WO2022196752A1 - Semiconductor device manufacturing method and semiconductor device manufacturing apparatus - Google Patents

Semiconductor device manufacturing method and semiconductor device manufacturing apparatus Download PDF

Info

Publication number
WO2022196752A1
WO2022196752A1 PCT/JP2022/012171 JP2022012171W WO2022196752A1 WO 2022196752 A1 WO2022196752 A1 WO 2022196752A1 JP 2022012171 W JP2022012171 W JP 2022012171W WO 2022196752 A1 WO2022196752 A1 WO 2022196752A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
layer
thermally expandable
sensitive adhesive
pressure
Prior art date
Application number
PCT/JP2022/012171
Other languages
French (fr)
Japanese (ja)
Inventor
康彦 垣内
智史 川田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2022196752A1 publication Critical patent/WO2022196752A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor device manufacturing apparatus.
  • a semiconductor wafer is processed into semiconductor chips through a grinding process for reducing the thickness by grinding, a singulation process for cutting and separating into individual pieces, and the like.
  • the semiconductor wafer is subjected to a predetermined processing while being temporarily fixed to the temporary fixing sheet.
  • an expanding process is performed to widen the gap between the semiconductor chips, and a re-arrangement of a plurality of semiconductor chips with widened gaps is performed.
  • a reversing process of reversing the front and back of the semiconductor chip, and the like they are mounted on the substrate.
  • DAF die attach film
  • the DAF is attached to one surface of a semiconductor wafer or a plurality of singulated semiconductor chips, and is divided into the same shape as the semiconductor chips at the same time as the semiconductor wafer is singulated or after being attached to the semiconductor chips.
  • the semiconductor chip with the DAF obtained by singulation is attached (die attached) to the substrate from the DAF side, and then the semiconductor chip and the substrate are fixed by thermally curing the DAF. Therefore, the DAF must retain the property of being adhered by pressure or heat until it is attached to the substrate, and a process that enables this is required.
  • Patent Document 1 discloses a method of using a heat-peelable pressure-sensitive adhesive sheet for temporary fixing provided with a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres on at least one side of a base material for cutting electronic components. It is The document describes a method in which a ceramic sheet is temporarily fixed to the adhesive surface of a heat-peelable adhesive sheet, cut into chips, and then heat-treated on a hot plate to separate the adhesive sheet and the chips. It is
  • the present invention has been made in view of the above problems, and is a method for manufacturing a semiconductor device using a heat-peelable pressure-sensitive adhesive sheet, which suppresses thermal change of an adherend due to heating when the pressure-sensitive adhesive sheet is peeled off. It is an object of the present invention to provide a method for manufacturing a semiconductor device and a manufacturing apparatus for a semiconductor device.
  • the present inventors focused on the temperature control of the adherend when peeling the adhesive sheet, found that the above problems could be solved, and completed the present invention.
  • the present invention relates to the following [1] to [16].
  • [1] Having an adhesive layer (X1), a base layer (Y), and an adhesive layer (X2) in this order, the adhesive layer (X1) and the base layer (Y) At least one of them is a thermally expandable layer containing thermally expandable particles, and by expanding the thermally expandable layer, using a double-sided pressure-sensitive adhesive sheet in which irregularities are formed on the surface of the pressure-sensitive adhesive layer (X1), A method of manufacturing a semiconductor device including steps 1 to 3.
  • Step 1 A step of attaching an object to be processed (W) to the adhesive layer (X2) of the double-sided adhesive sheet, and attaching a support (S) to the adhesive layer (X1) of the double-sided adhesive sheet.
  • Step 3 While cooling the processed product (P), the thermally expandable layer is heated to the expansion start temperature (t) of the thermally expandable particles or higher.
  • Step 2-1 A step of subjecting the workpiece (W) to one or more processing treatments selected from grinding and singulation
  • Step 2-2 The workpiece (W) subjected to the processing treatment , the surface (W ⁇ ) opposite to the adhesive layer (X2) is subjected to one or more processes selected from application of a semiconductor adhesive and application of a semiconductor film to obtain a processed product (P)
  • Step [3] The method of manufacturing a semiconductor device according to the above [1] or [2], wherein the semiconductor adhesive is a thermosetting paste, and the semiconductor film is a thermosetting film.
  • the cooling treatment is a treatment for cooling the surface (P ⁇ ) of the processed product (P) opposite to the adhesive layer (X2).
  • a method of manufacturing the described semiconductor device [5] The above [4], wherein the cooling treatment is a treatment in which the cooled heat conductor is brought into contact with the surface (P ⁇ ) of the processed product (P) opposite to the adhesive layer (X2).
  • the heating of the thermally expandable layer in the step 3 is carried out by bringing a heated plate into contact with the surface (S ⁇ ) of the support (S) opposite to the pressure-sensitive adhesive layer (X1). , a method for manufacturing a semiconductor device according to any one of the above [1] to [6].
  • Step 4 A step of curing the pressure-sensitive adhesive layer (X2) by irradiating the pressure-sensitive adhesive layer (X2) with energy rays to separate the pressure-sensitive adhesive layer (X2) and the processed product (P) [ 10]
  • the substrate layer (Y) is a substrate laminate in which a thermally expandable substrate layer (Y1) containing thermally expandable particles and a non-thermally expandable substrate layer (Y2) are laminated. and the double-sided pressure-sensitive adhesive sheet comprises the pressure-sensitive adhesive layer (X1), the thermally expandable base layer (Y1), the non-thermally expandable base layer (Y2), and the pressure-sensitive adhesive layer (X2) , in this order.
  • a method for manufacturing a semiconductor device using a heat-peelable pressure-sensitive adhesive sheet a method for manufacturing a semiconductor device and a semiconductor device capable of suppressing thermal change of an adherend due to heating when the pressure-sensitive adhesive sheet is peeled off. manufacturing equipment can be provided.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a double-sided pressure-sensitive adhesive sheet used in the production method of the present invention
  • FIG. FIG. 4 is a cross-sectional view showing another example of the configuration of the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention
  • It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention.
  • the term “active ingredient” refers to the components contained in the target composition, excluding the diluent solvent.
  • Mw mass average molecular weight
  • GPC gel permeation chromatography
  • (meth)acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the lower limit and upper limit values described stepwise for preferred numerical ranges can be independently combined. For example, from the statement “preferably 10 to 90, more preferably 30 to 60", combining “preferred lower limit (10)” and “more preferred upper limit (60)” to “10 to 60” can also
  • the term "energy ray” means an electromagnetic wave or charged particle beam that has energy quanta, and examples thereof include ultraviolet rays, radiation, electron beams, and the like.
  • Ultraviolet rays can be applied by using, for example, an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, a UV-LED, or the like as an ultraviolet light source.
  • the electron beam can be generated by an electron beam accelerator or the like.
  • the term “energy ray polymerizable” means the property of polymerizing upon irradiation with an energy ray.
  • energy ray curability means the property of being cured by irradiation with an energy ray.
  • a "layer” is a "non-thermally expandable layer” or a “thermally expandable layer” is determined as follows.
  • the layer to be judged contains thermally expandable particles, the layer is heat-treated for 3 minutes at the expansion start temperature (t) of the thermally expandable particles. If the volume change rate calculated from the following formula is less than 5%, the layer is determined to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer”. judge there is.
  • ⁇ Volume change rate (%) ⁇ (volume of the layer after heat treatment - volume of the layer before heat treatment) / volume of the layer before heat treatment ⁇ x 100
  • a layer containing no thermally expandable particles is referred to as a "non-thermally expandable layer”.
  • the "front surface” of a semiconductor wafer and semiconductor chip refers to the surface on which circuits are formed (hereinafter also referred to as “circuit surface”)
  • the "back surface” of the semiconductor wafer and semiconductor chips refers to the surface on which circuits are formed. point to the side that is not
  • the thickness of each layer is the thickness at 23°C and means the value measured by the method described in Examples.
  • the adhesive strength of each layer means the adhesive strength to the mirror surface of the silicon mirror wafer, and in an environment of 23° C. and 50% RH (relative humidity), 180° peeling based on JIS Z0237:2000. means the adhesive force measured at a pulling speed of 300 mm/min according to the Law.
  • the term “heat peeling” refers to the pressure-sensitive adhesive layer (X1 ) to separate the pressure-sensitive adhesive layer (X1) from the support (S).
  • the object to be processed (W) means the object to be processed in step 2 of the manufacturing method of the present invention.
  • the adherend at the time and after separation from the pressure-sensitive adhesive layer (X2) after finishing the processing in step 2 is referred to as a "processed product (P)", and before or after processing in step 2.
  • An adherend that is in the process of being processed to a processed product (P) is referred to as a "processed object (W)".
  • a method for manufacturing a semiconductor device has an adhesive layer (X1), a base layer (Y), and an adhesive layer (X2) in this order, and the adhesive layer (X1 ) and the substrate layer (Y) is a thermally expandable layer containing thermally expandable particles, and by expanding the thermally expandable layer, the surface of the pressure-sensitive adhesive layer (X1) becomes uneven.
  • Step 1 A step of attaching an object to be processed (W) to the adhesive layer (X2) of the double-sided adhesive sheet, and attaching a support (S) to the adhesive layer (X1) of the double-sided adhesive sheet.
  • Step 3 While cooling the processed product (P), the thermally expandable layer is heated to the expansion start temperature (t) of the thermally expandable particles or higher. Heating to separate the adhesive layer (X1) and the support (S)
  • semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • a wafer comprising integrated circuits a thinned wafer comprising integrated circuits, a chip comprising integrated circuits, a thinned chip comprising integrated circuits, electronic components comprising these chips, and electronic equipment comprising such electronic components and the like.
  • the workpiece (W) to be processed by the method for manufacturing a semiconductor device according to one embodiment of the present invention typically includes a semiconductor wafer and a semiconductor chip, and the manufacturing method of the present invention can be applied. is not particularly limited.
  • the processed product (P) is subjected to a cooling process when the double-sided pressure-sensitive adhesive sheet is thermally peeled off. Therefore, the processed product (P) is less likely to be affected by heat applied to the double-sided pressure-sensitive adhesive sheet, and thermal changes in physical properties, shape, and the like are suppressed.
  • the processed product (P) has DAF
  • the progress of curing of DAF is suppressed when the double-sided pressure-sensitive adhesive sheet is peeled off by heating, so DAF retains good adhesive strength for mounting on a substrate.
  • the processed product (P) has an adhesive sheet such as a dicing tape
  • the adhesiveness of the adhesive sheet is suppressed from being changed by heat, and the intended function of the adhesive sheet is sufficiently exhibited. can be done.
  • the double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device of one embodiment of the present invention will be described first, and then each step included in the method for manufacturing a semiconductor device of one embodiment of the present invention will be described in detail.
  • the double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device of one embodiment of the present invention has a pressure-sensitive adhesive layer (X1), a base layer (Y), and a pressure-sensitive adhesive layer (X2) in this order, At least one of the adhesive layer (X1) and the substrate layer (Y) is a thermally expandable layer containing thermally expandable particles, and the adhesive layer (X1) is expanded by expanding the thermally expandable layer.
  • X1 is a double-sided pressure-sensitive adhesive sheet in which unevenness is formed on the surface.
  • the support (S) can be attached to the adhesive layer (X1), and the object to be processed (W) can be attached to the adhesive layer (X2).
  • the vibration and position of the workpiece (W) can be reduced when the workpiece (W) is processed. It is possible to suppress misalignment and damage when the workpiece (W) is fragile, and improve machining accuracy, machining speed, inspection accuracy, and the like.
  • the thermally expandable particles contained in the thermally expandable layer which is at least one of the adhesive layer (X1) and the base layer (Y) are heated at the expansion start temperature (t ) to form irregularities on the adhesive surface of the adhesive layer (X1) by heating to a temperature equal to or higher than the above temperature to form unevenness, and the support (S) attached to the adhesive surface of the adhesive layer (X1) and the adhesive It greatly reduces the contact area with the surface.
  • the adhesiveness between the adhesive surface of the adhesive layer (X1) and the support (S) can be significantly reduced, and the double-sided adhesive sheet and the support (S) can be easily separated.
  • the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention may have the pressure-sensitive adhesive layer (X1), the base layer (Y), and the pressure-sensitive adhesive layer (X2) in this order.
  • X1), the substrate layer (Y), and the pressure-sensitive adhesive layer (X2) alone may be included, or other layers may be included as necessary.
  • one surface of the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention is the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1)
  • the other surface of the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention is the pressure-sensitive adhesive layer (X2). is the surface.
  • the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention may have a release material on the pressure-sensitive adhesive surface of at least one of the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2).
  • the PSA layer (X1) and the base layer (Y) may be a thermally expandable layer containing thermally expandable particles.
  • the substrate layer (Y) is a thermally expandable substrate layer containing thermally expandable particles ( Y1) and a non-thermally expandable substrate layer (Y2) are laminated to form a substrate laminate comprising an adhesive layer (X1), a thermally expandable substrate layer (Y1), and a non-thermally expandable substrate.
  • a double-sided pressure-sensitive adhesive sheet having a layer (Y2) and a pressure-sensitive adhesive layer (X2) in this order is exemplified.
  • the double-sided pressure-sensitive adhesive sheet having such a configuration may be referred to as "the double-sided pressure-sensitive adhesive sheet of the first aspect".
  • the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention when the pressure-sensitive adhesive layer (X1) is a heat-expandable layer containing heat-expandable particles, the double-sided pressure-sensitive adhesive sheet, which is a heat-expandable layer, A double-sided pressure-sensitive adhesive sheet having (X1), a substrate layer (Y), and a pressure-sensitive adhesive layer (X2) in this order is exemplified.
  • the double-sided pressure-sensitive adhesive sheet having such a configuration may be referred to as "the double-sided pressure-sensitive adhesive sheet of the second aspect”.
  • the double-sided pressure-sensitive adhesive sheet of the first aspect of the present invention includes, for example, a pressure-sensitive adhesive layer (X1), a thermally expandable substrate layer (Y1), and a non-thermally expandable substrate shown in FIG.
  • a double-sided pressure-sensitive adhesive sheet 1a having a layer (Y2) and a pressure-sensitive adhesive layer (X2) in this order is exemplified.
  • the double-sided pressure-sensitive adhesive sheet 1b shown in FIG. 10b may be provided.
  • the double-sided pressure-sensitive adhesive sheet of the second aspect of the present invention includes, for example, a heat-expandable pressure-sensitive adhesive layer (X1), a substrate layer (Y), and a pressure-sensitive adhesive layer shown in FIG. and (X2) in this order. Moreover, like the double-sided pressure-sensitive adhesive sheet 2b shown in FIG. 10b may be provided.
  • double-sided pressure-sensitive adhesive sheet of another embodiment in the double-sided pressure-sensitive adhesive sheet 1a shown in FIG. 1(a) and the double-sided pressure-sensitive adhesive sheet 2a shown in FIG. It may be a double-sided pressure-sensitive adhesive sheet having a structure in which a release material having both sides subjected to a release treatment is laminated on the pressure-sensitive adhesive surface of the sheet and wound into a roll.
  • the double-sided pressure-sensitive adhesive sheet used in one aspect of the present invention may or may not have another layer between the base layer (Y) and the pressure-sensitive adhesive layer (X1). good too.
  • the double-sided pressure-sensitive adhesive sheet used in one aspect of the present invention may have another layer between the base layer (Y) and the pressure-sensitive adhesive layer (X2). It doesn't have to be.
  • the surface of the thermally expandable substrate layer (Y1) opposite to the pressure-sensitive adhesive layer (X1) has a non-thermally expandable It is preferable that the flexible substrate layer (Y2) is directly laminated.
  • a layer capable of suppressing expansion on the surface opposite to the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1) is directly laminated. More preferably, the material layer (Y) is directly laminated.
  • the expansion start temperature (t) of the thermally expandable particles is preferably less than 125°C, from the viewpoint of suppressing thermal change of the processed product (P) during heat peeling. It is more preferably 120° C. or lower, still more preferably 115° C. or lower, still more preferably 110° C. or lower, and even more preferably 105° C. or lower.
  • the thermally expansible particles expand due to a temperature rise such as when the workpiece (W) is ground. Sometimes I end up Such unintended expansion of the thermally expandable particles leads to a decrease in adhesion between the support (S) and the pressure-sensitive adhesive layer (X1), leading to displacement of the workpiece (W), etc., and is thus suppressed. is desirable.
  • the expansion initiation temperature (t) of the thermally expandable particles is preferably 50° C. or higher, more preferably 55° C. or higher, still more preferably 60° C. or higher. Preferably, it is 70°C or higher.
  • the expansion start temperature (t) of thermally expandable particles means a value measured based on the following method.
  • the thermally expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an encapsulated component that is encapsulated in the outer shell and vaporizes when heated to a predetermined temperature.
  • the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent includes, for example, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, or structural units contained in these thermoplastic resins. Examples thereof include copolymers obtained by polymerizing two or more of the monomers to be formed.
  • Examples of encapsulated components that are encapsulated in the outer shell of the microencapsulated foaming agent include propane, propylene, butene, n-butane, isobutane, isopentane, neopentane, n-pentane, n-hexane, isohexane, n- Low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane, and petroleum ether are included. Among these, it suppresses the thermal change of the workpiece (P) when thermally peeling, and suppresses the unintended expansion of the thermally expandable particles due to the temperature rise when grinding the workpiece (W).
  • the expansion start temperature (t) of the thermally expandable particles is 50° C. or more and less than 125° C.
  • propane, isobutane, n-pentane, and cyclopropane are preferable as the encapsulated component.
  • These inclusion components may be used individually by 1 type, and may use 2 or more types together.
  • the expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
  • the average particle size of the thermally expandable particles used in one aspect of the present invention before expansion at 23° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, even more preferably 6 to 60 ⁇ m, still more preferably 10 to 10 ⁇ m. 50 ⁇ m.
  • the average particle size of the thermally expandable particles before expansion is the volume-median particle size (D 50 ), and is measured by a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name "Mastersizer 3000").
  • D 50 volume-median particle size
  • a laser diffraction particle size distribution analyzer for example, manufactured by Malvern, product name "Mastersizer 3000"
  • the 90% particle diameter (D 90 ) before expansion at 23° C. of the thermally expandable particles used in one aspect of the present invention is preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m, still more preferably 20 to 90 ⁇ m, Even more preferably, it is 25 to 80 ⁇ m.
  • the 90% particle diameter (D 90 ) of the thermally expandable particles before expansion is measured using a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name “Mastersizer 3000”). In the particle distribution of the thermally expandable particles before expansion, it means a particle size corresponding to a cumulative volume frequency of 90% calculated from the smallest particle size of the thermally expandable particles before expansion.
  • the maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles used in one aspect of the present invention is preferably 1.5 to 200 times, more preferably 2 to 150 times, and further It is preferably 2.5 to 120 times, and more preferably 3 to 100 times.
  • the content of the thermally expandable particles in the thermally expandable layer is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 7% by mass, relative to the total mass (100% by mass) of the thermally expandable layer. It is at least 10% by mass, more preferably at least 10% by mass.
  • the content of the thermally expandable particles in the thermally expandable layer is preferably 25% by mass or less, more preferably 20% by mass or less, and still more preferably, based on the total mass (100% by mass) of the thermally expandable layer. is 16% by mass or less, more preferably 14% by mass or less.
  • the content of the thermally expandable particles is 1% by mass or more, there is a tendency that the peelability at the time of heat peeling is improved. Further, when the content of the thermally expandable particles is 25% by mass or less, the generation of irregularities due to the thermally expandable particles before thermal expansion is suppressed, and good adhesion tends to be obtained.
  • the thickness of the thermally expandable layer before thermal expansion is preferably 10-200 ⁇ m, more preferably 20-150 ⁇ m, even more preferably 25-120 ⁇ m.
  • the thickness of the thermally expandable layer before thermal expansion is 10 ⁇ m or more, it is possible to suppress the formation of irregularities due to the thermally expandable particles before thermal expansion.
  • the thickness of the thermally expandable layer before thermal expansion is 200 ⁇ m or less, the double-sided pressure-sensitive adhesive sheet tends to be easy to handle.
  • the thickness of the entire double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention before thermal expansion is preferably 90 to 300 ⁇ m, more preferably 100 to 250 ⁇ m, still more preferably 130 to 200 ⁇ m.
  • the total thickness of the double-sided pressure-sensitive adhesive sheet is 90 ⁇ m or more, the mechanical strength of the double-sided pressure-sensitive adhesive sheet will be good, and it will be easy to handle.
  • the thickness of the entire double-sided pressure-sensitive adhesive sheet is 300 ⁇ m or less, the handling of the double-sided pressure-sensitive adhesive sheet tends to be easy.
  • the double-sided pressure-sensitive adhesive sheet of the first aspect comprises a pressure-sensitive adhesive layer (X1), a thermally expandable substrate layer (Y1), a non-thermally expandable substrate layer (Y2), and an adhesive layer (X2), It is a double-sided pressure-sensitive adhesive sheet having in this order.
  • the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the first aspect may be either a thermally expandable layer or a non-thermally expandable layer, but is preferably a non-thermally expandable layer.
  • the volume change rate (%) of the pressure-sensitive adhesive layer (X1) calculated from the above formula is less than 5%, preferably less than 2%, more Preferably less than 1%, more preferably less than 0.1%, even more preferably less than 0.01%.
  • the pressure-sensitive adhesive layer (X1) preferably does not contain heat-expandable particles, but may contain heat-expandable particles as long as the object of the present invention is not compromised.
  • the content thereof is preferably as small as possible, and preferably less than 3% by mass, more than It is preferably less than 1% by mass, more preferably less than 0.1% by mass, even more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
  • the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the first aspect can be formed from a pressure-sensitive adhesive composition (x-1) containing a pressure-sensitive adhesive resin. Each component contained in the adhesive composition (x-1) is described below.
  • the adhesive resin examples include a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000 to 100, from the viewpoint of improving the adhesive strength of the adhesive layer (X1). Ten thousand.
  • adhesive resins include acrylic resins, urethane resins, rubber resins such as polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used alone or in combination of two or more. In addition, when these adhesive resins are copolymers having two or more structural units, the form of the copolymer is not particularly limited, and may be block copolymers, random copolymers, and graft copolymers. Any polymer may be used.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength in the adhesive layer (X1).
  • the content of the acrylic resin in the adhesive resin is preferably 30 with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x-1) or the adhesive layer (X1). ⁇ 100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, still more preferably 85 to 100% by mass.
  • the acrylic resin that can be used as the adhesive resin includes, for example, a polymer containing a structural unit derived from an alkyl (meth)acrylate having a linear or branched alkyl group, a cyclic structure
  • examples include polymers containing structural units derived from (meth)acrylates having
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, and even more preferably 500,000 to 1,100,000. .
  • the acrylic resin used in one embodiment of the present invention includes structural units (a1) derived from alkyl (meth)acrylate (a1′) (hereinafter also referred to as “monomer (a1′)”) and functional group-containing monomers (a2 ') (hereinafter also referred to as “monomer (a2')”).
  • the number of carbon atoms in the alkyl group of the monomer (a1′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2, from the viewpoint of exhibiting excellent adhesive strength in the pressure-sensitive adhesive layer (X1). ⁇ 10, more preferably 4-8.
  • the alkyl group possessed by the monomer (a1') may be a linear alkyl group or a branched alkyl group.
  • Examples of the monomer (a1′) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, iso-butyl (meth)acrylate, Acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate and the like.
  • These monomers (a1') may be used alone or in combination of two or more.
  • Preferred monomers (a1′) are n-butyl acrylate and 2-ethylhexyl acrylate.
  • the content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 70 to 97.0% by mass, and even more preferably 80 to 95.0% by mass.
  • Examples of functional groups possessed by the monomer (a2′) include hydroxyl groups, carboxyl groups, amino groups, epoxy groups and the like. That is, examples of the monomer (a2′) include hydroxyl group-containing monomers, carboxy group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, and the like. These monomers (a2') may be used alone or in combination of two or more. Among these, as the monomer (a2'), hydroxyl group-containing monomers and carboxy group-containing monomers are preferable, and hydroxyl group-containing monomers are more preferable.
  • hydroxyl group-containing monomers examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, ) hydroxyalkyl (meth)acrylates such as acrylate and 4-hydroxybutyl (meth)acrylate; and hydroxyl group-containing compounds such as unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • Carboxy group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides , 2-(acryloyloxy)ethyl succinate, 2-carboxyethyl (meth)acrylate and the like.
  • monocarboxylic acids such as (meth)acrylic acid and crotonic acid
  • dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides
  • 2-(acryloyloxy)ethyl succinate 2-carboxyethyl (meth)acrylate and the like.
  • the content of the structural unit (a2) is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 1.0 to 15% by mass, and even more preferably 3.0 to 10% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
  • the total content of the structural units (a1) and (a2) is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass.
  • Examples of the monomer (a3′) include olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene and chloroprene; Having a cyclic structure such as benzyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, imide (meth)acrylate, etc.
  • olefins such as ethylene, propylene and isobutylene
  • halogenated olefins such as vinyl chloride and vinylidene chloride
  • diene monomers such as butadiene, isoprene and chloroprene
  • Having a cyclic structure such as benzyl
  • the content of the adhesive resin in the adhesive composition (x-1) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-1), More preferably 50 to 100% by mass, still more preferably 60 to 100% by mass, still more preferably 70 to 99.5% by mass.
  • the cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins with each other using the functional group as a cross-linking starting point.
  • cross-linking agents examples include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • One of these crosslinking agents may be used alone, or two or more thereof may be used in combination.
  • isocyanate-based cross-linking agents are preferable from the viewpoints of increasing cohesive strength and improving adhesive strength, and from the viewpoints of availability, and the like.
  • isocyanate-based cross-linking agents include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; Alicyclic polyisocyanates such as methylcyclohexylene diisocyanate, methylenebis(cyclohexyl isocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate acyclic aliphatic polyisocyanates such as; polyvalent isocyanate compounds such as; Examples of the isocyanate-based cross-linking agent include trimethylolpropane adduct-type modified products of the polyvalent isocyanate compounds, biuret-type modified products reacted with water, and isocyanurate-type modified products
  • an isocyanurate-type modified product containing an isocyanurate ring, and an isocyanurate of an acyclic aliphatic polyisocyanate it is preferable to use an isocyanurate-type modified product containing an isocyanurate ring, and an isocyanurate of an acyclic aliphatic polyisocyanate. It is more preferable to use a type modified product, and it is even more preferable to use an isocyanurate type modified product of hexamethylene diisocyanate.
  • the content of the cross-linking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin. More preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x-1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • tackifier refers to a component that supplementarily improves the adhesive strength of the adhesive resin and has a weight average molecular weight (Mw) of less than 10,000. is distinguished from The weight average molecular weight (Mw) of the tackifier is less than 10,000, preferably 400 to 9,000, more preferably 500 to 8,000, still more preferably 800 to 5,000.
  • tackifiers include rosin-based resins, terpene-based resins, styrene-based resins, pentene produced by thermal decomposition of petroleum naphtha, isoprene, piperine, obtained by copolymerizing C5 fractions such as 1,3-pentadiene. and C9 petroleum resins obtained by copolymerizing C9 fractions such as indene and vinyl toluene produced by thermal decomposition of petroleum naphtha, and hydrogenated resins obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170°C, more preferably 65 to 160°C, still more preferably 70 to 150°C.
  • the "softening point" of a tackifier means the value measured based on JISK2531.
  • a single tackifier may be used alone, or two or more different softening points, structures, and the like may be used in combination.
  • the weighted average of the softening points of the tackifiers preferably falls within the above range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x-1). %, more preferably 1 to 40% by mass, and even more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (x-1) includes, in addition to the above-described additives, additives for pressure-sensitive adhesives that are commonly used in pressure-sensitive adhesives, as long as the effects of the present invention are not impaired. may contain.
  • adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, and energy rays described later.
  • a curable compound, a photopolymerization initiator, and the like are included.
  • these additives for pressure-sensitive adhesives may be used alone, respectively, or two or more of them may be used in combination.
  • each adhesive additive is independently preferably 0.0001 to 20 parts by mass, more than 100 parts by mass of the adhesive resin. It is preferably 0.001 to 10 parts by mass.
  • the adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable substrate layer (Y1) is preferably 0.1 to 12.0 N/25 mm, more preferably 0.5 to 9.0 N/25 mm. , more preferably 1.0 to 8.0 N/25 mm, still more preferably 1.2 to 7.5 N/25 mm. If the adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable base material layer (Y1) is 0.1 N/25 mm or more, unintended peeling from the support (S) during temporary fixing can be prevented. It is possible to suppress the displacement of the workpiece (W) and the like more effectively. On the other hand, if the adhesive strength is 12.0 N/25 mm or less, the peelability during heat peeling can be further improved.
  • the adhesive strength of the pressure-sensitive adhesive layer (X1) after thermally expanding the thermally expandable substrate layer (Y1) is preferably 1.5 N/25 mm or less, more preferably 0.05 N/25 mm or less, still more preferably 0 .01 N/25 mm or less, more preferably 0 N/25 mm.
  • the adhesive force of 0 N/25 mm means an adhesive force below the measurable limit in the adhesive force measurement method. It also includes the case where the film is peeled off.
  • the thickness of the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the first aspect allows the expression of good adhesive strength, and the thickness of the pressure-sensitive adhesive layer (X1) when the thermally expandable particles are expanded by heating. From the viewpoint of forming unevenness on the adhesive surface, the thickness is preferably 3 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, and still more preferably 3 to 7 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer (X1) can be easily formed, and the adhesive surface of the pressure-sensitive adhesive layer (X1) can be satisfactorily uneven. You can make it easier.
  • the thermally expandable substrate layer (Y1) of the double-sided pressure-sensitive adhesive sheet of the first aspect is a thermally expandable layer containing thermally expandable particles in a resin material. It is a layer provided between the substrate layer (Y2).
  • the thermally expandable substrate layer (Y1) is preferably a non-adhesive substrate.
  • the probe tack value on the surface of the thermally expandable substrate layer (Y1) is usually less than 50 mN/5 mm ⁇ , preferably less than 30 mN/5 mm ⁇ , more preferably less than 10 mN/5 mm ⁇ , still more preferably less than 5 mN/5 mm ⁇ .
  • the probe tack value on the surface of the substrate means the value measured by the following method. ⁇ Probe tack value> After cutting the base material to be measured into a square with a side of 10 mm, a test sample was left to stand in an environment of 23 ° C. and 50% RH (relative humidity) for 24 hours.
  • the probe tack value on the surface of the test sample is measured in accordance with JIS Z0237: 1991. be able to. Specifically, a stainless steel probe with a diameter of 5 mm is brought into contact with the surface of the test sample for 1 second with a contact load of 0.98 N/cm 2 , and then the probe is moved at a speed of 10 mm/second to the test sample. The force required to remove it from the surface can be measured and the resulting value taken as the probe tack value for that test sample.
  • a tacking tester product name “NTS-4800” manufactured by Nippon Tokushu Sokki Co., Ltd.
  • the surface of the thermally expandable substrate layer (Y1) is subjected to an oxidation method, a roughening method, or the like.
  • a treatment, an easy-adhesion treatment, or a primer treatment may be applied.
  • oxidation methods include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment.
  • roughening methods include sandblasting, solvent treatment, and the like. are mentioned.
  • the thermally expandable substrate layer (Y1) is preferably formed from a resin composition (y-1) containing a resin and thermally expandable particles. Preferred embodiments of the resin composition (y-1) are described below. Preferred aspects of the thermally expandable particles are as described above.
  • the resin contained in the resin composition (y-1) may be a non-adhesive resin or a tacky resin. That is, even if the resin contained in the resin composition (y-1) is an adhesive resin, in the process of forming the thermally expandable base layer (Y1) from the resin composition (y-1), the adhesive It is sufficient that the resin undergoes a polymerization reaction with the polymerizable compound, the resulting resin becomes a non-tacky resin, and the thermally expandable substrate layer (Y1) containing the resin becomes non-tacky.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y-1) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 50. Ten thousand. Further, when the resin is a copolymer having two or more structural units, the form of the copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer. may be
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 95% by mass, relative to the total amount (100% by mass) of the active ingredients of the resin composition (y-1) 90% by mass, more preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y-1) from the viewpoint of facilitating the formation of unevenness on the adhesive surface of the pressure-sensitive adhesive layer (X1) and from the viewpoint of improving the sheet shape retention after thermal expansion, It preferably contains one or more selected from the group consisting of acrylic urethane resins and olefin resins. That is, the thermally expandable base layer (Y1) preferably contains one or more selected from the group consisting of acrylic urethane resins and olefin resins. Moreover, as the acrylic urethane-based resin, the following resin (U1) is preferable.
  • An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth)acrylic acid ester.
  • prepolymer means a compound obtained by polymerizing a monomer and capable of forming a polymer by further polymerization.
  • urethane prepolymer (UP1) examples include reaction products of polyols and polyvalent isocyanates.
  • the urethane prepolymer (UP) is obtained by subjecting the urethane prepolymer (UP) to a chain extension reaction using a chain extension agent.
  • polyols used as raw materials for urethane prepolymers include alkylene-type polyols, ether-type polyols, ester-type polyols, esteramide-type polyols, ester/ether-type polyols, and carbonate-type polyols. These polyols may be used alone or in combination of two or more.
  • the polyol used in one aspect of the present invention is preferably a diol, more preferably an ester-type diol, an alkylene-type diol or a carbonate-type diol, and still more preferably an ester-type diol or a carbonate-type diol.
  • ester diols include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol; ethylene glycol, propylene glycol, 1 or 2 or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; ,4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Condensation products of one or more selected from dicarboxylic acids such as hydrophthalic acid, hexahydroisophthalic acid, hexahydro
  • alkylene type diols examples include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol; ethylene glycol, propylene glycol, alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol;
  • carbonate-type diols examples include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. , 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
  • Aromatic polyisocyanates, aliphatic polyisocyanates, alicyclic polyisocyanates, and the like are examples of polyvalent isocyanates that are raw materials for urethane prepolymers (UP).
  • One of these polyvalent isocyanates may be used alone, or two or more thereof may be used in combination. Further, these polyvalent isocyanates may be trimethylolpropane adduct-type modified products, biuret-type modified products reacted with water, and isocyanurate-type modified products containing an isocyanurate ring.
  • diisocyanates are preferable as the polyvalent isocyanate used in one embodiment of the present invention, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 At least one selected from -tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate is more preferred.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6 At least one selected from -tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate is more preferred.
  • Alicyclic diisocyanates include, for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane Examples include diisocyanate, methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, and isophorone diisocyanate (IPDI) is preferred.
  • IPDI isophorone diisocyanate
  • the urethane prepolymer (UP) that forms the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends.
  • Urethane prepolymers are preferred.
  • Hydroxyalkyl (meth)acrylates include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxy Butyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like can be mentioned.
  • At least (meth)acrylic acid ester is included as the vinyl compound that becomes the side chain of the acrylic urethane resin (U1).
  • the (meth)acrylic acid ester one or more selected from alkyl (meth)acrylates and hydroxyalkyl (meth)acrylates is preferable, and it is more preferable to use alkyl (meth)acrylates and hydroxyalkyl (meth)acrylates together.
  • the ratio of hydroxyalkyl (meth)acrylate to 100 parts by mass of alkyl (meth)acrylate is preferably 0.1 to 100 parts by mass, more It is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and even more preferably 1.5 to 10 parts by mass.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1-24, more preferably 1-12, even more preferably 1-8, and even more preferably 1-3.
  • hydroxyalkyl (meth)acrylates include the same hydroxyalkyl (meth)acrylates used for introducing ethylenically unsaturated groups to both ends of the linear urethane prepolymer described above.
  • vinyl compounds other than (meth)acrylic esters include aromatic hydrocarbon-based vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. , (meth)acrylonitrile, N-vinylpyrrolidone, (meth)acrylic acid, maleic acid, fumaric acid, itaconic acid, meth (acrylamide) and other polar group-containing monomers; These may be used individually by 1 type, and may use 2 or more types together.
  • the content of the (meth)acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, based on the total amount (100% by mass) of the vinyl compound. 100% by mass, more preferably 80 to 100% by mass, even more preferably 90 to 100% by mass.
  • the acrylic urethane resin (U1) used in one aspect of the present invention is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth)acrylic acid ester and polymerizing the two. In the polymerization, it is preferable to further add a radical initiator.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 )/(u12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, still more preferably 35 /65 to 55/45.
  • the olefin-based resin suitable as the resin contained in the resin composition (y-1) is a polymer having at least a structural unit derived from an olefin monomer.
  • ⁇ -olefins having 2 to 8 carbon atoms are preferable, and specific examples include ethylene, propylene, butylene, isobutylene, 1-hexene, and the like. Among these, ethylene and propylene are preferred.
  • olefin resins include, for example, ultra-low density polyethylene (VLDPE, density: 880 kg/m 3 or more and less than 910 kg/m 3 ), low density polyethylene (LDPE, density: 910 kg/m 3 or more and less than 915 kg/m 3 ), medium density polyethylene (MDPE, density: 915 kg/m 3 or more and less than 942 kg/m 3 ), high density polyethylene (HDPE, density: 942 kg/m 3 or more), polyethylene resin such as linear low density polyethylene; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); -vinyl alcohol copolymer (EVOH); olefinic terpolymers such as ethylene-propylene-(5-ethylidene-2-norbornene);
  • the olefin-based resin may be a modified olefin-based resin further subjected to one or more modifications selected from acid modification, hydroxyl modification, and acrylic modification.
  • the acid-modified olefin resin obtained by subjecting an olefin resin to acid modification is a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or its anhydride to the above-described unmodified olefin resin.
  • unsaturated carboxylic acids or anhydrides thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth)acrylic acid, maleic anhydride, and itaconic anhydride.
  • unsaturated carboxylic acid or its anhydride may be used individually by 1 type, and may use 2 or more types together.
  • the acrylic-modified olefin-based resin obtained by subjecting an olefin-based resin to acrylic modification includes modification obtained by graft-polymerizing an alkyl (meth)acrylate as a side chain to the above-described unmodified olefin-based resin that is the main chain. polymers.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
  • Examples of the above alkyl (meth)acrylates include the same compounds as the above-described compounds that can be selected as the monomer (a1′).
  • the hydroxyl group-modified olefin resin obtained by modifying the olefin resin with hydroxyl groups includes a modified polymer obtained by graft polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin which is the main chain.
  • Examples of the hydroxyl group-containing compound include those similar to the hydroxyl group-containing compound described above.
  • the resin composition (y-1) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin within a range that does not impair the effects of the present invention.
  • resins examples include vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; Coalescence; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resins; polysulfone; polyetheretherketone; polyethersulfone; polyphenylene sulfide; Fluorinated resins and the like are included.
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate
  • polystyrene acrylonitrile-butadiene-styrene copolymer
  • Coalescence
  • the acrylic urethane resin in the resin composition (y-1) and the content of resins other than olefinic resins is preferably as small as possible.
  • the content of the resin other than the acrylic urethane resin and the olefin resin is preferably less than 30 parts by mass, more preferably 20 parts by mass, with respect to 100 parts by mass of the total resin contained in the resin composition (y-1). Less than 10 parts by weight, more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
  • the resin composition (y-1) may contain a base material additive within a range that does not impair the effects of the present invention.
  • base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, and colorants. These base material additives may be used alone, or two or more of them may be used in combination.
  • the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.0001 to 20 parts by mass, based on 100 parts by mass of the resin. is 0.001 to 10 parts by mass.
  • solvent-free resin composition (y-1a) As one aspect of the resin composition (y-1) used in one aspect of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray-polymerizable monomer, and the above-mentioned and a solvent-free resin composition (y-1a) containing no solvent. In the solvent-free resin composition (y-1a), no solvent is blended, but the energy ray-polymerizable monomer contributes to improving the plasticity of the oligomer.
  • Mw mass average molecular weight
  • the weight average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y-1a) is 50,000 or less, preferably 1,000 to 50,000, more preferably 2,000 to 40,000, more preferably 3,000 to 35,000, even more preferably 4,000 to 30,000.
  • the oligomer among the resins contained in the resin composition (y-1) described above, those having an ethylenically unsaturated group having a mass average molecular weight of 50,000 or less may be used. (UP) is preferable, and a linear urethane prepolymer having ethylenically unsaturated groups at both ends is more preferable. A modified olefinic resin having an ethylenically unsaturated group can also be used as the oligomer.
  • the total content of the oligomer and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is based on the total amount (100 mass%) of the solvent-free resin composition (y-1a), It is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, even more preferably 65 to 90% by mass, still more preferably 70 to 85% by mass.
  • Energy beam-polymerizable monomers include, for example, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, cyclohexyl (meth)acrylate, adamantane ( Alicyclic polymerizable compounds such as meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate, and phenol ethylene oxide-modified acrylate; Examples include heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. Among these, isobornyl (meth)acrylate and phenylhydroxypropyl acrylate are preferred. One of these energy ray-polymerizable monomers may be used alone, or two or more thereof may be used in combination.
  • the content ratio [oligomer/energy ray-polymerizable monomer] of the oligomer and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is preferably from 20/80 by mass. 90/10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
  • the solvent-free resin composition (y-1a) preferably further contains a photopolymerization initiator.
  • a photopolymerization initiator By containing a photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with relatively low-energy energy rays.
  • Photopolymerization initiators include, for example, 1-hydroxycyclohexylphenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, dibenzyl , diacetyl, ⁇ -chloroanthraquinone, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and the like.
