WO2019216262A1 - Method of manufacturing semiconductor chip - Google Patents

Method of manufacturing semiconductor chip Download PDF

Info

Publication number
WO2019216262A1
WO2019216262A1 PCT/JP2019/017875 JP2019017875W WO2019216262A1 WO 2019216262 A1 WO2019216262 A1 WO 2019216262A1 JP 2019017875 W JP2019017875 W JP 2019017875W WO 2019216262 A1 WO2019216262 A1 WO 2019216262A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
expandable
layer
adhesive layer
Prior art date
Application number
PCT/JP2019/017875
Other languages
French (fr)
Japanese (ja)
Inventor
忠知 山田
真也 田久
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020207031816A priority Critical patent/KR20210006896A/en
Priority to JP2020518271A priority patent/JP7241744B2/en
Priority to CN201980030707.8A priority patent/CN112088421A/en
Publication of WO2019216262A1 publication Critical patent/WO2019216262A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/206Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer comprising non-adhesive protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support

Definitions

  • the present invention relates to a method for manufacturing a semiconductor chip.
  • a heat-peelable pressure-sensitive adhesive sheet having a heat-expandable pressure-sensitive adhesive layer containing heat-expandable particles is known as a pressure-sensitive adhesive sheet that can meet such requirements.
  • a thermally expandable adhesive layer is prepared by using a thermally expandable adhesive layer including thermally expandable microspheres on one side of a substrate and a heat-peelable double-sided adhesive sheet provided with an adhesive layer on the other side.
  • a method is disclosed in which an adherend such as a wafer is adhered to a support and an adherend such as a wafer is bonded to the other adhesive layer to process the adherend.
  • the smoothness of the adherend surface can be maintained during processing of the adherend, and after processing, the double-sided pressure-sensitive adhesive sheet is peeled off. The stress can be reduced, and it can be easily peeled without damaging the adherend.
  • the thermally expandable adhesive layer of the above double-sided pressure-sensitive adhesive sheet is attached to a support, and the adherend is attached to the other adhesive layer. Is processed.
  • the heat-expandable pressure-sensitive adhesive layer included in the double-sided pressure-sensitive adhesive sheet used in the processing method of Patent Document 1 contains heat-expandable microspheres
  • the support is more suitable than a pressure-sensitive adhesive layer that does not contain heat-expandable microspheres.
  • the decrease in the adhesive strength with the support causes various adverse effects due to the fact that the adherend is not sufficiently fixed to the support. For example, chip processing methods such as the tip dicing method and stealth dicing method, which grind the back surface of the wafer and divide it into chips, are not sufficiently fixed to the support, and the resulting chip has a bad edge. Can occur.
  • the adhesive resin constituting the thermally expandable adhesive layer In order to prevent contamination of the support, it may be possible to select a low-adhesive resin as the adhesive resin constituting the thermally expandable adhesive layer. At the time of processing the adherend, there may be a problem that the adherend is not sufficiently fixed to the adherend.
  • the present invention improves the yield by suppressing chipping of the end of the semiconductor chip, etc., and when separating the support and the attached adhesive sheet, it can be easily separated at once and the support after separation.
  • An object of the present invention is to provide a method for manufacturing a semiconductor chip, which can suppress contamination of the body and can eliminate the step of cleaning the support.
  • the present inventors respectively provide a first adhesive on both surfaces of a base material including at least an inflatable base material layer containing inflatable particles and a non-inflatable base material layer. It has been found that the above-mentioned problems can be solved by using an adhesive sheet having an adhesive layer and a second adhesive layer.
  • a substrate (Y) comprising at least an expandable substrate layer (Y1) containing expandable particles and a non-expandable substrate layer (Y2); On both surfaces of the substrate (Y), each has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2), A method for producing a semiconductor chip from a semiconductor wafer using a pressure-sensitive adhesive sheet, in which unevenness may occur on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) due to expansion of the expandable particles, A method for producing a semiconductor chip, comprising the following steps (1) to (3).
  • Step (1) A step of sticking the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) to the hard support and sticking the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) to the surface of the semiconductor wafer.
  • Step (2) A step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
  • Step (3) The interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the expandable particles are expanded and the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. Separating with P.
  • the pressure-sensitive adhesive sheet has a first pressure-sensitive adhesive layer (X1) on the base material (Y) on the side of the expandable base material layer (Y1), and the base material (Y) has the non-expandable group.
  • the base material (Y) is a non-expandable base material provided on the expandable base material layer (Y1) and the first adhesive layer (X1) side of the expandable base material layer (Y1).
  • the storage elastic modulus E ′ of the non-expandable base layer (Y2-1) when the expandable particles expand is determined by the storage modulus of the non-expandable base layer (Y2-2) when the expandable particles expand.
  • the non-expandable base material layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the expandable base material layer (Y1).
  • the non-intumescent substrate layer (Y2) does not exist between the layer (Y1) and the first pressure-sensitive adhesive layer (X1),
  • the storage elastic modulus E ′ of the non-expandable base layer (Y2) when the expandable particles expand is the storage elastic modulus E of the expandable base layer (Y1) when the expandable particles expand.
  • Step (4) After separation from the hard support in Step (3), the back surface opposite to the circuit surface of the plurality of semiconductor chips is formed with a base film, an adhesive layer and / or an adhesive layer. A step of removing the pressure-sensitive adhesive sheet from the semiconductor chip after being attached to the transfer tape.
  • the semiconductor wafer having the modified region is ground on the back surface on which the circuit opposite to the circuit surface is not formed, and the semiconductor wafer is divided to obtain a plurality of semiconductor chips.
  • the method for manufacturing a semiconductor chip of the present invention when separating the support and the attached adhesive sheet while improving the yield by suppressing chipping or the like of the end portion of the obtained semiconductor chip, all at once. Since it can be easily separated, contamination of the support after separation can be suppressed, and the washing step of the support can be omitted, so that productivity can be improved.
  • FIG. 6 is a schematic cross-sectional view in steps (1) to (3) of the method for manufacturing a semiconductor chip of the present invention.
  • FIG. 6 is a schematic cross-sectional view in steps (4) to (6) of the method for manufacturing a semiconductor chip of the present invention.
  • the determination of whether the target layer is an “expandable layer” or “non-expandable layer” is performed after 3 minutes of processing for expansion, and before and after the processing. Judgment is made based on the volume change rate calculated from the equation.
  • Volume change rate (%) ⁇ (volume of the layer after treatment ⁇ volume of the layer before treatment) / volume of the layer before treatment ⁇ ⁇ 100 That is, if the volume resistivity is 5% by volume or more, it is determined that the layer is an “expandable layer”. If the volume change rate is less than 5% by volume, the layer is a “non-expandable layer”. It is judged that.
  • a heat treatment for 3 minutes may be performed at the expansion start temperature (t) of the thermally expandable particles. .
  • the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
  • Mw mass average molecular weight
  • GPC gel permeation chromatography
  • (meth) acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the lower limit value and upper limit value which were described in steps can be combined independently, respectively.
  • the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”.
  • the semiconductor chip manufacturing method of the present invention includes at least an expandable base layer (Y1) and non-expandable base layer (Y2) containing expandable particles.
  • the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are provided on both sides of the base material (Y) and the base material (Y), respectively.
  • This is a method for producing a semiconductor chip from a semiconductor wafer using a pressure-sensitive adhesive sheet in which irregularities can occur on the pressure-sensitive adhesive surface of the agent layer (X1).
  • the production method of the present invention includes the following steps (1) to (3).
  • Step (1) A step of sticking the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) to the hard support and sticking the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) to the surface of the semiconductor wafer.
  • Step (2) A step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
  • Step (3) The interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the expandable particles are expanded and the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. Separating with P.
  • FIG. 1 is a schematic cross-sectional view of the pressure-sensitive adhesive sheet showing an example of the configuration of the pressure-sensitive adhesive sheet used in the production method of the present invention.
  • the pressure-sensitive adhesive sheet used in the production method of the present invention includes a base (Y) having at least an expandable base layer (Y1) and a non-expandable base layer (Y2) as shown in FIG.
  • the adhesive sheet 1a which has a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) on both surfaces of a material (Y), respectively is mentioned.
  • the substrate (Y) may have a configuration other than this.
  • the first non-thermally expandable base material layer (Y2-1) and the 2 A configuration in which a non-thermally expandable base material layer (Y2-2) is provided may be employed.
  • a release material may be further laminated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2).
  • a structure in which a release material having a release treatment applied to both sides is laminated on one adhesive surface of the first adhesive layer (X1) and the second adhesive layer (X2) is wound in a roll shape. It is good.
  • These release materials are provided to protect the adhesive surfaces of the first adhesive layer (X1) and the second adhesive layer (X2), and are removed when the adhesive sheet is used.
  • the peeling force when peeling the release material laminated on the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are laminated.
  • the adhesive sheet 1a is divided along with the two release materials and peeled off by pulling both release materials outward. This may cause a negative effect.
  • the release material laminated on the first pressure-sensitive adhesive layer (X1) and the release material laminated on the second pressure-sensitive adhesive layer (X2) have different peeling forces from the pressure-sensitive adhesive layer attached to each other. It is preferable to use two types of designed release materials.
  • the pressure-sensitive adhesive sheet used in the production method of the present invention is adjusted so that irregularities can be generated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) by the expansion of the expandable particles.
  • the first pressure-sensitive adhesive layer (X1) is laminated on the expandable base material layer (Y1) containing expandable particles, and the non-expandable base material layer (Y2).
  • a second pressure-sensitive adhesive layer (X2) In the pressure-sensitive adhesive sheet 1a, when the expandable particles in the expandable base material layer (Y1) expand, the surface of the expandable base material layer (Y1) is uneven, and the first pressure-sensitive adhesive layer is in contact with the surface.
  • the adhesive surface of the first adhesive layer (X1) is affixed to a hard support.
  • the first pressure-sensitive adhesive layer (X1) can be easily separated together with a slight force at the interface P.
  • the expandable particles when expanded, they can be easily separated by a small force at the interface between the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2). You may adjust.
  • the surface of the semiconductor wafer is attached to the adhesive surface of the second pressure-sensitive adhesive layer (X2), and in step (2), the semiconductor wafer is divided into a plurality of semiconductors. A chip.
  • the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are stuck and the hard support and the first pressure-sensitive adhesive are adhered. It isolate
  • the non-intumescent base material layer (Y2) is provided on the surface of the expandable base material layer (Y1) opposite to the first pressure-sensitive adhesive layer (X1).
  • the second pressure-sensitive adhesive layer (X2) is laminated on the surface of the non-expandable base material layer (Y2).
  • the non-expandable base layer (Y2) absorbs.
  • the formation of irregularities on the adhesive surface of the second adhesive layer (X2) laminated on the non-expandable base material layer (Y2) is suppressed, and the semiconductor chip attached to the adhesive surface can be held. .
  • the first non-expandable so that irregularities are formed on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1). It is preferable to adjust the storage elastic modulus E ′ of the base material layer (Y2-1) to be low. On the other hand, when the expandable particles expand, the second non-thermally expandable base material layer (Y2-2) is prevented from forming irregularities on the adhesive surface of the second pressure-sensitive adhesive layer (X2).
  • the storage elastic modulus E ′ is preferably adjusted to be high.
  • the storage elastic modulus E ′ of the first non-expandable base layer (Y2-1) when the expandable particles expand is the same as the second non-thermally expandable base layer (Y2) when the expandable particles expand. -2) is preferably adjusted to be lower than the storage elastic modulus E ′.
  • the expandable pressure-sensitive adhesive layer is stuck to a hard support, and the other pressure-sensitive adhesive layer.
  • the expandable pressure-sensitive adhesive layer to be bonded to the hard support contains expandable particles, so that the adhesive force tends to be insufficient.
  • the semiconductor wafer is not sufficiently fixed to the hard support due to a decrease in the adhesive force of the expandable pressure-sensitive adhesive layer to the hard support.
  • the semiconductor wafer is divided to obtain a plurality of semiconductor chips, Defects such as chipped edges are likely to occur.
  • the stealth dicing registered trademark, hereinafter the same
  • the semiconductor wafer is not sufficiently fixed to the hard support, the warping of the semiconductor wafer cannot be suppressed, which causes a chip crack or the like.
  • the pressure-sensitive adhesive sheet used in the production method of the present invention has a base material (Y) having at least an inflatable base material layer (Y1) containing inflatable particles and a non-inflatable base material layer (Y2), and is inflated.
  • a base material (Y) having at least an inflatable base material layer (Y1) containing inflatable particles and a non-inflatable base material layer (Y2), and is inflated.
  • the adhesive particles expand, the adhesive surface of the first pressure-sensitive adhesive layer (X1) is adjusted so that irregularities are formed. Therefore, the first pressure-sensitive adhesive layer (X1) to be attached to the hard support does not need to contain expandable particles, so that the semiconductor wafer can be sufficiently fixed to the hard support and the chip end portion is missing. And the like can be effectively suppressed, and the yield can be improved.
  • the adhesive composition which is a forming material of a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) is also high.
  • the pressure-sensitive adhesive sheet used in one embodiment of the present invention has irregularities on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) attached to the hard support due to the expansion of the expandable particles, and the hard support and the first pressure-sensitive adhesive. At the interface P with the layer (X1), separation can be easily performed at a time with a slight force.
  • the peeling force (F 1 ) when the expandable particles are expanded and separated at the interface P is usually 0 to 2000 mN / 25 mm, preferably 0 to 1000 mN / It is 25 mm, more preferably 0 to 150 mN / 25 mm, still more preferably 0 to 100 mN / 25 mm, and still more preferably 0 to 50 mN / 25 mm.
  • the peel force (F 1) is in the case of 0 mN / 25 mm, even trying to measure the peel strength by the method described in Example, includes the case where the measurement impossible because peel strength is too small.
  • the first pressure-sensitive adhesive layer is used from the viewpoint of suppressing the occurrence of chipping at the ends of the chips and improving the yield.
  • the peeling force (F 0 ) when separating at the interface P before the expansion of the expandable particles is preferably 0.05 to 10.0 N / 25 mm, More preferably, it is 0.1 to 8.0 N / 25 mm, still more preferably 0.15 to 6.0 N / 25 mm, and still more preferably 0.2 to 4.0 N / 25 mm.
  • the release force (F 0) can also be regarded as the adhesive strength of the first adhesive layer to the rigid support member (X1).
  • the ratio [(F 1 ) / (F 0 )] of the peel force (F 1 ) to the peel force (F 0 ) is preferably 0 to 0.9, more preferably Is 0 to 0.8, more preferably 0 to 0.5, and still more preferably 0 to 0.2.
  • the release force (F 1) is a value measured under the environment when the expandable particles are expanded.
  • the temperature condition for measuring the peel force (F 1 ) may be equal to or higher than the expansion start temperature (t) of the thermally expandable particles.
  • the temperature condition for measuring the peeling force (F 0 ) may be any temperature at which the expandable particles do not expand, and is basically room temperature (23 ° C.).
  • more specific measurement conditions and measurement methods for the peel force (F 1 ) and the peel force (F 0 ) are based on the methods described in the examples.
  • the adhesive strength of the second pressure-sensitive adhesive layer (X2) at room temperature (23 ° C.) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0. The range is from 0.2 to 8.0 N / 25 mm, more preferably from 0.4 to 6.0 N / 25 mm, still more preferably from 0.5 to 4.0 N / 25 mm.
  • the adhesive strength of the second pressure-sensitive adhesive layer (X2) means a value measured by the method described in Examples.
  • each layer which comprises the adhesive sheet used by 1 aspect of this invention is demonstrated.
  • the base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention includes at least an expandable base material layer (Y1) containing inflatable particles and a non-expandable base material layer (Y2).
  • a base material (Y) like the adhesive sheet 1a shown to Fig.1 (a), an expandable base material layer (Y1) and a non-expandable base material layer (Y2) are each laminated
  • the first non-thermally expandable base layer (Y2-1) and the second non-expandable base layer (Y2-1) are formed on both sides of the expandable base layer (Y1).
  • a configuration in which a non-thermally expandable base material layer (Y2-2) is provided may be employed.
  • the base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention has a configuration in which an adhesive layer is provided between the expandable base material layer (Y1) and the non-expandable base material layer (Y2). May be.
  • An adhesive layer may be provided between the conductive base material layer (Y2-2).
  • the adhesive layer can be formed from a general adhesive or a pressure-sensitive adhesive composition that is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
  • the expansion of the expandable particles causes unevenness on the adhesive surface of the first pressure-sensitive adhesive layer (X1), while suppressing formation of unevenness on the adhesive surface of the second pressure-sensitive adhesive layer (X2).
  • the base material (Y) is provided with at least an inflatable base material layer (Y1) and a non-expandable base material layer (Y2) on the outermost surface.
  • the base material (Y) which the adhesive sheet 1a shown to Fig.1 (a) has, an expandable base material layer (Y1), an adhesive bond layer, and a non-expandable base material layer (Y2) are this order.
  • stacked with are mentioned.
  • Examples of the material for forming the adhesive layer include the same adhesive composition as the material for forming the adhesive layer included in the transfer tape described below.
  • the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) are both non-adhesive layers.
  • the determination as to whether or not the layer is a non-adhesive layer can be made if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mm ⁇ with respect to the surface of the target layer. Is judged as a “non-sticky layer”.
  • the probe tack values on the surfaces of the expandable base material layer (Y1) and the non-expandable base material layer (Y2) of the pressure-sensitive adhesive sheet (I) used in one embodiment of the present invention are each independently usually less than 50 mN / 5 mm ⁇ . However, it is preferably less than 30 mN / 5 mm ⁇ , more preferably less than 10 mN / 5 mm ⁇ , and even more preferably less than 5 mN / 5 mm ⁇ .
  • the specific measuring method of the probe tack value in the surface of a thermally expansible base material is based on the method as described in an Example.
  • the thickness of the substrate (Y) is preferably 15 to 2000 ⁇ m, more preferably 25 to 1500 ⁇ m, still more preferably 30 to 1000 ⁇ m, and still more preferably 40 to 500 ⁇ m. is there.
  • the thickness of the expandable substrate (Y1) before expansion of the expandable particles is preferably 10 to 1000 ⁇ m, more preferably 20 to 700 ⁇ m, still more preferably 25 to 500 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • the thickness of the non-expandable substrate (Y2) is preferably 10 to 1000 ⁇ m, more preferably 20 to 700 ⁇ m, still more preferably 25 to 500 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • a plurality of expandable substrates (Y1) or non-expandable substrates (Y2) exist via other layers as in the adhesive sheet 1b shown in FIG. 1 (b).
  • the thickness of said expansible base material (Y1) or a non-expandable base material (Y2) means the thickness per each layer.
  • the thickness ratio between the expandable base material layer (Y1) and the non-thermally expandable base material layer (Y2) before expansion of the expandable particles [(Y1) / ( Y2)] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
  • the thickness ratio [(Y1) / (X1)] is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and still more preferably 5.0 or more. Also, it is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and still more preferably 30 or less.
  • the ratio [(Y2) / (X2)] is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, and preferably 20 or less, more preferably 10 or less. More preferably, it is 5 or less.
  • the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) will be described.
  • the expandable substrate layer (Y1) constituting the substrate (Y) is a layer that contains expandable particles and can be expanded by a predetermined expansion treatment.
  • the content of expandable particles in the expandable substrate layer (Y1) is preferably 1 to 40% by mass, more preferably 5%, based on the total mass (100% by mass) of the expandable substrate layer (Y1). It is ⁇ 35% by mass, more preferably 10 to 30% by mass, and still more preferably 15 to 25% by mass.
  • the surface of the expandable base material layer (Y1) is a surface formed by an oxidation method, a roughening method, or the like.
  • Treatment, easy adhesion treatment, or primer treatment may be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment.
  • the unevenness method include sand blast method and solvent treatment method. Etc.
  • the expandable particles contained in the expandable substrate layer (Y1) may be any particles that expand by performing a predetermined treatment, such as thermally expandable particles that expand by heating at a predetermined temperature or higher, Examples include UV-expandable particles that absorb a predetermined amount of ultraviolet rays to generate gas and expand inside the particles.
  • the volume expansion coefficient of the expandable particles is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably 2.5 to 60 times, and still more preferably 3 to 40 times.
  • the average particle diameter of the expandable particles before expansion at 23 ° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, and still more preferably 10 to 50 ⁇ m.
  • the average particle size of the expandable particles is a volume-median particle size (D 50 ), and is measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In the particle distribution of the expandable particles, it means a particle size corresponding to 50% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
  • the 90% particle diameter (D 90 ) of the expandable particles before expansion at 23 ° C. is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, still more preferably 25 to 90 ⁇ m, and still more preferably 30 to 80 ⁇ m. .
  • the 90% particle size (D 90 ) of the expandable particles is the particle distribution of the expandable particles measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In FIG. 5, the particle size corresponding to 90% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
  • the expandable particles are preferably thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C. That is, the expandable substrate layer (Y1) is preferably a thermally expandable substrate layer (Y1-1) containing thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
  • the conductive base material layer (Y1-1) more preferably satisfies the following requirement (1).
  • the storage elastic modulus E ′ (t) of the thermally expandable substrate layer (Y1-1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 ⁇ 10 7 Pa It is as follows. In the present specification, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) at a predetermined temperature means a value measured by the method described in the examples.
  • the requirement (1) can be said to be an index indicating the rigidity of the thermally expandable base material layer (Y1-1) immediately before the thermally expandable particles expand. That is, when the thermally expandable particles expand, if the thermally expandable substrate layer (Y1-1) is flexible enough to satisfy the above requirement (1), the thermally expandable substrate layer (Y1 As a result, unevenness is likely to be formed on the surface of -1), and unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1). As a result, it is possible to easily separate them with a slight force at the interface P between the hard support and the first pressure-sensitive adhesive layer (X1).
  • the storage elastic modulus E ′ (t) defined by requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 9.0 ⁇ 10 6 Pa or less, more preferably 8.0. ⁇ 10 6 Pa or less, more preferably 6.0 ⁇ 10 6 Pa or less, and still more preferably 4.0 ⁇ 10 6 Pa or less.
  • the flow of the expanded heat-expandable particles is suppressed, the shape maintaining property of the unevenness generated on the surface of the heat-expandable base material layer (Y1-1) is improved, and the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is improved.
  • the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 1.0 ⁇ 10 3 Pa or more. Preferably it is 1.0 ⁇ 10 4 Pa or more, more preferably 1.0 ⁇ 10 5 Pa or more.
  • the thermally expandable base material layer (Y1-1) preferably satisfies the following requirement (2), and more preferably satisfies the requirement (2) together with the requirement (1).
  • the storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) at 23 ° C. is 1.0 ⁇ 10 6 Pa or more.
  • thermally expansible base material layer (Y1-1) that satisfies the above requirement (2), it is possible to prevent misalignment when the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2). Moreover, excessive sinking of the semiconductor wafer into the second pressure-sensitive adhesive layer (X2) can also be prevented.
  • the storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) defined by the above requirement (2) is preferably 5.0 ⁇ 10 6 to 5.0 ⁇ 10 12 Pa. More preferably 1.0 ⁇ 10 7 to 1.0 ⁇ 10 12 Pa, still more preferably 5.0 ⁇ 10 7 to 1.0 ⁇ 10 11 Pa, and still more preferably 1.0 ⁇ 10 8 to 1. 0 ⁇ 10 10 Pa.
  • the heat-expandable particles contained in the heat-expandable base material layer (Y1-1) are preferably heat-expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
  • the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
  • Measurement method of expansion start temperature (t) of thermally expandable particles To an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter 5.6 mm, thickness 0. 1 mm) is prepared.
  • the height of the sample is measured from the upper part of the aluminum lid to the sample with a force of 0.01 N applied by a pressurizer. Then, in a state where a force of 0.01 N is applied by the pressurizer, heating is performed from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and the amount of displacement of the pressurizer in the vertical direction is measured.
  • the displacement start temperature be the expansion start temperature (t).
  • the thermally expandable particles include a microencapsulated foaming agent composed of an outer shell made of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature.
  • a microencapsulated foaming agent composed of an outer shell made of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature.
  • the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane.
  • the expandable substrate layer (Y1) is preferably formed from a resin composition (y) containing a resin and expandable particles.
  • the substrate additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
  • These base material additives may be used alone or in combination of two or more. When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to about 100 parts by mass of the resin. 10 parts by mass.
  • the expandable particles contained in the resin composition (y), which is a material for forming the expandable substrate layer (Y1), are as described above, and are preferably thermally expandable particles.
  • the content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and further preferably 10 to 10% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). 30% by mass, and still more preferably 15 to 25% by mass.
  • the resin contained in the resin composition (y) that is a material for forming the expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin. That is, even if the resin contained in the resin composition (y) is an adhesive resin, the adhesive resin is a polymerizable compound in the process of forming the expandable base material layer (Y1) from the resin composition (y). And the resulting resin becomes a non-adhesive resin, and the expandable base material layer (Y1) containing the resin may be non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000. Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). %, More preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y) is an acrylic urethane from the viewpoint of forming an expandable base layer (Y1) that easily forms irregularities on the surface when the expandable particles are expanded. It is preferable that 1 or more types chosen from a system resin and an olefin resin are included. Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
  • An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
  • urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further subjecting it to a chain extension reaction using a chain extender.
  • Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols. These polyols may be used independently and may use 2 or more types together.
  • the polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
  • ester diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxyl
  • alkylene type diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
  • alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol
  • ethylene glycol, propylene glycol And alkylene glycols such as diethylene glycol and dipropylene glycol
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
  • polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) examples include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. These polyvalent isocyanates may be used alone or in combination of two or more. These polyisocyanates may be a trimethylolpropane adduct type modified product, a burette type modified product reacted with water, or an isocyanurate type modified product containing an isocyanurate ring.
  • diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • alicyclic diisocyanate examples include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane.
  • IPDI isophorone diisocyanate
  • Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends.
  • a urethane prepolymer is preferred.
  • an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the (meth) acrylic acid ester is preferably one or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
  • the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
  • the carbon number of the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
  • hydroxyalkyl (meth) acrylate the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce
  • vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate.
  • Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide). These may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound.
  • the amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35 by mass ratio. / 65 to 55/45.
  • olefin resin examples include a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like. Among these, ethylene and propylene are preferable.
  • olefinic resins for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); ethylene-vinyl acetate copolymer (EVA); ethylene-propylene- (5-ethylidene-2-norbornene), etc. Olefin terpolymers; and the like.
  • VLDPE ultra low density polyethylene
  • LDPE low density poly
  • the olefin resin may be a modified olefin resin further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
  • an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride.
  • unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride.
  • Glutaconic anhydride citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
  • unsaturated carboxylic acid or its anhydride may be used independently and may use 2 or more types together.
  • An acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification is a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin as a main chain.
  • a polymer is mentioned.
  • the number of carbon atoms of the alkyl group contained in the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
  • As said alkyl (meth) acrylate the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
  • Examples of the hydroxyl group-modified olefin resin obtained by modifying the olefin resin with a hydroxyl group include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
  • Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl.
  • Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • the resin composition (y) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
  • resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate.
  • Polyester resin such as phthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resin; polymethylpentene; polysulfone; polyetheretherketone; polyethersulfone; Sulfides; Polyimide resins such as polyetherimide and polyimide; Polyamide resins; Acrylic resins; Fluorine resins and the like.
  • the resin composition (y) contains a resin other than the acrylic urethane-based resin and the olefin-based resin.
  • a smaller ratio is preferable.
  • the content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by weight, still more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
  • solvent-free resin composition (y1) As one aspect of the resin composition (y), an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-described thermally expandable particles are blended, Examples thereof include a solventless resin composition (y1) that does not contain a solvent. In the solventless resin composition (y1), no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
  • an inflatable substrate layer (Y1) that easily forms irregularities on the surface when the expandable particles expand is formed.
  • the type, shape, and blending amount (content) of the expandable particles blended in the solventless resin composition (y1) are the same as those of the resin composition (y) and are as described above.
  • the mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
  • oligomer As said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight is 50000 or less among resin contained in the above-mentioned resin composition (y), but the above-mentioned urethane prepolymer (UP ) Is preferred.
  • a modified olefin resin having an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably 50 to 100% with respect to the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
  • Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Alicyclic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
  • the blending ratio of the oligomer and the energy beam polymerizable monomer is preferably 20/80 to 90/10, more preferably 30/70 to 85/15, still more preferably 35/65. ⁇ 80/20.
  • the solventless resin composition (y1) is further blended with a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyro Nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like can be mentioned. These photoinitiators may be used independently and may use 2 or more types together.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer.
  • the amount is preferably 0.02 to 3 parts by mass.
  • Non-expandable base material layer (Y2) Examples of the material for forming the non-expandable base material layer (Y2) constituting the base material (Y) include paper materials, resins, metals, and the like. Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfate paper, glassine paper, and the like.
  • the resin examples include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resin such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Tsu Motokei resin, and the like.
  • the metal examples include aluminum, tin, chromium, and
  • These forming materials may be composed of one kind or in combination of two or more kinds.
  • a non-intumescent substrate layer (Y2) using two or more kinds of forming materials in combination a paper film is laminated with a thermoplastic resin such as polyethylene, or a metal film is formed on the surface of a resin film or sheet containing a resin. And the like.
  • a method for forming the metal layer for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. And the like.
  • the non-expandable base layer (Y2) contains a resin
  • the non-intumescent base material layer (Y2) contains a resin
  • it may contain the above-mentioned base material additive that can be contained in the resin composition (y) together with the resin.
  • the non-intumescent substrate layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the above-described inflatable substrate layer (Y1), and the inflatable substrate layer (Y1) ) And the first pressure-sensitive adhesive layer (X1), there is no non-expandable base layer (Y2), and the non-expandable base layer (Y2) when the expandable particles expand.
  • the storage elastic modulus E ′ is preferably larger than the storage elastic modulus E ′ of the expandable base material layer (Y1) when the expandable particles expand.
  • the expandable base material layer is expanded by the expansion of the expandable particles.
  • the unevenness generated on the surface of (Y1) is transmitted to the first pressure-sensitive adhesive layer (X1) without interposing the non-intumescent base material layer (Y2), and on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1).
  • unevenness is likely to occur.
  • the storage elastic modulus E ′ of the non-expandable base material layer (Y2) is larger than the storage elastic modulus E ′ of the expandable base material layer (Y1).
  • the surface of the expandable substrate layer (Y1) on the non-expandable substrate layer (Y2) side is prevented from being uneven, and as a result, the first of the expandable substrate layer (Y1). Unevenness is likely to occur on the surface on the pressure-sensitive adhesive layer (X1) side, and therefore unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1).
  • the storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles are expanded is as described above from the viewpoint of easily forming irregularities on the adhesive surface of the first adhesive layer (X1).
  • the pressure is 1.0 MPa or more.
  • the storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles expand is preferably 1.0 to 5.0 ⁇ 10 2 MPa, more preferably 1.0.
  • the storage elastic modulus of the non-expandable base material layer (Y2) at 23 ° C. E ′ (23) is preferably 5.0 ⁇ 10 1 to 5.0 ⁇ 10 4 MPa, more preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 4 MPa, and even more preferably 5.0 ⁇ 10. 2 to 5.0 ⁇ 10 3 MPa.
  • a non-expandable base material layer (Y2) is a non-expandable layer judged based on the above-mentioned method.
  • the volume change rate (%) of the non-expandable base material layer (Y2) calculated from the above formula is less than 5% by volume, preferably less than 2% by volume, more preferably less than 1% by volume. More preferably, it is less than 0.1 volume%, More preferably, it is less than 0.01 volume%.
  • a non-expandable base material layer (Y2) may contain a thermally expansible particle.
  • a resin contained in the non-expandable base material layer (Y2) it is possible to adjust the volume change rate to the above range even if thermally expandable particles are included.
  • the specific content of the heat-expandable particles is usually less than 3% by mass, preferably less than 1% by mass, and more preferably relative to the total mass (100% by mass) of the non-expandable base material layer (Y2). It is less than 0.1% by mass, more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
  • the pressure-sensitive adhesive sheet used in one embodiment of the present invention has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2).
  • the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is stuck to a hard support
  • the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) is stuck to a semiconductor wafer.
  • the first pressure-sensitive adhesive layer (X1) has high adhesion to the hard support before the expansion of the expandable particles contained in the expandable base material layer (Y1), and the semiconductor wafer is sufficiently fixed to the hard support.
  • the property which can do is required.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 ⁇ 10 8 Pa or less, more preferably 5.0 ⁇ 10 7 Pa or less. More preferably, it is 1.0 ⁇ 10 7 Pa or less.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 ⁇ 10 4 Pa or more, more preferably 5.0 ⁇ 10 4 Pa or more. More preferably, it is 1.0 ⁇ 10 5 Pa or more.
  • the second pressure-sensitive adhesive layer (X2) is required not only to adhere to the semiconductor wafer but also to adhere to the semiconductor chip obtained by dividing the semiconductor wafer, and the semiconductor chip It is also necessary to suppress the phenomenon of excessive sinking into the agent layer (X2).
  • the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) at 23 ° C. is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 8 Pa, more preferably 5 0.0 ⁇ 10 4 to 5.0 ⁇ 10 7 Pa, more preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 7 Pa.
  • the storage shear elastic modulus G '(23) of the 1st adhesive layer (X1) and the 2nd adhesive layer (X2) means the value measured by the method as described in an Example. .
  • the thickness of the first pressure-sensitive adhesive layer (X1) is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • the thickness of the second pressure-sensitive adhesive layer (X2) is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) can be formed from a pressure-sensitive adhesive composition (x) containing a pressure-sensitive adhesive resin.
  • adhesive composition (x) may contain additives for adhesives, such as a crosslinking agent, a tackifier, a polymeric compound, a polymerization initiator, as needed.
  • additives for adhesives such as a crosslinking agent, a tackifier, a polymeric compound, a polymerization initiator, as needed.
  • any polymer may be used as long as the resin has adhesiveness and has a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and even more preferably 30,000, from the viewpoint of improving the adhesive strength. ⁇ 1 million.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used alone or in combination of two or more. Further, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
  • the adhesive resin used in one embodiment of the present invention may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
  • the adhesive force can be reduced by irradiating energy rays. Therefore, the obtained semiconductor chip can be easily picked up from the second pressure-sensitive adhesive layer (X2).
  • the polymerizable functional group include a (meth) acryloyl group and a vinyl group.
  • energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
  • the energy ray hardening-type adhesive composition containing the monomer or oligomer which has a polymerizable functional group may be sufficient.
  • These energy ray curable pressure-sensitive adhesive compositions preferably further contain a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
  • a photoinitiator the same thing as what is mix
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 100 parts by mass of the energy ray curable adhesive resin or 100 parts by mass of the monomer or oligomer having a polymerizable functional group.
  • the amount is 0.03 to 5 parts by mass, more preferably 0.05 to 2 parts by mass.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of developing an excellent adhesive force.
  • the first pressure-sensitive adhesive layer (X1) by forming the first pressure-sensitive adhesive layer (X1) from a pressure-sensitive adhesive composition containing an acrylic resin, it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer.
  • the content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50%, based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x). To 100% by mass, more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
  • the content of the adhesive resin is preferably 35 to 100% by mass, more preferably 50 to 100% by mass, still more preferably relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x). It is 60 to 98% by mass, more preferably 70 to 95% by mass.
  • the pressure-sensitive adhesive composition (x) when the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x) preferably further contains a crosslinking agent.
  • the said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge
  • crosslinking agent examples include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent. These crosslinking agents may be used independently and may use 2 or more types together. Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force and availability.
  • the content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
  • the mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
  • tackifiers include rosin resins, terpene resins, styrene resins, and copolymerization of C5 fractions such as pentene, isoprene, piperine, and 1,3-pentadiene produced by thermal decomposition of petroleum naphtha. And C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
  • the “softening point” of the tackifier means a value measured according to JIS K2531.
  • a tackifier may be used independently and may use together 2 or more types from which a softening point and a structure differ. And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifier belongs to the said range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, based on the total amount (100% by mass) of the active ingredients of the adhesive composition (x). More preferably, it is 1 to 40% by mass, and still more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (x) contains an additive for pressure-sensitive adhesives used for general pressure-sensitive adhesives in addition to the above-mentioned additives, as long as the effects of the present invention are not impaired. You may do it.
  • an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, antistatic agents, and the like. Is mentioned.
  • These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
  • each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ⁇ 10 parts by mass.
  • a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) are non-expandable adhesive layers. Therefore, the content of the expandable particles in the pressure-sensitive adhesive composition (x), which is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2), is preferably as small as possible.
  • the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x), or the total mass of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) ( 100% by mass), preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
  • a release material may be further laminated on the pressure-sensitive adhesive surfaces of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
  • a release sheet that has been subjected to a double-sided release process a release sheet that has been subjected to a single-sided release process, or the like is used. Examples include a release material coated on a release material substrate.
  • Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and kraft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; and olefins such as polypropylene resin and polyethylene resin.
  • a plastic film such as a resin film;
  • release agent examples include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
  • the thickness of the release material is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 25 to 170 ⁇ m, and still more preferably 35 to 80 ⁇ m.
  • the manufacturing method of the present invention is a method for manufacturing a semiconductor chip from a semiconductor wafer using the above-mentioned adhesive sheet, and includes the following steps (1) to (3).
  • Step (1) A step of sticking the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) to the hard support and sticking the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) to the surface of the semiconductor wafer.
  • Step (2) A step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
  • Step (3) The interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the expandable particles are expanded and the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. Separating with P.
  • the semiconductor chip manufacturing method of the present invention can be applied to the so-called stealth dicing method, and can also be applied to the tip dicing method.
  • the production method of one embodiment of the present invention preferably further includes the following step (4), and more preferably includes the following steps (4) to (6).
  • Step (4) After separation from the hard support in Step (3), the back surface opposite to the circuit surface of the plurality of semiconductor chips is formed with a base film, an adhesive layer and / or an adhesive layer. A step of removing the pressure-sensitive adhesive sheet from the semiconductor chip after being attached to the transfer tape.
  • Step (5) a step of stretching the transfer tape in the MD direction to widen the interval between the plurality of semiconductor chips.
  • Step (6) A step of separating a plurality of semiconductor chips from the transfer tape to obtain a semiconductor chip.
  • FIG. 2 is a schematic cross-sectional view in steps (1) to (3) of the semiconductor chip manufacturing method of the present invention
  • FIG. 3 is a schematic cross-sectional view in steps (4) to (6).
  • steps (1) to (4) will be described with reference to FIGS. 2 and 3 as appropriate.
  • FIG. 2A is a schematic cross-sectional view in step (1) showing a state in which the semiconductor wafer 60 is stuck to the hard support 50 using the adhesive sheet 1a shown in FIG.
  • the adhesive surface of the first adhesive layer (X1) of the adhesive sheet 1a is attached to the hard support 50, and the circuit of the semiconductor wafer 60 is formed on the adhesive surface of the second adhesive layer (X2). It is preferable to affix to the circuit surface 61 made.
  • FIG. 2A is a schematic cross-sectional view in step (1) showing a state in which the semiconductor wafer 60 is stuck to the hard support 50 using the adhesive sheet 1a shown in FIG.
  • the hard support is preferably attached to the entire pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet. Therefore, the hard support is preferably plate-shaped. Moreover, it is preferable that the area of the surface of the hard support body affixed with the 1st adhesive layer (X1) is more than the area of the adhesive surface of a 1st adhesive layer (X1), as shown in FIG.
  • Examples of the material constituting the hard support include, for example, metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, polyamideimides Examples thereof include resin materials such as resins; composite materials such as glass epoxy resins, and among these, SUS, glass, and silicon wafers are preferable.
  • Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
  • Examples of super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
  • the thickness of the hard support is preferably 20 ⁇ m or more and 50 mm or less, and more preferably 60 ⁇ m or more and 20 mm or less.
  • the Young's modulus of the hard support is preferably 1.0 GPa or more, more preferably 5.0 GPa or more, still more preferably 10 GPa or more, and still more preferably 20 GPa or more, from the viewpoint of improving chip crack prevention performance.
  • the Young's modulus of the hard support is a value measured at room temperature (25 ° C.) in accordance with the static Young's modulus test method of JIS Z2280: 1993.
  • the surface of the semiconductor wafer attached to the adhesive surface of the second adhesive layer (X2) is preferably a circuit surface on which a circuit is formed.
  • the surface of the semiconductor wafer opposite to the circuit surface (hereinafter also referred to as “back surface”) is ground in the next process to divide the semiconductor wafer into a plurality of semiconductor chips. Etc. are preferably flat surfaces which are not formed.
  • the semiconductor wafer used in the manufacturing method of the present invention is obtained by forming a circuit on one surface of a semiconductor wafer composed of silicon, SiC (silicon carbide), gallium, arsenic, or the like by an etching method, a lift-off method, or the like. Can do.
  • a process for forming a modified region inside the semiconductor wafer for application to the stealth dicing method, or a groove in the thickness direction from the surface of the semiconductor wafer for application to the previous dicing method is formed. It is necessary to perform processing. You may affix the circuit surface of the semiconductor wafer which performed these processes previously on the adhesion surface of a 2nd adhesive layer (X2). In addition, after the circuit surface of the semiconductor wafer that has not been subjected to these treatments is attached to the adhesive surface of the second pressure-sensitive adhesive layer (X2) in this step, these treatments may be performed from the back surface of the semiconductor wafer. .
  • the process of forming the modified region inside the semiconductor wafer for application to the stealth dicing method is performed after the circuit surface of the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2).
  • the semiconductor wafer is attached to the hard support via the adhesive sheet by applying the modified region forming process after the circuit surface of the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2).
  • the warp of the semiconductor wafer that can occur after the modified region is formed can be effectively suppressed.
  • the process for forming a modified region inside a semiconductor wafer is to use a laser with a laser beam incident oblique surface on the back side of the semiconductor wafer and a focusing point inside the workpiece.
  • a crack line extending from the modified region in the thickness direction of the semiconductor wafer is also formed.
  • the treatment for forming grooves in the thickness direction from the surface of the semiconductor wafer for application to the prior dicing method may be performed before or after the semiconductor wafer is bonded to the second pressure-sensitive adhesive layer (X2). May be.
  • a method of forming a groove in the thickness direction from the surface of the semiconductor wafer includes a method of performing dicing using a known wafer dicing apparatus or the like.
  • the step (1) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
  • Step (2) is a step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
  • a method for dividing the semiconductor wafer a method of grinding the back surface of the semiconductor wafer and dividing the semiconductor wafer into a plurality of semiconductor chips is preferable.
  • FIG. 2B is a schematic cross-sectional view when the back surface 62 of the semiconductor wafer 60 is ground and separated into a plurality of semiconductor chips.
  • a semiconductor wafer having a modified region is ground on a back surface on which a circuit opposite to the circuit surface is not formed, and the semiconductor wafer is divided into a plurality of semiconductor chips. It becomes the process of obtaining.
  • the modified region is an embrittled portion of the semiconductor wafer, so that the thickness of the semiconductor wafer is reduced by grinding the back surface of the semiconductor wafer, and the grinding force is applied to the semiconductor wafer. Is a region that becomes a starting point of being broken and separated into semiconductor chips. As a result, the semiconductor wafer is divided along the modified region and the crack line and separated into a plurality of semiconductor chips.
  • this step is performed by grinding a semiconductor wafer having a groove formed in the thickness direction in advance on a back surface on which a circuit opposite to the circuit surface is not formed, thereby dividing the semiconductor wafer.
  • the groove formed in the semiconductor wafer is a groove having a depth shallower than the thickness of the semiconductor wafer.
  • the semiconductor wafer is ground and thinned to at least the position reaching the bottom of the groove, so that the groove becomes a notch penetrating the wafer, and the semiconductor wafer is divided into a plurality of semiconductor chips. It is separated.
  • the first pressure-sensitive adhesive layer (X1) to be attached to the hard support does not need to contain expandable particles, and thus the semiconductor wafer is sufficiently fixed to the hard support.
  • back surface grinding for dividing the semiconductor wafer can be performed.
  • adverse effects such as chipping of the end of the obtained semiconductor chip can be effectively suppressed, and the yield in manufacturing the semiconductor chip can be improved.
  • the step (2) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
  • Step (3) the expandable particles are expanded, and the interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered.
  • FIG. 2C shows a state where the expandable particles in the expandable base material layer (Y1) are expanded and separated at the interface P between the hard support 50 and the first pressure-sensitive adhesive layer (X1). .
  • FIG. 2 (c) in this step, when the expandable particles are expanded, the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are stuck on the interface P from the hard support 50.
  • the method for expanding the expandable particles is appropriately selected according to the type of the expandable particles.
  • heat treatment is performed at a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles to expand the heat-expandable particles.
  • the “temperature higher than the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is more preferable that the temperature is not less than “temperature (t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”.
  • the pressure-sensitive adhesive sheet having the expandable base material layer (Y1) containing the expandable particles By forming irregularities on the adhesive surface of (X1), it is adjusted so that it can be separated at the interface P between the hard support and the first adhesive layer (X1). Therefore, it is possible to suppress the contamination of the hard support such that a part of the first pressure-sensitive adhesive layer (X1) remains on the surface of the hard support after the separation, and the washing process of the hard support can be omitted. Can be improved.
  • step (4) after separating from the hard support in the step (3), the back surface opposite to the circuit surface of the plurality of semiconductor chips, the base film, the pressure-sensitive adhesive layer and / or the adhesive layer are provided.
  • the adhesive sheet is removed from the semiconductor chip after being attached to the transfer tape.
  • FIG. 3A shows a state where the adhesive sheet 1 a is removed from the semiconductor chip 70 after the back surfaces 72 of the plurality of semiconductor chips 70 are attached to the transfer tape 80.
  • the second pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet 1a is a layer formed from an energy ray-curable pressure-sensitive adhesive composition
  • the second pressure-sensitive adhesive layer is irradiated with energy rays.
  • the adhesive strength of (X2) may be reduced and the adhesive sheet 1a may be removed.
  • the transfer tape 80 is designed to be stretched by stretching in the MD direction, and is an adhesive tape designed to widen the interval between the plurality of semiconductor chips 70.
  • the transfer tape used in one embodiment of the present invention has a base film and a pressure-sensitive adhesive layer and / or an adhesive layer. Specific configurations include, for example, the following (1) to (3) ). (1) A transfer tape obtained by laminating a base film and an adhesive layer in this order. (2) A transfer tape obtained by laminating a base film and an adhesive layer in this order. (3) A transfer tape formed by laminating a base film, a pressure-sensitive adhesive layer, and an adhesive layer in this order.
  • FIG. 3 the case where the transfer tape of the aspect of the above (1) is used is shown.
  • the adhesive layer 82 of the transfer tape 80 formed by laminating the base film 81 and the adhesive layer 82 in this order The state which stuck the back surface 72 of the several semiconductor chip 70 is shown.
  • the base film constituting the transfer tape for example, polyvinyl chloride resin, polyester resin (polyethylene terephthalate, etc.), acrylic resin, polycarbonate resin, polyethylene resin, polypropylene resin, acrylonitrile / butadiene / styrene resin, polyimide resin, polyurethane resin And a resin film containing one or more kinds of resins selected from polystyrene resins and the like.
  • the base film constituting the transfer tape preferably contains a thermoplastic elastomer, a rubber-based material, etc., and more preferably contains a thermoplastic elastomer.
  • thermoplastic elastomer examples include urethane elastomers, olefin elastomers, vinyl chloride elastomers, polyester elastomers, styrene elastomers, acrylic elastomers, and amide elastomers.
  • the base film may have a single layer configuration or a multilayer configuration in which two or more layers are laminated.
  • the base film may further contain various additives such as pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like.
  • the thickness of the base film constituting the transfer tape is preferably 20 to 300 ⁇ m, more preferably 30 to 250 ⁇ m, still more preferably 40 to 200 ⁇ m.
  • the pressure-sensitive adhesive layer constituting the transfer tape is a layer formed from the pressure-sensitive adhesive composition (x) which is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
  • the energy ray curable pressure-sensitive adhesive layer formed from the above-mentioned energy ray curable pressure-sensitive adhesive composition which is suitable as a material for forming the second pressure-sensitive adhesive layer (X2), is preferable.
  • the pressure-sensitive adhesive layer constituting the transfer tape is an energy ray curable pressure-sensitive adhesive layer
  • the workability of the pickup step in step (6) is improved.
  • the energy rays when removing the pressure sensitive adhesive sheet in step (4) are such that the adhesive strength of the energy ray curable pressure sensitive adhesive layer of the transfer tape does not decrease. It is preferable to irradiate from the adhesive sheet side.
  • the thickness of the pressure-sensitive adhesive layer constituting the transfer tape is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, still more preferably 5 to 40 ⁇ m.
  • the adhesive layer constituting the transfer tape is preferably a layer formed from an adhesive composition containing a binder resin and a thermosetting component.
  • the binder resin include acrylic resins, polyester resins, urethane resins, acrylic urethane resins, silicone resins, rubber polymers, phenoxy resins, and the like, and acrylic resins are preferable.
  • the thermosetting component an epoxy resin and a thermosetting agent are preferably included.
  • the thickness of the adhesive layer constituting the transfer tape is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, still more preferably 5 to 50 ⁇ m.
  • Step (5) is a step of extending the transfer tape in the MD direction and widening the interval between the plurality of semiconductor chips. As shown in FIG. 3B, the transfer tape 80 is stretched in the MD direction to widen the interval between the plurality of semiconductor chips 70, so that the pickup property in the next process is improved.
  • Step (6) is a step of obtaining a semiconductor chip by separating a plurality of semiconductor chips from the transfer tape.
  • FIG. 3C shows a state in which a plurality of semiconductor chips 70 are obtained by picking up in this step using the transfer tape of the aspect (1).
  • the transfer tape used has an energy ray-curable pressure-sensitive adhesive layer, the adhesive force is reduced by irradiating the energy ray, and the pickup property can be improved. In this case, it is preferable to irradiate the energy rays from the base film side.
  • the adhesive layer remains firmly adhered to the back surface of the semiconductor chip at the time of picking up in this step, and the semiconductor chip with the adhesive layer is removed. And the bonding process can be omitted.
  • the formed heat-expandable base material layer (Y1) was 5 mm long ⁇ 30 mm wide ⁇ 200 ⁇ m thick, and the test piece was prepared by removing the release material.
  • a dynamic viscoelasticity measuring device (TA Instruments, product name “DMAQ800”), test start temperature 0 ° C., test end temperature 300 ° C., temperature increase rate 3 ° C./min, frequency 1 Hz, amplitude 20 ⁇ m Under the conditions, the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
  • ⁇ Storage shear modulus G ′ of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2)> A sample prepared by cutting the formed first pressure-sensitive adhesive layer (X1) and second pressure-sensitive adhesive layer (X2) into a circle having a diameter of 8 mm, removing the release material, and superposing them to obtain a thickness of 3 mm It was.
  • a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
  • ⁇ Probe tack value> A base material layer to be measured was cut into a square with a side of 10 mm, and then allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity) was used as a test sample. Using a tacking tester (manufactured by Nippon Special Instrument Co., Ltd., product name “NTS-4800”) in an environment of 23 ° C. and 50% RH (relative humidity), the probe tack value on the surface of the test sample was measured according to JIS. It measured based on Z0237: 1991.
  • a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is moved at a speed of 10 mm / sec. The force required to separate from the surface was measured, and the obtained value was used as the probe tack value of the test sample.
  • Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid 86.0 / 8.0 / 5.0 / 1.
  • 1st adhesive layer (X1) To 100 mass parts of solid content of the said acrylic copolymer (i) which is adhesive resin, said isocyanate type crosslinking agent (i) 5.0 mass parts ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass. And the said adhesive composition is apply
  • the 1st adhesive layer (X1) which is an agent layer was formed.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 ⁇ 10 5 Pa.
  • 2nd adhesive layer (X2) To 100 mass parts of solid content of the said acrylic copolymer (ii) which is adhesive resin, 0.8 mass part of said isocyanate type crosslinking agent (i) ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare an adhesive composition having a solid content concentration (active ingredient concentration) of 25 mass%. And the said adhesive composition is apply
  • the adhesive force of the 2nd adhesive layer (X2) measured based on the said method was 1.0 N / 25mm. Since it was clear that the second pressure-sensitive adhesive layer (X2) and the first pressure-sensitive adhesive layer (X1) had a probe tack value of 50 mN / 5 mm ⁇ or more, measurement of the probe tack value was omitted.
  • PET polyethylene terephthalate
  • the resin composition is applied to the surface of the release agent layer of the light release film to form a coating film, and the coating film is formed into 100. Drying was performed at ° C for 120 seconds to similarly form a 50 ⁇ m thick expandable base material layer (Y1).
  • the storage elastic modulus and probe tack value in each temperature of an expansible base material layer (Y1) were measured. The measurement results were as follows. -Storage elastic modulus E '(23) at 23 ° C.
  • peel force (F 0) and (F 1) measured in accordance with the following methods.
  • peeling is performed at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet at a pulling speed of 300 mm / min according to JIS Z0237: 2000 by a 180 ° peeling method.
  • the peeling force measured at the time of the measurement was defined as “peeling force (F 0 )”.
  • peel force (F 1 ) Remove the heavy release film of the prepared pressure-sensitive adhesive sheet, stick the exposed first pressure-sensitive adhesive layer (X1) to a silicon wafer, heat at 240 ° C. for 3 minutes, and heat in the expandable base material layer (Y1) The expandable particles were expanded. Thereafter, in the same manner as the measurement of the peel force (F 0 ) described above, the peel force measured when peeled at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet under the above conditions. was defined as “peeling force (F 1 )”.
  • the adhesive sheet (I) is completely separated from the silicon wafer when the adhesive sheet is fixed with the upper chuck of the universal tensile testing machine and cannot be fixed. The measurement was terminated, and the peeling force (F 1 ) at that time was set to “0 mN / 25 mm”.
  • Example 1 ⁇ Step (1)> The pressure-sensitive adhesive sheet produced in Production Example 2 was cut into a square size of 230 mm ⁇ 230 mm. Using a tape grinder for back grind (manufactured by Lintec Corporation, device name “RAD-3510F / 12”), the heavy release film of the cut adhesive sheet was peeled off, and the first adhesive layer (X1) exposed was exposed. The adhesive surface was attached to a hard support (material: silicon, thickness: 725 ⁇ m, Young's modulus: 30 GPa).
  • a hard support material: silicon, thickness: 725 ⁇ m, Young's modulus: 30 GPa
  • the light release film is also peeled off, and a semiconductor wafer having a circuit surface with a circuit formed on one surface on the adhesive surface of the exposed second pressure-sensitive adhesive layer (X2) (diameter 200 mm, thickness 725 ⁇ m) The circuit surface of the disk shape was attached. Then, using a stealth laser irradiation device (manufactured by Tokyo Seimitsu Co., Ltd., device name “ML300PlusWH”), stealth laser irradiation is performed from the back surface opposite to the circuit surface of the semiconductor wafer, and a modified region is formed inside the semiconductor wafer. Formed.
  • a stealth laser irradiation device manufactured by Tokyo Seimitsu Co., Ltd., device name “ML300PlusWH”
  • Step (2)> Using a polish grinder (manufactured by Tokyo Seimitsu Co., Ltd., device name “PG3000RM”), the back surface of the semiconductor wafer where the circuit is not formed is ground while being exposed to ultrapure water, and the semiconductor wafer is divided. Chips were separated into individual semiconductor chips with a thickness of 20 ⁇ m.
  • the transfer tape on which a plurality of semiconductor chips were attached was installed in an expanding apparatus capable of biaxial stretching.
  • the expanding device has an X-axis direction (positive direction is + X-axis direction, negative direction is -X-axis direction) and Y-axis direction (positive direction is + Y-axis direction and negative direction is -Y).
  • holding means for extending in each direction that is, + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction).
  • the MD direction of the transfer tape is aligned with the X-axis or Y-axis direction, installed in the expanding device, and each side of the transfer tape is gripped by the holding means.
  • the space between the plurality of semiconductor chips attached to the transfer tape was widened.
  • -Number of holding means 5 per side-Stretching speed: 5 mm / sec -Stretching distance: Each side was stretched by 60 mm.
  • UV irradiation device product name “RAD-2000” manufactured by Lintec Corporation
  • UV light is irradiated from the base film side of the transfer tape (light quantity: 500 mJ / cm 2 , illuminance: 220 mW / cm 2 , irradiation speed) : 15 mm / s) to reduce the adhesive strength of the adhesive layer of the transfer tape.
  • the transfer tape light quantity: 500 mJ / cm 2 , illuminance: 220 mW / cm 2 , irradiation speed

Abstract

Provided is a method of manufacturing a semiconductor chip that comprises the following steps (1) to (3) using an adhesive sheet which includes a base (Y) having an expandable base layer (Y1) containing expandable particles and a non-expandable base layer (Y2), and on respective sides of the base (Y), a first adhesive layer (X1) in which protrusions may form in the adhesive surface , due to the expansion of the expandable particles, and a second adhesive layer (X2). ∙ Step (1): A step of affixing the first adhesive layer (X1) to a hard support and affixing the second adhesive layer (X2) to the surface of a semiconductor wafer. ∙ Step (2): A step of obtaining a plurality of semiconductor chips. ∙ Step (3): A step of expanding the expandable particles and separating the hard support from the first adhesive layer (X1) at an interface P.

