafer W before grinding is usually 500 to 1000 ⁇ m.
  • the circuit included in the surface W1 of the semiconductor wafer W can be formed by, for example, a conventionally used general-purpose method such as an etching method or a lift-off method.
  • the material of the support 3 may be appropriately selected in consideration of required characteristics such as mechanical strength and heat resistance according to the type of the object to be processed, the content of processing, and the like.
  • Examples of the material of the support 3 include metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resin, ABS resin, acrylic resin, engineering plastic, super engineering plastic, polyimide resin, polyamideimide resin and the like.
  • Resin materials Composite materials such as glass epoxy resin, and among these, SUS, glass, and silicon wafers are preferable.
  • the engineering plastic include nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
  • Examples of the super engineering plastic include polyphenylene sulfide (PPS), polyethersulfone (PES), and polyetheretherketone (PEEK).
  • the support 3 is preferably attached to the entire surface of the adhesive surface of the adhesive layer (X1). Therefore, the area of the surface of the support 3 on the side to be attached to the adhesive surface of the adhesive layer (X1) is preferably equal to or larger than the area of the adhesive surface of the adhesive layer (X1). Further, it is preferable that the surface of the support 3 on the side to be attached to the adhesive surface of the adhesive layer (X1) is flat.
  • the shape of the support 3 is not particularly limited, but is preferably plate-shaped.
  • the thickness of the support 3 may be appropriately selected in consideration of the required characteristics, but is preferably 20 ⁇ m or more and 50 mm or less, and more preferably 60 ⁇ m or more and 20 mm or less.
  • Step 2A is a step of performing one or more processes selected from a grinding process and an individualizing process on the object to be processed.
  • One or more processes selected from the grinding process and the individualizing process include, for example, a grinding process using a grinder or the like; an individualizing process by a blade dicing method, a laser dicing method, a stealth dicing (registered trademark) method; a blade tip. Grinding process and individualization process by dicing method, stealth tip dicing method; etc. can be mentioned.
  • individualization treatment by stealth dicing method, grinding treatment and individualization treatment by blade tip dicing method, grinding treatment and individualization treatment by stealth tip dicing method are preferable, and grinding treatment by blade tip dicing method. And individualization treatment, grinding treatment by stealth tip dicing method and individualization treatment are more preferable.
  • the stealth dicing method is a method in which a modified region is formed inside a semiconductor wafer by irradiation with laser light, and the semiconductor wafer is individualized using the modified region as a division starting point.
  • the modified region formed on the semiconductor wafer is a portion brittled by multiphoton absorption, and the modified region is applied by applying stress in the direction in which the semiconductor wafer is parallel to the wafer surface and the wafer is expanded by expanding.
  • the cracks extend toward the front surface and the back surface of the semiconductor wafer starting from the above, and are separated into semiconductor chips. That is, the modified region is formed along the dividing line when it is individualized.
  • the modified region is formed inside the semiconductor wafer by irradiation with a laser beam focused on the inside of the semiconductor wafer.
  • the incident surface of the laser beam may be the front surface or the back surface of the semiconductor wafer. Further, the laser beam incident surface may be a surface to which the adhesive sheet is attached, in which case the laser beam is applied to the semiconductor wafer
  • the blade tip dicing method is also called the DBG method (Dicing Before Grinding).
  • DBG method Diing Before Grinding
  • a groove is formed in the semiconductor wafer in advance along the line to be divided at a depth shallower than the thickness, and then the semiconductor wafer is back-ground to be thin until the ground surface reaches at least the groove. It is a method of individualizing while making it.
  • the groove reached by the ground surface becomes a notch penetrating the semiconductor wafer, and the semiconductor wafer is divided by the notch and separated into semiconductor chips.
  • the pre-formed groove is usually provided on the surface (circuit surface) of the semiconductor wafer, and can be formed by dicing using, for example, a conventionally known wafer dicing apparatus provided with a dicing blade.
  • the stealth dicing method is also called the SDBG method (Stealth Dicing Before Grinding). Similar to the stealth dicing method, the stealth dicing method is a kind of method in which a modified region is formed inside the semiconductor wafer by irradiation with laser light, and the semiconductor wafer is individualized using the modified region as a division starting point. However, it differs from the stealth dicing method in that the semiconductor wafer is fragmented into semiconductor chips while thinning the semiconductor wafer by grinding. Specifically, while the semiconductor wafer having the modified region is back-ground to be thinned, the pressure applied to the semiconductor wafer at that time causes the modified region as a starting point to be directed toward the surface to be attached to the pressure-sensitive adhesive layer of the semiconductor wafer.
  • the cracks are extended and the semiconductor wafer is separated into semiconductor chips.
  • the grinding thickness after the reformed region is formed may be the thickness reaching the reformed region, but even if it does not reach the reformed region strictly, it is ground to a position close to the reformed region. Then, it may be split by the processing pressure of a grinding wheel or the like.
  • the semiconductor wafer W is individualized by the blade tip dicing method, it is preferable that a groove is formed in advance on the surface W1 of the semiconductor wafer W to be attached to the pressure-sensitive adhesive layer (X2) in step 1A.
  • the semiconductor wafer W to be attached to the pressure-sensitive adhesive layer (X2) is irradiated with laser light in step 1A to form a modified region in advance.
  • the semiconductor wafer W attached to the pressure-sensitive adhesive layer (X2) may be irradiated with a laser beam to form a modified region.
  • FIG. 4 shows a cross-sectional view illustrating a step of forming a plurality of reformed regions 5 on the semiconductor wafer W attached to the pressure-sensitive adhesive layer (X2) by using the laser light irradiation device 4.
  • the laser beam is irradiated from the back surface W2 side of the semiconductor wafer W, and a plurality of modified regions 5 are formed inside the semiconductor wafer W at substantially equal intervals.
  • FIG. 5 a plurality of semiconductor chip CPs are shown while thinning the semiconductor wafer W by grinding the back surface W2 of the semiconductor wafer W on which the modified region 5 is formed by a grinder 6 and dividing the semiconductor wafer W starting from the modified region 5.
  • a cross-sectional view illustrating the process of individualizing is shown.
  • the back surface W2 of the semiconductor wafer W is ground in a state where the support 3 supporting the semiconductor wafer W is fixed on a fixed table such as a chuck table.
  • the thickness of the semiconductor chip CP after grinding is preferably 5 to 100 ⁇ m, more preferably 10 to 45 ⁇ m. Further, when the grinding process and the individualization process are performed by the stealth tip dicing method, the thickness of the semiconductor chip CP obtained by grinding can be easily set to 50 ⁇ m or less, more preferably 10 to 45 ⁇ m.
  • the size of the semiconductor chip CP after grinding in a plan view is preferably less than 600 mm 2 , more preferably less than 400 mm 2 , and even more preferably less than 300 mm 2 .
  • the plan view means to see in the thickness direction.
  • the shape of the semiconductor chip CP after fragmentation in a plan view may be a rectangular shape or an elongated shape such as a rectangle.
  • the pressure-sensitive adhesive sheet used in the method for manufacturing the semiconductor device of the second aspect has an expansion start temperature (t) of the thermally expandable particles of 50 ° C. or higher, it is thermally expandable due to a temperature rise such as when grinding is performed. It is possible to avoid a situation in which the particles unintentionally expand. Therefore, unintended separation and misalignment of the object to be processed are suppressed.
  • Step 3A is a step of attaching a thermosetting film to the surface of the processed object to be processed, which is opposite to the pressure-sensitive adhesive layer (X2).
  • FIG. 6 illustrates a step of attaching a thermosetting film 7 provided with a support sheet 8 to a surface of a plurality of semiconductor chip CPs obtained by performing the above treatment on a surface opposite to the pressure-sensitive adhesive layer (X2). A cross-sectional view is shown.
  • the thermosetting film 7 is a film having thermosetting property obtained by forming a resin composition containing at least a thermosetting resin, and is used as an adhesive when mounting a semiconductor chip CP on a substrate.
  • the thermosetting film 7 may contain a curing agent for the thermosetting resin, a thermoplastic resin, an inorganic filler, a curing accelerator, and the like, if necessary.
  • a thermosetting film generally used as a die bonding film, a die attach film, or the like can be used as the thermosetting film 7, for example.
  • the thickness of the thermosetting film 7 is not particularly limited, but is usually 1 to 200 ⁇ m, preferably 3 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m.
  • the support sheet 8 may be any as long as it can support the thermosetting film 7.
  • the resin, metal, and the resin, metal, and the resin, metal, and the non-thermally expandable base material layer (Y2) of the pressure-sensitive adhesive sheet of one aspect of the present invention examples include paper materials.
  • Examples of the method of attaching the thermosetting film 7 to a plurality of semiconductor chip CPs include a method of laminating. Laminating may be performed while heating or may be performed without heating.
  • the heating temperature is preferably "a temperature lower than the expansion start temperature (t)" from the viewpoint of suppressing the expansion of the thermally expandable particles and suppressing the thermal change of the adherend. It is preferably "expansion start temperature (t) -5 ° C.” or less, more preferably “expansion start temperature (t) -10 ° C.” or less, and even more preferably “expansion start temperature (t) -15 ° C.” or less.
  • the first separation step is a step of heating the pressure-sensitive adhesive sheet to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the support.
  • FIG. 7 is a cross-sectional view illustrating a step of heating the pressure-sensitive adhesive sheet 2b to separate the pressure-sensitive adhesive layer (X1) and the support 3.
  • the heating temperature in the first separation step is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, and is preferably "a temperature higher than the expansion start temperature (t)", more preferably “expansion” in the range of 120 ° C. or lower.
  • the heating temperature in the first separation step is preferably "expansion start temperature (t) + 50 ° C.” or less in the range of less than 125 ° C. from the viewpoint of energy saving and suppressing the thermal change of the adherend during heat peeling.
  • the heating temperature in the first separation step is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, still more preferably 115 ° C. or lower, within the range of the expansion start temperature (t) or higher, from the viewpoint of suppressing the thermal change of the adherend. It is 110 ° C. or lower, more preferably 105 ° C. or lower.
  • the second separation step is a step of separating the pressure-sensitive adhesive layer (X2) from the object to be processed.
  • FIG. 8 shows a cross-sectional view illustrating a step of separating the pressure-sensitive adhesive layer (X2) and the plurality of semiconductor chip CPs.
  • the method for separating the pressure-sensitive adhesive layer (X2) and the plurality of semiconductor chip CPs may be appropriately selected according to the type of the pressure-sensitive adhesive layer (X2). For example, when the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with energy rays, the pressure-sensitive adhesive layer (X2) is irradiated with energy rays to reduce the pressure-sensitive adhesive strength. It should be separated.
  • thermosetting film 7 a plurality of semiconductor chip CPs attached on the thermosetting film 7 are obtained.
  • a method for dividing the thermosetting film 7 for example, a method such as laser dicing with laser light, expanding, or fusing can be applied.
  • FIG. 9 shows a semiconductor chip CP with a thermosetting film 7 divided into the same shape as the semiconductor chip CP.
  • the semiconductor chip CP with the thermosetting film 7 further includes an expanding step of widening the distance between the semiconductor chip CPs, a rearrangement step of arranging a plurality of semiconductor chip CPs having a wide distance, and a plurality of semiconductor chip CPs, if necessary. After an appropriate inversion step of inverting the front and back of the above, the thermosetting film 7 is attached (diatached) to the substrate from the side. After that, the semiconductor chip and the substrate can be fixed by thermosetting the thermosetting film.
  • the method for manufacturing a semiconductor device may not include step 3A in the manufacturing method A.
  • the first separation step may be a step of heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher to separate the pressure-sensitive adhesive layer (X1) from the support. ..
  • the method for manufacturing the semiconductor device of the second aspect may be a manufacturing method including the following steps 1B to 3B, the following first separation step, and the following second separation step (hereinafter, also referred to as “manufacturing method B”).
  • Manufacturing method B also referred to as “manufacturing method B”.
  • Step 1B A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet
  • Step 2B The process of attaching the support to the object to be processed.
  • Step 3B Thermosetting is applied to the surface of the processed object to which the treatment has been performed, which is opposite to the adhesive layer (X1).
  • Step of attaching the thermosetting film to be provided First separation step: The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the object to be processed.
  • Step Second separation step A step of separating the pressure-sensitive adhesive layer (X2) from the support.
  • Steps 1B to 3B are described by replacing the pressure-sensitive adhesive layer (X1) with the pressure-sensitive adhesive layer (X2) and the pressure-sensitive adhesive layer (X2) with the pressure-sensitive adhesive layer (X1) in the description of steps 1A to 3A. ..
  • the first separation step is a step of heating the pressure-sensitive adhesive sheet to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the object to be processed.
  • the heating conditions such as the heating temperature of the pressure-sensitive adhesive sheet in the first separation step are the same as those described in the manufacturing method A.
  • the second separation step is a step of separating the pressure-sensitive adhesive layer (X2) from the support.
  • the method for separating the pressure-sensitive adhesive layer (X2) and the support may be appropriately selected according to the type of the pressure-sensitive adhesive layer (X2). For example, when the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with energy rays, the pressure-sensitive adhesive layer (X2) is irradiated with energy rays to reduce the pressure-sensitive adhesive strength. It should be separated.
  • the method for manufacturing a semiconductor device may not include step 3B in the manufacturing method B.
  • the first separation step is a step of heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher to separate the pressure-sensitive adhesive layer (X1) from the object to be processed. Good.
  • the method for manufacturing a semiconductor device of the present invention is not limited to the method for manufacturing a semiconductor device according to the first aspect described above, and may be a method for manufacturing a semiconductor device according to another aspect from the first aspect.
  • the method for manufacturing a semiconductor device of another aspect there is a method of separating an object to be processed attached to another sheet from the other sheet by using the adhesive sheet of one aspect of the present invention.
  • a plurality of semiconductor chips that are spaced apart on the expanding tape are attached to the adhesive surface of the expanding tape, but the work of picking up these chips one by one is complicated.
  • the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet according to one aspect of the present invention is attached to the exposed surface of a plurality of semiconductor chips attached on the expanding tape, and then.
  • the plurality of semiconductor chips By peeling the expanding tape from the plurality of semiconductor chips, the plurality of semiconductor chips can be separated from the expanding tape at once.
  • a plurality of semiconductor chips attached on the pressure-sensitive adhesive sheet according to one aspect of the present invention can be obtained.
  • the plurality of semiconductor chips can be easily separated by subsequently heating the pressure-sensitive adhesive sheet to a temperature (t) or higher at which the heat-expandable particles start to expand.
  • t temperature
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention can be heat-peeled at a low temperature, it is excellent in workability and energy saving of heat-peeling work, and even if the object to be processed is easily thermally changed.
  • the plurality of separated semiconductor chips may be transferred to another pressure-sensitive adhesive sheet, or may be subjected to a rearrangement step of aligning the plurality of semiconductor chips after being separated once.
  • [Storage modulus of substrate E'] A dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name) using a heat-expandable base material layer (Y1) and a non-heat-expandable base material layer (Y2) cut into a length of 5 mm and a width of 30 mm as test samples. Using "DMAQ800”), the storage elastic modulus E'at a predetermined temperature was measured under the conditions of a test start temperature of 0 ° C., a test end temperature of 200 ° C., a temperature rise rate of 3 ° C./min, a frequency of 1 Hz, and an amplitude of 20 ⁇ m. ..
  • ⁇ Adhesive resin> -Acrylic copolymer (A1): n-butyl acrylate (BA) / methyl methacrylate (MMA) / acrylic acid (AA) / 2-hydroxyethyl acrylate (HEA) 86/8/1/5 (mass ratio)
  • Solution containing an acrylic copolymer of Mw 600,000 having a structural unit derived from, diluting solvent: ethyl acetate, solid content concentration: 35% by mass -Acrylic copolymer (A3): manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "Corponil N-9177", adhesive solution containing acrylic copolymer-Acrylic copolymer (A4): 2- An acrylic copolymer of Mw60 having a structural unit derived from a raw material monomer composed of ethylhexyl acrylate (2EHA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) 60/30/10 (mass ratio).
  • Containing solution, diluting polymer: ethyl acetate, solid content concentration: 40% by mass -Acrylic copolymer (A5): A composition derived from a raw material monomer composed of n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) 52/20/28 (mass ratio).
  • Acrylic copolymer having a unit was reacted with 2-methacryloyloxyethyl isocyanate (MOI) so that the addition rate with respect to all the hydroxyl groups in the acrylic copolymer was 80% based on the number of moles.
  • -Isocyanate-based cross-linking agent (i): manufactured by Tosoh Corporation, product name "Coronate HX”, solution containing isocyanurate-type modified hexamethylene diisocyanate, solid content concentration: 75% by mass -Isocyanate-based cross-linking agent (ii): manufactured by Tosoh Corporation, product name "Coronate L”, solution containing trimethylolpropane-modified tolylene diisocyanate, solid content concentration: 75% by mass -Energy ray-curable compound: manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "Shikou UT-4332", polyfunctional urethane acrylate-photopolymerization initiator (i): bis (2,4,6-trimethylbenzoyl) phenylphos Finoxide / Photopolymerization Initiator (ii): 1-Hydroxycyclohexylphenylketone /
  • Adhesive Layer (X1-A1) 0.74 parts by mass (solid content ratio) of the isocyanate-based cross-linking agent (i) is added to 100 parts by mass of the solid content of the acrylic copolymer (A1).
  • a pressure-sensitive adhesive composition (x-1-A1) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by blending, diluting with toluene, and stirring uniformly. Then, the prepared pressure-sensitive adhesive composition (x-1-A1) is applied onto the peeling surface of the light release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to have a thickness of 5 ⁇ m. Adhesive layer (X1-A1) was formed.
  • Production Example 1-2 Formation of Adhesive Layer (X1-A2)
  • the acrylic copolymer (A1) is changed to the acrylic copolymer (A2), and the blending amount of the isocyanate-based cross-linking agent (i) is the same.
  • a pressure-sensitive adhesive composition (x-1-A2) having a component concentration of 25% by mass was prepared to form a pressure-sensitive adhesive layer (X1-A2) having a thickness of 5 ⁇ m.
  • Production Example 1-3 Formation of Adhesive Layer (X1-A3)
  • the acrylic copolymer (A1) is changed to the acrylic copolymer (A3), and the blending amount of the isocyanate-based cross-linking agent (i) is the same.
  • a pressure-sensitive adhesive composition (x-1-A3) having a component concentration of 25% by mass was prepared, and a pressure-sensitive adhesive layer (X1-A3) having a thickness of 5 ⁇ m was formed.
  • Production Example 1-4 Formation of Adhesive Layer (X1-A4)
  • the acrylic copolymer (A1) is changed to the acrylic copolymer (A4), and the blending amount of the isocyanate-based cross-linking agent (i) is the same.
  • a pressure-sensitive adhesive composition (x-1-A4) having a component concentration of 25% by mass was prepared, and a pressure-sensitive adhesive layer (X1-A4) having a thickness of 5 ⁇ m was formed.
  • Adhesive Layer An energy ray-curable compound is added to 100 parts by mass of the solid content of the acrylic copolymer (A5), which is an energy ray-curable adhesive resin, by 4.2 parts by mass. 0.74 parts by mass of the isocyanate-based cross-linking agent (ii) and 1 part by mass of the photopolymerization initiator (i) are mixed, diluted with toluene, and uniformly stirred to obtain a solid content concentration (active ingredient concentration) of 30% by mass.
  • the pressure-sensitive adhesive composition (x-2-A5) of the above was prepared.
  • the prepared pressure-sensitive adhesive composition (x-2-A5) is applied onto the peeling surface of the heavy-release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to have a thickness of 20 ⁇ m.
  • Adhesive layer (X2-A5) was formed.
  • Production Example 3 Formation of a base material laminate in which a heat-expandable base material layer (Y1) and a non-heat-expandable base material layer (Y2) are laminated (1)
  • a solvent-free resin composition (y-1a) 2-Hydroxyethyl acrylate is reacted with the terminal isocyanate urethane prepolymer obtained by reacting the ester-type diol with isophorone diisocyanate (IPDI) to obtain a bifunctional acrylic urethane-based oligomer having a mass average molecular weight (Mw) of 5000. Obtained.
  • the heat-expandable particles (i) were blended with the energy ray-curable composition to prepare a solvent-free resin composition (y-1a) containing no solvent.
  • the content of the heat-expandable particles (i) was 20% by mass with respect to the total amount (100% by mass) of the solvent-free resin composition (y-1a).
  • an ultraviolet irradiation device manufactured by Eye Graphics Co., Ltd., product name "ECS-401GX”
  • a high-pressure mercury lamp manufactured by Eye Graphics Co., Ltd., product name "H04-L41”
  • an illuminance of 160 mW / cm 2 The coating film is cured by irradiating with ultraviolet rays under the condition of a light amount of 500 mJ / cm 2 , and a heat-expandable base layer (Y1) having a thickness of 100 ⁇ m is placed on a PET film as a non-heat-expandable base layer (Y2). Formed.
  • the above-mentioned illuminance and light intensity at the time of ultraviolet irradiation are values measured using an illuminance / light intensity meter (manufactured by EIT, product name "UV Power Pack II").
  • the storage elastic modulus E at 23 ° C. of the heat-expandable base layer (Y1) ' was 5.0 ⁇ 10 8 Pa.
  • the Young's modulus of the heat-expandable substrate layer (Y1) at 23 ° C. was 330 MPa, and the Young's modulus of the non-thermally expandable substrate layer (Y2) at 23 ° C. was 2000 MPa.
  • Example 1 The adhesive surface of the pressure-sensitive adhesive layer (X1-A1) formed in Production Example 1-1 and the surface of the heat-expandable base material layer (Y1) of the base material laminate formed in Production Example 3 were bonded together. Next, the adhesive surface of the pressure-sensitive adhesive layer (X2-A5) formed in Production Example 2 and the PET film surface of the base material laminate were bonded together. As a result, an adhesive sheet having the following structure was produced.
  • Example 2 A pressure-sensitive adhesive sheet having the following constitution was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer (X1-A2) formed in Production Example 1-2 was used.
  • Comparative Example 1 A pressure-sensitive adhesive sheet having the following constitution was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer (X1-A3) formed in Production Example 1-3 was used.
  • Comparative Example 2 A pressure-sensitive adhesive sheet having the following constitution was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer (X1-A4) formed in Production Example 1-4 was used.
  • any of the pressure-sensitive adhesive layers (X1-A1, X1-A2, X1-A3, and X1-A4) of the pressure-sensitive adhesive sheets in Examples 1 and 2 and Comparative Examples 1 and 2 are soda lime glass as an adherend. It was confirmed that the board was attached to a level where it would not come off under its own weight.
  • a vacuum laminator manufactured by Nikko Materials Co., Ltd.
  • a test sample was prepared by pressing at 60 ° C. under the condition of 0.2 MPa for 30 seconds under the name “V-130”). Then, the test sample was placed on a hot plate and heated at 100 ° C., which is equal to or higher than the expansion start temperature of the heat-expandable particles, for 5 minutes. The test sample was placed on the hot plate so that the glass plate G2 side was on the side in contact with the hot plate and the adhesive sheet side was on the side not in contact with the hot plate.
  • the peeling state of the glass plate G1 from the adhesive sheet was visually confirmed, and the self-peeling property was evaluated according to the following criteria.
  • the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is 5.0 MPa or less, and the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. Since the coefficient is higher than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C., it can be seen that the self-peeling property is good.
  • the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is larger than 5.0 MPa, it can be seen that the self-peeling property is deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The invention addresses the problem of providing an adhesive sheet allowing a temporarily fixed adherend to be released readily by heating while suppressing surface contamination on the adherend surface after release, and providing a semiconductor device production method using the adhesive sheet. The adhesive sheet has a layered structure wherein an adhesive layer (X1), a thermally expanding base material layer (Y1) containing thermally expanding particles, and a non-thermally expanding base material layer (Y2), are disposed in this order. The Young's modulus of the adhesive layer (X1) at 23°C is 5.0 MPa or greater. The Young's modulus of the non-thermally expanding base material layer (Y2) at 23°C is higher than the Young's modulus of the adhesive layer (X1) at 23°C.

Description

粘着シート及び半導体装置の製造方法Manufacturing method of adhesive sheet and semiconductor device
 本発明は、粘着シート及び該粘着シートを用いた半導体装置の製造方法に関する。 The present invention relates to an adhesive sheet and a method for manufacturing a semiconductor device using the adhesive sheet.
 粘着シートは、部材を半永久的に固定する用途だけでなく、建材、内装材、及び電子部品等を加工したり検査したりする際に、加工や検査の対象となる部材(以下、「被着体」ともいう)を仮固定するための仮固定用シートとして使用される場合がある。例えば、半導体装置の製造過程では、半導体ウエハを加工する際に仮固定用シートが用いられている。 Adhesive sheets are not only used for semi-permanently fixing members, but also for processing and inspection of building materials, interior materials, electronic parts, etc. (hereinafter, "adhesion"). It may be used as a temporary fixing sheet for temporarily fixing (also called "body"). For example, in the manufacturing process of a semiconductor device, a temporary fixing sheet is used when processing a semiconductor wafer.
 半導体装置の製造過程において、半導体ウエハは、研削によって厚さを薄くする研削工程、切断分離して個片化する個片化工程等を経て、半導体チップに加工される。このとき、半導体ウエハは、仮固定用シートに仮固定された状態で所定の加工が施される。所定の加工を施して得られた半導体チップは、仮固定用シートから分離された後、必要に応じて、半導体チップ同士の間隔を広げるエキスパンド工程、間隔を広げた複数の半導体チップを配列させる再配列工程、半導体チップの表裏を反転させる反転工程等が適宜施された後、基板に実装される。上記各工程においても、それぞれの用途に適した仮固定用シートを使用することができる。 In the manufacturing process of a semiconductor device, a semiconductor wafer is processed into a semiconductor chip through a grinding process of reducing the thickness by grinding, an individualizing process of cutting and separating and individualizing. At this time, the semiconductor wafer is subjected to a predetermined process in a state of being temporarily fixed to the temporary fixing sheet. The semiconductor chips obtained by performing the predetermined processing are separated from the temporary fixing sheet, and then, if necessary, an expanding step of widening the distance between the semiconductor chips and a re-arrangement of a plurality of semiconductor chips having the widened distances. After an arrangement process, an inversion process for inverting the front and back of the semiconductor chip, and the like are appropriately performed, the semiconductor chip is mounted on the substrate. Also in each of the above steps, a temporary fixing sheet suitable for each application can be used.
 特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用の加熱剥離型粘着シートが開示されている。同文献には、該加熱剥離型粘着シートは、電子部品切断時には、被着体に対して所定の大きさの接触面積を確保できるため、チップ飛び等の接着不具合を防止し得る接着性を発揮できる一方で、使用後には、加熱して熱膨張性微小球を膨張させれば、被着体との接触面積を減少させることで、容易に剥離することができる旨の記載がある。 Patent Document 1 discloses a heat-release type pressure-sensitive adhesive sheet for temporary fixing at the time of cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a base material. .. According to the document, the heat-removable adhesive sheet can secure a contact area of a predetermined size with respect to the adherend when cutting an electronic component, and thus exhibits adhesiveness capable of preventing adhesive defects such as chip skipping. On the other hand, there is a description that it can be easily peeled off by reducing the contact area with the adherend by expanding the heat-expandable microspheres by heating after use.
特許第3594853号公報Japanese Patent No. 3594853
 しかしながら、特許文献1に開示される粘着シートのように、粘着剤層中に熱膨張性粒子が含まれている場合、熱膨張性粒子に由来する残渣の被着体表面への付着や、熱膨張性粒子の膨張による粘着剤層の変形や変質に起因する一部の粘着剤層の被着体表面への付着(所謂、「糊残り」)によって、加熱により剥離した後の被着体表面が汚染されることが懸念される。 However, when the pressure-sensitive adhesive layer contains the heat-expandable particles as in the pressure-sensitive adhesive sheet disclosed in Patent Document 1, the residue derived from the heat-expandable particles adheres to the surface of the adherend and heat. The surface of the adherend after being peeled off by heating due to the adhesion of some of the pressure-sensitive adhesive layers to the surface of the adherend due to the deformation and alteration of the pressure-sensitive adhesive layer due to the expansion of the expansive particles (so-called "glue residue"). Is concerned that it will be contaminated.
 本発明は、上記問題点に鑑みてなされたものであって、仮固定された被着体を加熱により容易に剥離することができ、しかも剥離後の被着体表面の汚染を抑制することができる粘着シート及び当該粘着シートを用いる半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and the temporarily fixed adherend can be easily peeled off by heating, and the contamination of the adherend surface after peeling can be suppressed. It is an object of the present invention to provide an adhesive sheet capable of being formed and a method for manufacturing a semiconductor device using the adhesive sheet.