  • One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, and further preferably 0.01 to 5 parts by mass, based on the total amount (100 parts by mass) of the oligomer and the energy ray-polymerizable monomer. It is preferably 0.02 to 3 parts by mass.
  • the thickness of the thermally expandable substrate layer (Y1) before thermal expansion is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, still more preferably 25 to 120 ⁇ m.
  • the thickness of the thermally expandable base layer (Y1) before thermal expansion is 10 ⁇ m or more, it is possible to suppress the formation of unevenness due to the thermally expandable particles before thermal expansion, and the pressure-sensitive adhesive layer (X1). The adhesive strength of can be improved.
  • the thickness of the thermally expandable substrate layer (Y1) before thermal expansion is 200 ⁇ m or less, the double-sided PSA sheet tends to be easy to handle.
  • Non-thermally expandable base layer (Y2) ⁇ Non-thermally expandable base layer (Y2)>
  • the non-thermally expandable substrate layer (Y2) of the double-sided pressure-sensitive adhesive sheet of the first aspect is provided on the surface of the thermally expandable substrate layer (Y1) opposite to the surface on which the pressure-sensitive adhesive layer (X1) is laminated. .
  • the non-thermally expandable base material layer (Y2) is preferably a non-adhesive base material.
  • the probe tack value on the surface of the non-thermally expandable base material layer (Y2) is usually less than 50 mN/5 mm ⁇ , preferably less than 30 mN/5 mm ⁇ , more preferably less than 10 mN/5 mm ⁇ , still more preferably less than 5 mN/5 mm ⁇ . be.
  • Non-thermally expandable base layer (Y2) includes, for example, resins, metals, and paper materials, which can be appropriately selected according to the application of the double-sided pressure-sensitive adhesive sheet.
  • resins examples include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyether sulfone; polyphenylene sulfide; polyimide-based resins such as polyetherimide and polyimide; polyamide-based resins; acrylic resins; Examples of metals include aluminum, tin, chromium, and titanium.
  • the paper material examples include thin paper, medium quality paper, fine paper, impregnated paper, coated paper, art paper, parchment paper, and glassine paper.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferred.
  • the non-thermally expandable base layer (Y2) using two or more forming materials in combination includes a paper material laminated with a thermoplastic resin such as polyethylene, a resin film or sheet containing a resin, and a metal film formed on the surface of the sheet. and the like.
  • a method for forming the metal layer for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. and the like.
  • the non-thermally expandable group may also be subjected to a surface treatment such as an oxidation method or roughening method, an easy-adhesion treatment, or a primer treatment in the same manner as the thermally expandable base layer (Y1) described above. .
  • non-thermally expandable base material layer (Y2) contains a resin
  • it may contain the above base material additives that can also be contained in the resin composition (y-1) together with the resin.
  • the non-thermally expandable base layer (Y2) is a non-thermally expandable layer determined based on the method described above. Therefore, the volume change rate (%) of the non-thermally expandable base layer (Y2) calculated from the above formula is less than 5%, preferably less than 2%, more preferably less than 1%, and further Preferably less than 0.1%, even more preferably less than 0.01%.
  • the non-thermally expandable base layer (Y2) may contain thermally expandable particles as long as the volume change rate is within the above range.
  • the content of the thermally expandable particles in the non-thermally expandable base layer (Y2) is preferably as small as possible.
  • a specific content of the thermally expandable particles is usually less than 3% by mass, preferably less than 1% by mass, more preferably less than the total mass (100% by mass) of the non-thermally expandable base material layer (Y2). is less than 0.1 wt%, more preferably less than 0.01 wt%, even more preferably less than 0.001 wt%. Even more preferably, it does not contain heat-expandable particles.
  • the storage modulus E'(23) of the non-thermally expandable substrate layer (Y2) at 23° C. is preferably 5.0 ⁇ 10 7 to 5.0 ⁇ 10 9 Pa, more preferably 5.0 ⁇ 10 8 to 4.5 ⁇ 10 9 Pa, more preferably 1.0 ⁇ 10 9 to 4.0 ⁇ 10 9 Pa.
  • the storage elastic modulus E′(23) of the non-thermally expandable base layer (Y2) is 5.0 ⁇ 10 7 Pa or more, the deformation resistance of the double-sided PSA sheet can be easily improved.
  • the storage elastic modulus E′(23) of the non-thermally expandable base layer (Y2) is 5.0 ⁇ 10 9 Pa or less, the handleability of the double-sided PSA sheet can be easily improved.
  • the storage elastic modulus E'(23) of the non-thermally expandable base layer (Y2) means a value measured by the method described in Examples.
  • the thickness of the non-thermally expandable substrate layer (Y2) is preferably 5-500 ⁇ m, more preferably 15-300 ⁇ m, and still more preferably 20-200 ⁇ m. If the thickness of the non-thermally expandable base layer (Y2) is 5 ⁇ m or more, the deformation resistance of the double-sided PSA sheet can be easily improved. On the other hand, if the thickness of the non-thermally expandable base material layer (Y2) is 500 ⁇ m or less, it becomes easier to improve the handleability of the double-sided pressure-sensitive adhesive sheet.
  • the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of the first aspect is provided on the surface of the non-thermally expandable substrate layer (Y2) opposite to the lamination surface of the thermally expandable substrate layer (Y1). layer.
  • the pressure-sensitive adhesive layer (X2) is preferably an energy ray-curable pressure-sensitive adhesive layer that is cured by irradiation with an energy ray to reduce the adhesive strength, and more preferably is cured by irradiation with an ultraviolet ray to reduce the adhesive strength. is a pressure-sensitive adhesive layer in which the
  • the adhesive layer (X2) is preferably a non-thermally expandable layer.
  • the volume change rate (%) of the pressure-sensitive adhesive layer (X2) calculated from the above formula is less than 5%, preferably less than 2%, more Preferably less than 1%, more preferably less than 0.1%, even more preferably less than 0.01%.
  • the pressure-sensitive adhesive layer (X2) preferably does not contain heat-expandable particles, but may contain heat-expandable particles as long as the object of the present invention is not compromised.
  • the content is preferably as small as possible, and preferably less than 3% by mass, more than It is preferably less than 1% by mass, more preferably less than 0.1% by mass, even more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
  • the adhesive layer (X2) is preferably formed from an adhesive composition (x-2) containing an adhesive resin. Each component contained in the adhesive composition (x-2) is described below.
  • the adhesive composition (x-2) contains an adhesive resin, and if necessary, a cross-linking agent, a tackifier, a polymerizable compound, a polymerization initiator, a general adhesive other than the above components It may contain additives for pressure-sensitive adhesives and the like used in agents.
  • the tacky resin As the tacky resin, a polymer having tackiness by itself and having a mass average molecular weight (Mw) of 10,000 or more may be used.
  • the mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000, from the viewpoint of further improving the adhesive strength of the adhesive layer (X2). ⁇ 1 million.
  • the adhesive resin examples include those similar to the adhesive resin contained in the adhesive composition (x-1). These adhesive resins may be used alone or in combination of two or more. In addition, when these adhesive resins are copolymers having two or more structural units, the form of the copolymer is any of a block copolymer, a random copolymer, and a graft copolymer. There may be.
  • the pressure-sensitive adhesive resin contained in the pressure-sensitive adhesive composition (x-2) is a pressure-sensitive adhesive layer in which the pressure-sensitive adhesive layer (X2) obtained is cured by energy ray irradiation to reduce the pressure-sensitive adhesive strength.
  • a tacky resin having an energy ray-polymerizable functional group is preferred.
  • the energy ray polymerizable functional group include those having a carbon-carbon double bond such as (meth)acryloyl group, vinyl group and allyl group.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength.
  • the content of the acrylic resin in the adhesive composition (x-2) is preferably 30 to 100 mass %, more preferably 50 to 100 mass %, still more preferably 70 to 100 mass %, still more preferably 85 to 100 mass %.
  • the content of the adhesive resin in the adhesive composition (x-2) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-2), More preferably 50 to 100% by mass, still more preferably 60 to 98% by mass, still more preferably 70 to 95% by mass.
  • the pressure-sensitive adhesive composition (x-2) may contain, together with the pressure-sensitive adhesive resin, a monomer or oligomer capable of being polymerized and cured by energy ray irradiation as an energy ray-curable compound.
  • Examples of such energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol (meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4- Polyvalent (meth)acrylate monomers such as butylene glycol di(meth)acrylate, 1,6-hexanediol (meth)acrylate; polyfunctional urethane (meth)acrylate, polyfunctional polyester (meth)acrylate, polyfunctional polyether ( Examples include oligomers such as meth)acrylates and polyfunctional epoxy (meth)acrylates.
  • polyfunctional urethane (meth)acrylate oligomers are preferable because they have relatively high molecular weights and are less likely to lower the elastic modulus of the pressure-sensitive adhesive layer (X2).
  • the molecular weight of the energy ray-curable compound is preferably 100 to 12,000, more preferably 200 to 10,000, still more preferably 400 to 8,000, even more preferably. is between 600 and 6,000.
  • the adhesive composition (x-2) preferably further contains a photopolymerization initiator.
  • a photopolymerization initiator By containing a photopolymerization initiator, the polymerization of the energy ray-polymerizable component can proceed more efficiently.
  • the photopolymerization initiator include those exemplified in the description of the solvent-free resin composition (y-1a). Among these, 1-hydroxycyclohexylphenyl ketone is preferred.
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, with respect to 100 parts by mass of the total amount of the adhesive resin having an energy ray-polymerizable functional group. More preferably, it is 0.05 to 2 parts by mass.
  • the pressure-sensitive adhesive composition (x-2) when the pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x-2) preferably further contains a cross-linking agent.
  • the cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins with each other using the functional group as a cross-linking starting point.
  • Examples of the cross-linking agent that may be contained in the pressure-sensitive adhesive composition (x-2) include the same or equivalent cross-linking agents that may be contained in the pressure-sensitive adhesive composition (x-1).
  • An isocyanate-based cross-linking agent is preferred from the viewpoints of increasing cohesive strength and improving adhesive strength, as well as from the viewpoint of availability.
  • the content of the cross-linking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin. More preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x-2) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • a tackifier from the viewpoint of further improving the adhesive strength.
  • the same tackifier that may be contained in the pressure-sensitive adhesive composition (x-1) may be used. can.
  • Adhesive additive examples of the adhesive additive include the same additives as the adhesive additive that may be contained in the adhesive composition (x-1).
  • the adhesive composition (x-2) can be produced by mixing an adhesive resin, optionally used cross-linking agent, tackifier, adhesive additive, and the like.
  • the adhesive strength of the pressure-sensitive adhesive layer (X2) before energy beam irradiation is preferably 1.1 to 30.0 N/25 mm, more preferably 3.0 to 25.0 N/25 mm, still more preferably 5.0 to 20.0 N/25 mm. 0 N/25 mm. If the adhesive strength of the adhesive layer (X2) before energy beam irradiation is 1.1 N/25 mm or more, unintended peeling of the workpiece (W) is suppressed, and positional displacement of the workpiece (W) is prevented. It can be suppressed more effectively. On the other hand, when the adhesive strength is 30.0 N/25 mm or less, the peelability after energy ray irradiation can be further improved.
  • the adhesive strength of the adhesive layer (X2) after energy beam irradiation is preferably 1.0 N/25 mm or less, more preferably 0.9 N/25 mm or less, still more preferably 0.8 N/25 mm or less, and even more preferably 0 .7 N/25 mm or less.
  • the lower limit of the pressure-sensitive adhesive layer (X2) after irradiation with energy rays is not particularly limited, and may be 0 N/25 mm or more. If the adhesive strength of the pressure-sensitive adhesive layer (X2) after energy ray irradiation is 1.0 N/25 mm or less, the peelability from the processed product (P) will be excellent.
  • the thickness of the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of the first aspect is preferably 5 to 150 ⁇ m, more preferably 8 to 100 ⁇ m, even more preferably 12 to 70 ⁇ m, still more preferably 15 to 50 ⁇ m. . If the thickness of the pressure-sensitive adhesive layer (X2) is 5 ⁇ m or more, it becomes easy to obtain sufficient adhesive strength, and there is a tendency that unintended peeling of the workpiece (W) during temporary fixing, positional displacement, etc. can be suppressed. . On the other hand, when the thickness of the pressure-sensitive adhesive layer (X2) is 150 ⁇ m or less, the double-sided pressure-sensitive adhesive sheet tends to be easy to handle.
  • the pressure-sensitive adhesive layer (X1), the thermally expandable base layer (Y1), the non-thermally expandable base layer (Y2), and the pressure-sensitive adhesive layer (X2) before thermal expansion is preferably 90 to 300 ⁇ m, more preferably 100 to 250 ⁇ m, still more preferably 130 to 200 ⁇ m.
  • the double-sided pressure-sensitive adhesive sheet has good mechanical strength and the like and is easy to handle. Further, when the total thickness is 300 ⁇ m or less, the double-sided pressure-sensitive adhesive sheet tends to be easy to handle.
  • the method for producing the double-sided pressure-sensitive adhesive sheet of the first aspect is not particularly limited, and includes, for example, a method for producing a double-sided pressure-sensitive adhesive sheet having the following steps (1a) to (5a).
  • Step (1a) A step of applying an adhesive composition (x-1) onto the release-treated surface of a release material to form an adhesive layer (X1).
  • the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) are further blended with a diluting solvent to form a solution.
  • coating methods include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • the step of drying the coating film formed from the resin composition (y-1), the adhesive composition (x-1), and the adhesive composition (x-2) causes expansion of the thermally expandable particles.
  • the drying temperature is preferably lower than the expansion start temperature (t) of the thermally expandable particles.
  • the double-sided pressure-sensitive adhesive sheet of the second aspect is a double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer (X1) which is a thermally expandable layer, a substrate layer (Y), and a pressure-sensitive adhesive layer (X2) in this order. .
  • the description of the base layer (Y) of the double-sided pressure-sensitive adhesive sheet of the second aspect is the same as the description of the non-thermally expandable base layer (Y2) of the double-sided pressure-sensitive adhesive sheet of the first aspect.
  • the description of the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of aspect 1 is the same as the description of the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of aspect 1.
  • the pressure-sensitive adhesive layer (X1) of the second aspect is a thermally expandable layer containing thermally expandable particles, and preferably contains an energy ray-polymerizable component polymer and thermally expandable particles.
  • the polymer comprises, as the energy ray-polymerizable components, a monomer (b1) having an energy ray-polymerizable functional group (hereinafter also referred to as "(b1) component") and a prepolymer (b2) having an energy ray-polymerizable functional group.
  • polymerizable composition (x-1′) (hereinafter also referred to as “(b2) component”) (hereinafter also referred to as “polymerizable composition (x-1′)”) is irradiated with energy rays.
  • prepolymer means a compound obtained by polymerizing a monomer and capable of forming a polymer by further polymerization.
  • the energy ray-polymerizable component contained in the polymerizable composition (x-1′) is a component that polymerizes upon exposure to energy rays, and has an energy ray-polymerizable functional group.
  • the energy ray polymerizable functional group include those having a carbon-carbon double bond such as (meth)acryloyl group, vinyl group and allyl group.
  • a functional group partially containing a vinyl group or a substituted vinyl group such as a (meth)acryloyl group or an allyl group, and a vinyl group or a substituted vinyl group itself are referred to as a "vinyl group-containing group.”
  • a vinyl group-containing group may be collectively referred to as Each component contained in the polymerizable composition (x-1′) will be described below.
  • the monomer having an energy ray-polymerizable functional group (b1) may be a monomer having an energy ray-polymerizable functional group, and in addition to the energy ray-polymerizable functional group, a hydrocarbon group and an energy ray-polymerizable functional group. You may have a functional group etc. other than.
  • hydrocarbon group of the component (b1) examples include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a combination of these groups, and the like.
  • the aliphatic hydrocarbon group may be a linear or branched aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
  • Linear or branched aliphatic hydrocarbon groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, sec-butyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, isooctyl group, n-decyl group, n-dodecyl group, n-myristyl group, n-palmityl group, n-stearyl group, etc. Twenty aliphatic hydrocarbon groups are mentioned.
  • the alicyclic hydrocarbon group includes, for example, alicyclic hydrocarbon groups having 3 to 20 carbon atoms such as cyclopentyl group, cyclohexyl group and isobornyl group.
  • Aromatic hydrocarbon groups include, for example, a phenyl group.
  • Groups in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are combined include, for example, a phenoxyethyl group and a benzyl group.
  • the component (b1) has an energy ray-polymerizable functional group and a linear or branched aliphatic hydrocarbon group from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X1).
  • Monomer (b1-1) (hereinafter also referred to as “(b1-1) component”), monomer (b1-2) having an energy ray-polymerizable functional group and an alicyclic hydrocarbon group (hereinafter referred to as “(b1- 2) Also referred to as “component”) and the like are preferably contained.
  • component (b1) contains component (b1-1)
  • its content is preferably 20 to 80% by mass, more preferably 40 to 80% by mass, relative to the total (100% by mass) of component (b1) 70% by mass, more preferably 50 to 60% by mass.
  • component (b1) contains component (b1-2)
  • its content is preferably 5 to 60% by mass, more preferably 10 to 60% by mass, relative to the total (100% by mass) of component (b1) 40% by mass, more preferably 20 to 30% by mass.
  • the (b1) component is a monomer (b1-3) having an energy ray-polymerizable functional group and a hydroxy group (hereinafter referred to as "(b1 -3) (also referred to as "component”) is preferably contained.
  • component (b1) contains component (b1-3)
  • its content is preferably 1 to 60% by mass, more preferably 5 to 60% by mass, relative to the total (100% by mass) of component (b1) 30% by mass, more preferably 10 to 20% by mass.
  • the number of energy ray-polymerizable functional groups possessed by the component (b1) may be one, or two or more.
  • the component (b1) is a monomer (b1-4) having three or more energy ray-polymerizable functional groups (hereinafter referred to as "(b1-4) (also referred to as "component”).
  • component (b1) contains component (b1-4)
  • its content is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, more preferably 3 to 10% by mass.
  • a monomer having one energy ray-polymerizable functional group a monomer having one vinyl group-containing group (hereinafter also referred to as “polymerizable vinyl monomer”) is preferred.
  • a monomer having two or more energy ray-polymerizable functional groups a monomer having two or more (meth)acryloyl groups (hereinafter also referred to as “polyfunctional (meth)acrylate monomer”) is preferable.
  • the component (b1) contains the above compounds, the cohesive force of the adhesive obtained by polymerizing these is improved, and the adhesive layer (X1) with less contamination of the processed product (P) after peeling is formed. be able to.
  • the polymerizable vinyl monomer is not particularly limited as long as it has a vinyl group-containing group, and conventionally known monomers can be appropriately used. Polymerizable vinyl monomers may be used singly or in combination of two or more.
  • polymerizable vinyl monomers examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ) acrylate, isooctyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, myristyl (meth)acrylate, palmityl (meth)acrylate, stearyl (meth)acrylate, etc.
  • the polymerizable vinyl monomer may further have functional groups other than the vinyl group-containing group in the molecule.
  • the functional group include a hydroxy group, a carboxyl group, a thiol group, a primary or secondary amino group, and the like.
  • a polymerizable vinyl monomer having a hydroxy group corresponding to the above component (b1-3) is preferred.
  • Polymerizable vinyl monomers having a hydroxy group include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 -hydroxyalkyl (meth)acrylates such as hydroxybutyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate; and hydroxy group-containing acrylamides such as N-methylol acrylamide and N-methylol methacrylamide.
  • polymerizable vinyl monomers having a carboxy group examples include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and citraconic acid. Among these, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are preferred.
  • Examples of other polymerizable vinyl monomers include vinyl esters such as vinyl acetate and vinyl propionate; olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; -Styrenic monomers such as methylstyrene; Diene monomers such as butadiene, isoprene and chloroprene; Acrylonitrile, nitrile monomers such as methacrylonitrile; Acrylamide, methacrylamide, N-methylacrylamide, N-methyl Amide-based monomers such as methacrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, N-vinylpyrrolidone; N,N-diethylaminoethyl (meth)acrylate, N-( Tertiary amino group-containing monomers such as meth)acryloylmorpholine and the like
  • the polyfunctional (meth)acrylate monomer is not particularly limited as long as it is a monomer having two or more (meth)acryloyl groups in one molecule, and conventionally known monomers can be appropriately used. Polyfunctional (meth)acrylate monomers may be used alone or in combination of two or more.
  • Polyfunctional (meth)acrylate monomers include, for example, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate.
  • acrylate neopentyl glycol adipate di(meth)acrylate, neopentyl glycol hydroxypivalate di(meth)acrylate, dicyclopentanyl di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, ethylene oxide-modified phosphoric acid Bifunctional (meth)acrylate monomers such as di(meth)acrylate, di(acryloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate, isocyanurate ethylene oxide-modified diacrylate; trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)
  • the total content of the polymerizable vinyl monomers in the polymerizable composition (x-1') is preferably 10 with respect to the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1'). ⁇ 80% by mass, more preferably 30 to 75% by mass, still more preferably 50 to 70% by mass.
  • the total content of polyfunctional (meth)acrylate monomers in the polymerizable composition (x-1') is preferably based on the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1'). is 0.5 to 15 mass %, more preferably 1 to 10 mass %, still more preferably 2 to 5 mass %.
  • the total content of the component (b1) in the polymerizable composition (x-1') is preferably 15 to 90% by mass, more preferably 35 to 80% by mass, still more preferably 55 to 75% by mass.
  • prepolymer (b2) having an energy ray-polymerizable functional group examples include a prepolymer having one energy ray-polymerizable functional group, a prepolymer having two or more energy ray-polymerizable functional groups, and the like.
  • the component (b2) is a prepolymer having two or more energy ray-polymerizable functional groups from the viewpoint of forming a pressure-sensitive adhesive layer that has excellent releasability and less contamination of the processed product (P) after delamination.
  • It preferably contains a prepolymer having two energy ray-polymerizable functional groups, more preferably contains two energy ray-polymerizable functional groups, and has the energy ray-polymerizable functional groups at both ends. More preferably it contains a prepolymer.
  • the component (b2) preferably contains a prepolymer having two or more (meth)acryloyl groups as energy ray-polymerizable functional groups (hereinafter also referred to as "polyfunctional (meth)acrylate prepolymer").
  • polyfunctional (meth)acrylate prepolymer By containing the above compounds in the component (b2), the cohesive force of the adhesive obtained by polymerizing these is improved, and the adhesive layer has excellent peelability and less contamination of the processed product (P) after peeling.
  • (X1) can be formed.
  • the polyfunctional (meth)acrylate prepolymer is not particularly limited as long as it is a prepolymer having two or more (meth)acryloyl groups in one molecule, and conventionally known ones can be appropriately used. Polyfunctional (meth)acrylate prepolymer may be used alone or in combination of two or more.
  • Polyfunctional (meth)acrylate prepolymers include, for example, urethane acrylate prepolymers, polyester acrylate prepolymers, epoxy acrylate prepolymers, polyether acrylate prepolymers, polybutadiene acrylate prepolymers, silicone acrylate prepolymers, A polyacrylic acrylate-based prepolymer and the like are included.
  • Urethane acrylate prepolymers are obtained by reacting compounds such as polyalkylene polyols, polyether polyols, polyester polyols, hydrogenated isoprene having a terminal hydroxyl group, and hydrogenated butadiene having a terminal hydroxyl group with polyisocyanate.
  • a polyurethane prepolymer can be obtained by esterification with (meth)acrylic acid or a (meth)acrylic acid derivative.
  • polyalkylene polyols used for producing urethane acrylate prepolymers include polypropylene glycol, polyethylene glycol, polybutylene glycol, and polyhexylene glycol, among which polypropylene glycol is preferred.
  • the number of functional groups of the obtained urethane acrylate prepolymer is 3 or more, for example, glycerin, trimethylolpropane, triethanolamine, pentaerythritol, ethylenediamine, diethylenetriamine, sorbitol, sucrose, etc. may be appropriately combined.
  • polyisocyanates used in the production of urethane acrylate prepolymers include aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylene diisocyanate; aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate and diphenyl diisocyanate; and dicyclohexylmethane diisocyanate. and alicyclic diisocyanate such as isophorone diisocyanate. Among these, aliphatic diisocyanate is preferred, and hexamethylene diisocyanate is more preferred.
  • the polyisocyanate is not limited to bifunctional, and trifunctional or higher functional polyisocyanate can also be used.
  • (Meth)acrylic acid derivatives used in the production of urethane acrylate prepolymers include, for example, hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate; Examples include isocyanatoethyl methacrylate, 1,1-bis(acryloxymethyl)ethyl isocyanate, etc. Among these, 2-isocyanatoethyl acrylate is preferred.
  • a hydroxy group possessed by a compound such as a polyalkylene polyol, a polyether polyol, a polyester polyol, a hydrogenated isoprene having a hydroxyl group terminal, a hydrogenated butadiene having a hydroxyl group terminal, and an isocyanate
  • a method of reacting with the —N ⁇ C ⁇ O portion possessed by the alkyl (meth)acrylate can be exemplified.
  • isocyanate alkyl (meth)acrylate for example, the above 2-isocyanate ethyl acrylate, 2-isocyanate ethyl methacrylate, 1,1-bis(acryloxymethyl)ethyl isocyanate, etc. can be used.
  • the polyester acrylate prepolymer can be obtained, for example, by esterifying the hydroxy groups of a polyester prepolymer having hydroxy groups at both ends thereof with (meth)acrylic acid obtained by condensation of a polycarboxylic acid and a polyhydric alcohol. can be done. It can also be obtained by esterifying the terminal hydroxy group of a prepolymer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth)acrylic acid.
  • Epoxy acrylate-based prepolymers can be obtained, for example, by reacting (meth)acrylic acid with oxirane rings of relatively low-molecular-weight bisphenol-type epoxy resins, novolac-type epoxy resins, etc. to esterify them.
  • a carboxy-modified epoxy acrylate prepolymer obtained by partially modifying an epoxy acrylate prepolymer with a dibasic carboxylic acid anhydride can also be used.
  • a polyether acrylate-based prepolymer can be obtained, for example, by esterifying the hydroxy groups of a polyether polyol with (meth)acrylic acid.
  • the polyacrylic acrylate-based prepolymer may have acryloyl groups on the side chains, or may have acryloyl groups on both ends or one end.
  • a polyacrylic acrylate-based prepolymer having acryloyl groups in side chains can be obtained, for example, by adding glycidyl methacrylate to the carboxy group of polyacrylic acid.
  • acryloyl groups are introduced at both ends using the polymer growth terminal structure of polyacrylate prepolymers synthesized by the ATRP (Atom Transfer Radical Polymerization) method. can be obtained by doing
  • the mass average molecular weight (Mw) of component (b2) is preferably 10,000 to 350,000, more preferably 15,000 to 200,000, still more preferably 20,000 to 50,000.
  • the total content of the polyfunctional (meth)acrylate prepolymer in the polymerizable composition (x-1 ') is based on the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1 '), It is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, still more preferably 20 to 30% by mass.
  • the total content of the component (b2) in the polymerizable composition (x-1') is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, still more preferably 20 to 30% by mass.
  • the content ratio [(b2)/(b1)] of the component (b2) and the component (b1) in the polymerizable composition (x-1′) is preferably 10/90 to 70/30 on a mass basis. , more preferably 20/80 to 50/50, still more preferably 25/75 to 40/60.
  • the polymerizable composition (x-1′) preferably contains a polymerizable vinyl monomer, a polyfunctional (meth)acrylate monomer and a polyfunctional (meth)acrylate prepolymer.
  • the total content of the polymerizable vinyl monomer, the polyfunctional (meth)acrylate monomer and the polyfunctional (meth)acrylate prepolymer in the energy ray polymerizable component contained in the polymerizable composition (x-1′) is the energy ray With respect to the total amount (100% by mass) of the polymerizable component, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 99% by mass or more, and 100% by mass %.
  • the total content of the energy ray-polymerizable components in the polymerizable composition (x-1′) is preferably 70 with respect to the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1′). ⁇ 98% by mass, more preferably 75 to 97% by mass, still more preferably 80 to 96% by mass, still more preferably 82 to 95% by mass.
  • the polymerizable composition (x-1') may contain components other than the energy ray-polymerizable component and the thermally expandable particles.
  • components other than the energy ray-polymerizable component and the thermally expandable particles include photopolymerization initiators, tackifiers, additives for pressure-sensitive adhesives used in general pressure-sensitive adhesives other than the above components, and the like. These components are the same as those explained in the double-sided pressure-sensitive adhesive sheet of the first aspect.
  • the polymerizable composition (x-1′) may contain a solvent such as a diluent within the scope of the object of the present invention, but preferably does not contain a solvent. That is, the polymerizable composition (x-1') is preferably a solventless polymerizable composition. Since the polymerizable composition (x-1 ') is a solvent-free polymerizable composition, when forming the pressure-sensitive adhesive layer (X1), the heat drying of the solvent can be omitted.
  • the content is preferably as small as possible, relative to the total amount (100% by mass) of the active ingredients of the polymerizable composition (x-1 '), preferably is 10% by mass or less, more preferably 1% by mass or less, still more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
  • the polymerizable composition (x-1') can be produced by mixing the energy ray-polymerizable component, thermally expandable particles, and optionally other components. Since the resulting polymerizable composition (x-1′) is to have a high molecular weight by the subsequent energy beam polymerization, when forming a layer, the low molecular weight energy beam polymerizable component is used to achieve an appropriate viscosity. Adjustable. Therefore, the polymerizable composition (x-1') can be used as it is as a coating solution for forming the pressure-sensitive adhesive layer (X1) without adding a solvent such as a diluent.
  • the pressure-sensitive adhesive layer (X1) formed by irradiating the polymerizable composition (x-1′) with an energy ray includes a wide variety of polymers obtained by polymerizing the energy ray-polymerizable component and the polymer. Circumstances exist in which thermally expandable particles dispersed during coalescence are involved, but it is not possible or even nearly impractical to directly characterize them by structure and physical properties.
  • Adhesive strength of adhesive layer (X1) The adhesive strength before thermal expansion and the adhesive strength after thermal expansion of the pressure-sensitive adhesive layer (X1) in the double-sided pressure-sensitive adhesive sheet of the second aspect are the same as in the description of the double-sided pressure-sensitive adhesive sheet of the first aspect. Description of the adhesive strength of the adhesive layer (X1) before thermally expanding the material layer (Y1) and the adhesive strength of the adhesive layer (X1) after thermally expanding the thermally expandable base layer (Y1) are the same.
  • the thickness of the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the second aspect before thermal expansion is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, still more preferably 25 to 120 ⁇ m. If the thickness of the pressure-sensitive adhesive layer (X1) before thermal expansion is 10 ⁇ m or more, sufficient adhesive strength is easily obtained, unintended peeling from the support (S) during temporary fixing is suppressed, and the target to be processed is It tends to be possible to suppress the positional deviation of the object (W).
  • the thickness of the pressure-sensitive adhesive layer (X1) before thermal expansion is 200 ⁇ m or less, the peelability during heat peeling is improved, and the double-sided pressure-sensitive adhesive sheet is prevented from curling during heat peeling, thereby improving handling properties. It tends to improve.
  • the method for forming the pressure-sensitive adhesive layer (X1) is the polymerizable composition (x-1′) containing the energy ray-polymerizable component and the thermally expandable particles. It is preferable that the method for producing a double-sided pressure-sensitive adhesive sheet includes a step of irradiating an energy beam to form a polymer of the energy beam-polymerizable component, specifically, the following steps (1b) to (3b).
  • the manufacturing method includes Step (1b): Step of forming a polymerizable composition layer composed of the polymerizable composition (x-1′) on one side of the base material Step (2b): Applying an energy ray to the polymerizable composition layer A pressure-sensitive adhesive layer (X1) formed by irradiation to form a polymer of the energy ray-polymerizable component and containing the polymer and the thermally expandable particles on one side of the substrate layer (Y) Step (3b): Step of forming an adhesive layer (X2) on the other surface side of the base layer (Y)
  • the polymerizable composition (x-1′) is applied onto the release-treated surface of the release material to form a polymerizable composition layer, and the polymerizable composition layer is:
  • a method of applying a first energy ray to prepolymerize the energy ray-polymerizable component in the polymerizable composition layer and then attaching a substrate to the polymerizable composition layer after prepolymerization can be used.
  • the polymerizable composition (x-1') is preferably a solventless polymerizable composition.
  • the step of drying the solvent by heating may not be performed in this step, and expansion of the thermally expandable particles can be suppressed. .
  • the step (2b) comprises irradiating the polymerizable composition layer formed in the step (1b) with an energy ray to form a polymer of the energy ray-polymerizable component, and containing the polymer and thermally expandable particles.
  • This is a step of forming the pressure-sensitive adhesive layer (X1) to be applied.
  • the energy beam irradiation in step (2b) is the second energy beam irradiation performed on the polymerizable composition layer after prepolymerization.
  • the energy ray irradiation in step (2b) is preferably carried out to such an extent that the energy ray-polymerizable component does not substantially proceed with the polymerization even if the energy ray is further irradiated.
  • polymerization of the energy ray-polymerizable component proceeds to form a polymer of the energy ray-polymerizable component that constitutes the pressure-sensitive adhesive layer (X1).
  • step (3b) the pressure-sensitive adhesive composition (x-2) is applied to one surface of the release material to form the pressure-sensitive adhesive layer (X2), and the pressure-sensitive adhesive layer (X2) is applied to the base layer (Y ) can be attached to the other surface side.
  • none of the steps included in the steps (1b) and (2b) includes a step of heating the polymerizable composition.
  • heating means intentionally heating, for example, during drying, lamination, etc., and the heat given to the polymerizable composition by energy beam irradiation, the energy beam polymerizable composition A temperature rise due to heat of polymerization or the like generated by polymerization is not included.
  • a release sheet subjected to double-sided release treatment As the release material that the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention may have, a release sheet subjected to double-sided release treatment, a release sheet subjected to single-sided release treatment, or the like is used. Examples include those to which a release agent is applied.
  • Base materials for the release material include, for example, plastic films and papers.
  • plastic films include polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; olefin resin films such as polypropylene resin and polyethylene resin; , glassine paper, kraft paper, and the like.
  • release agents include rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins; long-chain alkyl-based resins, alkyd-based resins, fluorine-based resins, and the like.
  • the release agent may be used alone or in combination of two or more.
  • the thickness of the release material is preferably 10-200 ⁇ m, more preferably 20-150 ⁇ m, still more preferably 35-80 ⁇ m.
  • Step 1 is a step of attaching the workpiece (W) to the adhesive layer (X2) of the double-sided adhesive sheet, and attaching the support (S) to the adhesive layer (X1) of the double-sided adhesive sheet.
  • FIG. 3 shows a cross-sectional view for explaining the steps of attaching the semiconductor wafer W to the adhesive layer (X2) of the double-sided adhesive sheet 1a and attaching the support (S) to the adhesive layer (X1). there is The semiconductor wafer W is attached such that the front surface W ⁇ , which is the circuit surface, faces the adhesive layer (X2).
  • the semiconductor wafer W may be a silicon wafer, a wafer of gallium arsenide, silicon carbide, sapphire, lithium tantalate, lithium niobate, gallium nitride, indium phosphide, or the like, or a glass wafer.
  • the thickness of the semiconductor wafer W before grinding is usually 500 to 1,000 ⁇ m.
  • the circuit on the surface W ⁇ of the semiconductor wafer W can be formed by conventional methods such as etching and lift-off.
  • the material of the support (S) may be appropriately selected according to the type of object to be processed, details of processing, etc., taking into consideration the required properties such as mechanical strength and heat resistance.
  • Materials for the support (S) include, for example, metallic materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, and polyamideimide. Resin materials such as resins; composite materials such as glass epoxy resins; among others, SUS, glass, and silicon wafers are preferable.
  • the engineering plastic include nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
  • Examples of the super engineering plastics include polyphenylene sulfide (PPS), polyethersulfone (PES), polyetheretherketone (PEEK), and the like.
  • the support (S) is preferably attached to the entire adhesive surface of the adhesive layer (X1). Therefore, the area of the surface of the support (S) that is attached to the adhesive surface of the adhesive layer (X1) is preferably equal to or greater than the area of the adhesive surface of the adhesive layer (X1). Further, the surface of the support (S) on the side to be attached to the adhesive surface of the adhesive layer (X1) is preferably planar. Although the shape of the support (S) is not particularly limited, it is preferably plate-like. The thickness of the support (S) may be appropriately selected in consideration of required properties, but is preferably 20 ⁇ m to 50 mm, more preferably 60 ⁇ m to 20 mm.
  • Step 2 is selected from applying a semiconductor adhesive and attaching a semiconductor film to the surface (W ⁇ ) of the object (W) opposite to the adhesive layer (X2) 1 This is a step of obtaining a processed product (P) by performing the above processing.
  • Step 2 preferably includes steps 2-1 and 2-2 below.
  • Step 2-1 A step of subjecting the object to be processed (W) to one or more processing treatments selected from grinding treatment and singulation treatment
  • Step 2-2 The object to be processed (W ), the surface (W ⁇ ) opposite to the adhesive layer (X2) is subjected to one or more processes selected from application of a semiconductor adhesive and application of a semiconductor film to obtain a processed product (P )
  • Step 2-1 is a step of subjecting the workpiece (W) to one or more processing processes selected from grinding and singulation.
  • One or more processing treatments selected from grinding treatment and singulation treatment include, for example, grinding treatment using a grinder; blade dicing method, laser dicing method, stealth dicing (registered trademark) method, blade tip dicing method, stealth Singulation processing by a pre-dicing method or the like can be mentioned.
  • singulation processing by the stealth dicing method, grinding processing and singulation processing by the blade tip dicing method, grinding processing and singulation processing by the stealth tip dicing method are preferable, and grinding processing by the blade tip dicing method and singulation processing, grinding processing and singulation processing by the stealth tip dicing method are more preferable.
  • the stealth dicing method is a method in which a modified region is formed inside a semiconductor wafer by irradiating a laser beam, and the semiconductor wafer is singulated using the modified region as a division starting point.
  • the modified region formed in the semiconductor wafer is a portion embrittled by multiphoton absorption, and stress is applied to the semiconductor wafer in the direction parallel to the wafer surface and in the direction in which the wafer is expanded by expanding the modified region.
  • the crack extends toward the front surface and the back surface of the semiconductor wafer from the starting point, thereby singulating into semiconductor chips. That is, the modified regions are formed along the parting lines when singulated.
  • the modified region is formed inside the semiconductor wafer by irradiating laser light focused on the inside of the semiconductor wafer.
  • the incident surface of the laser beam may be the front surface or the back surface of the semiconductor wafer.
  • the laser beam incident surface may be a surface to which a double-sided adhesive sheet is attached, in which case the semiconductor wafer is irradiated with the laser beam via the double-sided adhesive sheet.
  • the blade tip dicing method is also called the DBG method (Dicing Before Grinding).
  • DBG method Dynamic Bit Bit Rate (Dicing Before Grinding).
  • the blade-tip dicing method grooves are formed in advance in a semiconductor wafer to a depth shallower than the thickness of the semiconductor wafer along lines to be divided, and then the semiconductor wafer is ground back until the ground surface reaches at least the grooves. It is a method of individualizing while separating.
  • the grooves reached by the ground surface form cuts penetrating the semiconductor wafer, and the semiconductor wafer is divided by the cuts into individual semiconductor chips.
  • the grooves formed in advance are usually provided on the surface (circuit surface) of the semiconductor wafer, and can be formed, for example, by dicing using a conventionally known wafer dicing apparatus equipped with a dicing blade.
  • the stealth dicing method is also called the SDBG method (Stealth Dicing Before Grinding).
  • the stealth dicing method is a type of method in which a modified region is formed inside a semiconductor wafer by irradiation with a laser beam, and the semiconductor wafer is singulated using the modified region as a starting point for division.
  • the stealth dicing method differs from the stealth dicing method in that the semiconductor wafer is divided into semiconductor chips while being thinned by grinding. Specifically, while thinning the semiconductor wafer having the modified region by back grinding, the pressure applied to the semiconductor wafer at that time is applied to the surface of the semiconductor wafer to be attached to the adhesive layer with the modified region as a starting point.
  • the grinding thickness after forming the modified region may be a thickness that reaches the modified region. Then, it may be cleaved by a processing pressure such as a grinding wheel.
  • a processing pressure such as a grinding wheel.
  • Semiconductor chips separated into individual pieces by the SDBG process are in a state of being in contact with each other, and are likely to cause a so-called chipping phenomenon in which the outer edge is chipped finely due to vibration. Therefore, the method for manufacturing a semiconductor device according to one embodiment of the present invention, in which vibration can be suppressed by being firmly fixed to the support (S), is particularly suitable for the SDBG method.
  • the semiconductor wafer W When the semiconductor wafer W is diced by the blade tip dicing method, it is preferable to previously form grooves on the surface W ⁇ of the semiconductor wafer W to be adhered to the adhesive layer (X2) in step 1 .
  • the semiconductor wafer W attached to the adhesive layer (X2) in step 1 is irradiated with a laser beam to form a modified region in advance.
  • the modified region may be formed by irradiating the semiconductor wafer W attached to the adhesive layer (X2) with a laser beam.
  • FIG. 4 shows a cross-sectional view for explaining the process of forming a plurality of modified regions 4 on the semiconductor wafer W adhered to the adhesive layer (X2) using the laser beam irradiation device 3.
  • a laser beam is irradiated from the back surface W ⁇ side of the semiconductor wafer W, and a plurality of modified regions 4 are formed inside the semiconductor wafer W at substantially equal intervals.