Description

半導体チップの製造方法Manufacturing method of semiconductor chip
 本発明は、半導体チップの製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor chip.
 半導体チップの製造工程では、半導体ウエハを粘着シートを用いて支持体に貼付した状態で、様々な加工が施されることが多い。
 この際に使用される粘着シートは、加工時には半導体ウエハを十分に固定することができ、加工後には容易に支持体から剥離することができるといった性質が求められる。
 このような要求に対応し得る粘着シートとして、熱膨張性粒子を含有する熱膨張性粘着剤層を有する熱剥離性粘着シートが知られている。
In a semiconductor chip manufacturing process, various processes are often performed in a state where a semiconductor wafer is attached to a support using an adhesive sheet.
The pressure-sensitive adhesive sheet used at this time is required to have a property that the semiconductor wafer can be sufficiently fixed at the time of processing and can be easily peeled off from the support after the processing.
A heat-peelable pressure-sensitive adhesive sheet having a heat-expandable pressure-sensitive adhesive layer containing heat-expandable particles is known as a pressure-sensitive adhesive sheet that can meet such requirements.
 例えば、特許文献1には、基材の片面に熱膨張性微小球を含む熱膨張性粘着層、他面に粘着層を設けた熱剥離性両面粘着シートを用いて、熱膨張性粘着層を支持体に貼付し、他方の粘着層にウエハ等の被着体を貼り合せて、被着体を加工する方法について開示されている。
 特許文献1によれば、上述の熱剥離性両面粘着シートを用いることで、被着体の加工時には被着体表面の平滑性を保持でき、加工後には、当該両面粘着シートを剥離する際の応力を小さくでき、被着体を損傷させることなく容易に剥離することができる、とされている。
For example, in Patent Document 1, a thermally expandable adhesive layer is prepared by using a thermally expandable adhesive layer including thermally expandable microspheres on one side of a substrate and a heat-peelable double-sided adhesive sheet provided with an adhesive layer on the other side. A method is disclosed in which an adherend such as a wafer is adhered to a support and an adherend such as a wafer is bonded to the other adhesive layer to process the adherend.
According to Patent Document 1, by using the above-described heat-peelable double-sided pressure-sensitive adhesive sheet, the smoothness of the adherend surface can be maintained during processing of the adherend, and after processing, the double-sided pressure-sensitive adhesive sheet is peeled off. The stress can be reduced, and it can be easily peeled without damaging the adherend.
特開2003-292916号公報JP 2003-292916 A
 特許文献1に記載の被着体の加工方法では、上述の両面粘着シートの熱膨張性粘着層を支持体に貼付し、他方の粘着剤層に被着体を貼り合せて、当該被着体の加工が施される。
 しかしながら、特許文献1の加工方法で用いている両面粘着シートが有する熱膨張性粘着層は、熱膨張性微小球を含有するため、熱膨張性微小球を含有しない粘着層に比べて、支持体との粘着力の低下が懸念される。
 支持体との粘着力の低下は、被着体が支持体に十分固定されていないことに起因した様々な弊害が生じる要因となる。例えば、先ダイシング法やステルスダイシング法といった、ウエハの裏面を研削してチップに分断するチップの加工方法では、支持体に十分固定されていないことで、得られるチップの端部が欠ける等の弊害が生じ得る。
In the method for processing an adherend described in Patent Document 1, the thermally expandable adhesive layer of the above double-sided pressure-sensitive adhesive sheet is attached to a support, and the adherend is attached to the other adhesive layer. Is processed.
However, since the heat-expandable pressure-sensitive adhesive layer included in the double-sided pressure-sensitive adhesive sheet used in the processing method of Patent Document 1 contains heat-expandable microspheres, the support is more suitable than a pressure-sensitive adhesive layer that does not contain heat-expandable microspheres. There is concern about a decrease in adhesive strength.
The decrease in the adhesive strength with the support causes various adverse effects due to the fact that the adherend is not sufficiently fixed to the support. For example, chip processing methods such as the tip dicing method and stealth dicing method, which grind the back surface of the wafer and divide it into chips, are not sufficiently fixed to the support, and the resulting chip has a bad edge. Can occur.
 また、特許文献1では、両面粘着シートを支持体から剥離する際、加熱処理によって、熱膨張性微小球を膨張させて、熱膨張性粘着層の表面に凹凸を形成して、支持体との接触面積を低減することで、粘着力を低下させて剥離している。
 しかしながら、上記の剥離方法では、支持体から両面粘着シートを剥離する際に、多少の粘着力が残存することがあるため、剥離し難い場合がある。また、剥離後に、熱膨張性粘着層の一部が、支持体の表面に残存する場合があり、支持体の洗浄工程を要する必要があり、生産性の低下の要因となる。
 なお、支持体への汚染を防止するために、熱膨張性粘着層を構成する粘着性樹脂として、低粘着性の樹脂を選択することも考えられるが、その場合には、上述のとおり、被着体の加工時に、被着体が被着体に十分に固定されないといった弊害が生じ得る。
Moreover, in patent document 1, when peeling a double-sided adhesive sheet from a support body, a thermal expansion microsphere is expanded by heat processing, an unevenness | corrugation is formed in the surface of a thermally expandable adhesion layer, and a support body is used. By reducing the contact area, the adhesive force is reduced and peeling occurs.
However, in the above peeling method, when peeling the double-sided pressure-sensitive adhesive sheet from the support, some adhesive force may remain, so that peeling may be difficult. In addition, a part of the heat-expandable adhesive layer may remain on the surface of the support after peeling, which requires a cleaning process for the support, which causes a decrease in productivity.
In order to prevent contamination of the support, it may be possible to select a low-adhesive resin as the adhesive resin constituting the thermally expandable adhesive layer. At the time of processing the adherend, there may be a problem that the adherend is not sufficiently fixed to the adherend.
 本発明は、半導体チップの端部の欠け等を抑制して歩留まりを向上させつつ、支持体と貼付した粘着シートとを分離する際には、一括して容易に分離できると共に、分離後の支持体の汚染を抑制し、支持体の洗浄工程を省略可能とする、半導体チップの製造方法を提供することを目的とする。 The present invention improves the yield by suppressing chipping of the end of the semiconductor chip, etc., and when separating the support and the attached adhesive sheet, it can be easily separated at once and the support after separation. An object of the present invention is to provide a method for manufacturing a semiconductor chip, which can suppress contamination of the body and can eliminate the step of cleaning the support.
 本発明者らは、半導体ウエハを分断して半導体チップを製造する過程において、膨張性粒子を含む膨張性基材層と非膨張性基材層とを少なくとも備える基材の両面にそれぞれ第1粘着剤層及び第2粘着剤層を有する粘着シートを用いることで、上記課題を解決し得ることを見い出した。 In the process of manufacturing a semiconductor chip by dividing a semiconductor wafer, the present inventors respectively provide a first adhesive on both surfaces of a base material including at least an inflatable base material layer containing inflatable particles and a non-inflatable base material layer. It has been found that the above-mentioned problems can be solved by using an adhesive sheet having an adhesive layer and a second adhesive layer.
 すなわち、本発明は、下記[1]~[11]に関する。
[1]膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、
 基材(Y)の両面に、それぞれ第1粘着剤層(X1)及び第2粘着剤層(X2)とを有し、
 前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得る、粘着シートを用いた、半導体ウエハから半導体チップを製造する方法であって、
 下記工程(1)~(3)を有する、半導体チップの製造方法。
・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面を、半導体ウエハの表面に貼付する工程。
・工程(2):前記半導体ウエハを分断して、複数の半導体チップを得る工程。
・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上の複数の半導体チップを貼付したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
[2]前記粘着シートが、前記基材(Y)の前記膨張性基材層(Y1)側に第1粘着剤層(X1)を有し、該基材(Y)の前記非膨張性基材層(Y2)側に前記第2粘着剤層(X2)を有する、上記[1]に記載の半導体チップの製造方法。
[3]前記基材(Y)が、前記膨張性基材層(Y1)と、前記膨張性基材層(Y1)の前記第1粘着層(X1)側に設けられた非膨張性基材層(Y2-1)と、前記膨張性基材層(Y1)の前記第2粘着層(X2)側に設けられた非膨張性基材層(Y2-2)とを有しており、
 前記膨張性粒子が膨張する際における非膨張性基材層(Y2-1)の貯蔵弾性率E’が、前記膨張性粒子が膨張する際における非膨張性基材層(Y2-2)の貯蔵弾性率E’よりも低い、上記[1]に記載の半導体チップの製造方法。
[4]前記非膨張性基材層(Y2)は、前記膨張性基材層(Y1)よりも前記第1粘着剤層(X1)から離れた位置に存在しており、前記膨張性基材層(Y1)と前記第1粘着剤層(X1)との間には前記非膨張性基材層(Y2)は存在しておらず、
 前記膨張性粒子が膨張する際における前記非膨張性基材層(Y2)の貯蔵弾性率E’は、前記膨張性粒子が膨張する際における前記膨張性基材層(Y1)の貯蔵弾性率E’よりも大きい、上記[1]又は[2]に記載の半導体チップの製造方法。
[5]工程(3)において、前記膨張性粒子を膨張させた際、前記粘着シートを構成する各層の層間では分離しない、上記[1]~[4]のいずれかに記載の半導体チップの製造方法。
[6]さらに下記工程(4)を有する、上記[1]~[5]のいずれかに記載の半導体チップの製造方法。
・工程(4):工程(3)で前記硬質支持体から分離後、複数の半導体チップの回路面とは反対側の裏面を、基材フィルムと、粘着剤層及び/又は接着剤層とを有する転写テープに貼付した後、前記粘着シートを半導体チップから除去する工程。
[7]前記膨張性粒子が、膨張開始温度(t)が60~270℃の熱膨張性粒子である、上記[1]~[6]のいずれか一項に記載の半導体チップの製造方法。
[8]前記熱膨張性粒子の膨張を、熱膨張性粒子の「膨張開始温度(t)+10℃」~「膨張開始温度(t)+60℃」間で加熱処理により行う、上記[7]に記載の半導体チップの製造方法。
[9]前記膨張性基材層(Y1)が前記熱膨張性粒子を含む熱膨張性基材層(Y1-1)であり、23℃における熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)が、1.0×10Pa以上である、上記[7]又は[8]に記載の半導体チップの製造方法。
[10]前記非膨張性基材層(Y2)の体積変化率(%)が2体積%未満である、上記[1]~[9]のいずれかに記載の半導体チップの製造方法。
[11]工程(2)が、改質領域を有する半導体ウエハを、回路面とは反対側の回路が形成されていない裏面を研削し、当該半導体ウエハを分断して、複数の半導体チップを得る工程である、上記[1]~[10]のいずれか一項に記載の半導体チップの製造方法。
That is, the present invention relates to the following [1] to [11].
[1] A substrate (Y) comprising at least an expandable substrate layer (Y1) containing expandable particles and a non-expandable substrate layer (Y2);
On both surfaces of the substrate (Y), each has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2),
A method for producing a semiconductor chip from a semiconductor wafer using a pressure-sensitive adhesive sheet, in which unevenness may occur on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) due to expansion of the expandable particles,
A method for producing a semiconductor chip, comprising the following steps (1) to (3).
Step (1): A step of sticking the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) to the hard support and sticking the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) to the surface of the semiconductor wafer.
Step (2): A step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
Step (3): The interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the expandable particles are expanded and the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. Separating with P.
[2] The pressure-sensitive adhesive sheet has a first pressure-sensitive adhesive layer (X1) on the base material (Y) on the side of the expandable base material layer (Y1), and the base material (Y) has the non-expandable group. The method for producing a semiconductor chip according to [1], wherein the second pressure-sensitive adhesive layer (X2) is provided on the material layer (Y2) side.
[3] The base material (Y) is a non-expandable base material provided on the expandable base material layer (Y1) and the first adhesive layer (X1) side of the expandable base material layer (Y1). A layer (Y2-1) and a non-intumescent substrate layer (Y2-2) provided on the second adhesive layer (X2) side of the expandable substrate layer (Y1),
The storage elastic modulus E ′ of the non-expandable base layer (Y2-1) when the expandable particles expand is determined by the storage modulus of the non-expandable base layer (Y2-2) when the expandable particles expand. The method for producing a semiconductor chip according to the above [1], which is lower than the elastic modulus E ′.
[4] The non-expandable base material layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the expandable base material layer (Y1). The non-intumescent substrate layer (Y2) does not exist between the layer (Y1) and the first pressure-sensitive adhesive layer (X1),
The storage elastic modulus E ′ of the non-expandable base layer (Y2) when the expandable particles expand is the storage elastic modulus E of the expandable base layer (Y1) when the expandable particles expand. The method for producing a semiconductor chip according to [1] or [2], which is larger than '.
[5] Manufacture of a semiconductor chip according to any one of the above [1] to [4], wherein when the expandable particles are expanded in step (3), they are not separated between the layers constituting the pressure-sensitive adhesive sheet. Method.
[6] The method for manufacturing a semiconductor chip according to any one of [1] to [5], further comprising the following step (4).
Step (4): After separation from the hard support in Step (3), the back surface opposite to the circuit surface of the plurality of semiconductor chips is formed with a base film, an adhesive layer and / or an adhesive layer. A step of removing the pressure-sensitive adhesive sheet from the semiconductor chip after being attached to the transfer tape.
[7] The method for manufacturing a semiconductor chip according to any one of [1] to [6], wherein the expandable particles are thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
[8] In the above [7], the thermally expandable particles are expanded by a heat treatment between “expansion start temperature (t) + 10 ° C.” to “expansion start temperature (t) + 60 ° C.” The manufacturing method of the semiconductor chip of description.
[9] Storage of the thermally expandable substrate layer (Y1-1) at 23 ° C., wherein the expandable substrate layer (Y1) is a thermally expandable substrate layer (Y1-1) containing the thermally expandable particles. The method for producing a semiconductor chip according to [7] or [8], wherein the elastic modulus E ′ (23) is 1.0 × 10 6 Pa or more.
[10] The method for manufacturing a semiconductor chip according to any one of the above [1] to [9], wherein the volume change rate (%) of the non-expandable base material layer (Y2) is less than 2% by volume.
[11] In the step (2), the semiconductor wafer having the modified region is ground on the back surface on which the circuit opposite to the circuit surface is not formed, and the semiconductor wafer is divided to obtain a plurality of semiconductor chips. The method for manufacturing a semiconductor chip according to any one of [1] to [10], which is a process.
 本発明の半導体チップの製造方法によれば、得られる半導体チップの端部の欠け等を抑制して歩留まりを向上させつつ、支持体と貼付した粘着シートとを分離する際には、一括して容易に分離できると共に、分離後の支持体の汚染を抑制し、支持体の洗浄工程を省略できるため、生産性を向上させ得る。 According to the method for manufacturing a semiconductor chip of the present invention, when separating the support and the attached adhesive sheet while improving the yield by suppressing chipping or the like of the end portion of the obtained semiconductor chip, all at once. Since it can be easily separated, contamination of the support after separation can be suppressed, and the washing step of the support can be omitted, so that productivity can be improved.
本発明の半導体チップの製造方法で用いる粘着シートの構成の一例を示す、当該粘着シートの断面模式図である。It is a cross-sectional schematic diagram of the said adhesive sheet which shows an example of a structure of the adhesive sheet used with the manufacturing method of the semiconductor chip of this invention. 本発明の半導体チップの製造方法の工程(1)~(3)における断面模式図である。FIG. 6 is a schematic cross-sectional view in steps (1) to (3) of the method for manufacturing a semiconductor chip of the present invention. 本発明の半導体チップの製造方法の工程(4)~(6)における断面模式図である。FIG. 6 is a schematic cross-sectional view in steps (4) to (6) of the method for manufacturing a semiconductor chip of the present invention.
 本明細書において、対象となる層が「膨張性層」又は「非膨張性層」のどちらであるかの判断は、膨張させるための処理を3分間行った後、当該処理の前後での下記式から算出される体積変化率に基づき判断する。
・体積変化率(%)={(処理後の前記層の体積-処理前の前記層の体積)/処理前の前記層の体積}×100
 つまり、体積抵抗率が5体積%以上であれば、当該層は「膨張性層」であると判断し、当該体積変化率が5体積%未満であれば、当該層は「非膨張性層」であると判断する。
 なお、「膨張させるための処理」としては、例えば、膨張性粒子が熱膨張性粒子である場合には、当該熱膨張性粒子の膨張開始温度(t)で3分間の加熱処理を行えばよい。
In this specification, the determination of whether the target layer is an “expandable layer” or “non-expandable layer” is performed after 3 minutes of processing for expansion, and before and after the processing. Judgment is made based on the volume change rate calculated from the equation.
Volume change rate (%) = {(volume of the layer after treatment−volume of the layer before treatment) / volume of the layer before treatment} × 100
That is, if the volume resistivity is 5% by volume or more, it is determined that the layer is an “expandable layer”. If the volume change rate is less than 5% by volume, the layer is a “non-expandable layer”. It is judged that.
As the “treatment for expanding”, for example, when the expandable particles are thermally expandable particles, a heat treatment for 3 minutes may be performed at the expansion start temperature (t) of the thermally expandable particles. .
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、希釈溶媒を除いた成分を指す。
 また、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
In the present specification, the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
Further, the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in the examples.
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 また、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
In the present specification, for example, “(meth) acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
Moreover, about the preferable numerical range (for example, range, such as content), the lower limit value and upper limit value which were described in steps can be combined independently, respectively. For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also
〔本発明の半導体チップの製造方法〕
 本発明の半導体チップの製造方法(以下、単に「本発明の製造方法」ともいう)は、膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、基材(Y)の両面に、それぞれ第1粘着剤層(X1)及び第2粘着剤層(X2)とを有し、前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得る、粘着シートを用いた、半導体ウエハから半導体チップを製造する方法である。
 そして、本発明の製造方法は、下記工程(1)~(3)を有する。
・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面を、半導体ウエハの表面に貼付する工程。
・工程(2):前記半導体ウエハを分断して、複数の半導体チップを得る工程。
・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上の複数の半導体チップを貼付したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
[Method of Manufacturing Semiconductor Chip of the Present Invention]
The semiconductor chip manufacturing method of the present invention (hereinafter also simply referred to as “the manufacturing method of the present invention”) includes at least an expandable base layer (Y1) and non-expandable base layer (Y2) containing expandable particles. The first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are provided on both sides of the base material (Y) and the base material (Y), respectively. This is a method for producing a semiconductor chip from a semiconductor wafer using a pressure-sensitive adhesive sheet in which irregularities can occur on the pressure-sensitive adhesive surface of the agent layer (X1).
The production method of the present invention includes the following steps (1) to (3).
Step (1): A step of sticking the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) to the hard support and sticking the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) to the surface of the semiconductor wafer.
Step (2): A step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
Step (3): The interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the expandable particles are expanded and the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. Separating with P.
〔本発明の製造方法で用いる粘着シートの構成〕
 図1は、本発明の製造方法で用いる粘着シートの構成の一例を示す、当該粘着シートの断面模式図である。
 本発明の製造方法で用いる粘着シートは、図1(a)に示すような、膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、基材(Y)の両面に、それぞれ第1粘着剤層(X1)及び第2粘着剤層(X2)とを有する粘着シート1aが挙げられる。
[Configuration of pressure-sensitive adhesive sheet used in the production method of the present invention]
FIG. 1 is a schematic cross-sectional view of the pressure-sensitive adhesive sheet showing an example of the configuration of the pressure-sensitive adhesive sheet used in the production method of the present invention.
The pressure-sensitive adhesive sheet used in the production method of the present invention includes a base (Y) having at least an expandable base layer (Y1) and a non-expandable base layer (Y2) as shown in FIG. The adhesive sheet 1a which has a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) on both surfaces of a material (Y), respectively is mentioned.
 図1(a)に示す粘着シート1aが有する基材(Y)は、膨張性基材層(Y1)と非膨張性基材層(Y2)とが直接積層した構成を有するものであるが、基材(Y)は、これ以外の構成であってもよい。
 例えば、図1(b)に示す粘着シート1bが有する基材(Y)のように、膨張性基材層(Y1)の両面に第1非熱膨張性基材層(Y2-1)及び第2非熱膨張性基材層(Y2-2)を設けた構成であってもよい。
Although the base material (Y) which the adhesive sheet 1a shown to Fig.1 (a) has has the structure which the expandable base material layer (Y1) and the non-expandable base material layer (Y2) laminated directly, The substrate (Y) may have a configuration other than this.
For example, like the base material (Y) of the pressure-sensitive adhesive sheet 1b shown in FIG. 1 (b), the first non-thermally expandable base material layer (Y2-1) and the 2 A configuration in which a non-thermally expandable base material layer (Y2-2) is provided may be employed.
 なお、本発明の一態様で用いる粘着シートにおいて、第1粘着剤層(X1)の粘着表面及び第2粘着剤層(X2)の粘着表面には、さらに剥離材を積層した構成としてもよい。
 当該構成において、第1粘着剤層(X1)及び第2粘着剤層(X2)の一方の粘着表面に、両面に剥離処理が施された剥離材が積層したものを、ロール状に巻いた構成としてもよい。
 これらの剥離材は、第1粘着剤層(X1)及び第2粘着剤層(X2)の粘着表面を保護するために設けられたものであり、粘着シートの使用時には除去されるものである。
In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, a release material may be further laminated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2).
In this configuration, a structure in which a release material having a release treatment applied to both sides is laminated on one adhesive surface of the first adhesive layer (X1) and the second adhesive layer (X2) is wound in a roll shape. It is good.
These release materials are provided to protect the adhesive surfaces of the first adhesive layer (X1) and the second adhesive layer (X2), and are removed when the adhesive sheet is used.
 また、例えば、図1(a)に示す粘着シート1aにおいて、第1粘着剤層(X1)上に積層した剥離材を剥がす際の剥離力と、第2粘着剤層(X2)上に積層した剥離材を剥がす際の剥離力とが同程度である場合、双方の剥離材を外側へ引っ張って剥がそうとすることで、粘着シート1aが、2つの剥離材に伴って分断されて引き剥がされるという弊害が生じることがある。
 そのため、第1粘着剤層(X1)上に積層する剥離材と、第2粘着剤層(X2)上に積層する剥離材とは、互いに貼付される粘着剤層からの剥離力が異なるように設計された2種の剥離材を用いることが好ましい。
Also, for example, in the pressure-sensitive adhesive sheet 1a shown in FIG. 1A, the peeling force when peeling the release material laminated on the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are laminated. When the peeling force at the time of peeling off the release material is about the same, the adhesive sheet 1a is divided along with the two release materials and peeled off by pulling both release materials outward. This may cause a negative effect.
For this reason, the release material laminated on the first pressure-sensitive adhesive layer (X1) and the release material laminated on the second pressure-sensitive adhesive layer (X2) have different peeling forces from the pressure-sensitive adhesive layer attached to each other. It is preferable to use two types of designed release materials.
 ところで、本発明の製造方法で用いる粘着シートは、前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得るように調整されている。
 例えば、図1(a)に示す粘着シート1aでは、膨張性粒子を含有する膨張性基材層(Y1)に第1粘着剤層(X1)を積層し、非膨張性基材層(Y2)に第2粘着剤層(X2)を積層した構成を有している。
 粘着シート1aにおいて、膨張性基材層(Y1)中の膨張性粒子が膨張すると、膨張性基材層(Y1)の表面に凹凸が生じて、当該表面と接触している第1粘着剤層(X1)が、その凹凸によって押し上げられ、結果として、第1粘着剤層(X1)の粘着表面にも凹凸が生じ得る。
 本発明の製造方法において、上述の工程(1)のとおり、第1粘着剤層(X1)の粘着表面は、硬質支持体に貼付される。
 そして、上述の工程(3)において、膨張性粒子を膨張させた際、第1粘着剤層(X1)の粘着表面に凹凸が生じ、硬質支持体との接触面積が減少するため、硬質支持体と第1粘着剤層(X1)との界面Pでわずかな力で一括して容易に分離することができる。
 また、膨張性粒子を膨張させた際、膨張性基材層(Y1)と非膨張性基材層(Y2)との界面においても、わずかな力で一括して容易に分離可能となるように調整してもよい。
By the way, the pressure-sensitive adhesive sheet used in the production method of the present invention is adjusted so that irregularities can be generated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) by the expansion of the expandable particles.
For example, in the pressure-sensitive adhesive sheet 1a shown in FIG. 1A, the first pressure-sensitive adhesive layer (X1) is laminated on the expandable base material layer (Y1) containing expandable particles, and the non-expandable base material layer (Y2). And a second pressure-sensitive adhesive layer (X2).
In the pressure-sensitive adhesive sheet 1a, when the expandable particles in the expandable base material layer (Y1) expand, the surface of the expandable base material layer (Y1) is uneven, and the first pressure-sensitive adhesive layer is in contact with the surface. (X1) is pushed up by the irregularities, and as a result, irregularities may also occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1).
In the production method of the present invention, as described in the above step (1), the adhesive surface of the first adhesive layer (X1) is affixed to a hard support.
And in said process (3), when an expandable particle is expanded, since an unevenness | corrugation arises in the adhesive surface of a 1st adhesive layer (X1) and a contact area with a hard support body decreases, a hard support body And the first pressure-sensitive adhesive layer (X1) can be easily separated together with a slight force at the interface P.
Further, when the expandable particles are expanded, they can be easily separated by a small force at the interface between the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2). You may adjust.
 一方で、上述の工程(1)のとおり、第2粘着剤層(X2)の粘着表面には、半導体ウエハの表面が貼付され、工程(2)において、半導体ウエハを分断して、複数の半導体チップとする。そして、上述の工程(3)で規定のとおり、膨張性粒子を膨張させた際には、第2粘着剤層(X2)上の複数の半導体チップは貼付したまま、硬質支持体と第1粘着剤層(X1)との界面Pで分離される。
 つまり、硬質支持体から分離する際に、複数の半導体チップは、粘着シートの第2粘着剤層(X2)上に保持されていることを要する。
 そのために、第2粘着剤層(X2)の粘着表面は、前記膨張性粒子の膨張によっても、粘着力が低減しないように、凹凸の形成が抑制されるように調整されていることが好ましい。
On the other hand, as described in the above step (1), the surface of the semiconductor wafer is attached to the adhesive surface of the second pressure-sensitive adhesive layer (X2), and in step (2), the semiconductor wafer is divided into a plurality of semiconductors. A chip. Then, as defined in the above step (3), when the expandable particles are expanded, the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are stuck and the hard support and the first pressure-sensitive adhesive are adhered. It isolate | separates in the interface P with an agent layer (X1).
That is, when separating from the hard support, the plurality of semiconductor chips are required to be held on the second pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet.
Therefore, it is preferable that the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) is adjusted so that the formation of irregularities is suppressed so that the pressure-sensitive adhesive force is not reduced even by the expansion of the expandable particles.
 例えば、図1(a)に示す粘着シート1aにおいては、膨張性基材層(Y1)の第1粘着剤層(X1)とは反対の表面には、非膨張性基材層(Y2)を備えており、この非膨張性基材層(Y2)の表面上に第2粘着剤層(X2)が積層した構成としている。
 粘着シート1aにおいて、膨張性粒子が膨張した際に、非膨張性基材層(Y2)が存在するため、膨張性粒子が膨張することによる膨張性基材層(Y1)側からの応力は、非膨張性基材層(Y2)が吸収する。その結果、非膨張性基材層(Y2)上に積層した第2粘着剤層(X2)の粘着表面の凹凸の形成は抑制され、当該粘着表面に貼付された半導体チップを保持することができる。
For example, in the pressure-sensitive adhesive sheet 1a shown in FIG. 1 (a), the non-intumescent base material layer (Y2) is provided on the surface of the expandable base material layer (Y1) opposite to the first pressure-sensitive adhesive layer (X1). The second pressure-sensitive adhesive layer (X2) is laminated on the surface of the non-expandable base material layer (Y2).
In the pressure-sensitive adhesive sheet 1a, when the expandable particles are expanded, the non-expandable base layer (Y2) is present. Therefore, the stress from the expandable base layer (Y1) side due to expansion of the expandable particles is A non-expandable base material layer (Y2) absorbs. As a result, the formation of irregularities on the adhesive surface of the second adhesive layer (X2) laminated on the non-expandable base material layer (Y2) is suppressed, and the semiconductor chip attached to the adhesive surface can be held. .
 なお、図1(b)に示す粘着シート1bにおいては、膨張性粒子が膨張した際に、第1粘着剤層(X1)の粘着表面には凹凸が形成されるように、第1非膨張性基材層(Y2-1)の貯蔵弾性率E’を低く調整することが好ましい。
 一方で、膨張性粒子が膨張した際に、第2粘着剤層(X2)の粘着表面には凹凸の形成が抑制されるように、第2非熱膨張性基材層(Y2-2)の貯蔵弾性率E’は高く調整することが好ましい。
 すなわち、膨張性粒子が膨張する際における第1非膨張性基材層(Y2-1)の貯蔵弾性率E’を、膨張性粒子が膨張する際における第2非熱膨張性基材層(Y2-2)の貯蔵弾性率E’より低く調整することが好ましい。
In the pressure-sensitive adhesive sheet 1b shown in FIG. 1B, when the expandable particles expand, the first non-expandable so that irregularities are formed on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1). It is preferable to adjust the storage elastic modulus E ′ of the base material layer (Y2-1) to be low.
On the other hand, when the expandable particles expand, the second non-thermally expandable base material layer (Y2-2) is prevented from forming irregularities on the adhesive surface of the second pressure-sensitive adhesive layer (X2). The storage elastic modulus E ′ is preferably adjusted to be high.
That is, the storage elastic modulus E ′ of the first non-expandable base layer (Y2-1) when the expandable particles expand is the same as the second non-thermally expandable base layer (Y2) when the expandable particles expand. -2) is preferably adjusted to be lower than the storage elastic modulus E ′.
 ところで、特許文献1に記載されたような、膨張性粒子を含む膨張性粘着剤層を有する両面粘着シートを用いて、当該膨張性粘着剤層を硬質支持体に貼付し、他方の粘着剤層上に半導体ウエハを貼付して半導体チップを製造する場合、硬質支持体と貼付する膨張性粘着剤層は、膨張性粒子を含有しているため、粘着力が不十分となり易い。 By the way, using the double-sided pressure-sensitive adhesive sheet having an expandable pressure-sensitive adhesive layer containing expandable particles as described in Patent Document 1, the expandable pressure-sensitive adhesive layer is stuck to a hard support, and the other pressure-sensitive adhesive layer. When manufacturing a semiconductor chip by attaching a semiconductor wafer thereon, the expandable pressure-sensitive adhesive layer to be bonded to the hard support contains expandable particles, so that the adhesive force tends to be insufficient.
 硬質支持体に対する膨張性粘着剤層の粘着力の低下によって、半導体ウエハが硬質支持体に十分に固定されず、例えば、半導体ウエハを分断して複数の半導体チップを得る際に、得られるチップの端部が欠ける等の弊害が生じ易い。
 また、ステルスダイシング(登録商標、以下同じ)法による半導体チップの製造においては、半導体ウエハの内部に改質領域を設ける必要があるが、改質領域の数が増えるほど、半導体ウエハに反りが生じ易くなる。ここで、半導体ウエハが硬質支持体に十分に固定されていないと、半導体ウエハの反りが抑制しきれず、チップ割れ等が生じる要因となる。
The semiconductor wafer is not sufficiently fixed to the hard support due to a decrease in the adhesive force of the expandable pressure-sensitive adhesive layer to the hard support. For example, when the semiconductor wafer is divided to obtain a plurality of semiconductor chips, Defects such as chipped edges are likely to occur.