 本発明者らは、粘着シートの構成を、(1)粘着剤層と、熱膨張性粒子を含む熱膨張性基材層と、非熱膨張性基材層とが、この順で配置された積層構造を有するものとすること、(2)粘着剤層のヤング率を特定の範囲に調整すること、及び(3)粘着剤層のヤング率と非熱膨張性基材層のヤング率とを特定の関係に調整することによって、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors arranged the structure of the pressure-sensitive adhesive sheet in this order: (1) a pressure-sensitive adhesive layer, a heat-expandable base material layer containing heat-expandable particles, and a non-heat-expandable base material layer. Having a laminated structure, (2) adjusting the Young ratio of the pressure-sensitive adhesive layer to a specific range, and (3) the Young ratio of the pressure-sensitive adhesive layer and the Young ratio of the non-thermally expandable base material layer. We have found that the above problems can be solved by adjusting to a specific relationship, and have completed the present invention.
すなわち、本発明は、下記[1]~[15]に関する。
 [1] 粘着剤層(X1)と、熱膨張性粒子を含む熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)とが、この順で配置された積層構造を有し、
 前記粘着剤層(X1)の23℃におけるヤング率が、5.0MPa以下であり、
 前記非熱膨張性基材層(Y2)の23℃におけるヤング率が、前記粘着剤層(X1)の23℃におけるヤング率よりも高い、粘着シート。
 [2] 前記粘着剤層(X1)の23℃における厚さが、3~10μmである、上記[1]に記載の粘着シート。
 [3] 前記粘着剤層(X1)の23℃におけるヤング率(単位:MPa)と、前記粘着剤層(X1)の23℃における厚さ(単位:μm)との積が、0.3~50である、上記[1]又は[2]に記載の粘着シート。
 [4] 前記粘着剤層(X1)が、アクリル系樹脂とイソシアネート系架橋剤とを含む粘着剤組成物(x-1)から形成された層である、上記[1]~[3]のいずれかに記載の粘着シート。
 [5] 前記イソシアネート系架橋剤が、イソシアヌレート環を有するイソシアヌレート型変性体を含む、上記[4]に記載の粘着シート。
 [6] 前記非熱膨張性基材層(Y2)の23℃におけるヤング率が、700MPa以上である、上記[1]~[5]のいずれかに記載の粘着シート。
 [7] 前記非熱膨張性基材層(Y2)が、ポリエチレンテレフタレートフィルムである、上記[1]~[6]のいずれかに記載の粘着シート。
 [8] 前記非熱膨張性基材層(Y2)の、前記熱膨張性基材層(Y1)の積層面とは反対側の面に、粘着剤層(X2)を更に有する、上記[1]~[7]のいずれかに記載の粘着シート。
 [9] 前記熱膨張性粒子は、膨張開始温度(t)が50℃以上125℃未満である、上記[1]~[7]のいずれかに記載の粘着シート。
 [10] 前記熱膨張性粒子は、膨張開始温度(t)が50℃以上125℃未満である、上記[8]に記載の粘着シート。
 [11] 前記粘着剤層(X2)が、エネルギー線を照射することにより硬化して粘着力が低下する粘着剤層である、上記[10]に記載の粘着シート。
 [12] 上記[1]~[11]のいずれかに記載の粘着シートに加工検査対象物を貼付し、
 前記加工検査対象物に対して、加工及び検査から選択される1以上を施した後に、前記粘着シートを、前記粘着シートが有する熱膨張性粒子の膨張開始温度(t)以上に加熱する工程を含む、半導体装置の製造方法。
 [13] 上記[10]又は[11]に記載の粘着シートを用い、下記工程1A~3A、下記第一分離工程、及び下記第二分離工程を含む半導体装置の製造方法。
 工程1A:前記粘着シートが有する粘着剤層(X2)に加工対象物を貼付し、前記粘着シートが有する粘着剤層(X1)に支持体を貼付する工程
 工程2A:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 工程3A:前記処理を施した加工対象物の、前記粘着剤層(X2)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程
 第一分離工程:前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
 第二分離工程:前記粘着剤層(X2)と前記加工対象物とを分離する工程
 [14] 上記[10]又は[11]に記載の粘着シートを用い、下記工程1B~3B、下記第一分離工程、及び下記第二分離工程を含む半導体装置の製造方法。
 工程1B:前記粘着シートが有する粘着剤層(X1)に加工対象物を貼付し、前記粘着シートが有する粘着剤層(X2)に支持体を貼付する工程
 工程2B:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 工程3B:前記処理を施した加工対象物の、前記粘着剤層(X1)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程
 第一分離工程:前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、前記粘着剤層(X1)と前記加工対象物とを分離する工程
 第二分離工程:前記粘着剤層(X2)と前記支持体とを分離する工程
 [15] 上記[11]に記載の粘着シートを用い、
 前記第二分離工程が、粘着剤層(X2)にエネルギー線を照射することにより粘着剤層(X2)を硬化させる工程を含む、上記[13]又は[14]に記載の半導体装置の製造方法。
That is, the present invention relates to the following [1] to [15].
[1] A laminated structure in which a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable base material layer (Y2) are arranged in this order. Have and
The Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is 5.0 MPa or less.
A pressure-sensitive adhesive sheet in which the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. is higher than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C.
[2] The pressure-sensitive adhesive sheet according to the above [1], wherein the pressure-sensitive adhesive layer (X1) has a thickness of 3 to 10 μm at 23 ° C.
[3] The product of the Young's modulus (unit: MPa) of the pressure-sensitive adhesive layer (X1) at 23 ° C. and the thickness (unit: μm) of the pressure-sensitive adhesive layer (X1) at 23 ° C. is 0.3 to The adhesive sheet according to the above [1] or [2], which is 50.
[4] Any of the above [1] to [3], wherein the pressure-sensitive adhesive layer (X1) is a layer formed from a pressure-sensitive adhesive composition (x-1) containing an acrylic resin and an isocyanate-based cross-linking agent. Adhesive sheet described in Crab.
[5] The pressure-sensitive adhesive sheet according to the above [4], wherein the isocyanate-based cross-linking agent contains an isocyanurate-type modified product having an isocyanurate ring.
[6] The pressure-sensitive adhesive sheet according to any one of [1] to [5] above, wherein the non-thermally expandable base material layer (Y2) has a Young's modulus of 700 MPa or more at 23 ° C.
[7] The pressure-sensitive adhesive sheet according to any one of [1] to [6] above, wherein the non-thermally expandable base material layer (Y2) is a polyethylene terephthalate film.
[8] The non-thermally expandable base material layer (Y2) further has an adhesive layer (X2) on a surface opposite to the laminated surface of the heat expandable base material layer (Y1). ] To [7].
[9] The pressure-sensitive adhesive sheet according to any one of [1] to [7] above, wherein the thermally expandable particles have an expansion start temperature (t) of 50 ° C. or higher and lower than 125 ° C.
[10] The pressure-sensitive adhesive sheet according to the above [8], wherein the thermally expandable particles have an expansion start temperature (t) of 50 ° C. or higher and lower than 125 ° C.
[11] The pressure-sensitive adhesive sheet according to the above [10], wherein the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer that is cured by irradiation with energy rays to reduce the adhesive strength.
[12] The object to be processed and inspected is attached to the adhesive sheet according to any one of [1] to [11] above.
A step of heating the pressure-sensitive adhesive sheet to a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles contained in the pressure-sensitive adhesive sheet after applying one or more selected from processing and inspection to the processing inspection object. A method for manufacturing a semiconductor device, including.
[13] A method for manufacturing a semiconductor device, which comprises the following steps 1A to 3A, the following first separation step, and the following second separation step using the pressure-sensitive adhesive sheet according to the above [10] or [11].
Step 1A: A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet Step 2A: For the object to be processed Step 3A: A process of performing one or more treatments selected from a grinding process and an individualization process Step 3A: A thermocurable surface of the processed object to be processed, which is opposite to the pressure-sensitive adhesive layer (X2). First separation step: The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the support. Second separation step: Step of separating the pressure-sensitive adhesive layer (X2) from the object to be processed [14] Using the pressure-sensitive adhesive sheet according to the above [10] or [11], the following steps 1B to 3B, the following A method for manufacturing a semiconductor device including a first separation step and the following second separation step.
Step 1B: A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet Step 2B: For the object to be processed Step 3B: A process of performing one or more treatments selected from a grinding treatment and an individualizing treatment. The surface of the processed object to which the treatment has been subjected to the treatment is heat-curable on the surface opposite to the adhesive layer (X1). First separation step: The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C., and the pressure-sensitive adhesive layer (X1) and the object to be processed are separated from each other. Separation step Second separation step: Step of separating the pressure-sensitive adhesive layer (X2) and the support [15] Using the pressure-sensitive adhesive sheet according to the above [11],
The method for manufacturing a semiconductor device according to the above [13] or [14], wherein the second separation step includes a step of curing the pressure-sensitive adhesive layer (X2) by irradiating the pressure-sensitive adhesive layer (X2) with energy rays. ..
 本発明の粘着シートは、仮固定された被着体を加熱により容易に剥離することができ、しかも剥離後の被着体表面の汚染を抑制することができる。 The adhesive sheet of the present invention can easily peel off the temporarily fixed adherend by heating, and can suppress contamination of the surface of the adherend after peeling.
本発明の粘着シートの構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the pressure-sensitive adhesive sheet of this invention. 本発明の粘着シートの構成の別の例を示す断面図である。It is sectional drawing which shows another example of the structure of the pressure-sensitive adhesive sheet of this invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is sectional drawing explaining an example of the process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is sectional drawing explaining an example of the process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is sectional drawing explaining an example of the process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is sectional drawing explaining an example of the process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is sectional drawing explaining an example of the process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is sectional drawing explaining an example of the process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is sectional drawing explaining an example of the process of the manufacturing method of the semiconductor device of this invention.
 本明細書において、「有効成分」とは、対象となる組成物に含有される成分のうち、希釈溶剤を除いた成分を指す。
 また、本明細書において、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
In the present specification, the "active ingredient" refers to an ingredient contained in the target composition excluding the diluting solvent.
Further, in the present specification, the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, and is specifically measured based on the method described in Examples. It is the value that was set.
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
In the present specification, for example, "(meth) acrylic acid" means both "acrylic acid" and "methacrylic acid", and other similar terms are also used.
Further, in the present specification, the lower limit value and the upper limit value described stepwise with respect to a preferable numerical range (for example, a range such as content) can be independently combined. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the "favorable lower limit value (10)" and the "more preferable upper limit value (60)" are combined to obtain "10 to 60". You can also do it.
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として無電極ランプ、高圧水銀ランプ、メタルハライドランプ、UV-LED等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本明細書において、「エネルギー線重合性」とは、エネルギー線を照射することにより重合する性質を意味する。
In the present specification, the "energy beam" means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include ultraviolet rays, radiation, and electron beams. Ultraviolet rays can be irradiated by using, for example, an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, a UV-LED, or the like as an ultraviolet source. The electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
As used herein, the term "energy ray polymerizable" means the property of polymerizing by irradiating with energy rays.
 本明細書において、「層」が「非熱膨張性層」であるか「熱膨張性層」であるかは、以下のように判断する。
 判断の対象となる層が熱膨張性粒子を含有する場合、当該層を熱膨張性粒子の膨張開始温度(t)で、3分間加熱処理する。下記式から算出される体積変化率が5%未満である場合、当該層は「非熱膨張性層」であると判断し、5%以上である場合、当該層は「熱膨張性層」であると判断する。
・体積変化率(%)={(加熱処理後の前記層の体積-加熱処理前の前記層の体積)/加熱処理前の前記層の体積}×100
 なお、熱膨張性粒子を含有しない層は「非熱膨張性層」であるとする。
In the present specification, whether the "layer" is a "non-thermally expanding layer" or a "thermally expanding layer" is determined as follows.
When the layer to be judged contains the heat-expandable particles, the layer is heat-treated at the expansion start temperature (t) of the heat-expandable particles for 3 minutes. If the volume change rate calculated from the following formula is less than 5%, the layer is judged to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer". Judge that there is.
Volume change rate (%) = {(volume of the layer after heat treatment-volume of the layer before heat treatment) / volume of the layer before heat treatment} × 100
The layer containing no thermally expandable particles is referred to as a "non-thermally expandable layer".
 本明細書において、半導体ウエハ及び半導体チップの「表面」とは回路が形成された面(以下、「回路面」ともいう)を指し、半導体ウエハ及び半導体チップの「裏面」とは回路が形成されていない面を指す。  In the present specification, the "front surface" of the semiconductor wafer and the semiconductor chip refers to the surface on which the circuit is formed (hereinafter, also referred to as the "circuit surface"), and the "back surface" of the semiconductor wafer and the semiconductor chip is the circuit formed. Refers to the surface that is not.
[粘着シート]
 本発明の粘着シートは、粘着剤層(X1)と、熱膨張性粒子を含む熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)とが、この順で配置された積層構造を有し、前記粘着剤層(X1)の23℃におけるヤング率が、5.0MPa以下であり、前記非熱膨張性基材層(Y2)の23℃におけるヤング率が、前記粘着剤層(X1)の23℃におけるヤング率よりも高い、粘着シートである。
[Adhesive sheet]
In the pressure-sensitive adhesive sheet of the present invention, a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable base material layer (Y2) are arranged in this order. The pressure-sensitive adhesive layer (X1) has a young ratio of 5.0 MPa or less at 23 ° C., and the non-thermally expandable base material layer (Y2) has a young ratio at 23 ° C. It is an adhesive sheet having a higher Young's ratio of the agent layer (X1) at 23 ° C.
 本発明の粘着シートは、熱膨張性基材層(Y1)に含まれる熱膨張性粒子を、膨張開始温度(t)以上の温度に加熱して膨張させて、粘着剤層(X1)の粘着表面に凹凸を良好に形成させることで、粘着剤層(X1)の粘着表面に貼付されている被着体と当該粘着表面との接触面積を大きく低下させるものである。これにより、粘着シートから被着体を容易に剥離することができる。しかも、熱膨張性粒子は、熱膨張性基材層(Y1)に含まれるため、熱膨張性粒子に起因する被着体表面の汚染が抑制される。
 ここで、本発明の粘着シートは、粘着剤層(X1)の23℃におけるヤング率が5.0MPa以下に調整されている。そのため、熱膨張性粒子の膨張により生じる、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面の凹凸に、粘着剤層(X1)がしっかりと追従し、粘着剤層(X1)の粘着表面に凹凸が良好に形成される。
 一方、粘着剤層(X1)の23℃におけるヤング率が5.0MPaを超える場合、熱膨張性粒子の膨張により生じる、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面の凹凸に、粘着剤層(X1)が十分に追従できないこと、及び、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面の凹凸の形成が粘着剤層(X1)により抑え込まれることの少なくともいずれかによって、粘着剤層(X1)の粘着表面に凹凸が形成され難くなる。
 また、非熱膨張性基材層(Y2)の23℃におけるヤング率が、粘着剤層(X1)の23℃におけるヤング率よりも高いことによって、熱膨張性粒子を膨張させた際に、膨張性基材層(Y1)の非膨張性基材層(Y2)側の表面よりも、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面に凹凸が形成されやすくなる。そのため、粘着剤層(X1)の粘着表面に凹凸が良好に形成される。
 非熱膨張性基材層(Y2)の23℃におけるヤング率が、粘着剤層(X1)の23℃におけるヤング率と同等であるかそれよりも低い場合には、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面に凹凸が形成され難くなり、粘着剤層(X1)の粘着表面に凹凸が形成され難くなる。
In the pressure-sensitive adhesive sheet of the present invention, the heat-expandable particles contained in the heat-expandable base material layer (Y1) are heated to a temperature equal to or higher than the expansion start temperature (t) to expand, and the pressure-sensitive adhesive layer (X1) is adhered. By forming irregularities on the surface well, the contact area between the adherend attached to the adhesive surface of the adhesive layer (X1) and the adhesive surface is greatly reduced. As a result, the adherend can be easily peeled off from the adhesive sheet. Moreover, since the heat-expandable particles are contained in the heat-expandable base material layer (Y1), contamination of the adherend surface due to the heat-expandable particles is suppressed.
Here, in the pressure-sensitive adhesive sheet of the present invention, the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is adjusted to 5.0 MPa or less. Therefore, the pressure-sensitive adhesive layer (X1) firmly follows the unevenness of the surface of the heat-expandable base material layer (Y1) on the pressure-sensitive adhesive layer (X1) side caused by the expansion of the heat-expandable particles, and the pressure-sensitive adhesive layer (X1) Unevenness is well formed on the adhesive surface of X1).
On the other hand, when the Young ratio of the pressure-sensitive adhesive layer (X1) at 23 ° C. exceeds 5.0 MPa, the surface of the heat-expandable base material layer (Y1) on the pressure-sensitive adhesive layer (X1) side caused by the expansion of the heat-expandable particles. The pressure-sensitive adhesive layer (X1) cannot sufficiently follow the unevenness of the surface, and the surface unevenness on the pressure-sensitive adhesive layer (X1) side of the heat-expandable base material layer (Y1) is formed by the pressure-sensitive adhesive layer (X1). By at least one of being suppressed, unevenness is less likely to be formed on the adhesive surface of the adhesive layer (X1).
Further, since the coefficient of thermal expansion of the non-thermally expandable base material layer (Y2) at 23 ° C. is higher than the coefficient of thermal expansion of the pressure-sensitive adhesive layer (X1) at 23 ° C., it expands when the thermally expandable particles are expanded. Concavities and convexities are more likely to be formed on the surface of the heat-expandable base layer (Y1) on the pressure-sensitive adhesive layer (X1) side than on the surface of the sex-based base layer (Y1) on the non-expandable base layer (Y2) side. Therefore, unevenness is satisfactorily formed on the adhesive surface of the adhesive layer (X1).
When the Young ratio of the non-thermally expandable base material layer (Y2) at 23 ° C. is equal to or lower than the Young ratio of the pressure-sensitive adhesive layer (X1) at 23 ° C. Unevenness is less likely to be formed on the surface of the pressure-sensitive adhesive layer (X1) side of Y1), and unevenness is less likely to be formed on the adhesive surface of the pressure-sensitive adhesive layer (X1).
 ここで、本発明の粘着シートは、熱膨張性基材層(Y1)に含まれる熱膨張性粒子の膨張開始温度(t)以上の温度に加熱することにより、粘着シートと被着体との密着性を著しく低下させることができる。そのため、本発明の一態様の粘着シートは、加熱により剥離する際に、粘着シートを引き剥がす力を印加することなく、粘着シートを被着体から剥離させることもできる。具体的には、被着体に粘着シートが貼付されてなる積層体において、加熱により剥離する際に、粘着シート側を下側に向け、重力により粘着シートを被着体から落下させることで剥離させることができる。
 なお、本明細書では、粘着シートを引き剥がす力を印加することなく、粘着シートが被着体から剥がれている状態となったり、剥がれ落ちたりすることを、「自己剥離」というものとする。また、そのような性質を「自己剥離性」という。
Here, the pressure-sensitive adhesive sheet of the present invention is heated to a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles contained in the heat-expandable base material layer (Y1) so that the pressure-sensitive adhesive sheet and the adherend can be brought together. Adhesion can be significantly reduced. Therefore, when the pressure-sensitive adhesive sheet according to one aspect of the present invention is peeled off by heating, the pressure-sensitive adhesive sheet can be peeled off from the adherend without applying a force for peeling off the pressure-sensitive adhesive sheet. Specifically, in a laminated body in which an adhesive sheet is attached to an adherend, when the adhesive sheet is peeled off by heating, the adhesive sheet side is directed downward and the adhesive sheet is dropped from the adherend by gravity to peel off. Can be made to.
In the present specification, the state in which the adhesive sheet is peeled off from the adherend or peeled off without applying the force for peeling off the adhesive sheet is referred to as "self-peeling". Moreover, such a property is called "self-peeling property".
 本発明の一態様の粘着シートにおいて、粘着剤層(X1)の23℃におけるヤング率は、熱膨張性基材層(Y1)の変形に対する粘着剤層(X1)の追従性を高め、熱膨張性粒子を膨張させた際に、粘着剤層(X1)の粘着表面に凹凸を形成しやすくする観点から、好ましくは4.5MPa以下、より好ましくは4.0MPa以下、更に好ましくは3.5MPa以下、より更に好ましくは3.0MPa以下、更になお好ましくは2.5MPa以下、一層好ましくは2.0MPa以下、より一層好ましくは1.5MPa以下、更に一層好ましくは1.3MPa以下である。また、通常0.1MPa以上である。
 本明細書において、粘着剤層(X1)の23℃におけるヤング率は、後述する実施例に記載の方法により測定される。
In the pressure-sensitive adhesive sheet of one aspect of the present invention, the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. enhances the followability of the pressure-sensitive adhesive layer (X1) to the deformation of the heat-expandable base material layer (Y1) and thermally expands. From the viewpoint of facilitating the formation of irregularities on the adhesive surface of the pressure-sensitive adhesive layer (X1) when the sex particles are expanded, it is preferably 4.5 MPa or less, more preferably 4.0 MPa or less, still more preferably 3.5 MPa or less. It is even more preferably 3.0 MPa or less, even more preferably 2.5 MPa or less, even more preferably 2.0 MPa or less, even more preferably 1.5 MPa or less, even more preferably 1.3 MPa or less. Moreover, it is usually 0.1 MPa or more.
In the present specification, the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is measured by the method described in Examples described later.
[粘着シートの構成]
 本発明の粘着シートは、粘着剤層(X1)と、熱膨張性粒子を含む熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)とが、この順で配置された積層構造を有するものであればよいが、本発明の一態様の粘着シートは、粘着剤層(X1)、熱膨張性基材層(Y1)、及び非熱膨張性基材層(Y2)のみを有していてもよいし、必要に応じて、他の層を有していてもよい。
 例えば、本発明の一態様の粘着シートを、被着体に対する加工及び検査から選択される1以上に用いる場合、被着体の加工性及び検査性を向上させる観点から、非膨張性基材層(Y2)の、熱膨張性基材層(Y1)の積層面とは反対側の面に、粘着剤層(X2)を更に有する構成であることが好ましい。当該構成を有することで、粘着剤層(X1)又は粘着剤層(X2)のいずれか一方の粘着剤層に被着体を貼付し、いずれか他方の粘着剤層に支持体を貼付することができる。
 被着体が粘着シートを介して支持体に固定されることによって、被着体に対して加工及び検査から選択される1以上を施す際に、被着体の振動、位置ズレ、及び被着体が脆弱である場合の破損等を抑制し、加工精度及び加工速度並びに検査精度及び検査速度を向上させることができる。
 なお、以下の説明において、特に断らない限り、「両面粘着シート」とは、粘着剤層(X1)と、熱膨張性粒子を含む熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とが、この順で配置された積層構造を有する粘着シートを意味するものとする。
[Composition of adhesive sheet]
In the pressure-sensitive adhesive sheet of the present invention, a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable base material layer (Y2) are arranged in this order. The pressure-sensitive adhesive sheet according to one aspect of the present invention may have a laminated structure, but the pressure-sensitive adhesive sheet (X1), the heat-expandable base material layer (Y1), and the non-heat-expandable base material layer (Y2) It may have only, or it may have other layers, if desired.
For example, when the pressure-sensitive adhesive sheet of one aspect of the present invention is used for one or more selected from processing and inspection of an adherend, a non-expandable base material layer is used from the viewpoint of improving the processability and inspectability of the adherend. It is preferable that the pressure-sensitive adhesive layer (X2) is further provided on the surface of (Y2) opposite to the laminated surface of the heat-expandable base material layer (Y1). By having this structure, the adherend is attached to one of the adhesive layers (X1) and the adhesive layer (X2), and the support is attached to the other adhesive layer. Can be done.
By fixing the adherend to the support via an adhesive sheet, vibration, misalignment, and adherence of the adherend when one or more selected from processing and inspection are applied to the adherend. It is possible to suppress damage and the like when the body is fragile, and improve the processing accuracy and processing speed as well as the inspection accuracy and inspection speed.
In the following description, unless otherwise specified, the "double-sided pressure-sensitive adhesive sheet" refers to a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and a non-heat-expandable group. It is assumed that the material layer (Y2) and the pressure-sensitive adhesive layer (X2) mean a pressure-sensitive adhesive sheet having a laminated structure arranged in this order.
 本発明の一態様の粘着シートは、粘着剤層(X1)の粘着表面上に剥離材を有していてもよい。また、本発明の一態様の粘着シートが両面粘着シートの構成を有する場合、粘着剤層(X1)及び粘着剤層(X2)の少なくともいずれか一方の粘着表面上に剥離材を有していてもよい。 The pressure-sensitive adhesive sheet according to one aspect of the present invention may have a release material on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1). Further, when the pressure-sensitive adhesive sheet according to one aspect of the present invention has the structure of a double-sided pressure-sensitive adhesive sheet, it has a release material on the pressure-sensitive adhesive surface of at least one of the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2). May be good.
 次に、図面を参照しながら、本発明の一態様の粘着シートの構成について、より具体的に説明する。 Next, the configuration of the pressure-sensitive adhesive sheet according to one aspect of the present invention will be described more specifically with reference to the drawings.
 本発明の一態様の粘着シートとしては、図1(a)に示すような、粘着剤層(X1)と、熱膨張性粒子を含む熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)とが、この順で配置された積層構造を有する粘着シート1aが挙げられる。
 なお、本発明の一態様の粘着シートは、図1(b)に示す粘着シート1bのように、粘着剤層(X1)の粘着表面上に、さらに剥離材10を有する構成としてもよい。
The pressure-sensitive adhesive sheet according to one aspect of the present invention includes a pressure-sensitive adhesive layer (X1) as shown in FIG. An adhesive sheet 1a having a laminated structure in which the base material layer (Y2) is arranged in this order can be mentioned.
The pressure-sensitive adhesive sheet according to one aspect of the present invention may have a structure in which the release material 10 is further provided on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1), as in the pressure-sensitive adhesive sheet 1b shown in FIG. 1 (b).
 本発明の別の一態様の粘着シートとしては、上記両面粘着シートの構成を有するものが挙げられる。
 このような構成を有する粘着シートとしては、例えば、図2(a)に示すような、粘着剤層(X1)と、熱膨張性粒子を含む熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とが、この順で配置された積層構造を有する粘着シート2aが挙げられる。
 また、図2(b)に示す両面粘着シート2bのように、粘着剤層(X1)の粘着表面上にさらに剥離材10aを有し、粘着剤層(X2)の粘着表面上にさらに剥離材10bを有する構成としてもよい。
As another aspect of the pressure-sensitive adhesive sheet of the present invention, those having the structure of the double-sided pressure-sensitive adhesive sheet can be mentioned.
Examples of the pressure-sensitive adhesive sheet having such a structure include a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1) containing heat-expandable particles, and non-heat as shown in FIG. Examples thereof include a pressure-sensitive adhesive sheet 2a having a laminated structure in which an expandable base material layer (Y2) and a pressure-sensitive adhesive layer (X2) are arranged in this order.
Further, as in the double-sided adhesive sheet 2b shown in FIG. 2B, the release material 10a is further provided on the adhesive surface of the adhesive layer (X1), and the release material is further provided on the adhesive surface of the adhesive layer (X2). It may be configured to have 10b.
 なお、図2(b)に示す両面粘着シート2bにおいて、剥離材10aを粘着剤層(X1)から剥がす際の剥離力と、剥離材10bを粘着剤層(X2)から剥がす際の剥離力とが同程度である場合、双方の剥離材を外側へ引っ張って剥がそうとすると、粘着剤層が、2つの剥離材に伴って分断されて引き剥がされるという現象が生じることがある。このような現象を抑制する観点から、2つの剥離材10a、10bは、互いに貼付される粘着剤層からの剥離力が異なるように設計された2種の剥離材を用いることが好ましい。 In the double-sided pressure-sensitive adhesive sheet 2b shown in FIG. 2B, the peeling force when the release material 10a is peeled from the pressure-sensitive adhesive layer (X1) and the peeling force when the release material 10b is peeled off from the pressure-sensitive adhesive layer (X2). When both release materials are pulled outward and attempted to be peeled off, a phenomenon may occur in which the pressure-sensitive adhesive layer is divided and peeled off along with the two release materials. From the viewpoint of suppressing such a phenomenon, it is preferable to use two types of release materials designed so that the release forces from the pressure-sensitive adhesive layers attached to the two release materials 10a and 10b are different from each other.
 本発明の更に別の一態様の粘着シートとしては、図2(a)に示す両面粘着シート2aにおいて、粘着剤層(X1)及び粘着剤層(X2)の一方の粘着表面に、両面に剥離処理が施された剥離材が積層したものを、ロール状に巻いた構成を有する両面粘着シートであってもよい。 As yet another aspect of the pressure-sensitive adhesive sheet of the present invention, the double-sided pressure-sensitive adhesive sheet 2a shown in FIG. 2A is peeled off on both sides of the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2). A double-sided adhesive sheet having a structure in which the treated release material is laminated in a roll shape may be used.