  • FIG. 5A and 5(b) show cross-sectional views for explaining the process of separating the semiconductor wafer W into a plurality of semiconductor chips CP while thinning it.
  • the rear surface W ⁇ of the semiconductor wafer W on which the modified region 4 is formed is ground by a grinder 5.
  • the pressure applied to the semiconductor wafer W causes the modified region 4 to be a starting point. give rise to
  • FIG. 5B a plurality of semiconductor chips CP obtained by thinning and singulating the semiconductor wafer W are obtained.
  • the back surface W ⁇ of the semiconductor wafer W formed with the modified region 4 is ground while the support (S) supporting the semiconductor wafer W is fixed on a fixed table such as a chuck table. .
  • the thickness of the semiconductor chip CP after grinding is preferably 5 to 100 ⁇ m, more preferably 10 to 45 ⁇ m. Further, when the grinding process and the singulation process are performed by the stealth dicing method, the thickness of the semiconductor chip CP obtained by grinding can be easily set to 50 ⁇ m or less, more preferably 10 to 45 ⁇ m.
  • the size of the semiconductor chip CP after grinding in plan view is preferably less than 600 mm 2 , more preferably less than 400 mm 2 , and even more preferably less than 300 mm 2 .
  • planar view means seeing in a thickness direction.
  • the shape of the semiconductor chip CP after singulation in plan view may be a square or an elongated shape such as a rectangle.
  • Step 2-2 a semiconductor adhesive is applied and a semiconductor film is applied to the surface (W ⁇ ) opposite to the adhesive layer (X2) of the object (W) subjected to the processing treatment.
  • This is a step of obtaining a processed product (P) by applying one or more processes selected from lamination.
  • examples of the semiconductor film to be attached to the object (W) include a thermosetting film and an adhesive sheet.
  • Thermosetting films include, for example, die attach films for mounting semiconductor chips on substrates.
  • the adhesive sheet for example, a dicing sheet used when dicing an object (W) such as a semiconductor wafer, or a dicing sheet that enlarges the distance between the objects (W) such as semiconductor chips separated into individual pieces by dicing. Expanding tape used for this purpose, transfer tape used for reversing the front and back of the workpiece (W) such as a semiconductor chip, temporary fixing sheet used for temporarily fixing the inspection object for inspection, etc. mentioned.
  • examples of the semiconductor adhesive applied to the workpiece (W) include a die attach paste used for the purpose of mounting a semiconductor chip on a substrate.
  • the semiconductor adhesive applied to the processed object (W) is a thermosetting adhesive such as a die attach paste.
  • the paste is a flexible paste
  • the semiconductor film to be attached to the workpiece (W) is preferably a thermosetting film such as a die attach film.
  • thermosetting film 6 provided with a support sheet 7 is attached to the surface W ⁇ of the plurality of semiconductor chips CP obtained by performing the above-described processing, on the side opposite to the adhesive layer (X2). Then, a cross-sectional view for explaining a process of obtaining a semiconductor chip CP to which a thermosetting film 6 having a support sheet 7 is attached as a processed product (P) is shown.
  • the thermosetting film 6 is a thermosetting film obtained by forming a resin composition containing at least a thermosetting resin, and is used as an adhesive when mounting the semiconductor chip CP on the substrate.
  • the thermosetting film 6 may contain a curing agent for the thermosetting resin, a thermoplastic resin, an inorganic filler, a curing accelerator, etc., if necessary.
  • the thickness of the thermosetting film 6 is not particularly limited, but is usually 1-200 ⁇ m, preferably 3-100 ⁇ m, more preferably 5-50 ⁇ m.
  • the support sheet 7 may be any material as long as it can support the thermosetting film 6.
  • the resins, metals, paper materials, etc. listed as the base material layer (Y) of the double-sided pressure-sensitive adhesive sheet used in one embodiment of the present invention are used. is mentioned.
  • Lamination may be performed with heating or without heating.
  • the heating temperature in the case of laminating while heating is preferably "a temperature lower than the expansion start temperature (t)" from the viewpoint of suppressing the expansion of the thermally expandable particles and the viewpoint of suppressing the thermal change of the adherend. It is preferably "expansion start temperature (t) -5°C” or lower, more preferably “expansion start temperature (t) -10°C” or lower, still more preferably “expansion start temperature (t) -15°C” or lower.
  • Step 3 While the processed product (P) is subjected to a cooling treatment, the thermally expandable layer is heated to a temperature (t) at which the thermally expandable particles start to expand, thereby forming the adhesive layer (X1). and the support (S).
  • the cooling treatment performed on the processed product (P) includes, for example, a method of contacting a cooled thermal conductor with the processed product (P), a method of air-cooling the processed product (P), and a method of air cooling the processed product (P).
  • Examples include a method of contacting (P) with a coolant, a method of exposing the processed product (P) to a cooled atmosphere, and the like.
  • the method of bringing a cooled heat conductor into contact with the processed product (P) is preferable from the viewpoint of facilitating the control of the location to be cooled and the cooling temperature.
  • the cooling treatment is preferably a treatment for cooling the surface (P ⁇ ) of the processed product (P) opposite to the adhesive layer (X2).
  • the cooled heat conductor is preferably a heat conductor cooled by a refrigerant.
  • a heat conductor cooled by a coolant for example, the heat conductor has a through hole inside, and the coolant is filled, circulated, or circulated in the through hole to cool the surface of the heat conductor. things are mentioned.
  • the coolant filled or circulated inside the heat conductor is not particularly limited, but water is preferable from the viewpoint of economy.
  • the process of bringing the cooled thermal conductor into contact is preferably a process of bringing the cooled thermal conductor into contact with the surface (P ⁇ ) of the workpiece (P) to uniformly cool the workpiece (P).
  • a method of contacting a plate with a smooth surface such as a cooled plate (hereinafter also referred to as a “cooling plate”) to the surface (P ⁇ ) of the workpiece (P) is preferred.
  • the cooling plate include a metal plate cooled by a coolant, a ceramic plate cooled by a coolant, and the like.
  • the surface temperature of the cooled heat conductor that contacts the surface (P ⁇ ) of the workpiece (P) is preferably 1-45°C, more preferably 3-40°C, and even more preferably 5-35°C.
  • the surface temperature of the cooled heat conductor is 1° C. or higher, the cooling temperature becomes appropriate, and problems such as deterioration of adhesiveness of the semiconductor film due to excessive cooling tend to occur less easily.
  • the surface temperature of the cooled heat conductor is 45° C. or less, there is a tendency that a sufficient cooling effect on the processed product (P) can be easily obtained.
  • the method of heating the thermally expandable layer includes, for example, a method of bringing a heated thermal conductor into contact with the surface (S ⁇ ) of the support (S) opposite to the pressure-sensitive adhesive layer (X1), Examples include a method of irradiating the thermally expandable layer with energy rays, a method of exposing the thermally expandable layer to a heated atmosphere, and the like. Among these methods, from the viewpoint of facilitating control of the heating point and the heating temperature, the surface (S ⁇ ) of the support (S) opposite to the pressure-sensitive adhesive layer (X1) is brought into contact with a heated heat conductor.
  • the preferred method is to
  • a preferred method is to bring a plate with a smooth surface such as a heated plate (hereinafter also referred to as a "heating plate") into contact with the surface (S ⁇ ) of the support (S).
  • a heated plate hereinafter also referred to as a "heating plate”
  • the heating plate include metal plates and ceramic plates.
  • the surface temperature of the heated heat conductor that is brought into contact with the surface (S ⁇ ) of the support (S) is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, preferably "higher than the expansion start temperature (t) temperature”, more preferably “expansion start temperature (t) + 2°C” or higher, still more preferably “expansion start temperature (t) + 4°C” or higher, still more preferably “expansion start temperature (t) + 5°C” or higher .
  • the surface temperature of the heated heat conductor is preferably "expansion start temperature (t) + 50 ° C.” or less from the viewpoint of energy saving and suppressing thermal change of the processed product (P) during heat peeling.
  • the surface temperature of the heated heat conductor brought into contact with the surface (S ⁇ ) of the support (S) is in the range of the expansion start temperature (t) or higher from the viewpoint of suppressing the thermal change of the processed product (P).
  • the temperature is preferably 130° C. or lower, more preferably 120° C. or lower, and still more preferably 115° C. or lower.
  • a heated heat conductor is brought into contact with the surface (S ⁇ ) of the support (S) opposite to the adhesive layer (X1) to form the adhesive layer (X2) of the processed product (P).
  • the temperature difference [T S ⁇ T P ] is 20° C.
  • FIG. 7( a ) A cross-sectional view for explaining the step of separating the pressure-sensitive adhesive layer (X1) and the support (S) by heating to .
  • a cooling plate 8 is brought into contact with the surface (P ⁇ ) of the support sheet 7 of the thermosetting film 6 opposite to the pressure-sensitive adhesive layer (X2) for thermosetting.
  • the heat-expandable base layer (Y1) is formed by bringing a heating plate 9 into contact with the surface (S ⁇ ) of the support (S) opposite to the pressure-sensitive adhesive layer (X1). is heated to the expansion start temperature (t) of the thermally expandable particles or higher.
  • the pressure-sensitive adhesive layer (X1) and the support (S) are separated as shown in FIG. 7(b) while suppressing thermal change of the processed product (P).
  • the method for manufacturing a semiconductor device preferably further includes step 4 below.
  • Step 4 is a step of irradiating the adhesive layer (X2) with energy rays to separate the adhesive layer (X2) and the processed product (P).
  • FIG. 8 shows a cross-sectional view for explaining the step of separating the adhesive layer (X2) and the processed product (P). Since the pressure-sensitive adhesive layer (X2) is cured by irradiation with energy rays to reduce its adhesive force, the processed product (P) and the pressure-sensitive adhesive layer (X2) can be easily separated by irradiation with energy rays. can.
  • the energy beam used for the energy beam irradiation in step 4 among the above-described energy beams, ultraviolet rays, which are easy to handle, are preferable.
  • the illuminance and light amount of ultraviolet rays may be such that the adhesion between the adhesive layer (X2) and the processed product (P) is sufficiently low.
  • the illuminance of ultraviolet rays is preferably 100 to 400 mW. /cm 2 , more preferably 150 to 350 mW/cm 2 , more preferably 180 to 300 mW/cm 2
  • the amount of ultraviolet light is preferably 100 to 2,000 mJ/cm 2 , more preferably 200 to 1,000 mJ. /cm 2 , more preferably 300 to 500 mJ/cm 2 .
  • Energy rays may be irradiated from any direction as long as the adhesive layer (X2) can be cured, but from the viewpoint of efficient curing, irradiation from the adhesive layer (X1) side is preferred.
  • the substrate layer (Y) and the pressure-sensitive adhesive layer (X1) preferably have energy ray transparency from the viewpoint of enabling sufficient energy ray irradiation to the pressure-sensitive adhesive layer (X2).
  • thermosetting film 6 A plurality of semiconductor chips CP attached to the thermosetting film 6 is obtained through the above steps 1 to 4. Next, it is preferable to obtain semiconductor chips CP with thermosetting films 6 by dividing the thermosetting film 6 to which a plurality of semiconductor chips CP are attached in the same shape as the semiconductor chips CP.
  • a method for dividing the thermosetting film 6 for example, a method such as laser dicing using a laser beam, expansion, or fusion cutting can be applied.
  • FIG. 9 shows a semiconductor chip CP with a thermosetting film 6 divided into the same shape as the semiconductor chip CP.
  • the semiconductor chips CP with the thermosetting film 6 are further subjected to an expansion step of widening the gap between the semiconductor chips CP, a rearrangement step of arranging a plurality of semiconductor chips CP with widened gaps, and a plurality of semiconductor chips CP.
  • the film is attached (die attached) to the substrate from the thermosetting film 6 side. After that, the semiconductor chip and the substrate can be fixed by thermosetting the thermosetting film 6 .
  • a semiconductor device manufacturing apparatus of one embodiment of the present invention is a semiconductor device manufacturing apparatus used in step 3 of the semiconductor device manufacturing method of one embodiment of the present invention, a cooling mechanism for cooling the processed product (P); and a heating mechanism for heating the thermally expandable layer to an expansion start temperature (t) of the thermally expandable particles or higher.
  • the cooling mechanism is preferably a mechanism for cooling the surface (P ⁇ ) of the processed product (P) opposite to the adhesive layer (X2).
  • the cooling mechanism for example, a mechanism for contacting the processed product (P) with a cooled heat conductor, a mechanism for air-cooling the processed product (P), a mechanism for contacting the processed product (P) with a coolant, a processed product ( and a mechanism for exposing P) to a cooled atmosphere.
  • a mechanism that brings the cooled heat conductor into contact with the workpiece (P) is preferable from the viewpoint of facilitating control of the cooling location and the cooling temperature. ) on the side opposite to the pressure-sensitive adhesive layer (X2) (P ⁇ ).
  • a preferred embodiment of the cooled thermal conductor and the method for contacting the cooled thermal conductor is as described in step 3 of the method for manufacturing a semiconductor device of one embodiment of the present invention.
  • the cooled thermal conductor is preferably a cooled plate.
  • the heating mechanism is preferably a mechanism that heats the surface (S ⁇ ) of the support (S) opposite to the pressure-sensitive adhesive layer (X1).
  • the heating mechanism includes a mechanism for bringing a heated thermal conductor into contact with the surface (S ⁇ ) of the support (S) opposite to the pressure-sensitive adhesive layer (X1), and irradiating the thermally expandable layer with energy rays.
  • mechanism a mechanism for exposing the thermally expandable layer to a heated atmosphere, and the like.
  • the surface (S ⁇ ) of the support (S) opposite to the pressure-sensitive adhesive layer (X1) is brought into contact with a heated heat conductor.
  • a mechanism that allows A preferred embodiment of the heated thermal conductor and the method for contacting the heated thermal conductor is as described in Step 3 of the method for manufacturing a semiconductor device of one embodiment of the present invention.
  • the heated thermal conductor is preferably a heated plate.
  • the present invention will be specifically described by the following examples, but the present invention is not limited to the following examples.
  • the physical property values in each production example and working example are values measured by the following methods.
  • MOI 2-methacryloyl
  • Isocyanate-based cross-linking agent manufactured by Tosoh Corporation, product name "Coronate HX”, isocyanurate-type modified form of hexamethylene diisocyanate, solid content concentration: 100% by mass
  • Photoinitiator > - Photoinitiator (i): bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide - Photoinitiator (ii): 1-hydroxycyclohexylphenyl ketone
  • Production example 1 Formation of pressure-sensitive adhesive layer (X1) 0.74 parts by mass of isocyanate cross-linking agent (i) (solid content ratio) was blended with 100 parts by mass of the solid content of the acrylic copolymer (A1). The mixture was diluted and uniformly stirred to prepare a pressure-sensitive adhesive composition (x-1) having a solid content concentration (active ingredient concentration) of 25% by mass. Then, on the release surface of the heavy release film, the prepared adhesive composition (x-1) is applied to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to obtain an adhesive with a thickness of 5 ⁇ m. An agent layer (X1) was formed.
  • a solvent-free resin composition (y-1a) was prepared by blending as follows and containing no solvent.
  • a substrate laminate by laminating a thermally expandable substrate layer (Y1) and a non-thermally expandable substrate layer (Y2)
  • a PET film Toyobo Co., Ltd. company's product name "Cosmo Shine A4300", thickness: 50 ⁇ m
  • the non-solvent resin composition (y-1a) is applied to one side of the PET film so that the thermally expandable base layer (Y1) to be formed has a thickness of 100 ⁇ m to form a coating film. did.
  • Examples 1-3 A semiconductor wafer W having a diameter of 12 inches and a thickness of 730 ⁇ m and a circuit surface on which a pattern is formed is prepared as an object (W) to be processed. Co., Ltd., device name "RAD-3510F / 12"), on a table at room temperature (25 ° C.), the release film was removed from the adhesive layer (X2) of the double-sided adhesive sheet prepared above. , the adhesive layer (X2) and the circuit surface of the semiconductor wafer W were laminated so as to be in contact with each other.
  • a silicon mirror wafer (12 inches in diameter, 750 ⁇ m in thickness) was placed as a support (S) on the adhesive layer (X1) exposed by removing the release film from the adhesive layer (X1) of the double-sided adhesive sheet. By sticking, a laminate was obtained in which the support (S), the double-sided adhesive sheet and the semiconductor wafer W were laminated in this order.
  • Step 2-1 Next, using a stealth laser irradiation device (manufactured by Disco Co., Ltd., device name “DFL7361”), a stealth laser is irradiated from the back surface of the semiconductor wafer W opposite to the circuit formation surface, and the inside of the semiconductor wafer W is irradiated with a stealth laser. A modified region was formed. Then, using a grinder/polisher (manufactured by Disco Co., Ltd., device name “DGP8761”), the back surface of the semiconductor wafer W is subjected to grinding while being exposed to ultrapure water, and at the same time it is singulated to a thickness of 20 ⁇ m. A semiconductor chip CP was obtained. During these processes, vibration and displacement of the semiconductor wafer W, which is the object to be processed (W), due to insufficient adhesion between the double-sided adhesive sheet and the support (S) were sufficiently suppressed.
  • a stealth laser irradiation device manufactured by Disco Co.,
  • Step 2-2 Subsequently, a die attach film with a support sheet (manufactured by Lintec Corporation, product name: "Adwill LD01D-7") is mounted on the back side of the semiconductor chip CP using a mounter (manufactured by Lintec Corporation, product name: "RAD2700"). At 50° C., the back surface of the semiconductor chip CP and the DAF were attached so as to be in contact with each other to obtain a laminate having the support (S), the double-sided adhesive sheet, the semiconductor chip CP, the DAF and the support sheet in this order. .
  • Step 3 the laminate obtained above was brought into contact with a hot plate (made of stainless steel) having a surface temperature of 110° C. on the side of the support (S), and the surface on the side of the support sheet of the DAF was brought into contact with the surface temperature shown in Table 1.
  • a water-cooling plate ceramics with a surface treated with Teflon (registered trademark) and having through-holes in which water of a predetermined temperature is circulated through the through-holes
  • the treatment was performed for 1 minute to expand the thermally expandable base layer (Y1) and separate the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet from the support (S).
  • the adhesiveness between the pressure-sensitive adhesive layer (X1) and the support (S) after heating is such that the support (S) faces upward and the double-sided pressure-sensitive adhesive sheet to which the semiconductor chip CP is attached faces downward.
  • the weight of the double-sided pressure-sensitive adhesive sheet to which the CP was attached fell to such an extent that it fell.
  • Step 4 the pressure-sensitive adhesive layer (X1) side of the double-sided pressure-sensitive adhesive sheet separated from the support (S) was irradiated with ultraviolet rays under the conditions of an illuminance of 230 mW/cm 2 and a light amount of 380 mJ/cm 2 , and the pressure-sensitive adhesive layer ( After X2) was cured to reduce adhesion, the adhesive layer (X2) and the semiconductor chip CP with DAF were separated. When the surface of the semiconductor chip CP with the DAF separated from the adhesive layer (X2) was visually checked, no contamination or adhesive residue was found.
  • Comparative example 1 A semiconductor chip CP with a DAF was obtained in the same manner as in Example 1, except that in Step 3 of Example 1, the surface of the DAF on the support sheet side was not cooled.
  • the DAF contained in the processed products obtained in Examples 1 to 3, which are the production methods of the present embodiment has a low storage elastic modulus E' at 23 ° C., and when the support (S) is thermally peeled It can be seen that the curing of DAF in is suppressed.
  • the storage elastic modulus E' of DAF at 23 ° C. was high, and the DAF during heat peeling of the support (S) Suppression of hardening was not sufficient.

Abstract

The present invention relates to a semiconductor device manufacturing method including steps 1-3, said method using a double-sided adhesive sheet that has an adhesive layer (X1), a base material layer (Y), and an adhesive layer (X2) in this order; in which at least one of the adhesive layer (X1) and the base material layer (Y) is a thermally expandable layer containing thermally expandable particles; and in which irregularities are formed on the surface of the adhesive layer (X1) as a result of the thermally expandable layer being expanded.

Description

半導体装置の製造方法及び半導体装置の製造装置Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
 本発明は、半導体装置の製造方法及び半導体装置の製造装置に関する。 The present invention relates to a semiconductor device manufacturing method and a semiconductor device manufacturing apparatus.
 近年、電子機器の小型化、軽量化及び高機能化が進んでおり、これに伴って、電子機器に搭載される半導体装置にも、小型化、薄型化及び高密度化が求められている。
 半導体装置の製造過程において、半導体ウエハは、研削によって厚さを薄くする研削工程、切断分離して個片化する個片化工程等を経て、半導体チップに加工される。このとき、半導体ウエハは、仮固定用シートに仮固定された状態で所定の加工が施される。所定の加工を施して得られた半導体チップは、仮固定用シートから分離された後、必要に応じて、半導体チップ同士の間隔を広げるエキスパンド工程、間隔を広げた複数の半導体チップを配列させる再配列工程、半導体チップの表裏を反転させる反転工程等を適宜施された後、基板に実装される。
2. Description of the Related Art In recent years, electronic devices have become smaller, lighter, and more functional, and along with this, semiconductor devices mounted in electronic devices are also required to be smaller, thinner, and higher in density.
In the manufacturing process of a semiconductor device, a semiconductor wafer is processed into semiconductor chips through a grinding process for reducing the thickness by grinding, a singulation process for cutting and separating into individual pieces, and the like. At this time, the semiconductor wafer is subjected to a predetermined processing while being temporarily fixed to the temporary fixing sheet. After the semiconductor chips obtained by performing the predetermined processing are separated from the temporary fixing sheet, if necessary, an expanding process is performed to widen the gap between the semiconductor chips, and a re-arrangement of a plurality of semiconductor chips with widened gaps is performed. After being properly subjected to an arrangement process, a reversing process of reversing the front and back of the semiconductor chip, and the like, they are mounted on the substrate.
 半導体チップを基板に実装する際には、半導体チップをダイアタッチフィルム(以下、「DAF」ともいう)と称される、熱硬化性を有するフィルム状接着剤を介して基板に貼付する工程が採用されている。DAFは、半導体ウエハ又は個片化した複数の半導体チップの一方の面に貼付され、半導体ウエハの個片化と同時に又は半導体チップに貼付された後に半導体チップと同形状に分割される。個片化して得られたDAF付き半導体チップは、DAF側から基板に貼付(ダイアタッチ)され、その後、DAFを熱硬化させることで半導体チップと基板とが固着される。したがって、DAFは基板に貼付されるまでは、感圧又は加熱により接着する性質が保持される必要があり、それを可能にするプロセスが必要である。 When mounting a semiconductor chip on a substrate, a process is adopted in which the semiconductor chip is attached to the substrate via a thermosetting film-like adhesive called a die attach film (hereinafter also referred to as "DAF"). It is The DAF is attached to one surface of a semiconductor wafer or a plurality of singulated semiconductor chips, and is divided into the same shape as the semiconductor chips at the same time as the semiconductor wafer is singulated or after being attached to the semiconductor chips. The semiconductor chip with the DAF obtained by singulation is attached (die attached) to the substrate from the DAF side, and then the semiconductor chip and the substrate are fixed by thermally curing the DAF. Therefore, the DAF must retain the property of being adhered by pressure or heat until it is attached to the substrate, and a process that enables this is required.
 半導体ウエハ等の加工対象物を研削又は個片化する際の加工精度及び加工速度を向上させるためには、仮固定用シート等の固定手段を用いて、加工時における加工対象物の振動、位置ズレ等を抑制する必要がある。一方、加工を終えた後には、生産性を高める観点から、加工対象物は速やかに固定手段から分離されることが求められる。
 特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた仮固定用の加熱剥離型粘着シートを、電子部品の切断に用いる方法が開示されている。同文献には、加熱剥離型粘着シートの粘着面にセラミックシートを仮固定し、これをチップにカットした後、ホットプレート上で加熱処理をして、粘着シートとチップとを分離させる方法が記載されている。
In order to improve the processing accuracy and processing speed when grinding or singulating an object to be processed such as a semiconductor wafer, a fixing means such as a temporary fixing sheet is used to prevent the vibration and position of the object to be processed during processing. It is necessary to suppress misalignment and the like. On the other hand, after finishing the machining, the workpiece is required to be quickly separated from the fixing means from the viewpoint of improving productivity.
Patent Document 1 discloses a method of using a heat-peelable pressure-sensitive adhesive sheet for temporary fixing provided with a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres on at least one side of a base material for cutting electronic components. It is The document describes a method in which a ceramic sheet is temporarily fixed to the adhesive surface of a heat-peelable adhesive sheet, cut into chips, and then heat-treated on a hot plate to separate the adhesive sheet and the chips. It is
特許第3594853号公報Japanese Patent No. 3594853
 しかしながら、特許文献1に開示される方法によると、DAF付き半導体チップを被着体とする場合、熱膨張性微小球を膨張させる際の加熱によってDAFの硬化が進行し、基板に対するDAFの接着力が低下することがある。DAFの接着力の低下は、半導体チップと基板との接合信頼性の低下を招くため、抑制されることが望ましい。また、半導体チップの裏面にDAFに代えて、ダイアタッチ用の接着剤を塗布する場合、或いは、半導体チップの裏面にダイシングシート等の粘着シートを貼付する場合においても、これらは熱によって物性、形状等に変化が生じ得るため、粘着シートを加熱剥離する際の加熱の影響は抑制されることが望ましい。 However, according to the method disclosed in Patent Document 1, when a semiconductor chip with a DAF is used as an adherend, the curing of the DAF proceeds due to the heating during the expansion of the thermally expandable microspheres, and the adhesive strength of the DAF to the substrate. may decrease. A decrease in the adhesive strength of the DAF leads to a decrease in bonding reliability between the semiconductor chip and the substrate, so it is desirable to suppress it. Also, when a die attach adhesive is applied to the back surface of a semiconductor chip instead of DAF, or when an adhesive sheet such as a dicing sheet is attached to the back surface of a semiconductor chip, the physical properties and shape of the semiconductor chip are affected by heat. etc., it is desirable to suppress the influence of heating when the pressure-sensitive adhesive sheet is peeled off by heating.
 本発明は、上記問題点に鑑みてなされたものであって、加熱剥離型の粘着シートを用いる半導体装置の製造方法において、前記粘着シートを剥離する際の加熱による被着体の熱変化を抑制することができる半導体装置の製造方法及び半導体装置の製造装置を提供することを目的とする。 The present invention has been made in view of the above problems, and is a method for manufacturing a semiconductor device using a heat-peelable pressure-sensitive adhesive sheet, which suppresses thermal change of an adherend due to heating when the pressure-sensitive adhesive sheet is peeled off. It is an object of the present invention to provide a method for manufacturing a semiconductor device and a manufacturing apparatus for a semiconductor device.
 本発明者等は、粘着シートを剥離する際の被着体の温度制御に着目し、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors focused on the temperature control of the adherend when peeling the adhesive sheet, found that the above problems could be solved, and completed the present invention.
 すなわち、本発明は、下記[1]~[16]に関する。
[1]粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有し、前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが熱膨張性粒子を含有する熱膨張性層であり、該熱膨張性層を膨張させることによって前記粘着剤層(X1)の表面に凹凸が形成される両面粘着シートを用い、下記工程1~3を含む半導体装置の製造方法。
 工程1:前記両面粘着シートが有する粘着剤層(X2)に加工対象物(W)を貼付し、前記両面粘着シートが有する粘着剤層(X1)に支持体(S)を貼付する工程
 工程2:前記加工対象物(W)の、前記粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程
 工程3:前記加工品(P)に対して冷却処理を施しながら、前記熱膨張性層を前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体(S)とを分離する工程
[2]前記工程2が、下記工程2-1及び2-2を含む、上記[1]に記載の半導体装置の製造方法。
 工程2-1:前記加工対象物(W)に対して、研削及び個片化から選択される1以上の加工処理を施す工程
 工程2-2:前記加工処理を施した加工対象物(W)の、粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程
[3]前記半導体用接着剤が、熱硬化性ペーストであり、前記半導体用フィルムが、熱硬化性フィルムである、上記[1]又は[2]に記載の半導体装置の製造方法。
[4]前記冷却処理が、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)を冷却する処理である、上記[1]~[3]のいずれかに記載の半導体装置の製造方法。
[5]前記冷却処理が、冷却された熱伝導体を、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)に接触させる処理である、上記[4]に記載の半導体装置の製造方法。
[6]前記冷却された熱伝導体が、冷却されたプレートである、上記[5]に記載の半導体装置の製造方法。
[7]前記工程3における熱膨張性層の加熱を、前記支持体(S)の前記粘着剤層(X1)とは反対側の面(Sα)に、加熱されたプレートを接触させることによって行う、上記[1]~[6]のいずれかに記載の半導体装置の製造方法。
[8]前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、上記[1]~[7]のいずれかに記載の半導体装置の製造方法。
[9]前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、さらに、下記工程4を含む、上記[1]~[8]のいずれかに記載の半導体装置の製造方法。
 工程4:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記加工品(P)とを分離する工程
[10]前記基材層(Y)が、熱膨張性粒子を含有する熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、が積層された基材積層体であり、前記両面粘着シートが、前記粘着剤層(X1)と、前記熱膨張性基材層(Y1)と、前記非熱膨張性基材層(Y2)と、前記粘着剤層(X2)とを、この順で有する、上記[1]~[9]のいずれかに記載の半導体装置の製造方法。
[11]膨張前の前記熱膨張性層の厚さが、μmである、上記[1]~[10]のいずれかに記載の半導体装置の製造方法。
[12]上記[1]~[11]のいずれかに記載の半導体装置の製造方法の工程3に用いられる半導体装置の製造装置であって、
 前記加工品(P)に対して冷却処理を施すための冷却機構と、
 前記冷却機構による冷却処理を施しながら、前記熱膨張性層を前記熱膨張性粒子の膨張開始温度(t)以上に加熱するための加熱機構と、を備える、半導体装置の製造装置。
[13]前記冷却機構が、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)を冷却する機構である、上記[12]に記載の半導体装置の製造装置。
[14]前記冷却機構が、冷却された熱伝導体を、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)に接触させる機構である、上記[13]に記載の半導体装置の製造装置。
[15]前記冷却された熱伝導体が、冷却されたプレートである、上記[14]に記載の半導体装置の製造装置。
[16]前記加熱機構が、前記支持体(S)の前記粘着剤層(X1)とは反対側の面(Sα)に加熱されたプレートを接触させる機構である、上記[12]~[15]のいずれかに記載の半導体装置の製造装置。
That is, the present invention relates to the following [1] to [16].
[1] Having an adhesive layer (X1), a base layer (Y), and an adhesive layer (X2) in this order, the adhesive layer (X1) and the base layer (Y) At least one of them is a thermally expandable layer containing thermally expandable particles, and by expanding the thermally expandable layer, using a double-sided pressure-sensitive adhesive sheet in which irregularities are formed on the surface of the pressure-sensitive adhesive layer (X1), A method of manufacturing a semiconductor device including steps 1 to 3.
Step 1: A step of attaching an object to be processed (W) to the adhesive layer (X2) of the double-sided adhesive sheet, and attaching a support (S) to the adhesive layer (X1) of the double-sided adhesive sheet. : One or more processes selected from applying a semiconductor adhesive and attaching a semiconductor film to the surface (Wα) of the object (W) opposite to the pressure-sensitive adhesive layer (X2) to obtain a processed product (P) Step 3: While cooling the processed product (P), the thermally expandable layer is heated to the expansion start temperature (t) of the thermally expandable particles or higher. The step [2] of separating the pressure-sensitive adhesive layer (X1) and the support (S) by heating [1], wherein the step 2 includes the following steps 2-1 and 2-2. A method of manufacturing a semiconductor device.
Step 2-1: A step of subjecting the workpiece (W) to one or more processing treatments selected from grinding and singulation Step 2-2: The workpiece (W) subjected to the processing treatment , the surface (Wα) opposite to the adhesive layer (X2) is subjected to one or more processes selected from application of a semiconductor adhesive and application of a semiconductor film to obtain a processed product (P) Step [3] The method of manufacturing a semiconductor device according to the above [1] or [2], wherein the semiconductor adhesive is a thermosetting paste, and the semiconductor film is a thermosetting film.
[4] Any one of the above [1] to [3], wherein the cooling treatment is a treatment for cooling the surface (Pα) of the processed product (P) opposite to the adhesive layer (X2). A method of manufacturing the described semiconductor device.
[5] The above [4], wherein the cooling treatment is a treatment in which the cooled heat conductor is brought into contact with the surface (Pα) of the processed product (P) opposite to the adhesive layer (X2). A method for manufacturing the semiconductor device according to 1.
[6] The method of manufacturing a semiconductor device according to [5] above, wherein the cooled thermal conductor is a cooled plate.
[7] The heating of the thermally expandable layer in the step 3 is carried out by bringing a heated plate into contact with the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1). , a method for manufacturing a semiconductor device according to any one of the above [1] to [6].
[8] The method for manufacturing a semiconductor device according to any one of [1] to [7] above, wherein the thermally expandable particles have an expansion start temperature (t) of 50°C or higher and lower than 125°C.
[9] The method for manufacturing a semiconductor device according to any one of [1] to [8] above, wherein the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer, and further includes step 4 below.
Step 4: A step of curing the pressure-sensitive adhesive layer (X2) by irradiating the pressure-sensitive adhesive layer (X2) with energy rays to separate the pressure-sensitive adhesive layer (X2) and the processed product (P) [ 10] The substrate layer (Y) is a substrate laminate in which a thermally expandable substrate layer (Y1) containing thermally expandable particles and a non-thermally expandable substrate layer (Y2) are laminated. and the double-sided pressure-sensitive adhesive sheet comprises the pressure-sensitive adhesive layer (X1), the thermally expandable base layer (Y1), the non-thermally expandable base layer (Y2), and the pressure-sensitive adhesive layer (X2) , in this order.
[11] The method for manufacturing a semiconductor device according to any one of [1] to [10] above, wherein the thermally expandable layer has a thickness of μm before expansion.
[12] A semiconductor device manufacturing apparatus used in step 3 of the semiconductor device manufacturing method according to any one of [1] to [11] above,
a cooling mechanism for cooling the processed product (P);
and a heating mechanism for heating the thermally expandable layer to an expansion start temperature (t) or higher of the thermally expandable particles while performing cooling processing by the cooling mechanism.
[13] The semiconductor device manufacturing apparatus according to [12] above, wherein the cooling mechanism is a mechanism for cooling a surface (Pα) of the processed product (P) opposite to the adhesive layer (X2). .
[14] The above [13], wherein the cooling mechanism is a mechanism for bringing a cooled heat conductor into contact with a surface (Pα) of the processed product (P) opposite to the adhesive layer (X2). 3. The apparatus for manufacturing the semiconductor device according to 1.
[15] The semiconductor device manufacturing apparatus according to [14] above, wherein the cooled thermal conductor is a cooled plate.
[16] The above [12] to [15], wherein the heating mechanism is a mechanism for bringing a heated plate into contact with the surface (Sα) of the support (S) opposite to the adhesive layer (X1). ] The semiconductor device manufacturing apparatus according to any one of the above.
 本発明によると、加熱剥離型の粘着シートを用いる半導体装置の製造方法において、前記粘着シートを剥離する際の加熱による被着体の熱変化を抑制することができる半導体装置の製造方法及び半導体装置の製造装置を提供することができる。 According to the present invention, in a method for manufacturing a semiconductor device using a heat-peelable pressure-sensitive adhesive sheet, a method for manufacturing a semiconductor device and a semiconductor device capable of suppressing thermal change of an adherend due to heating when the pressure-sensitive adhesive sheet is peeled off. manufacturing equipment can be provided.
本発明の製造方法に用いる両面粘着シートの構成の一例を示す断面図である。1 is a cross-sectional view showing an example of the configuration of a double-sided pressure-sensitive adhesive sheet used in the production method of the present invention; FIG. 本発明の製造方法に用いる両面粘着シートの構成の別の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the configuration of the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention; 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention.
 本明細書において、「有効成分」とは、対象となる組成物に含有される成分のうち、希釈溶剤を除いた成分を指す。
 また、本明細書において、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
As used herein, the term “active ingredient” refers to the components contained in the target composition, excluding the diluent solvent.
Further, in the present specification, the mass average molecular weight (Mw) is a value converted to standard polystyrene measured by a gel permeation chromatography (GPC) method, and specifically measured based on the method described in Examples. is the value
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
In this specification, for example, "(meth)acrylic acid" indicates both "acrylic acid" and "methacrylic acid", and the same applies to other similar terms.
In addition, in this specification, the lower limit and upper limit values described stepwise for preferred numerical ranges (for example, ranges of content etc.) can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として無電極ランプ、高圧水銀ランプ、メタルハライドランプ、UV-LED等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本明細書において、「エネルギー線重合性」とは、エネルギー線を照射することにより重合する性質を意味する。また、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味する。
As used herein, the term "energy ray" means an electromagnetic wave or charged particle beam that has energy quanta, and examples thereof include ultraviolet rays, radiation, electron beams, and the like. Ultraviolet rays can be applied by using, for example, an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, a UV-LED, or the like as an ultraviolet light source. The electron beam can be generated by an electron beam accelerator or the like.
As used herein, the term "energy ray polymerizable" means the property of polymerizing upon irradiation with an energy ray. Moreover, "energy ray curability" means the property of being cured by irradiation with an energy ray.
 本明細書において、「層」が「非熱膨張性層」であるか「熱膨張性層」であるかは、以下のように判断する。
 判断の対象となる層が熱膨張性粒子を含有する場合、当該層を熱膨張性粒子の膨張開始温度(t)で、3分間加熱処理する。下記式から算出される体積変化率が5%未満である場合、当該層は「非熱膨張性層」であると判断し、5%以上である場合、当該層は「熱膨張性層」であると判断する。
・体積変化率(%)={(加熱処理後の前記層の体積-加熱処理前の前記層の体積)/加熱処理前の前記層の体積}×100
 なお、熱膨張性粒子を含有しない層は「非熱膨張性層」であるとする。
In this specification, whether a "layer" is a "non-thermally expandable layer" or a "thermally expandable layer" is determined as follows.
When the layer to be judged contains thermally expandable particles, the layer is heat-treated for 3 minutes at the expansion start temperature (t) of the thermally expandable particles. If the volume change rate calculated from the following formula is less than 5%, the layer is determined to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer". judge there is.
・Volume change rate (%) = {(volume of the layer after heat treatment - volume of the layer before heat treatment) / volume of the layer before heat treatment} x 100
A layer containing no thermally expandable particles is referred to as a "non-thermally expandable layer".
 本明細書において、半導体ウエハ及び半導体チップの「表面」とは回路が形成された面(以下、「回路面」ともいう)を指し、半導体ウエハ及び半導体チップの「裏面」とは回路が形成されていない面を指す。 In this specification, the "front surface" of a semiconductor wafer and semiconductor chip refers to the surface on which circuits are formed (hereinafter also referred to as "circuit surface"), and the "back surface" of the semiconductor wafer and semiconductor chips refers to the surface on which circuits are formed. point to the side that is not
 本明細書において、各層の厚さは、23℃における厚さであり、実施例に記載の方法により測定された値を意味する。 In this specification, the thickness of each layer is the thickness at 23°C and means the value measured by the method described in Examples.
 本明細書において、各層の粘着力は、シリコンミラーウエハのミラー面に対する粘着力を意味し、23℃、50%RH(相対湿度)の環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/minにて測定される粘着力を意味する。 In this specification, the adhesive strength of each layer means the adhesive strength to the mirror surface of the silicon mirror wafer, and in an environment of 23° C. and 50% RH (relative humidity), 180° peeling based on JIS Z0237:2000. means the adhesive force measured at a pulling speed of 300 mm/min according to the Law.
 本明細書において、「加熱剥離」とは特段の説明がない限り、本発明の半導体装置の製造方法の工程3において、両面粘着シートの熱膨張性層を加熱することによって、粘着剤層(X1)の表面に凹凸を形成し、前記粘着剤層(X1)と前記支持体(S)とを分離する所作を意味する。 In the present specification, unless otherwise specified, the term "heat peeling" refers to the pressure-sensitive adhesive layer (X1 ) to separate the pressure-sensitive adhesive layer (X1) from the support (S).
 本明細書において、加工対象物(W)とは、本発明の製造方法の工程2における加工の対象物を意味する。但し、本明細書においては、工程2における加工を終え、粘着剤層(X2)から分離する時点及び分離した後の被着体は「加工品(P)」と称し、工程2における加工前又は加工品(P)に至るまでの加工途中である被着体を「加工対象物(W)」と称する。 In this specification, the object to be processed (W) means the object to be processed in step 2 of the manufacturing method of the present invention. However, in this specification, the adherend at the time and after separation from the pressure-sensitive adhesive layer (X2) after finishing the processing in step 2 is referred to as a "processed product (P)", and before or after processing in step 2. An adherend that is in the process of being processed to a processed product (P) is referred to as a "processed object (W)".
 本明細書に記載されている作用機序は推測であって、本発明の効果を奏する機序を限定するものではない。 The mechanism of action described in this specification is speculation, and does not limit the mechanism of the effects of the present invention.