Further, in the manufacture of semiconductor chips by the stealth dicing (registered trademark, hereinafter the same) method, it is necessary to provide a modified region inside the semiconductor wafer, but as the number of modified regions increases, the semiconductor wafer warps. It becomes easy. Here, if the semiconductor wafer is not sufficiently fixed to the hard support, the warping of the semiconductor wafer cannot be suppressed, which causes a chip crack or the like.
 一方で、粘着性樹脂を選択して、半導体ウエハを貼り付ける粘着剤層や、膨張性粘着剤層を高粘着力とすることで、上記の弊害を回避することも考えられる。
 しかしながら、半導体ウエハを貼り付ける粘着剤層を高粘着力とした場合、得られた複数の半導体チップを当該粘着剤層から剥離し難くなる場合がある。
 また、膨張性粘着剤層を高粘着力とした場合は、膨張性粒子を膨張させて硬質支持体から当該両面粘着シートを剥離する際に、硬質支持体の表面に膨張性粘着剤層の一部が残存することがあり、支持体の洗浄工程を要する必要があり、生産性の低下の要因ともなる。また、硬質支持体に貼付している両面粘着シートを剥離する際に、ある程度の力が必要となり、一括して容易に剥離することが難しくなる場合もある。
On the other hand, it is also conceivable to avoid the above-described adverse effects by selecting an adhesive resin and making the adhesive layer to which the semiconductor wafer is attached and the expandable adhesive layer have high adhesive strength.
However, when the pressure-sensitive adhesive layer to which the semiconductor wafer is attached has a high pressure-sensitive adhesive force, it may be difficult to peel the obtained plurality of semiconductor chips from the pressure-sensitive adhesive layer.
Further, when the expandable pressure-sensitive adhesive layer has a high adhesive force, when the double-sided pressure-sensitive adhesive sheet is peeled off from the hard support by expanding the expandable particles, one of the expandable pressure-sensitive adhesive layers is formed on the surface of the hard support. Part may remain, and it is necessary to perform a washing step of the support, which causes a decrease in productivity. Moreover, when peeling the double-sided pressure-sensitive adhesive sheet affixed to the hard support, a certain amount of force is required, and it may be difficult to easily peel off at once.
 一方で、本発明の製造方法で用いる粘着シートは、膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)を有し、膨張性粒子が膨張した際には、第1粘着剤層(X1)の粘着表面には凹凸が形成されるように調整されている。
 そのため、硬質支持体と貼付する第1粘着剤層(X1)には、膨張性粒子を含む必要がないため、半導体ウエハを硬質支持体に十分に固定することができ、チップの端部が欠ける等の弊害を効果的に抑制でき、歩留まりを向上させることができる。
 また、硬質支持体と貼付した粘着シートとを分離する際には、一括して容易に分離することができると共に、分離後の硬質支持体の汚染を抑制して、支持体の洗浄工程を省略可能とし、生産性を向上させ得る。
 さらに、第1粘着剤層(X1)及び第2粘着剤層(X2)の形成材料である粘着剤組成物の選択の自由度も高い。
On the other hand, the pressure-sensitive adhesive sheet used in the production method of the present invention has a base material (Y) having at least an inflatable base material layer (Y1) containing inflatable particles and a non-inflatable base material layer (Y2), and is inflated. When the adhesive particles expand, the adhesive surface of the first pressure-sensitive adhesive layer (X1) is adjusted so that irregularities are formed.
Therefore, the first pressure-sensitive adhesive layer (X1) to be attached to the hard support does not need to contain expandable particles, so that the semiconductor wafer can be sufficiently fixed to the hard support and the chip end portion is missing. And the like can be effectively suppressed, and the yield can be improved.
In addition, when separating the hard support and the adhesive sheet affixed, they can be easily separated at once, and the contamination of the hard support after separation is suppressed, and the cleaning process of the support is omitted. And can improve productivity.
Furthermore, the freedom degree of selection of the adhesive composition which is a forming material of a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) is also high.
〔粘着シートの各種物性〕
 本発明の一態様で用いる粘着シートは、膨張性粒子の膨張によって、硬質支持体と貼付している第1粘着剤層(X1)の粘着表面に凹凸が生じ、硬質支持体と第1粘着剤層(X1)との界面Pで、わずかな力で一括して容易に分離可能となる。
 ここで、本発明の一態様で用いる粘着シートにおいて、膨張性粒子を膨張させ、界面Pで分離する際の剥離力(F)としては、通常0~2000mN/25mm、好ましくは0~1000mN/25mm、より好ましくは0~150mN/25mm、更に好ましくは0~100mN/25mm、より更に好ましくは0~50mN/25mmである。
 なお、当該剥離力(F)が0mN/25mmである場合には、実施例に記載の方法で剥離力を測定しようとしても、剥離力が小さ過ぎるために測定不可となる場合も含まれる。
[Various physical properties of adhesive sheet]
The pressure-sensitive adhesive sheet used in one embodiment of the present invention has irregularities on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) attached to the hard support due to the expansion of the expandable particles, and the hard support and the first pressure-sensitive adhesive. At the interface P with the layer (X1), separation can be easily performed at a time with a slight force.
Here, in the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the peeling force (F 1 ) when the expandable particles are expanded and separated at the interface P is usually 0 to 2000 mN / 25 mm, preferably 0 to 1000 mN / It is 25 mm, more preferably 0 to 150 mN / 25 mm, still more preferably 0 to 100 mN / 25 mm, and still more preferably 0 to 50 mN / 25 mm.
Note that the peel force (F 1) is in the case of 0 mN / 25 mm, even trying to measure the peel strength by the method described in Example, includes the case where the measurement impossible because peel strength is too small.
 一方で、膨張性粒子の膨張前においては、半導体ウエハから複数の半導体チップを製造する際に、チップの端部の欠け等の発生を抑制し、歩留まりを向上させる観点から、第1粘着剤層(X1)の粘着力は高いほど好ましい。
 上記観点から、本発明の一態様で用いる粘着シートにおいて、膨張性粒子の膨張前における界面Pで分離する際の剥離力(F)としては、好ましくは0.05~10.0N/25mm、より好ましくは0.1~8.0N/25mm、更に好ましくは0.15~6.0N/25mm、より更に好ましくは0.2~4.0N/25mmである。
 なお、上記剥離力(F)は、硬質支持体に対する第1粘着剤層(X1)の粘着力とみなすこともできる。
On the other hand, before the expansion of the expandable particles, when manufacturing a plurality of semiconductor chips from a semiconductor wafer, the first pressure-sensitive adhesive layer is used from the viewpoint of suppressing the occurrence of chipping at the ends of the chips and improving the yield. The higher the adhesive strength of (X1), the better.
From the above viewpoint, in the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the peeling force (F 0 ) when separating at the interface P before the expansion of the expandable particles is preferably 0.05 to 10.0 N / 25 mm, More preferably, it is 0.1 to 8.0 N / 25 mm, still more preferably 0.15 to 6.0 N / 25 mm, and still more preferably 0.2 to 4.0 N / 25 mm.
Incidentally, the release force (F 0) can also be regarded as the adhesive strength of the first adhesive layer to the rigid support member (X1).
 本発明の一態様で用いる粘着シートにおいて、剥離力(F)と剥離力(F)との比〔(F)/(F)〕は、好ましくは0~0.9、より好ましくは0~0.8、更に好ましくは0~0.5、より更に好ましくは0~0.2である。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the ratio [(F 1 ) / (F 0 )] of the peel force (F 1 ) to the peel force (F 0 ) is preferably 0 to 0.9, more preferably Is 0 to 0.8, more preferably 0 to 0.5, and still more preferably 0 to 0.2.
 なお、剥離力(F)は、膨張性粒子が膨張する際の環境下で測定した値である。例えば、膨張性粒子が熱膨張性粒子である場合、剥離力(F)を測定する際の温度条件としては、当該熱膨張性粒子の膨張開始温度(t)以上であればよい。
 一方で、剥離力(F)を測定する際の温度条件としては、膨張性粒子が膨張しない温度であればよく、基本的には、室温(23℃)である。
 ただし、剥離力(F)及び剥離力(F)のより具体的な測定条件及び測定方法は、実施例に記載の方法に基づく。
The release force (F 1) is a value measured under the environment when the expandable particles are expanded. For example, when the expandable particles are thermally expandable particles, the temperature condition for measuring the peel force (F 1 ) may be equal to or higher than the expansion start temperature (t) of the thermally expandable particles.
On the other hand, the temperature condition for measuring the peeling force (F 0 ) may be any temperature at which the expandable particles do not expand, and is basically room temperature (23 ° C.).
However, more specific measurement conditions and measurement methods for the peel force (F 1 ) and the peel force (F 0 ) are based on the methods described in the examples.
 また、本発明の一態様で用いる粘着シートにおいて、室温(23℃)における、第2粘着剤層(X2)の粘着力としては、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、更に好ましくは0.4~6.0N/25mm、より更に好ましくは0.5~4.0N/25mmである。
 本明細書において、第2粘着剤層(X2)の粘着力は、実施例に記載の方法により測定された値を意味する。
 以下、本発明の一態様で用いる粘着シートを構成する各層について説明する。
In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the adhesive strength of the second pressure-sensitive adhesive layer (X2) at room temperature (23 ° C.) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0. The range is from 0.2 to 8.0 N / 25 mm, more preferably from 0.4 to 6.0 N / 25 mm, still more preferably from 0.5 to 4.0 N / 25 mm.
In the present specification, the adhesive strength of the second pressure-sensitive adhesive layer (X2) means a value measured by the method described in Examples.
Hereinafter, each layer which comprises the adhesive sheet used by 1 aspect of this invention is demonstrated.
<基材(Y)>
 本発明の一態様で用いる粘着シートが有する基材(Y)は、膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える。
 また、基材(Y)としては、図1(a)に示す粘着シート1aのように、膨張性基材層(Y1)及び非膨張性基材層(Y2)をそれぞれ一つずつ積層してなるものであってもよく、図1(b)に示す粘着シート1bのように、膨張性基材層(Y1)の両面に第1非熱膨張性基材層(Y2-1)及び第2非熱膨張性基材層(Y2-2)を設けた構成であってもよい。
<Base material (Y)>
The base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention includes at least an expandable base material layer (Y1) containing inflatable particles and a non-expandable base material layer (Y2).
Moreover, as a base material (Y), like the adhesive sheet 1a shown to Fig.1 (a), an expandable base material layer (Y1) and a non-expandable base material layer (Y2) are each laminated | stacked one by one. As in the pressure-sensitive adhesive sheet 1b shown in FIG. 1B, the first non-thermally expandable base layer (Y2-1) and the second non-expandable base layer (Y2-1) are formed on both sides of the expandable base layer (Y1). A configuration in which a non-thermally expandable base material layer (Y2-2) is provided may be employed.
 また、本発明の一態様で用いる粘着シートが有する基材(Y)は、膨張性基材層(Y1)と非膨張性基材層(Y2)との間に接着層を設けた構成であってもよい。
 例えば、図1(b)に示す粘着シート1bの構成の場合は、膨張性基材層(Y1)と、第1非熱膨張性基材層(Y2-1)及び/又は第2非熱膨張性基材層(Y2-2)との間に接着層を設けてもよい。
 接着層を設けることで、膨張性基材層(Y1)と非膨張性基材層(Y2)との層間密着性を良好とすることができる。
 接着層は、一般的な接着剤や、第1粘着剤層(X1)及び第2粘着剤層(X2)の形成材料である粘着剤組成物から形成することができる。
In addition, the base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention has a configuration in which an adhesive layer is provided between the expandable base material layer (Y1) and the non-expandable base material layer (Y2). May be.
For example, in the case of the configuration of the pressure-sensitive adhesive sheet 1b shown in FIG. 1B, the expandable substrate layer (Y1), the first non-thermally expandable substrate layer (Y2-1), and / or the second non-thermally expandable layer An adhesive layer may be provided between the conductive base material layer (Y2-2).
By providing the adhesive layer, the interlayer adhesion between the expandable base material layer (Y1) and the non-expandable base material layer (Y2) can be improved.
The adhesive layer can be formed from a general adhesive or a pressure-sensitive adhesive composition that is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
 本発明の一態様において、膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸を生じさせる一方、第2粘着剤層(X2)の粘着表面には凹凸の形成が抑制されるような粘着シートとする観点から、基材(Y)としては、膨張性基材層(Y1)と非膨張性基材層(Y2)とを少なくとも最表面に備えるものであることが好ましい。
 当該態様としては、図1(a)に示す粘着シート1aが有する基材(Y)や、膨張性基材層(Y1)、接着剤層、及び非膨張性基材層(Y2)をこの順で積層してなる基材(Y)等が挙げられる。
 当該接着剤層の形成材料としては、後述の転写テープが有する接着剤層の形成材料である接着剤組成物と同じものが挙げられる。
In one embodiment of the present invention, the expansion of the expandable particles causes unevenness on the adhesive surface of the first pressure-sensitive adhesive layer (X1), while suppressing formation of unevenness on the adhesive surface of the second pressure-sensitive adhesive layer (X2). From the viewpoint of forming a pressure-sensitive adhesive sheet, it is preferable that the base material (Y) is provided with at least an inflatable base material layer (Y1) and a non-expandable base material layer (Y2) on the outermost surface. .
As the said aspect, the base material (Y) which the adhesive sheet 1a shown to Fig.1 (a) has, an expandable base material layer (Y1), an adhesive bond layer, and a non-expandable base material layer (Y2) are this order. The base material (Y) etc. which are laminated | stacked with are mentioned.
Examples of the material for forming the adhesive layer include the same adhesive composition as the material for forming the adhesive layer included in the transfer tape described below.
 なお、基材(Y)を構成する膨張性基材層(Y1)及び非膨張性基材層(Y2)は、いずれも非粘着性の層である。
 本発明において、非粘着性の層か否かの判断は、対象となる層の表面に対して、JIS Z0237:1991に準拠して測定したプローブタック値が50mN/5mmφ未満であれば、当該層を「非粘着性の層」と判断する。
 本発明の一態様で用いる粘着シート(I)が有する膨張性基材層(Y1)及び非膨張性基材層(Y2)の表面におけるプローブタック値は、それぞれ独立に、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、熱膨張性基材の表面におけるプローブタック値の具体的な測定方法は、実施例に記載の方法による。
The expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) are both non-adhesive layers.
In the present invention, the determination as to whether or not the layer is a non-adhesive layer can be made if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mmφ with respect to the surface of the target layer. Is judged as a “non-sticky layer”.
The probe tack values on the surfaces of the expandable base material layer (Y1) and the non-expandable base material layer (Y2) of the pressure-sensitive adhesive sheet (I) used in one embodiment of the present invention are each independently usually less than 50 mN / 5 mmφ. However, it is preferably less than 30 mN / 5 mmφ, more preferably less than 10 mN / 5 mmφ, and even more preferably less than 5 mN / 5 mmφ.
In addition, in this specification, the specific measuring method of the probe tack value in the surface of a thermally expansible base material is based on the method as described in an Example.
 本発明の一態様で用いる粘着シートにおいて、基材(Y)の厚さとしては、好ましくは15~2000μm、より好ましくは25~1500μm、更に好ましくは30~1000μm、より更に好ましくは40~500μmである。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the thickness of the substrate (Y) is preferably 15 to 2000 μm, more preferably 25 to 1500 μm, still more preferably 30 to 1000 μm, and still more preferably 40 to 500 μm. is there.
 膨張性粒子の膨張前における、膨張性基材(Y1)の厚さは、好ましくは10~1000μm、より好ましくは20~700μm、更に好ましくは25~500μm、より更に好ましくは30~300μmである。
 非膨張性基材(Y2)の厚さは、好ましくは10~1000μm、より好ましくは20~700μm、更に好ましくは25~500μm、より更に好ましくは30~300μmである。
 なお、本明細書において、例えば、図1(b)に示す粘着シート1bのように、膨張性基材(Y1)又は非膨張性基材(Y2)が、他の層を介して、複数存在する場合には、上記の膨張性基材(Y1)又は非膨張性基材(Y2)の厚さは、それぞれの一層あたりの厚さを意味する。
The thickness of the expandable substrate (Y1) before expansion of the expandable particles is preferably 10 to 1000 μm, more preferably 20 to 700 μm, still more preferably 25 to 500 μm, and still more preferably 30 to 300 μm.
The thickness of the non-expandable substrate (Y2) is preferably 10 to 1000 μm, more preferably 20 to 700 μm, still more preferably 25 to 500 μm, and still more preferably 30 to 300 μm.
In the present specification, for example, a plurality of expandable substrates (Y1) or non-expandable substrates (Y2) exist via other layers as in the adhesive sheet 1b shown in FIG. 1 (b). When doing, the thickness of said expansible base material (Y1) or a non-expandable base material (Y2) means the thickness per each layer.
 本発明の一態様で用いる粘着シートにおいて、膨張性粒子の膨張前での、膨張性基材層(Y1)と非熱膨張性基材層(Y2)との厚さ比〔(Y1)/(Y2)〕としては、好ましくは0.02~200、より好ましくは0.03~150、更に好ましくは0.05~100である。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the thickness ratio between the expandable base material layer (Y1) and the non-thermally expandable base material layer (Y2) before expansion of the expandable particles [(Y1) / ( Y2)] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
 本発明の一態様で用いる粘着シートにおいて、膨張性粒子の膨張前での膨張性基材層(Y1)と、当該膨張性基材層(Y1)と直接積層する第1粘着剤層(X1)との厚さ比〔(Y1)/(X1)〕としては、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは1.0以上、より更に好ましくは5.0以上であり、また、好ましくは1000以下、より好ましくは200以下、更に好ましくは60以下、より更に好ましくは30以下である。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the expandable base material layer (Y1) before expansion of the expandable particles, and the first pressure-sensitive adhesive layer (X1) directly laminated with the expandable base material layer (Y1) The thickness ratio [(Y1) / (X1)] is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and still more preferably 5.0 or more. Also, it is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and still more preferably 30 or less.
 また、本発明の一態様で用いる粘着シートにおいて、非膨張性基材層(Y2)と、当該非膨張性基材層(Y2)と直接積層する第2粘着剤層(X2)との厚さ比〔(Y2)/(X2)〕としては、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.3以上であり、また、好ましくは20以下、より好ましくは10以下、更に好ましくは5以下である。 Moreover, in the adhesive sheet used by 1 aspect of this invention, the thickness of the 2nd adhesive layer (X2) directly laminated | stacked with a non-expandable base material layer (Y2) and the said non-expandable base material layer (Y2). The ratio [(Y2) / (X2)] is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, and preferably 20 or less, more preferably 10 or less. More preferably, it is 5 or less.
 以下、基材(Y)を構成する、膨張性基材層(Y1)及び非膨張性基材層(Y2)について説明する。 Hereinafter, the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) will be described.
<膨張性基材層(Y1)>
 基材(Y)を構成する膨張性基材層(Y1)は、膨張性粒子を含有し、所定の膨張処理によって、膨張し得る層である。
 膨張性基材層(Y1)中の膨張性粒子の含有量は、膨張性基材層(Y1)の全質量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。
<Expandable base material layer (Y1)>
The expandable substrate layer (Y1) constituting the substrate (Y) is a layer that contains expandable particles and can be expanded by a predetermined expansion treatment.
The content of expandable particles in the expandable substrate layer (Y1) is preferably 1 to 40% by mass, more preferably 5%, based on the total mass (100% by mass) of the expandable substrate layer (Y1). It is ˜35% by mass, more preferably 10 to 30% by mass, and still more preferably 15 to 25% by mass.
 なお、膨張性基材層(Y1)と積層する他の層との層間密着性を向上させる観点から、膨張性基材層(Y1)の表面に対して、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、及び紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
In addition, from the viewpoint of improving interlayer adhesion between the expandable base material layer (Y1) and other layers to be laminated, the surface of the expandable base material layer (Y1) is a surface formed by an oxidation method, a roughening method, or the like. Treatment, easy adhesion treatment, or primer treatment may be performed.
Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment. Examples of the unevenness method include sand blast method and solvent treatment method. Etc.
 膨張性基材層(Y1)に含まれる膨張性粒子としては、所定の処理を行うことで、膨張する粒子であればよく、例えば、所定の温度以上の加熱によって膨張する熱膨張性粒子や、所定量の紫外線を吸収することで、粒子内部にガスが発生して膨張するUV膨張性粒子等が挙げられる。 The expandable particles contained in the expandable substrate layer (Y1) may be any particles that expand by performing a predetermined treatment, such as thermally expandable particles that expand by heating at a predetermined temperature or higher, Examples include UV-expandable particles that absorb a predetermined amount of ultraviolet rays to generate gas and expand inside the particles.
 膨張性粒子の体積最大膨張率は、好ましくは1.5~100倍、より好ましくは2~80倍、更に好ましくは2.5~60倍、より更に好ましくは3~40倍である。 The volume expansion coefficient of the expandable particles is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably 2.5 to 60 times, and still more preferably 3 to 40 times.
 23℃における膨張前の膨張性粒子の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、膨張性粒子の平均粒子径とは、体積中位粒径(D50)であり、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した膨張性粒子の粒子分布において、膨張性粒子の粒径の小さい方から計算した累積体積頻度が50%に相当する粒径を意味する。
The average particle diameter of the expandable particles before expansion at 23 ° C. is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, and still more preferably 10 to 50 μm.
The average particle size of the expandable particles is a volume-median particle size (D 50 ), and is measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In the particle distribution of the expandable particles, it means a particle size corresponding to 50% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
 23℃における膨張前の膨張性粒子の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは20~100μm、更に好ましくは25~90μm、より更に好ましくは30~80μmである。
 なお、膨張性粒子の90%粒子径(D90)とは、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した膨張性粒子の粒子分布において、膨張性粒子の粒径の小さい方から計算した累積体積頻度が90%に相当する粒径を意味する。
The 90% particle diameter (D 90 ) of the expandable particles before expansion at 23 ° C. is preferably 10 to 150 μm, more preferably 20 to 100 μm, still more preferably 25 to 90 μm, and still more preferably 30 to 80 μm. .
The 90% particle size (D 90 ) of the expandable particles is the particle distribution of the expandable particles measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In FIG. 5, the particle size corresponding to 90% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
 本発明の一態様において、膨張性粒子としては、膨張開始温度(t)が60~270℃の熱膨張性粒子であることが好ましい。
 つまり、膨張性基材層(Y1)としては、膨張開始温度(t)が60~270℃の熱膨張性粒子を含む熱膨張性基材層(Y1-1)であることが好ましく、熱膨張性基材層(Y1-1)は、下記要件(1)を満たすことがより好ましい。
・要件(1):前記熱膨張性粒子の膨張開始温度(t)における、前記熱膨張性基材層(Y1-1)の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
 なお、本明細書において、所定の温度における熱膨張性基材層(Y1-1)の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
In one embodiment of the present invention, the expandable particles are preferably thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
That is, the expandable substrate layer (Y1) is preferably a thermally expandable substrate layer (Y1-1) containing thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C. The conductive base material layer (Y1-1) more preferably satisfies the following requirement (1).
Requirement (1): The storage elastic modulus E ′ (t) of the thermally expandable substrate layer (Y1-1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 × 10 7 Pa It is as follows.
In the present specification, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) at a predetermined temperature means a value measured by the method described in the examples.
 上記要件(1)は、熱膨張性粒子が膨張する直前の熱膨張性基材層(Y1-1)の剛性を示す指標といえる。
 つまり、熱膨張性粒子が膨張する際、上記要件(1)を満たす程度に、熱膨張性基材層(Y1-1)が柔軟性を有していれば、熱膨張性基材層(Y1-1)の表面に凹凸が形成され易くなり、第1粘着剤層(X1)の粘着表面にも凹凸が生じ易くなる。その結果、硬質支持体と第1粘着剤層(X1)との界面Pでわずかな力で一括して容易に分離可能とすることができる。
The requirement (1) can be said to be an index indicating the rigidity of the thermally expandable base material layer (Y1-1) immediately before the thermally expandable particles expand.
That is, when the thermally expandable particles expand, if the thermally expandable substrate layer (Y1-1) is flexible enough to satisfy the above requirement (1), the thermally expandable substrate layer (Y1 As a result, unevenness is likely to be formed on the surface of -1), and unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1). As a result, it is possible to easily separate them with a slight force at the interface P between the hard support and the first pressure-sensitive adhesive layer (X1).
 熱膨張性基材層(Y1-1)の要件(1)で規定する貯蔵弾性率E’(t)は、上記観点から、好ましくは9.0×10Pa以下、より好ましくは8.0×10Pa以下、更に好ましくは6.0×10Pa以下、より更に好ましくは4.0×10Pa以下である。
 また、膨張した熱膨張性粒子の流動を抑制し、熱膨張性基材層(Y1-1)の表面に生じる凹凸の形状維持性を向上させ、第1粘着剤層(X1)の粘着表面にも凹凸を生じ易くする観点から、熱膨張性基材層(Y1-1)の要件(1)で規定する貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
From the above viewpoint, the storage elastic modulus E ′ (t) defined by requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 9.0 × 10 6 Pa or less, more preferably 8.0. × 10 6 Pa or less, more preferably 6.0 × 10 6 Pa or less, and still more preferably 4.0 × 10 6 Pa or less.
In addition, the flow of the expanded heat-expandable particles is suppressed, the shape maintaining property of the unevenness generated on the surface of the heat-expandable base material layer (Y1-1) is improved, and the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is improved. From the viewpoint of facilitating the formation of irregularities, the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 1.0 × 10 3 Pa or more. Preferably it is 1.0 × 10 4 Pa or more, more preferably 1.0 × 10 5 Pa or more.
 また、熱膨張性基材層(Y1-1)は、下記要件(2)を満たすことも好ましく、上述の要件(1)と共に、当該要件(2)も満たすことがより好ましい。
・要件(2):23℃における、熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)が、1.0×10Pa以上である。
The thermally expandable base material layer (Y1-1) preferably satisfies the following requirement (2), and more preferably satisfies the requirement (2) together with the requirement (1).
Requirement (2): The storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) at 23 ° C. is 1.0 × 10 6 Pa or more.
 上記要件(2)を満たす熱膨張性基材層(Y1-1)とすることで、半導体ウエハを第2粘着剤層(X2)の粘着表面に貼付する際の位置ずれを防止することができ、また、半導体ウエハの第2粘着剤層(X2)への過度な沈み込みを防止することもできる。 By using the thermally expansible base material layer (Y1-1) that satisfies the above requirement (2), it is possible to prevent misalignment when the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2). Moreover, excessive sinking of the semiconductor wafer into the second pressure-sensitive adhesive layer (X2) can also be prevented.
 上記観点から、上記要件(2)で規定する熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×1012Pa、より好ましくは1.0×10~1.0×1012Pa、更に好ましくは5.0×10~1.0×1011Pa、より更に好ましくは1.0×10~1.0×1010Paである。 From the above viewpoint, the storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) defined by the above requirement (2) is preferably 5.0 × 10 6 to 5.0 × 10 12 Pa. More preferably 1.0 × 10 7 to 1.0 × 10 12 Pa, still more preferably 5.0 × 10 7 to 1.0 × 10 11 Pa, and still more preferably 1.0 × 10 8 to 1. 0 × 10 10 Pa.
 熱膨張性基材層(Y1-1)中に含まれる熱膨張性粒子としては、膨張開始温度(t)が60~270℃の熱膨張性粒子であることが好ましい。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
[熱膨張性粒子の膨張開始温度(t)の測定法]
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
The heat-expandable particles contained in the heat-expandable base material layer (Y1-1) are preferably heat-expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
In the present specification, the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
[Measurement method of expansion start temperature (t) of thermally expandable particles]
To an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter 5.6 mm, thickness 0. 1 mm) is prepared.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured from the upper part of the aluminum lid to the sample with a force of 0.01 N applied by a pressurizer. Then, in a state where a force of 0.01 N is applied by the pressurizer, heating is performed from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and the amount of displacement of the pressurizer in the vertical direction is measured. Let the displacement start temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
The thermally expandable particles include a microencapsulated foaming agent composed of an outer shell made of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature. Preferably there is.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソブタン、イソペンタン、イソヘキサン、イソヘプタン、イソオクタン、イソノナン、イソデカン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ネオペンタン、ドデカン、イソドデカン、シクロトリデカン、ヘキシルシクロヘキサン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、シクロトリデカン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等が挙げられる。
 これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane. , Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane, isotetradecane, isopentadecane, iso Hexadecane, 2,2,4,4,6,8,8-heptamethylnonane, isoheptadecane, isooctadecane, isonanodecane, , 6,10,14-tetramethylpentadecane, cyclotridecane, heptylcyclohexane, n-octylcyclohexane, cyclopentadecane, nonylcyclohexane, decylcyclohexane, pentadecylcyclohexane, hexadecylcyclohexane, heptadecylcyclohexane, octadecylcyclohexane, etc. .
These encapsulated components may be used alone or in combination of two or more.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
 膨張性基材層(Y1)は、樹脂及び膨張性粒子を含む樹脂組成物(y)から形成することが好ましい。
 なお、樹脂組成物(y)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
The expandable substrate layer (Y1) is preferably formed from a resin composition (y) containing a resin and expandable particles.
In addition, you may contain the additive for base materials in the resin composition (y) in the range which does not impair the effect of this invention as needed.
Examples of the substrate additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
These base material additives may be used alone or in combination of two or more.
When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to about 100 parts by mass of the resin. 10 parts by mass.
 膨張性基材層(Y1)の形成材料である樹脂組成物(y)に含まれる膨張性粒子については、上述のとおりであり、熱膨張性粒子であることが好ましい。
 膨張性粒子の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。
The expandable particles contained in the resin composition (y), which is a material for forming the expandable substrate layer (Y1), are as described above, and are preferably thermally expandable particles.
The content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and further preferably 10 to 10% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). 30% by mass, and still more preferably 15 to 25% by mass.
 膨張性基材層(Y1)の形成材料である樹脂組成物(y)に含まれる樹脂としては、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y)から膨張性基材層(Y1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含む膨張性基材層(Y1)が非粘着性となればよい。
The resin contained in the resin composition (y) that is a material for forming the expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin.
That is, even if the resin contained in the resin composition (y) is an adhesive resin, the adhesive resin is a polymerizable compound in the process of forming the expandable base material layer (Y1) from the resin composition (y). And the resulting resin becomes a non-adhesive resin, and the expandable base material layer (Y1) containing the resin may be non-adhesive.
 樹脂組成物(y)に含まれる前記樹脂の質量平均分子量(Mw)としては、好ましくは1000~100万、より好ましくは1000~70万、更に好ましくは1000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
The mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000.
Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
 樹脂の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). %, More preferably 70 to 85% by mass.