 本発明の一態様の粘着シートは、粘着剤層(X1)と熱膨張性基材層(Y1)との間及び熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)との間の少なくともいずれかの層間に、他の層を有していてもよく、他の層を有していなくてもよい。
 また、本発明の一態様の粘着シートが上記両面粘着シートである場合、上記に加えて、粘着剤層(X1)と熱膨張性基材層(Y1)との間、熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)との間、及び非熱膨張性基材層(Y2)と粘着剤層(X2)との間の少なくともいずれかの層間に、他の層を有していてもよく、他の層を有していなくてもよい。
 但し、本発明の一態様の粘着シートは、熱膨張性粒子の膨張による熱膨張性基材層(Y1)の変形を、粘着剤層(X1)に良好に伝える観点から、粘着剤層(X1)と熱膨張性基材層(Y1)とは直接積層されていることが好ましい。
The pressure-sensitive adhesive sheet according to one aspect of the present invention is between the pressure-sensitive adhesive layer (X1) and the heat-expandable base material layer (Y1), and between the heat-expandable base material layer (Y1) and the non-heat-expandable base material layer (Y2). It may or may not have another layer between at least one of the layers between and.
When the pressure-sensitive adhesive sheet according to one aspect of the present invention is the double-sided pressure-sensitive adhesive sheet, in addition to the above, a heat-expandable base material layer is provided between the pressure-sensitive adhesive layer (X1) and the heat-expandable base material layer (Y1). Another layer between at least one of the layers between (Y1) and the non-thermally expandable substrate layer (Y2) and between the non-thermally expandable substrate layer (Y2) and the pressure-sensitive adhesive layer (X2). It may or may not have another layer.
However, the pressure-sensitive adhesive sheet according to one aspect of the present invention has the viewpoint of transmitting the deformation of the heat-expandable base material layer (Y1) due to the expansion of the heat-expandable particles to the pressure-sensitive adhesive layer (X1) satisfactorily. ) And the heat-expandable base material layer (Y1) are preferably directly laminated.
 次に、本発明の粘着シートについて、加熱によって粘着剤層(X1)の粘着表面に凹凸を形成するために必要となる熱膨張性粒子について説明した上で、粘着剤層(X1)、熱膨張性基材層(Y1)、非熱膨張性基材層(Y2)、及び粘着剤層(X2)について説明する。 Next, regarding the pressure-sensitive adhesive sheet of the present invention, after explaining the heat-expandable particles required for forming irregularities on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1) by heating, the pressure-sensitive adhesive layer (X1) and the heat-expanding The sex substrate layer (Y1), the non-thermally expandable substrate layer (Y2), and the pressure-sensitive adhesive layer (X2) will be described.
<熱膨張性粒子>
 本発明の粘着シートに用いられる熱膨張性粒子は、加熱により膨張する粒子であればよく、膨張開始温度(t)は、粘着シートの用途に応じて適宜選択される。
<Thermal expandable particles>
The thermally expandable particles used in the pressure-sensitive adhesive sheet of the present invention may be particles that expand by heating, and the expansion start temperature (t) is appropriately selected according to the use of the pressure-sensitive adhesive sheet.
 ところで、近年、半導体チップを基板に実装する際に、半導体チップをダイアタッチフィルム(以下、「DAF」ともいう)と称される、熱硬化性を有するフィルム状接着剤を介して基板に貼付する工程が採用されている。
 DAFは、半導体ウエハ又は個片化した複数の半導体チップの一方の面に貼付され、半導体ウエハの個片化と同時に又は半導体チップに貼付された後に半導体チップと同形状に分割される。個片化して得られたDAF付き半導体チップは、DAF側から基板に貼付(ダイアタッチ)され、その後、DAFを熱硬化させることで半導体チップと基板とが固着される。このとき、DAFは基板に貼付されるまでは、感圧又は加熱により接着する性質が保持される必要がある。しかしながら、DAF付き半導体チップを加熱剥離型の粘着シートの被着体とする場合、熱膨張性粒子を膨張させる際の加熱によって、ダイアタッチ前にDAFの硬化が進行してしまい、基板に対するDAFの接着力が低下することがある。DAFの接着力の低下は、半導体チップと基板との接合信頼性の低下を招くため、抑制されることが望ましい。つまり、加熱剥離する際に被着体の熱変化が抑制されることが望ましい。
 かかる観点から、本発明の一態様の粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)は、好ましくは125℃未満、より好ましくは120℃以下、更に好ましくは115℃以下、より更に好ましくは110℃以下、更になお好ましくは105℃以下である。
By the way, in recent years, when a semiconductor chip is mounted on a substrate, the semiconductor chip is attached to the substrate via a thermosetting film-like adhesive called a die attach film (hereinafter, also referred to as "DAF"). The process is adopted.
The DAF is attached to one surface of the semiconductor wafer or a plurality of fragmented semiconductor chips, and is divided into the same shape as the semiconductor chip at the same time as the semiconductor wafer is fragmented or after being attached to the semiconductor chip. The semiconductor chip with DAF obtained by individualizing is attached (diatached) to the substrate from the DAF side, and then the semiconductor chip and the substrate are fixed by thermosetting the DAF. At this time, the DAF needs to retain the property of adhering by pressure sensitivity or heating until it is attached to the substrate. However, when the semiconductor chip with DAF is used as an adherend of a heat-release type adhesive sheet, the DAF is cured before the die attachment due to the heating when the thermally expandable particles are expanded, and the DAF with respect to the substrate is cured. Adhesive strength may decrease. It is desirable to suppress the decrease in the adhesive strength of the DAF because it causes a decrease in the bonding reliability between the semiconductor chip and the substrate. That is, it is desirable that the thermal change of the adherend is suppressed at the time of heat peeling.
From this point of view, in the pressure-sensitive adhesive sheet of one aspect of the present invention, the expansion start temperature (t) of the heat-expandable particles is preferably less than 125 ° C., more preferably 120 ° C. or lower, still more preferably 115 ° C. or lower, still more preferable. Is 110 ° C. or lower, more preferably 105 ° C. or lower.
 また、加熱剥離型の粘着シートの熱膨張性粒子として膨張開始温度が低いものを用いると、被着体に対して研削を行う場合等の温度上昇によって、熱膨張性粒子が膨張してしまうことがある。熱膨張性粒子のこのような意図しない膨張は、被着体の意図しない分離や位置ズレ等に繋がるため、抑制されることが望ましい。
 かかる観点から、本発明の一態様の粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)は、好ましくは50℃以上、より好ましくは55℃以上、更に好ましくは60℃以上、より更に好ましくは70℃以上である。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
Further, if a heat-release type adhesive sheet having a low expansion start temperature is used as the heat-expandable particles, the heat-expandable particles will expand due to a temperature rise such as when grinding the adherend. There is. Such unintended expansion of the heat-expandable particles leads to unintended separation and misalignment of the adherend, and is therefore desirable to be suppressed.
From this point of view, in the pressure-sensitive adhesive sheet of one aspect of the present invention, the expansion start temperature (t) of the heat-expandable particles is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, still more preferably. Is 70 ° C. or higher.
In addition, in this specification, the expansion start temperature (t) of a heat-expandable particle means a value measured based on the following method.
(熱膨張性粒子の膨張開始温度(t)の測定法)
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
(Measurement method of expansion start temperature (t) of thermally expandable particles)
To an aluminum cup with a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, 0.5 mg of the heat-expandable particles to be measured are added, and an aluminum lid (diameter 5.6 mm, thickness 0. Prepare a sample on which 1 mm) is placed.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured with a force of 0.01 N applied by a pressurizer from the upper part of the aluminum lid to the sample. Then, with a force of 0.01 N applied by the pressurizer, it is heated from 20 ° C. to 300 ° C. at a heating rate of 10 ° C./min, the amount of displacement of the pressurizer in the vertical direction is measured, and the displacement in the positive direction is measured. Let the displacement start temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
The thermally expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an contained component contained in the outer shell and vaporized when heated to a predetermined temperature. It is preferable to have.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulating foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone and the like.
 マイクロカプセル化発泡剤の外殻に内包される成分である内包成分としては、例えば、プロパン、プロピレン、ブテン、n-ブタン、イソブタン、イソペンタン、ネオペンタン、n-ペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、n-オクタン、シクロプロパン、シクロブタン、石油エーテル等の低沸点液体が挙げられる。
 これらの中でも、加熱剥離する際に被着体の熱変化を抑制すると共に、被着体に対して研削を行う場合等の温度上昇による熱膨張性粒子の意図しない膨張を抑制する観点から、熱膨張性粒子の膨張開始温度(t)を50℃以上125℃未満とする場合、内包成分は、プロパン、イソブタン、n-ペンタン、及びシクロプロパンが好ましい。
 これらの内包成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of the contained component which is a component contained in the outer shell of the microencapsulating foaming agent include propane, propylene, butene, n-butane, isopentane, isopentane, neopentane, n-pentane, n-hexane, isohexane, and n-. Examples thereof include low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane and petroleum ether.
Among these, from the viewpoint of suppressing the thermal change of the adherend during heat peeling and suppressing the unintended expansion of the thermally expandable particles due to the temperature rise such as when grinding the adherend, heat is applied. When the expansion start temperature (t) of the expandable particles is 50 ° C. or higher and lower than 125 ° C., the inclusion components are preferably propane, isobutane, n-pentane, and cyclopropane.
One of these inclusion components may be used alone, or two or more thereof may be used in combination.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of the inclusion component.
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、熱膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
The average particle diameter of the heat-expandable particles used in one embodiment of the present invention before expansion at 23 ° C. is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, still more preferably 10 to 10. It is 50 μm.
The average particle size of the heat-expandable particles before expansion is the volume medium particle size (D 50 ), and is a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name “Mastersizer 3000”). In the particle distribution of the heat-expandable particles before expansion, the cumulative volume frequency calculated from the smaller particle size of the heat-expandable particles before expansion means the particle size corresponding to 50%.
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは15~100μm、更に好ましくは20~90μm、より更に好ましくは25~80μmである。
 なお、熱膨張性粒子の膨張前の90%粒子径(D90)とは、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒子径を意味する。
The 90% particle diameter (D 90 ) of the thermally expandable particles used in one embodiment of the present invention before expansion at 23 ° C. is preferably 10 to 150 μm, more preferably 15 to 100 μm, still more preferably 20 to 90 μm. Even more preferably, it is 25 to 80 μm.
The 90% particle size (D 90 ) of the thermally expandable particles before expansion is the expansion measured using a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name "Mastersizer 3000"). In the particle distribution of the previous heat-expandable particles, it means the particle size in which the cumulative volume frequency calculated from the smaller particle size of the heat-expandable particles before expansion corresponds to 90%.
 本発明の一態様で用いる熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~200倍、より好ましくは2~150倍、更に好ましくは2.5~120倍、より更に好ましくは3~100倍である。 The maximum volume expansion rate when the thermally expandable particles used in one embodiment of the present invention are heated to a temperature equal to or higher than the expansion start temperature (t) is preferably 1.5 to 200 times, more preferably 2 to 150 times, and further. It is preferably 2.5 to 120 times, and even more preferably 3 to 100 times.
<粘着剤層(X1)>
 本発明の粘着シートが有する粘着剤層(X1)は、23℃におけるヤング率が、5.0MPa以下である。さらに、本発明の粘着シートが有する粘着剤層(X1)は、23℃におけるヤング率が、非熱膨張性基材層(Y2)の23℃におけるヤング率よりも低い。
<Adhesive layer (X1)>
The pressure-sensitive adhesive layer (X1) contained in the pressure-sensitive adhesive sheet of the present invention has a Young's modulus of 5.0 MPa or less at 23 ° C. Further, the adhesive layer (X1) of the pressure-sensitive adhesive sheet of the present invention has a Young's modulus at 23 ° C. lower than that of the non-thermally expandable base material layer (Y2) at 23 ° C.
 粘着剤層(X1)は、熱膨張性層であってもよく、非熱膨張性層であってもよいが、非熱膨張性層であることが好ましい。
 粘着剤層(X1)が非熱膨張性層である場合、上記式から算出される粘着剤層(X1)の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 粘着剤層(X1)は、熱膨張性粒子を含有しないことが好ましいが、本発明の目的に反しない範囲で熱膨張性粒子を含有していてもよい。粘着剤層(X1)が熱膨張性粒子を含有する場合、その含有量は少ないほど好ましく、粘着剤層(X1)の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
The pressure-sensitive adhesive layer (X1) may be a heat-expandable layer or a non-heat-expandable layer, but is preferably a non-heat-expandable layer.
When the pressure-sensitive adhesive layer (X1) is a non-thermally expandable layer, the volume change rate (%) of the pressure-sensitive adhesive layer (X1) calculated from the above formula is less than 5%, preferably less than 2%. It is preferably less than 1%, more preferably less than 0.1%, and even more preferably less than 0.01%.
The pressure-sensitive adhesive layer (X1) preferably does not contain thermal-expandable particles, but may contain thermal-expandable particles within a range not contrary to the object of the present invention. When the pressure-sensitive adhesive layer (X1) contains thermally expandable particles, the smaller the content is, the more preferable, and the content is preferably less than 3% by mass, based on the total mass (100% by mass) of the pressure-sensitive adhesive layer (X1). It is preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
 本発明の粘着シートが有する粘着剤層(X1)は、粘着性樹脂を含む粘着剤組成物(x-1)から形成することができる。
 以下、粘着剤組成物(x-1)に含まれる各成分について説明する。
The pressure-sensitive adhesive layer (X1) contained in the pressure-sensitive adhesive sheet of the present invention can be formed from the pressure-sensitive adhesive composition (x-1) containing a pressure-sensitive adhesive resin.
Hereinafter, each component contained in the pressure-sensitive adhesive composition (x-1) will be described.
(粘着性樹脂)
 粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体が挙げられる。
 粘着性樹脂の質量平均分子量(Mw)は、粘着剤層(X1)の粘着力向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(Adhesive resin)
Examples of the adhesive resin include polymers having adhesiveness by themselves and having a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2 million, more preferably 20,000 to 1.5 million, still more preferably 30,000 to 100, from the viewpoint of improving the adhesive strength of the pressure-sensitive adhesive layer (X1). It is ten thousand.
 粘着性樹脂の具体例としては、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Specific examples of the adhesive resin include rubber-based resins such as acrylic resins, urethane-based resins, and polyisobutylene-based resins, polyester-based resins, olefin-based resins, silicone-based resins, and polyvinyl ether-based resins.
One type of these adhesive resins may be used alone, or two or more types may be used in combination.
When these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and block copolymers, random copolymers, and graft copolymers are used. It may be any of the polymers.
 粘着性樹脂は、側鎖に重合性官能基を導入したエネルギー線硬化型の粘着性樹脂であってもよい。
 当該重合性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を有するものが挙げられる。
 また、エネルギー線としては、上記したものの中でも、取り扱いが容易な紫外線が好ましい。
The adhesive resin may be an energy ray-curable adhesive resin in which a polymerizable functional group is introduced into the side chain.
Examples of the polymerizable functional group include those having a carbon-carbon double bond such as a (meth) acryloyl group, a vinyl group and an allyl group.
Further, as the energy ray, among the above-mentioned ones, ultraviolet rays that are easy to handle are preferable.
 ここで、本発明の一態様において、粘着剤層(X1)に優れた粘着力を発現させると共に、粘着剤層(X1)のヤング率を上記範囲に調整する観点から、粘着性樹脂が、アクリル系樹脂を含むことが好ましい。 Here, in one aspect of the present invention, the adhesive resin is acrylic from the viewpoint of exhibiting excellent adhesive strength in the pressure-sensitive adhesive layer (X1) and adjusting the Young's modulus of the pressure-sensitive adhesive layer (X1) within the above range. It is preferable to contain a based resin.
 粘着性樹脂中のアクリル系樹脂の含有量としては、粘着剤組成物(x-1)又は粘着剤層(X1)に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。 The content of the acrylic resin in the adhesive resin is preferably 30 with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x-1) or the adhesive layer (X1). It is -100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, still more preferably 85 to 100% by mass.
(アクリル系樹脂)
 本発明の一態様において、粘着性樹脂として使用し得る、アクリル系樹脂としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含む重合体等が挙げられる。
(Acrylic resin)
In one aspect of the present invention, the acrylic resin that can be used as the adhesive resin includes, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, and a cyclic structure. Examples thereof include polymers containing a structural unit derived from (meth) acrylate having.
 アクリル系樹脂の質量平均分子量(Mw)としては、好ましくは10万~150万、より好ましくは20万~130万、更に好ましくは35万~120万、より更に好ましくは50万~110万である。 The mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1.5 million, more preferably 200,000 to 1.3 million, still more preferably 350,000 to 1.2 million, and even more preferably 500,000 to 1.1 million. ..
 本発明の一態様で用いるアクリル系樹脂としては、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。 The acrylic resin used in one embodiment of the present invention includes a structural unit (a1) derived from an alkyl (meth) acrylate (a1') (hereinafter, also referred to as "monomer (a1')") and a functional group-containing monomer (a2). An acrylic copolymer (A1) having a structural unit (a2) derived from') (hereinafter, also referred to as "monomer (a2')") is more preferable.
 モノマー(a1’)が有するアルキル基の炭素数としては、粘着剤層(X1)に優れた粘着力を発現させると共に、粘着剤層(X1)のヤング率を上記範囲に調整する観点から、好ましくは1~24、より好ましくは1~12、更に好ましくは2~10、より更に好ましくは4~8である。
 なお、モノマー(a1’)が有するアルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
The number of carbon atoms of the alkyl group of the monomer (a1') is preferably from the viewpoint of exhibiting excellent adhesive strength in the pressure-sensitive adhesive layer (X1) and adjusting the Young's modulus of the pressure-sensitive adhesive layer (X1) within the above range. Is 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and even more preferably 4 to 8.
The alkyl group contained in the monomer (a1') may be a straight chain alkyl group or a branched chain alkyl group.
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
 これらのモノマー(a1’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 モノマー(a1’)としては、ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートが好ましい。
Examples of the monomer (a1') include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (). Examples thereof include meta) acrylate and stearyl (meth) acrylate.
One of these monomers (a1') may be used alone, or two or more thereof may be used in combination.
As the monomer (a1'), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、更に好ましくは70~97.0質量%、より更に好ましくは80~95.0質量%である。 The content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, and even more preferably 80 to 95.0% by mass.
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 これらのモノマー(a2’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、モノマー(a2’)としては、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
Examples of the functional group contained in the monomer (a2') include a hydroxyl group, a carboxy group, an amino group, an epoxy group and the like.
That is, examples of the monomer (a2') include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
One of these monomers (a2') may be used alone, or two or more thereof may be used in combination.
Among these, as the monomer (a2'), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
 水酸基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等の水酸基含有化合物が挙げられる。 Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl (meth). ) Hydroxyalkyl (meth) acrylates such as acrylates and 4-hydroxybutyl (meth) acrylates; hydroxyl group-containing compounds such as unsaturated alcohols such as vinyl alcohols and allyl alcohols.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-(アクリロイルオキシ)エチルサクシネート、2-カルボキシエチル(メタ)アクリレート等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid, and citraconic acid, and their anhydrides. , 2- (Acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like.
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~30質量%、より好ましくは0.5~20質量%、更に好ましくは1.0~15質量%、より更に好ましくは3.0~10質量%である。 The content of the structural unit (a2) is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 1.0 to 15% by mass, and even more preferably 3.0 to 10% by mass.
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来の構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の合計含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
The acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
In the acrylic copolymer (A1), the total content of the structural units (a1) and (a2) is preferably relative to the total structural units (100% by mass) of the acrylic copolymer (A1). It is 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and even more preferably 95 to 100% by mass.
 モノマー(a3’)としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー類;シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート等の環状構造を有する(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリロイルモルホリン、N-ビニルピロリドン等が挙げられる。 Examples of the monomer (a3') include olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene and chloroprene; cyclohexyl (meth) acrylates, It has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and imide (meth) acrylate. (Meta) Acrylate; Examples thereof include styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloylmorpholine, and N-vinylpyrrolidone.
 また、アクリル系共重合体(A1)は、主鎖及び側鎖の少なくともいずれか一方に重合性官能基を導入した、エネルギー線硬化型のアクリル系共重合体としてもよい。
 当該重合性官能基及び当該エネルギー線は、上述のとおりである。
 なお、重合性官能基は、上述の構成単位(a1)及び(a2)を有するアクリル系共重合体と、当該アクリル系共重合体の構成単位(a2)が有する官能基と結合可能な置換基と重合性官能基とを有する重合性化合物(Xa)とを反応させることで導入することができる。
 重合性化合物(Xa)としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、(メタ)アクリロイルイソシアネート、アリルイソシアネート、グリシジル(メタ)アクリレート、(メタ)アクリル酸等が挙げられる。
Further, the acrylic copolymer (A1) may be an energy ray-curable acrylic copolymer in which a polymerizable functional group is introduced into at least one of a main chain and a side chain.
The polymerizable functional group and the energy ray are as described above.
The polymerizable functional group is a substituent capable of binding to the acrylic copolymer having the above-mentioned structural units (a1) and (a2) and the functional group of the structural unit (a2) of the acrylic copolymer. It can be introduced by reacting with a polymerizable compound (Xa) having a polymerizable functional group.
Examples of the polymerizable compound (Xa) include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate, and (meth). Acrylic acid and the like can be mentioned.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x-1)は、上述のアクリル系共重合体(A1)のように、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(Crosslinking agent)
In one aspect of the present invention, when the pressure-sensitive adhesive composition (x-1) contains a pressure-sensitive adhesive resin having a functional group like the above-mentioned acrylic copolymer (A1), it further contains a cross-linking agent. Is preferable.
The cross-linking agent reacts with a tacky resin having a functional group to cross-link the tacky resins with the functional group as a cross-linking starting point.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
 イソシアネート系架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、及びキシリレンジイソシアネート等の芳香族ポリイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロヘプタントリイソシアネート、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、及び水添キシリレンジイソシアネート等の脂環式ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、及びリジンジイソシアネート等の非環式脂肪族ポリイソシアネート;等の多価イソシアネート化合物等が挙げられる。
 また、イソシアネート系架橋剤としては、当該多価イソシアネート化合物のトリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含むイソシアヌレート型変性体等も挙げられる。
 これらの中でも、加熱時における粘着剤層(X1)の弾性率の低下を抑制して、粘着剤層(X1)由来の残渣が被着体に付着するのを抑制する観点から、イソシアヌレート環を含むイソシアヌレート型変性体を用いることが好ましく、非環式脂肪族ポリイソシアネートのイソシアヌレート型変性体を用いることがより好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体を用いることが更に好ましい。
Examples of the cross-linking agent include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
One of these cross-linking agents may be used alone, or two or more thereof may be used in combination.
Among these cross-linking agents, isocyanate-based cross-linking agents are preferable from the viewpoint of increasing the cohesive force to improve the adhesive force and the availability.
Examples of the isocyanate-based cross-linking agent include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; dicyclohexylmethane-4,4'-diisocyanate, bicycloheptane triisocyanate, cyclopentylene diisocyanate, and cyclohexylene diisocyanate. , Methylcyclohexylene diisocyanate, methylenebis (cyclohexylisocyanate), 3-isocyanatemethyl-3,5,5-trimethylcyclohexylisocyanate, and alicyclic polyisocyanates such as hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, And polyisocyanate compounds such as acyclic aliphatic polyisocyanates such as lysine diisocyanate; and the like.
Examples of the isocyanate-based cross-linking agent include a trimethylolpropane adduct-type modified product of the polyhydric isocyanate compound, a burette-type modified product reacted with water, and an isocyanurate-type modified product containing an isocyanurate ring.
Among these, the isocyanurate ring is used from the viewpoint of suppressing the decrease in elastic modulus of the pressure-sensitive adhesive layer (X1) during heating and suppressing the adhesion of the residue derived from the pressure-sensitive adhesive layer (X1) to the adherend. It is preferable to use an isocyanurate-type modified product containing isocyanurate, more preferably an isocyanurate-type modified product of an acyclic aliphatic polyisocyanate, and further preferably use an isocyanurate-type modified product of hexamethylene diisocyanate.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。なお、架橋剤の含有量を当該範囲に調整することによって、粘着剤層(X1)のヤング率を上記範囲に調整しやすいものとできる。 The content of the cross-linking agent is appropriately adjusted according to the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass. By adjusting the content of the cross-linking agent to the above range, the Young's modulus of the pressure-sensitive adhesive layer (X1) can be easily adjusted to the above range.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x-1)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 本明細書において、「粘着付与剤」とは、粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のものを指し、上記した粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は1万未満であり、好ましくは400~9000、より好ましくは500~8000、更に好ましくは800~5000である。
(Adhesive agent)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x-1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
In the present specification, the "tacking agent" refers to a component that supplementarily improves the adhesive strength of the adhesive resin and has a mass average molecular weight (Mw) of less than 10,000, and the above-mentioned adhesive resin. Is distinct from.
The mass average molecular weight (Mw) of the tackifier is less than 10,000, preferably 400 to 9000, more preferably 500 to 8000, and even more preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 As the tackifier, for example, it is obtained by copolymerizing a C5 distillate such as rosin resin, terpene resin, styrene resin, penten, isoprene, piperin, 1,3-pentadiene produced by thermal decomposition of petroleum naphtha. Examples thereof include C5-based petroleum resins, C9-based petroleum resins obtained by copolymerizing C9 distillates such as inden and vinyl toluene produced by thermal decomposition of petroleum naphtha, and hydrides obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、1種を単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。2種以上の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and even more preferably 70 to 150 ° C.
In the present specification, the "softening point" of the tackifier means a value measured in accordance with JIS K 2531.
As the tackifier, one type may be used alone, or two or more types having different softening points, structures, etc. may be used in combination. When two or more kinds of tackifiers are used, it is preferable that the weighted average of the softening points of the plurality of tackifiers belongs to the above range.
 粘着付与剤の含有量は、粘着剤組成物(x-1)の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%、より更に好ましくは2~30質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, based on the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x-1). %, More preferably 1 to 40% by mass, still more preferably 2 to 30% by mass.
(光重合開始剤)
 本発明の一態様において、粘着剤組成物(x-1)が、粘着性樹脂として、エネルギー線硬化型の粘着性樹脂を含む場合、さらに光重合開始剤を含有することが好ましい。
 エネルギー線硬化型の粘着性樹脂及び光重合開始剤を含有する粘着剤組成物とすることで、当該粘着剤組成物から形成される粘着剤層は、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させ、粘着力を所望の範囲に調整することが可能となる。
 なお、本発明の一態様で用いる光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Photopolymerization initiator)
In one aspect of the present invention, when the pressure-sensitive adhesive composition (x-1) contains an energy ray-curable pressure-sensitive adhesive resin as the pressure-sensitive adhesive resin, it preferably further contains a photopolymerization initiator.
By preparing a pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive resin and a photopolymerization initiator, the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition can be subjected to irradiation with relatively low-energy energy rays. The curing reaction can be sufficiently advanced, and the adhesive strength can be adjusted to a desired range.
Examples of the photopolymerization initiator used in one embodiment of the present invention include 1-hydroxy-cyclohexyl-phenylketone, benzoin, benzoinmethyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, and tetramethylthium. Examples thereof include monosulfide, azobisisobutyrolnitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like.
One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
 光重合開始剤の含有量は、エネルギー線硬化型の粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。 The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and further preferably 0.% by mass with respect to 100 parts by mass of the energy ray-curable adhesive resin. It is 05 to 2 parts by mass.
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(x-1)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
(Additives for adhesives)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x-1) is an additive for a pressure-sensitive adhesive used in a general pressure-sensitive adhesive in addition to the above-mentioned additives as long as the effect of the present invention is not impaired. May be contained.
Examples of such additives for adhesives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers and the like.
These adhesive additives may be used alone or in combination of two or more.
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、それぞれ独立して、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。 When these additives for adhesives are contained, the content of each additive for adhesives is independently, preferably 0.0001 to 20 parts by mass, based on 100 parts by mass of the adhesive resin. It is preferably 0.001 to 10 parts by mass.
(粘着剤層(X1)の23℃における厚さ)
 本発明の一態様において、粘着剤層(X1)の23℃における厚さは、良好な粘着力を発現させると共に、熱膨張性粒子を加熱により膨張させた際に、粘着剤層(X1)の粘着表面に凹凸を良好に形成させる観点から、好ましくは3~10μmであり、より好ましくは3~8μmであり、更に好ましくは3~7μmである。
 粘着剤層(X1)の厚さを上記範囲に調整することで、粘着剤層(X1)を形成しやすくすることができ、且つ、粘着剤層(X1)の粘着表面に凹凸を良好に形成させやすくできる。
 なお、粘着剤層(X1)の23℃における厚さは、後述する実施例に記載の方法で測定した値である。
(Thickness of the adhesive layer (X1) at 23 ° C.)
In one aspect of the present invention, the thickness of the pressure-sensitive adhesive layer (X1) at 23 ° C. exhibits good adhesive strength, and when the heat-expandable particles are expanded by heating, the thickness of the pressure-sensitive adhesive layer (X1) is increased. From the viewpoint of satisfactorily forming irregularities on the adhesive surface, it is preferably 3 to 10 μm, more preferably 3 to 8 μm, and even more preferably 3 to 7 μm.
By adjusting the thickness of the pressure-sensitive adhesive layer (X1) within the above range, the pressure-sensitive adhesive layer (X1) can be easily formed, and the adhesive surface of the pressure-sensitive adhesive layer (X1) is well formed with irregularities. It can be made easy.
The thickness of the pressure-sensitive adhesive layer (X1) at 23 ° C. is a value measured by the method described in Examples described later.