[半導体装置の製造方法]
 本発明の一態様の半導体装置の製造方法は、粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有し、前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが熱膨張性粒子を含有する熱膨張性層であり、該熱膨張性層を膨張させることによって前記粘着剤層(X1)の表面に凹凸が形成される両面粘着シートを用い、下記工程1~3を含む半導体装置の製造方法である。
 工程1:前記両面粘着シートが有する粘着剤層(X2)に加工対象物(W)を貼付し、前記両面粘着シートが有する粘着剤層(X1)に支持体(S)を貼付する工程
 工程2:前記加工対象物(W)の、前記粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程
 工程3:前記加工品(P)に対して冷却処理を施しながら、前記熱膨張性層を前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体(S)とを分離する工程
[Method for manufacturing a semiconductor device]
A method for manufacturing a semiconductor device according to one aspect of the present invention has an adhesive layer (X1), a base layer (Y), and an adhesive layer (X2) in this order, and the adhesive layer (X1 ) and the substrate layer (Y) is a thermally expandable layer containing thermally expandable particles, and by expanding the thermally expandable layer, the surface of the pressure-sensitive adhesive layer (X1) becomes uneven. A method for manufacturing a semiconductor device using the formed double-sided pressure-sensitive adhesive sheet and including the following steps 1 to 3.
Step 1: A step of attaching an object to be processed (W) to the adhesive layer (X2) of the double-sided adhesive sheet, and attaching a support (S) to the adhesive layer (X1) of the double-sided adhesive sheet. : One or more processes selected from applying a semiconductor adhesive and attaching a semiconductor film to the surface (Wα) of the object (W) opposite to the pressure-sensitive adhesive layer (X2) to obtain a processed product (P) Step 3: While cooling the processed product (P), the thermally expandable layer is heated to the expansion start temperature (t) of the thermally expandable particles or higher. Heating to separate the adhesive layer (X1) and the support (S)
 ここで、本明細書において、「半導体装置」とは、半導体特性を利用することで機能し得る装置全般を指す。例えば、集積回路を備えるウエハ、集積回路を備える薄化されたウエハ、集積回路を備えるチップ、集積回路を備える薄化されたチップ、これらのチップを含む電子部品、及び当該電子部品を備える電子機器類等が挙げられる。
 また、本発明の一態様の半導体装置の製造方法で加工される加工対象物(W)としては、代表的には半導体ウエハ及び半導体チップが挙げられるが、本発明の製造方法を適用可能なものであれば特に限定されない。
Here, in this specification, the term "semiconductor device" refers to all devices that can function by utilizing semiconductor characteristics. For example, a wafer comprising integrated circuits, a thinned wafer comprising integrated circuits, a chip comprising integrated circuits, a thinned chip comprising integrated circuits, electronic components comprising these chips, and electronic equipment comprising such electronic components and the like.
The workpiece (W) to be processed by the method for manufacturing a semiconductor device according to one embodiment of the present invention typically includes a semiconductor wafer and a semiconductor chip, and the manufacturing method of the present invention can be applied. is not particularly limited.
 本発明の一態様の半導体装置の製造方法によると、両面粘着シートを加熱剥離する際、加工品(P)に対して冷却処理が施される。そのため、加工品(P)は両面粘着シートに与える熱の影響を受け難くなり、物性、形状等の熱変化が抑制される。例えば、加工品(P)がDAFを有する場合においては、両面粘着シートを加熱剥離する際におけるDAFの硬化の進行が抑制されるため、DAFは基板に搭載するための良好な接着力が保持される。また、加工品(P)がダイシングテープ等の粘着シートを有する場合には、該粘着シートの粘着性等が熱によって変化することが抑制され、粘着シートの所期の機能を十分に発揮させることができる。 According to the method for manufacturing a semiconductor device according to one aspect of the present invention, the processed product (P) is subjected to a cooling process when the double-sided pressure-sensitive adhesive sheet is thermally peeled off. Therefore, the processed product (P) is less likely to be affected by heat applied to the double-sided pressure-sensitive adhesive sheet, and thermal changes in physical properties, shape, and the like are suppressed. For example, when the processed product (P) has DAF, the progress of curing of DAF is suppressed when the double-sided pressure-sensitive adhesive sheet is peeled off by heating, so DAF retains good adhesive strength for mounting on a substrate. be. In addition, when the processed product (P) has an adhesive sheet such as a dicing tape, the adhesiveness of the adhesive sheet is suppressed from being changed by heat, and the intended function of the adhesive sheet is sufficiently exhibited. can be done.
 以下、初めに本発明の一態様の半導体装置の製造方法に用いる両面粘着シートについて説明し、その後、本発明の一態様の半導体装置の製造方法に含まれる各工程について詳細に説明する。 Hereinafter, the double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device of one embodiment of the present invention will be described first, and then each step included in the method for manufacturing a semiconductor device of one embodiment of the present invention will be described in detail.
[両面粘着シート]
 本発明の一態様の半導体装置の製造方法に用いられる両面粘着シートは、粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有し、前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが熱膨張性粒子を含有する熱膨張性層であり、該熱膨張性層を膨張させることによって前記粘着剤層(X1)の表面に凹凸が形成される両面粘着シートである。
[Double-sided adhesive sheet]
The double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device of one embodiment of the present invention has a pressure-sensitive adhesive layer (X1), a base layer (Y), and a pressure-sensitive adhesive layer (X2) in this order, At least one of the adhesive layer (X1) and the substrate layer (Y) is a thermally expandable layer containing thermally expandable particles, and the adhesive layer (X1) is expanded by expanding the thermally expandable layer. ) is a double-sided pressure-sensitive adhesive sheet in which unevenness is formed on the surface.
 両面粘着シートが上記の構成を有することで、粘着剤層(X1)に支持体(S)を貼付し、粘着剤層(X2)に加工対象物(W)を貼付することができる。加工対象物(W)が両面粘着シートを介して支持体(S)に固定されることによって、加工対象物(W)に対して加工を施す際に、加工対象物(W)の振動、位置ズレ、及び加工対象物(W)が脆弱である場合の破損等を抑制し、加工精度、加工速度、検査精度等を向上させることができる。 With the double-sided adhesive sheet having the above configuration, the support (S) can be attached to the adhesive layer (X1), and the object to be processed (W) can be attached to the adhesive layer (X2). By fixing the workpiece (W) to the support (S) via the double-sided adhesive sheet, the vibration and position of the workpiece (W) can be reduced when the workpiece (W) is processed. It is possible to suppress misalignment and damage when the workpiece (W) is fragile, and improve machining accuracy, machining speed, inspection accuracy, and the like.
 また、本発明の一態様の両面粘着シートは、粘着剤層(X1)及び基材層(Y)の少なくともいずれかである熱膨張性層に含まれる熱膨張性粒子を、膨張開始温度(t)以上の温度に加熱して膨張させることにより、粘着剤層(X1)の粘着表面に凹凸を形成させ、粘着剤層(X1)の粘着表面に貼付されている支持体(S)と当該粘着表面との接触面積を大きく低下させるものである。これにより、粘着剤層(X1)の粘着表面と支持体(S)との密着性を著しく低下させることができ、両面粘着シートと支持体(S)とを容易に分離することができる。 Further, in the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention, the thermally expandable particles contained in the thermally expandable layer, which is at least one of the adhesive layer (X1) and the base layer (Y), are heated at the expansion start temperature (t ) to form irregularities on the adhesive surface of the adhesive layer (X1) by heating to a temperature equal to or higher than the above temperature to form unevenness, and the support (S) attached to the adhesive surface of the adhesive layer (X1) and the adhesive It greatly reduces the contact area with the surface. As a result, the adhesiveness between the adhesive surface of the adhesive layer (X1) and the support (S) can be significantly reduced, and the double-sided adhesive sheet and the support (S) can be easily separated.
<両面粘着シートの構成>
 本発明の一態様の両面粘着シートは、粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有するものであればよく、粘着剤層(X1)、基材層(Y)及び粘着剤層(X2)のみを有していてもよいし、必要に応じて、他の層を有していてもよい。但し、本発明の一態様の両面粘着シートの一方の表面は粘着剤層(X1)の粘着表面であり、本発明の一態様の両面粘着シートの他方の表面は粘着剤層(X2)の粘着表面である。
 本発明の一態様の両面粘着シートは、粘着剤層(X1)及び粘着剤層(X2)の少なくともいずれか一方の粘着表面上に剥離材を有していてもよい。
<Structure of double-sided adhesive sheet>
The double-sided pressure-sensitive adhesive sheet of one aspect of the present invention may have the pressure-sensitive adhesive layer (X1), the base layer (Y), and the pressure-sensitive adhesive layer (X2) in this order. X1), the substrate layer (Y), and the pressure-sensitive adhesive layer (X2) alone may be included, or other layers may be included as necessary. However, one surface of the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention is the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1), and the other surface of the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention is the pressure-sensitive adhesive layer (X2). is the surface.
The double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention may have a release material on the pressure-sensitive adhesive surface of at least one of the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2).
 本発明の一態様の両面粘着シートにおいては、粘着剤層(X1)及び基材層(Y)の少なくともいずれかが、熱膨張性粒子を含有する熱膨張性層であればよい。
 基材層(Y)が熱膨張性粒子を含有する熱膨張性層である場合の両面粘着シートとしては、基材層(Y)が、熱膨張性粒子を含有する熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とが積層された基材積層体であり、粘着剤層(X1)と、熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とを、この順で有する両面粘着シートが挙げられる。以下、当該構成を有する両面粘着シートを「第1の態様の両面粘着シート」と称する場合がある。
 また、本発明の一態様の両面粘着シートにおいて、粘着剤層(X1)が熱膨張性粒子を含有する熱膨張性層である場合の両面粘着シートとしては、熱膨張性層である粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートが挙げられる。以下、当該構成を有する両面粘着シートを「第2の態様の両面粘着シート」と称する場合がある。
In the double-sided PSA sheet of one aspect of the present invention, at least one of the PSA layer (X1) and the base layer (Y) may be a thermally expandable layer containing thermally expandable particles.
As a double-sided pressure-sensitive adhesive sheet when the substrate layer (Y) is a thermally expandable layer containing thermally expandable particles, the substrate layer (Y) is a thermally expandable substrate layer containing thermally expandable particles ( Y1) and a non-thermally expandable substrate layer (Y2) are laminated to form a substrate laminate comprising an adhesive layer (X1), a thermally expandable substrate layer (Y1), and a non-thermally expandable substrate. A double-sided pressure-sensitive adhesive sheet having a layer (Y2) and a pressure-sensitive adhesive layer (X2) in this order is exemplified. Hereinafter, the double-sided pressure-sensitive adhesive sheet having such a configuration may be referred to as "the double-sided pressure-sensitive adhesive sheet of the first aspect".
Further, in the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention, when the pressure-sensitive adhesive layer (X1) is a heat-expandable layer containing heat-expandable particles, the double-sided pressure-sensitive adhesive sheet, which is a heat-expandable layer, A double-sided pressure-sensitive adhesive sheet having (X1), a substrate layer (Y), and a pressure-sensitive adhesive layer (X2) in this order is exemplified. Hereinafter, the double-sided pressure-sensitive adhesive sheet having such a configuration may be referred to as "the double-sided pressure-sensitive adhesive sheet of the second aspect".
 次に、図面を参照しながら、本発明の一態様の両面粘着シートの構成について、より具体的に説明する。 Next, the configuration of the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention will be described more specifically with reference to the drawings.
 本発明の第1の態様の両面粘着シートとしては、例えば、図1(a)に示される、粘着剤層(X1)と、熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とを、この順で有する両面粘着シート1aが挙げられる。
 また、図1(b)に示す両面粘着シート1bのように、粘着剤層(X1)の粘着表面上にさらに剥離材10aを有し、粘着剤層(X2)の粘着表面上にさらに剥離材10bを有する構成としてもよい。
The double-sided pressure-sensitive adhesive sheet of the first aspect of the present invention includes, for example, a pressure-sensitive adhesive layer (X1), a thermally expandable substrate layer (Y1), and a non-thermally expandable substrate shown in FIG. A double-sided pressure-sensitive adhesive sheet 1a having a layer (Y2) and a pressure-sensitive adhesive layer (X2) in this order is exemplified.
Moreover, like the double-sided pressure-sensitive adhesive sheet 1b shown in FIG. 10b may be provided.
 本発明の第2の態様の両面粘着シートとしては、例えば、図2(a)に示される、熱膨張性層である粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シート2aが挙げられる。
 また、図2(b)に示す両面粘着シート2bのように、粘着剤層(X1)の粘着表面上にさらに剥離材10aを有し、粘着剤層(X2)の粘着表面上にさらに剥離材10bを有する構成としてもよい。
The double-sided pressure-sensitive adhesive sheet of the second aspect of the present invention includes, for example, a heat-expandable pressure-sensitive adhesive layer (X1), a substrate layer (Y), and a pressure-sensitive adhesive layer shown in FIG. and (X2) in this order.
Moreover, like the double-sided pressure-sensitive adhesive sheet 2b shown in FIG. 10b may be provided.
 なお、図1(b)及び図2(b)に示す両面粘着シート1b及び両面粘着シート2bにおいて、剥離材10aを粘着剤層(X1)から剥がす際の剥離力と、剥離材10bを粘着剤層(X2)から剥がす際の剥離力とが同程度である場合、双方の剥離材を外側へ引っ張って剥がそうとすると、粘着剤層が、2つの剥離材に伴って分断されて引き剥がされる現象が生じることがある。このような現象を抑制する観点から、2つの剥離材10a、10bは、互いに貼付される粘着剤層からの剥離力が異なるように設計された2種の剥離材を用いることが好ましい。 In the double-sided pressure-sensitive adhesive sheet 1b and the double-sided pressure-sensitive adhesive sheet 2b shown in FIGS. When the peel force when peeling from the layer (X2) is about the same, if both release materials are pulled outward to be peeled off, the pressure-sensitive adhesive layer is divided and peeled off along with the two release materials. phenomenon may occur. From the viewpoint of suppressing such a phenomenon, it is preferable to use two types of release materials designed to have different release forces from the pressure-sensitive adhesive layers to be attached to each other as the two release materials 10a and 10b.
 その他の態様の両面粘着シートとしては、図1(a)に示す両面粘着シート1a及び図2(a)に示す両面粘着シート2aにおいて、粘着剤層(X1)及び粘着剤層(X2)の一方の粘着表面に、両面に剥離処理が施された剥離材が積層したものを、ロール状に巻いた構成を有する両面粘着シートであってもよい。 As a double-sided pressure-sensitive adhesive sheet of another embodiment, in the double-sided pressure-sensitive adhesive sheet 1a shown in FIG. 1(a) and the double-sided pressure-sensitive adhesive sheet 2a shown in FIG. It may be a double-sided pressure-sensitive adhesive sheet having a structure in which a release material having both sides subjected to a release treatment is laminated on the pressure-sensitive adhesive surface of the sheet and wound into a roll.
 本発明の一態様で用いる両面粘着シートは、基材層(Y)と粘着剤層(X1)との間に、他の層を有していてもよく、他の層を有していなくてもよい。また、本発明の一態様で用いる両面粘着シートは、基材層(Y)と粘着剤層(X2)との間に、他の層を有していてもよく、他の層を有していなくてもよい。
 ただし、第1の態様の両面粘着シートは、熱膨張性基材層(Y1)の粘着剤層(X1)とは反対側の面には、該面における膨張を抑制する観点から、非熱膨張性基材層(Y2)が直接積層されていることが好ましい。また、第2の態様の両面粘着シートは、粘着剤層(X1)の粘着表面とは反対側の面には、該面における膨張を抑制し得る層が直接積層されていることが好ましく、基材層(Y)が直接積層されていることがより好ましい。
The double-sided pressure-sensitive adhesive sheet used in one aspect of the present invention may or may not have another layer between the base layer (Y) and the pressure-sensitive adhesive layer (X1). good too. In addition, the double-sided pressure-sensitive adhesive sheet used in one aspect of the present invention may have another layer between the base layer (Y) and the pressure-sensitive adhesive layer (X2). It doesn't have to be.
However, in the double-sided pressure-sensitive adhesive sheet of the first aspect, the surface of the thermally expandable substrate layer (Y1) opposite to the pressure-sensitive adhesive layer (X1) has a non-thermally expandable It is preferable that the flexible substrate layer (Y2) is directly laminated. In the double-sided pressure-sensitive adhesive sheet of the second aspect, it is preferable that a layer capable of suppressing expansion on the surface opposite to the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1) is directly laminated. More preferably, the material layer (Y) is directly laminated.
<熱膨張性粒子>
 本発明の一態様の両面粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)は、加熱剥離する際における加工品(P)の熱変化を抑制するという観点から、好ましくは125℃未満、より好ましくは120℃以下、更に好ましくは115℃以下、より更に好ましくは110℃以下、更になお好ましくは105℃以下である。
<Thermal expandable particles>
In the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention, the expansion start temperature (t) of the thermally expandable particles is preferably less than 125°C, from the viewpoint of suppressing thermal change of the processed product (P) during heat peeling. It is more preferably 120° C. or lower, still more preferably 115° C. or lower, still more preferably 110° C. or lower, and even more preferably 105° C. or lower.
 また、加熱剥離型の粘着シートの熱膨張性粒子として膨張開始温度が低いものを用いると、加工対象物(W)に対して研削を行う場合等の温度上昇によって、熱膨張性粒子が膨張してしまうことがある。熱膨張性粒子のこのような意図しない膨張は、支持体(S)と粘着剤層(X1)との密着性低下を招き、加工対象物(W)の位置ズレ等に繋がるため、抑制されることが望ましい。
 かかる観点から、本発明の一態様の両面粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)は、好ましくは50℃以上、より好ましくは55℃以上、更に好ましくは60℃以上、より更に好ましくは70℃以上である。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
In addition, when thermally expansive particles having a low expansion start temperature are used as the thermally peelable adhesive sheet, the thermally expansible particles expand due to a temperature rise such as when the workpiece (W) is ground. Sometimes I end up Such unintended expansion of the thermally expandable particles leads to a decrease in adhesion between the support (S) and the pressure-sensitive adhesive layer (X1), leading to displacement of the workpiece (W), etc., and is thus suppressed. is desirable.
From this point of view, in the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention, the expansion initiation temperature (t) of the thermally expandable particles is preferably 50° C. or higher, more preferably 55° C. or higher, still more preferably 60° C. or higher. Preferably, it is 70°C or higher.
In this specification, the expansion start temperature (t) of thermally expandable particles means a value measured based on the following method.
(熱膨張性粒子の膨張開始温度(t)の測定法)
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
(Method for measuring expansion start temperature (t) of thermally expandable particles)
An aluminum cup with a diameter of 6.0 mm (inner diameter of 5.65 mm) and a depth of 4.8 mm was filled with 0.5 mg of thermally expandable particles to be measured, and an aluminum lid (5.6 mm in diameter and 0.6 mm in thickness) was placed thereon. 1 mm) is placed on the sample.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured while a force of 0.01 N is applied to the sample from the top of the aluminum lid with a pressurizer. Then, while applying a force of 0.01 N by the pressurizer, heat is applied from 20° C. to 300° C. at a temperature increase rate of 10° C./min, and the amount of displacement in the vertical direction of the pressurizer is measured. Let the displacement start temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン、もしくはこれらの熱可塑性樹脂に含まれる構成単位を形成する単量体の2種以上を重合して得られる共重合体等が挙げられる。
The thermally expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an encapsulated component that is encapsulated in the outer shell and vaporizes when heated to a predetermined temperature. Preferably.
The thermoplastic resin constituting the outer shell of the microencapsulated foaming agent includes, for example, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, or structural units contained in these thermoplastic resins. Examples thereof include copolymers obtained by polymerizing two or more of the monomers to be formed.
 マイクロカプセル化発泡剤の外殻に内包される成分である内包成分としては、例えば、プロパン、プロピレン、ブテン、n-ブタン、イソブタン、イソペンタン、ネオペンタン、n-ペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、n-オクタン、シクロプロパン、シクロブタン、石油エーテル等の低沸点液体が挙げられる。
 これらの中でも、加熱剥離する際に加工品(P)の熱変化を抑制すると共に、加工対象物(W)に対して研削を行う場合等の温度上昇による熱膨張性粒子の意図しない膨張を抑制する観点から、熱膨張性粒子の膨張開始温度(t)を50℃以上125℃未満とする場合、内包成分は、プロパン、イソブタン、n-ペンタン、及びシクロプロパンが好ましい。
 これらの内包成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of encapsulated components that are encapsulated in the outer shell of the microencapsulated foaming agent include propane, propylene, butene, n-butane, isobutane, isopentane, neopentane, n-pentane, n-hexane, isohexane, n- Low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane, and petroleum ether are included.
Among these, it suppresses the thermal change of the workpiece (P) when thermally peeling, and suppresses the unintended expansion of the thermally expandable particles due to the temperature rise when grinding the workpiece (W). From the viewpoint of the thermal expansion, when the expansion start temperature (t) of the thermally expandable particles is 50° C. or more and less than 125° C., propane, isobutane, n-pentane, and cyclopropane are preferable as the encapsulated component.
These inclusion components may be used individually by 1 type, and may use 2 or more types together.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、熱膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
The average particle size of the thermally expandable particles used in one aspect of the present invention before expansion at 23° C. is preferably 3 to 100 μm, more preferably 4 to 70 μm, even more preferably 6 to 60 μm, still more preferably 10 to 10 μm. 50 μm.
The average particle size of the thermally expandable particles before expansion is the volume-median particle size (D 50 ), and is measured by a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name "Mastersizer 3000"). In the particle distribution of the thermally expandable particles before expansion measured using , the particle size corresponding to a cumulative volume frequency of 50% calculated from the smallest particle size of the thermally expandable particles before expansion.
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは15~100μm、更に好ましくは20~90μm、より更に好ましくは25~80μmである。
 なお、熱膨張性粒子の膨張前の90%粒子径(D90)とは、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒子径を意味する。
The 90% particle diameter (D 90 ) before expansion at 23° C. of the thermally expandable particles used in one aspect of the present invention is preferably 10 to 150 μm, more preferably 15 to 100 μm, still more preferably 20 to 90 μm, Even more preferably, it is 25 to 80 μm.
The 90% particle diameter (D 90 ) of the thermally expandable particles before expansion is measured using a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name “Mastersizer 3000”). In the particle distribution of the thermally expandable particles before expansion, it means a particle size corresponding to a cumulative volume frequency of 90% calculated from the smallest particle size of the thermally expandable particles before expansion.
 本発明の一態様で用いる熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~200倍、より好ましくは2~150倍、更に好ましくは2.5~120倍、より更に好ましくは3~100倍である。 The maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles used in one aspect of the present invention is preferably 1.5 to 200 times, more preferably 2 to 150 times, and further It is preferably 2.5 to 120 times, and more preferably 3 to 100 times.
 熱膨張性層中の熱膨張性粒子の含有量は、熱膨張性層の全質量(100質量%)に対して、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは7質量%以上、より更に好ましくは10質量%以上である。また、熱膨張性層中の熱膨張性粒子の含有量は、熱膨張性層の全質量(100質量%)に対して、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは16質量%以下、より更に好ましくは14質量%以下である。
 熱膨張性粒子の含有量が1質量%以上であれば、加熱剥離時の剥離性が向上する傾向にある。また、熱膨張性粒子の含有量が25質量%以下であれば、熱膨張前の熱膨張性粒子に起因する凹凸の発生が抑制され、良好な密着性が得られる傾向にある。
The content of the thermally expandable particles in the thermally expandable layer is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 7% by mass, relative to the total mass (100% by mass) of the thermally expandable layer. It is at least 10% by mass, more preferably at least 10% by mass. In addition, the content of the thermally expandable particles in the thermally expandable layer is preferably 25% by mass or less, more preferably 20% by mass or less, and still more preferably, based on the total mass (100% by mass) of the thermally expandable layer. is 16% by mass or less, more preferably 14% by mass or less.
When the content of the thermally expandable particles is 1% by mass or more, there is a tendency that the peelability at the time of heat peeling is improved. Further, when the content of the thermally expandable particles is 25% by mass or less, the generation of irregularities due to the thermally expandable particles before thermal expansion is suppressed, and good adhesion tends to be obtained.
<熱膨張性層の厚さ>
 本発明の一態様において、熱膨張性層の熱膨張前の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは25~120μmである。
 熱膨張性層の熱膨張前の厚さが10μm以上であると、熱膨張前の熱膨張性粒子に起因する凹凸の形成を抑制することができる。また、熱膨張性層の熱膨張前の厚さが200μm以下であると、両面粘着シートの取り扱いが容易になる傾向にある。
<Thickness of Thermally Expandable Layer>
In one aspect of the present invention, the thickness of the thermally expandable layer before thermal expansion is preferably 10-200 μm, more preferably 20-150 μm, even more preferably 25-120 μm.
When the thickness of the thermally expandable layer before thermal expansion is 10 µm or more, it is possible to suppress the formation of irregularities due to the thermally expandable particles before thermal expansion. Further, when the thickness of the thermally expandable layer before thermal expansion is 200 μm or less, the double-sided pressure-sensitive adhesive sheet tends to be easy to handle.
<両面粘着シート全体の厚さ>
 本発明の一態様の両面粘着シートを熱膨張させる前の両面粘着シート全体の厚さは、好ましくは90~300μm、より好ましくは100~250μm、更に好ましくは130~200μmである。
 両面粘着シート全体の厚さが90μm以上であると、両面粘着シートの機械的強度等が良好となり取り扱い易くなる。また、両面粘着シート全体の厚さが300μm以下であると、両面粘着シートの取り扱いが容易になる傾向にある。
<Thickness of entire double-sided adhesive sheet>
The thickness of the entire double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention before thermal expansion is preferably 90 to 300 μm, more preferably 100 to 250 μm, still more preferably 130 to 200 μm.
When the total thickness of the double-sided pressure-sensitive adhesive sheet is 90 μm or more, the mechanical strength of the double-sided pressure-sensitive adhesive sheet will be good, and it will be easy to handle. Moreover, when the thickness of the entire double-sided pressure-sensitive adhesive sheet is 300 μm or less, the handling of the double-sided pressure-sensitive adhesive sheet tends to be easy.
 次に、本発明の一態様の両面粘着シートが有する各層の好適な態様について説明する。
 以下では、第1の態様の両面粘着シート及び第2の態様の両面粘着シートそれぞれについて好適な態様を説明するが、本発明はこれらの態様に限定されるものではない。
Next, preferred aspects of each layer included in the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention will be described.
Preferred embodiments of the double-sided pressure-sensitive adhesive sheet of the first embodiment and the double-sided pressure-sensitive adhesive sheet of the second embodiment are described below, but the present invention is not limited to these embodiments.
[第1の態様の両面粘着シート]
 第1の態様の両面粘着シートは、粘着剤層(X1)と、熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とを、この順で有する両面粘着シートである。
[Double-sided pressure-sensitive adhesive sheet of the first embodiment]
The double-sided pressure-sensitive adhesive sheet of the first aspect comprises a pressure-sensitive adhesive layer (X1), a thermally expandable substrate layer (Y1), a non-thermally expandable substrate layer (Y2), and an adhesive layer (X2), It is a double-sided pressure-sensitive adhesive sheet having in this order.
<粘着剤層(X1)>
 第1の態様の両面粘着シートが有する粘着剤層(X1)は、熱膨張性層であってもよく、非熱膨張性層であってもよいが、非熱膨張性層であることが好ましい。
 粘着剤層(X1)が非熱膨張性層である場合、上記式から算出される粘着剤層(X1)の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 粘着剤層(X1)は、熱膨張性粒子を含有しないことが好ましいが、本発明の目的に反しない範囲で熱膨張性粒子を含有していてもよい。粘着剤層(X1)が熱膨張性粒子を含有する場合、その含有量は少ないほど好ましく、粘着剤層(X1)の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
<Adhesive layer (X1)>
The pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the first aspect may be either a thermally expandable layer or a non-thermally expandable layer, but is preferably a non-thermally expandable layer. .
When the pressure-sensitive adhesive layer (X1) is a non-thermally expandable layer, the volume change rate (%) of the pressure-sensitive adhesive layer (X1) calculated from the above formula is less than 5%, preferably less than 2%, more Preferably less than 1%, more preferably less than 0.1%, even more preferably less than 0.01%.
The pressure-sensitive adhesive layer (X1) preferably does not contain heat-expandable particles, but may contain heat-expandable particles as long as the object of the present invention is not compromised. When the pressure-sensitive adhesive layer (X1) contains thermally expandable particles, the content thereof is preferably as small as possible, and preferably less than 3% by mass, more than It is preferably less than 1% by mass, more preferably less than 0.1% by mass, even more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
 第1の態様の両面粘着シートが有する粘着剤層(X1)は、粘着性樹脂を含む粘着剤組成物(x-1)から形成することができる。
 以下、粘着剤組成物(x-1)に含まれる各成分について説明する。
The pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the first aspect can be formed from a pressure-sensitive adhesive composition (x-1) containing a pressure-sensitive adhesive resin.
Each component contained in the adhesive composition (x-1) is described below.
(粘着性樹脂)
 粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体が挙げられる。
 粘着性樹脂の質量平均分子量(Mw)は、粘着剤層(X1)の粘着力向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(adhesive resin)
Examples of the adhesive resin include a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000 to 100, from the viewpoint of improving the adhesive strength of the adhesive layer (X1). Ten thousand.
 粘着性樹脂の具体例としては、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Specific examples of adhesive resins include acrylic resins, urethane resins, rubber resins such as polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins.
These adhesive resins may be used alone or in combination of two or more.
In addition, when these adhesive resins are copolymers having two or more structural units, the form of the copolymer is not particularly limited, and may be block copolymers, random copolymers, and graft copolymers. Any polymer may be used.
 ここで、本発明の一態様において、粘着剤層(X1)に優れた粘着力を発現させる観点から、粘着性樹脂が、アクリル系樹脂を含むことが好ましい。 Here, in one aspect of the present invention, the adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength in the adhesive layer (X1).
 粘着性樹脂中のアクリル系樹脂の含有量としては、粘着剤組成物(x-1)又は粘着剤層(X1)に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。 The content of the acrylic resin in the adhesive resin is preferably 30 with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x-1) or the adhesive layer (X1). ~100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, still more preferably 85 to 100% by mass.
 本発明の一態様において、粘着性樹脂として使用し得る、アクリル系樹脂としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含む重合体等が挙げられる。 In one aspect of the present invention, the acrylic resin that can be used as the adhesive resin includes, for example, a polymer containing a structural unit derived from an alkyl (meth)acrylate having a linear or branched alkyl group, a cyclic structure Examples include polymers containing structural units derived from (meth)acrylates having
 アクリル系樹脂の質量平均分子量(Mw)としては、好ましくは10万~150万、より好ましくは20万~130万、更に好ましくは35万~120万、より更に好ましくは50万~110万である。 The mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, and even more preferably 500,000 to 1,100,000. .
 本発明の一態様で用いるアクリル系樹脂としては、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。 The acrylic resin used in one embodiment of the present invention includes structural units (a1) derived from alkyl (meth)acrylate (a1′) (hereinafter also referred to as “monomer (a1′)”) and functional group-containing monomers (a2 ') (hereinafter also referred to as "monomer (a2')").
 モノマー(a1’)が有するアルキル基の炭素数としては、粘着剤層(X1)に優れた粘着力を発現させるという観点から、好ましくは1~24、より好ましくは1~12、更に好ましくは2~10、より更に好ましくは4~8である。
 なお、モノマー(a1’)が有するアルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
The number of carbon atoms in the alkyl group of the monomer (a1′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2, from the viewpoint of exhibiting excellent adhesive strength in the pressure-sensitive adhesive layer (X1). ~10, more preferably 4-8.
The alkyl group possessed by the monomer (a1') may be a linear alkyl group or a branched alkyl group.
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
 これらのモノマー(a1’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 モノマー(a1’)としては、n-ブチルアクリレート及び2-エチルヘキシルアクリレートが好ましい。
Examples of the monomer (a1′) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, iso-butyl (meth)acrylate, Acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate and the like.
These monomers (a1') may be used alone or in combination of two or more.
Preferred monomers (a1′) are n-butyl acrylate and 2-ethylhexyl acrylate.
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、更に好ましくは70~97.0質量%、より更に好ましくは80~95.0質量%である。 The content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 70 to 97.0% by mass, and even more preferably 80 to 95.0% by mass.
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 これらのモノマー(a2’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、モノマー(a2’)としては、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
Examples of functional groups possessed by the monomer (a2′) include hydroxyl groups, carboxyl groups, amino groups, epoxy groups and the like.
That is, examples of the monomer (a2′) include hydroxyl group-containing monomers, carboxy group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, and the like.
These monomers (a2') may be used alone or in combination of two or more.
Among these, as the monomer (a2'), hydroxyl group-containing monomers and carboxy group-containing monomers are preferable, and hydroxyl group-containing monomers are more preferable.
 水酸基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等の水酸基含有化合物が挙げられる。 Examples of hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, ) hydroxyalkyl (meth)acrylates such as acrylate and 4-hydroxybutyl (meth)acrylate; and hydroxyl group-containing compounds such as unsaturated alcohols such as vinyl alcohol and allyl alcohol.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-(アクリロイルオキシ)エチルサクシネート、2-カルボキシエチル(メタ)アクリレート等が挙げられる。 Carboxy group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides , 2-(acryloyloxy)ethyl succinate, 2-carboxyethyl (meth)acrylate and the like.
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~30質量%、より好ましくは0.5~20質量%、更に好ましくは1.0~15質量%、より更に好ましくは3.0~10質量%である。 The content of the structural unit (a2) is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 1.0 to 15% by mass, and even more preferably 3.0 to 10% by mass.
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来の構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の合計含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
The acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
In the acrylic copolymer (A1), the total content of the structural units (a1) and (a2) is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass.
 モノマー(a3’)としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー類;シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート等の環状構造を有する(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリロイルモルホリン、N-ビニルピロリドン等が挙げられる。 Examples of the monomer (a3′) include olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene and chloroprene; Having a cyclic structure such as benzyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, imide (meth)acrylate, etc. (Meth)acrylate; styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, (meth)acrylamide, (meth)acrylonitrile, (meth)acryloylmorpholine, N-vinylpyrrolidone and the like.
 粘着剤組成物(x-1)中における粘着性樹脂の含有量は、粘着剤組成物(x-1)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~100質量%、より更に好ましくは70~99.5質量%である。 The content of the adhesive resin in the adhesive composition (x-1) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-1), More preferably 50 to 100% by mass, still more preferably 60 to 100% by mass, still more preferably 70 to 99.5% by mass.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x-1)は、上述のアクリル系共重合体(A1)のように、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(crosslinking agent)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x-1), when containing a pressure-sensitive adhesive resin having a functional group, such as the acrylic copolymer (A1) described above, further contains a cross-linking agent. is preferred.
The cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins with each other using the functional group as a cross-linking starting point.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
 イソシアネート系架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロヘプタントリイソシアネート、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、水添キシリレンジイソシアネート等の脂環式ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の非環式脂肪族ポリイソシアネート;等の多価イソシアネート化合物等が挙げられる。
 また、イソシアネート系架橋剤としては、当該多価イソシアネート化合物のトリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含むイソシアヌレート型変性体等も挙げられる。
 これらの中でも、加熱時における粘着剤層(X1)の弾性率の低下を抑制する観点から、イソシアヌレート環を含むイソシアヌレート型変性体を用いることが好ましく、非環式脂肪族ポリイソシアネートのイソシアヌレート型変性体を用いることがより好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体を用いることが更に好ましい。
Examples of cross-linking agents include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
One of these crosslinking agents may be used alone, or two or more thereof may be used in combination.
Among these cross-linking agents, isocyanate-based cross-linking agents are preferable from the viewpoints of increasing cohesive strength and improving adhesive strength, and from the viewpoints of availability, and the like.
Examples of isocyanate-based cross-linking agents include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; Alicyclic polyisocyanates such as methylcyclohexylene diisocyanate, methylenebis(cyclohexyl isocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate acyclic aliphatic polyisocyanates such as; polyvalent isocyanate compounds such as;
Examples of the isocyanate-based cross-linking agent include trimethylolpropane adduct-type modified products of the polyvalent isocyanate compounds, biuret-type modified products reacted with water, and isocyanurate-type modified products containing an isocyanurate ring.
Among these, from the viewpoint of suppressing a decrease in the elastic modulus of the pressure-sensitive adhesive layer (X1) during heating, it is preferable to use an isocyanurate-type modified product containing an isocyanurate ring, and an isocyanurate of an acyclic aliphatic polyisocyanate. It is more preferable to use a type modified product, and it is even more preferable to use an isocyanurate type modified product of hexamethylene diisocyanate.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the cross-linking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin. More preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x-1)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 本明細書において、「粘着付与剤」とは、粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のものを指し、上記した粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は1万未満であり、好ましくは400~9,000、より好ましくは500~8,000、更に好ましくは800~5,000である。
(Tackifier)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x-1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
As used herein, the term "tackifier" refers to a component that supplementarily improves the adhesive strength of the adhesive resin and has a weight average molecular weight (Mw) of less than 10,000. is distinguished from
The weight average molecular weight (Mw) of the tackifier is less than 10,000, preferably 400 to 9,000, more preferably 500 to 8,000, still more preferably 800 to 5,000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 Examples of tackifiers include rosin-based resins, terpene-based resins, styrene-based resins, pentene produced by thermal decomposition of petroleum naphtha, isoprene, piperine, obtained by copolymerizing C5 fractions such as 1,3-pentadiene. and C9 petroleum resins obtained by copolymerizing C9 fractions such as indene and vinyl toluene produced by thermal decomposition of petroleum naphtha, and hydrogenated resins obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、1種を単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。2種以上の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170°C, more preferably 65 to 160°C, still more preferably 70 to 150°C.
In addition, in this specification, the "softening point" of a tackifier means the value measured based on JISK2531.
A single tackifier may be used alone, or two or more different softening points, structures, and the like may be used in combination. When two or more tackifiers are used, the weighted average of the softening points of the tackifiers preferably falls within the above range.
 粘着付与剤の含有量は、粘着剤組成物(x-1)の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%、より更に好ましくは2~30質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x-1). %, more preferably 1 to 40% by mass, and even more preferably 2 to 30% by mass.
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(x-1)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤、後述するエネルギー線硬化性化合物及び光重合開始剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
(Adhesive additive)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x-1) includes, in addition to the above-described additives, additives for pressure-sensitive adhesives that are commonly used in pressure-sensitive adhesives, as long as the effects of the present invention are not impaired. may contain.
Examples of such adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, and energy rays described later. A curable compound, a photopolymerization initiator, and the like are included.
In addition, these additives for pressure-sensitive adhesives may be used alone, respectively, or two or more of them may be used in combination.
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、それぞれ独立して、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。 When these adhesive additives are contained, the content of each adhesive additive is independently preferably 0.0001 to 20 parts by mass, more than 100 parts by mass of the adhesive resin. It is preferably 0.001 to 10 parts by mass.
(熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力)
 熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力は、好ましくは0.1~12.0N/25mm、より好ましくは0.5~9.0N/25mm、更に好ましくは1.0~8.0N/25mm、より更に好ましくは1.2~7.5N/25mmである。
 熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力が0.1N/25mm以上であれば、仮固定時における支持体(S)からの意図しない剥離を抑制し、加工対象物(W)の位置ズレ等をより効果的に抑制することができる。一方、当該粘着力が12.0N/25mm以下であれば、加熱剥離時の剥離性をより向上させることができる。
(Adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable base layer (Y1))
The adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable substrate layer (Y1) is preferably 0.1 to 12.0 N/25 mm, more preferably 0.5 to 9.0 N/25 mm. , more preferably 1.0 to 8.0 N/25 mm, still more preferably 1.2 to 7.5 N/25 mm.
If the adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable base material layer (Y1) is 0.1 N/25 mm or more, unintended peeling from the support (S) during temporary fixing can be prevented. It is possible to suppress the displacement of the workpiece (W) and the like more effectively. On the other hand, if the adhesive strength is 12.0 N/25 mm or less, the peelability during heat peeling can be further improved.
(熱膨張性基材層(Y1)を熱膨張させた後の粘着剤層(X1)の粘着力)
 熱膨張性基材層(Y1)を熱膨張させた後の粘着剤層(X1)の粘着力は、好ましくは1.5N/25mm以下、より好ましくは0.05N/25mm以下、更に好ましくは0.01N/25mm以下、より更に好ましくは0N/25mmである。なお、粘着力が0N/25mmであるとは、粘着力の測定方法において、測定限界以下の粘着力を意味し、測定のために両面粘着シートを固定する際に粘着力が小さすぎて意図せず剥離する場合も含まれる。
(Adhesive strength of adhesive layer (X1) after thermal expansion of thermally expandable substrate layer (Y1))
The adhesive strength of the pressure-sensitive adhesive layer (X1) after thermally expanding the thermally expandable substrate layer (Y1) is preferably 1.5 N/25 mm or less, more preferably 0.05 N/25 mm or less, still more preferably 0 .01 N/25 mm or less, more preferably 0 N/25 mm. The adhesive force of 0 N/25 mm means an adhesive force below the measurable limit in the adhesive force measurement method. It also includes the case where the film is peeled off.
(粘着剤層(X1)の厚さ)
 第1の態様の両面粘着シートが有する粘着剤層(X1)の厚さは、良好な粘着力を発現させると共に、熱膨張性粒子を加熱により膨張させた際に、粘着剤層(X1)の粘着表面に凹凸を良好に形成させる観点から、好ましくは3~10μm、より好ましくは3~8μm、更に好ましくは3~7μmである。
 粘着剤層(X1)の厚さを上記範囲に調整することで、粘着剤層(X1)を形成しやすくすることができ、且つ、粘着剤層(X1)の粘着表面に凹凸を良好に形成させやすくできる。
(Thickness of adhesive layer (X1))
The thickness of the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the first aspect allows the expression of good adhesive strength, and the thickness of the pressure-sensitive adhesive layer (X1) when the thermally expandable particles are expanded by heating. From the viewpoint of forming unevenness on the adhesive surface, the thickness is preferably 3 to 10 μm, more preferably 3 to 8 μm, and still more preferably 3 to 7 μm.