 本発明の一態様において、膨張性粒子の膨張時に、表面に凹凸が形成し易い膨張性基材層(Y1)とする観点から、樹脂組成物(y)に含まれる前記樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含むことが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
In one aspect of the present invention, the resin contained in the resin composition (y) is an acrylic urethane from the viewpoint of forming an expandable base layer (Y1) that easily forms irregularities on the surface when the expandable particles are expanded. It is preferable that 1 or more types chosen from a system resin and an olefin resin are included.
Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
[アクリルウレタン系樹脂(U1)]
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
[Acrylic urethane resin (U1)]
Examples of the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
The urethane prepolymer (UP) is preferably obtained by further subjecting it to a chain extension reaction using a chain extender.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols.
These polyols may be used independently and may use 2 or more types together.
The polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4'-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of the ester diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Hydrophthalic acid, Examples thereof include condensation polymers of one or more selected from dicarboxylic acids such as hexahydroisophthalic acid, hexahydroterephthalic acid, and methylhexahydrophthalic acid, and anhydrides thereof.
Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, Polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol and polyneo Examples include pentyl terephthalate diol.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 Examples of the alkylene type diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Examples of the polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
These polyvalent isocyanates may be used alone or in combination of two or more.
These polyisocyanates may be a trimethylolpropane adduct type modified product, a burette type modified product reacted with water, or an isocyanurate type modified product containing an isocyanurate ring.
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。 Among these, as the polyvalent isocyanate used in one embodiment of the present invention, diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Examples of the alicyclic diisocyanate include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane. Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
In one embodiment of the present invention, the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends. A urethane prepolymer is preferred.
As a method for introducing an ethylenically unsaturated group into both ends of the linear urethane prepolymer, an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
As a vinyl compound used as the side chain of acrylic urethane resin (U1), at least (meth) acrylic acid ester is included.
The (meth) acrylic acid ester is preferably one or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。 When alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are used in combination, the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。 The carbon number of the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。 Moreover, as hydroxyalkyl (meth) acrylate, the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce | transduce an ethylenically unsaturated group into the both ends of the above-mentioned linear urethane prepolymer is mentioned.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは単独で用いてもよく、2種以上を併用してもよい。
Examples of vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, α-methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide).
These may be used alone or in combination of two or more.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound. The amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in one embodiment of the present invention, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35 by mass ratio. / 65 to 55/45.
[オレフィン系樹脂]
 樹脂組成物(y)に含まれる樹脂として好適なオレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体が挙げられる。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
[Olefin resin]
Examples of the olefin resin suitable as the resin contained in the resin composition (y) include a polymer having at least a structural unit derived from an olefin monomer.
The olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like.
Among these, ethylene and propylene are preferable.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);エチレン-酢酸ビニル共重合体(EVA);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefinic resins, for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); ethylene-vinyl acetate copolymer (EVA); ethylene-propylene- (5-ethylidene-2-norbornene), etc. Olefin terpolymers; and the like.
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 In one embodiment of the present invention, the olefin resin may be a modified olefin resin further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、単独で用いてもよく、2種以上を併用してもよい。
For example, as an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification, a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride. Is mentioned.
Examples of the unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride. , Glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
In addition, unsaturated carboxylic acid or its anhydride may be used independently and may use 2 or more types together.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
An acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification is a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin as a main chain. A polymer is mentioned.
The number of carbon atoms of the alkyl group contained in the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
As said alkyl (meth) acrylate, the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by modifying the olefin resin with a hydroxyl group include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl. Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
(アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂)
 本発明の一態様において、樹脂組成物(y)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
(Resin other than acrylic urethane resin and olefin resin)
In one embodiment of the present invention, the resin composition (y) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate. Polyester resin such as phthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resin; polymethylpentene; polysulfone; polyetheretherketone; polyethersulfone; Sulfides; Polyimide resins such as polyetherimide and polyimide; Polyamide resins; Acrylic resins; Fluorine resins and the like.
 ただし、膨張性粒子の膨張時に、表面に凹凸が形成し易い膨張性基材層(Y1)とする観点から、樹脂組成物(y)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合としては、樹脂組成物(y)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、更に好ましくは5質量部未満、より更に好ましくは1質量部未満である。
However, from the viewpoint of making the expandable base material layer (Y1) in which irregularities are easily formed on the surface when the expandable particles are expanded, the resin composition (y) contains a resin other than the acrylic urethane-based resin and the olefin-based resin. A smaller ratio is preferable.
The content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by weight, still more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
[無溶剤型樹脂組成物(y1)]
 樹脂組成物(y)の一態様として、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の熱膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y1)が挙げられる。
 無溶剤型樹脂組成物(y1)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y1)から形成した塗膜に対して、エネルギー線を照射することで、膨張性粒子の膨張時に、表面に凹凸が形成し易い膨張性基材層(Y1)を形成し易く、特に、上記要件(1)及び(2)を満たす熱膨張性基材層(Y1-1)を形成し易い。
[Solvent-free resin composition (y1)]
As one aspect of the resin composition (y), an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-described thermally expandable particles are blended, Examples thereof include a solventless resin composition (y1) that does not contain a solvent.
In the solventless resin composition (y1), no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
By irradiating the coating film formed from the solventless resin composition (y1) with energy rays, an inflatable substrate layer (Y1) that easily forms irregularities on the surface when the expandable particles expand is formed. In particular, it is easy to form the heat-expandable base material layer (Y1-1) that satisfies the above requirements (1) and (2).
 なお、無溶剤型樹脂組成物(y1)に配合される、膨張性粒子の種類や形状、配合量(含有量)については、樹脂組成物(y)と同じであり、上述のとおりである。 In addition, the type, shape, and blending amount (content) of the expandable particles blended in the solventless resin composition (y1) are the same as those of the resin composition (y) and are as described above.
 無溶剤型樹脂組成物(y1)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50000以下であるが、好ましくは1000~50000、より好ましくは2000~40000、更に好ましくは3000~35000、より更に好ましくは4000~30000である。 The mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
 また、前記オリゴマーとしては、上述の樹脂組成物(y)に含まれる樹脂のうち、質量平均分子量が50000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
Moreover, as said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight is 50000 or less among resin contained in the above-mentioned resin composition (y), but the above-mentioned urethane prepolymer (UP ) Is preferred.
As the oligomer, a modified olefin resin having an ethylenically unsaturated group can also be used.
 無溶剤型樹脂組成物(y1)中における、前記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y1)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably 50 to 100% with respect to the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、単独で用いてもよく、2種以上を併用してもよい。
Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Alicyclic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam.
These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
 前記オリゴマーとエネルギー線重合性モノマーの配合比(前記オリゴマー/エネルギー線重合性モノマー)は、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 The blending ratio of the oligomer and the energy beam polymerizable monomer (the oligomer / energy beam polymerizable monomer) is preferably 20/80 to 90/10, more preferably 30/70 to 85/15, still more preferably 35/65. ~ 80/20.
 本発明の一態様において、無溶剤型樹脂組成物(y1)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
In one embodiment of the present invention, it is preferable that the solventless resin composition (y1) is further blended with a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyro Nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like can be mentioned.
These photoinitiators may be used independently and may use 2 or more types together.
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。 The blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. The amount is preferably 0.02 to 3 parts by mass.
<非膨張性基材層(Y2)>
 基材(Y)を構成する非膨張性基材層(Y2)の形成材料としては、例えば、紙材、樹脂、金属等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
<Non-expandable base material layer (Y2)>
Examples of the material for forming the non-expandable base material layer (Y2) constituting the base material (Y) include paper materials, resins, metals, and the like.
Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfate paper, glassine paper, and the like.
Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resin such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Tsu Motokei resin, and the like.
Examples of the metal include aluminum, tin, chromium, and titanium.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非膨張性基材層(Y2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたものや、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one kind or in combination of two or more kinds.
As a non-intumescent substrate layer (Y2) using two or more kinds of forming materials in combination, a paper film is laminated with a thermoplastic resin such as polyethylene, or a metal film is formed on the surface of a resin film or sheet containing a resin. And the like.
As a method for forming the metal layer, for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. And the like.
 なお、非膨張性基材層(Y2)と積層する他の層との層間密着性を向上させる観点から、非膨張性基材層(Y2)が樹脂を含む場合、非膨張性基材層(Y2)の表面に対しても、上述の膨張性基材層(Y1)と同様に、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。 From the viewpoint of improving interlayer adhesion between the non-expandable base layer (Y2) and other layers to be laminated, when the non-expandable base layer (Y2) contains a resin, the non-expandable base layer ( Similarly to the expandable base material layer (Y1) described above, the surface of Y2) may be subjected to a surface treatment such as an oxidation method or an unevenness method, an easy adhesion treatment, or a primer treatment.
 また、非膨張性基材層(Y2)が樹脂を含む場合、当該樹脂と共に、樹脂組成物(y)にも含有し得る、上述の基材用添加剤を含有してもよい。 Moreover, when the non-intumescent base material layer (Y2) contains a resin, it may contain the above-mentioned base material additive that can be contained in the resin composition (y) together with the resin.
 非膨張性基材層(Y2)は、上述の膨張性基材層(Y1)よりも上述の第1粘着剤層(X1)から離れた位置に存在しており、膨張性基材層(Y1)と第1粘着剤層(X1)との間には非膨張性基材層(Y2)は存在しておらず、前記膨張性粒子が膨張する際における前記非膨張性基材層(Y2)の貯蔵弾性率E’は、前記膨張性粒子が膨張する際における前記膨張性基材層(Y1)の貯蔵弾性率E’よりも大きいことが好ましい。このように、膨張性基材層(Y1)と第1粘着剤層(X1)との間に非膨張性基材層(Y2)が存在しないため、膨張性粒子の膨張によって膨張性基材層(Y1)の表面に生じる凹凸が、非膨張性基材層(Y2)を介在させることなく第1粘着剤層(X1)に伝わることになり、第1粘着剤層(X1)の粘着表面にも凹凸が生じ易くなる。また、膨張性粒子が膨張する際において、非膨張性基材層(Y2)の貯蔵弾性率E’は膨張性基材層(Y1)の貯蔵弾性率E’よりも大きいため、膨張性粒子の膨張時に、膨張性基材層(Y1)のうち非膨張性基材層(Y2)側の表面に凹凸が生じることが抑制され、その結果、膨張性基材層(Y1)のうち、第1粘着剤層(X1)側の表面に凹凸が生じ易くなり、したがって、第1粘着剤層(X1)の粘着表面にも凹凸が生じ易くなる。
 前述の膨張性粒子が膨張する際における、非膨張性基材層(Y2)の貯蔵弾性率E’は、上記のとおり第1粘着剤層(X1)の粘着表面に凹凸が生じ易くする観点から、好ましくは1.0MPa以上であり、また、貼付作業及び剥離作業の容易性の観点、第2粘着剤層(X2)の粘着表面にも凹凸を生じさせる観点、又はロール形体でのハンドリングのし易さの観点から、好ましくは1.0×10MPa以下である。当該観点から、膨張性粒子が膨張する際における、非膨張性基材層(Y2)の貯蔵弾性率E’は、好ましくは1.0~5.0×10MPa、より好ましくは1.0×10~1.0×10MPa、さらに好ましくは5.0×10~1.0×10MPaである。
 また、上記の観点及び半導体ウエハを第2粘着剤層(X2)の粘着表面に貼付する際の位置ずれを防止する観点から、23℃における、非膨張性基材層(Y2)の貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×10MPa、より好ましくは1.0×10~1.0×10MPa、さらに好ましくは5.0×10~5.0×10MPaである。
 非膨張性基材層(Y2)は、上述の方法に基づき判断される、非膨張性層である。
 そのため、上述の式から算出される非膨張性基材層(Y2)の体積変化率(%)としては、5体積%未満であるが、好ましくは2体積%未満、より好ましくは1体積%未満、更に好ましくは0.1体積%未満、より更に好ましくは0.01体積%未満である。
The non-intumescent substrate layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the above-described inflatable substrate layer (Y1), and the inflatable substrate layer (Y1) ) And the first pressure-sensitive adhesive layer (X1), there is no non-expandable base layer (Y2), and the non-expandable base layer (Y2) when the expandable particles expand. The storage elastic modulus E ′ is preferably larger than the storage elastic modulus E ′ of the expandable base material layer (Y1) when the expandable particles expand. Thus, since there is no non-expandable base material layer (Y2) between the expandable base material layer (Y1) and the first pressure-sensitive adhesive layer (X1), the expandable base material layer is expanded by the expansion of the expandable particles. The unevenness generated on the surface of (Y1) is transmitted to the first pressure-sensitive adhesive layer (X1) without interposing the non-intumescent base material layer (Y2), and on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1). Also, unevenness is likely to occur. Further, when the expandable particles expand, the storage elastic modulus E ′ of the non-expandable base material layer (Y2) is larger than the storage elastic modulus E ′ of the expandable base material layer (Y1). During expansion, the surface of the expandable substrate layer (Y1) on the non-expandable substrate layer (Y2) side is prevented from being uneven, and as a result, the first of the expandable substrate layer (Y1). Unevenness is likely to occur on the surface on the pressure-sensitive adhesive layer (X1) side, and therefore unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1).
The storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles are expanded is as described above from the viewpoint of easily forming irregularities on the adhesive surface of the first adhesive layer (X1). Preferably, the pressure is 1.0 MPa or more. Also, from the viewpoint of ease of pasting and peeling operations, from the viewpoint of causing irregularities on the adhesive surface of the second pressure-sensitive adhesive layer (X2), or handling in a roll shape. From the viewpoint of easiness, it is preferably 1.0 × 10 3 MPa or less. From this viewpoint, the storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles expand is preferably 1.0 to 5.0 × 10 2 MPa, more preferably 1.0. × 10 1 to 1.0 × 10 2 MPa, more preferably 5.0 × 10 1 to 1.0 × 10 3 MPa.
In addition, from the viewpoints described above and from the viewpoint of preventing misalignment when the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2), the storage elastic modulus of the non-expandable base material layer (Y2) at 23 ° C. E ′ (23) is preferably 5.0 × 10 1 to 5.0 × 10 4 MPa, more preferably 1.0 × 10 2 to 1.0 × 10 4 MPa, and even more preferably 5.0 × 10. 2 to 5.0 × 10 3 MPa.
A non-expandable base material layer (Y2) is a non-expandable layer judged based on the above-mentioned method.
Therefore, the volume change rate (%) of the non-expandable base material layer (Y2) calculated from the above formula is less than 5% by volume, preferably less than 2% by volume, more preferably less than 1% by volume. More preferably, it is less than 0.1 volume%, More preferably, it is less than 0.01 volume%.
 また、非膨張性基材層(Y2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよい。例えば、非膨張性基材層(Y2)に含まれる樹脂を選択することで、熱膨張性粒子が含まれていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非膨張性基材層(Y2)中の熱膨張性粒子の含有量は、少ないほど好ましい。
 具体的な熱膨張性粒子の含有量としては、非膨張性基材層(Y2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
Moreover, as long as the volume change rate is the said range, a non-expandable base material layer (Y2) may contain a thermally expansible particle. For example, by selecting a resin contained in the non-expandable base material layer (Y2), it is possible to adjust the volume change rate to the above range even if thermally expandable particles are included.
However, the smaller the content of the heat-expandable particles in the non-expandable base material layer (Y2), the better.
The specific content of the heat-expandable particles is usually less than 3% by mass, preferably less than 1% by mass, and more preferably relative to the total mass (100% by mass) of the non-expandable base material layer (Y2). It is less than 0.1% by mass, more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
<第1粘着剤層(X1)、第2粘着剤層(X2)>
 本発明の一態様で用いる粘着シートは、第1粘着剤層(X1)及び第2粘着剤層(X2)を有する。
 本発明の製造方法においては、第1粘着剤層(X1)の粘着表面は、硬質支持体と貼付され、第2粘着剤層(X2)の粘着表面は、半導体ウエハと貼付される。
<First pressure-sensitive adhesive layer (X1), second pressure-sensitive adhesive layer (X2)>
The pressure-sensitive adhesive sheet used in one embodiment of the present invention has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2).
In the production method of the present invention, the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is stuck to a hard support, and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) is stuck to a semiconductor wafer.
 第1粘着剤層(X1)は、膨張性基材層(Y1)中に含まれる膨張性粒子の膨張前においては、硬質支持体と密着性が高く、半導体ウエハを硬質支持体に十分に固定し得る性質が求められる。
 当該観点から、23℃における、第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以下、より好ましくは5.0×10Pa以下、更に好ましくは1.0×10Pa以下である。
The first pressure-sensitive adhesive layer (X1) has high adhesion to the hard support before the expansion of the expandable particles contained in the expandable base material layer (Y1), and the semiconductor wafer is sufficiently fixed to the hard support. The property which can do is required.
From this viewpoint, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 × 10 8 Pa or less, more preferably 5.0 × 10 7 Pa or less. More preferably, it is 1.0 × 10 7 Pa or less.
 その一方で、膨張性基材層(Y1)中の膨張性粒子の膨張時には、膨張性基材層(Y1)の表面に生じた凹凸を、第1粘着剤層(X1)の粘着表面にも形成し得る程の剛性も要求される。
 当該観点から、23℃における、第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以上、より好ましくは5.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
On the other hand, when the expandable particles in the expandable base material layer (Y1) expand, the unevenness generated on the surface of the expandable base material layer (Y1) is also applied to the adhesive surface of the first pressure-sensitive adhesive layer (X1). Rigidity that can be formed is also required.
From this viewpoint, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 × 10 4 Pa or more, more preferably 5.0 × 10 4 Pa or more. More preferably, it is 1.0 × 10 5 Pa or more.
 また、第2粘着剤層(X2)は、半導体ウエハとの密着性だけでなく、当該半導体ウエハを分断して得られる半導体チップとの密着性も要求される共に、当該半導体チップが第2粘着剤層(X2)へ過度に沈み込むといった現象も抑制する必要がある。
 これらの観点から、23℃における、第2粘着剤層(X2)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10~1.0×10Pa、より好ましくは5.0×10~5.0×10Pa、更に好ましくは1.0×10~1.0×10Paである。
 なお、本明細書において、第1粘着剤層(X1)及び第2粘着剤層(X2)の貯蔵せん断弾性率G’(23)は、実施例に記載の方法により測定された値を意味する。
The second pressure-sensitive adhesive layer (X2) is required not only to adhere to the semiconductor wafer but also to adhere to the semiconductor chip obtained by dividing the semiconductor wafer, and the semiconductor chip It is also necessary to suppress the phenomenon of excessive sinking into the agent layer (X2).
From these viewpoints, the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) at 23 ° C. is preferably 1.0 × 10 4 to 1.0 × 10 8 Pa, more preferably 5 0.0 × 10 4 to 5.0 × 10 7 Pa, more preferably 1.0 × 10 5 to 1.0 × 10 7 Pa.
In addition, in this specification, the storage shear elastic modulus G '(23) of the 1st adhesive layer (X1) and the 2nd adhesive layer (X2) means the value measured by the method as described in an Example. .
 第1粘着剤層(X1)の厚さは、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the first pressure-sensitive adhesive layer (X1) is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably 5 to 30 μm.
 第2粘着剤層(X2)の厚さは、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the second pressure-sensitive adhesive layer (X2) is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably 5 to 30 μm.
 第1粘着剤層(X1)及び第2粘着剤層(X2)は、粘着性樹脂を含む粘着剤組成物(x)から形成することができる。
 また、粘着剤組成物(x)は、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 以下、粘着剤組成物(x)に含まれる各成分について説明する。
The first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) can be formed from a pressure-sensitive adhesive composition (x) containing a pressure-sensitive adhesive resin.
Moreover, adhesive composition (x) may contain additives for adhesives, such as a crosslinking agent, a tackifier, a polymeric compound, a polymerization initiator, as needed.
Hereinafter, each component contained in the pressure-sensitive adhesive composition (x) will be described.
(粘着性樹脂)
 本発明の一態様で用いる粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であればよい。
 本発明の一態様で用いる粘着性樹脂の質量平均分子量(Mw)としては、粘着力の向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(Adhesive resin)
As the adhesive resin used in one embodiment of the present invention, any polymer may be used as long as the resin has adhesiveness and has a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and even more preferably 30,000, from the viewpoint of improving the adhesive strength. ~ 1 million.
 具体的な粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Specific examples of the adhesive resin include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins.
These adhesive resins may be used alone or in combination of two or more.
Further, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
 本発明の一態様で用いる粘着性樹脂は、上記の粘着性樹脂の側鎖に重合性官能基を導入した、エネルギー線硬化型の粘着性樹脂であってもよい。
 例えば、第2粘着剤層(X2)をエネルギー線硬化型の粘着性樹脂を含むエネルギー線硬化型粘着剤組成物から形成することで、エネルギー線を照射することで粘着力を低下させることができるため、得られた半導体チップを第2粘着剤層(X2)から容易にピックアップすることができる。
 当該重合性官能基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 また、エネルギー線としては、紫外線や電子線が挙げられるが、紫外線が好ましい。
 なお、エネルギー線を照射して粘着力を低下し得る粘着剤層の形成材料としては、重合性官能基を有するモノマー又はオリゴマーを含有するエネルギー線硬化型粘着剤組成物であってもよい。
The adhesive resin used in one embodiment of the present invention may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
For example, by forming the second pressure-sensitive adhesive layer (X2) from an energy ray-curable pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive resin, the adhesive force can be reduced by irradiating energy rays. Therefore, the obtained semiconductor chip can be easily picked up from the second pressure-sensitive adhesive layer (X2).
Examples of the polymerizable functional group include a (meth) acryloyl group and a vinyl group.
Examples of energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
In addition, as a forming material of the adhesive layer which can irradiate an energy ray and can reduce adhesive force, the energy ray hardening-type adhesive composition containing the monomer or oligomer which has a polymerizable functional group may be sufficient.
 これらのエネルギー線硬化型粘着剤組成物には、さらに光重合開始剤を含有することが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
 光重合開始剤としては、上述の無溶剤型樹脂組成物(y1)に配合されるものと同じものが挙げられる。
 光重合開始剤の含有量は、エネルギー線硬化型の粘着性樹脂100質量部もしくは重合性官能基を有するモノマー又はオリゴマー100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。
These energy ray curable pressure-sensitive adhesive compositions preferably further contain a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
As a photoinitiator, the same thing as what is mix | blended with the above-mentioned solvent-free resin composition (y1) is mentioned.
The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 100 parts by mass of the energy ray curable adhesive resin or 100 parts by mass of the monomer or oligomer having a polymerizable functional group. The amount is 0.03 to 5 parts by mass, more preferably 0.05 to 2 parts by mass.
 本発明の一態様において、優れた粘着力を発現させる観点から、粘着性樹脂が、アクリル系樹脂を含むことが好ましい。特に、第1粘着剤層(X1)が、アクリル系樹脂を含む粘着剤組成物から形成することで、第1粘着剤層の表面に凹凸を形成させ易くすることができる。 In one embodiment of the present invention, the adhesive resin preferably contains an acrylic resin from the viewpoint of developing an excellent adhesive force. In particular, by forming the first pressure-sensitive adhesive layer (X1) from a pressure-sensitive adhesive composition containing an acrylic resin, it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer.
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物(x)に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。 The content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50%, based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x). To 100% by mass, more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
 粘着性樹脂の含有量としては、粘着剤組成物(x)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~98質量%、より更に好ましくは70~95質量%である。 The content of the adhesive resin is preferably 35 to 100% by mass, more preferably 50 to 100% by mass, still more preferably relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x). It is 60 to 98% by mass, more preferably 70 to 95% by mass.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x)が官能基を有する粘着性樹脂を含有する場合、粘着剤組成物(x)は、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(Crosslinking agent)
In one aspect of the present invention, when the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x) preferably further contains a crosslinking agent.
The said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge | crosslinks adhesive resins by using the said functional group as a crosslinking origin.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
Examples of the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent.
These crosslinking agents may be used independently and may use 2 or more types together.
Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force and availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~10000、より好ましくは500~8000、更に好ましくは800~5000である。
(Tackifier)
In one embodiment of the present invention, the pressure-sensitive adhesive composition (x) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
In the present specification, the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
The mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 Examples of tackifiers include rosin resins, terpene resins, styrene resins, and copolymerization of C5 fractions such as pentene, isoprene, piperine, and 1,3-pentadiene produced by thermal decomposition of petroleum naphtha. And C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、単独で用いてもよく、軟化点や構造が異なる2種以上を併用してもよい。
 そして、2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
In the present specification, the “softening point” of the tackifier means a value measured according to JIS K2531.
A tackifier may be used independently and may use together 2 or more types from which a softening point and a structure differ.
And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifier belongs to the said range.
 粘着付与剤の含有量は、粘着剤組成物(x)の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%、より更に好ましくは2~30質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, based on the total amount (100% by mass) of the active ingredients of the adhesive composition (x). More preferably, it is 1 to 40% by mass, and still more preferably 2 to 30% by mass.
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(x)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤、帯電防止剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
(Adhesive additive)