(粘着剤層(X1)の23℃におけるヤング率と粘着剤層(X1)の23℃における厚さとの積)
 本発明の一態様において、粘着剤層(X1)の23℃におけるヤング率(単位:MPa)と粘着剤層(X1)の23℃における厚さ(単位:μm)との積は、熱膨張性粒子を加熱により膨張させた際に、粘着剤層(X1)の粘着表面に凹凸を良好に形成させる観点から、好ましくは0.3~50であり、より好ましくは1.0~30であり、更に好ましくは1.5~20であり、より更に好ましくは、2.0~10である。
(The product of the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. and the thickness of the pressure-sensitive adhesive layer (X1) at 23 ° C.)
In one aspect of the present invention, the product of the Young's modulus (unit: MPa) of the pressure-sensitive adhesive layer (X1) at 23 ° C. and the thickness (unit: μm) of the pressure-sensitive adhesive layer (X1) at 23 ° C. is thermally expandable. From the viewpoint of satisfactorily forming irregularities on the adhesive surface of the pressure-sensitive adhesive layer (X1) when the particles are expanded by heating, the content is preferably 0.3 to 50, more preferably 1.0 to 30. It is more preferably 1.5 to 20, and even more preferably 2.0 to 10.
<熱膨張性基材層(Y1)>
 熱膨張性基材層(Y1)は、熱膨張性粒子を有する基材層であり、粘着剤層(X1)と非熱膨張性基材層(Y2)との間に設けられる。
 ここで、本発明の一態様において、熱膨張性基材層(Y1)は、下記要件(1)を満たすことが好ましい。
・要件(1):熱膨張性粒子の膨張開始温度(t)における、熱膨張性基材層(Y1)の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
 なお、本明細書において、所定の温度における熱膨張性基材層(Y1)の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
<Thermal expansion substrate layer (Y1)>
The heat-expandable base material layer (Y1) is a base material layer having heat-expandable particles, and is provided between the pressure-sensitive adhesive layer (X1) and the non-heat-expandable base material layer (Y2).
Here, in one aspect of the present invention, the heat-expandable base material layer (Y1) preferably satisfies the following requirement (1).
- Requirement (1): in the expansion starting temperature of the thermally expandable particles (t), thermally expandable base material layer (Y1) storage modulus E of the '(t) is less than or equal to 1.0 × 10 7 Pa.
In the present specification, the storage elastic modulus E'of the heat-expandable base material layer (Y1) at a predetermined temperature means a value measured by the method described in Examples.
 上記要件(1)は、熱膨張性粒子が膨張する直前の熱膨張性基材層(Y1)の剛性を示す指標といえる。
 熱膨張性粒子の膨張前において、熱膨張性基材層(Y1)の貯蔵弾性率E’は昇温に伴い低下する。しかし、熱膨張性粒子の膨張開始温度(t)に到達する前後で、熱膨張性粒子が膨張し始めることで、熱膨張性基材層(Y1)の貯蔵弾性率E’の低下が抑制される。
 その一方で、粘着剤層(X1)の粘着表面に凹凸が形成されやすくするためには、膨張開始温度(t)以上の温度まで加熱することで、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面に、凹凸が形成されやすくする必要がある。上記要件(1)を満たす熱膨張性基材層(Y1)は、膨張開始温度(t)で熱膨張性粒子が膨張して十分に大きくなり、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面に、凹凸が形成されやすい。そのため、粘着剤層(X1)の粘着表面に凹凸が形成されやすい。
The above requirement (1) can be said to be an index showing the rigidity of the heat-expandable base material layer (Y1) immediately before the heat-expandable particles expand.
Before the expansion of the thermally expandable particles, the storage elastic modulus E'of the thermally expandable base material layer (Y1) decreases as the temperature rises. However, before and after reaching the expansion start temperature (t) of the thermally expandable particles, the thermally expandable particles start to expand, so that the decrease in the storage elastic modulus E'of the thermally expandable base material layer (Y1) is suppressed. To.
On the other hand, in order to facilitate the formation of irregularities on the adhesive surface of the pressure-sensitive adhesive layer (X1), the heat-expandable base material layer (Y1) is adhered by heating to a temperature equal to or higher than the expansion start temperature (t). It is necessary to make it easy for irregularities to be formed on the surface on the agent layer (X1) side. In the heat-expandable base layer (Y1) that satisfies the above requirement (1), the heat-expandable particles expand at the expansion start temperature (t) to become sufficiently large, and the pressure-sensitive adhesive of the heat-expandable base layer (Y1). Unevenness is likely to be formed on the surface on the layer (X1) side. Therefore, unevenness is likely to be formed on the adhesive surface of the adhesive layer (X1).
 本発明の一態様において、熱膨張性基材層(Y1)の要件(1)で規定する貯蔵弾性率E’(t)は、上記観点から、好ましくは9.0×10Pa以下、より好ましくは8.0×10Pa以下、更に好ましくは6.0×10Pa以下、より更に好ましくは4.0×10Pa以下である。
 また、膨張した熱膨張性粒子の流動を抑制し、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面に形成される凹凸の形状維持性を向上させ、粘着剤層(X1)の粘着表面に凹凸が形成されやすいものとする観点から、熱膨張性基材層(Y1)の要件(1)で規定する貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
In one aspect of the present invention, the storage elastic modulus E'(t) defined in the requirement (1) of the heat-expandable base material layer (Y1) is preferably 9.0 × 10 6 Pa or less from the above viewpoint. It is preferably 8.0 × 10 6 Pa or less, more preferably 6.0 × 10 6 Pa or less, and even more preferably 4.0 × 10 6 Pa or less.
Further, the flow of the expanded heat-expandable particles is suppressed, the shape retention of the unevenness formed on the surface of the heat-expandable base material layer (Y1) on the pressure-sensitive adhesive layer (X1) side is improved, and the pressure-sensitive adhesive layer (the pressure-sensitive adhesive layer) From the viewpoint of making it easy for irregularities to be formed on the adhesive surface of X1), the storage elastic modulus E'(t) specified in the requirement (1) of the thermally expandable base material layer (Y1) is preferably 1.0 ×. It is 10 3 Pa or more, more preferably 1.0 × 10 4 Pa or more, and further preferably 1.0 × 10 5 Pa or more.
 上記要件(1)を満たす熱膨張性基材層(Y1)とする観点から、熱膨張性基材層(Y1)中の熱膨張性粒子の含有量は、熱膨張性基材層(Y1)の全質量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。 From the viewpoint of forming the heat-expandable base material layer (Y1) satisfying the above requirement (1), the content of the heat-expandable particles in the heat-expandable base material layer (Y1) is the heat-expandable base material layer (Y1). It is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably 10 to 30% by mass, still more preferably 15 to 25% by mass, based on the total mass (100% by mass) of the above.
 また、本発明の一態様において、熱膨張性基材層(Y1)の23℃におけるヤング率は、粘着剤層(X1)の23℃におけるヤング率よりも大きく、且つ非熱膨張性基材層(Y2)の23℃におけるヤング率よりも大きいことが好ましい。
 具体的には、熱膨張性基材層(Y1)の23℃におけるヤング率は、好ましくは100MPa以上、より好ましくは200MPa以上、更に好ましくは300MPa以上である。また、通常600MPa以下であり、好ましくは500MPa以下である。
Further, in one aspect of the present invention, the Young's modulus of the heat-expandable base material layer (Y1) at 23 ° C. is larger than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C., and the non-heat-expandable base material layer. It is preferably larger than the Young's modulus of (Y2) at 23 ° C.
Specifically, the Young's modulus of the heat-expandable base material layer (Y1) at 23 ° C. is preferably 100 MPa or more, more preferably 200 MPa or more, still more preferably 300 MPa or more. Further, it is usually 600 MPa or less, preferably 500 MPa or less.
 なお、熱膨張性基材層(Y1)と積層する他の層との層間密着性を向上させる観点から、熱膨張性基材層(Y1)の表面に対して、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、及び紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
From the viewpoint of improving the interlayer adhesion between the heat-expandable base material layer (Y1) and other layers to be laminated, the surface of the heat-expandable base material layer (Y1) is subjected to an oxidation method, an unevenness method, or the like. Surface treatment, easy adhesion treatment, or primer treatment may be performed.
Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment, and examples of the unevenness method include sandblasting method and solvent treatment method. And so on.
 熱膨張性基材層(Y1)は、樹脂及び熱膨張性粒子を含む樹脂組成物(y-1)から形成することが好ましい。
 なお、樹脂組成物(y-1)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、それぞれ独立して、前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
The heat-expandable base material layer (Y1) is preferably formed from a resin composition (y-1) containing a resin and heat-expandable particles.
The resin composition (y-1) may contain an additive for a base material, if necessary, as long as the effects of the present invention are not impaired.
Examples of the base material additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
These base material additives may be used alone or in combination of two or more.
When these base material additives are contained, the content of each base material additive is independently, preferably 0.0001 to 20 parts by mass, more preferably 0.0001 to 20 parts by mass with respect to 100 parts by mass of the resin. Is 0.001 to 10 parts by mass.
 熱膨張性基材層(Y1)の形成材料である樹脂組成物(y-1)に含まれる熱膨張性粒子については、上述のとおりである。
 熱膨張性粒子の含有量は、樹脂組成物(y-1)の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。
The heat-expandable particles contained in the resin composition (y-1), which is a material for forming the heat-expandable base material layer (Y1), are as described above.
The content of the heat-expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably, with respect to the total amount (100% by mass) of the active ingredient of the resin composition (y-1). Is 10 to 30% by mass, more preferably 15 to 25% by mass.
 熱膨張性基材層(Y1)の形成材料である樹脂組成物(y-1)に含まれる樹脂としては、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y-1)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y-1)から熱膨張性基材層(Y1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含む熱膨張性基材層(Y1)が非粘着性となればよい。
The resin contained in the resin composition (y-1) which is the material for forming the heat-expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin.
That is, even if the resin contained in the resin composition (y-1) is an adhesive resin, the adhesiveness is obtained in the process of forming the heat-expandable base material layer (Y1) from the resin composition (y-1). It is sufficient that the resin polymerizes with the polymerizable compound, the obtained resin becomes a non-adhesive resin, and the heat-expandable base material layer (Y1) containing the resin becomes non-adhesive.
 樹脂組成物(y-1)に含まれる前記樹脂の質量平均分子量(Mw)としては、好ましくは1000~100万、より好ましくは1000~70万、更に好ましくは1000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
The mass average molecular weight (Mw) of the resin contained in the resin composition (y-1) is preferably 10 to 1,000,000, more preferably 10 to 700,000, and even more preferably 10 to 500,000.
When the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer can be used. It may be.
 樹脂の含有量は、樹脂組成物(y-1)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 65% by mass, based on the total amount (100% by mass) of the active ingredient of the resin composition (y-1). It is 90% by mass, more preferably 70 to 85% by mass.
 なお、上記要件(1)を満たす熱膨張性基材層(Y1)を形成する観点から、樹脂組成物(y-1)に含まれる前記樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含むことが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
From the viewpoint of forming the heat-expandable base material layer (Y1) satisfying the above requirement (1), the resin contained in the resin composition (y-1) is selected from acrylic urethane-based resin and olefin-based resin. It is preferable to include one or more of these.
Further, as the acrylic urethane resin, the following resin (U1) is preferable.
-Acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
(アクリルウレタン系樹脂(U1))
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
(Acrylic urethane resin (U1))
Examples of the urethane prepolymer (UP) that serves as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a multivalent isocyanate.
The urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of the polyol which is a raw material of the urethane prepolymer (UP) include an alkylene type polyol, an ether type polyol, an ester type polyol, an ester amide type polyol, an ester ether type polyol, and a carbonate type polyol.
One of these polyols may be used alone, or two or more thereof may be used in combination.
As the polyol used in one aspect of the present invention, a diol is preferable, an ester type diol, an alkylene type diol and a carbonate type diol are more preferable, and an ester type diol and a carbonate type diol are further preferable.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4'-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of the ester-type diol include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, and the like. One or more selected from diols such as diethylene glycol, alkylene glycol such as dipropylene glycol; and phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4. , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, hetic acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Examples thereof include dicarboxylic acids such as hydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, and methylhexahydrophthalic acid, and one or more selected from these anhydrides.
Specifically, polyethylene adipatediol, polybutylene adipatediol, polyhexamethylene adipatediol, polyhexamethyleneisophthalatediol, polyneopentyl adipatediol, polyethylenepropylene adipatediol, polyethylenebutylene adipatediol, polybutylenehexamethylene adipatediol, Polydiethylene adipatediol, poly (polytetramethylene ether) adipatediol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sevacate diol, polybutylene azelate diol, polybutylene sebacate diol and polyneo Examples thereof include pentyl terephthalate diol.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 Examples of the alkylene-type diol include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, and the like. Examples thereof include alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol; and polyoxyalkylene glycols such as polytetramethylene glycol.
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. , 2,2-Dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Examples of the polyisocyanate used as a raw material for the urethane prepolymer (UP) include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
One of these polyvalent isocyanates may be used alone, or two or more thereof may be used in combination.
Further, these polyvalent isocyanates may be a trimethylolpropane adduct-type modified product, a biuret-type modified product reacted with water, or an isocyanurate-type modified product containing an isocyanurate ring.
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。 Among these, diisocyanate is preferable as the polyvalent isocyanate used in one embodiment of the present invention, and 4,4'-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6. -One or more selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate are more preferable.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Examples of the alicyclic diisocyanate include 3-isocyanate methyl-3,5,5-trimethylcyclohexylisocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexanediisocyanate, and 1,4-cyclohexane. Examples thereof include diisocyanate, methyl-2,4-cyclohexanediisocyanate and methyl-2,6-cyclohexanediisocyanate, but isophorone diisocyanate (IPDI) is preferable.
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
In one aspect of the present invention, the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends. Urethane prepolymers are preferred.
As a method for introducing an ethylenically unsaturated group into both ends of the linear urethane prepolymer, an NCO group at the terminal of the linear urethane prepolymer formed by reacting a diol and a diisocyanate compound and a hydroxyalkyl (meth) acrylate There is a method of reacting with.
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy. Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
The vinyl compound that forms the side chain of the acrylic urethane resin (U1) contains at least (meth) acrylic acid ester.
As the (meth) acrylic acid ester, one or more selected from alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate is preferable, and alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are more preferably used in combination.
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。 When alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are used in combination, the blending ratio of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass. It is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and even more preferably 1.5 to 10 parts by mass.
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。 The alkyl group of the alkyl (meth) acrylate has preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 8 carbon atoms, and even more preferably 1 to 3 carbon atoms.
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。 Moreover, as the hydroxyalkyl (meth) acrylate, the same hydroxyalkyl (meth) acrylate used for introducing an ethylenically unsaturated group into both ends of the above-mentioned linear urethane prepolymer can be mentioned.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of vinyl compounds other than (meth) acrylic acid ester include aromatic hydrocarbon-based vinyl compounds such as styrene, α-methylstyrene and vinyltoluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. , (Meta) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, polar group-containing monomers such as meta (acrylamide); and the like.
One of these may be used alone, or two or more thereof may be used in combination.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, still more preferably, based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The total content of the alkyl (meth) acrylate and the hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, based on the total amount (100% by mass) of the vinyl compound. It is 100% by mass, more preferably 80 to 100% by mass, and even more preferably 90 to 100% by mass.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)は、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを混合し、両者を重合することで得られる。
 当該重合においては、さらにラジカル開始剤を加えて行うことが好ましい。
The acrylic urethane resin (U1) used in one embodiment of the present invention is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester and polymerizing both.
In the polymerization, it is preferable to further add a radical initiator.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in one embodiment of the present invention, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11). ) / (U12)], preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, still more preferably 35 in terms of mass ratio. / 65-55 / 45.
(オレフィン系樹脂)
 樹脂組成物(y-1)に含まれる樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
(Olefin resin)
The olefin-based resin suitable as the resin contained in the resin composition (y-1) is a polymer having at least a structural unit derived from an olefin monomer.
The olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, and specific examples thereof include ethylene, propylene, butylene, isobutylene, and 1-hexene.
Among these, ethylene and propylene are preferable.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチル-1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレンービニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefinic resins, for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene and other polyethylene resins; polypropylene resin (PP); Polybutene resin (PB); Ethylene-propylene copolymer; Olefin-based elastomer (TPO); Poly (4-methyl-1-pentene) (PMP); Ethylene-vinyl acetate copolymer (EVA); Ethylene -Vinyl alcohol copolymer (EVOH); olefin-based ternary copolymer such as ethylene-propylene- (5-ethylidene-2-norbornene); and the like.
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 In one aspect of the present invention, the olefin resin may be a modified olefin resin further subjected to one or more modifications selected from acid modification, hydroxyl group modification, and acrylic modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、1種を単独で用いてもよく、2種以上を併用してもよい。
For example, the acid-modified olefin-based resin obtained by acid-modifying an olefin-based resin is a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or an anhydride thereof with the above-mentioned non-modified olefin-based resin. Can be mentioned.
Examples of the unsaturated carboxylic acid or its anhydride include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, and itaconic anhydride. , Glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornendicarboxylic acid anhydride, tetrahydrophthalic anhydride and the like.
The unsaturated carboxylic acid or its anhydride may be used alone or in combination of two or more.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
The acrylic-modified olefin-based resin obtained by subjecting the olefin-based resin to acrylic modification is a modification obtained by graft-polymerizing an alkyl (meth) acrylate as a side chain to the above-mentioned non-modified olefin-based resin which is the main chain. Polymers can be mentioned.
The alkyl group of the above alkyl (meth) acrylate has preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and further preferably 1 to 12 carbon atoms.
Examples of the above-mentioned alkyl (meth) acrylate include the same compounds as those that can be selected as the monomer (a1') described later.
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、上述した水酸基含有化合物と同様のものが挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by subjecting the olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound on the above-mentioned non-modified olefin resin which is the main chain.
Examples of the above-mentioned hydroxyl group-containing compound include the same as the above-mentioned hydroxyl group-containing compound.
(アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂)
 本発明の一態様において、樹脂組成物(y-1)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
(Resin other than acrylic urethane resin and olefin resin)
In one aspect of the present invention, the resin composition (y-1) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene co-weight. Combined; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resin; polysulfone; polyether ether ketone; polyether sulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; Fluorine-based resin and the like can be mentioned.
 ただし、上記要件(1)を満たす熱膨張性基材層(Y1)を形成する観点から、樹脂組成物(y-1)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有量は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有量としては、樹脂組成物(y-1)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、更に好ましくは5質量部未満、より更に好ましくは1質量部未満である。
However, from the viewpoint of forming the heat-expandable base material layer (Y1) satisfying the above requirement (1), the content of the acrylic urethane resin and the resin other than the olefin resin in the resin composition (y-1) is determined. Less is preferable.
The content of the resin other than the acrylic urethane resin and the olefin resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y-1). It is less than parts by mass, more preferably less than 10 parts by mass, still more preferably less than 5 parts by mass, and even more preferably less than 1 part by mass.
(無溶剤型樹脂組成物(y-1a))
 本発明の一態様で用いる樹脂組成物(y-1)の一態様として、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の熱膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y-1a)が挙げられる。
 無溶剤型樹脂組成物(y-1a)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y-1a)から形成した塗膜に対して、エネルギー線を照射することで、上記要件(1)を満たす熱膨張性基材層(Y1)を形成し易い。
(Solvent-free resin composition (y-1a))
As one aspect of the resin composition (y-1) used in one aspect of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray-polymerizable monomer, and the above-mentioned heat. Examples thereof include a solvent-free resin composition (y-1a) containing expandable particles and not containing a solvent.
In the solvent-free resin composition (y-1a), no solvent is blended, but the energy ray-polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
By irradiating the coating film formed from the solvent-free resin composition (y-1a) with energy rays, it is easy to form a heat-expandable base material layer (Y1) satisfying the above requirement (1).
 なお、無溶剤型樹脂組成物(y-1a)に配合される熱膨張性粒子の種類や形状、配合量(含有量)については、上述のとおりである。 The types and shapes of the heat-expandable particles to be blended in the solvent-free resin composition (y-1a) and the blending amount (content) are as described above.
 無溶剤型樹脂組成物(y-1a)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50000以下であるが、好ましくは1000~50000、より好ましくは2000~40000、更に好ましくは3000~35000、より更に好ましくは4000~30000である。 The mass average molecular weight (Mw) of the oligomer contained in the solvent-free resin composition (y-1a) is 50,000 or less, preferably 1000 to 50,000, more preferably 2000 to 40,000, still more preferably 3000 to 35,000. , Even more preferably 4000 to 30,000.
 また、前記オリゴマーとしては、上述の樹脂組成物(y-1)に含まれる樹脂のうち、質量平均分子量が50000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
The oligomer may be any resin contained in the above-mentioned resin composition (y-1) having an ethylenically unsaturated group having a mass average molecular weight of 50,000 or less, and the above-mentioned urethane prepolymer. (UP) is preferable.
As the oligomer, a modified olefin resin having an ethylenically unsaturated group can also be used.
 無溶剤型樹脂組成物(y-1a)中における、前記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y-1a)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is based on the total amount (100% by mass) of the solvent-free resin composition (y-1a). It is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and even more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the energy ray-polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, and adamantan (). Alicyclic polymerizable compounds such as meta) acrylates and tricyclodecane acrylates; aromatic polymerizable compounds such as phenylhydroxypropyl acrylates, benzyl acrylates and phenolethylene oxide modified acrylates; tetrahydrofurfuryl (meth) acrylates, morpholine acrylates, N- Examples thereof include heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam.
One of these energy ray-polymerizable monomers may be used alone, or two or more thereof may be used in combination.
 無溶剤型樹脂組成物(y-1a)中における、前記オリゴマーと、前記エネルギー線重合性モノマーとの含有量比[オリゴマー/エネルギー線重合性モノマー]は、質量比で、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 The content ratio [oligomer / energy ray-polymerizable monomer] of the oligomer to the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is preferably 20/80 to 20/80 in mass ratio. It is 90/10, more preferably 30/70 to 85/15, and even more preferably 35/65 to 80/20.
 本発明の一態様において、無溶剤型樹脂組成物(y-1a)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
In one aspect of the present invention, the solvent-free resin composition (y-1a) is preferably further blended with a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with relatively low energy energy rays.
 光重合開始剤としては、粘着剤組成物(x-1)が含有してもよい光重合開始剤と同様のものが挙げられる。
 これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the photopolymerization initiator include the same photopolymerization initiators that the pressure-sensitive adhesive composition (x-1) may contain.
One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。 The blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, and further, based on the total amount (100 parts by mass) of the oligomer and the energy ray-polymerizable monomer. It is preferably 0.02 to 3 parts by mass.
(熱膨張性基材層(Y1)の厚さ)
 本発明の一態様において、熱膨張性基材層(Y1)の厚さは、好ましくは10~1000μm、より好ましくは20~500μm、更に好ましくは25~400μm、より更に好ましくは30~300μmである。
(Thickness of thermally expandable base material layer (Y1))
In one aspect of the present invention, the thickness of the heat-expandable substrate layer (Y1) is preferably 10 to 1000 μm, more preferably 20 to 500 μm, still more preferably 25 to 400 μm, still more preferably 30 to 300 μm. ..
<非熱膨張性基材層(Y2)>
 本発明の粘着シートが有する非熱膨張性基材層(Y2)は、熱膨張性基材層(Y1)の粘着剤層(X1)の積層面とは反対側の面に設けられる。本発明の粘着シートにおいて、非熱膨張性基材層(Y2)の23℃におけるヤング率は、粘着剤層(X1)の23℃におけるヤング率よりも高い。そのため、熱膨張性粒子を膨張させた際に、熱膨張性基材層(Y1)の非熱膨張性基材層(Y2)側の表面よりも、熱膨張性基材層(Y1)の粘着剤層(X1)側の表面に凹凸が形成されやすくなる。そのため、粘着剤層(X1)の粘着表面に凹凸が良好に形成される。
 かかる観点から、非熱膨張性基材層(Y2)の23℃におけるヤング率は、好ましくは700MPa以上、より好ましくは1000MPa以上、更に好ましくは1300MPa以上、より更に好ましくは1600MPa以上、更になお好ましくは1800MPa以上である。また、通常10000MPa以下である。
<Non-thermally expandable base material layer (Y2)>
The non-thermally expandable base material layer (Y2) contained in the pressure-sensitive adhesive sheet of the present invention is provided on the surface of the heat-expandable base material layer (Y1) opposite to the laminated surface of the pressure-sensitive adhesive layer (X1). In the pressure-sensitive adhesive sheet of the present invention, the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. is higher than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. Therefore, when the heat-expandable particles are expanded, the heat-expandable base layer (Y1) is more adherent than the surface of the heat-expandable base layer (Y1) on the non-heat-expandable base layer (Y2) side. Unevenness is likely to be formed on the surface of the agent layer (X1) side. Therefore, unevenness is satisfactorily formed on the adhesive surface of the adhesive layer (X1).
From this point of view, the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. is preferably 700 MPa or more, more preferably 1000 MPa or more, still more preferably 1300 MPa or more, still more preferably 1600 MPa or more, still more preferably. It is 1800 MPa or more. In addition, it is usually 10,000 MPa or less.
 非熱膨張性基材層(Y2)の形成材料としては、例えば、樹脂、金属、及び紙材等が挙げられ、本発明の一態様の粘着シートの用途に応じて適宜選択することができる。 Examples of the material for forming the non-thermally expandable base material layer (Y2) include resins, metals, and paper materials, which can be appropriately selected depending on the use of the pressure-sensitive adhesive sheet according to one aspect of the present invention.
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 これらの中でも、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂が好ましい。
Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate and poly. Polyimide-based resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resins such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyether sulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; fluorine resin and the like can be mentioned.
Examples of the metal include aluminum, tin, chromium, titanium and the like.
Examples of the paper material include thin-leaf paper, medium-quality paper, high-quality paper, impregnated paper, coated paper, art paper, parchment paper, and glassin paper.
Among these, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferable.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非熱膨張性基材層(Y2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたものや、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one kind, or two or more kinds may be used in combination.
As the non-thermally expandable base material layer (Y2) in which two or more kinds of forming materials are used in combination, a paper material laminated with a thermoplastic resin such as polyethylene, or a metal film is formed on the surface of a resin film or sheet containing the resin. Examples thereof include those formed.
As a method for forming the metal layer, for example, a method of vapor-depositing the metal by a PVD method such as vacuum vapor deposition, sputtering, or ion plating, or a method of attaching a metal foil made of the metal by using a general adhesive. The method of doing this can be mentioned.
 なお、非熱膨張性基材層(Y2)と積層する他の層との層間密着性を向上させる観点から、非熱膨張性基材層(Y2)が樹脂を含む場合、非熱膨張性基材層(Y2)の表面に対しても、上述の熱膨張性基材層(Y1)と同様に、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。 When the non-thermally expandable base material layer (Y2) contains a resin, it is a non-thermally expandable group from the viewpoint of improving the interlayer adhesion between the non-thermally expandable base material layer (Y2) and other layers to be laminated. The surface of the material layer (Y2) may also be subjected to surface treatment, easy adhesion treatment, or primer treatment by an oxidation method, an unevenness method, or the like, similarly to the above-mentioned thermal expansion base material layer (Y1). ..
 また、非熱膨張性基材層(Y2)が樹脂を含む場合、当該樹脂と共に、樹脂組成物(y-1)にも含有し得る、上述の基材用添加剤を含有してもよい。 Further, when the non-thermally expandable base material layer (Y2) contains a resin, the above-mentioned base material additive which can be contained in the resin composition (y-1) may be contained together with the resin.
 非熱膨張性基材層(Y2)は、上述の方法に基づき判断される、非熱膨張性層である。
 そのため、上述の式から算出される非熱膨張性基材層(Y2)の体積変化率(%)としては、5%未満であるが、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
The non-thermally expandable base material layer (Y2) is a non-thermally expandable layer determined based on the above method.
Therefore, the volume change rate (%) of the non-thermally expandable base material layer (Y2) calculated from the above formula is less than 5%, but preferably less than 2%, more preferably less than 1%, and further. It is preferably less than 0.1%, and even more preferably less than 0.01%.
 また、非熱膨張性基材層(Y2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよい。例えば、非熱膨張性基材層(Y2)に含まれる樹脂を選択することで、熱膨張性粒子が含まれていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非熱膨張性基材層(Y2)中の熱膨張性粒子の含有量は、少ないほど好ましい。
 具体的な熱膨張性粒子の含有量としては、非熱膨張性基材層(Y2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。更になお好ましくは熱膨張性粒子を含有しないことである。
Further, the non-thermally expandable base material layer (Y2) may contain thermally expandable particles as long as the volume change rate is within the above range. For example, by selecting the resin contained in the non-thermally expandable base material layer (Y2), it is possible to adjust the volume change rate within the above range even if the thermally expandable particles are contained.
However, the smaller the content of the heat-expandable particles in the non-heat-expandable base material layer (Y2), the more preferable.