By adjusting the thickness of the pressure-sensitive adhesive layer (X1) within the above range, the pressure-sensitive adhesive layer (X1) can be easily formed, and the adhesive surface of the pressure-sensitive adhesive layer (X1) can be satisfactorily uneven. You can make it easier.
<熱膨張性基材層(Y1)>
 第1の態様の両面粘着シートが有する熱膨張性基材層(Y1)は、樹脂材料中に熱膨張性粒子を含有する熱膨張性層であり、粘着剤層(X1)と非熱膨張性基材層(Y2)との間に設けられる層である。
<Thermal expandable base layer (Y1)>
The thermally expandable substrate layer (Y1) of the double-sided pressure-sensitive adhesive sheet of the first aspect is a thermally expandable layer containing thermally expandable particles in a resin material. It is a layer provided between the substrate layer (Y2).
 熱膨張性基材層(Y1)は、非粘着性の基材であることが好ましい。
 熱膨張性基材層(Y1)の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、基材の表面におけるプローブタック値は、以下の方法により測定された値を意味する。
<プローブタック値>
 測定対象となる基材を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとして、23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定することができる。具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とすることができる。
The thermally expandable substrate layer (Y1) is preferably a non-adhesive substrate.
The probe tack value on the surface of the thermally expandable substrate layer (Y1) is usually less than 50 mN/5 mmφ, preferably less than 30 mN/5 mmφ, more preferably less than 10 mN/5 mmφ, still more preferably less than 5 mN/5 mmφ. .
In addition, in this specification, the probe tack value on the surface of the substrate means the value measured by the following method.
<Probe tack value>
After cutting the base material to be measured into a square with a side of 10 mm, a test sample was left to stand in an environment of 23 ° C. and 50% RH (relative humidity) for 24 hours. ), using a tacking tester (product name “NTS-4800” manufactured by Nippon Tokushu Sokki Co., Ltd.), the probe tack value on the surface of the test sample is measured in accordance with JIS Z0237: 1991. be able to. Specifically, a stainless steel probe with a diameter of 5 mm is brought into contact with the surface of the test sample for 1 second with a contact load of 0.98 N/cm 2 , and then the probe is moved at a speed of 10 mm/second to the test sample. The force required to remove it from the surface can be measured and the resulting value taken as the probe tack value for that test sample.
 熱膨張性基材層(Y1)と積層する他の層との層間密着性を向上させる観点から、熱膨張性基材層(Y1)の表面に対して、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
From the viewpoint of improving the interlayer adhesion between the thermally expandable substrate layer (Y1) and other layers to be laminated, the surface of the thermally expandable substrate layer (Y1) is subjected to an oxidation method, a roughening method, or the like. A treatment, an easy-adhesion treatment, or a primer treatment may be applied.
Examples of oxidation methods include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment. Examples of roughening methods include sandblasting, solvent treatment, and the like. are mentioned.
 熱膨張性基材層(Y1)は、樹脂及び熱膨張性粒子を含む樹脂組成物(y-1)から形成することが好ましい。
 以下、樹脂組成物(y-1)の好ましい態様について説明する。なお、熱膨張性粒子の好適な態様については上記した通りである。
The thermally expandable substrate layer (Y1) is preferably formed from a resin composition (y-1) containing a resin and thermally expandable particles.
Preferred embodiments of the resin composition (y-1) are described below. Preferred aspects of the thermally expandable particles are as described above.
(樹脂)
 樹脂組成物(y-1)に含まれる樹脂は、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y-1)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y-1)から熱膨張性基材層(Y1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含む熱膨張性基材層(Y1)が非粘着性となればよい。
(resin)
The resin contained in the resin composition (y-1) may be a non-adhesive resin or a tacky resin.
That is, even if the resin contained in the resin composition (y-1) is an adhesive resin, in the process of forming the thermally expandable base layer (Y1) from the resin composition (y-1), the adhesive It is sufficient that the resin undergoes a polymerization reaction with the polymerizable compound, the resulting resin becomes a non-tacky resin, and the thermally expandable substrate layer (Y1) containing the resin becomes non-tacky.
 樹脂組成物(y-1)に含まれる前記樹脂の質量平均分子量(Mw)としては、好ましくは1,000~100万、より好ましくは1,000~70万、更に好ましくは1,000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
The mass average molecular weight (Mw) of the resin contained in the resin composition (y-1) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 50. Ten thousand.
Further, when the resin is a copolymer having two or more structural units, the form of the copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer. may be
 樹脂の含有量は、樹脂組成物(y-1)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 95% by mass, relative to the total amount (100% by mass) of the active ingredients of the resin composition (y-1) 90% by mass, more preferably 70 to 85% by mass.
 樹脂組成物(y-1)に含まれる前記樹脂としては、粘着剤層(X1)の粘着表面に凹凸を形成しやすくする観点、及び熱膨張後のシート形状維持性を良好にする観点から、アクリルウレタン系樹脂及びオレフィン系樹脂からなる群から選ばれる1種以上を含有することが好ましい。すなわち、熱膨張性基材層(Y1)は、アクリルウレタン系樹脂及びオレフィン系樹脂からなる群から選ばれる1種以上を含有することが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
 なお、本明細書において、プレポリマーとは、モノマーが重合してなる化合物であって、さらなる重合を行うことでポリマーを構成することが可能な化合物を意味する。
As the resin contained in the resin composition (y-1), from the viewpoint of facilitating the formation of unevenness on the adhesive surface of the pressure-sensitive adhesive layer (X1) and from the viewpoint of improving the sheet shape retention after thermal expansion, It preferably contains one or more selected from the group consisting of acrylic urethane resins and olefin resins. That is, the thermally expandable base layer (Y1) preferably contains one or more selected from the group consisting of acrylic urethane resins and olefin resins.
Moreover, as the acrylic urethane-based resin, the following resin (U1) is preferable.
• An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth)acrylic acid ester.
In the present specification, the term "prepolymer" means a compound obtained by polymerizing a monomer and capable of forming a polymer by further polymerization.
〔アクリルウレタン系樹脂(U1)〕
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
[Acrylic urethane resin (U1)]
Examples of the urethane prepolymer (UP) that forms the main chain of the acrylic urethane resin (U1) include reaction products of polyols and polyvalent isocyanates.
In addition, it is preferable that the urethane prepolymer (UP) is obtained by subjecting the urethane prepolymer (UP) to a chain extension reaction using a chain extension agent.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of polyols used as raw materials for urethane prepolymers (UP) include alkylene-type polyols, ether-type polyols, ester-type polyols, esteramide-type polyols, ester/ether-type polyols, and carbonate-type polyols.
These polyols may be used alone or in combination of two or more.
The polyol used in one aspect of the present invention is preferably a diol, more preferably an ester-type diol, an alkylene-type diol or a carbonate-type diol, and still more preferably an ester-type diol or a carbonate-type diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール、ポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of ester diols include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol; ethylene glycol, propylene glycol, 1 or 2 or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; ,4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Condensation products of one or more selected from dicarboxylic acids such as hydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, methylhexahydrophthalic acid, and anhydrides thereof may be mentioned.
Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, Polydiethylene adipate diol, poly(polytetramethylene ether) adipate diol, poly(3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol, polyneo pentyl terephthalate diol and the like.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 Examples of alkylene type diols include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol; ethylene glycol, propylene glycol, alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol;
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 Examples of carbonate-type diols include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. , 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Aromatic polyisocyanates, aliphatic polyisocyanates, alicyclic polyisocyanates, and the like are examples of polyvalent isocyanates that are raw materials for urethane prepolymers (UP).
One of these polyvalent isocyanates may be used alone, or two or more thereof may be used in combination.
Further, these polyvalent isocyanates may be trimethylolpropane adduct-type modified products, biuret-type modified products reacted with water, and isocyanurate-type modified products containing an isocyanurate ring.
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。 Among these, diisocyanates are preferable as the polyvalent isocyanate used in one embodiment of the present invention, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 At least one selected from -tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate is more preferred.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Alicyclic diisocyanates include, for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane Examples include diisocyanate, methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, and isophorone diisocyanate (IPDI) is preferred.
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
In one aspect of the present invention, the urethane prepolymer (UP) that forms the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends. Urethane prepolymers are preferred.
As a method for introducing ethylenically unsaturated groups at both ends of the linear urethane prepolymer, an NCO group at the terminal of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth)acrylate and a method of reacting with.
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Hydroxyalkyl (meth)acrylates include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxy Butyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like can be mentioned.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
At least (meth)acrylic acid ester is included as the vinyl compound that becomes the side chain of the acrylic urethane resin (U1).
As the (meth)acrylic acid ester, one or more selected from alkyl (meth)acrylates and hydroxyalkyl (meth)acrylates is preferable, and it is more preferable to use alkyl (meth)acrylates and hydroxyalkyl (meth)acrylates together.
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。 When alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate are used in combination, the ratio of hydroxyalkyl (meth)acrylate to 100 parts by mass of alkyl (meth)acrylate is preferably 0.1 to 100 parts by mass, more It is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and even more preferably 1.5 to 10 parts by mass.
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。 The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1-24, more preferably 1-12, even more preferably 1-8, and even more preferably 1-3.
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。 Also, examples of hydroxyalkyl (meth)acrylates include the same hydroxyalkyl (meth)acrylates used for introducing ethylenically unsaturated groups to both ends of the linear urethane prepolymer described above.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of vinyl compounds other than (meth)acrylic esters include aromatic hydrocarbon-based vinyl compounds such as styrene, α-methylstyrene and vinyltoluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. , (meth)acrylonitrile, N-vinylpyrrolidone, (meth)acrylic acid, maleic acid, fumaric acid, itaconic acid, meth (acrylamide) and other polar group-containing monomers;
These may be used individually by 1 type, and may use 2 or more types together.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The content of the (meth)acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably 80 to 100% by mass, more preferably 90 to 100% by mass.
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The total content of alkyl (meth)acrylate and hydroxyalkyl (meth)acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, based on the total amount (100% by mass) of the vinyl compound. 100% by mass, more preferably 80 to 100% by mass, even more preferably 90 to 100% by mass.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)は、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを混合し、両者を重合することで得られる。
 当該重合においては、さらにラジカル開始剤を加えて行うことが好ましい。
The acrylic urethane resin (U1) used in one aspect of the present invention is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth)acrylic acid ester and polymerizing the two.
In the polymerization, it is preferable to further add a radical initiator.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in one aspect of the present invention, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 )/(u12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, still more preferably 35 /65 to 55/45.
〔オレフィン系樹脂〕
 樹脂組成物(y-1)に含まれる樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
[Olefin resin]
The olefin-based resin suitable as the resin contained in the resin composition (y-1) is a polymer having at least a structural unit derived from an olefin monomer.
As the olefin monomer, α-olefins having 2 to 8 carbon atoms are preferable, and specific examples include ethylene, propylene, butylene, isobutylene, 1-hexene, and the like.
Among these, ethylene and propylene are preferred.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチル-1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレン-ビニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefin resins include, for example, ultra-low density polyethylene (VLDPE, density: 880 kg/m 3 or more and less than 910 kg/m 3 ), low density polyethylene (LDPE, density: 910 kg/m 3 or more and less than 915 kg/m 3 ), medium density polyethylene (MDPE, density: 915 kg/m 3 or more and less than 942 kg/m 3 ), high density polyethylene (HDPE, density: 942 kg/m 3 or more), polyethylene resin such as linear low density polyethylene; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); -vinyl alcohol copolymer (EVOH); olefinic terpolymers such as ethylene-propylene-(5-ethylidene-2-norbornene);
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、アクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 In one aspect of the present invention, the olefin-based resin may be a modified olefin-based resin further subjected to one or more modifications selected from acid modification, hydroxyl modification, and acrylic modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、1種を単独で用いてもよく、2種以上を併用してもよい。
For example, the acid-modified olefin resin obtained by subjecting an olefin resin to acid modification is a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or its anhydride to the above-described unmodified olefin resin. are mentioned.
Examples of unsaturated carboxylic acids or anhydrides thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth)acrylic acid, maleic anhydride, and itaconic anhydride. , glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornenedicarboxylic anhydride, tetrahydrophthalic anhydride and the like.
In addition, unsaturated carboxylic acid or its anhydride may be used individually by 1 type, and may use 2 or more types together.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、上述したモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
The acrylic-modified olefin-based resin obtained by subjecting an olefin-based resin to acrylic modification includes modification obtained by graft-polymerizing an alkyl (meth)acrylate as a side chain to the above-described unmodified olefin-based resin that is the main chain. polymers.
The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
Examples of the above alkyl (meth)acrylates include the same compounds as the above-described compounds that can be selected as the monomer (a1′).
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、上述した水酸基含有化合物と同様のものが挙げられる。
The hydroxyl group-modified olefin resin obtained by modifying the olefin resin with hydroxyl groups includes a modified polymer obtained by graft polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin which is the main chain.
Examples of the hydroxyl group-containing compound include those similar to the hydroxyl group-containing compound described above.
〔アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂〕
 本発明の一態様において、樹脂組成物(y-1)は、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
[Resins other than acrylic urethane resins and olefin resins]
In one aspect of the present invention, the resin composition (y-1) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin within a range that does not impair the effects of the present invention.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; Coalescence; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resins; polysulfone; polyetheretherketone; polyethersulfone; polyphenylene sulfide; Fluorinated resins and the like are included.
 ただし、粘着剤層(X1)の粘着表面に凹凸を形成しやすくする観点、及び熱膨張後のシート形状維持性を良好にする観点から、樹脂組成物(y-1)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有量は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有量としては、樹脂組成物(y-1)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、更に好ましくは10質量部未満、より更に好ましくは5質量部未満、更になお好ましくは1質量部未満である。
However, from the viewpoint of making it easier to form unevenness on the adhesive surface of the pressure-sensitive adhesive layer (X1) and from the viewpoint of improving the sheet shape retention after thermal expansion, the acrylic urethane resin in the resin composition (y-1) And the content of resins other than olefinic resins is preferably as small as possible.
The content of the resin other than the acrylic urethane resin and the olefin resin is preferably less than 30 parts by mass, more preferably 20 parts by mass, with respect to 100 parts by mass of the total resin contained in the resin composition (y-1). Less than 10 parts by weight, more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
(基材用添加剤)
 樹脂組成物(y-1)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、それぞれ独立して、前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
(Additive for base material)
If necessary, the resin composition (y-1) may contain a base material additive within a range that does not impair the effects of the present invention.
Examples of base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, and colorants.
These base material additives may be used alone, or two or more of them may be used in combination.
When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.0001 to 20 parts by mass, based on 100 parts by mass of the resin. is 0.001 to 10 parts by mass.
(無溶剤型樹脂組成物(y-1a))
 本発明の一態様で用いる樹脂組成物(y-1)の一態様として、質量平均分子量(Mw)が50,000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の熱膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y-1a)が挙げられる。
 無溶剤型樹脂組成物(y-1a)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y-1a)に対して、エネルギー線を照射することで、エチレン性不飽和基を有するオリゴマー、エネルギー線重合性モノマー等が重合し、熱膨張性基材層(Y1)が形成される。
(Solvent-free resin composition (y-1a))
As one aspect of the resin composition (y-1) used in one aspect of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray-polymerizable monomer, and the above-mentioned and a solvent-free resin composition (y-1a) containing no solvent.
In the solvent-free resin composition (y-1a), no solvent is blended, but the energy ray-polymerizable monomer contributes to improving the plasticity of the oligomer.
By irradiating the solvent-free resin composition (y-1a) with an energy ray, an oligomer having an ethylenically unsaturated group, an energy ray-polymerizable monomer, etc. are polymerized to form a thermally expandable base layer (Y1 ) is formed.
 無溶剤型樹脂組成物(y-1a)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50,000以下であるが、好ましくは1,000~50,000、より好ましくは2,000~40,000、更に好ましくは3,000~35,000、より更に好ましくは4,000~30,000である。 The weight average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y-1a) is 50,000 or less, preferably 1,000 to 50,000, more preferably 2,000 to 40,000, more preferably 3,000 to 35,000, even more preferably 4,000 to 30,000.
 前記オリゴマーとしては、上述の樹脂組成物(y-1)に含まれる樹脂のうち、質量平均分子量が50,000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましく、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーがより好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
As the oligomer, among the resins contained in the resin composition (y-1) described above, those having an ethylenically unsaturated group having a mass average molecular weight of 50,000 or less may be used. (UP) is preferable, and a linear urethane prepolymer having ethylenically unsaturated groups at both ends is more preferable.
A modified olefinic resin having an ethylenically unsaturated group can also be used as the oligomer.
 無溶剤型樹脂組成物(y-1a)中における、前記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y-1a)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is based on the total amount (100 mass%) of the solvent-free resin composition (y-1a), It is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, even more preferably 65 to 90% by mass, still more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。これらの中でも、イソボルニル(メタ)アクリレート、フェニルヒドロキシプロピルアクリレートが好ましい。
 これらのエネルギー線重合性モノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
Energy beam-polymerizable monomers include, for example, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, cyclohexyl (meth)acrylate, adamantane ( Alicyclic polymerizable compounds such as meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate, and phenol ethylene oxide-modified acrylate; Examples include heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. Among these, isobornyl (meth)acrylate and phenylhydroxypropyl acrylate are preferred.
One of these energy ray-polymerizable monomers may be used alone, or two or more thereof may be used in combination.
 無溶剤型樹脂組成物(y-1a)中における、前記オリゴマーと、前記エネルギー線重合性モノマーとの含有量比[オリゴマー/エネルギー線重合性モノマー]は、質量比で、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 The content ratio [oligomer/energy ray-polymerizable monomer] of the oligomer and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is preferably from 20/80 by mass. 90/10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
 本発明の一態様において、無溶剤型樹脂組成物(y-1a)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
 光重合開始剤としては、例えば、1-ヒドロキシシクロへキシルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、β-クロロアンスラキノン、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド等が挙げられる。
 これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。
In one aspect of the present invention, the solvent-free resin composition (y-1a) preferably further contains a photopolymerization initiator.
By containing a photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with relatively low-energy energy rays.
Photopolymerization initiators include, for example, 1-hydroxycyclohexylphenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, dibenzyl , diacetyl, β-chloroanthraquinone, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and the like.
One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
The amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, and further preferably 0.01 to 5 parts by mass, based on the total amount (100 parts by mass) of the oligomer and the energy ray-polymerizable monomer. It is preferably 0.02 to 3 parts by mass.
(熱膨張性基材層(Y1)の厚さ)
 本発明の一態様において、熱膨張性基材層(Y1)の熱膨張前の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは25~120μmである。
 熱膨張性基材層(Y1)の熱膨張前の厚さが10μm以上であると、熱膨張前の熱膨張性粒子に起因する凹凸の形成を抑制することができ、粘着剤層(X1)の粘着力を良好にすることができる。熱膨張性基材層(Y1)の熱膨張前の厚さが200μm以下であると、両面粘着シートの取り扱いが容易になる傾向にある。
(Thickness of thermally expandable base layer (Y1))
In one aspect of the present invention, the thickness of the thermally expandable substrate layer (Y1) before thermal expansion is preferably 10 to 200 μm, more preferably 20 to 150 μm, still more preferably 25 to 120 μm.
When the thickness of the thermally expandable base layer (Y1) before thermal expansion is 10 μm or more, it is possible to suppress the formation of unevenness due to the thermally expandable particles before thermal expansion, and the pressure-sensitive adhesive layer (X1). The adhesive strength of can be improved. When the thickness of the thermally expandable substrate layer (Y1) before thermal expansion is 200 μm or less, the double-sided PSA sheet tends to be easy to handle.
<非熱膨張性基材層(Y2)>
 第1の態様の両面粘着シートが有する非熱膨張性基材層(Y2)は、熱膨張性基材層(Y1)の粘着剤層(X1)の積層面とは反対側の面に設けられる。
<Non-thermally expandable base layer (Y2)>
The non-thermally expandable substrate layer (Y2) of the double-sided pressure-sensitive adhesive sheet of the first aspect is provided on the surface of the thermally expandable substrate layer (Y1) opposite to the surface on which the pressure-sensitive adhesive layer (X1) is laminated. .
 非熱膨張性基材層(Y2)は、非粘着性の基材であることが好ましい。非熱膨張性基材層(Y2)の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。 The non-thermally expandable base material layer (Y2) is preferably a non-adhesive base material. The probe tack value on the surface of the non-thermally expandable base material layer (Y2) is usually less than 50 mN/5 mmφ, preferably less than 30 mN/5 mmφ, more preferably less than 10 mN/5 mmφ, still more preferably less than 5 mN/5 mmφ. be.
 非熱膨張性基材層(Y2)の形成材料としては、例えば、樹脂、金属、紙材等が挙げられ、両面粘着シートの用途に応じて適宜選択することができる。 Materials for forming the non-thermally expandable base layer (Y2) include, for example, resins, metals, and paper materials, which can be appropriately selected according to the application of the double-sided pressure-sensitive adhesive sheet.
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 これらの中でも、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂が好ましい。
Examples of resins include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyether sulfone; polyphenylene sulfide; polyimide-based resins such as polyetherimide and polyimide; polyamide-based resins; acrylic resins;
Examples of metals include aluminum, tin, chromium, and titanium.
Examples of the paper material include thin paper, medium quality paper, fine paper, impregnated paper, coated paper, art paper, parchment paper, and glassine paper.
Among these, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferred.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非熱膨張性基材層(Y2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたもの、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one type, or two or more types may be used in combination.
The non-thermally expandable base layer (Y2) using two or more forming materials in combination includes a paper material laminated with a thermoplastic resin such as polyethylene, a resin film or sheet containing a resin, and a metal film formed on the surface of the sheet. and the like.
As a method for forming the metal layer, for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. and the like.
 なお、非熱膨張性基材層(Y2)と積層する他の層との層間密着性を向上させる観点から、非熱膨張性基材層(Y2)が樹脂を含む場合、非熱膨張性基材層(Y2)の表面に対しても、上述の熱膨張性基材層(Y1)と同様に、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。 In addition, from the viewpoint of improving the interlayer adhesion between the non-thermally expandable base layer (Y2) and other layers to be laminated, when the non-thermally expandable base layer (Y2) contains a resin, the non-thermally expandable group The surface of the material layer (Y2) may also be subjected to a surface treatment such as an oxidation method or roughening method, an easy-adhesion treatment, or a primer treatment in the same manner as the thermally expandable base layer (Y1) described above. .
 また、非熱膨張性基材層(Y2)が樹脂を含む場合、当該樹脂と共に、樹脂組成物(y-1)にも含有し得る、上述の基材用添加剤を含有してもよい。 Further, when the non-thermally expandable base material layer (Y2) contains a resin, it may contain the above base material additives that can also be contained in the resin composition (y-1) together with the resin.
 非熱膨張性基材層(Y2)は、上述の方法に基づき判断される、非熱膨張性層である。
 そのため、上述の式から算出される非熱膨張性基材層(Y2)の体積変化率(%)としては、5%未満であるが、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
The non-thermally expandable base layer (Y2) is a non-thermally expandable layer determined based on the method described above.
Therefore, the volume change rate (%) of the non-thermally expandable base layer (Y2) calculated from the above formula is less than 5%, preferably less than 2%, more preferably less than 1%, and further Preferably less than 0.1%, even more preferably less than 0.01%.
 また、非熱膨張性基材層(Y2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよい。例えば、非熱膨張性基材層(Y2)に含まれる樹脂を選択することで、熱膨張性粒子が含まれていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非熱膨張性基材層(Y2)中の熱膨張性粒子の含有量は、少ないほど好ましい。
 具体的な熱膨張性粒子の含有量としては、非熱膨張性基材層(Y2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。更になお好ましくは熱膨張性粒子を含有しないことである。
In addition, the non-thermally expandable base layer (Y2) may contain thermally expandable particles as long as the volume change rate is within the above range. For example, by selecting a resin contained in the non-thermally expandable base layer (Y2), even if the resin contains thermally expandable particles, it is possible to adjust the volume change rate within the above range.
However, the content of the thermally expandable particles in the non-thermally expandable base layer (Y2) is preferably as small as possible.
A specific content of the thermally expandable particles is usually less than 3% by mass, preferably less than 1% by mass, more preferably less than the total mass (100% by mass) of the non-thermally expandable base material layer (Y2). is less than 0.1 wt%, more preferably less than 0.01 wt%, even more preferably less than 0.001 wt%. Even more preferably, it does not contain heat-expandable particles.
(非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23))
 非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×10Pa、より好ましくは5.0×10~4.5×10Pa、更に好ましくは1.0×10~4.0×10Paである。
 非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以上であれば、両面粘着シートの耐変形性を向上させやすい。一方、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以下であれば、両面粘着シートの取り扱い性を向上させやすい。
 なお、本明細書において、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)は、実施例に記載の方法により測定された値を意味する。
(Storage elastic modulus E′ (23) at 23° C. of the non-thermally expandable base layer (Y2))
The storage modulus E'(23) of the non-thermally expandable substrate layer (Y2) at 23° C. is preferably 5.0×10 7 to 5.0×10 9 Pa, more preferably 5.0×10 8 to 4.5×10 9 Pa, more preferably 1.0×10 9 to 4.0×10 9 Pa.
When the storage elastic modulus E′(23) of the non-thermally expandable base layer (Y2) is 5.0×10 7 Pa or more, the deformation resistance of the double-sided PSA sheet can be easily improved. On the other hand, if the storage elastic modulus E′(23) of the non-thermally expandable base layer (Y2) is 5.0×10 9 Pa or less, the handleability of the double-sided PSA sheet can be easily improved.
In addition, in this specification, the storage elastic modulus E'(23) of the non-thermally expandable base layer (Y2) means a value measured by the method described in Examples.
(非熱膨張性基材層(Y2)の厚さ)
 非熱膨張性基材層(Y2)の厚さは、好ましくは5~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。非熱膨張性基材層(Y2)の厚さが5μm以上であれば、両面粘着シートの耐変形性を向上させやすい。一方、非熱膨張性基材層(Y2)の厚さが500μm以下であれば、両面粘着シートの取り扱い性を向上させ易くなる。
(Thickness of non-thermally expandable base layer (Y2))
The thickness of the non-thermally expandable substrate layer (Y2) is preferably 5-500 μm, more preferably 15-300 μm, and still more preferably 20-200 μm. If the thickness of the non-thermally expandable base layer (Y2) is 5 μm or more, the deformation resistance of the double-sided PSA sheet can be easily improved. On the other hand, if the thickness of the non-thermally expandable base material layer (Y2) is 500 µm or less, it becomes easier to improve the handleability of the double-sided pressure-sensitive adhesive sheet.
<粘着剤層(X2)>
 第1の態様の両面粘着シートが有する粘着剤層(X2)は、非熱膨張性基材層(Y2)の熱膨張性基材層(Y1)の積層面とは反対側の面に設けられる層である。
 粘着剤層(X2)は、エネルギー線を照射することにより硬化して粘着力が低下するエネルギー線硬化性粘着剤層であることが好ましく、より好ましくは紫外線を照射することにより硬化して粘着力が低下する粘着剤層である。
<Adhesive layer (X2)>
The pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of the first aspect is provided on the surface of the non-thermally expandable substrate layer (Y2) opposite to the lamination surface of the thermally expandable substrate layer (Y1). layer.
The pressure-sensitive adhesive layer (X2) is preferably an energy ray-curable pressure-sensitive adhesive layer that is cured by irradiation with an energy ray to reduce the adhesive strength, and more preferably is cured by irradiation with an ultraviolet ray to reduce the adhesive strength. is a pressure-sensitive adhesive layer in which the
 粘着剤層(X2)は、非熱膨張性層であることが好ましい。
 粘着剤層(X2)が非熱膨張性層である場合、上記式から算出される粘着剤層(X2)の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 粘着剤層(X2)は、熱膨張性粒子を含有しないことが好ましいが、本発明の目的に反しない範囲で熱膨張性粒子を含有していてもよい。
 粘着剤層(X2)が熱膨張性粒子を含有する場合、その含有量は少ないほど好ましく、粘着剤層(X2)の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
The adhesive layer (X2) is preferably a non-thermally expandable layer.
When the pressure-sensitive adhesive layer (X2) is a non-thermally expandable layer, the volume change rate (%) of the pressure-sensitive adhesive layer (X2) calculated from the above formula is less than 5%, preferably less than 2%, more Preferably less than 1%, more preferably less than 0.1%, even more preferably less than 0.01%.
The pressure-sensitive adhesive layer (X2) preferably does not contain heat-expandable particles, but may contain heat-expandable particles as long as the object of the present invention is not compromised.
When the pressure-sensitive adhesive layer (X2) contains thermally expandable particles, the content is preferably as small as possible, and preferably less than 3% by mass, more than It is preferably less than 1% by mass, more preferably less than 0.1% by mass, even more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
 粘着剤層(X2)は、粘着性樹脂を含有する粘着剤組成物(x-2)から形成することが好ましい。以下、粘着剤組成物(x-2)に含有される各成分について説明する。 The adhesive layer (X2) is preferably formed from an adhesive composition (x-2) containing an adhesive resin. Each component contained in the adhesive composition (x-2) is described below.
 粘着剤組成物(x-2)は、粘着性樹脂を含有するものであり、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤、上記各成分以外の一般的な粘着剤に使用される粘着剤用添加剤等を含有していてもよい。 The adhesive composition (x-2) contains an adhesive resin, and if necessary, a cross-linking agent, a tackifier, a polymerizable compound, a polymerization initiator, a general adhesive other than the above components It may contain additives for pressure-sensitive adhesives and the like used in agents.
(粘着性樹脂)
 粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であればよい。
 粘着性樹脂の質量平均分子量(Mw)は、粘着剤層(X2)の粘着力をより向上させる観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(adhesive resin)
As the tacky resin, a polymer having tackiness by itself and having a mass average molecular weight (Mw) of 10,000 or more may be used.
The mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000, from the viewpoint of further improving the adhesive strength of the adhesive layer (X2). ~1 million.
 粘着性樹脂としては、粘着剤組成物(x-1)が含有する粘着性樹脂と同様のものが挙げられる。
 これらの粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Examples of the adhesive resin include those similar to the adhesive resin contained in the adhesive composition (x-1).
These adhesive resins may be used alone or in combination of two or more.
In addition, when these adhesive resins are copolymers having two or more structural units, the form of the copolymer is any of a block copolymer, a random copolymer, and a graft copolymer. There may be.
 粘着剤組成物(x-2)に含有される粘着性樹脂は、得られる粘着剤層(X2)をエネルギー線照射によって硬化して粘着力が低下する粘着剤層とする観点から、側鎖にエネルギー線重合性官能基を有する粘着性樹脂であることが好ましい。
 エネルギー線重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を有するものが挙げられる。
The pressure-sensitive adhesive resin contained in the pressure-sensitive adhesive composition (x-2) is a pressure-sensitive adhesive layer in which the pressure-sensitive adhesive layer (X2) obtained is cured by energy ray irradiation to reduce the pressure-sensitive adhesive strength. A tacky resin having an energy ray-polymerizable functional group is preferred.
Examples of the energy ray polymerizable functional group include those having a carbon-carbon double bond such as (meth)acryloyl group, vinyl group and allyl group.
 粘着性樹脂は、優れた粘着力を発現させる観点から、アクリル系樹脂を含有することが好ましい。
 粘着剤組成物(x-2)中におけるアクリル系樹脂の含有量は、粘着剤組成物(x-2)に含有される粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。
The adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength.
The content of the acrylic resin in the adhesive composition (x-2) is preferably 30 to 100 mass %, more preferably 50 to 100 mass %, still more preferably 70 to 100 mass %, still more preferably 85 to 100 mass %.
 粘着剤組成物(x-2)中における粘着性樹脂の含有量は、粘着剤組成物(x-2)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~98質量%、より更に好ましくは70~95質量%である。 The content of the adhesive resin in the adhesive composition (x-2) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-2), More preferably 50 to 100% by mass, still more preferably 60 to 98% by mass, still more preferably 70 to 95% by mass.
(エネルギー線硬化性化合物)
 粘着剤組成物(x-2)は、粘着性樹脂と共に、エネルギー線硬化性化合物として、エネルギー線照射により重合硬化可能なモノマー又はオリゴマーを含有していてもよい。
 このようなエネルギー線硬化性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレートモノマー;多官能ウレタン(メタ)アクリレート、多官能ポリエステル(メタ)アクリレート、多官能ポリエーテル(メタ)アクリレート、多官能エポキシ(メタ)アクリレート等のオリゴマーが挙げられる。
 これらの中でも、比較的分子量が高く、粘着剤層(X2)の弾性率を低下させにくいという観点から、多官能ウレタン(メタ)アクリレートオリゴマーが好ましい。
 エネルギー線硬化性化合物の分子量(オリゴマーの場合は質量平均分子量(Mw))は、好ましくは100~12,000、より好ましくは200~10,000、更に好ましくは400~8,000、より更に好ましくは600~6,000である。
(Energy ray-curable compound)
The pressure-sensitive adhesive composition (x-2) may contain, together with the pressure-sensitive adhesive resin, a monomer or oligomer capable of being polymerized and cured by energy ray irradiation as an energy ray-curable compound.
Examples of such energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol (meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4- Polyvalent (meth)acrylate monomers such as butylene glycol di(meth)acrylate, 1,6-hexanediol (meth)acrylate; polyfunctional urethane (meth)acrylate, polyfunctional polyester (meth)acrylate, polyfunctional polyether ( Examples include oligomers such as meth)acrylates and polyfunctional epoxy (meth)acrylates.
Among these, polyfunctional urethane (meth)acrylate oligomers are preferable because they have relatively high molecular weights and are less likely to lower the elastic modulus of the pressure-sensitive adhesive layer (X2).
The molecular weight of the energy ray-curable compound (mass average molecular weight (Mw) in the case of an oligomer) is preferably 100 to 12,000, more preferably 200 to 10,000, still more preferably 400 to 8,000, even more preferably. is between 600 and 6,000.
(光重合開始剤)
 粘着剤組成物(x-2)は、さらに光重合開始剤を含有することが好ましい。
 光重合開始剤を含有することで、エネルギー線重合性成分の重合をより効率的に進行させることができる。
 光重合開始剤としては、無溶剤型樹脂組成物(y-1a)の説明で例示したものと同じものが挙げられる。これらの中でも、1-ヒドロキシシクロヘキシルフェニルケトンが好ましい。
 光重合開始剤の含有量は、エネルギー線重合性官能基を有する粘着性樹脂の全量100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。
(Photoinitiator)
The adhesive composition (x-2) preferably further contains a photopolymerization initiator.
By containing a photopolymerization initiator, the polymerization of the energy ray-polymerizable component can proceed more efficiently.
Examples of the photopolymerization initiator include those exemplified in the description of the solvent-free resin composition (y-1a). Among these, 1-hydroxycyclohexylphenyl ketone is preferred.
The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, with respect to 100 parts by mass of the total amount of the adhesive resin having an energy ray-polymerizable functional group. More preferably, it is 0.05 to 2 parts by mass.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x-2)が官能基を有する粘着性樹脂を含有する場合、粘着剤組成物(x-2)は、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(crosslinking agent)
In one aspect of the present invention, when the pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x-2) preferably further contains a cross-linking agent.
The cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins with each other using the functional group as a cross-linking starting point.
 粘着剤組成物(x-2)が含有していてもよい架橋剤としては、粘着剤組成物(x-1)が含有していてもよい架橋剤と同じもの又は同等のものが挙げられるが、凝集力を高めて粘着力を向上させる観点、入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。 Examples of the cross-linking agent that may be contained in the pressure-sensitive adhesive composition (x-2) include the same or equivalent cross-linking agents that may be contained in the pressure-sensitive adhesive composition (x-1). An isocyanate-based cross-linking agent is preferred from the viewpoints of increasing cohesive strength and improving adhesive strength, as well as from the viewpoint of availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the cross-linking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin. More preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x-2)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 粘着剤組成物(x-2)が含有していてもよい粘着付与剤としては、粘着剤組成物(x-1)が含有していてもよい粘着付与剤と同等のものを使用することができる。
(Tackifier)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x-2) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
As the tackifier that may be contained in the pressure-sensitive adhesive composition (x-2), the same tackifier that may be contained in the pressure-sensitive adhesive composition (x-1) may be used. can.
(粘着剤用添加剤)
 粘着剤用添加剤としては、粘着剤組成物(x-1)が含有していてもよい粘着剤用添加剤と同じものが挙げられる。
(Adhesive additive)
Examples of the adhesive additive include the same additives as the adhesive additive that may be contained in the adhesive composition (x-1).
 粘着剤組成物(x-2)は、粘着性樹脂、必要に応じて使用される架橋剤、粘着付与剤、粘着剤用添加剤等を混合することで製造することができる。 The adhesive composition (x-2) can be produced by mixing an adhesive resin, optionally used cross-linking agent, tackifier, adhesive additive, and the like.
(粘着剤層(X2)のエネルギー線照射前の粘着力)
 粘着剤層(X2)のエネルギー線照射前の粘着力は、好ましくは1.1~30.0N/25mm、より好ましくは3.0~25.0N/25mm、更に好ましくは5.0~20.0N/25mmである。
 粘着剤層(X2)のエネルギー線照射前の粘着力が1.1N/25mm以上であれば、加工対象物(W)の意図しない剥離を抑制し、加工対象物(W)の位置ズレ等をより効果的に抑制することができる。一方、当該粘着力が30.0N/25mm以下であれば、エネルギー線照射後の剥離性をより向上させることができる。
(Adhesive strength of adhesive layer (X2) before energy beam irradiation)
The adhesive strength of the pressure-sensitive adhesive layer (X2) before energy beam irradiation is preferably 1.1 to 30.0 N/25 mm, more preferably 3.0 to 25.0 N/25 mm, still more preferably 5.0 to 20.0 N/25 mm. 0 N/25 mm.
If the adhesive strength of the adhesive layer (X2) before energy beam irradiation is 1.1 N/25 mm or more, unintended peeling of the workpiece (W) is suppressed, and positional displacement of the workpiece (W) is prevented. It can be suppressed more effectively. On the other hand, when the adhesive strength is 30.0 N/25 mm or less, the peelability after energy ray irradiation can be further improved.
(粘着剤層(X2)のエネルギー線照射後の粘着力)
 粘着剤層(X2)のエネルギー線照射後の粘着力は、好ましくは1.0N/25mm以下、より好ましくは0.9N/25mm以下、更に好ましくは0.8N/25mm以下、より更に好ましくは0.7N/25mm以下である。粘着剤層(X2)のエネルギー線照射後の下限値に特に制限はなく、0N/25mm以上であってもよい。
 粘着剤層(X2)のエネルギー線照射後の粘着力が1.0N/25mm以下であれば、加工品(P)からの剥離性により優れたものとなる。
(Adhesive strength after energy beam irradiation of adhesive layer (X2))
The adhesive strength of the adhesive layer (X2) after energy beam irradiation is preferably 1.0 N/25 mm or less, more preferably 0.9 N/25 mm or less, still more preferably 0.8 N/25 mm or less, and even more preferably 0 .7 N/25 mm or less. The lower limit of the pressure-sensitive adhesive layer (X2) after irradiation with energy rays is not particularly limited, and may be 0 N/25 mm or more.
If the adhesive strength of the pressure-sensitive adhesive layer (X2) after energy ray irradiation is 1.0 N/25 mm or less, the peelability from the processed product (P) will be excellent.
(粘着剤層(X2)の厚さ)
 第1の態様の両面粘着シートが有する粘着剤層(X2)の厚さは、好ましくは5~150μm、より好ましくは8~100μm、更に好ましくは12~70μm、より更に好ましくは15~50μmである。
 粘着剤層(X2)の厚さが5μm以上であれば、十分な粘着力が得られやすくなり、仮固定時における加工対象物(W)の意図しない剥離、位置ズレ等を抑制できる傾向にある。一方、粘着剤層(X2)の厚さが150μm以下であれば、両面粘着シートの取り扱いが容易になる傾向にある。
(Thickness of adhesive layer (X2))
The thickness of the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of the first aspect is preferably 5 to 150 μm, more preferably 8 to 100 μm, even more preferably 12 to 70 μm, still more preferably 15 to 50 μm. .
If the thickness of the pressure-sensitive adhesive layer (X2) is 5 μm or more, it becomes easy to obtain sufficient adhesive strength, and there is a tendency that unintended peeling of the workpiece (W) during temporary fixing, positional displacement, etc. can be suppressed. . On the other hand, when the thickness of the pressure-sensitive adhesive layer (X2) is 150 μm or less, the double-sided pressure-sensitive adhesive sheet tends to be easy to handle.
 第1の態様の両面粘着シートにおいて、粘着剤層(X1)、熱膨張性基材層(Y1)、非熱膨張性基材層(Y2)及び粘着剤層(X2)の、熱膨張させる前の合計厚さは、好ましくは90~300μm、より好ましくは100~250μm、更に好ましくは130~200μmである。
 合計厚さが90μm以上であると、両面粘着シートの機械的強度等が良好となり取り扱い易くなる。また、合計厚さが300μm以下であると、両面粘着シートの取り扱いが容易になる傾向にある。
In the double-sided pressure-sensitive adhesive sheet of the first aspect, the pressure-sensitive adhesive layer (X1), the thermally expandable base layer (Y1), the non-thermally expandable base layer (Y2), and the pressure-sensitive adhesive layer (X2) before thermal expansion is preferably 90 to 300 μm, more preferably 100 to 250 μm, still more preferably 130 to 200 μm.