In one embodiment of the present invention, the pressure-sensitive adhesive composition (x) contains an additive for pressure-sensitive adhesives used for general pressure-sensitive adhesives in addition to the above-mentioned additives, as long as the effects of the present invention are not impaired. You may do it.
Examples of such an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, antistatic agents, and the like. Is mentioned.
These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。 When these pressure-sensitive adhesive additives are contained, the content of each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ~ 10 parts by mass.
 なお、第1粘着剤層(X1)及び第2粘着剤層(X2)は、非膨張性粘着剤層であることが好ましい。そのため、第1粘着剤層(X1)及び第2粘着剤層(X2)の形成材料である粘着剤組成物(x)中の膨張性粒子の含有量は極力少ないほど好ましい。
 膨張性粒子の含有量としては、粘着剤組成物(x)の有効成分の全量(100質量%)、もしくは、第1粘着剤層(X1)及び第2粘着剤層(X2)の全質量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
In addition, it is preferable that a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) are non-expandable adhesive layers. Therefore, the content of the expandable particles in the pressure-sensitive adhesive composition (x), which is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2), is preferably as small as possible.
As the content of the expandable particles, the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x), or the total mass of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) ( 100% by mass), preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
<剥離材>
 本発明の一態様で用いる粘着シートは、第1粘着剤層(X1)及び第2粘着剤層(X2)の粘着表面に、さらに剥離材を積層してもよい。
 剥離材としては、両面剥離処理をされた剥離シートや、片面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
<Release material>
In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, a release material may be further laminated on the pressure-sensitive adhesive surfaces of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
As the release material, a release sheet that has been subjected to a double-sided release process, a release sheet that has been subjected to a single-sided release process, or the like is used. Examples include a release material coated on a release material substrate.
 剥離材用基材としては、例えば、上質紙、グラシン紙、クラフト紙等の紙類;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等のプラスチックフィルム;等が挙げられる。 Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and kraft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; and olefins such as polypropylene resin and polyethylene resin. A plastic film such as a resin film;
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。 Examples of the release agent include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
 剥離材の厚さは、特に制限ないが、好ましくは10~200μm、より好ましくは25~170μm、更に好ましくは35~80μmである。 The thickness of the release material is not particularly limited, but is preferably 10 to 200 μm, more preferably 25 to 170 μm, and still more preferably 35 to 80 μm.
〔本発明の半導体チップの製造方法の各工程〕
 本発明の製造方法は、上述の粘着シートを用いた、半導体ウエハから半導体チップを製造する方法であって、下記工程(1)~(3)を有する。
・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面を、半導体ウエハの表面に貼付する工程。
・工程(2):前記半導体ウエハを分断して、複数の半導体チップを得る工程。
・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上の複数の半導体チップを貼付したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
[Each step of the semiconductor chip manufacturing method of the present invention]
The manufacturing method of the present invention is a method for manufacturing a semiconductor chip from a semiconductor wafer using the above-mentioned adhesive sheet, and includes the following steps (1) to (3).
Step (1): A step of sticking the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) to the hard support and sticking the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) to the surface of the semiconductor wafer.
Step (2): A step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
Step (3): The interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the expandable particles are expanded and the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. Separating with P.
 本発明の半導体チップの製造方法は、いわゆるステルスダイシング法に適用することもでき、先ダイシング法にも適用することができる。 The semiconductor chip manufacturing method of the present invention can be applied to the so-called stealth dicing method, and can also be applied to the tip dicing method.
 また、本発明の一態様の製造方法は、さらに下記工程(4)を有することが好ましく、下記工程(4)~(6)を有することがより好ましい。
・工程(4):工程(3)で前記硬質支持体から分離後、複数の半導体チップの回路面とは反対側の裏面を、基材フィルムと、粘着剤層及び/又は接着剤層とを有する転写テープに貼付した後、前記粘着シートを半導体チップから除去する工程。
・工程(5):前記転写テープをMD方向に引き伸ばし、複数の半導体チップ同士の間隔を広げる工程。
・工程(6):複数の半導体チップを、前記転写テープから分離させて、半導体チップを得る工程。
The production method of one embodiment of the present invention preferably further includes the following step (4), and more preferably includes the following steps (4) to (6).
Step (4): After separation from the hard support in Step (3), the back surface opposite to the circuit surface of the plurality of semiconductor chips is formed with a base film, an adhesive layer and / or an adhesive layer. A step of removing the pressure-sensitive adhesive sheet from the semiconductor chip after being attached to the transfer tape.
Step (5): a step of stretching the transfer tape in the MD direction to widen the interval between the plurality of semiconductor chips.
Step (6): A step of separating a plurality of semiconductor chips from the transfer tape to obtain a semiconductor chip.
 図2は、本発明の半導体チップの製造方法の工程(1)~(3)における断面模式図であり、図3は、工程(4)~(6)における模式断面図である。
 以下、図2及び3を適宜参照しながら、工程(1)~(4)について説明する。
FIG. 2 is a schematic cross-sectional view in steps (1) to (3) of the semiconductor chip manufacturing method of the present invention, and FIG. 3 is a schematic cross-sectional view in steps (4) to (6).
Hereinafter, steps (1) to (4) will be described with reference to FIGS. 2 and 3 as appropriate.
<工程(1)>
 図2(a)は、図1(a)に示す粘着シート1aを用いて、硬質支持体50に、半導体ウエハ60を貼付した状態を示す、工程(1)における断面模式図である。
 工程(1)では、粘着シート1aの第1粘着剤層(X1)の粘着表面を硬質支持体50に貼付し、第2粘着剤層(X2)の粘着表面を、半導体ウエハ60の回路が形成された回路面61に貼付することが好ましい。
 なお、図2においては、図1(a)に示す粘着シート1aを用いた態様を示しているが、他の構成を有する粘着シートを用いる場合においても、同様に、硬質支持体、粘着シート、及び半導体ウエハをこの順で積層し、粘着シートの第1粘着剤層(X1)の粘着表面は硬質支持体と、第2粘着剤層(X2)の粘着表面は半導体ウエハの回路面と貼付されることが好ましい。
<Step (1)>
FIG. 2A is a schematic cross-sectional view in step (1) showing a state in which the semiconductor wafer 60 is stuck to the hard support 50 using the adhesive sheet 1a shown in FIG.
In step (1), the adhesive surface of the first adhesive layer (X1) of the adhesive sheet 1a is attached to the hard support 50, and the circuit of the semiconductor wafer 60 is formed on the adhesive surface of the second adhesive layer (X2). It is preferable to affix to the circuit surface 61 made.
In addition, in FIG. 2, although the aspect using the adhesive sheet 1a shown to Fig.1 (a) is shown, also when using the adhesive sheet which has another structure, a hard support body, an adhesive sheet, And the semiconductor wafer are laminated in this order, and the adhesive surface of the first adhesive layer (X1) of the adhesive sheet is adhered to the hard support and the adhesive surface of the second adhesive layer (X2) is adhered to the circuit surface of the semiconductor wafer. It is preferable.
 硬質支持体は、粘着シートの第1粘着剤層(X1)の粘着表面の全面に貼付されることが好ましい。そのため、硬質支持体は、板状であることが好ましい。
 また、第1粘着剤層(X1)と貼付される硬質支持体の表面の面積は、図2に示すように、第1粘着剤層(X1)の粘着表面の面積以上であることが好ましい。
The hard support is preferably attached to the entire pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet. Therefore, the hard support is preferably plate-shaped.
Moreover, it is preferable that the area of the surface of the hard support body affixed with the 1st adhesive layer (X1) is more than the area of the adhesive surface of a 1st adhesive layer (X1), as shown in FIG.
 硬質支持体を構成する材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、及びシリコンウエハが好ましい。
 なお、エンジニアリングプラスチックとしては、ナイロン、ポリカーボネート(PC)、及びポリエチレンテレフタレート(PET)等が挙げられる。
 スーパーエンジニアリングプラスチックとしては、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、及びポリエーテルエーテルケトン(PEEK)等が挙げられる。
Examples of the material constituting the hard support include, for example, metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, polyamideimides Examples thereof include resin materials such as resins; composite materials such as glass epoxy resins, and among these, SUS, glass, and silicon wafers are preferable.
Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
Examples of super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
 硬質支持体の厚さは、好ましくは20μm以上50mm以下であり、より好ましくは60μm以上20mm以下である。 The thickness of the hard support is preferably 20 μm or more and 50 mm or less, and more preferably 60 μm or more and 20 mm or less.
 硬質支持体のヤング率とは、チップ割れの防止性能の向上の観点から、好ましくは1.0GPa以上、より好ましくは5.0GPa以上、更に好ましくは10GPa以上、より更に好ましくは20GPa以上である。
 なお、本明細書において、硬質支持体のヤング率は、JIS Z2280:1993の静的ヤング率試験方法に準拠し、室温(25℃)にて測定した値である。
The Young's modulus of the hard support is preferably 1.0 GPa or more, more preferably 5.0 GPa or more, still more preferably 10 GPa or more, and still more preferably 20 GPa or more, from the viewpoint of improving chip crack prevention performance.
In the present specification, the Young's modulus of the hard support is a value measured at room temperature (25 ° C.) in accordance with the static Young's modulus test method of JIS Z2280: 1993.
 第2粘着剤層(X2)の粘着表面に貼付される半導体ウエハの表面は、回路が形成された回路面であることが好ましい。
 一方、半導体ウエハの当該回路面とは反対側の面(以下「裏面」ともいう)は、次工程で研削処理を行って、半導体ウエハを分断して複数の半導体チップとするため、回路や電極等は形成されていない平坦面であることが好ましい。
 第2粘着剤層(X2)の粘着表面を半導体ウエハの回路面に貼付することで、当該回路面を保護することができる。
The surface of the semiconductor wafer attached to the adhesive surface of the second adhesive layer (X2) is preferably a circuit surface on which a circuit is formed.
On the other hand, the surface of the semiconductor wafer opposite to the circuit surface (hereinafter also referred to as “back surface”) is ground in the next process to divide the semiconductor wafer into a plurality of semiconductor chips. Etc. are preferably flat surfaces which are not formed.
By sticking the adhesive surface of the second adhesive layer (X2) to the circuit surface of the semiconductor wafer, the circuit surface can be protected.
 本発明の製造方法で用いる半導体ウエハは、シリコン、SiC(シリコンカーバイド)、ガリウム、砒素等から構成された半導体ウエハの一方の表面に、エッチング法、リフトオフ法等によって回路を形成することで得ることができる。 The semiconductor wafer used in the manufacturing method of the present invention is obtained by forming a circuit on one surface of a semiconductor wafer composed of silicon, SiC (silicon carbide), gallium, arsenic, or the like by an etching method, a lift-off method, or the like. Can do.
 なお、半導体ウエハには、ステルスダイシング法に適用するための半導体ウエハの内部に改質領域を形成する処理や、先ダイシング法に適用するための半導体ウエハの表面から厚さ方向に溝を形成する処理を行う必要がある。
 これらの処理を予め行った半導体ウエハの回路面を、第2粘着剤層(X2)の粘着表面に貼付してもよい。また、本工程にて、これらの処理を行っていない半導体ウエハの回路面を、第2粘着剤層(X2)の粘着表面に貼付した後、半導体ウエハの裏面からこれらの処理を行ってもよい。
In the semiconductor wafer, a process for forming a modified region inside the semiconductor wafer for application to the stealth dicing method, or a groove in the thickness direction from the surface of the semiconductor wafer for application to the previous dicing method is formed. It is necessary to perform processing.
You may affix the circuit surface of the semiconductor wafer which performed these processes previously on the adhesion surface of a 2nd adhesive layer (X2). In addition, after the circuit surface of the semiconductor wafer that has not been subjected to these treatments is attached to the adhesive surface of the second pressure-sensitive adhesive layer (X2) in this step, these treatments may be performed from the back surface of the semiconductor wafer. .
 特に、ステルスダイシング法に適用するための半導体ウエハの内部に改質領域を形成する処理については、半導体ウエハの回路面を、第2粘着剤層(X2)の粘着表面に貼付した後に行うことが好ましい。
 半導体ウエハの回路面を、第2粘着剤層(X2)の粘着表面に貼付した後に改質領域の形成処理を行うことで、半導体ウエハが粘着シートを介して硬質支持体に貼付されているため、改質領域を形成後に生じ得る半導体ウエハの反りを効果的に抑制することができる。
In particular, the process of forming the modified region inside the semiconductor wafer for application to the stealth dicing method is performed after the circuit surface of the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2). preferable.
The semiconductor wafer is attached to the hard support via the adhesive sheet by applying the modified region forming process after the circuit surface of the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2). The warp of the semiconductor wafer that can occur after the modified region is formed can be effectively suppressed.
 ステルスダイシング法によって半導体チップを製造する場合に、半導体ウエハの内部に改質領域を形成する処理としては、半導体ウエハの裏面をレーザ光入斜射面として、ワークの内部に集光点を合わせてレーザ光を照射することにより、多光子吸収による改質領域を形成する方法が挙げられる。改質領域の形成の際、改質領域から半導体ウエハの厚さ方向に伸びた亀裂ラインも形成する。 When manufacturing semiconductor chips by stealth dicing, the process for forming a modified region inside a semiconductor wafer is to use a laser with a laser beam incident oblique surface on the back side of the semiconductor wafer and a focusing point inside the workpiece. There is a method of forming a modified region by multiphoton absorption by irradiating light. When forming the modified region, a crack line extending from the modified region in the thickness direction of the semiconductor wafer is also formed.
 一方で、先ダイシング法に適用するための半導体ウエハの表面から厚さ方向に溝を形成する処理は、半導体ウエハを第2粘着剤層(X2)に貼付前に行ってもよく、貼付後に行ってもよい。
 先ダイシング法によって半導体チップを製造する場合に、半導体ウエハの表面から厚さ方向に溝を形成する処理としては、公知のウエハダイシング装置等を用いてダイシングにより行う方法が挙げられる。
On the other hand, the treatment for forming grooves in the thickness direction from the surface of the semiconductor wafer for application to the prior dicing method may be performed before or after the semiconductor wafer is bonded to the second pressure-sensitive adhesive layer (X2). May be.
In the case where a semiconductor chip is manufactured by the prior dicing method, a method of forming a groove in the thickness direction from the surface of the semiconductor wafer includes a method of performing dicing using a known wafer dicing apparatus or the like.
 なお、工程(1)は、膨張性粒子が膨張しない環境下で行うことが好ましい。
 例えば、膨張性粒子として、熱膨張性粒子を用いる場合には、工程(1)は、当該熱膨張性粒子の膨張開始温度(t)未満となる温度条件下で行われればよく、具体的には、0~80℃の環境下(膨張開始温度(t)が60~80℃である場合には、膨張開始温度(t)未満の環境下)で行われることが好ましい。
In addition, it is preferable to perform a process (1) in the environment where an expandable particle does not expand | swell.
For example, when thermally expandable particles are used as the expandable particles, the step (1) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
<工程(2)>
 工程(2)は、前記半導体ウエハを分断して、複数の半導体チップを得る工程である。
 半導体ウエハを分断する方法としては、半導体ウエハの裏面を研削して、半導体ウエハを複数の半導体チップに個片化する方法が好ましい。
 図2(b)は、半導体ウエハ60の裏面62を研削して、複数の半導体チップに個片化した際の、模式断面図である。
<Step (2)>
Step (2) is a step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
As a method for dividing the semiconductor wafer, a method of grinding the back surface of the semiconductor wafer and dividing the semiconductor wafer into a plurality of semiconductor chips is preferable.
FIG. 2B is a schematic cross-sectional view when the back surface 62 of the semiconductor wafer 60 is ground and separated into a plurality of semiconductor chips.
 例えば、ステルスダイシング法においては、本工程は、改質領域を有する半導体ウエハを、回路面とは反対側の回路が形成されていない裏面を研削し、半導体ウエハを分断して、複数の半導体チップを得る工程となる。
 ステルスダイシング法では、改質領域は、半導体ウエハにおいて、脆質化された部分であるため、半導体ウエハの裏面の研削により、厚さが薄くなることや、研削による力が加わることで、半導体ウエハが破壊されて半導体チップに個片化される起点となる領域となる。その結果、半導体ウエハは、改質領域及び亀裂ラインに沿って分断され、複数の半導体チップとして個片化される。
For example, in the stealth dicing method, in this step, a semiconductor wafer having a modified region is ground on a back surface on which a circuit opposite to the circuit surface is not formed, and the semiconductor wafer is divided into a plurality of semiconductor chips. It becomes the process of obtaining.
In the stealth dicing method, the modified region is an embrittled portion of the semiconductor wafer, so that the thickness of the semiconductor wafer is reduced by grinding the back surface of the semiconductor wafer, and the grinding force is applied to the semiconductor wafer. Is a region that becomes a starting point of being broken and separated into semiconductor chips. As a result, the semiconductor wafer is divided along the modified region and the crack line and separated into a plurality of semiconductor chips.
 また、先ダイシング法においては、本工程は、厚さ方向に予め形成された溝を有する半導体ウエハを、回路面とは反対側の回路が形成されていない裏面を研削し、半導体ウエハを分断して、複数の半導体チップを得る工程となる。
 先ダイシング法において、半導体ウエハに形成されている溝は、半導体ウエハの厚さより浅い深さの溝である。ここで、本工程で、少なくとも溝の底部に至る位置まで半導体ウエハを研削して薄くすることで、当該溝が、ウエハを貫通する切り込みとなり、半導体ウエハは分断されて、複数の半導体チップに個片化される。
Also, in the tip dicing method, this step is performed by grinding a semiconductor wafer having a groove formed in the thickness direction in advance on a back surface on which a circuit opposite to the circuit surface is not formed, thereby dividing the semiconductor wafer. Thus, this is a step of obtaining a plurality of semiconductor chips.
In the prior dicing method, the groove formed in the semiconductor wafer is a groove having a depth shallower than the thickness of the semiconductor wafer. Here, in this step, the semiconductor wafer is ground and thinned to at least the position reaching the bottom of the groove, so that the groove becomes a notch penetrating the wafer, and the semiconductor wafer is divided into a plurality of semiconductor chips. It is separated.
 上述のとおり、本発明の製造方法では、硬質支持体と貼付する第1粘着剤層(X1)には、膨張性粒子を含む必要がないため、半導体ウエハを硬質支持体に十分に固定した状態で、半導体ウエハを分断するための裏面研削を行うことができる。その結果、得られる半導体チップの端部が欠ける等の弊害を効果的に抑制でき、半導体チップの製造における歩留まりを向上させることができる。 As described above, in the manufacturing method of the present invention, the first pressure-sensitive adhesive layer (X1) to be attached to the hard support does not need to contain expandable particles, and thus the semiconductor wafer is sufficiently fixed to the hard support. Thus, back surface grinding for dividing the semiconductor wafer can be performed. As a result, adverse effects such as chipping of the end of the obtained semiconductor chip can be effectively suppressed, and the yield in manufacturing the semiconductor chip can be improved.
 なお、工程(2)においても、膨張性粒子が膨張しない環境下で行うことが好ましい。
 例えば、膨張性粒子として、熱膨張性粒子を用いる場合には、工程(2)は、当該熱膨張性粒子の膨張開始温度(t)未満となる温度条件下で行われればよく、具体的には、0~80℃の環境下(膨張開始温度(t)が60~80℃である場合には、膨張開始温度(t)未満の環境下)で行われることが好ましい。
In addition, it is preferable to perform also in a process (2) in the environment where an expandable particle does not expand | swell.
For example, when thermally expandable particles are used as the expandable particles, the step (2) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
<工程(3)>
 工程(3)は、前記膨張性粒子を膨張させて、第2粘着剤層(X2)上の複数の半導体チップを貼付したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程である。
 図2(c)は、膨張性基材層(Y1)中の膨張性粒子を膨張させて、硬質支持体50と第1粘着剤層(X1)との界面Pで分離した状態を示している。
 図2(c)に示すように、本工程では、膨張性粒子を膨張させた際、第2粘着剤層(X2)上の複数の半導体チップを貼付したまま、界面Pで硬質支持体50から分離されるが、さらに、前記粘着シートを構成する各層の層間では分離しないことが好ましい。
<Step (3)>
In the step (3), the expandable particles are expanded, and the interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. This is a step of separating by P.
FIG. 2C shows a state where the expandable particles in the expandable base material layer (Y1) are expanded and separated at the interface P between the hard support 50 and the first pressure-sensitive adhesive layer (X1). .
As shown in FIG. 2 (c), in this step, when the expandable particles are expanded, the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are stuck on the interface P from the hard support 50. Although it isolate | separates, it is further preferable not to isolate | separate between the layers of each layer which comprises the said adhesive sheet.
 本工程において、膨張性粒子を膨張させる方法としては、膨張性粒子の種類に応じて適宜選択される。
 例えば、膨張性粒子として、熱膨張性粒子を用いている場合は、当該熱膨張性粒子の膨張開始温度(t)以上の温度での加熱処理を行い、当該熱膨張性粒子を膨張させる。
 この際、上記の「膨張開始温度(t)以上の温度」としては、「膨張開始温度(t)+10℃」以上「膨張開始温度(t)+60℃」以下であることが好ましく、「膨張開始温度(t)+15℃」以上「膨張開始温度(t)+40℃」以下であることがより好ましい。
In this step, the method for expanding the expandable particles is appropriately selected according to the type of the expandable particles.
For example, when heat-expandable particles are used as the expandable particles, heat treatment is performed at a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles to expand the heat-expandable particles.
At this time, the “temperature higher than the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is more preferable that the temperature is not less than “temperature (t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”.
 本発明の製造方法においては、膨張性粒子を含む膨張性基材層(Y1)を有する粘着シートを用いて、当該膨張性粒子の膨張によって、硬質支持体と貼付している第1粘着剤層(X1)の粘着表面に凹凸を形成することで、硬質支持体と第1粘着剤層(X1)との界面Pで分離できるように調整している。
 そのため、分離後に硬質支持体の表面に第1粘着剤層(X1)の一部が残存するような、硬質支持体の汚染を抑制して、硬質支持体の洗浄工程を省略可能とし、生産性を向上させ得る。
In the production method of the present invention, the first pressure-sensitive adhesive layer adhered to the hard support by the expansion of the expandable particles using the pressure-sensitive adhesive sheet having the expandable base material layer (Y1) containing the expandable particles. By forming irregularities on the adhesive surface of (X1), it is adjusted so that it can be separated at the interface P between the hard support and the first adhesive layer (X1).
Therefore, it is possible to suppress the contamination of the hard support such that a part of the first pressure-sensitive adhesive layer (X1) remains on the surface of the hard support after the separation, and the washing process of the hard support can be omitted. Can be improved.
<工程(4)>
 工程(4)は、工程(3)で前記硬質支持体から分離後、複数の半導体チップの回路面とは反対側の裏面を、基材フィルムと、粘着剤層及び/又は接着剤層とを有する転写テープに貼付した後、前記粘着シートを半導体チップから除去する工程である。
 図3(a)は、複数の半導体チップ70の裏面72を、転写テープ80に貼付した後、粘着シート1aを半導体チップ70から除去した状態を示している。
<Process (4)>
In the step (4), after separating from the hard support in the step (3), the back surface opposite to the circuit surface of the plurality of semiconductor chips, the base film, the pressure-sensitive adhesive layer and / or the adhesive layer are provided. In this step, the adhesive sheet is removed from the semiconductor chip after being attached to the transfer tape.
FIG. 3A shows a state where the adhesive sheet 1 a is removed from the semiconductor chip 70 after the back surfaces 72 of the plurality of semiconductor chips 70 are attached to the transfer tape 80.
 本工程において、粘着シート1aが有する第2粘着剤層(X2)が、エネルギー線硬化型粘着剤組成物から形成された層である場合には、エネルギー線を照射して、第2粘着剤層(X2)の粘着力を低下させ、粘着シート1aを除去してもよい。
 なお、第2粘着剤層(X2)の粘着力を低下させるために照射するエネルギー線は、粘着シート側から照射することが好ましい。
 粘着シート1aを除去後、複数の半導体チップ70の回路面71が表出し、裏面72は転写テープ80に貼付される。
In this step, when the second pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet 1a is a layer formed from an energy ray-curable pressure-sensitive adhesive composition, the second pressure-sensitive adhesive layer is irradiated with energy rays. The adhesive strength of (X2) may be reduced and the adhesive sheet 1a may be removed.
In addition, it is preferable to irradiate the energy ray irradiated in order to reduce the adhesive force of a 2nd adhesive layer (X2) from the adhesive sheet side.
After removing the adhesive sheet 1 a, the circuit surfaces 71 of the plurality of semiconductor chips 70 are exposed, and the back surfaces 72 are affixed to the transfer tape 80.
 転写テープ80は、MD方向に引き伸ばすことで伸びるように設計されたものであり、複数の半導体チップ70同士の間隔を広げることができるように設計された粘着テープである。
 本発明の一態様で用いる転写テープは、基材フィルムと、粘着剤層及び/又は接着剤層とを有するものであるが、具体的な構成としては、例えば、以下の(1)~(3)の態様が挙げられる。
(1)基材フィルム、及び粘着剤層をこの順で積層してなる、転写テープ。
(2)基材フィルム、及び接着剤層をこの順で積層してなる、転写テープ。
(3)基材フィルム、粘着剤層、及び接着剤層をこの順で積層してなる、転写テープ。
The transfer tape 80 is designed to be stretched by stretching in the MD direction, and is an adhesive tape designed to widen the interval between the plurality of semiconductor chips 70.
The transfer tape used in one embodiment of the present invention has a base film and a pressure-sensitive adhesive layer and / or an adhesive layer. Specific configurations include, for example, the following (1) to (3) ).
(1) A transfer tape obtained by laminating a base film and an adhesive layer in this order.
(2) A transfer tape obtained by laminating a base film and an adhesive layer in this order.
(3) A transfer tape formed by laminating a base film, a pressure-sensitive adhesive layer, and an adhesive layer in this order.
 図3においては、上記(1)の態様の転写テープを用いた場合を示しており、基材フィルム81及び粘着剤層82をこの順で積層してなる転写テープ80の粘着剤層82に、複数の半導体チップ70の裏面72を貼付した状態を示している。 In FIG. 3, the case where the transfer tape of the aspect of the above (1) is used is shown. In the adhesive layer 82 of the transfer tape 80 formed by laminating the base film 81 and the adhesive layer 82 in this order, The state which stuck the back surface 72 of the several semiconductor chip 70 is shown.
(基材フィルム)
 転写テープを構成する基材フィルムとしては、例えば、ポリ塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート等)、アクリル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、ポリイミド樹脂、ポリウレタン樹脂、及びポリスチレン樹脂等から選ばれる1種以上の樹脂を含む樹脂フィルムが挙げられる。
 また、転写テープを構成する基材フィルムは、熱可塑性エラストマー、ゴム系材料等を含有することが好ましく、熱可塑性エラストマーを含有することがより好ましい。
 熱可塑性エラストマーとしては、ウレタン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、スチレン系エラストマー、アクリル系エラストマー、アミド系エラストマー等が挙げられる。
(Base film)
As the base film constituting the transfer tape, for example, polyvinyl chloride resin, polyester resin (polyethylene terephthalate, etc.), acrylic resin, polycarbonate resin, polyethylene resin, polypropylene resin, acrylonitrile / butadiene / styrene resin, polyimide resin, polyurethane resin And a resin film containing one or more kinds of resins selected from polystyrene resins and the like.
The base film constituting the transfer tape preferably contains a thermoplastic elastomer, a rubber-based material, etc., and more preferably contains a thermoplastic elastomer.
Examples of the thermoplastic elastomer include urethane elastomers, olefin elastomers, vinyl chloride elastomers, polyester elastomers, styrene elastomers, acrylic elastomers, and amide elastomers.
 基材フィルムは、単層構成であってもよく、2層以上を積層してなる複層構成であってもよい。
 また、基材フィルムは、さらに顔料、染料、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。
 転写テープを構成する基材フィルムの厚さとしては、好ましくは20~300μm、より好ましくは30~250μm、更に好ましくは40~200μmである。
The base film may have a single layer configuration or a multilayer configuration in which two or more layers are laminated.
The base film may further contain various additives such as pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like.
The thickness of the base film constituting the transfer tape is preferably 20 to 300 μm, more preferably 30 to 250 μm, still more preferably 40 to 200 μm.
(粘着剤層)
 転写テープを構成する粘着剤層としては、上述の第1粘着剤層(X1)及び第2粘着剤層(X2)の形成材料である粘着剤組成物(x)から形成された層であってもよいが、第2粘着剤層(X2)の形成材料として好適である、上述のエネルギー線硬化型粘着剤組成物から形成されたエネルギー線硬化型粘着剤層であることが好ましい。
(Adhesive layer)
The pressure-sensitive adhesive layer constituting the transfer tape is a layer formed from the pressure-sensitive adhesive composition (x) which is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2). However, the energy ray curable pressure-sensitive adhesive layer formed from the above-mentioned energy ray curable pressure-sensitive adhesive composition, which is suitable as a material for forming the second pressure-sensitive adhesive layer (X2), is preferable.
 転写テープを構成する粘着剤層が、エネルギー線硬化型粘着剤層であると、工程(6)のピックアップ工程の作業性が良好となる。
 ただし、工程(4)において粘着シートを除去する際にエネルギー線を照射する場合、転写テープのエネルギー線硬化型粘着剤層の粘着力が低下しないように、粘着シートを除去する際のエネルギー線は、粘着シート側から照射することが好ましい。
When the pressure-sensitive adhesive layer constituting the transfer tape is an energy ray curable pressure-sensitive adhesive layer, the workability of the pickup step in step (6) is improved.
However, when irradiating energy rays when removing the pressure sensitive adhesive sheet in step (4), the energy rays when removing the pressure sensitive adhesive sheet are such that the adhesive strength of the energy ray curable pressure sensitive adhesive layer of the transfer tape does not decrease. It is preferable to irradiate from the adhesive sheet side.
 転写テープを構成する粘着剤層の厚さとしては、好ましくは1~100μm、より好ましくは3~50μm、更に好ましくは5~40μmである。 The thickness of the pressure-sensitive adhesive layer constituting the transfer tape is preferably 1 to 100 μm, more preferably 3 to 50 μm, still more preferably 5 to 40 μm.
(接着剤層)
 転写テープを構成する接着剤層としては、バインダー樹脂及び熱硬化性成分を含む接着剤組成物から形成された層であることが好ましい。
 バインダー樹脂としては、例えば、アクリル系樹脂、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、シリコーン樹脂、ゴム系ポリマー、フェノキシ樹脂等が挙げられるが、アクリル系樹脂が好ましい。
 熱硬化性成分としては、エポキシ樹脂と熱硬化剤とを含むことが好ましい。
(Adhesive layer)
The adhesive layer constituting the transfer tape is preferably a layer formed from an adhesive composition containing a binder resin and a thermosetting component.
Examples of the binder resin include acrylic resins, polyester resins, urethane resins, acrylic urethane resins, silicone resins, rubber polymers, phenoxy resins, and the like, and acrylic resins are preferable.
As the thermosetting component, an epoxy resin and a thermosetting agent are preferably included.
 転写テープを構成する接着剤層の厚さとしては、好ましくは1~100μm、より好ましくは5~75μm、更に好ましくは5~50μmである。 The thickness of the adhesive layer constituting the transfer tape is preferably 1 to 100 μm, more preferably 5 to 75 μm, still more preferably 5 to 50 μm.
<工程(5)>
 工程(5)は、転写テープをMD方向に引き伸ばし、複数の半導体チップ同士の間隔を広げる工程である。
 図3(b)に示すように、転写テープ80をMD方向に引き伸ばし、複数の半導体チップ70同士の間隔を広げることで、次工程でのピックアップ性が良好となる。
<Step (5)>
Step (5) is a step of extending the transfer tape in the MD direction and widening the interval between the plurality of semiconductor chips.
As shown in FIG. 3B, the transfer tape 80 is stretched in the MD direction to widen the interval between the plurality of semiconductor chips 70, so that the pickup property in the next process is improved.
<工程(6)>
 工程(6)は、複数の半導体チップを、前記転写テープから分離させて、半導体チップを得る工程である。
 図3(c)は、上記(1)の態様の転写テープを用いて、本工程でピックアップして、複数の半導体チップ70が得られた状態を示している。
 ここで、使用している転写テープがエネルギー線硬化型粘着剤層を有するものである場合、エネルギー線を照射することで、粘着力が低下し、ピックアップ性を良好とすることができる。
 なお、この際、エネルギー線は、基材フィルム側から照射することが好ましい。
<Step (6)>