The specific content of the heat-expandable particles is usually less than 3% by mass, preferably less than 1% by mass, more preferably with respect to the total mass (100% by mass) of the non-heat-expandable base material layer (Y2). Is less than 0.1% by mass, more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass. Even more preferably, it does not contain thermally expandable particles.
(非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23))
 非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×10Pa、より好ましくは5.0×10~4.5×10Pa、更に好ましくは1.0×10~4.0×10Paである。
 非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以上であれば、熱膨張性基材層(Y1)の非熱膨張性基材層(Y2)側の表面の膨張を効果的に抑制しやすいと共に、粘着シートの耐変形性を向上させやすい。一方、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以下であれば、粘着シートの取り扱い性を向上させやすい。
 なお、本明細書において、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)は、実施例に記載の方法により測定された値を意味する。
(Storage modulus of non-thermally expandable base material (Y2) at 23 ° C. E'(23))
The storage elastic modulus E'(23) of the non-thermally expandable substrate layer (Y2) at 23 ° C. is preferably 5.0 × 10 7 to 5.0 × 10 9 Pa, more preferably 5.0 × 10 8. It is ~ 4.5 × 10 9 Pa, more preferably 1.0 × 10 9 to 4.0 × 10 9 Pa.
If the storage elastic modulus E of the non-heat-expandable base material layer (Y2) '(23) is 5.0 × 10 7 Pa or more, heat-expandable base layer non-intumescent base material layer (Y1) ( It is easy to effectively suppress the expansion of the surface on the Y2) side, and it is easy to improve the deformation resistance of the adhesive sheet. On the other hand, if non-heat-expandable base material layer (Y2) of the storage modulus E '(23) is less than 5.0 × 10 9 Pa, to improve the handling properties of the pressure-sensitive adhesive sheet easily.
In the present specification, the storage elastic modulus E'(23) of the non-thermally expandable base material layer (Y2) means a value measured by the method described in Examples.
(非熱膨張性基材層(Y2)の膨張開始温度(t)における貯蔵弾性率E’(t))
 非熱膨張性基材層(Y2)の熱膨張性粒子の膨張開始温度(t)における貯蔵弾性率E’(t)は、好ましくは5.0×10~3.0×10Pa、より好ましくは2.0×10~2.5×10Pa、更に好ましくは5.0×10~2.0×10Paである。
 非熱膨張性基材層(Y2)の貯蔵弾性率E’(t)が5.0×10Pa以上であれば、熱膨張性基材層(Y1)の非熱膨張性基材層(Y2)側の表面の膨張を効果的に抑制しやすいと共に、粘着シートの耐変形性を向上させやすい。一方、非熱膨張性基材層(Y2)の貯蔵弾性率E’(t)が3.0×10Pa以下であれば、粘着シートの取り扱い性を向上させやすい。
 なお、本明細書において、非熱膨張性基材層(Y2)の貯蔵弾性率E’(t)は、実施例に記載の方法により測定された値を意味する。
(Storage modulus E'(t) at the expansion start temperature (t) of the non-thermally expandable base material layer (Y2))
The coefficient of thermal expansion E'(t) at the expansion start temperature (t) of the thermally expandable particles of the non-thermally expandable substrate layer (Y2) is preferably 5.0 × 10 7 to 3.0 × 10 9 Pa. It is more preferably 2.0 × 10 8 to 2.5 × 10 9 Pa, and even more preferably 5.0 × 10 8 to 2.0 × 10 9 Pa.
If the storage elastic modulus E of the non-heat-expandable base material layer (Y2) '(t) is 5.0 × 10 7 Pa or more, heat-expandable base layer non-intumescent base material layer (Y1) ( It is easy to effectively suppress the expansion of the surface on the Y2) side, and it is easy to improve the deformation resistance of the adhesive sheet. On the other hand, if non-heat-expandable base material layer (Y2) storage modulus E '(t) is 3.0 × 10 9 Pa or less, to improve the handling properties of the pressure-sensitive adhesive sheet easily.
In the present specification, the storage elastic modulus E'(t) of the non-thermally expandable base material layer (Y2) means a value measured by the method described in Examples.
(非熱膨張性基材層(Y2)の厚さ)
 非熱膨張性基材層(Y2)の厚さは、好ましくは5~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。非熱膨張性基材層(Y2)の厚さが5μm以上であれば、粘着シートの耐変形性を向上させやすい。一方、非熱膨張性基材層(Y2)の厚さが500μm以下であれば、粘着シートの取り扱い性を向上させやすい。
 なお、本明細書において、非熱膨張性基材層(Y2)の厚さは、実施例に記載の方法により測定された値を意味する。
(Thickness of non-thermally expandable base material layer (Y2))
The thickness of the non-thermally expandable base material layer (Y2) is preferably 5 to 500 μm, more preferably 15 to 300 μm, and even more preferably 20 to 200 μm. When the thickness of the non-thermally expandable base material layer (Y2) is 5 μm or more, the deformation resistance of the pressure-sensitive adhesive sheet can be easily improved. On the other hand, when the thickness of the non-thermally expandable base material layer (Y2) is 500 μm or less, the handleability of the pressure-sensitive adhesive sheet can be easily improved.
In addition, in this specification, the thickness of the non-thermally expandable base material layer (Y2) means the value measured by the method described in Example.
<粘着剤層(X2)>
 粘着剤層(X2)は、非熱膨張性基材層(Y2)の熱膨張性基材層(Y1)の積層面とは反対側の面に任意に設けられる層である。
 粘着剤層(X2)は、熱膨張性層であってもよく、非熱膨張性層であってもよいが、非熱膨張性層であることが好ましい。粘着剤層(X1)と粘着剤層(X2)とで、粘着剤層の粘着力を低下させる作用機構を異なるものにすることで、いずれか一方の粘着剤層の粘着力を低下させる処理を行う際に、意図せず他方の粘着剤層の粘着力まで低下させてしまうことを抑制することができる。
<Adhesive layer (X2)>
The pressure-sensitive adhesive layer (X2) is a layer arbitrarily provided on a surface of the non-thermally expandable base material layer (Y2) opposite to the laminated surface of the heat-expandable base material layer (Y1).
The pressure-sensitive adhesive layer (X2) may be a thermally expandable layer or a non-thermally expandable layer, but is preferably a non-thermally expandable layer. The pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2) have different action mechanisms for reducing the adhesive strength of the pressure-sensitive adhesive layer, whereby the treatment for reducing the adhesive strength of one of the pressure-sensitive adhesive layers is performed. When doing so, it is possible to prevent the adhesive strength of the other adhesive layer from being unintentionally reduced.
 粘着剤層(X2)が非熱膨張性層である場合、上記式から算出される粘着剤層(X2)の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 粘着剤層(X2)は、熱膨張性粒子を含有しないことが好ましいが、本発明の目的に反しない範囲で熱膨張性粒子を含有していてもよい。
 粘着剤層(X2)が熱膨張性粒子を含有する場合、その含有量は少ないほど好ましく、粘着剤層(X2)の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
When the pressure-sensitive adhesive layer (X2) is a non-thermally expandable layer, the volume change rate (%) of the pressure-sensitive adhesive layer (X2) calculated from the above formula is less than 5%, preferably less than 2%. It is preferably less than 1%, more preferably less than 0.1%, and even more preferably less than 0.01%.
The pressure-sensitive adhesive layer (X2) preferably does not contain heat-expandable particles, but may contain heat-expandable particles within a range not contrary to the object of the present invention.
When the pressure-sensitive adhesive layer (X2) contains thermally expandable particles, the smaller the content is, the more preferable, and the content is preferably less than 3% by mass, based on the total mass (100% by mass) of the pressure-sensitive adhesive layer (X2). It is preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
 粘着剤層(X2)は、粘着性樹脂を含有する粘着剤組成物(x-2)から形成することが好ましい。以下、粘着剤組成物(x-2)に含有される各成分について説明する。 The pressure-sensitive adhesive layer (X2) is preferably formed from the pressure-sensitive adhesive composition (x-2) containing a pressure-sensitive adhesive resin. Hereinafter, each component contained in the pressure-sensitive adhesive composition (x-2) will be described.
(粘着剤組成物(x-2))
 粘着剤組成物(x-2)は、粘着性樹脂を含有するものであり、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤、上記各成分以外の一般的な粘着剤に使用される粘着剤用添加剤等を含有していてもよい。
(Adhesive composition (x-2))
The pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive resin, and if necessary, a cross-linking agent, a pressure-sensitive adhesive, a polymerizable compound, a polymerization initiator, and general pressure-sensitive adhesive other than the above-mentioned components. It may contain an additive for a pressure-sensitive adhesive used in the agent.
(粘着性樹脂)
 粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であればよい。
 粘着性樹脂の質量平均分子量(Mw)は、粘着剤層(X2)の粘着力をより向上させる観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(Adhesive resin)
The adhesive resin may be a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2 million, more preferably 20,000 to 1.5 million, and further preferably 30,000 from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X2). ~ 1 million.
 粘着性樹脂としては、粘着剤組成物(x-1)が含有する粘着剤組成物と同様のものが挙げられる。
 これらの粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Examples of the adhesive resin include those similar to the adhesive composition contained in the adhesive composition (x-1).
One type of these adhesive resins may be used alone, or two or more types may be used in combination.
When these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer. There may be.
 粘着剤組成物(x-2)が含有する粘着性樹脂は、粘着剤層(X1)との粘着力低下の作用機序を異ならせる観点から、該粘着性樹脂を含有する粘着剤組成物(x-2)は、エネルギー線の照射によって硬化する粘着剤組成物であることが好ましく、側鎖にエネルギー線重合性官能基を有する粘着剤組成物であることがより好ましい。当該粘着剤組成物から形成することによって、粘着剤層(X2)を、エネルギー線照射によって硬化して粘着力が低下する粘着剤層とすることができる。これにより、粘着剤層(X1)の粘着表面は加熱により粘着力が低下する態様とし、粘着剤層(X2)の粘着表面はエネルギー線照射により粘着力が低下する態様とすることができ、互いの粘着剤層の粘着力を低下させる作用機構を異なるものにすることができる。したがって、いずれか一方の粘着剤層の粘着力を低下させる処理を行う際に、意図せず他方の粘着剤層の粘着力まで低下させてしまうことを抑制することができる。
 エネルギー線重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を有するものが挙げられる。
 エネルギー線としては、上記したものの中でも、取り扱いが容易な紫外線が好ましい。
The adhesive resin contained in the pressure-sensitive adhesive composition (x-2) has a pressure-sensitive adhesive composition containing the pressure-sensitive adhesive resin from the viewpoint of differentiating the mechanism of action of reducing the adhesive strength with the pressure-sensitive adhesive layer (X1). x-2) is preferably a pressure-sensitive adhesive composition that is cured by irradiation with energy rays, and more preferably a pressure-sensitive adhesive composition having an energy ray-polymerizable functional group in the side chain. By forming from the pressure-sensitive adhesive composition, the pressure-sensitive adhesive layer (X2) can be made into a pressure-sensitive adhesive layer that is cured by energy ray irradiation and whose adhesive strength is reduced. As a result, the adhesive surface of the pressure-sensitive adhesive layer (X1) can be in a mode in which the adhesive strength is reduced by heating, and the adhesive surface of the pressure-sensitive adhesive layer (X2) can be in a mode in which the adhesive strength is reduced by irradiation with energy rays. The mechanism of action that reduces the adhesive strength of the pressure-sensitive adhesive layer can be different. Therefore, it is possible to prevent the adhesive strength of one of the pressure-sensitive adhesive layers from being unintentionally reduced when the treatment is performed to reduce the adhesive strength of the other pressure-sensitive adhesive layer.
Examples of the energy ray-polymerizable functional group include those having a carbon-carbon double bond such as a (meth) acryloyl group, a vinyl group, and an allyl group.
Among the above-mentioned energy rays, ultraviolet rays, which are easy to handle, are preferable.
 粘着剤組成物(x-2)をエネルギー線の照射によって硬化する粘着剤組成物とする場合、該粘着剤組成物は、さらに光重合開始剤を含有することが好ましい。
 光重合開始剤を含有することで、エネルギー線重合性成分の重合をより効率的に進行させることができる。
 光重合開始剤としては、粘着剤組成物(x-1)が含有していてもよい光重合開始剤と同じものが挙げられる。
 光重合開始剤の含有量は、エネルギー線重合性官能基を有する粘着性樹脂の全量100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。
When the pressure-sensitive adhesive composition (x-2) is a pressure-sensitive adhesive composition that is cured by irradiation with energy rays, the pressure-sensitive adhesive composition preferably further contains a photopolymerization initiator.
By containing the photopolymerization initiator, the polymerization of the energy ray-polymerizable component can proceed more efficiently.
Examples of the photopolymerization initiator include the same photopolymerization initiators that may be contained in the pressure-sensitive adhesive composition (x-1).
The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, based on 100 parts by mass of the total amount of the adhesive resin having an energy ray-polymerizable functional group. More preferably, it is 0.05 to 2 parts by mass.
 粘着性樹脂は、優れた粘着力を発現させる観点から、アクリル系樹脂を含有することが好ましい。
 粘着剤組成物(x-2)中におけるアクリル系樹脂の含有量は、粘着剤組成物(x-2)に含有される粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。
The adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength.
The content of the acrylic resin in the pressure-sensitive adhesive composition (x-2) is preferably 30 to 30% with respect to the total amount (100% by mass) of the pressure-sensitive resin contained in the pressure-sensitive adhesive composition (x-2). It is 100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and even more preferably 85 to 100% by mass.
 粘着剤組成物(x-2)中における粘着性樹脂の含有量は、粘着剤組成物(x-2)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~98質量%、より更に好ましくは70~95質量%である。 The content of the pressure-sensitive resin in the pressure-sensitive adhesive composition (x-2) is preferably 35 to 100% by mass, based on the total amount (100% by mass) of the active ingredients of the pressure-sensitive adhesive composition (x-2). It is more preferably 50 to 100% by mass, further preferably 60 to 98% by mass, and even more preferably 70 to 95% by mass.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x-2)が官能基を有する粘着性樹脂を含有する場合、粘着剤組成物(x-2)は、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(Crosslinking agent)
In one aspect of the present invention, when the pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x-2) preferably further contains a cross-linking agent.
The cross-linking agent reacts with a tacky resin having a functional group to cross-link the tacky resins with the functional group as a cross-linking starting point.
 粘着剤組成物(x-2)が含有していてもよい架橋剤としては、粘着剤組成物(x-1)が含有していてもよい架橋剤と同等のものが挙げられるが、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。 Examples of the cross-linking agent that may be contained in the pressure-sensitive adhesive composition (x-2) include those equivalent to the cross-linking agent that may be contained in the pressure-sensitive adhesive composition (x-1), but have a cohesive force. An isocyanate-based cross-linking agent is preferable from the viewpoint of increasing the adhesive strength and improving the adhesive strength, and from the viewpoint of easy availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the cross-linking agent is appropriately adjusted according to the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x-2)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 粘着剤組成物(x-2)が含有していてもよい粘着付与剤としては、粘着剤組成物(x-1)が含有していてもよい粘着付与剤と同等のものを使用することができる。
(Adhesive agent)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x-2) may further contain a pressure-sensitive adhesive from the viewpoint of further improving the adhesive strength.
As the pressure-sensitive adhesive that may be contained in the pressure-sensitive adhesive composition (x-2), the same pressure-imparting agent that may be contained in the pressure-sensitive adhesive composition (x-1) may be used. it can.
(粘着剤用添加剤)
 粘着剤用添加剤としては、粘着剤組成物(x-1)が含有していてもよい粘着剤用添加剤と同じものが挙げられる。
(Additives for adhesives)
Examples of the pressure-sensitive adhesive additive include the same pressure-sensitive adhesive additives that the pressure-sensitive adhesive composition (x-1) may contain.
 粘着剤組成物(x-2)は、粘着性樹脂、必要に応じて使用される架橋剤、粘着付与剤、粘着剤用添加剤等を混合することで製造することができる。 The pressure-sensitive adhesive composition (x-2) can be produced by mixing a pressure-sensitive resin, a cross-linking agent used as necessary, a pressure-sensitive adhesive, an additive for pressure-sensitive adhesive, and the like.
(粘着剤層(X2)の23℃における厚さ)
 粘着剤層(X2)の23℃における厚さは、好ましくは5~150μm、より好ましくは8~100μm、更に好ましくは12~70μm、より更に好ましくは15~50μmである。
 粘着剤層(X2)の23℃における厚さが5μm以上であれば、十分な粘着力が得られ易くなり、仮固定時における被着体からの意図しない剥離、被着体の位置ズレ等を抑制できる傾向にある。一方、粘着剤層(X2)の23℃における厚さが150μm以下であれば、粘着シートの取り扱いが容易になる傾向にある。
(Thickness of the adhesive layer (X2) at 23 ° C.)
The thickness of the pressure-sensitive adhesive layer (X2) at 23 ° C. is preferably 5 to 150 μm, more preferably 8 to 100 μm, still more preferably 12 to 70 μm, and even more preferably 15 to 50 μm.
If the thickness of the pressure-sensitive adhesive layer (X2) at 23 ° C. is 5 μm or more, sufficient adhesive strength can be easily obtained, and unintentional peeling from the adherend during temporary fixing, misalignment of the adherend, etc. can occur. It tends to be suppressed. On the other hand, if the thickness of the pressure-sensitive adhesive layer (X2) at 23 ° C. is 150 μm or less, the pressure-sensitive adhesive sheet tends to be easy to handle.
<剥離材>
 剥離材としては、両面剥離処理をされた剥離シート、片面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
 剥離材用の基材としては、例えば、プラスチックフィルム、紙類等が挙げられる。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム;ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等が挙げられ、紙類としては、例えば、上質紙、グラシン紙、クラフト紙等が挙げられる。
<Release material>
Examples of the release material include a release sheet that has undergone double-sided release treatment, a release sheet that has undergone single-sided release treatment, and the like, in which a release agent is applied onto a base material for the release material.
Examples of the base material for the release material include plastic films and papers. Examples of the plastic film include polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin and polyethylene naphthalate resin; and olefin resin films such as polypropylene resin and polyethylene resin. Examples of papers include high-quality paper. , Glassin paper, kraft paper, etc.
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー;長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。剥離剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the release agent include rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins; long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins. As the release agent, one type may be used alone, or two or more types may be used in combination.
 剥離材の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは35~80μmである。 The thickness of the release material is preferably 10 to 200 μm, more preferably 20 to 150 μm, and even more preferably 35 to 80 μm.
[粘着シートの製造方法]
 本発明の粘着シートの製造方法は、特に制限はなく、例えば下記工程(1a)~(3a)を有する、粘着シートの製造方法が挙げられる。
・工程(1a):剥離材の剥離処理表面上に、粘着剤組成物(x-1)を塗布して粘着剤層(X1)を形成する工程。
・工程(2a):非熱膨張性基材層(Y2)の片面に、樹脂組成物(y-1)を塗布して非熱膨張性基材層(Y2)と熱膨張性基材層(Y1)とが積層された基材積層体を形成する工程。
・工程(3a):工程(1a)で形成した粘着剤層(X1)の粘着表面と、工程(2a)で形成した基材積層体の熱膨張性基材層(Y1)側の表面とを、貼り合わせる工程。
[Manufacturing method of adhesive sheet]
The method for producing the pressure-sensitive adhesive sheet of the present invention is not particularly limited, and examples thereof include a method for manufacturing a pressure-sensitive adhesive sheet having the following steps (1a) to (3a).
Step (1a): A step of applying the pressure-sensitive adhesive composition (x-1) on the peeling-treated surface of the release material to form the pressure-sensitive adhesive layer (X1).
Step (2a): The resin composition (y-1) is applied to one side of the non-thermally expandable base material layer (Y2) to form a non-thermally expandable base material layer (Y2) and a heat-expandable base material layer (Y-1). A step of forming a base material laminate in which Y1) is laminated.
Step (3a): The adhesive surface of the pressure-sensitive adhesive layer (X1) formed in the step (1a) and the surface of the base material laminate formed in the step (2a) on the heat-expandable base material layer (Y1) side. , The process of laminating.
 また、本発明の粘着シートの別の製造方法としては、上記工程(1a)~(3a)に加えて、上記工程(4a)~(5a)を有する、両面粘着シートの製造方法が挙げられる。
・工程(4a):剥離材の剥離処理表面上に、粘着剤組成物(x-2)を塗布して粘着剤層(X2)を形成する工程。
・工程(5a):工程(3a)で形成した粘着シートの非熱膨張性基材層(Y2)の表面に、工程(4a)で形成した粘着剤層(X2)の粘着表面を貼り合わせる工程
Further, as another method for producing the pressure-sensitive adhesive sheet of the present invention, there is a method for manufacturing a double-sided pressure-sensitive adhesive sheet having the above-mentioned steps (4a) to (5a) in addition to the above-mentioned steps (1a) to (3a).
Step (4a): A step of applying the pressure-sensitive adhesive composition (x-2) on the peeling-treated surface of the release material to form the pressure-sensitive adhesive layer (X2).
Step (5a): A step of adhering the adhesive surface of the pressure-sensitive adhesive layer (X2) formed in step (4a) to the surface of the non-thermally expandable base material layer (Y2) of the pressure-sensitive adhesive sheet formed in step (3a).
 上記粘着シートの製造方法において、樹脂組成物(y-1)、粘着剤組成物(x-1)、及び粘着剤組成物(x-2)は、さらに希釈溶剤を配合し、溶液の形態としてもよい。
 塗布方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、及びグラビアコート法等が挙げられる。
In the method for producing the pressure-sensitive adhesive sheet, the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) are further blended with a diluting solvent to form a solution. May be good.
Examples of the coating method include a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, and a gravure coating method.
 また、樹脂組成物(y-1)、粘着剤組成物(x-1)、及び粘着剤組成物(x-2)から形成される塗膜を乾燥する工程は、熱膨張性粒子の膨張を抑制する観点から、乾燥温度を熱膨張性粒子の膨張開始温度(t)未満で行うことが好ましい。 Further, the step of drying the coating film formed from the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) causes the expansion of the heat-expandable particles. From the viewpoint of suppressing, it is preferable that the drying temperature is lower than the expansion start temperature (t) of the thermally expandable particles.
[本発明の粘着シートの用途及び使用方法]
 本発明の一態様の粘着シートは、仮固定された被着体を加熱により容易に剥離することができ、しかも剥離後の被着体表面の汚染を抑制することができ、様々な用途に適用可能である。具体的には、例えば、半導体ウエハ等の被着体をダイシングする際に用いられるダイシングシート、被着体を研削する工程に用いられるバックグラインドシート、ダイシングによって個片化された半導体チップ等の被着体同士の距離を拡大させるために用いられるエキスパンドテープ、半導体チップ等の被着体の表裏を反転させるために用いられる転写テープ、検査対象物を検査するために仮固定するのに用いられる仮固定用シート等に好適である。
[Use and Usage of Adhesive Sheet of the Present Invention]
The pressure-sensitive adhesive sheet according to one aspect of the present invention can be easily peeled off by heating the temporarily fixed adherend, and can suppress contamination of the adherend surface after peeling, and is applicable to various applications. It is possible. Specifically, for example, a dicing sheet used when dicing an adherend such as a semiconductor wafer, a back grind sheet used in a process of grinding an adherend, a substrate such as a semiconductor chip individualized by dicing. Expanding tape used to increase the distance between wafers, transfer tape used to invert the front and back of adherends such as semiconductor chips, and temporary fixing used to temporarily fix an object to be inspected. Suitable for fixing sheets and the like.
 本発明の一態様の粘着シートの被着体としては、特に限定されないが、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。
 本発明の一態様の粘着シートのように、熱膨張性粒子の膨張開始温度(t)を125℃未満とした場合、低温での加熱剥離が可能であることから、DAF付き半導体チップ等の熱変化し易い被着体を仮固定するのに好適である。
 また、本発明の一態様の粘着シートのように、熱膨張性粒子の膨張開始温度(t)を50℃以上とした場合、被着体に対して研削を行う場合等の温度上昇による熱膨張性粒子の意図しない膨張を抑制できることから、被着体を研削する工程に用いられるバックグラインドシートとして用いるのに好適である。
The adherend of the pressure-sensitive adhesive sheet according to one aspect of the present invention is not particularly limited, and examples thereof include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, sapphire substrates, displays, and panel substrates.
When the expansion start temperature (t) of the heat-expandable particles is set to less than 125 ° C. as in the pressure-sensitive adhesive sheet of one aspect of the present invention, heat peeling is possible at a low temperature, so that heat of a semiconductor chip with DAF or the like can be obtained. It is suitable for temporarily fixing a variable adherend.
Further, when the expansion start temperature (t) of the heat-expandable particles is set to 50 ° C. or higher as in the pressure-sensitive adhesive sheet of one aspect of the present invention, thermal expansion due to temperature rise such as when grinding the adherend is performed. Since it can suppress the unintended expansion of the sex particles, it is suitable for use as a back grind sheet used in the process of grinding an adherend.
 本発明の一態様の粘着シートを被着体から加熱剥離する際の加熱温度は、熱膨張性粒子の膨張開始温度(t)以上であり、好ましくは「膨張開始温度(t)より高い温度」、より好ましくは「膨張開始温度(t)+2℃」以上、更に好ましくは「膨張開始温度(t)+4℃」以上、より更に好ましくは「膨張開始温度(t)+5℃」以上である。また、省エネルギー性及び加熱剥離時における被着体の熱変化を抑制する観点からは、好ましくは「膨張開始温度(t)+50℃」以下、より好ましくは「膨張開始温度(t)+40℃」以下、更に好ましくは「膨張開始温度(t)+20℃」以下である。
 また、加熱剥離する際の加熱温度は、被着体の熱変化を抑制する観点からは、膨張開始温度(t)以上の範囲内において、好ましくは125℃未満、より好ましくは120℃以下、更に好ましくは115℃以下、より更に好ましくは110℃以下、更になお好ましくは105℃以下である。
The heating temperature at which the pressure-sensitive adhesive sheet according to one aspect of the present invention is heat-peeled from the adherend is equal to or higher than the expansion start temperature (t) of the heat-expandable particles, and is preferably “a temperature higher than the expansion start temperature (t)”. , More preferably "expansion start temperature (t) + 2 ° C." or higher, further preferably "expansion start temperature (t) + 4 ° C." or higher, and even more preferably "expansion start temperature (t) + 5 ° C." or higher. Further, from the viewpoint of energy saving and suppressing the thermal change of the adherend at the time of heat peeling, it is preferably "expansion start temperature (t) + 50 ° C." or less, more preferably "expansion start temperature (t) + 40 ° C." or less. More preferably, it is "expansion start temperature (t) + 20 ° C." or less.
Further, the heating temperature at the time of heat peeling is preferably less than 125 ° C., more preferably 120 ° C. or lower, and further, within the range of the expansion start temperature (t) or higher, from the viewpoint of suppressing the thermal change of the adherend. It is preferably 115 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 105 ° C. or lower.
 加熱の方式としては、熱膨張性粒子が膨張する温度以上に加熱することができるものであれば特に限定されず、例えば、電熱ヒーター;誘電加熱;磁気加熱;近赤外線、中赤外線、及び遠赤外線等の赤外線等の電磁波による加熱等を適宜使用できる。なお、加熱方式は、加熱ローラー、加熱プレス等の接触型加熱方式、及び雰囲気加熱装置、赤外線照射等の非接触型加熱方式のいずれの加熱方式であってもよい。 The heating method is not particularly limited as long as it can be heated to a temperature higher than the temperature at which the thermally expandable particles expand, and for example, an electric heater; dielectric heating; magnetic heating; near infrared rays, mid infrared rays, and far infrared rays. It is possible to appropriately use heating by electromagnetic waves such as infrared rays. The heating method may be any of a contact type heating method such as a heating roller and a heating press, and a non-contact type heating method such as an atmosphere heating device and infrared irradiation.
[半導体装置の製造方法]
 本発明は、本発明の一態様の粘着シートを用いる半導体装置の製造方法も提供する。
 本発明の半導体装置の製造方法の一態様としては、本発明の一態様の粘着シートを、被着体を加工及び検査の少なくともいずれか一方を行うための仮固定用シートとして使用する態様(以下、「第一態様の半導体装置の製造方法」ともいう)が挙げられる。
 なお、本明細書において、「半導体装置」とは、半導体特性を利用することで機能し得る装置全般を指す。例えば、集積回路を備えるウエハ、集積回路を備える薄化されたウエハ、集積回路を備えるチップ、集積回路を備える薄化されたチップ、これらのチップを含む電子部品、及び当該電子部品を備える電子機器類等が挙げられる。
[Manufacturing method of semiconductor devices]
The present invention also provides a method for manufacturing a semiconductor device using the pressure-sensitive adhesive sheet according to one aspect of the present invention.
As one aspect of the method for manufacturing a semiconductor device of the present invention, the adhesive sheet of one aspect of the present invention is used as a temporary fixing sheet for performing at least one of processing and inspection of an adherend (hereinafter referred to as an aspect). , Also referred to as "a method for manufacturing a semiconductor device of the first aspect").