When the total thickness is 90 µm or more, the double-sided pressure-sensitive adhesive sheet has good mechanical strength and the like and is easy to handle. Further, when the total thickness is 300 μm or less, the double-sided pressure-sensitive adhesive sheet tends to be easy to handle.
<第1の態様の両面粘着シートの製造方法>
 第1の態様の両面粘着シートの製造方法は、特に制限はなく、例えば、下記工程(1a)~(5a)を有する、両面粘着シートの製造方法が挙げられる。
・工程(1a):剥離材の剥離処理表面上に、粘着剤組成物(x-1)を塗布して粘着剤層(X1)を形成する工程。
・工程(2a):非熱膨張性基材層(Y2)の片面に、樹脂組成物(y-1)を塗布して非熱膨張性基材層(Y2)と熱膨張性基材層(Y1)とが積層された基材積層体を形成する工程。
・工程(3a):工程(1a)で形成した粘着剤層(X1)の粘着表面と、工程(2a)で形成した基材積層体の熱膨張性基材層(Y1)側の表面とを、貼り合わせて片面粘着シートを得る工程。
・工程(4a):剥離材の剥離処理表面上に、粘着剤組成物(x-2)を塗布して粘着剤層(X2)を形成する工程。
・工程(5a):工程(3a)で形成した片面粘着シートの非熱膨張性基材層(Y2)の表面に、工程(4a)で形成した粘着剤層(X2)の粘着表面を貼り合わせる工程。
<Method for producing the double-sided pressure-sensitive adhesive sheet of the first aspect>
The method for producing the double-sided pressure-sensitive adhesive sheet of the first aspect is not particularly limited, and includes, for example, a method for producing a double-sided pressure-sensitive adhesive sheet having the following steps (1a) to (5a).
Step (1a): A step of applying an adhesive composition (x-1) onto the release-treated surface of a release material to form an adhesive layer (X1).
- Step (2a): The resin composition (y-1) is applied to one side of the non-thermally expandable substrate layer (Y2), and the non-thermally expandable substrate layer (Y2) and the thermally expandable substrate layer ( A step of forming a substrate laminate in which Y1) is laminated.
- Step (3a): the adhesive surface of the adhesive layer (X1) formed in step (1a) and the surface of the substrate laminate formed in step (2a) on the side of the thermally expandable substrate layer (Y1) , a step of laminating together to obtain a single-sided pressure-sensitive adhesive sheet.
Step (4a): A step of applying the pressure-sensitive adhesive composition (x-2) onto the release-treated surface of the release material to form the pressure-sensitive adhesive layer (X2).
- Step (5a): The adhesive surface of the adhesive layer (X2) formed in step (4a) is attached to the surface of the non-thermally expandable substrate layer (Y2) of the single-sided adhesive sheet formed in step (3a). process.
 上記両面粘着シートの製造方法において、樹脂組成物(y-1)、粘着剤組成物(x-1)、及び粘着剤組成物(x-2)は、さらに希釈溶剤を配合し、溶液の形態としてもよい。
 塗布方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
In the method for producing a double-sided pressure-sensitive adhesive sheet, the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) are further blended with a diluting solvent to form a solution. may be
Examples of coating methods include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
 また、樹脂組成物(y-1)、粘着剤組成物(x-1)、及び粘着剤組成物(x-2)から形成される塗膜を乾燥する工程は、熱膨張性粒子の膨張を抑制する観点から、乾燥温度を熱膨張性粒子の膨張開始温度(t)未満で行うことが好ましい。 In addition, the step of drying the coating film formed from the resin composition (y-1), the adhesive composition (x-1), and the adhesive composition (x-2) causes expansion of the thermally expandable particles. From the viewpoint of suppression, the drying temperature is preferably lower than the expansion start temperature (t) of the thermally expandable particles.
[第2の態様の両面粘着シート]
 第2の態様の両面粘着シートは、熱膨張性層である粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートである。
[Double-sided pressure-sensitive adhesive sheet of the second aspect]
The double-sided pressure-sensitive adhesive sheet of the second aspect is a double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer (X1) which is a thermally expandable layer, a substrate layer (Y), and a pressure-sensitive adhesive layer (X2) in this order. .
 第2の態様の両面粘着シートが有する基材層(Y)についての説明は、第1の態様の両面粘着シートにおける非熱膨張性基材層(Y2)についての説明と同じであり、第2の態様の両面粘着シートが有する粘着剤層(X2)についての説明は、第1の態様の両面粘着シートにおける粘着剤層(X2)についての説明と同じである。 The description of the base layer (Y) of the double-sided pressure-sensitive adhesive sheet of the second aspect is the same as the description of the non-thermally expandable base layer (Y2) of the double-sided pressure-sensitive adhesive sheet of the first aspect. The description of the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of aspect 1 is the same as the description of the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of aspect 1.
<粘着剤層(X1)>
 第2の態様の粘着剤層(X1)は熱膨張性粒子を含有する熱膨張性層であり、エネルギー線重合性成分の重合体及び熱膨張性粒子を含有することが好ましい。
 上記重合体は、前記エネルギー線重合性成分として、エネルギー線重合性官能基を有するモノマー(b1)(以下、「(b1)成分」ともいう)及びエネルギー線重合性官能基を有するプレポリマー(b2)(以下、「(b2)成分」ともいう)を含有する重合性組成物(以下、「重合性組成物(x-1’)」ともいう)にエネルギー線を照射してなる重合体である。
 なお、本明細書において、プレポリマーとは、モノマーが重合してなる化合物であって、さらなる重合を行うことでポリマーを構成することが可能な化合物を意味する。
<Adhesive layer (X1)>
The pressure-sensitive adhesive layer (X1) of the second aspect is a thermally expandable layer containing thermally expandable particles, and preferably contains an energy ray-polymerizable component polymer and thermally expandable particles.
The polymer comprises, as the energy ray-polymerizable components, a monomer (b1) having an energy ray-polymerizable functional group (hereinafter also referred to as "(b1) component") and a prepolymer (b2) having an energy ray-polymerizable functional group. ) (hereinafter also referred to as “(b2) component”) (hereinafter also referred to as “polymerizable composition (x-1′)”) is irradiated with energy rays. .
In the present specification, the term "prepolymer" means a compound obtained by polymerizing a monomer and capable of forming a polymer by further polymerization.
 重合性組成物(x-1’)が含有するエネルギー線重合性成分は、エネルギー線の照射によって重合する成分であり、エネルギー線重合性官能基を有するものである。
 エネルギー線重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を有するものが挙げられる。なお、以下の説明において、(メタ)アクリロイル基、アリル基等のように、その一部にビニル基又は置換ビニル基を含む官能基と、ビニル基又は置換ビニル基そのものを「ビニル基含有基」と総称する場合がある。
 以下、重合性組成物(x-1’)に含有される各成分について説明する。
The energy ray-polymerizable component contained in the polymerizable composition (x-1′) is a component that polymerizes upon exposure to energy rays, and has an energy ray-polymerizable functional group.
Examples of the energy ray polymerizable functional group include those having a carbon-carbon double bond such as (meth)acryloyl group, vinyl group and allyl group. In the following description, a functional group partially containing a vinyl group or a substituted vinyl group, such as a (meth)acryloyl group or an allyl group, and a vinyl group or a substituted vinyl group itself are referred to as a "vinyl group-containing group." may be collectively referred to as
Each component contained in the polymerizable composition (x-1′) will be described below.
(エネルギー線重合性官能基を有するモノマー(b1))
 エネルギー線重合性官能基を有するモノマー(b1)としては、エネルギー線重合性官能基を有するモノマーであればよく、エネルギー線重合性官能基の他にも、炭化水素基、エネルギー線重合性官能基以外の官能基等を有していてもよい。
(Monomer (b1) having an energy ray-polymerizable functional group)
The monomer having an energy ray-polymerizable functional group (b1) may be a monomer having an energy ray-polymerizable functional group, and in addition to the energy ray-polymerizable functional group, a hydrocarbon group and an energy ray-polymerizable functional group. You may have a functional group etc. other than.
 (b1)成分が有する炭化水素基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、これらを組み合わせた基等が挙げられる。
 脂肪族炭化水素基は、直鎖状又は分岐鎖状の脂肪族炭化水素基であってもよく、脂環式炭化水素基であってもよい。
 直鎖状又は分岐鎖状の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基、イソオクチル基、n-デシル基、n-ドデシル基、n-ミリスチル基、n-パルミチル基、n-ステアリル基等の炭素数1~20の脂肪族炭化水素基が挙げられる。
 脂環式炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、イソボルニル基等の炭素数3~20の脂環式炭化水素基が挙げられる。
 芳香族炭化水素基としては、例えば、フェニル基が挙げられる。
 脂肪族炭化水素基と芳香族炭化水素基とを組み合わせた基としては、例えば、フェノキシエチル基、ベンジル基が挙げられる。
 これらの中でも、(b1)成分は、粘着剤層(X1)の粘着力をより向上させる観点からは、エネルギー線重合性官能基と直鎖状又は分岐鎖状の脂肪族炭化水素基とを有するモノマー(b1-1)(以下、「(b1-1)成分」ともいう)、エネルギー線重合性官能基と脂環式炭化水素基とを有するモノマー(b1-2)(以下、「(b1-2)成分」ともいう)等を含有することが好ましい。
Examples of the hydrocarbon group of the component (b1) include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a combination of these groups, and the like.
The aliphatic hydrocarbon group may be a linear or branched aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
Linear or branched aliphatic hydrocarbon groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, sec-butyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, isooctyl group, n-decyl group, n-dodecyl group, n-myristyl group, n-palmityl group, n-stearyl group, etc. Twenty aliphatic hydrocarbon groups are mentioned.
The alicyclic hydrocarbon group includes, for example, alicyclic hydrocarbon groups having 3 to 20 carbon atoms such as cyclopentyl group, cyclohexyl group and isobornyl group.
Aromatic hydrocarbon groups include, for example, a phenyl group.
Groups in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are combined include, for example, a phenoxyethyl group and a benzyl group.
Among these, the component (b1) has an energy ray-polymerizable functional group and a linear or branched aliphatic hydrocarbon group from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X1). Monomer (b1-1) (hereinafter also referred to as "(b1-1) component"), monomer (b1-2) having an energy ray-polymerizable functional group and an alicyclic hydrocarbon group (hereinafter referred to as "(b1- 2) Also referred to as "component") and the like are preferably contained.
 (b1)成分が、(b1-1)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは20~80質量%、より好ましくは40~70質量%、更に好ましくは50~60質量%である。
 (b1)成分が、(b1-2)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは5~60質量%、より好ましくは10~40質量%、更に好ましくは20~30質量%である。
When component (b1) contains component (b1-1), its content is preferably 20 to 80% by mass, more preferably 40 to 80% by mass, relative to the total (100% by mass) of component (b1) 70% by mass, more preferably 50 to 60% by mass.
When component (b1) contains component (b1-2), its content is preferably 5 to 60% by mass, more preferably 10 to 60% by mass, relative to the total (100% by mass) of component (b1) 40% by mass, more preferably 20 to 30% by mass.
 エネルギー線重合性官能基と、エネルギー線重合性官能基以外の官能基とを有するモノマーとしては、エネルギー線重合性官能基以外の官能基として、例えば、ヒドロキシ基、カルボキシ基、チオール基、1又は2級アミノ基等を有するモノマーが挙げられる。これらの中でも、(b1)成分は、粘着剤層(X1)の形成性をより向上させる観点から、エネルギー線重合性官能基とヒドロキシ基とを有するモノマー(b1-3)(以下、「(b1-3)成分」ともいう)を含有することが好ましい。
 (b1)成分が、(b1-3)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは1~60質量%、より好ましくは5~30質量%、更に好ましくは10~20質量%である。
As the monomer having an energy ray-polymerizable functional group and a functional group other than the energy ray-polymerizable functional group, functional groups other than the energy ray-polymerizable functional group include, for example, a hydroxy group, a carboxyl group, a thiol group, 1 or Examples thereof include monomers having a secondary amino group and the like. Among these, the (b1) component is a monomer (b1-3) having an energy ray-polymerizable functional group and a hydroxy group (hereinafter referred to as "(b1 -3) (also referred to as "component") is preferably contained.
When component (b1) contains component (b1-3), its content is preferably 1 to 60% by mass, more preferably 5 to 60% by mass, relative to the total (100% by mass) of component (b1) 30% by mass, more preferably 10 to 20% by mass.
 (b1)成分が有するエネルギー線重合性官能基の数は1個であってもよく、2個以上であってもよい。また、粘着剤層(X1)の剥離性をより向上させる観点から、(b1)成分は、エネルギー線重合性官能基を3個以上有するモノマー(b1-4)(以下、「(b1-4)成分」ともいう)を含有することが好ましい。
 (b1)成分が、(b1-4)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは1~20質量%、より好ましくは2~15質量%、更に好ましくは3~10質量%である。
The number of energy ray-polymerizable functional groups possessed by the component (b1) may be one, or two or more. Further, from the viewpoint of further improving the peelability of the pressure-sensitive adhesive layer (X1), the component (b1) is a monomer (b1-4) having three or more energy ray-polymerizable functional groups (hereinafter referred to as "(b1-4) (also referred to as "component").
When component (b1) contains component (b1-4), its content is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, more preferably 3 to 10% by mass.
 エネルギー線重合性官能基を1個有するモノマーとしては、1つのビニル基含有基を有するモノマー(以下、「重合性ビニルモノマー」ともいう)が好ましい。
 エネルギー線重合性官能基を2個以上有するモノマーとしては、(メタ)アクリロイル基を2個以上有するモノマー(以下、「多官能(メタ)アクリレートモノマー」ともいう)が好ましい。(b1)成分が上記化合物を含有することで、これらを重合して得られる粘着剤の凝集力が向上し、剥離後の加工品(P)の汚染が少ない粘着剤層(X1)を形成することができる。
As the monomer having one energy ray-polymerizable functional group, a monomer having one vinyl group-containing group (hereinafter also referred to as "polymerizable vinyl monomer") is preferred.
As the monomer having two or more energy ray-polymerizable functional groups, a monomer having two or more (meth)acryloyl groups (hereinafter also referred to as "polyfunctional (meth)acrylate monomer") is preferable. When the component (b1) contains the above compounds, the cohesive force of the adhesive obtained by polymerizing these is improved, and the adhesive layer (X1) with less contamination of the processed product (P) after peeling is formed. be able to.
〔重合性ビニルモノマー〕
 重合性ビニルモノマーとしては、ビニル基含有基を有するものであれば、特に限定されず、従来公知のものを適宜使用することができる。
 重合性ビニルモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
[Polymerizable Vinyl Monomer]
The polymerizable vinyl monomer is not particularly limited as long as it has a vinyl group-containing group, and conventionally known monomers can be appropriately used.
Polymerizable vinyl monomers may be used singly or in combination of two or more.
 重合性ビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレー等の上記(b1-1)成分に該当する化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の上記(b1-2)成分に該当する化合物;フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ポリオキシアルキレン変性(メタ)アクリレート等の分子内にビニル基含有基以外の官能基を有さない(メタ)アクリレート等が挙げられる。これらの中でも、2-エチルヘキシルアクリレート、イソボルニルアクリレートが好ましい。 Examples of polymerizable vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ) acrylate, isooctyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, myristyl (meth)acrylate, palmityl (meth)acrylate, stearyl (meth)acrylate, etc. Compounds; compounds corresponding to the above component (b1-2) such as cyclohexyl (meth)acrylate and isobornyl (meth)acrylate; compounds such as phenoxyethyl (meth)acrylate, benzyl (meth)acrylate, polyoxyalkylene-modified (meth)acrylate, etc. Examples thereof include (meth)acrylates having no functional group other than a vinyl group-containing group in the molecule. Among these, 2-ethylhexyl acrylate and isobornyl acrylate are preferred.
 重合性ビニルモノマーは、分子内にビニル基含有基以外の官能基をさらに有するものであってもよい。当該官能基としては、例えば、ヒドロキシ基、カルボキシ基、チオール基、1又は2級アミノ基等が挙げられる。これらの中でも、上記(b1-3)成分に該当するヒドロキシ基を有する重合性ビニルモノマーが好ましい。
 ヒドロキシ基を有する重合性ビニルモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のヒドロキシ基含有アクリルアミド類等が挙げられる。また、カルボキシ基を有する重合性ビニルモノマーとしては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和カルボン酸等が挙げられる。これらの中でも、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレートが好ましい。
The polymerizable vinyl monomer may further have functional groups other than the vinyl group-containing group in the molecule. Examples of the functional group include a hydroxy group, a carboxyl group, a thiol group, a primary or secondary amino group, and the like. Among these, a polymerizable vinyl monomer having a hydroxy group corresponding to the above component (b1-3) is preferred.
Polymerizable vinyl monomers having a hydroxy group include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 -hydroxyalkyl (meth)acrylates such as hydroxybutyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate; and hydroxy group-containing acrylamides such as N-methylol acrylamide and N-methylol methacrylamide. Examples of polymerizable vinyl monomers having a carboxy group include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and citraconic acid. Among these, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are preferred.
 また、その他の重合性ビニルモノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;スチレン、α-メチルスチレン等のスチレン系単量体;ブタジエン、イソプレン、クロロプレン等のジエン系単量体;アクリロニトリル、メタクリロニトリル等のニトリル系単量体;アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N-メチルメタクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ビニルピロリドン等のアミド系単量体;(メタ)アクリル酸N,N-ジエチルアミノエチル、N-(メタ)アクリロイルモルフォリン等の3級アミノ基含有単量体等が挙げられる。 Examples of other polymerizable vinyl monomers include vinyl esters such as vinyl acetate and vinyl propionate; olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; -Styrenic monomers such as methylstyrene; Diene monomers such as butadiene, isoprene and chloroprene; Acrylonitrile, nitrile monomers such as methacrylonitrile; Acrylamide, methacrylamide, N-methylacrylamide, N-methyl Amide-based monomers such as methacrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, N-vinylpyrrolidone; N,N-diethylaminoethyl (meth)acrylate, N-( Tertiary amino group-containing monomers such as meth)acryloylmorpholine and the like can be mentioned.
〔多官能(メタ)アクリレートモノマー〕
 多官能(メタ)アクリレートモノマーとしては、一分子中に(メタ)アクリロイル基を2つ以上有するモノマーであれば、特に限定されず、従来公知のものを適宜使用することができる。
 多官能(メタ)アクリレートモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
[Polyfunctional (meth)acrylate monomer]
The polyfunctional (meth)acrylate monomer is not particularly limited as long as it is a monomer having two or more (meth)acryloyl groups in one molecule, and conventionally known monomers can be appropriately used.
Polyfunctional (meth)acrylate monomers may be used alone or in combination of two or more.
 多官能(メタ)アクリレートモノマーとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート等の2官能(メタ)アクリレートモノマー;トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ビス(アクリロキシエチル)ヒドロキシエチルイソシアヌレート、イソシアヌル酸エチレンオキサイド変性トリアクリレート、ε―カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の上記(b1-4)成分に該当する多官能(メタ)アクリレートモノマー等が挙げられる。 Polyfunctional (meth)acrylate monomers include, for example, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate. ) acrylate, neopentyl glycol adipate di(meth)acrylate, neopentyl glycol hydroxypivalate di(meth)acrylate, dicyclopentanyl di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, ethylene oxide-modified phosphoric acid Bifunctional (meth)acrylate monomers such as di(meth)acrylate, di(acryloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate, isocyanurate ethylene oxide-modified diacrylate; trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, tris(acryloxyethyl) isocyanurate, Bis (acryloxyethyl) hydroxyethyl isocyanurate, isocyanuric acid ethylene oxide modified triacrylate, ε-caprolactone modified tris (acryloxyethyl) isocyanurate, diglycerin tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, propionic acid Polyfunctional (meth)acrylate monomers corresponding to the above (b1-4) component such as modified dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, caprolactone-modified dipentaerythritol hexa(meth)acrylate, etc. mentioned.
《(b1)成分の含有量》
 重合性組成物(x-1’)中における、重合性ビニルモノマーの合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10~80質量%、より好ましくは30~75質量%、更に好ましくは50~70質量%である。
 重合性組成物(x-1’)中における多官能(メタ)アクリレートモノマーの合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは0.5~15質量%、より好ましくは1~10質量%、更に好ましくは2~5質量%である。
 重合性組成物(x-1’)中における(b1)成分の合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは15~90質量%、より好ましくは35~80質量%、更に好ましくは55~75質量%である。
<<Content of component (b1)>>
The total content of the polymerizable vinyl monomers in the polymerizable composition (x-1') is preferably 10 with respect to the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1'). ~80% by mass, more preferably 30 to 75% by mass, still more preferably 50 to 70% by mass.
The total content of polyfunctional (meth)acrylate monomers in the polymerizable composition (x-1') is preferably based on the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1'). is 0.5 to 15 mass %, more preferably 1 to 10 mass %, still more preferably 2 to 5 mass %.
The total content of the component (b1) in the polymerizable composition (x-1') is preferably 15 to 90% by mass, more preferably 35 to 80% by mass, still more preferably 55 to 75% by mass.
(エネルギー線重合性官能基を有するプレポリマー(b2))
 エネルギー線重合性官能基を有するプレポリマー(b2)としては、エネルギー線重合性官能基を1個有するプレポリマー、エネルギー線重合性官能基を2個以上有するプレポリマー等が挙げられる。これらの中でも、(b2)成分は、剥離性に優れると共に剥離後の加工品(P)の汚染が少ない粘着剤層を形成する観点から、エネルギー線重合性官能基を2個以上有するプレポリマーを含有することが好ましく、エネルギー線重合性官能基を2個有するプレポリマーを含有することがより好ましく、エネルギー線重合性官能基を2個有し、該エネルギー線重合性官能基を両末端に有するプレポリマーを含有することが更に好ましい。
(Prepolymer (b2) having an energy ray-polymerizable functional group)
Examples of the prepolymer (b2) having an energy ray-polymerizable functional group include a prepolymer having one energy ray-polymerizable functional group, a prepolymer having two or more energy ray-polymerizable functional groups, and the like. Among these, the component (b2) is a prepolymer having two or more energy ray-polymerizable functional groups from the viewpoint of forming a pressure-sensitive adhesive layer that has excellent releasability and less contamination of the processed product (P) after delamination. It preferably contains a prepolymer having two energy ray-polymerizable functional groups, more preferably contains two energy ray-polymerizable functional groups, and has the energy ray-polymerizable functional groups at both ends. More preferably it contains a prepolymer.
 (b2)成分としては、エネルギー線重合性官能基として(メタ)アクリロイル基を2個以上有するプレポリマー(以下、「多官能(メタ)アクリレートプレポリマー」ともいう)を含有することが好ましい。(b2)成分が上記化合物を含有することで、これらを重合して得られる粘着剤の凝集力が向上し、剥離性に優れると共に、剥離後の加工品(P)の汚染が少ない粘着剤層(X1)を形成することができる。 The component (b2) preferably contains a prepolymer having two or more (meth)acryloyl groups as energy ray-polymerizable functional groups (hereinafter also referred to as "polyfunctional (meth)acrylate prepolymer"). By containing the above compounds in the component (b2), the cohesive force of the adhesive obtained by polymerizing these is improved, and the adhesive layer has excellent peelability and less contamination of the processed product (P) after peeling. (X1) can be formed.
〔多官能(メタ)アクリレートプレポリマー〕
 多官能(メタ)アクリレートプレポリマーとしては、一分子中に(メタ)アクリロイル基を2つ以上有するプレポリマーであれば、特に限定されず、従来公知のものを適宜使用することができる。
 多官能(メタ)アクリレートプレポリマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
[Polyfunctional (meth)acrylate prepolymer]
The polyfunctional (meth)acrylate prepolymer is not particularly limited as long as it is a prepolymer having two or more (meth)acryloyl groups in one molecule, and conventionally known ones can be appropriately used.
Polyfunctional (meth)acrylate prepolymer may be used alone or in combination of two or more.
 多官能(メタ)アクリレートプレポリマーとしては、例えば、ウレタンアクリレート系プレポリマー、ポリエステルアクリレート系プレポリマー、エポキシアクリレート系プレポリマー、ポリエーテルアクリレート系プレポリマー、ポリブタジエンアクリレート系プレポリマー、シリコーンアクリレート系プレポリマー、ポリアクリルアクリレート系プレポリマー等が挙げられる。 Polyfunctional (meth)acrylate prepolymers include, for example, urethane acrylate prepolymers, polyester acrylate prepolymers, epoxy acrylate prepolymers, polyether acrylate prepolymers, polybutadiene acrylate prepolymers, silicone acrylate prepolymers, A polyacrylic acrylate-based prepolymer and the like are included.
 ウレタンアクリレート系プレポリマーは、例えば、ポリアルキレンポリオール、ポリエーテルポリオール、ポリエステルポリオール、ヒドロキシ基末端を有する水添イソプレン、ヒドロキシ基末端を有する水添ブタジエン等の化合物と、ポリイソシアネートとの反応によって得られるポリウレタンプレポリマーを、(メタ)アクリル酸又は(メタ)アクリル酸誘導体でエステル化することにより得ることができる。 Urethane acrylate prepolymers are obtained by reacting compounds such as polyalkylene polyols, polyether polyols, polyester polyols, hydrogenated isoprene having a terminal hydroxyl group, and hydrogenated butadiene having a terminal hydroxyl group with polyisocyanate. A polyurethane prepolymer can be obtained by esterification with (meth)acrylic acid or a (meth)acrylic acid derivative.
 ウレタンアクリレート系プレポリマーの製造に使用されるポリアルキレンポリオールとしては、例えば、ポリプロピレングリコール、ポリエチレングリコール、ポリブチレングリコール、ポリへキシレングリコール等が挙げられ、これらの中でも、ポリプロピレングリコールが好ましい。なお、得られるウレタンアクリレート系プレポリマーの官能基数を3以上とする場合は、例えば、グリセリン、トリメチロールプロパン、トリエタノールアミン、ペンタエリスリトール、エチレンジアミン、ジエチレントリアミン、ソルビトール、スクロース等を適宜組み合わせればよい。 Examples of polyalkylene polyols used for producing urethane acrylate prepolymers include polypropylene glycol, polyethylene glycol, polybutylene glycol, and polyhexylene glycol, among which polypropylene glycol is preferred. When the number of functional groups of the obtained urethane acrylate prepolymer is 3 or more, for example, glycerin, trimethylolpropane, triethanolamine, pentaerythritol, ethylenediamine, diethylenetriamine, sorbitol, sucrose, etc. may be appropriately combined.
 ウレタンアクリレート系プレポリマーの製造に使用されるポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、トリメチレンジイソシアネート等の脂肪族ジイソシアネート;トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルジイソシアネート等の芳香族ジイソシアネート;ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂環式ジイソシアネート等が挙げられ、これらの中でも、脂肪族ジイソシアネートが好ましく、ヘキサメチレンジイソシアネートがより好ましい。なお、ポリイソシアネートは2官能に限らず、3官能以上のものも用いることができる。 Examples of polyisocyanates used in the production of urethane acrylate prepolymers include aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylene diisocyanate; aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate and diphenyl diisocyanate; and dicyclohexylmethane diisocyanate. and alicyclic diisocyanate such as isophorone diisocyanate. Among these, aliphatic diisocyanate is preferred, and hexamethylene diisocyanate is more preferred. In addition, the polyisocyanate is not limited to bifunctional, and trifunctional or higher functional polyisocyanate can also be used.
 ウレタンアクリレート系プレポリマーの製造に使用される(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート等のヒドロキシアルキル(メタ)アクリレート;2-イソシアネートエチルアクリレート、2-イソシアネートエチルメタクリレート、1,1-ビス(アクリロキシメチル)エチルイソシアネート等が挙げられ、これらの中でも、2-イソシアネートエチルアクリレートが好ましい。 (Meth)acrylic acid derivatives used in the production of urethane acrylate prepolymers include, for example, hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate; Examples include isocyanatoethyl methacrylate, 1,1-bis(acryloxymethyl)ethyl isocyanate, etc. Among these, 2-isocyanatoethyl acrylate is preferred.
 ウレタンアクリレート系プレポリマーの別の製造方法として、ポリアルキレンポリオール、ポリエーテルポリオール、ポリエステルポリオール、ヒドロキシ基末端を有する水添イソプレン、ヒドロキシ基末端を有する水添ブタジエン等の化合物が有するヒドロキシ基と、イソシアネートアルキル(メタ)アクリレートが有する-N=C=O部分とを反応させる方法が挙げられる。この場合、当該イソシアネートアルキル(メタ)アクリレートとしては、例えば、上記の2-イソシアネートエチルアクリレート、2-イソシアネートエチルメタクリレート、1,1-ビス(アクリロキシメチル)エチルイソシアネート等を使用することができる。 As another method for producing a urethane acrylate prepolymer, a hydroxy group possessed by a compound such as a polyalkylene polyol, a polyether polyol, a polyester polyol, a hydrogenated isoprene having a hydroxyl group terminal, a hydrogenated butadiene having a hydroxyl group terminal, and an isocyanate A method of reacting with the —N═C═O portion possessed by the alkyl (meth)acrylate can be exemplified. In this case, as the isocyanate alkyl (meth)acrylate, for example, the above 2-isocyanate ethyl acrylate, 2-isocyanate ethyl methacrylate, 1,1-bis(acryloxymethyl)ethyl isocyanate, etc. can be used.
 ポリエステルアクリレート系プレポリマーは、例えば、多価カルボン酸と多価アルコールとの縮合によって得られる両末端にヒドロキシ基を有するポリエステルプレポリマーのヒドロキシ基を(メタ)アクリル酸でエステル化することにより得ることができる。また、多価カルボン酸にアルキレンオキシドを付加して得られるプレポリマーの末端のヒドロキシ基を(メタ)アクリル酸でエステル化することによっても得ることができる。 The polyester acrylate prepolymer can be obtained, for example, by esterifying the hydroxy groups of a polyester prepolymer having hydroxy groups at both ends thereof with (meth)acrylic acid obtained by condensation of a polycarboxylic acid and a polyhydric alcohol. can be done. It can also be obtained by esterifying the terminal hydroxy group of a prepolymer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth)acrylic acid.
 エポキシアクリレート系プレポリマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等のオキシラン環に、(メタ)アクリル酸を反応させてエステル化することにより得ることができる。また、エポキシアクリレート系プレポリマーを部分的に二塩基性カルボン酸無水物で変性したカルボキシ変性型のエポキシアクリレート系プレポリマーを用いることもできる。 Epoxy acrylate-based prepolymers can be obtained, for example, by reacting (meth)acrylic acid with oxirane rings of relatively low-molecular-weight bisphenol-type epoxy resins, novolac-type epoxy resins, etc. to esterify them. A carboxy-modified epoxy acrylate prepolymer obtained by partially modifying an epoxy acrylate prepolymer with a dibasic carboxylic acid anhydride can also be used.
 ポリエーテルアクリレート系プレポリマーは、例えば、ポリエーテルポリオールのヒドロキシ基を(メタ)アクリル酸でエステル化することにより得ることができる。 A polyether acrylate-based prepolymer can be obtained, for example, by esterifying the hydroxy groups of a polyether polyol with (meth)acrylic acid.
 ポリアクリルアクリレート系プレポリマーは、側鎖にアクリロイル基を有していてもよいし、両末端もしくは片末端にアクリロイル基を有していてもよい。側鎖にアクリロイル基を有するポリアクリルアクリレート系プレポリマーは、例えば、ポリアクリル酸のカルボキシ基にグリシジルメタクリレートを付加させることにより得られる。また、両末端にアクリロイル基を有するポリアクリルアクリレート系プレポリマーは、例えば、ATRP(Atom Transfer Radical Polymerization)法によって合成したポリアクリレートプレポリマーの重合成長末端構造を利用して両末端にアクリロイル基を導入することで得ることができる。 The polyacrylic acrylate-based prepolymer may have acryloyl groups on the side chains, or may have acryloyl groups on both ends or one end. A polyacrylic acrylate-based prepolymer having acryloyl groups in side chains can be obtained, for example, by adding glycidyl methacrylate to the carboxy group of polyacrylic acid. In addition, for polyacrylic acrylate prepolymers having acryloyl groups at both ends, for example, acryloyl groups are introduced at both ends using the polymer growth terminal structure of polyacrylate prepolymers synthesized by the ATRP (Atom Transfer Radical Polymerization) method. can be obtained by doing
 (b2)成分の質量平均分子量(Mw)は、好ましくは10,000~350,000、より好ましくは15,000~200,000、更に好ましくは20,000~50,000である。 The mass average molecular weight (Mw) of component (b2) is preferably 10,000 to 350,000, more preferably 15,000 to 200,000, still more preferably 20,000 to 50,000.
《(b2)成分の含有量》
 重合性組成物(x-1’)中における多官能(メタ)アクリレートプレポリマーの合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10~60質量%、より好ましくは15~55質量%、更に好ましくは20~30質量%である。
 重合性組成物(x-1’)中における(b2)成分の合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10~60質量%、より好ましくは15~55質量%、更に好ましくは20~30質量%である。
<<Content of component (b2)>>
The total content of the polyfunctional (meth)acrylate prepolymer in the polymerizable composition (x-1 ') is based on the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1 '), It is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, still more preferably 20 to 30% by mass.
The total content of the component (b2) in the polymerizable composition (x-1') is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, still more preferably 20 to 30% by mass.
 重合性組成物(x-1’)中における、(b2)成分及び(b1)成分の含有量比〔(b2)/(b1)〕は、質量基準で、好ましくは10/90~70/30、より好ましくは20/80~50/50、更に好ましくは25/75~40/60である。 The content ratio [(b2)/(b1)] of the component (b2) and the component (b1) in the polymerizable composition (x-1′) is preferably 10/90 to 70/30 on a mass basis. , more preferably 20/80 to 50/50, still more preferably 25/75 to 40/60.
 上記のエネルギー線重合性成分の中でも、重合性組成物(x-1’)は、重合性ビニルモノマー、多官能(メタ)アクリレートモノマー及び多官能(メタ)アクリレートプレポリマーを含有することが好ましい。
 重合性組成物(x-1’)が含有するエネルギー線重合性成分中における、重合性ビニルモノマー、多官能(メタ)アクリレートモノマー及び多官能(メタ)アクリレートプレポリマーの合計含有量は、エネルギー線重合性成分の全量(100質量%)に対して、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、より更に好ましくは99質量%以上であり、100質量%であってもよい。
Among the above energy ray-polymerizable components, the polymerizable composition (x-1′) preferably contains a polymerizable vinyl monomer, a polyfunctional (meth)acrylate monomer and a polyfunctional (meth)acrylate prepolymer.
The total content of the polymerizable vinyl monomer, the polyfunctional (meth)acrylate monomer and the polyfunctional (meth)acrylate prepolymer in the energy ray polymerizable component contained in the polymerizable composition (x-1′) is the energy ray With respect to the total amount (100% by mass) of the polymerizable component, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 99% by mass or more, and 100% by mass %.
 重合性組成物(x-1’)中におけるエネルギー線重合性成分の合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは70~98質量%、より好ましくは75~97質量%、更に好ましくは80~96質量%、より更に好ましくは82~95質量%である。 The total content of the energy ray-polymerizable components in the polymerizable composition (x-1′) is preferably 70 with respect to the total amount (100% by mass) of the active ingredients in the polymerizable composition (x-1′). ~98% by mass, more preferably 75 to 97% by mass, still more preferably 80 to 96% by mass, still more preferably 82 to 95% by mass.
(その他の成分)
 重合性組成物(x-1’)は、エネルギー線重合性成分及び熱膨張性粒子以外のその他の成分を含有していてもよい。
 上記その他の成分としては、光重合開始剤、粘着付与剤、上記各成分以外の一般的な粘着剤に使用される粘着剤用添加剤等が挙げられる。
 これらの成分は、第1の態様の両面粘着シートで説明したものと同じものが挙げられる。
(other ingredients)
The polymerizable composition (x-1') may contain components other than the energy ray-polymerizable component and the thermally expandable particles.
Examples of the above-mentioned other components include photopolymerization initiators, tackifiers, additives for pressure-sensitive adhesives used in general pressure-sensitive adhesives other than the above components, and the like.
These components are the same as those explained in the double-sided pressure-sensitive adhesive sheet of the first aspect.
 なお、重合性組成物(x-1’)は、本発明の目的に反しない範囲で、希釈剤等の溶剤を含有していてもよいが、溶剤を含有しないことが好ましい。すなわち、重合性組成物(x-1’)は、無溶剤型重合性組成物であることが好ましい。
 重合性組成物(x-1’)が無溶剤型重合性組成物であることによって、粘着剤層(X1)を形成する際に、溶剤の加熱乾燥を省略することができるため、加熱乾燥時における熱膨張性粒子の膨張を抑制することができる。
 重合性組成物(x-1’)が溶剤を含有する場合、その含有量は少ないほど好ましく、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10質量%以下、より好ましくは1質量%以下、更に好ましくは0.1質量%以下、より更に好ましくは0.01質量%以下である。
The polymerizable composition (x-1′) may contain a solvent such as a diluent within the scope of the object of the present invention, but preferably does not contain a solvent. That is, the polymerizable composition (x-1') is preferably a solventless polymerizable composition.
Since the polymerizable composition (x-1 ') is a solvent-free polymerizable composition, when forming the pressure-sensitive adhesive layer (X1), the heat drying of the solvent can be omitted. can suppress the expansion of the thermally expandable particles in the
When the polymerizable composition (x-1 ') contains a solvent, the content is preferably as small as possible, relative to the total amount (100% by mass) of the active ingredients of the polymerizable composition (x-1 '), preferably is 10% by mass or less, more preferably 1% by mass or less, still more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
 重合性組成物(x-1’)は、エネルギー線重合性成分、熱膨張性粒子、及び必要に応じて含有されるその他の成分を混合することで製造することができる。得られる重合性組成物(x-1’)は、その後のエネルギー線重合によって高分子量化させるものであるため、層を形成する際には、低分子量のエネルギー線重合性成分により適度な粘度に調整可能である。そのため重合性組成物(x-1’)は、希釈剤等の溶剤を添加することなく、そのまま塗布溶液として粘着剤層(X1)の形成に使用することができる。
 なお、重合性組成物(x-1’)にエネルギー線を照射して形成される粘着剤層(X1)には、エネルギー線重合性成分が重合してなる多種多様の重合体と、該重合体中に分散する熱膨張性粒子が含まれるが、これらを構造及び物性で直接特定することは、不可能であるか、またはおよそ実際的ではないという事情が存在する。
The polymerizable composition (x-1') can be produced by mixing the energy ray-polymerizable component, thermally expandable particles, and optionally other components. Since the resulting polymerizable composition (x-1′) is to have a high molecular weight by the subsequent energy beam polymerization, when forming a layer, the low molecular weight energy beam polymerizable component is used to achieve an appropriate viscosity. Adjustable. Therefore, the polymerizable composition (x-1') can be used as it is as a coating solution for forming the pressure-sensitive adhesive layer (X1) without adding a solvent such as a diluent.
The pressure-sensitive adhesive layer (X1) formed by irradiating the polymerizable composition (x-1′) with an energy ray includes a wide variety of polymers obtained by polymerizing the energy ray-polymerizable component and the polymer. Circumstances exist in which thermally expandable particles dispersed during coalescence are involved, but it is not possible or even nearly impractical to directly characterize them by structure and physical properties.
(粘着剤層(X1)の粘着力)
 第2の態様の両面粘着シートにおける粘着剤層(X1)の熱膨張前の粘着力及び熱膨張後の粘着力についての説明は、第1の態様の両面粘着シートの説明における、熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力及び熱膨張性基材層(Y1)を熱膨張させた後の粘着剤層(X1)の粘着力についての説明と同じである。
(Adhesive strength of adhesive layer (X1))
The adhesive strength before thermal expansion and the adhesive strength after thermal expansion of the pressure-sensitive adhesive layer (X1) in the double-sided pressure-sensitive adhesive sheet of the second aspect are the same as in the description of the double-sided pressure-sensitive adhesive sheet of the first aspect. Description of the adhesive strength of the adhesive layer (X1) before thermally expanding the material layer (Y1) and the adhesive strength of the adhesive layer (X1) after thermally expanding the thermally expandable base layer (Y1) are the same.
(粘着剤層(X1)の厚さ)
 第2の態様の両面粘着シートが有する粘着剤層(X1)の熱膨張前の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは25~120μmである。
 粘着剤層(X1)の熱膨張前の厚さが10μm以上であれば、十分な粘着力が得られ易くなり、仮固定時における支持体(S)からの意図しない剥離を抑制し、加工対象物(W)の位置ズレ等を抑制できる傾向にある。一方、粘着剤層(X1)の熱膨張前の厚さが200μm以下であれば、加熱剥離時の剥離性が向上すると共に、加熱剥離時に両面粘着シートがカールすることを抑制し、取り扱い性を向上できる傾向にある。
(Thickness of adhesive layer (X1))
The thickness of the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the second aspect before thermal expansion is preferably 10 to 200 μm, more preferably 20 to 150 μm, still more preferably 25 to 120 μm.
If the thickness of the pressure-sensitive adhesive layer (X1) before thermal expansion is 10 μm or more, sufficient adhesive strength is easily obtained, unintended peeling from the support (S) during temporary fixing is suppressed, and the target to be processed is It tends to be possible to suppress the positional deviation of the object (W). On the other hand, if the thickness of the pressure-sensitive adhesive layer (X1) before thermal expansion is 200 μm or less, the peelability during heat peeling is improved, and the double-sided pressure-sensitive adhesive sheet is prevented from curling during heat peeling, thereby improving handling properties. It tends to improve.