Step (6) is a step of obtaining a semiconductor chip by separating a plurality of semiconductor chips from the transfer tape.
FIG. 3C shows a state in which a plurality of semiconductor chips 70 are obtained by picking up in this step using the transfer tape of the aspect (1).
Here, when the transfer tape used has an energy ray-curable pressure-sensitive adhesive layer, the adhesive force is reduced by irradiating the energy ray, and the pickup property can be improved.
In this case, it is preferable to irradiate the energy rays from the base film side.
 転写テープとして、上記(2)及び(3)の態様の転写テープを用いている場合、本工程でのピックアップ時に、接着剤層が半導体チップの裏面に固着残存し、接着剤層付き半導体チップを得ることができ、ボンティング工程を省略することができる。 When the transfer tape according to the above aspects (2) and (3) is used as the transfer tape, the adhesive layer remains firmly adhered to the back surface of the semiconductor chip at the time of picking up in this step, and the semiconductor chip with the adhesive layer is removed. And the bonding process can be omitted.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の製造例及び実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples. In addition, the physical-property value in the following manufacture examples and Examples is a value measured by the following method.
<質量平均分子量(Mw)>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<Mass average molecular weight (Mw)>
Using a gel permeation chromatograph (product name “HLC-8020” manufactured by Tosoh Corporation), the measurement was performed under the following conditions, and the value measured in terms of standard polystyrene was used.
(Measurement condition)
Column: "TSK guard column HXL-L", "TSK gel G2500HXL", "TSK gel G2000HXL", and "TSK gel G1000HXL" (both manufactured by Tosoh Corporation) Column temperature: 40 ° C
・ Developing solvent: Tetrahydrofuran ・ Flow rate: 1.0 mL / min
<各層の厚さの測定>
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
<Measurement of thickness of each layer>
It was measured using a constant pressure thickness measuring instrument (model number: “PG-02J”, standard: conforming to JIS K6783, Z1702, Z1709) manufactured by Teclock Co., Ltd.
<熱膨張性基材層(Y1)の貯蔵弾性率E’>
 形成した熱膨張性基材層(Y1)を、縦5mm×横30mm×厚さ200μmの大きさとし、剥離材を除去したものを試験サンプルとした。
 動的粘弾性測定装置(TAインスツルメント社製,製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、所定の温度における、当該試験サンプルの貯蔵弾性率E’を測定した。
<Storage elastic modulus E ′ of thermally expandable base material layer (Y1)>
The formed heat-expandable base material layer (Y1) was 5 mm long × 30 mm wide × 200 μm thick, and the test piece was prepared by removing the release material.
Using a dynamic viscoelasticity measuring device (TA Instruments, product name “DMAQ800”), test start temperature 0 ° C., test end temperature 300 ° C., temperature increase rate 3 ° C./min, frequency 1 Hz, amplitude 20 μm Under the conditions, the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
<第1粘着剤層(X1)及び第2粘着剤層(X2)の貯蔵せん断弾性率G’>
 形成した第1粘着剤層(X1)及び第2粘着剤層(X2)を、直径8mmの円形に切断したものを、剥離材を除去し、重ね合わせて、厚さ3mmとしたものを試験サンプルとした。
 粘弾性測定装置(Anton Paar社製、装置名「MCR300」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hzの条件で、ねじりせん断法によって、所定の温度における、試験サンプルの貯蔵せん断弾性率G’を測定した。
<Storage shear modulus G ′ of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2)>
A sample prepared by cutting the formed first pressure-sensitive adhesive layer (X1) and second pressure-sensitive adhesive layer (X2) into a circle having a diameter of 8 mm, removing the release material, and superposing them to obtain a thickness of 3 mm It was.
Using a viscoelasticity measuring device (manufactured by Anton Paar, device name “MCR300”), a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz Was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
<プローブタック値>
 測定対象となる基材層を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとした。
 23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製,製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定した。
 具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とした。
<Probe tack value>
A base material layer to be measured was cut into a square with a side of 10 mm, and then allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity) was used as a test sample.
Using a tacking tester (manufactured by Nippon Special Instrument Co., Ltd., product name “NTS-4800”) in an environment of 23 ° C. and 50% RH (relative humidity), the probe tack value on the surface of the test sample was measured according to JIS. It measured based on Z0237: 1991.
Specifically, a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is moved at a speed of 10 mm / sec. The force required to separate from the surface was measured, and the obtained value was used as the probe tack value of the test sample.
<第2粘着剤層(X2)の粘着力の測定>
 剥離フィルム上に形成した第2粘着剤層(X2)の粘着表面上に、厚さ50μmのPETフィルム(東洋紡株式会社製、製品名「コスモシャインA4100」)を積層し、基材付き粘着シートとした。
 そして、剥離フィルムを除去し、表出した第2粘着剤層(X2)の粘着表面を、被着体であるステンレス鋼板(SUS304 360番研磨)に貼付し、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、23℃における粘着力を測定した。
<Measurement of adhesive strength of second adhesive layer (X2)>
On the adhesive surface of the second adhesive layer (X2) formed on the release film, a 50 μm thick PET film (product name “Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.) is laminated, did.
Then, the release film was removed, and the exposed adhesive surface of the second adhesive layer (X2) was attached to a stainless steel plate (SUS304 360 polishing) as an adherend, and 23 ° C., 50% RH (relative humidity). ) Under the same environment, the adhesive strength at 23 ° C. was measured at a pulling rate of 300 mm / min by the 180 ° peeling method in accordance with JIS Z0237: 2000.
<硬質支持体のヤング率>
 JIS Z2280:1993の静的ヤング率試験方法に準拠し、室温(25℃)にて測定した。
<Young's modulus of hard support>
The measurement was performed at room temperature (25 ° C.) in accordance with the static Young's modulus test method of JIS Z2280: 1993.
製造例1(アクリルウレタン系樹脂の合成)
(1)ウレタンプレポリマーの合成)
 窒素雰囲気下の反応容器内に、質量平均分子量1,000のポリカーボネートジオール100質量部(固形分比)に対して、イソホロンジイソシアネートを、ポリカーボネートジオールの水酸基とイソホロンジイソシアネートのイソシアネート基との当量比が1/1となるように配合し、さらにトルエン160質量部を加え、窒素雰囲気下にて、撹拌しながら、イソシアネート基濃度が理論量に到達するまで、80℃で6時間以上反応させた。
 次いで、2-ヒドロキシエチルメタクリレート(2-HEMA)1.44質量部(固形分比)をトルエン30質量部に希釈した溶液を添加して、両末端のイソシアネート基が消滅するまで、更に80℃で6時間反応させ、質量平均分子量2.9万のウレタンプレポリマーを得た。
Production Example 1 (Synthesis of acrylic urethane resin)
(1) Synthesis of urethane prepolymer)
In a reaction vessel under a nitrogen atmosphere, with respect to 100 parts by mass (solid content ratio) of polycarbonate diol having a weight average molecular weight of 1,000, isophorone diisocyanate has an equivalent ratio of hydroxyl group of polycarbonate diol and isocyanate group of isophorone diisocyanate of 1. / 1, 160 parts by mass of toluene was further added, and the mixture was allowed to react at 80 ° C. for 6 hours or more while stirring under a nitrogen atmosphere until the isocyanate group concentration reached the theoretical amount.
Subsequently, a solution obtained by diluting 1.44 parts by mass (solid content ratio) of 2-hydroxyethyl methacrylate (2-HEMA) in 30 parts by mass of toluene is added, and further at 80 ° C. until the isocyanate groups at both ends disappear. The reaction was performed for 6 hours to obtain a urethane prepolymer having a mass average molecular weight of 29,000.
(2)アクリルウレタン系樹脂の合成
 窒素雰囲気下の反応容器内に、製造例1で得たウレタンプレポリマー100質量部(固形分比)、メチルメタクリレート(MMA)117質量部(固形分比)、2-ヒドロキシエチルメタクリレート(2-HEMA)5.1質量部(固形分比)、1-チオグリセロール1.1質量部(固形分比)、及びトルエン50質量部を加え、撹拌しながら、105℃まで昇温した。
 そして、反応容器内に、さらにラジカル開始剤(株式会社日本ファインケム製、製品名「ABN-E」)2.2質量部(固形分比)をトルエン210質量部で希釈した溶液を、105℃に維持したまま4時間かけて滴下した。
 滴下終了後、105℃で6時間反応させ、質量平均分子量10.5万のアクリルウレタン系樹脂の溶液を得た。
(2) Synthesis of acrylic urethane-based resin In a reaction vessel under a nitrogen atmosphere, 100 parts by mass of urethane prepolymer obtained in Production Example 1 (solid content ratio), 117 parts by mass of methyl methacrylate (MMA) (solid content ratio), 2-hydroxyethyl methacrylate (2-HEMA) 5.1 parts by mass (solid content ratio), 1-thioglycerol 1.1 parts by mass (solid content ratio) and toluene 50 parts by mass were added and stirred at 105 ° C. The temperature was raised to.
Further, a solution obtained by further diluting 2.2 parts by mass (solid content ratio) of radical initiator (manufactured by Nippon Finechem Co., Ltd., product name “ABN-E”) with 210 parts by mass of toluene in a reaction vessel was heated to 105 ° C. It was dripped over 4 hours, maintaining.
After completion of dropping, the reaction was carried out at 105 ° C. for 6 hours to obtain an acrylic urethane resin solution having a mass average molecular weight of 105,000.
製造例2(粘着シートの作製)
 以下の粘着シートの作製の際に、各層の形成で使用した粘着性樹脂、添加剤、熱膨張性粒子、基材及び剥離材の詳細は以下のとおりである。
<粘着性樹脂>
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
・アクリル系共重合体(ii):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)/アクリル酸=86.0/8.0/5.0/1.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
<添加剤>
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
<熱膨張性粒子>
・熱膨張性粒子(i):株式会社クレハ製、製品名「S2640」、膨張開始温度(t)=208℃、平均粒子径(D50)=24μm、90%粒子径(D90)=49μm。
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
Production Example 2 (Preparation of adhesive sheet)
Details of the adhesive resin, additives, thermally expandable particles, base material, and release material used in the formation of each layer in the production of the following adhesive sheet are as follows.
<Adhesive resin>
Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) = 80.0 / 20.0 (mass ratio), An acrylic copolymer having a Mw of 600,000.
Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid = 86.0 / 8.0 / 5.0 / 1. An acrylic copolymer having an Mw of 600,000 having a structural unit derived from a raw material monomer consisting of 0 (mass ratio).
<Additives>
Isocyanate crosslinking agent (i): manufactured by Tosoh Corporation, product name “Coronate L”, solid content concentration: 75 mass%.
<Thermal expandable particles>
Thermally expandable particles (i): manufactured by Kureha Co., Ltd., product name “S2640”, expansion start temperature (t) = 208 ° C., average particle size (D 50 ) = 24 μm, 90% particle size (D 90 ) = 49 μm .
<Release material>
Heavy release film: manufactured by Lintec Corporation, product name “SP-PET382150”, a polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
Light release film: manufactured by Lintec Co., Ltd., product name “SP-PET381031”, a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
(1)第1粘着剤層(X1)の形成
 粘着性樹脂である、上記アクリル系共重合体(i)の固形分100質量部に、上記イソシアネート系架橋剤(i)5.0質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記重剥離フィルムの剥離剤層の表面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの非膨張性粘着剤層である第1粘着剤層(X1)を形成した。
 なお、23℃における、第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、2.5×10Paであった。
(1) Formation of 1st adhesive layer (X1) To 100 mass parts of solid content of the said acrylic copolymer (i) which is adhesive resin, said isocyanate type crosslinking agent (i) 5.0 mass parts ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass.
And the said adhesive composition is apply | coated to the surface of the release agent layer of the said heavy release film, a coating film is formed, the said coating film is dried at 100 degreeC for 60 second, and a non-expandable adhesive of thickness 5 micrometers. The 1st adhesive layer (X1) which is an agent layer was formed.
The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 × 10 5 Pa.
(2)第2粘着剤層(X2)の形成
 粘着性樹脂である、上記アクリル系共重合体(ii)の固形分100質量部に、上記イソシアネート系架橋剤(i)0.8質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記軽剥離フィルムの剥離剤層の表面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ10μmの第2粘着剤層(X2)を形成した。
 なお、23℃における、第2粘着剤層(X2)の貯蔵せん断弾性率G’(23)は、9.0×10Paであった。
 また、上記方法に基づき測定した、第2粘着剤層(X2)の粘着力は、1.0N/25mmであった。
 なお、第2粘着剤層(X2)及び前記第1粘着剤層(X1)は、プローブタック値が50mN/5mmφ以上であることが明らかであったため、プローブタック値の測定を省略した。
(2) Formation of 2nd adhesive layer (X2) To 100 mass parts of solid content of the said acrylic copolymer (ii) which is adhesive resin, 0.8 mass part of said isocyanate type crosslinking agent (i) ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare an adhesive composition having a solid content concentration (active ingredient concentration) of 25 mass%.
And the said adhesive composition is apply | coated to the surface of the release agent layer of the said light release film, a coating film is formed, the said coating film is dried at 100 degreeC for 60 second, and 10 micrometers in thickness 2nd adhesive. Layer (X2) was formed.
The storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) at 23 ° C. was 9.0 × 10 3 Pa.
Moreover, the adhesive force of the 2nd adhesive layer (X2) measured based on the said method was 1.0 N / 25mm.
Since it was clear that the second pressure-sensitive adhesive layer (X2) and the first pressure-sensitive adhesive layer (X1) had a probe tack value of 50 mN / 5 mmφ or more, measurement of the probe tack value was omitted.
(3)基材(Y)の作製
 製造例1で得たアクリルウレタン系樹脂の固形分100質量部に、上記イソシアネート系架橋剤(i)6.3質量部(固形分比)、触媒として、ジオクチルスズビス(2-エチルヘキサノエート)1.4質量部(固形分比)、及び上記熱膨張性粒子(i)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の樹脂組成物を調製した。
 なお、得られた樹脂組成物中の有効成分の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%であった。
 そして、非膨張性基材である、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、製品名「コスモシャインA4100」、プローブタック値:0mN/5mmφ)の表面上に、当該樹脂組成物を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの膨張性基材層(Y1)を形成した。
 ここで、上記PETフィルムは、非膨張性基材層(Y2)に相当する。
(3) Production of substrate (Y) To 100 parts by mass of the solid content of the acrylic urethane-based resin obtained in Production Example 1, 6.3 parts by mass (solid content ratio) of the isocyanate-based crosslinking agent (i), as a catalyst, Dioctyltin bis (2-ethylhexanoate) 1.4 parts by mass (solid content ratio) and the above-mentioned thermally expandable particles (i) were blended, diluted with toluene, stirred uniformly, and solid content concentration ( A resin composition having an active ingredient concentration of 30% by mass was prepared.
In addition, content of the thermally expansible particle (i) with respect to the whole quantity (100 mass%) of the active ingredient in the obtained resin composition was 20 mass%.
And on the surface of a 50 μm-thick polyethylene terephthalate (PET) film (product name “Cosmo Shine A4100”, probe tack value: 0 mN / 5 mmφ, which is a non-intumescent substrate) The product was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to form an expandable substrate layer (Y1) having a thickness of 50 μm.
Here, the PET film corresponds to the non-expandable base material layer (Y2).
 なお、膨張性基材層(Y1)の物性値を測定するサンプルとして、上記軽剥離フィルムの剥離剤層の表面に、当該樹脂組成物を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの膨張性基材層(Y1)を同様に形成した。
 そして、上述の測定方法に基づき、膨張性基材層(Y1)の各温度における貯蔵弾性率及びプローブタック値を測定した。当該測定結果は、以下のとおりであった。
・23℃における貯蔵弾性率E’(23)=2.0×10Pa
・208℃における貯蔵弾性率E’(208)=5.0×10Pa
・プローブタック値=0mN/5mmφ
 また、上記PETフィルム、すなわち、非膨張性基材層(Y2)の各温度における貯蔵弾性率及びプローブタック値を測定した。当該測定結果は、以下のとおりであった。
・23℃における貯蔵弾性率E’(23)=1.0×10MPa
・208℃における貯蔵弾性率E’(208)=0.8×10MPa
・プローブタック値=0mN/5mmφ
In addition, as a sample for measuring the physical property value of the expandable base material layer (Y1), the resin composition is applied to the surface of the release agent layer of the light release film to form a coating film, and the coating film is formed into 100. Drying was performed at ° C for 120 seconds to similarly form a 50 μm thick expandable base material layer (Y1).
And based on the above-mentioned measuring method, the storage elastic modulus and probe tack value in each temperature of an expansible base material layer (Y1) were measured. The measurement results were as follows.
-Storage elastic modulus E '(23) at 23 ° C. = 2.0 × 10 8 Pa
-Storage elastic modulus E '(208) at 208 ° C = 5.0 x 10 5 Pa
・ Probe tack value = 0mN / 5mmφ
Moreover, the storage elastic modulus and probe tack value at each temperature of the PET film, that is, the non-expandable base material layer (Y2) were measured. The measurement results were as follows.
-Storage elastic modulus E '(23) at 23 ° C. = 1.0 × 10 3 MPa
-Storage elastic modulus E '(208) at 208 ° C = 0.8 x 10 2 MPa
・ Probe tack value = 0mN / 5mmφ
(4)各層の積層
 上記(1-3)で作製した基材(Y1)の非膨張性基材層(Y2)と、上記(2)で形成した第2粘着剤層(X2)とを貼り合わせると共に、熱膨張性基材層(Y1)と、上記(1)で形成した第1粘着剤層(X1)とを貼り合せた。
 そして、重剥離フィルム/第1粘着剤層(X1)/膨張性基材層(Y1)/非膨張性基材層(Y2)/第2粘着剤層(X2)/軽剥離フィルムをこの順で積層してなる、粘着シートを作製した。
(4) Lamination of each layer The non-intumescent base material layer (Y2) of the base material (Y1) prepared in (1-3) above and the second pressure-sensitive adhesive layer (X2) formed in (2) above are attached. At the same time, the thermally expandable base material layer (Y1) and the first pressure-sensitive adhesive layer (X1) formed in the above (1) were bonded together.
And the heavy release film / first pressure-sensitive adhesive layer (X1) / expandable base material layer (Y1) / non-expandable base material layer (Y2) / second pressure-sensitive adhesive layer (X2) / light release film in this order A pressure-sensitive adhesive sheet was prepared by laminating.
 なお、作製した粘着シートについて、上述の方法に基づき、剥離力(F)及び(F)を以下の方法に準拠して測定した。
 その結果、剥離力(F)=0.23N/25mm、剥離力(F)=0mN/25mmとなり、剥離力(F)と剥離力(F)との比〔(F)/(F)〕は0であった。
As for the pressure-sensitive adhesive sheets prepared on the basis of the above-described method, peel force (F 0) and (F 1) measured in accordance with the following methods.
As a result, the peel force (F 0 ) = 0.23 N / 25 mm and the peel force (F 1 ) = 0 mN / 25 mm, and the ratio between the peel force (F 1 ) and the peel force (F 0 ) [(F 1 ) / (F 0 )] was 0.
<剥離力(F)の測定>
 作製した粘着シートを23℃、50%RH(相対湿度)の環境下で、24時間静置した後、当該粘着シートが有する重剥離フィルムを除去し、表出した第1粘着剤層(X1)を、シリコンウエハに貼付した。
 次いで、粘着シートが貼付されたシリコンウエハの端部を、万能引張試験機(オリエンテック社製,製品名「テンシロン UTM-4-100」)の下部チャックへ固定し、上部チャックで粘着シートを固定した。
 そして、上記と同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引張速度300mm/分で、シリコンウエハと粘着シートの第1粘着剤層(X1)との界面Pで剥離した際に測定された剥離力を「剥離力(F)」とした。
<Measurement of peeling force (F 0 )>
The prepared pressure-sensitive adhesive sheet was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), then the heavy release film of the pressure-sensitive adhesive sheet was removed, and the first pressure-sensitive adhesive layer (X1) exposed Was affixed to a silicon wafer.
Next, the end of the silicon wafer with the adhesive sheet attached is fixed to the lower chuck of the universal tensile testing machine (Orientec, product name “Tensilon UTM-4-100”), and the adhesive sheet is fixed with the upper chuck. did.
Then, in the same environment as above, peeling is performed at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet at a pulling speed of 300 mm / min according to JIS Z0237: 2000 by a 180 ° peeling method. The peeling force measured at the time of the measurement was defined as “peeling force (F 0 )”.
<剥離力(F)の測定>
 作製した粘着シートが有する重剥離フィルムを除去し、表出した第1粘着剤層(X1)をシリコンウエハに貼付し、240℃で3分間加熱し、膨張性基材層(Y1)中の熱膨張性粒子を膨張させた。
 その後は、上述の剥離力(F)の測定と同様にし、上記条件にて、シリコンウエハと粘着シートの第1粘着剤層(X1)との界面Pで剥離した際に測定された剥離力を「剥離力(F)」とした。
 なお、剥離力(F)の測定において、万能引張試験機の上部チャックで、粘着シートを固定しようとした際、シリコンウエハから粘着シート(I)が完全に分離してしまい、固定ができない場合には、測定を終了し、その際の剥離力(F)は「0mN/25mm」とした。
<Measurement of peel force (F 1 )>
Remove the heavy release film of the prepared pressure-sensitive adhesive sheet, stick the exposed first pressure-sensitive adhesive layer (X1) to a silicon wafer, heat at 240 ° C. for 3 minutes, and heat in the expandable base material layer (Y1) The expandable particles were expanded.
Thereafter, in the same manner as the measurement of the peel force (F 0 ) described above, the peel force measured when peeled at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet under the above conditions. Was defined as “peeling force (F 1 )”.
When measuring the peel force (F 1 ), the adhesive sheet (I) is completely separated from the silicon wafer when the adhesive sheet is fixed with the upper chuck of the universal tensile testing machine and cannot be fixed. The measurement was terminated, and the peeling force (F 1 ) at that time was set to “0 mN / 25 mm”.
製造例3(転写テープの作製)
 ブチルアクリレート/2-ヒドロキシエチルアクリレート=85/15(質量比)を反応させて得られたアクリル系共重合体と、その2-ヒドロキシエチルアクリレートに対して80モル%のメタクリロイルオキシエチルイソシアネート(MOI)とを反応させて得られた、質量平均分子量(Mw)60万のエネルギー線硬化型アクリル系共重合体を、粘着性樹脂として用いた。
 当該エネルギー線硬化型アクリル系共重合体の固形分100質量部に対して、光重合開始剤である1-ヒドロキシシクロフェニルケトン(BASF社製、製品名「イルガキュア184」)3質量部と、架橋剤であるトリレンジイソシアネート系架橋剤(東ソー社製、製品名「コロネートL」)0.45質量部とを溶媒中で混合し、粘着性組成物を得た。
 次に、上述の軽剥離フィルム(i)の剥離処理面に、上記粘着性組成物を塗布し塗膜を形成し、当該塗膜を乾燥させて、厚さ10μmの粘着剤層を形成した。
 そして、この粘着剤層の表出した表面に、基材フィルムとして、ポリエステル系ポリウレタンエラストマーシート(シーダム社製、製品名「ハイグレスDUS202」、厚さ50μm)の片面を貼り合わせた。
 以上のようにして、基材フィルム、粘着剤層、及び軽剥離フィルムをこの順で積層してなる転写テープを得た。
Production Example 3 (Production of transfer tape)
Acrylic copolymer obtained by reacting butyl acrylate / 2-hydroxyethyl acrylate = 85/15 (mass ratio), and 80 mol% of methacryloyloxyethyl isocyanate (MOI) based on 2-hydroxyethyl acrylate The energy ray-curable acrylic copolymer having a mass average molecular weight (Mw) of 600,000 obtained by reacting with was used as an adhesive resin.
With respect to 100 parts by mass of the solid content of the energy ray curable acrylic copolymer, 3 parts by mass of 1-hydroxycyclophenyl ketone (product name “Irgacure 184”, manufactured by BASF) as a photopolymerization initiator is crosslinked. 0.45 parts by mass of a tolylene diisocyanate crosslinking agent (product name “Coronate L”, manufactured by Tosoh Corporation), which is an agent, was mixed in a solvent to obtain an adhesive composition.
Next, the adhesive composition was applied to the release-treated surface of the light release film (i) to form a coating film, and the coating film was dried to form an adhesive layer having a thickness of 10 μm.
And the single side | surface of the polyester-type polyurethane-elastomer sheet | seat (The product name "Higres DUS202", thickness 50micrometer) made from a Seadam company) was bonded together to the surface which this adhesive layer exposed.
As described above, a transfer tape obtained by laminating the base film, the pressure-sensitive adhesive layer, and the light release film in this order was obtained.
実施例1
<工程(1)>
 製造例2で作製した粘着シートを230mm×230mmの正方形の大きさに裁断した。
 バックグラインド用テープラミネーター(リンテック社製、装置名「RAD-3510F/12」)を用いて、裁断後の粘着シートの重剥離フィルムを剥離して、表出した第1粘着剤層(X1)の粘着表面を、硬質支持体(材質:シリコン、厚さ:725μm、ヤング率:30GPa)に貼付した。そして、さらに軽剥離フィルムも剥離して、表出した第2粘着剤層(X2)の粘着表面に、一方の表面に回路が形成された回路面を有する半導体ウエハ(直径200mm、厚さ725μmの円板状)の当該回路面を貼付した。
 その後、ステルスレーザー照射装置(東京精密社製、装置名「ML300PlusWH」)を用いて、半導体ウエハの回路面とは反対側の裏面から、ステルスレーザー照射を行って、半導体ウエハの内部に改質領域を形成した。
Example 1
<Step (1)>
The pressure-sensitive adhesive sheet produced in Production Example 2 was cut into a square size of 230 mm × 230 mm.
Using a tape grinder for back grind (manufactured by Lintec Corporation, device name “RAD-3510F / 12”), the heavy release film of the cut adhesive sheet was peeled off, and the first adhesive layer (X1) exposed was exposed. The adhesive surface was attached to a hard support (material: silicon, thickness: 725 μm, Young's modulus: 30 GPa). Further, the light release film is also peeled off, and a semiconductor wafer having a circuit surface with a circuit formed on one surface on the adhesive surface of the exposed second pressure-sensitive adhesive layer (X2) (diameter 200 mm, thickness 725 μm) The circuit surface of the disk shape was attached.
Then, using a stealth laser irradiation device (manufactured by Tokyo Seimitsu Co., Ltd., device name “ML300PlusWH”), stealth laser irradiation is performed from the back surface opposite to the circuit surface of the semiconductor wafer, and a modified region is formed inside the semiconductor wafer. Formed.
<工程(2)>
 ポリッシュ・グラインダ(東京精密社製、装置名「PG3000RM」)を用いて、半導体ウエハの回路が形成されていない裏面に対して、超純水に曝しながら研削を行い、半導体ウエハを分断し、同時にチップの個片化を行い、厚さ20μmの複数の半導体チップを得た。
<Step (2)>
Using a polish grinder (manufactured by Tokyo Seimitsu Co., Ltd., device name “PG3000RM”), the back surface of the semiconductor wafer where the circuit is not formed is ground while being exposed to ultrapure water, and the semiconductor wafer is divided. Chips were separated into individual semiconductor chips with a thickness of 20 μm.
<工程(3)>
 硬質支持体、粘着シート、及び複数の半導体チップを含む系内の温度を、熱膨張性粒子(i)の膨張開始温度(208℃)以上となる240℃とし、3分間の加熱処理を行った。
 加熱処理後、硬質支持体と第1粘着剤層(X1)との界面で一括して容易に分離することができた。この際、複数の半導体チップは第2粘着剤層(X2)と貼付したままであり、粘着シートを構成する各層の層間での分離は生じなかった。
 また、硬質支持体から分離後、硬質支持体の表面には、第1粘着剤層(X1)の一部が残存するようなことは確認されず、汚染は見られなかった。そのため、硬質支持体の表面に対しては、新たに洗浄工程を行う必要がないと考えられる。
<Step (3)>
The temperature in the system including the hard support, the pressure-sensitive adhesive sheet, and the plurality of semiconductor chips was set to 240 ° C. that is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles (i), and heat treatment was performed for 3 minutes. .
After the heat treatment, it could be easily separated at the interface between the hard support and the first pressure-sensitive adhesive layer (X1). At this time, the plurality of semiconductor chips remained stuck to the second pressure-sensitive adhesive layer (X2), and separation between the layers constituting the pressure-sensitive adhesive sheet did not occur.
Moreover, it was not confirmed that a part of 1st adhesive layer (X1) remained on the surface of a hard support after isolation | separation from a hard support, and contamination was not seen. Therefore, it is considered that it is not necessary to perform a new cleaning process on the surface of the hard support.
<工程(4)>
 製造例3で得られた転写テープを210mm×210mmの正方形の大きさに裁断した。このとき、裁断後の転写テープの各辺が、基材フィルム(Y2)のMD方向と平行又は垂直となるように裁断した。
 次に、転写テープから軽剥離フィルムを剥離し、表出した粘着剤層の表面と、工程(3)で硬質支持体から分離後の複数の半導体チップの裏面とを貼付した。
 なお、この際、複数の半導体チップの一群が、転写テープの中央部に位置するように貼付すると共に、半導体ウエハから個片化したときのダイシングラインが、転写テープの各辺と平行又は垂直となるように貼付した。そして、複数の半導体チップの一群を、第2粘着剤層(X2)の粘着表面から剥離し、粘着シートを除去した。
<Process (4)>
The transfer tape obtained in Production Example 3 was cut into a square size of 210 mm × 210 mm. At this time, each side of the cut transfer tape was cut so as to be parallel or perpendicular to the MD direction of the base film (Y2).
Next, the light release film was peeled off from the transfer tape, and the surface of the exposed pressure-sensitive adhesive layer and the back surfaces of the plurality of semiconductor chips separated from the hard support in step (3) were attached.
At this time, a group of a plurality of semiconductor chips are attached so as to be positioned at the center of the transfer tape, and dicing lines when separated from the semiconductor wafer are parallel or perpendicular to each side of the transfer tape. It stuck so that it might become. And the group of several semiconductor chips was peeled from the adhesive surface of the 2nd adhesive layer (X2), and the adhesive sheet was removed.
<工程(5)>
 複数の半導体チップが貼付されている転写テープを、2軸延伸可能なエキスパンド装置に設置した。エキスパンド装置は、互いに直交するX軸方向(正の方向を+X軸方向、負の方向を-X軸方向とする。)とY軸方向(正の方向を+Y軸方向、負の方向を-Y軸方向とする。)を有し、各方向(すなわち、+X軸方向、-X軸方向、+Y軸方向、-Y軸方向)に延伸するための保持手段を有する。
 ここで、転写テープのMD方向を、X軸又はY軸方向と合わせて、エキスパンド装置に設置し、保持手段によって、転写テープの各辺を把持させてから、下記の条件にて、転写テープを引き伸ばし、転写テープ上に貼付されている複数の半導体チップ同士の間隔を広げた。
 ・保持手段の個数:一辺辺り、5個
 ・延伸速度:5mm/sec
 ・延伸距離:各辺を60mmずつ延伸した。
<Step (5)>
The transfer tape on which a plurality of semiconductor chips were attached was installed in an expanding apparatus capable of biaxial stretching. The expanding device has an X-axis direction (positive direction is + X-axis direction, negative direction is -X-axis direction) and Y-axis direction (positive direction is + Y-axis direction and negative direction is -Y). And holding means for extending in each direction (that is, + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction).
Here, the MD direction of the transfer tape is aligned with the X-axis or Y-axis direction, installed in the expanding device, and each side of the transfer tape is gripped by the holding means. The space between the plurality of semiconductor chips attached to the transfer tape was widened.
-Number of holding means: 5 per side-Stretching speed: 5 mm / sec
-Stretching distance: Each side was stretched by 60 mm.
<工程(6)>
 紫外線照射装置(リンテック株式会社製、製品名「RAD-2000」)を用いて、転写テープの基材フィルム側から、紫外線を照射(光量:500mJ/cm、照度:220mW/cm、照射速度:15mm/s)し、転写テープが有する粘着剤層の粘着力を低下させた。そして、ピックアップして、半導体チップを得た。
 なお、得られた複数の半導体チップのうち、端部の欠け等が見られるものは確認されなかった。
<Step (6)>
Using a UV irradiation device (product name “RAD-2000” manufactured by Lintec Corporation), UV light is irradiated from the base film side of the transfer tape (light quantity: 500 mJ / cm 2 , illuminance: 220 mW / cm 2 , irradiation speed) : 15 mm / s) to reduce the adhesive strength of the adhesive layer of the transfer tape. And it picked up and obtained the semiconductor chip.
In addition, the thing in which the chip | tip of the edge part was seen among the several obtained semiconductor chips was not confirmed.
1a、1b  粘着シート
(X1)  第1粘着剤層
(X2)  第2粘着剤層
(Y)  基材
 (Y1)  膨張性基材層
 (Y2)  非膨張性基材層
 (Y2-1)  第1非膨張性基材層
 (Y2-2)  第2非膨張性基材層
50  硬質支持体
60  半導体ウエハ
 61  回路面
 62  裏面
70  半導体チップ
 71  回路面
 72  裏面
80  転写テープ
 81  基材フィルム
 82  粘着剤層
1a, 1b Pressure-sensitive adhesive sheet (X1) First pressure-sensitive adhesive layer (X2) Second pressure-sensitive adhesive layer (Y) Base material (Y1) Expandable base material layer (Y2) Non-expandable base material layer (Y2-1) First Non-expandable base layer (Y2-2) Second non-expandable base layer 50 Hard support 60 Semiconductor wafer 61 Circuit surface 62 Back surface 70 Semiconductor chip 71 Circuit surface 72 Back surface 80 Transfer tape 81 Base film 82 Adhesive layer