In addition, in this specification, a "semiconductor device" refers to a device in general that can function by utilizing semiconductor characteristics. For example, wafers with integrated circuits, thinned wafers with integrated circuits, chips with integrated circuits, thinned chips with integrated circuits, electronic components including these chips, and electronic components with the electronic components. Kind and the like.
<第一態様の半導体装置の製造方法>
 第一態様の半導体装置の製造方法のより具体的な態様としては、本発明の一態様の粘着シートに加工検査対象物を貼付し、該加工検査対象物に対して、加工及び検査から選択される1以上を施した後に、前記粘着シートを前記膨張開始温度(t)以上に加熱する工程を含む、半導体装置の製造方法が挙げられる。
 加工検査対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、LED素子、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。
 加工検査対象物に対して行われる加工は、特に限定されないが、例えば、研削処理、個片化処理等が挙げられる。
 加工検査対象物に対して行われる検査は、特に限定されないが、例えば、光学顕微鏡、レーザーを利用した欠陥検査(例えば、ごみ検査、表面傷検査、配線パターン検査等)、目視による表面検査等が挙げられる。
<Manufacturing method of semiconductor device of the first aspect>
As a more specific aspect of the method for manufacturing a semiconductor device of the first aspect, a processing inspection object is attached to the pressure-sensitive adhesive sheet of one aspect of the present invention, and the processing inspection object is selected from processing and inspection. A method for manufacturing a semiconductor device, which includes a step of heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher after applying the above-mentioned one or more.
Examples of the processing inspection object include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, LED elements, sapphire substrates, displays, panel substrates, and the like.
The processing performed on the object to be inspected is not particularly limited, and examples thereof include grinding processing and individualization processing.
The inspection performed on the object to be processed is not particularly limited, but for example, defect inspection using an optical microscope or laser (for example, dust inspection, surface scratch inspection, wiring pattern inspection, etc.), visual surface inspection, etc. Can be mentioned.
 第一態様の半導体装置の製造方法において、加工検査対象物を貼付する粘着シートの粘着剤層は、粘着剤層(X1)であってもよく、粘着シートが両面粘着シートである場合は、粘着剤層(X2)であってもよい。
 また、粘着シートが両面粘着シートである場合、いずれか一方の粘着剤層に加工検査対象物を貼付し、いずれか他方の粘着剤層に支持体を貼付することが好ましい。加工検査対象物が粘着シートを介して支持体に固定されることによって、加工及び検査の少なくともいずれか一方を行う際に、加工検査対象物の振動、位置ズレ、脆弱な加工検査対象物の破損等を抑制し、加工精度及び加工速度並びに検査精度及び検査速度を向上させることができる。このとき、支持体が粘着剤層(X1)に貼付され、加工検査対象物が粘着剤層(X2)に貼付される態様であってもよいし、加工検査対象物が粘着剤層(X1)に貼付され、支持体が粘着剤層(X2)に貼付される態様であってもよい。
 支持体が粘着剤層(X1)に貼付され、加工検査対象物が粘着剤層(X2)に貼付される態様である場合、支持体が加熱処理後の剥離性に優れる粘着剤層(X1)に貼付されることで、支持体が硬質な材質から構成されるものであっても、粘着シート及び支持体を屈曲させることなく加熱剥離することができる。また、粘着剤層(X2)は、加工検査対象物の種類等に応じて適宜組成を選択すればよく、例えば、粘着剤層(X2)をエネルギー線照射によって粘着力が低下する粘着剤層とすると、熱膨張性粒子に由来する残渣等によって加工対象物を汚染させることなく剥離することができる。
 一方、加工検査対象物が粘着剤層(X1)に貼付され、支持体が粘着剤層(X2)に貼付される態様である場合、加工検査対象物が加熱処理後の剥離性に優れる粘着剤層(X1)に貼付されることで、加工後に加熱剥離する際、加工検査対象物を個別にピックアップ等する必要がなく、一括で容易に剥離することができるため、半導体装置の生産性に優れる。
 また、本発明の一態様の粘着シートを、製造工程の一環として加工検査対象物を検査するための仮固定用シートとして使用する場合、粘着シートの粘着剤層(X1)に複数個の加工検査対象物を貼付した状態で検査を実施することができる。検査を行った後、例えば、上記複数個の加工検査対象物が貼付されている粘着シートの一部を局所的に加熱して、当該部分に貼付されている特定の加工検査対象物を選択的に加熱剥離することもできる。このとき、本発明の一態様の粘着シートは、低温での加熱剥離が可能であるため、加熱剥離作業の作業性及び省エネルギー性に優れると共に、加工検査対象物が熱変化し易いものであっても、加熱剥離時の加熱による加工検査対象物の熱変化を抑制することができる
In the method for manufacturing a semiconductor device of the first aspect, the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet to which the processing inspection object is attached may be the pressure-sensitive adhesive layer (X1), and when the pressure-sensitive adhesive sheet is a double-sided pressure-sensitive adhesive sheet, it is pressure-sensitive. It may be an agent layer (X2).
When the pressure-sensitive adhesive sheet is a double-sided pressure-sensitive adhesive sheet, it is preferable that the object to be processed and inspected is attached to one of the pressure-sensitive adhesive layers and the support is attached to the other pressure-sensitive adhesive layer. By fixing the processing inspection object to the support via the adhesive sheet, vibration, misalignment, and damage to the fragile processing inspection object when performing at least one of processing and inspection. Etc. can be suppressed, and the processing accuracy and processing speed as well as the inspection accuracy and inspection speed can be improved. At this time, the support may be attached to the pressure-sensitive adhesive layer (X1) and the object to be processed and inspected may be attached to the pressure-sensitive adhesive layer (X2), or the object to be processed and inspected may be attached to the pressure-sensitive adhesive layer (X1). The support may be attached to the pressure-sensitive adhesive layer (X2).
When the support is attached to the pressure-sensitive adhesive layer (X1) and the object to be processed and inspected is attached to the pressure-sensitive adhesive layer (X2), the pressure-sensitive adhesive layer (X1) has excellent peelability after heat treatment. By attaching to, even if the support is made of a hard material, the adhesive sheet and the support can be heat-peeled without bending. Further, the composition of the pressure-sensitive adhesive layer (X2) may be appropriately selected according to the type of the object to be processed and inspected. For example, the pressure-sensitive adhesive layer (X2) may be a pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with energy rays. Then, the object to be processed can be peeled off without being contaminated by the residue derived from the thermal expansion particles.
On the other hand, when the object to be processed and inspected is attached to the pressure-sensitive adhesive layer (X1) and the support is attached to the pressure-sensitive adhesive layer (X2), the object to be processed and inspected is an adhesive having excellent peelability after heat treatment. By being attached to the layer (X1), when heat peeling is performed after processing, it is not necessary to pick up the objects to be processed and inspected individually, and the objects can be easily peeled at once, so that the productivity of the semiconductor device is excellent. ..
Further, when the pressure-sensitive adhesive sheet according to one aspect of the present invention is used as a temporary fixing sheet for inspecting a processing inspection object as part of a manufacturing process, a plurality of processing inspections are performed on the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet. The inspection can be carried out with the object attached. After performing the inspection, for example, a part of the adhesive sheet to which the plurality of processing inspection objects are attached is locally heated to selectively select a specific processing inspection object attached to the portion. It can also be peeled off by heating. At this time, since the pressure-sensitive adhesive sheet according to one aspect of the present invention can be heat-peeled at a low temperature, it is excellent in workability and energy saving of the heat-peeling work, and the object to be processed and inspected is easily changed by heat. However, it is possible to suppress the thermal change of the processing inspection object due to heating at the time of heat peeling.
<第二態様の半導体装置の製造方法>
 第二態様の半導体装置の製造方法としては、本発明の一態様の粘着シートとして、熱膨張性粒子の膨張開始温度(t)が50℃以上125℃未満である両面粘着シートを用い、下記工程1A~3A、下記第一分離工程、及び下記第二分離工程を含む製造方法(以下、「製造方法A」ともいう)が挙げられる。
 工程1A:粘着剤層(X2)に加工対象物を貼付し、粘着剤層(X1)に支持体を貼付する工程
 工程2A:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 工程3A:前記処理を施した加工対象物の、粘着剤層(X2)とは反対側の面に、熱硬化性フィルムを貼付する工程
 第一分離工程:前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、粘着剤層(X1)と前記支持体とを分離する工程
 第二分離工程:粘着剤層(X2)と前記加工対象物とを分離する工程
<Manufacturing method of semiconductor device of the second aspect>
As a method for manufacturing the semiconductor device of the second aspect, as the adhesive sheet of one aspect of the present invention, a double-sided adhesive sheet in which the expansion start temperature (t) of the heat-expandable particles is 50 ° C. or higher and lower than 125 ° C. is used, and the following steps are taken. Examples thereof include 1A to 3A, a manufacturing method including the following first separation step and the following second separation step (hereinafter, also referred to as “manufacturing method A”).
Step 1A: Attaching the object to be processed to the pressure-sensitive adhesive layer (X2) and attaching the support to the adhesive layer (X1) Step 2A: Select from grinding and individualizing the object to be processed. Step 3A: A step of sticking a thermosetting film on the surface of the processed object to be treated, which is opposite to the adhesive layer (X2). First separation step: The above. Step of separating the pressure-sensitive adhesive layer (X1) from the support by heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or more and less than 125 ° C. Second separation step: The pressure-sensitive adhesive layer (X2) and the processing target The process of separating things
 以下、工程1A~3A、第一分離工程、及び第二分離工程を含む半導体装置の製造方法について図面を参照しながら説明する。なお、以下の説明では、加工対象物として半導体ウエハを用いる場合の例を主に説明するが、他の加工対象物の場合も同様である。他の加工対象物としては、加工検査対象物として挙げた上記と同様のものが挙げられる。 Hereinafter, a method for manufacturing a semiconductor device including steps 1A to 3A, a first separation step, and a second separation step will be described with reference to the drawings. In the following description, an example in which a semiconductor wafer is used as a processing object will be mainly described, but the same applies to other processing objects. Examples of other processing objects include the same objects as described above as processing inspection objects.
(工程1A)
 工程1Aは、粘着シートが有する粘着剤層(X2)に加工対象物を貼付し、粘着剤層(X1)に支持体を貼付する工程である。
 図3には、粘着シート2bが有する粘着剤層(X2)に半導体ウエハWを貼付し、粘着剤層(X1)に支持体3を貼付する工程を説明する断面図が示されている。
 半導体ウエハWは、回路面である表面W1が粘着剤層(X2)側になるように貼付される。
 半導体ウエハWは、シリコンウエハであってもよく、ガリウム砒素、炭化ケイ素、サファイア、タンタル酸リチウム、ニオブ酸リチウム、窒化ガリウム、インジウム燐等のウエハ、ガラスウエハであってもよい。
 半導体ウエハWの研削前の厚さは、通常は500~1000μmである。
 半導体ウエハWの表面W1が有する回路は、例えば、エッチング法、リフトオフ法等の従来汎用されている方法によって形成することができる。
(Step 1A)
Step 1A is a step of attaching the object to be processed to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet and attaching the support to the pressure-sensitive adhesive layer (X1).
FIG. 3 is a cross-sectional view illustrating a step of attaching the semiconductor wafer W to the adhesive layer (X2) of the adhesive sheet 2b and attaching the support 3 to the adhesive layer (X1).
The semiconductor wafer W is attached so that the surface W1 which is the circuit surface is on the adhesive layer (X2) side.
The semiconductor wafer W may be a silicon wafer, a wafer such as gallium arsenide, silicon carbide, sapphire, lithium tantalate, lithium niobate, gallium nitride, indium phosphorus, or a glass wafer.
The thickness of the semiconductor wafer W before grinding is usually 500 to 1000 μm.
The circuit included in the surface W1 of the semiconductor wafer W can be formed by, for example, a conventionally used general-purpose method such as an etching method or a lift-off method.
 支持体3の材質は、加工対象物の種類、加工内容等に応じて、機械強度、耐熱性等の要求される特性を考慮の上、適宜選択すればよい。
 支持体3の材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、シリコンウエハが好ましい。
 上記エンジニアリングプラスチックとしては、例えば、ナイロン、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)等が挙げられる。
 上記スーパーエンジニアリングプラスチックとしては、例えば、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)等が挙げられる。
The material of the support 3 may be appropriately selected in consideration of required characteristics such as mechanical strength and heat resistance according to the type of the object to be processed, the content of processing, and the like.
Examples of the material of the support 3 include metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resin, ABS resin, acrylic resin, engineering plastic, super engineering plastic, polyimide resin, polyamideimide resin and the like. Resin materials: Composite materials such as glass epoxy resin, and among these, SUS, glass, and silicon wafers are preferable.
Examples of the engineering plastic include nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
Examples of the super engineering plastic include polyphenylene sulfide (PPS), polyethersulfone (PES), and polyetheretherketone (PEEK).
 支持体3は、粘着剤層(X1)の粘着表面の全面に貼付されることが好ましい。そのため、粘着剤層(X1)の粘着表面に貼付される側の支持体3の表面の面積は、粘着剤層(X1)の粘着表面の面積以上であることが好ましい。また、粘着剤層(X1)の粘着表面に貼付される側の支持体3の面は平面状であることが好ましい。
 支持体3の形状は、特に限定されないが、板状であることが好ましい。
 支持体3の厚さは、要求される特性を考慮して適宜選択すればよいが、好ましくは20μm以上50mm以下、より好ましくは60μm以上20mm以下である。
The support 3 is preferably attached to the entire surface of the adhesive surface of the adhesive layer (X1). Therefore, the area of the surface of the support 3 on the side to be attached to the adhesive surface of the adhesive layer (X1) is preferably equal to or larger than the area of the adhesive surface of the adhesive layer (X1). Further, it is preferable that the surface of the support 3 on the side to be attached to the adhesive surface of the adhesive layer (X1) is flat.
The shape of the support 3 is not particularly limited, but is preferably plate-shaped.
The thickness of the support 3 may be appropriately selected in consideration of the required characteristics, but is preferably 20 μm or more and 50 mm or less, and more preferably 60 μm or more and 20 mm or less.
(工程2A)
 工程2Aは、前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程である。
 研削処理及び個片化処理から選択される1以上の処理としては、例えば、グラインダー等を用いる研削処理;ブレードダイシング法、レーザーダイシング法、ステルスダイシング(登録商標)法による個片化処理;ブレード先ダイシング法、ステルス先ダイシング法による研削処理及び個片化処理;等が挙げられる。
 これらの中でも、ステルスダイシング法による個片化処理、ブレード先ダイシング法による研削処理及び個片化処理、ステルス先ダイシング法による研削処理及び個片化処理が好適であり、ブレード先ダイシング法による研削処理及び個片化処理、ステルス先ダイシング法による研削処理及び個片化処理がより好適である。
(Step 2A)
Step 2A is a step of performing one or more processes selected from a grinding process and an individualizing process on the object to be processed.
One or more processes selected from the grinding process and the individualizing process include, for example, a grinding process using a grinder or the like; an individualizing process by a blade dicing method, a laser dicing method, a stealth dicing (registered trademark) method; a blade tip. Grinding process and individualization process by dicing method, stealth tip dicing method; etc. can be mentioned.
Among these, individualization treatment by stealth dicing method, grinding treatment and individualization treatment by blade tip dicing method, grinding treatment and individualization treatment by stealth tip dicing method are preferable, and grinding treatment by blade tip dicing method. And individualization treatment, grinding treatment by stealth tip dicing method and individualization treatment are more preferable.
 ステルスダイシング法は、レーザー光の照射により半導体ウエハの内部に改質領域を形成し、該改質領域を分割起点として、半導体ウエハを個片化する方法である。半導体ウエハに形成された改質領域は多光子吸収によって脆質化された部分であり、半導体ウエハがエキスパンドによりウエハ面と平行かつウエハが拡張される方向に応力がかかることにより、該改質領域を起点として半導体ウエハの表面及び裏面に向けて亀裂が伸展することで、半導体チップに個片化される。すなわち、改質領域は、個片化される際の分割線に沿って形成される。
 改質領域は、半導体ウエハの内部に焦点を合わせたレーザー光の照射によって半導体ウエハの内部に形成される。レーザー光の入射面は、半導体ウエハの表面であっても裏面であってもよい。また、レーザー光入射面は、粘着シートが貼付された面であってもよく、その場合、レーザー光は粘着シートを介して半導体ウエハに照射される。
The stealth dicing method is a method in which a modified region is formed inside a semiconductor wafer by irradiation with laser light, and the semiconductor wafer is individualized using the modified region as a division starting point. The modified region formed on the semiconductor wafer is a portion brittled by multiphoton absorption, and the modified region is applied by applying stress in the direction in which the semiconductor wafer is parallel to the wafer surface and the wafer is expanded by expanding. The cracks extend toward the front surface and the back surface of the semiconductor wafer starting from the above, and are separated into semiconductor chips. That is, the modified region is formed along the dividing line when it is individualized.
The modified region is formed inside the semiconductor wafer by irradiation with a laser beam focused on the inside of the semiconductor wafer. The incident surface of the laser beam may be the front surface or the back surface of the semiconductor wafer. Further, the laser beam incident surface may be a surface to which the adhesive sheet is attached, in which case the laser beam is applied to the semiconductor wafer via the adhesive sheet.
 ブレード先ダイシング法は、DBG法(Dicing Before Grinding)とも呼ばれる。ブレード先ダイシング法は、分割予定のラインに沿って、予め半導体ウエハにその厚さより浅い深さで溝を形成した後、該半導体ウエハを、研削面が少なくとも溝に到達するまで裏面研削して薄化させつつ個片化する方法である。研削面が到達した溝は、半導体ウエハを貫通する切り込みとなり、半導体ウエハは該切り込みにより分割されて半導体チップに個片化される。予め形成される溝は、通常は半導体ウエハの表面(回路面)に設けられるものであり、例えば、従来公知の、ダイシングブレードを備えるウエハダイシング装置等を用いたダイシングにより形成することができる。 The blade tip dicing method is also called the DBG method (Dicing Before Grinding). In the blade tip dicing method, a groove is formed in the semiconductor wafer in advance along the line to be divided at a depth shallower than the thickness, and then the semiconductor wafer is back-ground to be thin until the ground surface reaches at least the groove. It is a method of individualizing while making it. The groove reached by the ground surface becomes a notch penetrating the semiconductor wafer, and the semiconductor wafer is divided by the notch and separated into semiconductor chips. The pre-formed groove is usually provided on the surface (circuit surface) of the semiconductor wafer, and can be formed by dicing using, for example, a conventionally known wafer dicing apparatus provided with a dicing blade.
 ステルス先ダイシング法は、SDBG法(Stealth Dicing Before Grinding)とも呼ばれる。ステルス先ダイシング法は、ステルスダイシング法と同様、レーザー光の照射により半導体ウエハの内部に改質領域を形成し、該改質領域を分割起点として、半導体ウエハを個片化する方法の一種であるが、研削処理を行って半導体ウエハを薄化させつつ半導体ウエハを半導体チップに個片化する点がステルスダイシング法とは異なる。具体的には、改質領域を有する半導体ウエハを裏面研削して薄化させつつ、その際に半導体ウエハにかかる圧力によって該改質領域を起点として半導体ウエハの粘着剤層との貼付面に向けて亀裂を伸展させ、半導体ウエハを半導体チップに個片化する。
 なお、改質領域を形成した後の研削厚さは、改質領域に至る厚さであってもよいが、厳密に改質領域にまで至らなくても、改質領域に近接する位置まで研削して研削砥石等の加工圧力で割断させてもよい。
The stealth dicing method is also called the SDBG method (Stealth Dicing Before Grinding). Similar to the stealth dicing method, the stealth dicing method is a kind of method in which a modified region is formed inside the semiconductor wafer by irradiation with laser light, and the semiconductor wafer is individualized using the modified region as a division starting point. However, it differs from the stealth dicing method in that the semiconductor wafer is fragmented into semiconductor chips while thinning the semiconductor wafer by grinding. Specifically, while the semiconductor wafer having the modified region is back-ground to be thinned, the pressure applied to the semiconductor wafer at that time causes the modified region as a starting point to be directed toward the surface to be attached to the pressure-sensitive adhesive layer of the semiconductor wafer. The cracks are extended and the semiconductor wafer is separated into semiconductor chips.
The grinding thickness after the reformed region is formed may be the thickness reaching the reformed region, but even if it does not reach the reformed region strictly, it is ground to a position close to the reformed region. Then, it may be split by the processing pressure of a grinding wheel or the like.
 半導体ウエハWをブレード先ダイシング法によって個片化する場合、工程1Aで粘着剤層(X2)に貼付する半導体ウエハWの表面W1には、予め溝を形成しておくことが好ましい。
 一方、半導体ウエハWをステルス先ダイシング法によって個片化する場合は、工程1Aで粘着剤層(X2)に貼付する半導体ウエハWに対してレーザー光を照射して予め改質領域を形成しておいてもよいし、粘着剤層(X2)に貼付されている半導体ウエハWに対してレーザー光を照射して改質領域を形成してもよい。
When the semiconductor wafer W is individualized by the blade tip dicing method, it is preferable that a groove is formed in advance on the surface W1 of the semiconductor wafer W to be attached to the pressure-sensitive adhesive layer (X2) in step 1A.
On the other hand, when the semiconductor wafer W is individualized by the stealth tip dicing method, the semiconductor wafer W to be attached to the pressure-sensitive adhesive layer (X2) is irradiated with laser light in step 1A to form a modified region in advance. Alternatively, the semiconductor wafer W attached to the pressure-sensitive adhesive layer (X2) may be irradiated with a laser beam to form a modified region.
 図4には、粘着剤層(X2)に貼付した半導体ウエハWに対して、レーザー光照射装置4を用いて複数の改質領域5を形成する工程を説明する断面図が示されている。
 レーザー光は半導体ウエハWの裏面W2側から照射され、半導体ウエハWの内部に複数の改質領域5が略等間隔に形成されている。
FIG. 4 shows a cross-sectional view illustrating a step of forming a plurality of reformed regions 5 on the semiconductor wafer W attached to the pressure-sensitive adhesive layer (X2) by using the laser light irradiation device 4.
The laser beam is irradiated from the back surface W2 side of the semiconductor wafer W, and a plurality of modified regions 5 are formed inside the semiconductor wafer W at substantially equal intervals.
 図5には、改質領域5を形成した半導体ウエハWの裏面W2をグラインダー6によって研削して、改質領域5を起点とする割断により、半導体ウエハWを薄化させつつ複数の半導体チップCPに個片化する工程を説明する断面図が示されている。
 改質領域5が形成された半導体ウエハWは、例えば、該半導体ウエハWを支持している支持体3をチャックテーブル等の固定テーブル上に固定した状態で、その裏面W2が研削される。
In FIG. 5, a plurality of semiconductor chip CPs are shown while thinning the semiconductor wafer W by grinding the back surface W2 of the semiconductor wafer W on which the modified region 5 is formed by a grinder 6 and dividing the semiconductor wafer W starting from the modified region 5. A cross-sectional view illustrating the process of individualizing is shown.
In the semiconductor wafer W on which the modified region 5 is formed, for example, the back surface W2 of the semiconductor wafer W is ground in a state where the support 3 supporting the semiconductor wafer W is fixed on a fixed table such as a chuck table.
 研削後の半導体チップCPの厚さは、好ましくは5~100μm、より好ましくは10~45μmである。また、ステルス先ダイシング法によって研削処理及び個片化処理を行う場合、研削されて得られた半導体チップCPの厚さを50μm以下、より好ましくは10~45μmとすることが容易になる。
 研削後の半導体チップCPの平面視における大きさは、好ましくは600mm未満、より好ましくは400mm未満、更に好ましくは300mm未満である。なお、平面視とは厚さ方向に見ることをいう。
 個片化後の半導体チップCPの平面視における形状は、方形であってもよく、矩形等の細長形状であってもよい。
 なお、第二態様の半導体装置の製造方法に用いられる粘着シートは、熱膨張性粒子の膨張開始温度(t)が50℃以上であるため、研削を行う場合等の温度上昇によって、熱膨張性粒子が意図せず膨張してしまうような事態を回避することができる。したがって、加工対象物の意図しない分離や位置ズレ等が抑制される。
The thickness of the semiconductor chip CP after grinding is preferably 5 to 100 μm, more preferably 10 to 45 μm. Further, when the grinding process and the individualization process are performed by the stealth tip dicing method, the thickness of the semiconductor chip CP obtained by grinding can be easily set to 50 μm or less, more preferably 10 to 45 μm.
The size of the semiconductor chip CP after grinding in a plan view is preferably less than 600 mm 2 , more preferably less than 400 mm 2 , and even more preferably less than 300 mm 2 . In addition, the plan view means to see in the thickness direction.
The shape of the semiconductor chip CP after fragmentation in a plan view may be a rectangular shape or an elongated shape such as a rectangle.
Since the pressure-sensitive adhesive sheet used in the method for manufacturing the semiconductor device of the second aspect has an expansion start temperature (t) of the thermally expandable particles of 50 ° C. or higher, it is thermally expandable due to a temperature rise such as when grinding is performed. It is possible to avoid a situation in which the particles unintentionally expand. Therefore, unintended separation and misalignment of the object to be processed are suppressed.
(工程3A)
 工程3Aは、前記処理を施した加工対象物の、粘着剤層(X2)とは反対側の面に、熱硬化性フィルムを貼付する工程である。
 図6には、前記処理を施して得られた複数の半導体チップCPの、粘着剤層(X2)とは反対側の面に、支持シート8を備える熱硬化性フィルム7を貼付する工程を説明する断面図が示されている。
(Step 3A)
Step 3A is a step of attaching a thermosetting film to the surface of the processed object to be processed, which is opposite to the pressure-sensitive adhesive layer (X2).
FIG. 6 illustrates a step of attaching a thermosetting film 7 provided with a support sheet 8 to a surface of a plurality of semiconductor chip CPs obtained by performing the above treatment on a surface opposite to the pressure-sensitive adhesive layer (X2). A cross-sectional view is shown.
 熱硬化性フィルム7は、少なくとも熱硬化性樹脂を含有する樹脂組成物を製膜して得られる熱硬化性を有するフィルムであり、半導体チップCPを基板に実装する際の接着剤として用いられる。熱硬化性フィルム7は、必要に応じて、上記熱硬化性樹脂の硬化剤、熱可塑性樹脂、無機充填材、硬化促進剤等を含有していてもよい。
 熱硬化性フィルム7としては、例えば、ダイボンディングフィルム、ダイアタッチフィルム等として一般的に使用されている熱硬化性フィルムを使用することができる。
 熱硬化性フィルム7の厚さは、特に限定されないが、通常は1~200μmであり、好ましくは3~100μm、より好ましくは5~50μmである。
 支持シート8は、熱硬化性フィルム7を支持できるものであればよく、例えば、本発明の一態様の粘着シートが有する非熱膨張性基材層(Y2)として挙げられた樹脂、金属、及び紙材等が挙げられる。
The thermosetting film 7 is a film having thermosetting property obtained by forming a resin composition containing at least a thermosetting resin, and is used as an adhesive when mounting a semiconductor chip CP on a substrate. The thermosetting film 7 may contain a curing agent for the thermosetting resin, a thermoplastic resin, an inorganic filler, a curing accelerator, and the like, if necessary.
As the thermosetting film 7, for example, a thermosetting film generally used as a die bonding film, a die attach film, or the like can be used.
The thickness of the thermosetting film 7 is not particularly limited, but is usually 1 to 200 μm, preferably 3 to 100 μm, and more preferably 5 to 50 μm.
The support sheet 8 may be any as long as it can support the thermosetting film 7. For example, the resin, metal, and the resin, metal, and the resin, metal, and the non-thermally expandable base material layer (Y2) of the pressure-sensitive adhesive sheet of one aspect of the present invention. Examples include paper materials.
 熱硬化性フィルム7を、複数の半導体チップCPに貼付する方法としては、例えば、ラミネートによる方法が挙げられる。
 ラミネートは加熱しながら行ってもよく、非加熱で行ってもよい。ラミネートを加熱しながら行う場合の加熱温度は、熱膨張性粒子の膨張を抑制する観点及び被着体の熱変化を抑制する観点から、好ましくは「膨張開始温度(t)より低い温度」、より好ましくは「膨張開始温度(t)-5℃」以下、更に好ましくは「膨張開始温度(t)-10℃」以下、より更に好ましくは「膨張開始温度(t)-15℃」以下である。
Examples of the method of attaching the thermosetting film 7 to a plurality of semiconductor chip CPs include a method of laminating.
Laminating may be performed while heating or may be performed without heating. When the lamination is performed while heating, the heating temperature is preferably "a temperature lower than the expansion start temperature (t)" from the viewpoint of suppressing the expansion of the thermally expandable particles and suppressing the thermal change of the adherend. It is preferably "expansion start temperature (t) -5 ° C." or less, more preferably "expansion start temperature (t) -10 ° C." or less, and even more preferably "expansion start temperature (t) -15 ° C." or less.
(第一分離工程)
 第一分離工程は、前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、粘着剤層(X1)と前記支持体とを分離する工程である。
 図7には、粘着シート2bを加熱して、粘着剤層(X1)と支持体3とを分離する工程を説明する断面図が示されている。
(First separation process)
The first separation step is a step of heating the pressure-sensitive adhesive sheet to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the support.