<第2の態様の両面粘着シートの製造方法>
 第2の態様の両面粘着シートの製造方法は、粘着剤層(X1)を形成する方法が、前記エネルギー線重合性成分及び前記熱膨張性粒子を含有する重合性組成物(x-1’)にエネルギー線を照射して、前記エネルギー線重合性成分の重合体を形成する工程を含む、両面粘着シートの製造方法であることが好ましく、具体的には、下記工程(1b)~(3b)を含む製造方法であることがより好ましい。
 工程(1b):基材の一方の面側に、重合性組成物(x-1’)からなる重合性組成物層を形成する工程
 工程(2b):前記重合性組成物層にエネルギー線を照射することにより、前記エネルギー線重合性成分の重合体を形成し、基材層(Y)の一方の面側に、該重合体と前記熱膨張性粒子とを含有する粘着剤層(X1)を形成する工程
 工程(3b):基材層(Y)の他方の面側に粘着剤層(X2)を形成する工程
<Method for producing the double-sided pressure-sensitive adhesive sheet of the second aspect>
In the method for producing a double-sided pressure-sensitive adhesive sheet of the second aspect, the method for forming the pressure-sensitive adhesive layer (X1) is the polymerizable composition (x-1′) containing the energy ray-polymerizable component and the thermally expandable particles. It is preferable that the method for producing a double-sided pressure-sensitive adhesive sheet includes a step of irradiating an energy beam to form a polymer of the energy beam-polymerizable component, specifically, the following steps (1b) to (3b). It is more preferable that the manufacturing method includes
Step (1b): Step of forming a polymerizable composition layer composed of the polymerizable composition (x-1′) on one side of the base material Step (2b): Applying an energy ray to the polymerizable composition layer A pressure-sensitive adhesive layer (X1) formed by irradiation to form a polymer of the energy ray-polymerizable component and containing the polymer and the thermally expandable particles on one side of the substrate layer (Y) Step (3b): Step of forming an adhesive layer (X2) on the other surface side of the base layer (Y)
 工程(1b)としては、例えば、剥離材の剥離処理面上に重合性組成物(x-1’)を塗布して重合性組成物層を形成し、該重合性組成物層に対して、第一のエネルギー線照射を行い、重合性組成物層中のエネルギー線重合性成分を予備重合させてから、予備重合後の重合性組成物層に基材を貼付する方法が挙げられる。
 なお、重合性組成物(x-1’)は上記した通り、無溶剤型重合性組成物であることが好ましい。重合性組成物(x-1’)が無溶剤型重合性組成物である場合、本工程において溶剤の加熱乾燥工程を実施しなくてもよく、熱膨張性粒子の膨張を抑制することができる。
As the step (1b), for example, the polymerizable composition (x-1′) is applied onto the release-treated surface of the release material to form a polymerizable composition layer, and the polymerizable composition layer is: A method of applying a first energy ray to prepolymerize the energy ray-polymerizable component in the polymerizable composition layer and then attaching a substrate to the polymerizable composition layer after prepolymerization can be used.
As described above, the polymerizable composition (x-1') is preferably a solventless polymerizable composition. When the polymerizable composition (x-1′) is a solvent-free polymerizable composition, the step of drying the solvent by heating may not be performed in this step, and expansion of the thermally expandable particles can be suppressed. .
 工程(2b)は、工程(1b)で形成した重合性組成物層にエネルギー線を照射することにより、エネルギー線重合性成分の重合体を形成し、該重合体と熱膨張性粒子とを含有する粘着剤層(X1)を形成する工程である。
 ここで、工程(1b)において第一のエネルギー線照射を行う場合、工程(2b)におけるエネルギー線照射は、予備重合後の重合性組成物層に対して行う第二のエネルギー線照射となる。
 工程(2b)のエネルギー線照射は、第一のエネルギー線照射とは異なり、さらにエネルギー線を照射しても、実質的にエネルギー線重合性成分の重合が進行しない程度まで行うことが好ましい。工程(2b)のエネルギー線照射によって、エネルギー線重合性成分の重合が進行し、粘着剤層(X1)を構成するエネルギー線重合性成分の重合体が形成される。
The step (2b) comprises irradiating the polymerizable composition layer formed in the step (1b) with an energy ray to form a polymer of the energy ray-polymerizable component, and containing the polymer and thermally expandable particles. This is a step of forming the pressure-sensitive adhesive layer (X1) to be applied.
Here, when the first energy beam irradiation is performed in step (1b), the energy beam irradiation in step (2b) is the second energy beam irradiation performed on the polymerizable composition layer after prepolymerization.
Unlike the first energy ray irradiation, the energy ray irradiation in step (2b) is preferably carried out to such an extent that the energy ray-polymerizable component does not substantially proceed with the polymerization even if the energy ray is further irradiated. By the energy ray irradiation in step (2b), polymerization of the energy ray-polymerizable component proceeds to form a polymer of the energy ray-polymerizable component that constitutes the pressure-sensitive adhesive layer (X1).
 工程(3b)としては、剥離材の一方の面に粘着剤組成物(x-2)を塗布して粘着剤層(X2)を形成し、該粘着剤層(X2)を基材層(Y)の他方の面側に貼付する方法が挙げられる。 In step (3b), the pressure-sensitive adhesive composition (x-2) is applied to one surface of the release material to form the pressure-sensitive adhesive layer (X2), and the pressure-sensitive adhesive layer (X2) is applied to the base layer (Y ) can be attached to the other surface side.
 上記した工程(1b)及び(2b)に含まれるいずれの工程においても、熱膨張性粒子の膨張を抑制する観点から、重合性組成物を加熱する工程を含まないことが好ましい。
 なお、ここでの「加熱」とは、例えば、乾燥、ラミネート時等において意図的に加熱することを意味し、エネルギー線照射によって重合性組成物に付与される熱、エネルギー線重合性組成物の重合によって発生する重合熱等による温度上昇は含めないものとする。
From the viewpoint of suppressing the expansion of the thermally expandable particles, it is preferable that none of the steps included in the steps (1b) and (2b) includes a step of heating the polymerizable composition.
Here, "heating" means intentionally heating, for example, during drying, lamination, etc., and the heat given to the polymerizable composition by energy beam irradiation, the energy beam polymerizable composition A temperature rise due to heat of polymerization or the like generated by polymerization is not included.
<剥離材>
 本発明の一態様の両面粘着シートが有していてもよい剥離材としては、両面剥離処理をされた剥離シート、片面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
 剥離材用の基材としては、例えば、プラスチックフィルム、紙類等が挙げられる。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム;ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等が挙げられ、紙類としては、例えば、上質紙、グラシン紙、クラフト紙等が挙げられる。
<Release material>
As the release material that the double-sided pressure-sensitive adhesive sheet of one embodiment of the present invention may have, a release sheet subjected to double-sided release treatment, a release sheet subjected to single-sided release treatment, or the like is used. Examples include those to which a release agent is applied.
Base materials for the release material include, for example, plastic films and papers. Examples of plastic films include polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; olefin resin films such as polypropylene resin and polyethylene resin; , glassine paper, kraft paper, and the like.
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー;長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。剥離剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of release agents include rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins; long-chain alkyl-based resins, alkyd-based resins, fluorine-based resins, and the like. The release agent may be used alone or in combination of two or more.
 剥離材の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは35~80μmである。 The thickness of the release material is preferably 10-200 μm, more preferably 20-150 μm, still more preferably 35-80 μm.
[半導体装置の製造方法の各工程]
 次に、本発明の一態様である半導体装置の製造方法が含む各工程について、図面を参照しながら順に説明する。なお、以下の説明では、加工対象物(W)として半導体ウエハを用いる場合の例を主に説明するが、他の加工対象物の場合も同様である。
[Each step of the method for manufacturing a semiconductor device]
Next, each step included in the method for manufacturing a semiconductor device which is one embodiment of the present invention will be described in order with reference to the drawings. In the following description, an example in which a semiconductor wafer is used as the object to be processed (W) will be mainly described, but the same applies to other objects to be processed.
<工程1>
 工程1は、両面粘着シートが有する粘着剤層(X2)に加工対象物(W)を貼付し、両面粘着シートが有する粘着剤層(X1)に支持体(S)を貼付する工程である。
 図3には、両面粘着シート1aが有する粘着剤層(X2)に半導体ウエハWを貼付し、粘着剤層(X1)に支持体(S)を貼付する工程を説明する断面図が示されている。
 半導体ウエハWは、回路面である表面Wβが粘着剤層(X2)側になるように貼付される。
 半導体ウエハWは、シリコンウエハであってもよく、ガリウム砒素、炭化ケイ素、サファイア、タンタル酸リチウム、ニオブ酸リチウム、窒化ガリウム、インジウム燐等のウエハ、ガラスウエハであってもよい。
 半導体ウエハWの研削前の厚さは、通常は500~1,000μmである。
 半導体ウエハWの表面Wβが有する回路は、例えば、エッチング法、リフトオフ法等の従来汎用されている方法によって形成することができる。
<Step 1>
Step 1 is a step of attaching the workpiece (W) to the adhesive layer (X2) of the double-sided adhesive sheet, and attaching the support (S) to the adhesive layer (X1) of the double-sided adhesive sheet.
FIG. 3 shows a cross-sectional view for explaining the steps of attaching the semiconductor wafer W to the adhesive layer (X2) of the double-sided adhesive sheet 1a and attaching the support (S) to the adhesive layer (X1). there is
The semiconductor wafer W is attached such that the front surface Wβ, which is the circuit surface, faces the adhesive layer (X2).
The semiconductor wafer W may be a silicon wafer, a wafer of gallium arsenide, silicon carbide, sapphire, lithium tantalate, lithium niobate, gallium nitride, indium phosphide, or the like, or a glass wafer.
The thickness of the semiconductor wafer W before grinding is usually 500 to 1,000 μm.
The circuit on the surface Wβ of the semiconductor wafer W can be formed by conventional methods such as etching and lift-off.
 支持体(S)の材質は、加工対象物の種類、加工内容等に応じて、機械強度、耐熱性等の要求される特性を考慮の上、適宜選択すればよい。
 支持体(S)の材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、シリコンウエハが好ましい。
 上記エンジニアリングプラスチックとしては、例えば、ナイロン、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)等が挙げられる。
 上記スーパーエンジニアリングプラスチックとしては、例えば、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)等が挙げられる。
The material of the support (S) may be appropriately selected according to the type of object to be processed, details of processing, etc., taking into consideration the required properties such as mechanical strength and heat resistance.
Materials for the support (S) include, for example, metallic materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, and polyamideimide. Resin materials such as resins; composite materials such as glass epoxy resins; among others, SUS, glass, and silicon wafers are preferable.
Examples of the engineering plastic include nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
Examples of the super engineering plastics include polyphenylene sulfide (PPS), polyethersulfone (PES), polyetheretherketone (PEEK), and the like.
 支持体(S)は、粘着剤層(X1)の粘着表面の全面に貼付されることが好ましい。そのため、粘着剤層(X1)の粘着表面に貼付される側の支持体(S)の面の面積は、粘着剤層(X1)の粘着表面の面積以上であることが好ましい。また、粘着剤層(X1)の粘着表面に貼付される側の支持体(S)の面は平面状であることが好ましい。
 支持体(S)の形状は、特に限定されないが、板状であることが好ましい。
 支持体(S)の厚さは、要求される特性を考慮して適宜選択すればよいが、好ましくは20μm以上50mm以下、より好ましくは60μm以上20mm以下である。
The support (S) is preferably attached to the entire adhesive surface of the adhesive layer (X1). Therefore, the area of the surface of the support (S) that is attached to the adhesive surface of the adhesive layer (X1) is preferably equal to or greater than the area of the adhesive surface of the adhesive layer (X1). Further, the surface of the support (S) on the side to be attached to the adhesive surface of the adhesive layer (X1) is preferably planar.
Although the shape of the support (S) is not particularly limited, it is preferably plate-like.
The thickness of the support (S) may be appropriately selected in consideration of required properties, but is preferably 20 μm to 50 mm, more preferably 60 μm to 20 mm.
<工程2>
 工程2は、前記加工対象物(W)の、前記粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程である。
<Step 2>
Step 2 is selected from applying a semiconductor adhesive and attaching a semiconductor film to the surface (Wα) of the object (W) opposite to the adhesive layer (X2) 1 This is a step of obtaining a processed product (P) by performing the above processing.
 工程2は、下記工程2-1及び工程2-2を含むことが好ましい。
 工程2-1:加工対象物(W)に対して、研削処理及び個片化処理から選択される1以上の加工処理を施す工程
 工程2-2:前記加工処理を施した加工対象物(W)の、粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程
Step 2 preferably includes steps 2-1 and 2-2 below.
Step 2-1: A step of subjecting the object to be processed (W) to one or more processing treatments selected from grinding treatment and singulation treatment Step 2-2: The object to be processed (W ), the surface (Wα) opposite to the adhesive layer (X2) is subjected to one or more processes selected from application of a semiconductor adhesive and application of a semiconductor film to obtain a processed product (P )
(工程2-1)
 工程2-1は、加工対象物(W)に対して、研削処理及び個片化処理から選択される1以上の加工処理を施す工程である。
 研削処理及び個片化処理から選択される1以上の加工処理としては、例えば、グラインダー等を用いる研削処理;ブレードダイシング法、レーザーダイシング法、ステルスダイシング(登録商標)法、ブレード先ダイシング法、ステルス先ダイシング法等による個片化処理が挙げられる。
 これらの中でも、ステルスダイシング法による個片化処理、ブレード先ダイシング法による研削処理及び個片化処理、ステルス先ダイシング法による研削処理及び個片化処理が好適であり、ブレード先ダイシング法による研削処理及び個片化処理、ステルス先ダイシング法による研削処理及び個片化処理がより好適である。
(Step 2-1)
Step 2-1 is a step of subjecting the workpiece (W) to one or more processing processes selected from grinding and singulation.
One or more processing treatments selected from grinding treatment and singulation treatment include, for example, grinding treatment using a grinder; blade dicing method, laser dicing method, stealth dicing (registered trademark) method, blade tip dicing method, stealth Singulation processing by a pre-dicing method or the like can be mentioned.
Among these, singulation processing by the stealth dicing method, grinding processing and singulation processing by the blade tip dicing method, grinding processing and singulation processing by the stealth tip dicing method are preferable, and grinding processing by the blade tip dicing method and singulation processing, grinding processing and singulation processing by the stealth tip dicing method are more preferable.
 ステルスダイシング法は、レーザー光の照射により半導体ウエハの内部に改質領域を形成し、該改質領域を分割起点として、半導体ウエハを個片化する方法である。半導体ウエハに形成された改質領域は多光子吸収によって脆質化された部分であり、半導体ウエハがエキスパンドによりウエハ面と平行かつウエハが拡張される方向に応力がかかることにより、該改質領域を起点として半導体ウエハの表面及び裏面に向けて亀裂が伸展することで半導体チップに個片化される。すなわち、改質領域は、個片化される際の分割線に沿って形成される。
 改質領域は、半導体ウエハの内部に焦点を合わせたレーザー光の照射によって半導体ウエハの内部に形成される。レーザー光の入射面は、半導体ウエハの表面であっても裏面であってもよい。また、レーザー光入射面は、両面粘着シートが貼付された面であってもよく、その場合、レーザー光は両面粘着シートを介して半導体ウエハに照射される。
The stealth dicing method is a method in which a modified region is formed inside a semiconductor wafer by irradiating a laser beam, and the semiconductor wafer is singulated using the modified region as a division starting point. The modified region formed in the semiconductor wafer is a portion embrittled by multiphoton absorption, and stress is applied to the semiconductor wafer in the direction parallel to the wafer surface and in the direction in which the wafer is expanded by expanding the modified region. The crack extends toward the front surface and the back surface of the semiconductor wafer from the starting point, thereby singulating into semiconductor chips. That is, the modified regions are formed along the parting lines when singulated.
The modified region is formed inside the semiconductor wafer by irradiating laser light focused on the inside of the semiconductor wafer. The incident surface of the laser beam may be the front surface or the back surface of the semiconductor wafer. Also, the laser beam incident surface may be a surface to which a double-sided adhesive sheet is attached, in which case the semiconductor wafer is irradiated with the laser beam via the double-sided adhesive sheet.
 ブレード先ダイシング法は、DBG法(Dicing Before Grinding)とも呼ばれる。ブレード先ダイシング法は、分割予定のラインに沿って、予め半導体ウエハにその厚さより浅い深さで溝を形成した後、該半導体ウエハを、研削面が少なくとも溝に到達するまで裏面研削して薄化させつつ個片化する方法である。研削面が到達した溝は、半導体ウエハを貫通する切り込みとなり、半導体ウエハは該切り込みにより分割されて半導体チップに個片化される。予め形成される溝は、通常は半導体ウエハの表面(回路面)に設けられるものであり、例えば、従来公知の、ダイシングブレードを備えるウエハダイシング装置等を用いたダイシングにより形成することができる。 The blade tip dicing method is also called the DBG method (Dicing Before Grinding). In the blade-tip dicing method, grooves are formed in advance in a semiconductor wafer to a depth shallower than the thickness of the semiconductor wafer along lines to be divided, and then the semiconductor wafer is ground back until the ground surface reaches at least the grooves. It is a method of individualizing while separating. The grooves reached by the ground surface form cuts penetrating the semiconductor wafer, and the semiconductor wafer is divided by the cuts into individual semiconductor chips. The grooves formed in advance are usually provided on the surface (circuit surface) of the semiconductor wafer, and can be formed, for example, by dicing using a conventionally known wafer dicing apparatus equipped with a dicing blade.
 ステルス先ダイシング法は、SDBG法(Stealth Dicing Before Grinding)とも呼ばれる。ステルス先ダイシング法は、ステルスダイシング法と同様、レーザー光の照射により半導体ウエハの内部に改質領域を形成し、該改質領域を分割起点として、半導体ウエハを個片化する方法の一種であるが、研削処理を行って半導体ウエハを薄化させつつ半導体ウエハを半導体チップに個片化する点がステルスダイシング法とは異なる。具体的には、改質領域を有する半導体ウエハを裏面研削して薄化させつつ、その際に半導体ウエハにかかる圧力によって該改質領域を起点として半導体ウエハの粘着剤層との貼付面に向けて亀裂を伸展させ、半導体ウエハを半導体チップに個片化する。
 なお、改質領域を形成した後の研削厚さは、改質領域に至る厚さであってもよいが、厳密に改質領域にまで至らなくても、改質領域に近接する位置まで研削して研削砥石等の加工圧力で割断させてもよい。
 SDBGプロセスで個片化された半導体チップは、相互に接触した状態となっており、振動によって外縁部が細かく欠ける所謂チッピング現象を起こしやすい。そのため、支持体(S)に対して強固に固定することで振動を抑制することができる本発明の一態様の半導体装置の製造方法は、特にSDBG法に適している。
The stealth dicing method is also called the SDBG method (Stealth Dicing Before Grinding). Like the stealth dicing method, the stealth dicing method is a type of method in which a modified region is formed inside a semiconductor wafer by irradiation with a laser beam, and the semiconductor wafer is singulated using the modified region as a starting point for division. However, it differs from the stealth dicing method in that the semiconductor wafer is divided into semiconductor chips while being thinned by grinding. Specifically, while thinning the semiconductor wafer having the modified region by back grinding, the pressure applied to the semiconductor wafer at that time is applied to the surface of the semiconductor wafer to be attached to the adhesive layer with the modified region as a starting point. to extend the cracks and singulate the semiconductor wafer into semiconductor chips.
In addition, the grinding thickness after forming the modified region may be a thickness that reaches the modified region. Then, it may be cleaved by a processing pressure such as a grinding wheel.
Semiconductor chips separated into individual pieces by the SDBG process are in a state of being in contact with each other, and are likely to cause a so-called chipping phenomenon in which the outer edge is chipped finely due to vibration. Therefore, the method for manufacturing a semiconductor device according to one embodiment of the present invention, in which vibration can be suppressed by being firmly fixed to the support (S), is particularly suitable for the SDBG method.
 半導体ウエハWをブレード先ダイシング法によって個片化する場合、工程1で粘着剤層(X2)に貼付する半導体ウエハWの表面Wβには、予め溝を形成しておくことが好ましい。
 一方、半導体ウエハWをステルス先ダイシング法によって個片化する場合は、工程1で粘着剤層(X2)に貼付する半導体ウエハWに対してレーザー光を照射して予め改質領域を形成しておいてもよいし、粘着剤層(X2)に貼付されている半導体ウエハWに対してレーザー光を照射して改質領域を形成してもよい。
When the semiconductor wafer W is diced by the blade tip dicing method, it is preferable to previously form grooves on the surface Wβ of the semiconductor wafer W to be adhered to the adhesive layer (X2) in step 1 .
On the other hand, when the semiconductor wafer W is singulated by the stealth dicing method, the semiconductor wafer W attached to the adhesive layer (X2) in step 1 is irradiated with a laser beam to form a modified region in advance. Alternatively, the modified region may be formed by irradiating the semiconductor wafer W attached to the adhesive layer (X2) with a laser beam.
 図4には、粘着剤層(X2)に貼付した半導体ウエハWに対して、レーザー光照射装置3を用いて複数の改質領域4を形成する工程を説明する断面図が示されている。
 レーザー光は半導体ウエハWの裏面Wα側から照射され、半導体ウエハWの内部に複数の改質領域4が略等間隔に形成されている。
FIG. 4 shows a cross-sectional view for explaining the process of forming a plurality of modified regions 4 on the semiconductor wafer W adhered to the adhesive layer (X2) using the laser beam irradiation device 3. As shown in FIG.
A laser beam is irradiated from the back surface Wα side of the semiconductor wafer W, and a plurality of modified regions 4 are formed inside the semiconductor wafer W at substantially equal intervals.
 図5(a)及び(b)には、半導体ウエハWを薄化させつつ複数の半導体チップCPに個片化する工程を説明する断面図が示されている。
 図5(a)に示されるように、改質領域4を形成した半導体ウエハWの裏面Wαをグラインダー5によって研削し、その際、半導体ウエハWにかかる圧力により改質領域4を起点とする割断を生じさせる。これにより、図5(b)に示されるように、半導体ウエハWが薄化及び個片化された複数の半導体チップCPが得られる。
 改質領域4が形成された半導体ウエハWは、例えば、該半導体ウエハWを支持している支持体(S)をチャックテーブル等の固定テーブル上に固定した状態で、その裏面Wαが研削される。
5(a) and 5(b) show cross-sectional views for explaining the process of separating the semiconductor wafer W into a plurality of semiconductor chips CP while thinning it.
As shown in FIG. 5A, the rear surface Wα of the semiconductor wafer W on which the modified region 4 is formed is ground by a grinder 5. At this time, the pressure applied to the semiconductor wafer W causes the modified region 4 to be a starting point. give rise to As a result, as shown in FIG. 5B, a plurality of semiconductor chips CP obtained by thinning and singulating the semiconductor wafer W are obtained.
The back surface Wα of the semiconductor wafer W formed with the modified region 4 is ground while the support (S) supporting the semiconductor wafer W is fixed on a fixed table such as a chuck table. .
 研削後の半導体チップCPの厚さは、好ましくは5~100μm、より好ましくは10~45μmである。また、ステルス先ダイシング法によって研削処理及び個片化処理を行う場合、研削されて得られた半導体チップCPの厚さを50μm以下、より好ましくは10~45μmとすることが容易になる。
 研削後の半導体チップCPの平面視における大きさは、好ましくは600mm未満、より好ましくは400mm未満、更に好ましくは300mm未満である。なお、平面視とは厚さ方向に見ることをいう。
 個片化後の半導体チップCPの平面視における形状は、方形であってもよく、矩形等の細長形状であってもよい。
The thickness of the semiconductor chip CP after grinding is preferably 5 to 100 μm, more preferably 10 to 45 μm. Further, when the grinding process and the singulation process are performed by the stealth dicing method, the thickness of the semiconductor chip CP obtained by grinding can be easily set to 50 μm or less, more preferably 10 to 45 μm.
The size of the semiconductor chip CP after grinding in plan view is preferably less than 600 mm 2 , more preferably less than 400 mm 2 , and even more preferably less than 300 mm 2 . In addition, planar view means seeing in a thickness direction.
The shape of the semiconductor chip CP after singulation in plan view may be a square or an elongated shape such as a rectangle.
(工程2-2)
 工程2-2は、前記加工処理を施した加工対象物(W)の、粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程である。
(Step 2-2)
In step 2-2, a semiconductor adhesive is applied and a semiconductor film is applied to the surface (Wα) opposite to the adhesive layer (X2) of the object (W) subjected to the processing treatment. This is a step of obtaining a processed product (P) by applying one or more processes selected from lamination.
 本工程において、加工対象物(W)に貼付する半導体用フィルムとしては、例えば、熱硬化性フィルム、粘着シート等が挙げられる。
 熱硬化性フィルムとしては、例えば、半導体チップを基板に実装するためのダイアタッチフィルムが挙げられる。
 粘着シートとしては、例えば、半導体ウエハ等の加工対象物(W)をダイシングする際に用いられるダイシングシート、ダイシングによって個片化された半導体チップ等の加工対象物(W)同士の距離を拡大させるために用いられるエキスパンドテープ、半導体チップ等の加工対象物(W)の表裏を反転させるために用いられる転写テープ、検査対象物を検査するために仮固定するのに用いられる仮固定用シート等が挙げられる。
 また、加工対象物(W)に塗布する半導体用接着剤としては、半導体チップを基板に実装する目的で使用されるダイアタッチペースト等が挙げられる。
 これらの中でも、本発明の加工品(P)の熱変化を抑制するという効果を十分に発揮できるという観点から、加工対象物(W)に塗布する半導体用接着剤はダイアタッチペースト等の熱硬化性ペーストであることが好ましく、加工対象物(W)に貼付する半導体用フィルムはダイアタッチフィルム等の熱硬化性フィルムであることが好ましい。
 以下では、加工対象物(W)の粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用フィルムとして、熱硬化性フィルムを貼付する態様について説明する。
In this step, examples of the semiconductor film to be attached to the object (W) include a thermosetting film and an adhesive sheet.
Thermosetting films include, for example, die attach films for mounting semiconductor chips on substrates.
As the adhesive sheet, for example, a dicing sheet used when dicing an object (W) such as a semiconductor wafer, or a dicing sheet that enlarges the distance between the objects (W) such as semiconductor chips separated into individual pieces by dicing. Expanding tape used for this purpose, transfer tape used for reversing the front and back of the workpiece (W) such as a semiconductor chip, temporary fixing sheet used for temporarily fixing the inspection object for inspection, etc. mentioned.
Moreover, examples of the semiconductor adhesive applied to the workpiece (W) include a die attach paste used for the purpose of mounting a semiconductor chip on a substrate.
Among these, from the viewpoint that the effect of suppressing thermal change of the processed product (P) of the present invention can be sufficiently exhibited, the semiconductor adhesive applied to the processed object (W) is a thermosetting adhesive such as a die attach paste. It is preferable that the paste is a flexible paste, and the semiconductor film to be attached to the workpiece (W) is preferably a thermosetting film such as a die attach film.
In the following, a mode of attaching a thermosetting film as a semiconductor film to the surface (Wα) of the object (W) opposite to the pressure-sensitive adhesive layer (X2) will be described.
 図6には、前記加工処理を施して得られた複数の半導体チップCPの、粘着剤層(X2)とは反対側の面Wαに対して、支持シート7を備える熱硬化性フィルム6を貼付して、加工品(P)として、支持シート7を備える熱硬化性フィルム6が貼付された半導体チップCPを得る工程を説明する断面図が示されている。 In FIG. 6, a thermosetting film 6 provided with a support sheet 7 is attached to the surface Wα of the plurality of semiconductor chips CP obtained by performing the above-described processing, on the side opposite to the adhesive layer (X2). Then, a cross-sectional view for explaining a process of obtaining a semiconductor chip CP to which a thermosetting film 6 having a support sheet 7 is attached as a processed product (P) is shown.
 熱硬化性フィルム6は、少なくとも熱硬化性樹脂を含有する樹脂組成物を製膜して得られる熱硬化性を有するフィルムであり、半導体チップCPを基板に実装する際の接着剤として用いられる。熱硬化性フィルム6は、必要に応じて、上記熱硬化性樹脂の硬化剤、熱可塑性樹脂、無機充填材、硬化促進剤等を含有していてもよい。
 熱硬化性フィルム6の厚さは、特に限定されないが、通常は1~200μmであり、好ましくは3~100μm、より好ましくは5~50μmである。
 支持シート7は、熱硬化性フィルム6を支持できるものであればよく、例えば、本発明の一態様で用いる両面粘着シートが有する基材層(Y)として挙げられた樹脂、金属、紙材等が挙げられる。
The thermosetting film 6 is a thermosetting film obtained by forming a resin composition containing at least a thermosetting resin, and is used as an adhesive when mounting the semiconductor chip CP on the substrate. The thermosetting film 6 may contain a curing agent for the thermosetting resin, a thermoplastic resin, an inorganic filler, a curing accelerator, etc., if necessary.
The thickness of the thermosetting film 6 is not particularly limited, but is usually 1-200 μm, preferably 3-100 μm, more preferably 5-50 μm.
The support sheet 7 may be any material as long as it can support the thermosetting film 6. For example, the resins, metals, paper materials, etc. listed as the base material layer (Y) of the double-sided pressure-sensitive adhesive sheet used in one embodiment of the present invention are used. is mentioned.
 熱硬化性フィルム6を、複数の半導体チップCPに貼付する方法としては、例えば、ラミネートによる方法が挙げられる。
 ラミネートは加熱しながら行ってもよく、非加熱で行ってもよい。ラミネートを加熱しながら行う場合の加熱温度は、熱膨張性粒子の膨張を抑制する観点及び被着体の熱変化を抑制する観点から、好ましくは「膨張開始温度(t)より低い温度」、より好ましくは「膨張開始温度(t)-5℃」以下、更に好ましくは「膨張開始温度(t)-10℃」以下、より更に好ましくは「膨張開始温度(t)-15℃」以下である。
As a method of attaching the thermosetting film 6 to the plurality of semiconductor chips CP, for example, there is a lamination method.
Lamination may be performed with heating or without heating. The heating temperature in the case of laminating while heating is preferably "a temperature lower than the expansion start temperature (t)" from the viewpoint of suppressing the expansion of the thermally expandable particles and the viewpoint of suppressing the thermal change of the adherend. It is preferably "expansion start temperature (t) -5°C" or lower, more preferably "expansion start temperature (t) -10°C" or lower, still more preferably "expansion start temperature (t) -15°C" or lower.
<工程3>
 工程3は、前記加工品(P)に対して冷却処理を施しながら、前記熱膨張性層を前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体(S)とを分離する工程である。
<Step 3>
In step 3, while the processed product (P) is subjected to a cooling treatment, the thermally expandable layer is heated to a temperature (t) at which the thermally expandable particles start to expand, thereby forming the adhesive layer (X1). and the support (S).
 工程3において、加工品(P)に対して行う冷却処理としては、例えば、加工品(P)に冷却された熱伝導体を接触させる方法、加工品(P)を風冷する方法、加工品(P)に冷媒を接触させる方法、加工品(P)を冷却された雰囲気に晒す方法等が挙げられる。これらの方法の中でも、冷却する箇所及び冷却温度を制御し易いという観点から、加工品(P)に冷却された熱伝導体を接触させる方法が好ましい。
 冷却処理は、加工品(P)の粘着剤層(X2)とは反対側の面(Pα)を冷却する処理であることが好ましい。
In step 3, the cooling treatment performed on the processed product (P) includes, for example, a method of contacting a cooled thermal conductor with the processed product (P), a method of air-cooling the processed product (P), and a method of air cooling the processed product (P). Examples include a method of contacting (P) with a coolant, a method of exposing the processed product (P) to a cooled atmosphere, and the like. Among these methods, the method of bringing a cooled heat conductor into contact with the processed product (P) is preferable from the viewpoint of facilitating the control of the location to be cooled and the cooling temperature.
The cooling treatment is preferably a treatment for cooling the surface (Pα) of the processed product (P) opposite to the adhesive layer (X2).
 冷却された熱伝導体は、冷媒によって冷却された熱伝導体であることが好ましい。冷媒によって冷却された熱伝導体としては、例えば、熱伝導体の内部に貫通孔を有し、該貫通孔内に冷媒を、充填、流通又は循環させることで、熱伝導体の表面を冷却するものが挙げられる。熱伝導体の内部に充填又は循環させる冷媒は特に限定されないが、経済性の観点から、水が好ましい。 The cooled heat conductor is preferably a heat conductor cooled by a refrigerant. As a heat conductor cooled by a coolant, for example, the heat conductor has a through hole inside, and the coolant is filled, circulated, or circulated in the through hole to cool the surface of the heat conductor. things are mentioned. The coolant filled or circulated inside the heat conductor is not particularly limited, but water is preferable from the viewpoint of economy.
 冷却された熱伝導体を接触させる処理は、冷却された熱伝導体を加工品(P)の面(Pα)に接触させる処理であることが好ましく、加工品(P)を均一に冷却するという観点から、例えば、冷却されたプレート(以下、「冷却プレート」ともいう)等の表面が平滑なプレートを、加工品(P)の面(Pα)に接触させる方法が好ましい。冷却プレートとしては、例えば、冷媒によって冷却された金属プレート、冷媒によって冷却されたセラミックスプレート等が挙げられる。 The process of bringing the cooled thermal conductor into contact is preferably a process of bringing the cooled thermal conductor into contact with the surface (Pα) of the workpiece (P) to uniformly cool the workpiece (P). From the point of view, for example, a method of contacting a plate with a smooth surface such as a cooled plate (hereinafter also referred to as a “cooling plate”) to the surface (Pα) of the workpiece (P) is preferred. Examples of the cooling plate include a metal plate cooled by a coolant, a ceramic plate cooled by a coolant, and the like.
 加工品(P)の面(Pα)に接触させる冷却された熱伝導体の表面温度は、好ましくは1~45℃、より好ましくは3~40℃、さらに好ましくは5~35℃である。冷却された熱伝導体の表面温度が1℃以上であると、冷却温度が適度となり、過度な冷却による半導体用フィルムの接着性低下等の問題が生じ難くなる傾向にある。また、冷却された熱伝導体の表面温度が45℃以下であると、加工品(P)に対する冷却効果が十分に得られ易い傾向にある。 The surface temperature of the cooled heat conductor that contacts the surface (Pα) of the workpiece (P) is preferably 1-45°C, more preferably 3-40°C, and even more preferably 5-35°C. When the surface temperature of the cooled heat conductor is 1° C. or higher, the cooling temperature becomes appropriate, and problems such as deterioration of adhesiveness of the semiconductor film due to excessive cooling tend to occur less easily. Moreover, when the surface temperature of the cooled heat conductor is 45° C. or less, there is a tendency that a sufficient cooling effect on the processed product (P) can be easily obtained.
 工程3において、熱膨張性層を加熱する方法としては、例えば、支持体(S)の粘着剤層(X1)とは反対側の面(Sα)に加熱された熱伝導体を接触させる方法、熱膨張性層に対してエネルギー線を照射する方法、熱膨張性層を加熱された雰囲気に晒す方法等が挙げられる。これらの方法の中でも、加熱する箇所及び加熱温度を制御し易いという観点から、支持体(S)の粘着剤層(X1)とは反対側の面(Sα)に加熱された熱伝導体を接触させる方法が好ましい。 In step 3, the method of heating the thermally expandable layer includes, for example, a method of bringing a heated thermal conductor into contact with the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1), Examples include a method of irradiating the thermally expandable layer with energy rays, a method of exposing the thermally expandable layer to a heated atmosphere, and the like. Among these methods, from the viewpoint of facilitating control of the heating point and the heating temperature, the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1) is brought into contact with a heated heat conductor. The preferred method is to
 支持体(S)の粘着剤層(X1)とは反対側の面(Sα)に加熱された熱伝導体を接触させる方法としては、熱膨張性層を均一に加熱するという観点から、例えば、加熱されたプレート(以下、「加熱プレート」ともいう)等の表面が平滑なプレートを支持体(S)の面(Sα)に接触させる方法が好ましい。加熱プレートとしては、例えば、金属プレート、セラミックスプレート等が挙げられる。 As a method of bringing a heated thermal conductor into contact with the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1), from the viewpoint of uniformly heating the thermally expandable layer, for example, A preferred method is to bring a plate with a smooth surface such as a heated plate (hereinafter also referred to as a "heating plate") into contact with the surface (Sα) of the support (S). Examples of the heating plate include metal plates and ceramic plates.
 支持体(S)の面(Sα)に接触させる加熱された熱伝導体の表面温度は、熱膨張性粒子の膨張開始温度(t)以上であり、好ましくは「膨張開始温度(t)より高い温度」、より好ましくは「膨張開始温度(t)+2℃」以上、更に好ましくは「膨張開始温度(t)+4℃」以上、より更に好ましくは「膨張開始温度(t)+5℃」以上である。また、加熱された熱伝導体の表面温度は、省エネルギー性及び加熱剥離時における加工品(P)の熱変化を抑制する観点からは、好ましくは「膨張開始温度(t)+50℃」以下、より好ましくは「膨張開始温度(t)+40℃」以下、更に好ましくは「膨張開始温度(t)+30℃」以下である。
 また、支持体(S)の面(Sα)に接触させる加熱された熱伝導体の表面温度は、加工品(P)の熱変化を抑制する観点からは、膨張開始温度(t)以上の範囲内において、好ましくは130℃以下、より好ましくは120℃以下、さらに好ましくは115℃以下である。
The surface temperature of the heated heat conductor that is brought into contact with the surface (Sα) of the support (S) is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, preferably "higher than the expansion start temperature (t) temperature”, more preferably “expansion start temperature (t) + 2°C” or higher, still more preferably “expansion start temperature (t) + 4°C” or higher, still more preferably “expansion start temperature (t) + 5°C” or higher . In addition, the surface temperature of the heated heat conductor is preferably "expansion start temperature (t) + 50 ° C." or less from the viewpoint of energy saving and suppressing thermal change of the processed product (P) during heat peeling. It is preferably "expansion start temperature (t) + 40°C" or lower, more preferably "expansion start temperature (t) + 30°C" or lower.
In addition, the surface temperature of the heated heat conductor brought into contact with the surface (Sα) of the support (S) is in the range of the expansion start temperature (t) or higher from the viewpoint of suppressing the thermal change of the processed product (P). Within, the temperature is preferably 130° C. or lower, more preferably 120° C. or lower, and still more preferably 115° C. or lower.
 工程3において、支持体(S)の粘着剤層(X1)とは反対側の面(Sα)に対して加熱された熱伝導体を接触させ、加工品(P)の粘着剤層(X2)とは反対側の面(Pα)に対して冷却された熱伝導体を接触させる場合、面(Sα)に接触させる加熱された熱伝導体の表面温度Tと、面(Pα)に接触させる冷却された熱伝導体の表面温度Tとの温度差[T-T]は、好ましくは20~150℃、より好ましくは50~130℃、さらに好ましくは70~110℃である。温度差[T-T]が20℃以上であると、加工品(P)に対する冷却効果が十分に得られ易い傾向にある。また、温度差[T-T]が150℃以下であると、過度な加熱又は冷却による加工品(P)の熱変化を抑制し易い傾向にある。 In step 3, a heated heat conductor is brought into contact with the surface (Sα) of the support (S) opposite to the adhesive layer (X1) to form the adhesive layer (X2) of the processed product (P). When the cooled thermal conductor is brought into contact with the surface (Pα) opposite to the surface (Sα), the surface temperature TS of the heated thermal conductor that is brought into contact with the surface (Sα) and the surface (Pα) are brought into contact with The temperature difference [T S -T P ] from the surface temperature T P of the cooled heat conductor is preferably 20 to 150°C, more preferably 50 to 130°C, still more preferably 70 to 110°C. When the temperature difference [T S −T P ] is 20° C. or more, there is a tendency to obtain a sufficient cooling effect on the processed product (P). Further, when the temperature difference [T S −T P ] is 150° C. or less, the heat change of the processed product (P) due to excessive heating or cooling tends to be easily suppressed.
 図7(a)及び(b)には、熱硬化性フィルム6が貼付された半導体チップCPに対して冷却処理を施しながら、熱膨張性層を熱膨張性粒子の膨張開始温度(t)以上に加熱して、粘着剤層(X1)と支持体(S)とを分離する工程を説明する断面図が示されている。
 図7(a)に示されるように、熱硬化性フィルム6の支持シート7の粘着剤層(X2)とは反対側の面(Pα)に対して、冷却プレート8を接触させることによって熱硬化性フィルム6を冷却しつつ、支持体(S)の粘着剤層(X1)とは反対側の面(Sα)に対して加熱プレート9を接触させることによって、熱膨張性基材層(Y1)を熱膨張性粒子の膨張開始温度(t)以上に加熱する。これにより、加工品(P)の熱変化を抑制しながら、図7(b)に示されるように、粘着剤層(X1)と支持体(S)とが分離される。
7A and 7B, while cooling the semiconductor chip CP to which the thermosetting film 6 is attached, the thermally expandable layer is cooled to the expansion starting temperature (t) of the thermally expandable particles or higher. A cross-sectional view for explaining the step of separating the pressure-sensitive adhesive layer (X1) and the support (S) by heating to .