Claims (11)

  1.  膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、
     基材(Y)の両面に、それぞれ第1粘着剤層(X1)及び第2粘着剤層(X2)とを有し、
     前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得る、粘着シートを用いた、半導体ウエハから半導体チップを製造する方法であって、
     下記工程(1)~(3)を有する、半導体チップの製造方法。
    ・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面を、半導体ウエハの表面に貼付する工程。
    ・工程(2):前記半導体ウエハを分断して、複数の半導体チップを得る工程。
    ・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上の複数の半導体チップを貼付したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
    A substrate (Y) comprising at least an expandable substrate layer (Y1) containing expandable particles and a non-expandable substrate layer (Y2);
    On both surfaces of the substrate (Y), each has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2),
    A method for producing a semiconductor chip from a semiconductor wafer using a pressure-sensitive adhesive sheet, in which unevenness may occur on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) due to expansion of the expandable particles,
    A method for producing a semiconductor chip, comprising the following steps (1) to (3).
    Step (1): A step of sticking the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) to the hard support and sticking the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) to the surface of the semiconductor wafer.
    Step (2): A step of dividing the semiconductor wafer to obtain a plurality of semiconductor chips.
    Step (3): The interface between the hard support and the first pressure-sensitive adhesive layer (X1) while the expandable particles are expanded and the plurality of semiconductor chips on the second pressure-sensitive adhesive layer (X2) are adhered. Separating with P.
  2.  前記粘着シートが、前記基材(Y)の前記膨張性基材層(Y1)側に第1粘着剤層(X1)を有し、該基材(Y)の前記非膨張性基材層(Y2)側に前記第2粘着剤層(X2)を有する、請求項1に記載の半導体チップの製造方法。 The pressure-sensitive adhesive sheet has a first pressure-sensitive adhesive layer (X1) on the expandable substrate layer (Y1) side of the substrate (Y), and the non-expandable substrate layer ( The manufacturing method of the semiconductor chip of Claim 1 which has a said 2nd adhesive layer (X2) in the Y2) side.
  3.  前記基材(Y)が、前記膨張性基材層(Y1)と、前記膨張性基材層(Y1)の前記第1粘着層(X1)側に設けられた非膨張性基材層(Y2-1)と、前記膨張性基材層(Y1)の前記第2粘着層(X2)側に設けられた非膨張性基材層(Y2-2)とを有しており、
     前記膨張性粒子が膨張する際における非膨張性基材層(Y2-1)の貯蔵弾性率E’が、前記膨張性粒子が膨張する際における非膨張性基材層(Y2-2)の貯蔵弾性率E’よりも低い、請求項1に記載の半導体チップの製造方法。
    The base material (Y) is a non-expandable base material layer (Y2) provided on the expandable base material layer (Y1) and the first adhesive layer (X1) side of the inflatable base material layer (Y1). -1) and a non-intumescent substrate layer (Y2-2) provided on the second adhesive layer (X2) side of the expandable substrate layer (Y1),
    The storage elastic modulus E ′ of the non-expandable base layer (Y2-1) when the expandable particles expand is determined by the storage modulus E ′ of the non-expandable base layer (Y2-2) when the expandable particles expand. The method for manufacturing a semiconductor chip according to claim 1, wherein the method is lower than an elastic modulus E ′.
  4.  前記非膨張性基材層(Y2)は、前記膨張性基材層(Y1)よりも前記第1粘着剤層(X1)から離れた位置に存在しており、前記膨張性基材層(Y1)と前記第1粘着剤層(X1)との間には前記非膨張性基材層(Y2)は存在しておらず、
     前記膨張性粒子が膨張する際における前記非膨張性基材層(Y2)の貯蔵弾性率E’は、前記膨張性粒子が膨張する際における前記膨張性基材層(Y1)の貯蔵弾性率E’よりも大きい、請求項1又は2に記載の半導体チップの製造方法。
    The non-expandable base layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the expandable base layer (Y1), and the inflatable base layer (Y1) ) And the first pressure-sensitive adhesive layer (X1), the non-expandable base material layer (Y2) does not exist,
    The storage elastic modulus E ′ of the non-expandable base layer (Y2) when the expandable particles expand is the storage elastic modulus E of the expandable base layer (Y1) when the expandable particles expand. The manufacturing method of the semiconductor chip of Claim 1 or 2 larger than '.
  5.  工程(3)において、前記膨張性粒子を膨張させた際、前記粘着シートを構成する各層の層間では分離しない、請求項1~4のいずれか一項に記載の半導体チップの製造方法。 5. The method of manufacturing a semiconductor chip according to claim 1, wherein when the expandable particles are expanded in the step (3), they are not separated between layers constituting the pressure-sensitive adhesive sheet.
  6.  さらに下記工程(4)を有する、請求項1~5のいずれか一項に記載の半導体チップの製造方法。
    ・工程(4):工程(3)で前記硬質支持体から分離後、複数の半導体チップの回路面とは反対側の裏面を、基材フィルムと、粘着剤層及び/又は接着剤層とを有する転写テープに貼付した後、前記粘着シートを半導体チップから除去する工程。
    The method for manufacturing a semiconductor chip according to any one of claims 1 to 5, further comprising the following step (4).
    Step (4): After separation from the hard support in Step (3), the back surface opposite to the circuit surface of the plurality of semiconductor chips is formed with a base film, an adhesive layer and / or an adhesive layer. A step of removing the pressure-sensitive adhesive sheet from the semiconductor chip after being attached to the transfer tape.
  7.  前記膨張性粒子が、膨張開始温度(t)が60~270℃の熱膨張性粒子である、請求項1~6のいずれか一項に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to any one of claims 1 to 6, wherein the expandable particles are thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
  8.  前記熱膨張性粒子の膨張を、熱膨張性粒子の「膨張開始温度(t)+10℃」~「膨張開始温度(t)+60℃」間で加熱処理により行う、請求項7に記載の半導体チップの製造方法。 8. The semiconductor chip according to claim 7, wherein expansion of the thermally expandable particles is performed by a heat treatment between “expansion start temperature (t) + 10 ° C.” to “expansion start temperature (t) + 60 ° C.” of the thermally expandable particles. Manufacturing method.
  9.  前記膨張性基材層(Y1)が前記熱膨張性粒子を含む熱膨張性基材層(Y1-1)であり、23℃における熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)が、1.0×10Pa以上である、請求項7又は8に記載の半導体チップの製造方法。 The expandable substrate layer (Y1) is a thermally expandable substrate layer (Y1-1) containing the thermally expandable particles, and the storage elastic modulus E of the thermally expandable substrate layer (Y1-1) at 23 ° C. '(23) is the manufacturing method of the semiconductor chip of Claim 7 or 8 which is 1.0 * 10 < 6 > Pa or more.
  10.  前記非膨張性基材層(Y2)の体積変化率(%)が2体積%未満である、請求項1~9のいずれか一項に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to any one of claims 1 to 9, wherein a volume change rate (%) of the non-expandable base material layer (Y2) is less than 2% by volume.
  11.  工程(2)が、改質領域を有する半導体ウエハを、回路面とは反対側の回路が形成されていない裏面を研削し、当該半導体ウエハを分断して、複数の半導体チップを得る工程である、請求項1~10のいずれか一項に記載の半導体チップの製造方法。 Step (2) is a step in which a semiconductor wafer having a modified region is ground on the back surface on which the circuit opposite to the circuit surface is not formed, and the semiconductor wafer is divided to obtain a plurality of semiconductor chips. The method for manufacturing a semiconductor chip according to any one of claims 1 to 10.
PCT/JP2019/017875 2018-05-07 2019-04-26 Method of manufacturing semiconductor chip WO2019216262A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207031816A KR20210006896A (en) 2018-05-07 2019-04-26 Semiconductor chip manufacturing method
JP2020518271A JP7241744B2 (en) 2018-05-07 2019-04-26 Semiconductor chip manufacturing method
CN201980030707.8A CN112088421A (en) 2018-05-07 2019-04-26 Method for manufacturing semiconductor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018089326 2018-05-07
JP2018-089326 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019216262A1 true WO2019216262A1 (en) 2019-11-14