FIG. 7 is a cross-sectional view illustrating a step of heating the pressure-sensitive adhesive sheet 2b to separate the pressure-sensitive adhesive layer (X1) and the support 3.
 第一分離工程における加熱温度は、熱膨張性粒子の膨張開始温度(t)以上であり、120℃以下の範囲において、好ましくは「膨張開始温度(t)より高い温度」、より好ましくは「膨張開始温度(t)+2℃」以上、更に好ましくは「膨張開始温度(t)+4℃」以上、より更に好ましくは「膨張開始温度(t)+5℃」以上である。また、第一分離工程における加熱温度は省エネルギー性及び加熱剥離時における被着体の熱変化を抑制する観点からは、125℃未満の範囲において、好ましくは「膨張開始温度(t)+50℃」以下、より好ましくは「膨張開始温度(t)+40℃」以下、更に好ましくは「膨張開始温度(t)+20℃」以下である。
 第一分離工程における加熱温度は、被着体の熱変化を抑制する観点からは、膨張開始温度(t)以上の範囲内において、好ましくは120℃以下、より好ましくは115℃以下、更に好ましくは110℃以下、より更に好ましくは105℃以下である。
The heating temperature in the first separation step is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, and is preferably "a temperature higher than the expansion start temperature (t)", more preferably "expansion" in the range of 120 ° C. or lower. The start temperature (t) + 2 ° C. or higher, more preferably "expansion start temperature (t) + 4 ° C." or higher, and even more preferably "expansion start temperature (t) + 5 ° C." or higher. Further, the heating temperature in the first separation step is preferably "expansion start temperature (t) + 50 ° C." or less in the range of less than 125 ° C. from the viewpoint of energy saving and suppressing the thermal change of the adherend during heat peeling. , More preferably "expansion start temperature (t) + 40 ° C." or less, and even more preferably "expansion start temperature (t) + 20 ° C." or less.
The heating temperature in the first separation step is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, still more preferably 115 ° C. or lower, within the range of the expansion start temperature (t) or higher, from the viewpoint of suppressing the thermal change of the adherend. It is 110 ° C. or lower, more preferably 105 ° C. or lower.
(第二分離工程)
 第二分離工程は、粘着剤層(X2)と前記加工対象物とを分離する工程である。
 図8には、粘着剤層(X2)と複数の半導体チップCPとを分離する工程を説明する断面図が示されている。
 粘着剤層(X2)と複数の半導体チップCPとを分離する方法は、粘着剤層(X2)の種類に応じて適宜選択すればよい。例えば、粘着剤層(X2)が、エネルギー線照射によって粘着力が低下する粘着剤層である場合には、粘着剤層(X2)に対してエネルギー線照射を行い、粘着力を低下させてから分離すればよい。
(Second separation step)
The second separation step is a step of separating the pressure-sensitive adhesive layer (X2) from the object to be processed.
FIG. 8 shows a cross-sectional view illustrating a step of separating the pressure-sensitive adhesive layer (X2) and the plurality of semiconductor chip CPs.
The method for separating the pressure-sensitive adhesive layer (X2) and the plurality of semiconductor chip CPs may be appropriately selected according to the type of the pressure-sensitive adhesive layer (X2). For example, when the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with energy rays, the pressure-sensitive adhesive layer (X2) is irradiated with energy rays to reduce the pressure-sensitive adhesive strength. It should be separated.
 上記工程1A~3A、上記第一分離工程、及び上記第二分離工程を経て、熱硬化性フィルム7上に貼付された複数の半導体チップCPが得られる。
 次に、複数の半導体チップCPが貼付されている熱硬化性フィルム7を、半導体チップCPと同形状に分割して、熱硬化性フィルム7付き半導体チップCPを得ることが好ましい。熱硬化性フィルム7の分割方法としては、例えば、レーザー光によるレーザーダイシング、エキスパンド、溶断等の方法を適用することができる。
 図9には、半導体チップCPと同形状に分割された熱硬化性フィルム7付き半導体チップCPが示されている。
Through the steps 1A to 3A, the first separation step, and the second separation step, a plurality of semiconductor chip CPs attached on the thermosetting film 7 are obtained.
Next, it is preferable to divide the thermosetting film 7 to which the plurality of semiconductor chip CPs are attached into the same shape as the semiconductor chip CP to obtain the semiconductor chip CP with the thermosetting film 7. As a method for dividing the thermosetting film 7, for example, a method such as laser dicing with laser light, expanding, or fusing can be applied.
FIG. 9 shows a semiconductor chip CP with a thermosetting film 7 divided into the same shape as the semiconductor chip CP.
 熱硬化性フィルム7付き半導体チップCPは、更に、必要に応じて、半導体チップCP同士の間隔を広げるエキスパンド工程、間隔を広げた複数の半導体チップCPを配列させる再配列工程、複数の半導体チップCPの表裏を反転させる反転工程等が適宜施された後、熱硬化性フィルム7側から基板に貼付(ダイアタッチ)される。その後、熱硬化性フィルムを熱硬化させることで半導体チップと基板とを固着することができる。 The semiconductor chip CP with the thermosetting film 7 further includes an expanding step of widening the distance between the semiconductor chip CPs, a rearrangement step of arranging a plurality of semiconductor chip CPs having a wide distance, and a plurality of semiconductor chip CPs, if necessary. After an appropriate inversion step of inverting the front and back of the above, the thermosetting film 7 is attached (diatached) to the substrate from the side. After that, the semiconductor chip and the substrate can be fixed by thermosetting the thermosetting film.
 本発明の一態様の半導体装置の製造方法は、製造方法Aにおいて、工程3Aを含まないものであってもよい。工程3Aを含まない場合、第一分離工程は、前記粘着シートを前記膨張開始温度(t)以上に加熱して、粘着剤層(X1)と前記支持体とを分離する工程であってもよい。 The method for manufacturing a semiconductor device according to one aspect of the present invention may not include step 3A in the manufacturing method A. When the step 3A is not included, the first separation step may be a step of heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher to separate the pressure-sensitive adhesive layer (X1) from the support. ..
 第二態様の半導体装置の製造方法は、下記工程1B~3B、下記第一分離工程、及上下記第二分離工程を含む製造方法(以下、「製造方法B」ともいう)であってもよい。
 工程1B:粘着シートが有する粘着剤層(X1)に加工対象物を貼付し、前記粘着シートが有する粘着剤層(X2)に支持体を貼付する工程
 工程2B:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 工程3B:前記処理を施した加工対象物の、前記粘着剤層(X1)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程
 第一分離工程:前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、粘着剤層(X1)と前記加工対象物とを分離する工程
 第二分離工程:粘着剤層(X2)と前記支持体とを分離する工程
The method for manufacturing the semiconductor device of the second aspect may be a manufacturing method including the following steps 1B to 3B, the following first separation step, and the following second separation step (hereinafter, also referred to as “manufacturing method B”). ..
Step 1B: A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet Step 2B: The process of attaching the support to the object to be processed. Step of applying one or more treatments selected from grinding treatment and individualization treatment Step 3B: Thermosetting is applied to the surface of the processed object to which the treatment has been performed, which is opposite to the adhesive layer (X1). Step of attaching the thermosetting film to be provided First separation step: The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the object to be processed. Step Second separation step: A step of separating the pressure-sensitive adhesive layer (X2) from the support.
 工程1B~3Bは、工程1A~3Aの説明における粘着剤層(X1)を粘着剤層(X2)に、粘着剤層(X2)を粘着剤層(X1)に置き換えて説明されるものである。 Steps 1B to 3B are described by replacing the pressure-sensitive adhesive layer (X1) with the pressure-sensitive adhesive layer (X2) and the pressure-sensitive adhesive layer (X2) with the pressure-sensitive adhesive layer (X1) in the description of steps 1A to 3A. ..
 第一分離工程は、前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、粘着剤層(X1)と前記加工対象物とを分離する工程である。
 第一分離工程における粘着シートの加熱温度等の加熱条件は、製造方法Aにおける説明と同じである。
 第一分離工程によって、熱硬化性フィルム上に貼付された複数の半導体チップが得られる。その後、上記した製造方法Aの場合と同じように、熱硬化性フィルムを分割して、熱硬化性フィルム付き半導体チップが得られる。
The first separation step is a step of heating the pressure-sensitive adhesive sheet to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the object to be processed.
The heating conditions such as the heating temperature of the pressure-sensitive adhesive sheet in the first separation step are the same as those described in the manufacturing method A.
By the first separation step, a plurality of semiconductor chips attached on the thermosetting film are obtained. Then, as in the case of the manufacturing method A described above, the thermosetting film is divided to obtain a semiconductor chip with a thermosetting film.
 第二分離工程は、粘着剤層(X2)と前記支持体とを分離する工程である。
 粘着剤層(X2)と支持体とを分離する方法は、粘着剤層(X2)の種類に応じて適宜選択すればよい。例えば、粘着剤層(X2)が、エネルギー線照射によって粘着力が低下する粘着剤層である場合には、粘着剤層(X2)に対してエネルギー線照射を行い、粘着力を低下させてから分離すればよい。
The second separation step is a step of separating the pressure-sensitive adhesive layer (X2) from the support.
The method for separating the pressure-sensitive adhesive layer (X2) and the support may be appropriately selected according to the type of the pressure-sensitive adhesive layer (X2). For example, when the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer whose adhesive strength is reduced by irradiation with energy rays, the pressure-sensitive adhesive layer (X2) is irradiated with energy rays to reduce the pressure-sensitive adhesive strength. It should be separated.
 本発明の一態様の半導体装置の製造方法は、製造方法Bにおいて、工程3Bを含まないものであってもよい。工程3Bを含まない場合、第一分離工程は、前記粘着シートを前記膨張開始温度(t)以上に加熱して、粘着剤層(X1)と前記加工対象物とを分離する工程であってもよい。 The method for manufacturing a semiconductor device according to one aspect of the present invention may not include step 3B in the manufacturing method B. When step 3B is not included, the first separation step is a step of heating the pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher to separate the pressure-sensitive adhesive layer (X1) from the object to be processed. Good.
<別の態様の半導体装置の製造方法>
 本発明の半導体装置の製造方法は、上記した第一態様の半導体装置の製造方法に限定されるものではなく、第一態様とは別の態様の半導体装置の製造方法であってもよい。
<Manufacturing method of semiconductor device of another aspect>
The method for manufacturing a semiconductor device of the present invention is not limited to the method for manufacturing a semiconductor device according to the first aspect described above, and may be a method for manufacturing a semiconductor device according to another aspect from the first aspect.
 別の態様の半導体装置の製造方法の他の一例としては、別のシートに貼付されている加工対象物を、本発明の一態様の粘着シートを用いて、該別のシートから分離させる方法が挙げられる。
 例えば、エキスパンドテープ上で間隔を広げられた複数の半導体チップは、エキスパンドテープの粘着表面に貼付されているが、これらのチップを1個ずつピックアップする作業は煩雑である。本発明の一態様の半導体装置の製造方法によると、エキスパンドテープ上に貼付された複数の半導体チップの表出面に、本発明の一態様の粘着シートの粘着剤層(X1)を貼付し、次いで、複数の半導体チップからエキスパンドテープを剥離することで、エキスパンドテープから複数の半導体チップを一括して分離することができる。
 上記の工程を経て、本発明の一態様の粘着シート上に貼付された複数の半導体チップが得られる。該複数の半導体チップは、その後、粘着シートを熱膨張性粒子の膨張開始温度(t)以上に加熱することで、容易に分離することができる。このとき、本発明の一態様の粘着シートは、低温での加熱剥離が可能であるため、加熱剥離作業の作業性及び省エネルギー性に優れると共に、加工対象物が熱変化し易いものであっても、加熱剥離時の加熱による被着体の熱変化を抑制することができる。
 分離された複数の半導体チップは、別の粘着シートに転写されてもよく、一旦分離した後、複数の半導体チップを整列させる再配列工程に供されてもよい。
As another example of the method for manufacturing a semiconductor device of another aspect, there is a method of separating an object to be processed attached to another sheet from the other sheet by using the adhesive sheet of one aspect of the present invention. Can be mentioned.
For example, a plurality of semiconductor chips that are spaced apart on the expanding tape are attached to the adhesive surface of the expanding tape, but the work of picking up these chips one by one is complicated. According to the method for manufacturing a semiconductor device according to one aspect of the present invention, the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet according to one aspect of the present invention is attached to the exposed surface of a plurality of semiconductor chips attached on the expanding tape, and then. By peeling the expanding tape from the plurality of semiconductor chips, the plurality of semiconductor chips can be separated from the expanding tape at once.
Through the above steps, a plurality of semiconductor chips attached on the pressure-sensitive adhesive sheet according to one aspect of the present invention can be obtained. The plurality of semiconductor chips can be easily separated by subsequently heating the pressure-sensitive adhesive sheet to a temperature (t) or higher at which the heat-expandable particles start to expand. At this time, since the pressure-sensitive adhesive sheet according to one aspect of the present invention can be heat-peeled at a low temperature, it is excellent in workability and energy saving of heat-peeling work, and even if the object to be processed is easily thermally changed. , It is possible to suppress the thermal change of the adherend due to heating at the time of heat peeling.
The plurality of separated semiconductor chips may be transferred to another pressure-sensitive adhesive sheet, or may be subjected to a rearrangement step of aligning the plurality of semiconductor chips after being separated once.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の合成例、製造例、及び実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples. The physical property values in the following synthesis examples, production examples, and examples are values measured by the following methods.
[質量平均分子量(Mw)]
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
[Mass average molecular weight (Mw)]
It was measured under the following conditions using a gel permeation chromatograph device (manufactured by Tosoh Corporation, product name "HLC-8020"), and the value measured in terms of standard polystyrene was used.
(Measurement condition)
-Column: "TSK guard volume HXL-L""TSK gel G2500HXL""TSK gel G2000HXL""TSK gel G1000HXL" (all manufactured by Tosoh Corporation) are connected in sequence.-Column temperature: 40 ° C.
-Development solvent: tetrahydrofuran-Flow velocity: 1.0 mL / min
[各層の厚さ]
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
[Thickness of each layer]
The measurement was performed using a constant pressure thickness measuring instrument (model number: "PG-02J", standard: JIS K6783, Z1702, Z1709 compliant) manufactured by Teclock Co., Ltd.
[熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)]
 レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定した。
 そして、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)」とした。
[Average particle size of thermally expandable particles (D 50 ), 90% particle size (D 90 )]
The particle distribution of the thermally expandable particles before expansion at 23 ° C. was measured using a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name “Master Sizar 3000”).
Then, the particle diameters corresponding to the cumulative volume frequencies of 50% and 90% calculated from the smaller particle diameter of the particle distribution are set to "average particle diameter of thermally expandable particles (D 50 )" and "thermally expandable particles", respectively. 90% particle size (D 90 ) ”.
[基材の貯蔵弾性率E’]
 縦5mm×横30mmに裁断した熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とを試験サンプルとして、動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度200℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、所定の温度における貯蔵弾性率E’を測定した。
[Storage modulus of substrate E']
A dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name) using a heat-expandable base material layer (Y1) and a non-heat-expandable base material layer (Y2) cut into a length of 5 mm and a width of 30 mm as test samples. Using "DMAQ800"), the storage elastic modulus E'at a predetermined temperature was measured under the conditions of a test start temperature of 0 ° C., a test end temperature of 200 ° C., a temperature rise rate of 3 ° C./min, a frequency of 1 Hz, and an amplitude of 20 μm. ..
[基材の23℃におけるヤング率]
 試験速度200mm/分でJISK-7127(1999)に準拠して、熱膨張性基材層(Y1)及び非熱膨張性基材層(Y2)のヤング率を測定した。
[Young's modulus of the substrate at 23 ° C]
The Young's modulus of the heat-expandable base material layer (Y1) and the non-heat-expandable base material layer (Y2) was measured at a test speed of 200 mm / min according to JISK-7127 (1999).
 以下の製造例において、各層の形成に使用した粘着性樹脂、添加剤、熱膨張性粒子、及び剥離材の詳細は以下のとおりである。 In the following production examples, the details of the adhesive resin, additives, heat-expandable particles, and release material used to form each layer are as follows.
<粘着性樹脂>
・アクリル系共重合体(A1):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/アクリル酸(AA)/2-ヒドロキシエチルアクリレート(HEA)=86/8/1/5(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:40質量%
・アクリル系共重合体(A2):2-エチルヘキシルアクリレート(2EHA)/アクリル酸(AA)/2-ヒドロキシエチルアクリレート(HEA)=92.8/0.2/7(質量比)からなる原料モノマーに由来する構成単位を有する、Mw60万のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:35質量%
・アクリル系共重合体(A3):日本合成化学工業株式会社製、製品名「コーポニール N-9177」、アクリル系共重合体を含む粘着剤溶液
・アクリル系共重合体(A4):2-エチルヘキシルアクリレート(2EHA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)=60/30/10(質量比)からなる原料モノマーに由来する構成単位を有する、Mw60のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:40質量%
・アクリル系共重合体(A5):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)=52/20/28(質量比)からなる原料モノマーに由来する構成単位を有するアクリル系共重合体に、2-メタクリロイルオキシエチルイソシアネート(MOI)をアクリル系共重合体中の全水酸基に対する付加率がモル数基準で80%となるように反応させた、Mw50万のエネルギー線硬化性のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:35質量%
<Adhesive resin>
-Acrylic copolymer (A1): n-butyl acrylate (BA) / methyl methacrylate (MMA) / acrylic acid (AA) / 2-hydroxyethyl acrylate (HEA) = 86/8/1/5 (mass ratio) A solution containing an acrylic copolymer of Mw 600,000 having a structural unit derived from a raw material monomer composed of, diluting solvent: ethyl acetate, solid content concentration: 40% by mass.
Acrylic copolymer (A2): Raw material monomer composed of 2-ethylhexyl acrylate (2EHA) / acrylic acid (AA) / 2-hydroxyethyl acrylate (HEA) = 92.8 / 0.2 / 7 (mass ratio) Solution containing an acrylic copolymer of Mw 600,000 having a structural unit derived from, diluting solvent: ethyl acetate, solid content concentration: 35% by mass
-Acrylic copolymer (A3): manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "Corponil N-9177", adhesive solution containing acrylic copolymer-Acrylic copolymer (A4): 2- An acrylic copolymer of Mw60 having a structural unit derived from a raw material monomer composed of ethylhexyl acrylate (2EHA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) = 60/30/10 (mass ratio). Containing solution, diluting polymer: ethyl acetate, solid content concentration: 40% by mass
-Acrylic copolymer (A5): A composition derived from a raw material monomer composed of n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) = 52/20/28 (mass ratio). Acrylic copolymer having a unit was reacted with 2-methacryloyloxyethyl isocyanate (MOI) so that the addition rate with respect to all the hydroxyl groups in the acrylic copolymer was 80% based on the number of moles. Solution containing energy ray-curable acrylic copolymer, diluting solvent: ethyl acetate, solid content concentration: 35% by mass
<添加剤>
・イソシアネート系架橋剤(i):東ソー株式会社製、製品名「コロネートHX」、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体を含む溶液、固形分濃度:75質量%
・イソシアネート系架橋剤(ii):東ソー株式会社製、製品名「コロネートL」、トリメチロールプロパン変性トリレンジイソシアネートを含む溶液、固形分濃度:75質量%
・エネルギー線硬化性化合物:日本合成化学工業株式会社製、製品名「シコウUT-4332」、多官能ウレタンアクリレート
・光重合開始剤(i):ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド
・光重合開始剤(ii):1-ヒドロキシシクロヘキシルフェニルケトン
・フタロシアニン系顔料
<Additives>
-Isocyanate-based cross-linking agent (i): manufactured by Tosoh Corporation, product name "Coronate HX", solution containing isocyanurate-type modified hexamethylene diisocyanate, solid content concentration: 75% by mass
-Isocyanate-based cross-linking agent (ii): manufactured by Tosoh Corporation, product name "Coronate L", solution containing trimethylolpropane-modified tolylene diisocyanate, solid content concentration: 75% by mass
-Energy ray-curable compound: manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "Shikou UT-4332", polyfunctional urethane acrylate-photopolymerization initiator (i): bis (2,4,6-trimethylbenzoyl) phenylphos Finoxide / Photopolymerization Initiator (ii): 1-Hydroxycyclohexylphenylketone / phthalocyanine pigment
<熱膨張性粒子>
・熱膨張性粒子:AkzoNobel社製、製品名「Expancel(登録商標)031-40」(DUタイプ)、膨張開始温度(t)=88℃、平均粒子径(D50)=12.6μm、90%粒子径(D90)=26.2μm
<Thermal expandable particles>
-Thermal expandable particles: manufactured by AkzoNobel, product name "Expancel (registered trademark) 031-40" (DU type), expansion start temperature (t) = 88 ° C., average particle diameter (D 50 ) = 12.6 μm, 90 % Particle diameter (D 90 ) = 26.2 μm
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
<Release material>
-Heavy release film: manufactured by Lintec Corporation, product name "SP-PET382150", polyethylene terephthalate (PET) film with a release agent layer formed from a silicone-based release agent on one side, thickness: 38 μm
-Light release film: manufactured by Lintec Corporation, product name "SP-PET381031", PET film with a release agent layer formed from a silicone-based release agent on one side, thickness: 38 μm
製造例1-1:粘着剤層(X1-A1)の形成
 アクリル系共重合体(A1)の固形分100質量部に、イソシアネート系架橋剤(i)0.74質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(x-1-A1)を調製した。
 そして、軽剥離フィルムの剥離面上に、調製した粘着剤組成物(x-1-A1)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの粘着剤層(X1-A1)を形成した。
Production Example 1-1: Formation of Adhesive Layer (X1-A1) 0.74 parts by mass (solid content ratio) of the isocyanate-based cross-linking agent (i) is added to 100 parts by mass of the solid content of the acrylic copolymer (A1). A pressure-sensitive adhesive composition (x-1-A1) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by blending, diluting with toluene, and stirring uniformly.
Then, the prepared pressure-sensitive adhesive composition (x-1-A1) is applied onto the peeling surface of the light release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to have a thickness of 5 μm. Adhesive layer (X1-A1) was formed.
製造例1-2:粘着剤層(X1-A2)の形成
 アクリル系共重合体(A1)を、アクリル系共重合体(A2)に変更し、イソシアネート系架橋剤(i)の配合量を当該アクリル系共重合体(A2)の固形分100質量部に対して4.76質量部(固形分比)に変更したこと以外は、製造例1-1と同様の方法により、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(x-1-A2)を調製し、厚さ5μmの粘着剤層(X1-A2)を形成した。
Production Example 1-2: Formation of Adhesive Layer (X1-A2) The acrylic copolymer (A1) is changed to the acrylic copolymer (A2), and the blending amount of the isocyanate-based cross-linking agent (i) is the same. The solid content concentration (effective) by the same method as in Production Example 1-1 except that the solid content of the acrylic copolymer (A2) was changed to 4.76 parts by mass (solid content ratio) with respect to 100 parts by mass. A pressure-sensitive adhesive composition (x-1-A2) having a component concentration of 25% by mass was prepared to form a pressure-sensitive adhesive layer (X1-A2) having a thickness of 5 μm.
製造例1-3:粘着剤層(X1-A3)の形成
 アクリル系共重合体(A1)を、アクリル系共重合体(A3)に変更し、イソシアネート系架橋剤(i)の配合量を当該アクリル系共重合体(A3)の固形分100質量部に対して3.85質量部(固形分比)に変更したこと以外は、製造例1-1と同様の方法により、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(x-1-A3)を調製し、厚さ5μmの粘着剤層(X1-A3)を形成した。
Production Example 1-3: Formation of Adhesive Layer (X1-A3) The acrylic copolymer (A1) is changed to the acrylic copolymer (A3), and the blending amount of the isocyanate-based cross-linking agent (i) is the same. The solid content concentration (effective) by the same method as in Production Example 1-1 except that the solid content of the acrylic copolymer (A3) was changed to 3.85 parts by mass (solid content ratio) with respect to 100 parts by mass. A pressure-sensitive adhesive composition (x-1-A3) having a component concentration of 25% by mass was prepared, and a pressure-sensitive adhesive layer (X1-A3) having a thickness of 5 μm was formed.
製造例1-4:粘着剤層(X1-A4)の形成
 アクリル系共重合体(A1)を、アクリル系共重合体(A4)に変更し、イソシアネート系架橋剤(i)の配合量を当該アクリル系共重合体(A4)の固形分100質量部に対して15.8質量部(固形分比)に変更したこと以外は、製造例1-1と同様の方法により、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(x-1-A4)を調製し、厚さ5μmの粘着剤層(X1-A4)を形成した。
Production Example 1-4: Formation of Adhesive Layer (X1-A4) The acrylic copolymer (A1) is changed to the acrylic copolymer (A4), and the blending amount of the isocyanate-based cross-linking agent (i) is the same. The solid content concentration (effective) by the same method as in Production Example 1-1 except that the solid content of the acrylic copolymer (A4) was changed to 15.8 parts by mass (solid content ratio) with respect to 100 parts by mass. A pressure-sensitive adhesive composition (x-1-A4) having a component concentration of 25% by mass was prepared, and a pressure-sensitive adhesive layer (X1-A4) having a thickness of 5 μm was formed.
製造例2:粘着剤層(X2)の形成
 エネルギー線硬化性の粘着性樹脂であるアクリル系共重合体(A5)の固形分100質量部に、エネルギー線硬化性化合物を4.2質量部、イソシアネート系架橋剤(ii)を0.74質量部、光重合開始剤(i)を1質量部配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の粘着剤組成物(x-2-A5)を調製した。
 そして、重剥離フィルムの剥離面上に、調製した粘着剤組成物(x-2-A5)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ20μmの粘着剤層(X2-A5)を形成した。
Production Example 2: Formation of Adhesive Layer (X2) An energy ray-curable compound is added to 100 parts by mass of the solid content of the acrylic copolymer (A5), which is an energy ray-curable adhesive resin, by 4.2 parts by mass. 0.74 parts by mass of the isocyanate-based cross-linking agent (ii) and 1 part by mass of the photopolymerization initiator (i) are mixed, diluted with toluene, and uniformly stirred to obtain a solid content concentration (active ingredient concentration) of 30% by mass. The pressure-sensitive adhesive composition (x-2-A5) of the above was prepared.
Then, the prepared pressure-sensitive adhesive composition (x-2-A5) is applied onto the peeling surface of the heavy-release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to have a thickness of 20 μm. Adhesive layer (X2-A5) was formed.
製造例3:熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とを積層した基材積層体の形成
(1)無溶剤型樹脂組成物(y-1a)の調製
 エステル型ジオールと、イソホロンジイソシアネート(IPDI)を反応させて得られた末端イソシアネートウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させて、質量平均分子量(Mw)5000の2官能のアクリルウレタン系オリゴマーを得た。
 そして、上記で合成したアクリルウレタン系オリゴマー40質量%(固形分比)に、エネルギー線重合性モノマーとして、イソボルニルアクリレート(IBXA)40質量%(固形分比)、及びフェニルヒドロキシプロピルアクリレート(HPPA)20質量%(固形分比)を配合し、アクリルウレタン系オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、さらに光重合開始剤(ii)を2.0質量部(固形分比)、及び、添加剤として、フタロシアニン系顔料0.2質量部(固形分比)を配合し、エネルギー線硬化性組成物を調製した。
 そして、当該エネルギー線硬化性組成物に、熱膨張性粒子(i)を配合し、溶剤を含有しない、無溶剤型樹脂組成物(y-1a)を調製した。
 なお、無溶剤型樹脂組成物(y-1a)の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%とした。
(2)熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とを積層した基材積層体の形成
 非熱膨張性基材層(Y2)として、PETフィルム(東洋紡株式会社製、製品名「コスモシャインA4300」、厚さ:50μm)を用い、当該PETフィルムの片面に無溶剤型樹脂組成物(y-1a)を塗布して塗膜を形成した。
 そして、紫外線照射装置(アイグラフィックス株式会社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィックス株式会社製、製品名「H04-L41」)を用いて、照度160mW/cm、光量500mJ/cmの条件で紫外線照射し、当該塗膜を硬化させ、厚さ100μmの熱膨張性基材層(Y1)を非熱膨張性基材層(Y2)としてのPETフィルム上に形成した。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
Production Example 3: Formation of a base material laminate in which a heat-expandable base material layer (Y1) and a non-heat-expandable base material layer (Y2) are laminated (1) Preparation of a solvent-free resin composition (y-1a) 2-Hydroxyethyl acrylate is reacted with the terminal isocyanate urethane prepolymer obtained by reacting the ester-type diol with isophorone diisocyanate (IPDI) to obtain a bifunctional acrylic urethane-based oligomer having a mass average molecular weight (Mw) of 5000. Obtained.
Then, 40% by mass (solid content ratio) of the acrylic urethane-based oligomer synthesized above, 40% by mass (solid content ratio) of isobornyl acrylate (IBXA) and phenylhydroxypropyl acrylate (HPPA) as energy ray-polymerizable monomers. ) 20 parts by mass (solid content ratio) is blended, and 2.0 parts by mass (solid) of the photopolymerization initiator (ii) is further added to the total amount (100 parts by mass) of the acrylic urethane-based oligomer and the energy ray-polymerizable monomer. A phthalocyanine-based pigment (0.2 parts by mass (solid content ratio)) was blended as an additive to prepare an energy ray-curable composition.