Family

ID=68466739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017875 WO2019216262A1 (en) 2018-05-07 2019-04-26 Method of manufacturing semiconductor chip

Country Status (5)

Country Link
JP (1) JP7241744B2 (en)
KR (1) KR20210006896A (en)
CN (1) CN112088421A (en)
TW (1) TWI808170B (en)
WO (1) WO2019216262A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
WO2022054889A1 (en) * 2020-09-14 2022-03-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
WO2022071150A1 (en) * 2020-10-02 2022-04-07 昭和電工マテリアルズ株式会社 Film for temporary fixation, layered product for temporary fixation, and method for producing semiconductor device
WO2022138458A1 (en) * 2020-12-25 2022-06-30 日東電工株式会社 Shock-absorbing adhesive sheet
WO2024063129A1 (en) * 2022-09-22 2024-03-28 リンテック株式会社 Adhesive sheet and peeling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121510A (en) * 2000-10-18 2002-04-26 Nitto Denko Corp Energy ray curable thermally releasable pressure- sensitive adhesive sheet, and method for manufacturing cut piece using the same
JP2003292916A (en) * 2002-04-08 2003-10-15 Nitto Denko Corp Method for processing adherend using adhesive sheet
JP2003306653A (en) * 2002-04-16 2003-10-31 Nitto Denko Corp Thermal release adhesive sheet for electronic part, method for processing electronic part and electronic part
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
JP2013203799A (en) * 2012-03-27 2013-10-07 Nitto Denko Corp Heat-peelable adhesive sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209158A (en) * 2009-03-06 2010-09-24 Nitto Denko Corp Pressure-sensitive adhesive sheet and processing method of semiconductor wafer using the same
JP5950869B2 (en) * 2013-06-20 2016-07-13 古河電気工業株式会社 Adhesive tape for semiconductor wafer surface protection
JP2017002190A (en) * 2015-06-10 2017-01-05 リンテック株式会社 Thermal peeling adhesive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121510A (en) * 2000-10-18 2002-04-26 Nitto Denko Corp Energy ray curable thermally releasable pressure- sensitive adhesive sheet, and method for manufacturing cut piece using the same
JP2003292916A (en) * 2002-04-08 2003-10-15 Nitto Denko Corp Method for processing adherend using adhesive sheet
JP2003306653A (en) * 2002-04-16 2003-10-31 Nitto Denko Corp Thermal release adhesive sheet for electronic part, method for processing electronic part and electronic part
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
JP2013203799A (en) * 2012-03-27 2013-10-07 Nitto Denko Corp Heat-peelable adhesive sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
CN114829529A (en) * 2019-12-11 2022-07-29 琳得科株式会社 Adhesive sheet and method for manufacturing semiconductor device
WO2022054889A1 (en) * 2020-09-14 2022-03-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
WO2022071150A1 (en) * 2020-10-02 2022-04-07 昭和電工マテリアルズ株式会社 Film for temporary fixation, layered product for temporary fixation, and method for producing semiconductor device
WO2022138458A1 (en) * 2020-12-25 2022-06-30 日東電工株式会社 Shock-absorbing adhesive sheet
WO2024063129A1 (en) * 2022-09-22 2024-03-28 リンテック株式会社 Adhesive sheet and peeling method
WO2024063127A1 (en) * 2022-09-22 2024-03-28 リンテック株式会社 Pressure-sensitive adhesive sheet and method for producing electronic component or semiconductor device
WO2024063126A1 (en) * 2022-09-22 2024-03-28 リンテック株式会社 Element transfer sheet

Also Published As

Publication number Publication date
TWI808170B (en) 2023-07-11
KR20210006896A (en) 2021-01-19
JPWO2019216262A1 (en) 2021-05-27
CN112088421A (en) 2020-12-15
JP7241744B2 (en) 2023-03-17
TW202003771A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2019216262A1 (en) Method of manufacturing semiconductor chip
JP7185638B2 (en) Semiconductor device manufacturing method
WO2021117695A1 (en) Adhesive sheet and method for producing semiconductor device
WO2020189568A1 (en) Adhesive sheet and semiconductor device production method
JP7273792B2 (en) Processed product manufacturing method and adhesive laminate
CN113631379A (en) Adhesive sheet, method for producing adhesive sheet, and method for producing semiconductor device
WO2021200789A1 (en) Double-sided adhesive sheet, and method for manufacturing semiconductor device
JPWO2019131408A1 (en) A method for manufacturing an adhesive laminate, a processed object with a resin film, and a method for manufacturing a cured seal with a cured resin film.
JP7405618B2 (en) Adhesive laminate, method for using adhesive laminate, and method for manufacturing semiconductor device
CN114402419A (en) Method for manufacturing semiconductor device
CN113825635A (en) Adhesive sheet, method for producing adhesive sheet, and method for producing semiconductor device
WO2019235217A1 (en) Method for producing cured sealant
JP7188668B2 (en) singulation sheet
JP7157861B1 (en) Semiconductor device manufacturing method
WO2022196752A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
WO2022054889A1 (en) Adhesive sheet and method for producing semiconductor device
JP7185637B2 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800665

Country of ref document: EP

Kind code of ref document: A1