Then, the heat-expandable particles (i) were blended with the energy ray-curable composition to prepare a solvent-free resin composition (y-1a) containing no solvent.
The content of the heat-expandable particles (i) was 20% by mass with respect to the total amount (100% by mass) of the solvent-free resin composition (y-1a).
(2) Formation of a base material laminate in which a heat-expandable base material layer (Y1) and a non-heat-expandable base material layer (Y2) are laminated As a non-heat-expandable base material layer (Y2), PET film (Toyo Boseki Co., Ltd.) A solvent-free resin composition (y-1a) was applied to one side of the PET film to form a coating film using a company-made product name “Cosmo Shine A4300”, thickness: 50 μm).
Then, using an ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., product name "ECS-401GX") and a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd., product name "H04-L41"), an illuminance of 160 mW / cm 2 The coating film is cured by irradiating with ultraviolet rays under the condition of a light amount of 500 mJ / cm 2 , and a heat-expandable base layer (Y1) having a thickness of 100 μm is placed on a PET film as a non-heat-expandable base layer (Y2). Formed. The above-mentioned illuminance and light intensity at the time of ultraviolet irradiation are values measured using an illuminance / light intensity meter (manufactured by EIT, product name "UV Power Pack II").
 なお、熱膨張性基材層(Y1)の23℃における貯蔵弾性率E’は5.0×10Paであった。
 また、熱膨張性基材層(Y1)の23℃におけるヤング率は330MPaであり、非熱膨張性基材層(Y2)の23℃におけるヤング率は2000MPaであった。
Incidentally, the storage elastic modulus E at 23 ° C. of the heat-expandable base layer (Y1) 'was 5.0 × 10 8 Pa.
The Young's modulus of the heat-expandable substrate layer (Y1) at 23 ° C. was 330 MPa, and the Young's modulus of the non-thermally expandable substrate layer (Y2) at 23 ° C. was 2000 MPa.
実施例1
 製造例1-1で形成した粘着剤層(X1-A1)の粘着表面と、製造例3で形成した基材積層体の熱膨張性基材層(Y1)表面とを貼り合わせた。次に、製造例2で形成した粘着剤層(X2-A5)の粘着表面と、当該基材積層体のPETフィルム表面とを貼り合わせた。
 これにより、以下の構成を有する粘着シートを作製した。
 <軽剥離フィルム>/<粘着剤層(X1-A1)、厚さ:5μm>/<熱膨張性基材層(Y1)、厚さ:100μm>/<非熱膨張性基材層(Y2)、厚さ:50μm>/<粘着剤層(X2-A5)、厚さ:20μm>/<重剥離フィルム>
Example 1
The adhesive surface of the pressure-sensitive adhesive layer (X1-A1) formed in Production Example 1-1 and the surface of the heat-expandable base material layer (Y1) of the base material laminate formed in Production Example 3 were bonded together. Next, the adhesive surface of the pressure-sensitive adhesive layer (X2-A5) formed in Production Example 2 and the PET film surface of the base material laminate were bonded together.
As a result, an adhesive sheet having the following structure was produced.
<Light release film> / <Adhesive layer (X1-A1), thickness: 5 μm> / <heat-expandable base layer (Y1), thickness: 100 μm> / <non-heat-expandable base layer (Y2) , Thickness: 50 μm> / <Adhesive layer (X2-A5), Thickness: 20 μm> / <Heavy release film>
実施例2
 製造例1-2で形成した粘着剤層(X1-A2)を用いたこと以外は、実施例1と同様にして、以下の構成を有する粘着シートを作製した。
 <軽剥離フィルム>/<粘着剤層(X1-A2)、厚さ:5μm>/<熱膨張性基材層(Y1)、厚さ:100μm>/<非熱膨張性基材層(Y2)、厚さ:50μm>/<粘着剤層(X2-A5)、厚さ:20μm>/<重剥離フィルム>
Example 2
A pressure-sensitive adhesive sheet having the following constitution was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer (X1-A2) formed in Production Example 1-2 was used.
<Light release film> / <Adhesive layer (X1-A2), thickness: 5 μm> / <thermally expandable base material layer (Y1), thickness: 100 μm> / <non-thermally expandable base material layer (Y2) , Thickness: 50 μm> / <Adhesive layer (X2-A5), Thickness: 20 μm> / <Heavy release film>
比較例1
 製造例1-3で形成した粘着剤層(X1-A3)を用いたこと以外は、実施例1と同様にして、以下の構成を有する粘着シートを作製した。
 <軽剥離フィルム>/<粘着剤層(X1-A3)、厚さ:5μm>/<熱膨張性基材層(Y1)、厚さ:100μm>/<非熱膨張性基材層(Y2)、厚さ:50μm>/<粘着剤層(X2-A5)、厚さ:20μm>/<重剥離フィルム>
Comparative Example 1
A pressure-sensitive adhesive sheet having the following constitution was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer (X1-A3) formed in Production Example 1-3 was used.
<Light release film> / <Adhesive layer (X1-A3), thickness: 5 μm> / <heat-expandable base layer (Y1), thickness: 100 μm> / <non-heat-expandable base layer (Y2) , Thickness: 50 μm> / <Adhesive layer (X2-A5), Thickness: 20 μm> / <Heavy release film>
比較例2
 製造例1-4で形成した粘着剤層(X1-A4)を用いたこと以外は、実施例1と同様にして、以下の構成を有する粘着シートを作製した。
 <軽剥離フィルム>/<粘着剤層(X1-A4)、厚さ:5μm>/<熱膨張性基材層(Y1)、厚さ:100μm>/<非熱膨張性基材層(Y2)、厚さ:50μm>/<粘着剤層(X2-A5)、厚さ:20μm>/<重剥離フィルム>
Comparative Example 2
A pressure-sensitive adhesive sheet having the following constitution was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer (X1-A4) formed in Production Example 1-4 was used.
<Light release film> / <Adhesive layer (X1-A4), thickness: 5 μm> / <thermally expandable base material layer (Y1), thickness: 100 μm> / <non-thermally expandable base material layer (Y2) , Thickness: 50 μm> / <Adhesive layer (X2-A5), Thickness: 20 μm> / <Heavy release film>
[粘着剤層(X1)の初期粘着力の評価]
 実施例1及び2並びに比較例1及び2で作製した粘着シートの軽剥離フィルムを除去し、表出した粘着剤層(X1)の粘着表面を、被着体であるソーダライムガラス板に重さ2kgのローラーで1往復させて貼付した後、23℃、50%RH(相対湿度)の環境下で、20分間静置したものを試験サンプルとした。
 そして、万能型引っ張り試験機(株式会社オリエンテック製、型番:テンシロンRTC-1210A)を用いて、23℃、50%RH(相対湿度)の環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、試験サンプルの23℃における粘着力を測定した。
 試験サンプルの初期粘着力はそれぞれ2回測定し、その平均値を算出した。なお、実施例1及び2並びに比較例1及び2における粘着シートのいずれの粘着剤層(X1-A1、X1-A2、X1-A3、及びX1-A4)も、被着体であるソーダライムガラス板が自重では剥がれ落ちないレベルに貼り付いていることを確認した。
[Evaluation of initial adhesive strength of adhesive layer (X1)]
The light release film of the adhesive sheet produced in Examples 1 and 2 and Comparative Examples 1 and 2 was removed, and the exposed adhesive surface of the adhesive layer (X1) was weighed on a soda lime glass plate as an adherend. A test sample was prepared by reciprocating once with a 2 kg roller, attaching the film, and then allowing the film to stand for 20 minutes in an environment of 23 ° C. and 50% RH (relative humidity).
Then, using a universal tensile tester (manufactured by Orientec Co., Ltd., model number: Tensilon RTC-1210A), pull 180 ° based on JIS Z0237: 2000 in an environment of 23 ° C and 50% RH (relative humidity). The adhesive strength of the test sample at 23 ° C. was measured at a tensile speed of 300 mm / min by the peeling method.
The initial adhesive strength of the test sample was measured twice, and the average value was calculated. In addition, any of the pressure-sensitive adhesive layers (X1-A1, X1-A2, X1-A3, and X1-A4) of the pressure-sensitive adhesive sheets in Examples 1 and 2 and Comparative Examples 1 and 2 are soda lime glass as an adherend. It was confirmed that the board was attached to a level where it would not come off under its own weight.
[自己剥離性の評価]
 30mm×30mm×1.1mmのソーダライムガラス板を2枚準備した。以下、2枚のソーダライムガラス板を、それぞれ「ガラス板G1」及び「ガラス板G2」と呼ぶ。
 実施例1-2及び比較例1-2で作製した粘着シートを30mm×30mmに裁断し、裁断した粘着シートの熱膨張性基材層(Y1)側の粘着剤層(X1-A1、X1-A2、X1-A3、及びX1-A4)から、軽剥離フィルムを除去して、ガラス板G1を貼り付けた。次いで、非熱膨張性基材層(Y2)側の粘着剤層(X2-A5)から重剥離フィルムを除去してガラス板G2を貼り付けた後、真空ラミネータ(ニッコーマテリアルズ株式会社製、製品名「V-130」)にて、60℃で0.2MPaの条件にて30秒間プレスして試験サンプルを作製した。
 そして、試験サンプルをホットプレート上に載置し、熱膨張性粒子の膨張開始温度以上である100℃で5分間加熱した。なお、試験サンプルは、ガラス板G2側がホットプレートと接触する側になり、粘着シート側がホットプレートと接触しない側になるようにホットプレートに載置した。
 100℃で5分間加熱した後、ガラス板G1の粘着シートからの剥離状態を目視で確認し、以下の基準により自己剥離性を評価した。
A:ガラス板G1の全面が粘着シートから剥離している。
F:ガラス板G1の一部又は全部が粘着シートから剥離していない。
[Evaluation of self-peeling property]
Two 30 mm × 30 mm × 1.1 mm soda lime glass plates were prepared. Hereinafter, the two soda lime glass plates are referred to as "glass plate G1" and "glass plate G2", respectively.
The pressure-sensitive adhesive sheet produced in Example 1-2 and Comparative Example 1-2 was cut into 30 mm × 30 mm, and the pressure-sensitive adhesive layer (X1-A1, X1-) on the heat-expandable base material layer (Y1) side of the cut pressure-sensitive adhesive sheet was cut. The light release film was removed from A2, X1-A3, and X1-A4), and the glass plate G1 was attached. Next, after removing the heavy release film from the pressure-sensitive adhesive layer (X2-A5) on the non-thermally expandable base material layer (Y2) side and attaching the glass plate G2, a vacuum laminator (manufactured by Nikko Materials Co., Ltd.) A test sample was prepared by pressing at 60 ° C. under the condition of 0.2 MPa for 30 seconds under the name “V-130”).
Then, the test sample was placed on a hot plate and heated at 100 ° C., which is equal to or higher than the expansion start temperature of the heat-expandable particles, for 5 minutes. The test sample was placed on the hot plate so that the glass plate G2 side was on the side in contact with the hot plate and the adhesive sheet side was on the side not in contact with the hot plate.
After heating at 100 ° C. for 5 minutes, the peeling state of the glass plate G1 from the adhesive sheet was visually confirmed, and the self-peeling property was evaluated according to the following criteria.
A: The entire surface of the glass plate G1 is peeled off from the adhesive sheet.
F: Part or all of the glass plate G1 is not peeled from the adhesive sheet.
[粘着剤層(X1)のヤング率の評価]
(1)評価用サンプルの作製
 両面にPET系剥離フィルム(リンテック株式会社製、製品名「SP-PET38 1031」、厚さ:38μm)が貼付された、厚さ400μmの粘着剤層(X1-A1)、粘着剤層(X1-A2)、粘着剤層(X1-A3)、及び粘着剤層(X1-A4)を作製した。
(2)引張試験
 作製した評価用サンプルを、15mm×140mmに切り出して、両端20mm部分にフィルム引張り用のラベルを貼付し、15mm×100mmのダンベル型のサンプルを作製した。そして、株式会社島津製作所製、オートグラフAG-100N XPlusにて速度200mm/minで引張りを行った際のヤング率を測定した。
[Evaluation of Young's modulus of adhesive layer (X1)]
(1) Preparation of evaluation sample A 400 μm-thick adhesive layer (X1-A1) to which a PET-based release film (manufactured by Lintec Corporation, product name “SP-PET38 1031”, thickness: 38 μm) is attached to both sides. ), The pressure-sensitive adhesive layer (X1-A2), the pressure-sensitive adhesive layer (X1-A3), and the pressure-sensitive adhesive layer (X1-A4) were prepared.
(2) Tensile test The prepared evaluation sample was cut out to a size of 15 mm × 140 mm, and labels for film tension were attached to both ends 20 mm to prepare a dumbbell-shaped sample of 15 mm × 100 mm. Then, the Young's modulus when tensioning was performed at a speed of 200 mm / min with an Autograph AG-100N XPrus manufactured by Shimadzu Corporation was measured.
 評価結果を表1に示す。 The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1及び2の粘着シートは、粘着剤層(X1)の23℃におけるヤング率が5.0MPa以下であり、且つ非熱膨張性基材層(Y2)の23℃におけるヤング率が、粘着剤層(X1)の23℃におけるヤング率よりも高いため、自己剥離性が良好であることがわかる。これに対し、比較例1及び2の粘着シートは、粘着剤層(X1)の23℃におけるヤング率が5.0MPaよりも大きいため、自己剥離性が悪くなることがわかる。
 
From Table 1, in the pressure-sensitive adhesive sheets of Examples 1 and 2, the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is 5.0 MPa or less, and the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. Since the coefficient is higher than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C., it can be seen that the self-peeling property is good. On the other hand, in the pressure-sensitive adhesive sheets of Comparative Examples 1 and 2, since the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is larger than 5.0 MPa, it can be seen that the self-peeling property is deteriorated.
 1a、1b、2a、2b 粘着シート
 10、10a、10b 剥離材
 3 支持体
 4 レーザー光照射装置
 5 改質領域
 6 グラインダー
 7 熱硬化性フィルム
 8 支持シート
 W 半導体ウエハ
 W1 半導体ウエハ及び半導体チップの回路面
 W2 半導体ウエハ及び半導体チップの裏面
 CP 半導体チップ

 
1a, 1b, 2a, 2b Adhesive sheet 10, 10a, 10b Release material 3 Support 4 Laser light irradiation device 5 Modified area 6 Grinder 7 Thermocurable film 8 Support sheet W Semiconductor wafer W1 Circuit surface of semiconductor wafer and semiconductor chip Back side of W2 semiconductor wafer and semiconductor chip CP semiconductor chip

Claims (15)

  1.  粘着剤層(X1)と、熱膨張性粒子を含む熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)とが、この順で配置された積層構造を有し、
     前記粘着剤層(X1)の23℃におけるヤング率が、5.0MPa以下であり、
     前記非熱膨張性基材層(Y2)の23℃におけるヤング率が、前記粘着剤層(X1)の23℃におけるヤング率よりも高い、粘着シート。
    The pressure-sensitive adhesive layer (X1), the heat-expandable base material layer (Y1) containing the heat-expandable particles, and the non-heat-expandable base material layer (Y2) have a laminated structure in which they are arranged in this order.
    The Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C. is 5.0 MPa or less.
    A pressure-sensitive adhesive sheet in which the Young's modulus of the non-thermally expandable base material layer (Y2) at 23 ° C. is higher than the Young's modulus of the pressure-sensitive adhesive layer (X1) at 23 ° C.
  2.  前記粘着剤層(X1)の23℃における厚さが、3~10μmである、請求項1に記載の粘着シート。 The pressure-sensitive adhesive sheet according to claim 1, wherein the pressure-sensitive adhesive layer (X1) has a thickness of 3 to 10 μm at 23 ° C.
  3.  前記粘着剤層(X1)の23℃におけるヤング率(単位:MPa)と、前記粘着剤層(X1)の23℃における厚さ(単位:μm)との積が、0.3~50である、請求項1又は2に記載の粘着シート。 The product of the Young's modulus (unit: MPa) of the pressure-sensitive adhesive layer (X1) at 23 ° C. and the thickness (unit: μm) of the pressure-sensitive adhesive layer (X1) at 23 ° C. is 0.3 to 50. , The adhesive sheet according to claim 1 or 2.
  4.  前記粘着剤層(X1)が、アクリル系樹脂とイソシアネート系架橋剤とを含む粘着剤組成物(x-1)から形成された層である、請求項1~3のいずれか1項に記載の粘着シート。 The one according to any one of claims 1 to 3, wherein the pressure-sensitive adhesive layer (X1) is a layer formed from a pressure-sensitive adhesive composition (x-1) containing an acrylic resin and an isocyanate-based cross-linking agent. Adhesive sheet.
  5.  前記イソシアネート系架橋剤が、イソシアヌレート環を有するイソシアヌレート型変性体を含む、請求項4に記載の粘着シート。 The pressure-sensitive adhesive sheet according to claim 4, wherein the isocyanate-based cross-linking agent contains an isocyanurate-type modified product having an isocyanurate ring.
  6.  前記非熱膨張性基材層(Y2)の23℃におけるヤング率が、700MPa以上である、請求項1~5のいずれか1項に記載の粘着シート。 The pressure-sensitive adhesive sheet according to any one of claims 1 to 5, wherein the non-thermally expandable base material layer (Y2) has a Young's modulus of 700 MPa or more at 23 ° C.
  7.  前記非熱膨張性基材層(Y2)が、ポリエチレンテレフタレートフィルムである、請求項1~6のいずれか1項に記載の粘着シート。 The pressure-sensitive adhesive sheet according to any one of claims 1 to 6, wherein the non-thermally expandable base material layer (Y2) is a polyethylene terephthalate film.
  8.  前記非熱膨張性基材層(Y2)の、前記熱膨張性基材層(Y1)の積層面とは反対側の面に、粘着剤層(X2)を更に有する、請求項1~7のいずれか1項に記載の粘着シート。 Claims 1 to 7, further comprising an adhesive layer (X2) on a surface of the non-thermally expandable base material layer (Y2) opposite to the laminated surface of the heat expandable base material layer (Y1). The adhesive sheet according to any one item.
  9.  前記熱膨張性粒子は、膨張開始温度(t)が50℃以上125℃未満である、請求項1~7のいずれか1項に記載の粘着シート。 The pressure-sensitive adhesive sheet according to any one of claims 1 to 7, wherein the thermally expandable particles have an expansion start temperature (t) of 50 ° C. or higher and lower than 125 ° C.
  10.  前記熱膨張性粒子は、膨張開始温度(t)が50℃以上125℃未満である、請求項8に記載の粘着シート。 The adhesive sheet according to claim 8, wherein the thermally expandable particles have an expansion start temperature (t) of 50 ° C. or higher and lower than 125 ° C.
  11.  前記粘着剤層(X2)が、エネルギー線を照射することにより硬化して粘着力が低下する粘着剤層である、請求項10に記載の粘着シート。 The pressure-sensitive adhesive sheet according to claim 10, wherein the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer that is cured by irradiating with energy rays to reduce the adhesive strength.
  12.  請求項1~11のいずれか1項に記載の粘着シートに加工検査対象物を貼付し、
     前記加工検査対象物に対して、加工及び検査から選択される1以上を施した後に、前記粘着シートを、前記粘着シートが有する熱膨張性粒子の膨張開始温度(t)以上に加熱する工程を含む、半導体装置の製造方法。
    The object to be processed and inspected is attached to the adhesive sheet according to any one of claims 1 to 11.
    A step of heating the pressure-sensitive adhesive sheet to a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles contained in the pressure-sensitive adhesive sheet after applying one or more selected from processing and inspection to the processing inspection object. A method for manufacturing a semiconductor device, including.
  13.  請求項10又は11に記載の粘着シートを用い、下記工程1A~3A、下記第一分離工程、及び下記第二分離工程を含む半導体装置の製造方法。
     工程1A:前記粘着シートが有する粘着剤層(X2)に加工対象物を貼付し、前記粘着シートが有する粘着剤層(X1)に支持体を貼付する工程
     工程2A:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
     工程3A:前記処理を施した加工対象物の、前記粘着剤層(X2)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程
     第一分離工程:前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
     第二分離工程:前記粘着剤層(X2)と前記加工対象物とを分離する工程
    A method for manufacturing a semiconductor device, which comprises the following steps 1A to 3A, the following first separation step, and the following second separation step using the pressure-sensitive adhesive sheet according to claim 10 or 11.
    Step 1A: A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet Step 2A: For the object to be processed Step 3A: A process of performing one or more treatments selected from a grinding treatment and an individualization treatment Step 3A: A heat-curable surface of the processed object to be processed, which is opposite to the adhesive layer (X2). First separation step: The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the support. Second separation step: A step of separating the pressure-sensitive adhesive layer (X2) from the object to be processed.
  14.  請求項10又は11に記載の粘着シートを用い、下記工程1B~3B、下記第一分離工程、及び下記第二分離工程を含む半導体装置の製造方法。
     工程1B:前記粘着シートが有する粘着剤層(X1)に加工対象物を貼付し、前記粘着シートが有する粘着剤層(X2)に支持体を貼付する工程
     工程2B:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
     工程3B:前記処理を施した加工対象物の、前記粘着剤層(X1)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程
     第一分離工程:前記粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、前記粘着剤層(X1)と前記加工対象物とを分離する工程
     第二分離工程:前記粘着剤層(X2)と前記支持体とを分離する工程
    A method for manufacturing a semiconductor device, which comprises the following steps 1B to 3B, the following first separation step, and the following second separation step using the pressure-sensitive adhesive sheet according to claim 10 or 11.
    Step 1B: A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet Step 2B: For the object to be processed Step 3B: A process of performing one or more treatments selected from the grinding treatment and the individualization treatment Step 3B: The surface of the processed object to which the treatment has been subjected to the heat curable on the surface opposite to the adhesive layer (X1). First separation step: The pressure-sensitive adhesive sheet is heated to a temperature equal to or higher than the expansion start temperature (t) and lower than 125 ° C., and the pressure-sensitive adhesive layer (X1) and the object to be processed are separated from each other. Separation step Second separation step: A step of separating the pressure-sensitive adhesive layer (X2) and the support.
  15.  請求項11に記載の粘着シートを用い、
     前記第二分離工程が、粘着剤層(X2)にエネルギー線を照射することにより粘着剤層(X2)を硬化させる工程を含む、請求項13又は14に記載の半導体装置の製造方法。
     
    Using the adhesive sheet according to claim 11,
    The method for manufacturing a semiconductor device according to claim 13 or 14, wherein the second separation step includes a step of curing the pressure-sensitive adhesive layer (X2) by irradiating the pressure-sensitive adhesive layer (X2) with energy rays.
PCT/JP2020/011177 2019-03-15 2020-03-13 Adhesive sheet and semiconductor device production method WO2020189568A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217026249A KR20210141929A (en) 2019-03-15 2020-03-13 Method for manufacturing adhesive sheet and semiconductor device
JP2021507314A JPWO2020189568A1 (en) 2019-03-15 2020-03-13
CN202080020753.2A CN113613893B (en) 2019-03-15 2020-03-13 Pressure-sensitive adhesive sheet and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048674 2019-03-15
JP2019-048674 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189568A1 true WO2020189568A1 (en) 2020-09-24

Family

ID=72519350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011177 WO2020189568A1 (en) 2019-03-15 2020-03-13 Adhesive sheet and semiconductor device production method

Country Status (4)

Country Link
JP (1) JPWO2020189568A1 (en)
KR (1) KR20210141929A (en)
CN (1) CN113613893B (en)
WO (1) WO2020189568A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
CN116323194A (en) * 2021-09-06 2023-06-23 积水化学工业株式会社 Adhesive tape for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561166A (en) * 2022-03-31 2022-05-31 杭州福斯特应用材料股份有限公司 Packaging adhesive film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064329A (en) * 2001-08-30 2003-03-05 Nitto Denko Corp Heat-releasable adhesive sheet of energy-ray curing type, method for manufacturing cut piece using the same and the cut piece
WO2005087888A1 (en) * 2004-03-11 2005-09-22 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet and method of processing adherend with the heat-peelable pressure-sensitive adhesive sheet
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
WO2013011850A1 (en) * 2011-07-15 2013-01-24 日東電工株式会社 Method for manufacturing electronic component and adhesive sheet used in method for manufacturing electronic component
JP2018031021A (en) * 2015-09-01 2018-03-01 リンテック株式会社 Adhesive composition and adhesive sheet
WO2019031533A1 (en) * 2017-08-09 2019-02-14 リンテック株式会社 Thermal peeling method for machining inspection objects

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594853B2 (en) 1999-11-08 2004-12-02 日東電工株式会社 Heat release adhesive sheet
JP2003077940A (en) * 2001-09-06 2003-03-14 Sony Corp Method of transferring device, method of arranging device using same, and method of manufacturing image display device unit
TW590907B (en) * 2002-06-03 2004-06-11 Ricoh Kk Thermoreversible recording medium, thermoreversible recording label, thermoreversible recording member, image processing unit and method of image processing
JP2010053346A (en) * 2008-07-31 2010-03-11 Nitto Denko Corp Re-releasable adhesive and re-releasable adhesive sheet
JP6000595B2 (en) * 2012-03-27 2016-09-28 日東電工株式会社 Heat-peelable pressure-sensitive adhesive sheet for electronic component cutting and electronic component processing method
CN105981137B (en) * 2014-03-31 2018-08-31 三井化学东赛璐株式会社 The manufacturing method of the semiconductor device of protective film and the use protective film
TW201704395A (en) * 2015-02-24 2017-02-01 琳得科股份有限公司 Film-like adhesive agent, adhesive sheet, and method for manufacturing semiconductor device
KR102390521B1 (en) * 2015-03-12 2022-04-25 린텍 가부시키가이샤 Film for forming a protective film
CN108701601B (en) * 2016-03-03 2023-06-02 琳得科株式会社 Adhesive tape for semiconductor processing and method for manufacturing semiconductor device
WO2018181765A1 (en) * 2017-03-31 2018-10-04 リンテック株式会社 Adhesive sheet
JP6887313B2 (en) * 2017-05-31 2021-06-16 株式会社ディスコ Wafer processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064329A (en) * 2001-08-30 2003-03-05 Nitto Denko Corp Heat-releasable adhesive sheet of energy-ray curing type, method for manufacturing cut piece using the same and the cut piece
WO2005087888A1 (en) * 2004-03-11 2005-09-22 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet and method of processing adherend with the heat-peelable pressure-sensitive adhesive sheet
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
WO2013011850A1 (en) * 2011-07-15 2013-01-24 日東電工株式会社 Method for manufacturing electronic component and adhesive sheet used in method for manufacturing electronic component
JP2018031021A (en) * 2015-09-01 2018-03-01 リンテック株式会社 Adhesive composition and adhesive sheet
WO2019031533A1 (en) * 2017-08-09 2019-02-14 リンテック株式会社 Thermal peeling method for machining inspection objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
CN116323194A (en) * 2021-09-06 2023-06-23 积水化学工业株式会社 Adhesive tape for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPWO2020189568A1 (en) 2020-09-24
TW202045657A (en) 2020-12-16
CN113613893A (en) 2021-11-05
CN113613893B (en) 2023-11-21
KR20210141929A (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2021117695A1 (en) Adhesive sheet and method for producing semiconductor device
WO2020189568A1 (en) Adhesive sheet and semiconductor device production method
JP7185638B2 (en) Semiconductor device manufacturing method
WO2019216262A1 (en) Method of manufacturing semiconductor chip
JP6792700B2 (en) Method of heat peeling of processing inspection object
WO2020196755A1 (en) Adhesive sheet, production method for adhesive sheet, and production method for semiconductor device
WO2021200789A1 (en) Double-sided adhesive sheet, and method for manufacturing semiconductor device
JP7273792B2 (en) Processed product manufacturing method and adhesive laminate
JP7340457B2 (en) Adhesive laminate, method for producing workpiece with resin film, and method for producing cured sealant with cured resin film
WO2020196757A1 (en) Adhesive sheet, adhesive-sheet manufacturing method, and semiconductor-device manufacturing method
WO2020196758A1 (en) Pressure-sensitive adhesive sheet, method for producing pressure-sensitive adhesive sheet, and method for producing semiconductor device
JP7405618B2 (en) Adhesive laminate, method for using adhesive laminate, and method for manufacturing semiconductor device
CN114402419A (en) Method for manufacturing semiconductor device
JP7490417B2 (en) Adhesive sheet
WO2019235217A1 (en) Method for producing cured sealant
TWI841705B (en) Adhesive sheet and method for manufacturing semiconductor device
WO2022054889A1 (en) Adhesive sheet and method for producing semiconductor device
WO2022196752A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP2020009971A (en) Individualized sheet
WO2023054318A1 (en) Method for producing semiconductor device
JP7185637B2 (en) Semiconductor device manufacturing method
JP2023059543A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772713

Country of ref document: EP

Kind code of ref document: A1