As shown in FIG. 7( a ), a cooling plate 8 is brought into contact with the surface (Pα) of the support sheet 7 of the thermosetting film 6 opposite to the pressure-sensitive adhesive layer (X2) for thermosetting. While cooling the adhesive film 6, the heat-expandable base layer (Y1) is formed by bringing a heating plate 9 into contact with the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1). is heated to the expansion start temperature (t) of the thermally expandable particles or higher. As a result, the pressure-sensitive adhesive layer (X1) and the support (S) are separated as shown in FIG. 7(b) while suppressing thermal change of the processed product (P).
 粘着剤層(X2)が、エネルギー線硬化性粘着剤層である場合、本発明の一態様の半導体装置の製造方法は、さらに、下記工程4を含むことが好ましい。 When the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer, the method for manufacturing a semiconductor device according to one embodiment of the present invention preferably further includes step 4 below.
<工程4>
 工程4は、粘着剤層(X2)にエネルギー線を照射して、粘着剤層(X2)と加工品(P)とを分離する工程である。
 図8には、粘着剤層(X2)と加工品(P)とを分離する工程を説明する断面図が示されている。
 粘着剤層(X2)は、エネルギー線を照射することにより硬化して粘着力が低下するため、エネルギー線照射によって、加工品(P)と粘着剤層(X2)とを容易に分離することができる。
 工程4のエネルギー線照射に用いるエネルギー線としては、上記したものの中でも、取り扱いが容易な紫外線が好ましい。紫外線の照度及び光量は、粘着剤層(X2)と加工品(P)との密着性が十分に低くなる照度及び光量を照射すればよいが、例えば、紫外線の照度は、好ましくは100~400mW/cm、より好ましくは150~350mW/cm、更に好ましくは180~300mW/cmであり、紫外線の光量は、好ましくは100~2,000mJ/cm、より好ましくは200~1,000mJ/cm、更に好ましくは300~500mJ/cmである。
 エネルギー線は、粘着剤層(X2)を硬化させることができれば、どの方向から照射してもよいが、効率良く硬化させる観点からは、粘着剤層(X1)側から照射することが好ましい。このとき、粘着剤層(X2)に十分にエネルギー線を照射することを可能にする観点から、基材層(Y)及び粘着剤層(X1)は、エネルギー線透過性を有するものが好ましい。
<Step 4>
Step 4 is a step of irradiating the adhesive layer (X2) with energy rays to separate the adhesive layer (X2) and the processed product (P).
FIG. 8 shows a cross-sectional view for explaining the step of separating the adhesive layer (X2) and the processed product (P).
Since the pressure-sensitive adhesive layer (X2) is cured by irradiation with energy rays to reduce its adhesive force, the processed product (P) and the pressure-sensitive adhesive layer (X2) can be easily separated by irradiation with energy rays. can.
As the energy beam used for the energy beam irradiation in step 4, among the above-described energy beams, ultraviolet rays, which are easy to handle, are preferable. The illuminance and light amount of ultraviolet rays may be such that the adhesion between the adhesive layer (X2) and the processed product (P) is sufficiently low. For example, the illuminance of ultraviolet rays is preferably 100 to 400 mW. /cm 2 , more preferably 150 to 350 mW/cm 2 , more preferably 180 to 300 mW/cm 2 , and the amount of ultraviolet light is preferably 100 to 2,000 mJ/cm 2 , more preferably 200 to 1,000 mJ. /cm 2 , more preferably 300 to 500 mJ/cm 2 .
Energy rays may be irradiated from any direction as long as the adhesive layer (X2) can be cured, but from the viewpoint of efficient curing, irradiation from the adhesive layer (X1) side is preferred. At this time, the substrate layer (Y) and the pressure-sensitive adhesive layer (X1) preferably have energy ray transparency from the viewpoint of enabling sufficient energy ray irradiation to the pressure-sensitive adhesive layer (X2).
 上記工程1~4を経て、熱硬化性フィルム6上に貼付された複数の半導体チップCPが得られる。
 次に、複数の半導体チップCPが貼付されている熱硬化性フィルム6を、半導体チップCPと同形状に分割して、熱硬化性フィルム6付き半導体チップCPを得ることが好ましい。熱硬化性フィルム6の分割方法としては、例えば、レーザー光によるレーザーダイシング、エキスパンド、溶断等の方法を適用することができる。
 図9には、半導体チップCPと同形状に分割された熱硬化性フィルム6付き半導体チップCPが示されている。
A plurality of semiconductor chips CP attached to the thermosetting film 6 is obtained through the above steps 1 to 4.
Next, it is preferable to obtain semiconductor chips CP with thermosetting films 6 by dividing the thermosetting film 6 to which a plurality of semiconductor chips CP are attached in the same shape as the semiconductor chips CP. As a method for dividing the thermosetting film 6, for example, a method such as laser dicing using a laser beam, expansion, or fusion cutting can be applied.
FIG. 9 shows a semiconductor chip CP with a thermosetting film 6 divided into the same shape as the semiconductor chip CP.
 熱硬化性フィルム6付き半導体チップCPは、更に、必要に応じて、半導体チップCP同士の間隔を広げるエキスパンド工程、間隔を広げた複数の半導体チップCPを配列させる再配列工程、複数の半導体チップCPの表裏を反転させる反転工程等が適宜施された後、熱硬化性フィルム6側から基板に貼付(ダイアタッチ)される。その後、熱硬化性フィルム6を熱硬化させることで半導体チップと基板とを固着することができる。 The semiconductor chips CP with the thermosetting film 6 are further subjected to an expansion step of widening the gap between the semiconductor chips CP, a rearrangement step of arranging a plurality of semiconductor chips CP with widened gaps, and a plurality of semiconductor chips CP. After a reversal process for reversing the front and back of the film is appropriately performed, the film is attached (die attached) to the substrate from the thermosetting film 6 side. After that, the semiconductor chip and the substrate can be fixed by thermosetting the thermosetting film 6 .
[半導体装置の製造装置]
 本発明の一態様の半導体装置の製造装置は、本発明の一態様の半導体装置の製造方法の工程3に用いられる半導体装置の製造装置であって、
 前記加工品(P)に対して冷却処理を施すための冷却機構と、
 前記熱膨張性層を前記熱膨張性粒子の膨張開始温度(t)以上に加熱するための加熱機構と、を備える、半導体装置の製造装置である。
[Semiconductor device manufacturing equipment]
A semiconductor device manufacturing apparatus of one embodiment of the present invention is a semiconductor device manufacturing apparatus used in step 3 of the semiconductor device manufacturing method of one embodiment of the present invention,
a cooling mechanism for cooling the processed product (P);
and a heating mechanism for heating the thermally expandable layer to an expansion start temperature (t) of the thermally expandable particles or higher.
 冷却機構は、加工品(P)の粘着剤層(X2)とは反対側の面(Pα)を冷却する機構であることが好ましい。
 冷却機構としては、例えば、加工品(P)に冷却された熱伝導体を接触させる機構、加工品(P)を風冷する機構、加工品(P)に冷媒を接触させる機構、加工品(P)を冷却された雰囲気に晒す機構等が挙げられる。これらの機構の中でも、冷却する箇所及び冷却温度を制御し易いという観点から、冷却された熱伝導体を加工品(P)に接触させる機構が好ましく、冷却された熱伝導体を加工品(P)の粘着剤層(X2)とは反対側の面(Pα)に接触させる機構がより好ましい。
 冷却された熱伝導体及び冷却された熱伝導体を接触させる方法の好ましい態様は、本発明の一態様の半導体装置の製造方法の工程3で説明した通りである。冷却された熱伝導体は、冷却されたプレートであることが好ましい。
The cooling mechanism is preferably a mechanism for cooling the surface (Pα) of the processed product (P) opposite to the adhesive layer (X2).
As the cooling mechanism, for example, a mechanism for contacting the processed product (P) with a cooled heat conductor, a mechanism for air-cooling the processed product (P), a mechanism for contacting the processed product (P) with a coolant, a processed product ( and a mechanism for exposing P) to a cooled atmosphere. Among these mechanisms, a mechanism that brings the cooled heat conductor into contact with the workpiece (P) is preferable from the viewpoint of facilitating control of the cooling location and the cooling temperature. ) on the side opposite to the pressure-sensitive adhesive layer (X2) (Pα).
A preferred embodiment of the cooled thermal conductor and the method for contacting the cooled thermal conductor is as described in step 3 of the method for manufacturing a semiconductor device of one embodiment of the present invention. The cooled thermal conductor is preferably a cooled plate.
 加熱機構は、支持体(S)の粘着剤層(X1)とは反対側の面(Sα)を加熱する機構であることが好ましい。
 加熱機構としては、支持体(S)の粘着剤層(X1)とは反対側の面(Sα)に加熱された熱伝導体を接触させる機構、熱膨張性層に対してエネルギー線を照射する機構、熱膨張性層を加熱された雰囲気に晒す機構等が挙げられる。これらの機構の中でも、加熱する箇所及び加熱温度を制御し易いという観点から、支持体(S)の粘着剤層(X1)とは反対側の面(Sα)に加熱された熱伝導体を接触させる機構が好ましい。
 加熱された熱伝導体及び加熱された熱伝導体を接触させる方法の好ましい態様は、本発明の一態様の半導体装置の製造方法の工程3で説明した通りである。加熱された熱伝導体は、加熱されたプレートであることが好ましい。
The heating mechanism is preferably a mechanism that heats the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1).
The heating mechanism includes a mechanism for bringing a heated thermal conductor into contact with the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1), and irradiating the thermally expandable layer with energy rays. mechanism, a mechanism for exposing the thermally expandable layer to a heated atmosphere, and the like. Among these mechanisms, from the viewpoint of facilitating control of the heating point and the heating temperature, the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1) is brought into contact with a heated heat conductor. A mechanism that allows
A preferred embodiment of the heated thermal conductor and the method for contacting the heated thermal conductor is as described in Step 3 of the method for manufacturing a semiconductor device of one embodiment of the present invention. The heated thermal conductor is preferably a heated plate.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、各製造例及び実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described by the following examples, but the present invention is not limited to the following examples. The physical property values in each production example and working example are values measured by the following methods.
[質量平均分子量(Mw)]
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
[Mass average molecular weight (Mw)]
Using a gel permeation chromatograph (manufactured by Tosoh Corporation, product name “HLC-8020”), measurement was performed under the following conditions, and the values measured in terms of standard polystyrene were used.
(Measurement condition)
・ Column: "TSK guard column HXL-L", "TSK gel G2500HXL", "TSK gel G2000HXL", "TSK gel G1000HXL" (both manufactured by Tosoh Corporation) are sequentially connected ・Column temperature: 40 ° C.
・Developing solvent: tetrahydrofuran ・Flow rate: 1.0 mL/min
[各層の厚さ]
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて、23℃にて測定した。
[Thickness of each layer]
It was measured at 23° C. using a constant-pressure thickness measuring instrument manufactured by Teclock Co., Ltd. (model number: “PG-02J”, standard: conforming to JIS K6783, Z1702, Z1709).
[熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)]
 レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定した。
 そして、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)」とした。
[Average particle size (D 50 ) and 90% particle size (D 90 ) of thermally expandable particles]
The particle distribution of the thermally expandable particles before expansion at 23° C. was measured using a laser diffraction particle size distribution analyzer (eg, product name “Mastersizer 3000” manufactured by Malvern).
Then, the particle diameters corresponding to the cumulative volume frequencies of 50% and 90% calculated from the smaller particle diameter in the particle distribution are defined as the "average particle diameter of the thermally expandable particles (D 50 )" and the "thermally expandable particles 90% particle diameter (D 90 ) of
[非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23)]
 縦30mm×横5mmに裁断した非熱膨張性基材層(Y2)を試験サンプルとして、動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度200℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、23℃における貯蔵弾性率E’を測定した。その結果、後述する非熱膨張性基材層(Y2)であるPETフィルムの23℃における貯蔵弾性率E’(23)は、2.27×10Paであった。
[Storage elastic modulus E′ (23) at 23° C. of the non-thermally expandable base layer (Y2)]
Using a non-thermally expandable base material layer (Y2) cut to 30 mm long and 5 mm wide as a test sample, using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name "DMAQ800"), the test start temperature The storage elastic modulus E′ at 23° C. was measured under the conditions of 0° C., test end temperature of 200° C., temperature increase rate of 3° C./min, frequency of 1 Hz, and amplitude of 20 μm. As a result, the storage elastic modulus E′(23) at 23° C. of the PET film, which is the non-thermally expandable base layer (Y2) described later, was 2.27×10 9 Pa.
 以下の製造例及び実施例において、各層の形成に使用した材料の詳細は以下の通りである。 The details of the materials used to form each layer in the manufacturing examples and examples below are as follows.
<粘着性樹脂>
・アクリル系共重合体(A1):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/アクリル酸(AA)/2-ヒドロキシエチルアクリレート(HEA)=86/8/1/5(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:40質量%
・アクリル系共重合体(A2):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)=52/20/28(質量比)からなる原料モノマーに由来する構成単位を有するアクリル系共重合体に、2-メタクリロイルオキシエチルイソシアネート(MOI)をアクリル系共重合体中の全水酸基に対する付加率がモル数基準で90%となるように反応させた、Mw50万のエネルギー線硬化性のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:35質量%
<Adhesive resin>
・ Acrylic copolymer (A1): n-butyl acrylate (BA) / methyl methacrylate (MMA) / acrylic acid (AA) / 2-hydroxyethyl acrylate (HEA) = 86/8/1/5 (mass ratio) Solution containing acrylic copolymer with Mw of 600,000, diluent solvent: ethyl acetate, solid content concentration: 40 mass%
・Acrylic copolymer (A2): A structure derived from a raw material monomer consisting of n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) = 52/20/28 (mass ratio) An acrylic copolymer having a unit is reacted with 2-methacryloyloxyethyl isocyanate (MOI) so that the addition rate to all hydroxyl groups in the acrylic copolymer is 90% on a molar basis, Mw 500,000 Solution containing energy ray-curable acrylic copolymer, dilution solvent: ethyl acetate, solid content concentration: 35% by mass
<架橋剤>
・イソシアネート系架橋剤(i):東ソー株式会社製、製品名「コロネートHX」、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体、固形分濃度:100質量%
・イソシアネート系架橋剤(ii):東ソー株式会社製、製品名「コロネートL」、トリメチロールプロパン変性トリレンジイソシアネートを含む溶液、固形分濃度:75質量%
<Crosslinking agent>
· Isocyanate-based cross-linking agent (i): manufactured by Tosoh Corporation, product name "Coronate HX", isocyanurate-type modified form of hexamethylene diisocyanate, solid content concentration: 100% by mass
· Isocyanate-based cross-linking agent (ii): manufactured by Tosoh Corporation, product name "Coronate L", solution containing trimethylolpropane-modified tolylene diisocyanate, solid content concentration: 75% by mass
<エネルギー線硬化性化合物>
・エネルギー線硬化性化合物(i):日本合成化学工業株式会社製、製品名「シコウUT-4332」、多官能ウレタンアクリレート
<Energy ray-curable compound>
・ Energy ray-curable compound (i): manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name “Shikou UT-4332”, polyfunctional urethane acrylate
<光重合開始剤>
・光重合開始剤(i):ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド
・光重合開始剤(ii):1-ヒドロキシシクロヘキシルフェニルケトン
<Photoinitiator>
- Photoinitiator (i): bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide - Photoinitiator (ii): 1-hydroxycyclohexylphenyl ketone
<添加剤>
・フタロシアニン系顔料
<Additive>
・Phthalocyanine pigment
<熱膨張性粒子>
・熱膨張性粒子:Nouryon社製、製品名「Expancel(登録商標)031-40」(DUタイプ)、膨張開始温度(t)=88℃、平均粒子径(D50)=12.6μm、90%粒子径(D90)=26.2μm
<Thermal expandable particles>
・Thermal expandable particles: manufactured by Nouryon, product name “Expancel (registered trademark) 031-40” (DU type), expansion start temperature (t) = 88 ° C., average particle diameter (D 50 ) = 12.6 μm, 90 % particle size ( D90 ) = 26.2 µm
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
<Release material>
・ Heavy release film: manufactured by Lintec Corporation, product name "SP-PET382150", polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm
・ Light release film: manufactured by Lintec Corporation, product name "SP-PET381031", a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm
[両面粘着シートの作製]
製造例1
(1)粘着剤層(X1)の形成
 アクリル系共重合体(A1)の固形分100質量部に、イソシアネート系架橋剤(i)0.74質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(x-1)を調製した。
 そして、重剥離フィルムの剥離面上に、調製した粘着剤組成物(x-1)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの粘着剤層(X1)を形成した。
[Production of double-sided adhesive sheet]
Production example 1
(1) Formation of pressure-sensitive adhesive layer (X1) 0.74 parts by mass of isocyanate cross-linking agent (i) (solid content ratio) was blended with 100 parts by mass of the solid content of the acrylic copolymer (A1). The mixture was diluted and uniformly stirred to prepare a pressure-sensitive adhesive composition (x-1) having a solid content concentration (active ingredient concentration) of 25% by mass.
Then, on the release surface of the heavy release film, the prepared adhesive composition (x-1) is applied to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to obtain an adhesive with a thickness of 5 μm. An agent layer (X1) was formed.
(2)粘着剤層(X2)の形成
 アクリル系共重合体(A2)の固形分100質量部に、エネルギー線硬化性化合物(i)12質量部(固形分比)、イソシアネート系架橋剤(ii)1.1質量部(固形分比)、光重合開始剤(i)1質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の粘着剤組成物(x-2)を調製した。
 そして、軽剥離フィルムの剥離面上に、調製した粘着剤組成物(x-2)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ20μmの粘着剤層(X2)を形成した。
(2) Formation of pressure-sensitive adhesive layer (X2) To 100 parts by mass of the solid content of the acrylic copolymer (A2), 12 parts by mass of the energy ray-curable compound (i) (solid content ratio), an isocyanate cross-linking agent (ii ) 1.1 parts by mass (solid content ratio), photopolymerization initiator (i) 1 part by mass (solid content ratio), diluted with toluene, stirred uniformly, solid content concentration (active ingredient concentration) A 30% by mass adhesive composition (x-2) was prepared.
Then, on the release surface of the light release film, the prepared adhesive composition (x-2) is applied to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to obtain an adhesive with a thickness of 20 μm. An agent layer (X2) was formed.
(3)無溶剤型樹脂組成物(y-1a)の調製
 エステル型ジオールと、イソホロンジイソシアネート(IPDI)を反応させて得られた末端イソシアネートウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させて、質量平均分子量(Mw)5,000のオリゴマーである、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーを得た。
 そして、上記で合成したウレタンプレポリマー40質量部(固形分比)に、エネルギー線重合性モノマーとして、イソボルニルアクリレート(IBXA)40質量部(固形分比)、及びフェニルヒドロキシプロピルアクリレート(HPPA)20質量部(固形分比)を配合し、ウレタンプレポリマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、さらに光重合開始剤(ii)2.0質量部(固形分比)、及び、添加剤として、フタロシアニン系顔料0.2質量部(固形分比)、シクロヘキシルアクリレート(CHA)20質量部を配合し、エネルギー線硬化性組成物を調製した。
 そして、当該エネルギー線硬化性組成物に熱膨張性粒子を、得られる熱膨張性基材層(Y1)全質量(100質量%)に対する熱膨張性粒子の含有量が12.5質量%になるように配合し、溶剤を含有しない、無溶剤型樹脂組成物(y-1a)を調製した。
(3) Preparation of solvent-free resin composition (y-1a) A terminal isocyanate urethane prepolymer obtained by reacting an ester diol and isophorone diisocyanate (IPDI) is reacted with 2-hydroxyethyl acrylate, A linear urethane prepolymer having ethylenically unsaturated groups at both ends was obtained, which was an oligomer having a mass average molecular weight (Mw) of 5,000.
Then, to 40 parts by mass (solid content ratio) of the urethane prepolymer synthesized above, 40 parts by mass (solid content ratio) of isobornyl acrylate (IBXA) and phenylhydroxypropyl acrylate (HPPA) are added as energy ray-polymerizable monomers. 20 parts by mass (solid content ratio) is blended, and 2.0 parts by mass (solid content ratio) of the photopolymerization initiator (ii) is added to the total amount (100 parts by mass) of the urethane prepolymer and the energy ray polymerizable monomer. and, as additives, 0.2 parts by mass (solid content ratio) of a phthalocyanine pigment and 20 parts by mass of cyclohexyl acrylate (CHA) were blended to prepare an energy ray-curable composition.
Then, the thermally expandable particles are added to the energy ray-curable composition, and the content of the thermally expandable particles becomes 12.5% by mass with respect to the total mass (100% by mass) of the resulting thermally expandable substrate layer (Y1). A solvent-free resin composition (y-1a) was prepared by blending as follows and containing no solvent.
(4)熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とを積層した基材積層体の形成
 非熱膨張性基材層(Y2)として、PETフィルム(東洋紡株式会社製、製品名「コスモシャインA4300」、厚さ:50μm)を準備した。
 次に、当該PETフィルムの片面に無溶剤型樹脂組成物(y-1a)を、形成される熱膨張性基材層(Y1)の厚さが100μmになるように塗布して塗膜を形成した。
 そして、紫外線照射装置(アイグラフィックス株式会社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィックス株式会社製、製品名「H04-L41」)を用いて、照度160mW/cm、光量500mJ/cmの条件で紫外線を照射し、当該塗膜を硬化させ、熱膨張性基材層(Y1)が非熱膨張性基材層(Y2)としてのPETフィルム上に形成された基材積層体を得た。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
(4) Formation of a substrate laminate by laminating a thermally expandable substrate layer (Y1) and a non-thermally expandable substrate layer (Y2) As the non-thermally expandable substrate layer (Y2), a PET film (Toyobo Co., Ltd. company's product name "Cosmo Shine A4300", thickness: 50 µm) was prepared.
Next, the non-solvent resin composition (y-1a) is applied to one side of the PET film so that the thermally expandable base layer (Y1) to be formed has a thickness of 100 μm to form a coating film. did.
Then, using an ultraviolet irradiation device (manufactured by Eyegraphics Co., Ltd., product name “ECS-401GX”) and a high-pressure mercury lamp (manufactured by Eyegraphics Co., Ltd., product name “H04-L41”), an illuminance of 160 mW / cm 2 , The coating film was cured by irradiating with ultraviolet rays under the condition of a light amount of 500 mJ / cm 2 , and the thermally expandable base layer (Y1) was formed on the PET film as the non-thermally expandable base layer (Y2). A substrate laminate was obtained. The above illuminance and light amount during ultraviolet irradiation are values measured using an illuminance/photometer (manufactured by EIT, product name “UV Power Puck II”).
(5)剥離材付き両面粘着シートの形成
 上記(1)で形成した粘着剤層(X1)の粘着表面と、上記(4)で形成した基材積層体の熱膨張性基材層(Y1)の表面とを貼り合わせた。次に、上記(2)で形成した粘着剤層(X2)の粘着表面と、当該基材積層体のPETフィルムの表面とを貼り合わせた。
 これにより、以下の構成を有する剥離材付き両面粘着シートを作製した。
 <重剥離フィルム>/<粘着剤層(X1)、厚さ:5μm>/<熱膨張性基材層(Y1)、厚さ:100μm>/<非熱膨張性基材層(Y2)、厚さ:50μm>/<粘着剤層(X2)、厚さ:20μm>/<軽剥離フィルム>
(5) Formation of double-sided pressure-sensitive adhesive sheet with release material was pasted together with the surface of Next, the adhesive surface of the adhesive layer (X2) formed in (2) above was bonded to the surface of the PET film of the substrate laminate.
As a result, a double-sided pressure-sensitive adhesive sheet with a release material having the following structure was produced.
<Heavy Release Film>/<Adhesive Layer (X1), Thickness: 5 μm>/<Thermal Expandable Base Layer (Y1), Thickness: 100 μm>/<Non-thermally Expandable Base Layer (Y2), Thickness Thickness: 50 μm>/<Adhesive layer (X2), thickness: 20 μm>/<Light release film>
[半導体装置の製造]
実施例1~3
(工程1)
 加工対象物(W)として、直径12インチ、厚さ730μmであり、パターンが形成された回路面を有する半導体ウエハWを準備し、該半導体ウエハWの回路面に、バックグラインド用テープラミネーター(リンテック株式会社製、装置名「RAD-3510F/12」)を用いて、常温(25℃)のテーブル上で、上記で作製した両面粘着シートの粘着剤層(X2)から剥離フィルムを除去したものを、粘着剤層(X2)と半導体ウエハWの回路面とが当接するようにラミネートした。
 一方、両面粘着シートの粘着剤層(X1)から剥離フィルムを除去して表出した粘着剤層(X1)に、支持体(S)として、シリコンミラーウエハ(直径12インチ、厚さ750μm)を貼付して、支持体(S)、両面粘着シート及び半導体ウエハWがこの順に積層された積層体を得た。
[Manufacture of semiconductor devices]
Examples 1-3
(Step 1)
A semiconductor wafer W having a diameter of 12 inches and a thickness of 730 μm and a circuit surface on which a pattern is formed is prepared as an object (W) to be processed. Co., Ltd., device name "RAD-3510F / 12"), on a table at room temperature (25 ° C.), the release film was removed from the adhesive layer (X2) of the double-sided adhesive sheet prepared above. , the adhesive layer (X2) and the circuit surface of the semiconductor wafer W were laminated so as to be in contact with each other.
On the other hand, a silicon mirror wafer (12 inches in diameter, 750 µm in thickness) was placed as a support (S) on the adhesive layer (X1) exposed by removing the release film from the adhesive layer (X1) of the double-sided adhesive sheet. By sticking, a laminate was obtained in which the support (S), the double-sided adhesive sheet and the semiconductor wafer W were laminated in this order.
(工程2-1)
 次に、ステルスレーザー照射装置(株式会社ディスコ製、装置名「DFL7361」)を用いて、半導体ウエハWの回路形成面とは反対側の裏面からステルスレーザー照射を行って、半導体ウエハWの内部に改質領域を形成した。そして、グラインダ/ポリッシャ(株式会社ディスコ製、装置名「DGP8761」)を用いて、半導体ウエハWの当該裏面から、超純水に曝しながら研削を行うと同時に個片化を行い、厚さ20μmの半導体チップCPを得た。なお、これらの加工時、両面粘着シートと支持体(S)との密着性不足による加工対象物(W)である半導体ウエハWの振動及び位置ズレが十分に抑制されていた。
(Step 2-1)
Next, using a stealth laser irradiation device (manufactured by Disco Co., Ltd., device name “DFL7361”), a stealth laser is irradiated from the back surface of the semiconductor wafer W opposite to the circuit formation surface, and the inside of the semiconductor wafer W is irradiated with a stealth laser. A modified region was formed. Then, using a grinder/polisher (manufactured by Disco Co., Ltd., device name “DGP8761”), the back surface of the semiconductor wafer W is subjected to grinding while being exposed to ultrapure water, and at the same time it is singulated to a thickness of 20 μm. A semiconductor chip CP was obtained. During these processes, vibration and displacement of the semiconductor wafer W, which is the object to be processed (W), due to insufficient adhesion between the double-sided adhesive sheet and the support (S) were sufficiently suppressed.
(工程2-2)
 続いて、半導体チップCPの裏面側に、支持シート付きのダイアタッチフィルム(リンテック株式会社製、製品名「Adwill LD01D-7」)を、マウンター(リンテック株式会社製、製品名「RAD2700」)を用いて50℃の条件で、半導体チップCPの裏面とDAFが当接するように貼付し、支持体(S)、両面粘着シート、半導体チップCP、DAF及び支持シート、をこの順に有する積層体を得た。
(Step 2-2)
Subsequently, a die attach film with a support sheet (manufactured by Lintec Corporation, product name: "Adwill LD01D-7") is mounted on the back side of the semiconductor chip CP using a mounter (manufactured by Lintec Corporation, product name: "RAD2700"). At 50° C., the back surface of the semiconductor chip CP and the DAF were attached so as to be in contact with each other to obtain a laminate having the support (S), the double-sided adhesive sheet, the semiconductor chip CP, the DAF and the support sheet in this order. .
(工程3)
 次いで、上記で得た積層体を、支持体(S)側の面が、表面温度110℃のホットプレート(ステンレス製)と接触し、DAFの支持シート側の面が、表面温度が表1に示す冷却温度である水冷プレート(表面にテフロン(登録商標)加工が施されたセラミックスの内部に貫通孔を有し、該貫通孔に所定温度の水を流通させているもの)と接触する状態で1分間処理し、熱膨張性基材層(Y1)を膨張させて、両面粘着シートの粘着剤層(X1)と支持体(S)とを分離した。
 なお、加熱後の粘着剤層(X1)と支持体(S)との密着性は、支持体(S)を上側、半導体チップCPが貼付された両面粘着シートを下側に向けると、半導体チップCPが貼付された両面粘着シートがその重量で落下する程度に低下していた。
(Step 3)
Next, the laminate obtained above was brought into contact with a hot plate (made of stainless steel) having a surface temperature of 110° C. on the side of the support (S), and the surface on the side of the support sheet of the DAF was brought into contact with the surface temperature shown in Table 1. In contact with a water-cooling plate (ceramics with a surface treated with Teflon (registered trademark) and having through-holes in which water of a predetermined temperature is circulated through the through-holes) whose cooling temperature is shown The treatment was performed for 1 minute to expand the thermally expandable base layer (Y1) and separate the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet from the support (S).
The adhesiveness between the pressure-sensitive adhesive layer (X1) and the support (S) after heating is such that the support (S) faces upward and the double-sided pressure-sensitive adhesive sheet to which the semiconductor chip CP is attached faces downward. The weight of the double-sided pressure-sensitive adhesive sheet to which the CP was attached fell to such an extent that it fell.
(工程4)
 次に、支持体(S)と分離して露出した両面粘着シートの粘着剤層(X1)側から、照度230mW/cm、光量380mJ/cmの条件で紫外線を照射し、粘着剤層(X2)を硬化させることで密着性を低下させてから、粘着剤層(X2)とDAF付き半導体チップCPとを分離した。粘着剤層(X2)と分離したDAF付き半導体チップCPの表面を目視にて確認したところ、汚染及び糊残りは確認されなかった。
(Step 4)
Next, the pressure-sensitive adhesive layer (X1) side of the double-sided pressure-sensitive adhesive sheet separated from the support (S) was irradiated with ultraviolet rays under the conditions of an illuminance of 230 mW/cm 2 and a light amount of 380 mJ/cm 2 , and the pressure-sensitive adhesive layer ( After X2) was cured to reduce adhesion, the adhesive layer (X2) and the semiconductor chip CP with DAF were separated. When the surface of the semiconductor chip CP with the DAF separated from the adhesive layer (X2) was visually checked, no contamination or adhesive residue was found.
比較例1
 実施例1の工程3において、DAFの支持シート側の面を冷却しなかったこと以外は、実施例1と同様にして、DAF付き半導体チップCPを得た。
Comparative example 1
A semiconductor chip CP with a DAF was obtained in the same manner as in Example 1, except that in Step 3 of Example 1, the surface of the DAF on the support sheet side was not cooled.
[DAFの23℃における貯蔵弾性率E’]
 各例の工程1~4を経て得られたDAF付き半導体チップCPから、複数の半導体チップにまたがって貼付されたDAF及び支持シートを縦30mm×横5mmの大きさに切り出して半導体チップから剥離し、さらに支持シートを剥離したDAFを試験片とした。該試験片について、動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、23℃、振動数11Hz、振幅20μmの条件で、DAFの23℃における貯蔵弾性率E’を測定した。
[Storage modulus E′ of DAF at 23° C.]
From the semiconductor chip CP with DAF obtained through steps 1 to 4 of each example, the DAF and the support sheet attached across a plurality of semiconductor chips are cut into a size of 30 mm long x 5 mm wide and peeled off from the semiconductor chip. Furthermore, the DAF from which the support sheet was peeled off was used as a test piece. For the test piece, using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name "DMAQ800"), the storage elastic modulus of DAF at 23 ° C. under the conditions of 23 ° C., frequency of 11 Hz, amplitude of 20 μm E' was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、本実施形態の製造方法である実施例1~3で得られた加工品に含まれるDAFは、23℃における貯蔵弾性率E’が低く、支持体(S)を加熱剥離する際におけるDAFの硬化が抑制されていることが分かる。一方、DAF側の面を冷却せずに支持体(S)を剥離した比較例1では、DAFの23℃における貯蔵弾性率E’が高く、支持体(S)を加熱剥離する際におけるDAFの硬化の抑制が十分ではなかった。 From Table 1, the DAF contained in the processed products obtained in Examples 1 to 3, which are the production methods of the present embodiment, has a low storage elastic modulus E' at 23 ° C., and when the support (S) is thermally peeled It can be seen that the curing of DAF in is suppressed. On the other hand, in Comparative Example 1 in which the support (S) was peeled without cooling the DAF side surface, the storage elastic modulus E' of DAF at 23 ° C. was high, and the DAF during heat peeling of the support (S) Suppression of hardening was not sufficient.
 1a、1b、2a、2b 両面粘着シート
 10a、10b 剥離材
 3 レーザー光照射装置
 4 改質領域
 5 グラインダー
 6 熱硬化性フィルム
 7 支持シート
 8 冷却プレート
 9 加熱プレート
 CP 半導体チップ
 (X1) 粘着剤層(X1)
 (X2) 粘着剤層(X2)
 (Y)  基材層(Y)
 (Y1)  熱膨張性基材層(Y1)
 (Y2)  非熱膨張性基材層(Y2)
 (P) 加工品(P)
 (Pα) 加工品(P)の面(Pα)
 (S) 支持体(S)
 (Sα) 支持体(S)の面(Sα)
 W 半導体ウエハ
 Wα 半導体ウエハWの裏面
 Wβ 半導体ウエハWの表面
1a, 1b, 2a, 2b double- sided adhesive sheet 10a, 10b release material 3 laser beam irradiation device 4 modified region 5 grinder 6 thermosetting film 7 support sheet 8 cooling plate 9 heating plate CP semiconductor chip (X1) adhesive layer ( X1)
(X2) Adhesive layer (X2)
(Y) Base layer (Y)
(Y1) Thermally expandable base layer (Y1)
(Y2) Non-thermally expandable base layer (Y2)
(P) Processed product (P)
(Pα) Surface (Pα) of processed product (P)
(S) support (S)
(Sα) Surface (Sα) of support (S)
W semiconductor wafer Wα rear surface of semiconductor wafer W Wβ front surface of semiconductor wafer W

Claims (16)

  1.  粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有し、前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが熱膨張性粒子を含有する熱膨張性層であり、該熱膨張性層を膨張させることによって前記粘着剤層(X1)の表面に凹凸が形成される両面粘着シートを用い、下記工程1~3を含む半導体装置の製造方法。
     工程1:前記両面粘着シートが有する粘着剤層(X2)に加工対象物(W)を貼付し、前記両面粘着シートが有する粘着剤層(X1)に支持体(S)を貼付する工程
     工程2:前記加工対象物(W)の、前記粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程
     工程3:前記加工品(P)に対して冷却処理を施しながら、前記熱膨張性層を前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体(S)とを分離する工程
    Having an adhesive layer (X1), a substrate layer (Y), and an adhesive layer (X2) in this order, and at least one of the adhesive layer (X1) and the substrate layer (Y) is a thermally expandable layer containing thermally expandable particles, and by expanding the thermally expandable layer, using a double-sided adhesive sheet in which unevenness is formed on the surface of the adhesive layer (X1), the following steps 1 to 3. A method of manufacturing a semiconductor device comprising:
    Step 1: A step of attaching an object to be processed (W) to the adhesive layer (X2) of the double-sided adhesive sheet, and attaching a support (S) to the adhesive layer (X1) of the double-sided adhesive sheet. : One or more processes selected from applying a semiconductor adhesive and attaching a semiconductor film to the surface (Wα) of the object (W) opposite to the pressure-sensitive adhesive layer (X2) to obtain a processed product (P) Step 3: While cooling the processed product (P), the thermally expandable layer is heated to the expansion start temperature (t) of the thermally expandable particles or higher. Heating to separate the adhesive layer (X1) and the support (S)
  2.  前記工程2が、下記工程2-1及び2-2を含む、請求項1に記載の半導体装置の製造方法。
     工程2-1:前記加工対象物(W)に対して、研削及び個片化から選択される1以上の加工処理を施す工程
     工程2-2:前記加工処理を施した加工対象物(W)の、粘着剤層(X2)とは反対側の面(Wα)に対して、半導体用接着剤の塗布及び半導体用フィルムの貼付から選択される1以上の加工を施して、加工品(P)を得る工程
    2. The method of manufacturing a semiconductor device according to claim 1, wherein said step 2 includes steps 2-1 and 2-2 below.
    Step 2-1: A step of subjecting the workpiece (W) to one or more processing treatments selected from grinding and singulation Step 2-2: The workpiece (W) subjected to the processing treatment , the surface (Wα) opposite to the adhesive layer (X2) is subjected to one or more processes selected from application of a semiconductor adhesive and application of a semiconductor film to obtain a processed product (P) the process of obtaining
  3.  前記半導体用接着剤が、熱硬化性ペーストであり、前記半導体用フィルムが、熱硬化性フィルムである、請求項1又は2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the semiconductor adhesive is a thermosetting paste, and the semiconductor film is a thermosetting film.
  4.  前記冷却処理が、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)を冷却する処理である、請求項1~3のいずれか1項に記載の半導体装置の製造方法。 The semiconductor device according to any one of claims 1 to 3, wherein the cooling treatment is a treatment of cooling a surface (Pα) of the processed product (P) opposite to the adhesive layer (X2). manufacturing method.
  5.  前記冷却処理が、冷却された熱伝導体を、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)に接触させる処理である、請求項4に記載の半導体装置の製造方法。 The semiconductor according to claim 4, wherein the cooling treatment is a treatment of contacting a cooled heat conductor with the surface (Pα) opposite to the adhesive layer (X2) of the processed product (P). Method of manufacturing the device.
  6.  前記冷却された熱伝導体が、冷却されたプレートである、請求項5に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 5, wherein the cooled thermal conductor is a cooled plate.
  7.  前記工程3における熱膨張性層の加熱を、前記支持体(S)の前記粘着剤層(X1)とは反対側の面(Sα)に、加熱されたプレートを接触させることによって行う、請求項1~6のいずれか1項に記載の半導体装置の製造方法。 The heating of the thermally expandable layer in the step 3 is performed by bringing a heated plate into contact with the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1). 7. The method for manufacturing a semiconductor device according to any one of 1 to 6.
  8.  前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、請求項1~7のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 7, wherein the thermally expandable particles have an expansion start temperature (t) of 50°C or higher and lower than 125°C.
  9.  前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、さらに、下記工程4を含む、請求項1~8のいずれか1項に記載の半導体装置の製造方法。
     工程4:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記加工品(P)とを分離する工程
    9. The method for manufacturing a semiconductor device according to claim 1, wherein said adhesive layer (X2) is an energy ray-curable adhesive layer, and further includes step 4 below.
    Step 4: A step of curing the adhesive layer (X2) by irradiating the adhesive layer (X2) with energy rays to separate the adhesive layer (X2) and the processed product (P).
  10.  前記基材層(Y)が、熱膨張性粒子を含有する熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、が積層された基材積層体であり、前記両面粘着シートが、前記粘着剤層(X1)と、前記熱膨張性基材層(Y1)と、前記非熱膨張性基材層(Y2)と、前記粘着剤層(X2)とを、この順で有する、請求項1~9のいずれか1項に記載の半導体装置の製造方法。 The substrate layer (Y) is a substrate laminate in which a thermally expandable substrate layer (Y1) containing thermally expandable particles and a non-thermally expandable substrate layer (Y2) are laminated, The double-sided pressure-sensitive adhesive sheet includes the pressure-sensitive adhesive layer (X1), the thermally expandable base layer (Y1), the non-thermally expandable base layer (Y2), and the pressure-sensitive adhesive layer (X2), 10. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor devices are arranged in this order.
  11.  膨張前の前記熱膨張性層の厚さが、30~300μmである、請求項1~10のいずれか1項に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to any one of claims 1 to 10, wherein the thermally expandable layer has a thickness of 30 to 300 µm before expansion.
  12.  請求項1~11のいずれか1項に記載の半導体装置の製造方法の工程3に用いられる半導体装置の製造装置であって、
     前記加工品(P)に対して冷却処理を施すための冷却機構と、
     前記冷却機構による冷却処理を施しながら、前記熱膨張性層を前記熱膨張性粒子の膨張開始温度(t)以上に加熱するための加熱機構と、を備える、半導体装置の製造装置。
    A semiconductor device manufacturing apparatus used in step 3 of the semiconductor device manufacturing method according to any one of claims 1 to 11,
    a cooling mechanism for cooling the processed product (P);
    and a heating mechanism for heating the thermally expandable layer to an expansion start temperature (t) or higher of the thermally expandable particles while performing cooling processing by the cooling mechanism.
  13.  前記冷却機構が、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)を冷却する機構である、請求項12に記載の半導体装置の製造装置。 13. The semiconductor device manufacturing apparatus according to claim 12, wherein said cooling mechanism is a mechanism for cooling a surface (P[alpha]) of said workpiece (P) opposite to said adhesive layer (X2).
  14.  前記冷却機構が、冷却された熱伝導体を、前記加工品(P)の前記粘着剤層(X2)とは反対側の面(Pα)に接触させる機構である、請求項13に記載の半導体装置の製造装置。 The semiconductor according to claim 13, wherein the cooling mechanism is a mechanism for contacting a cooled heat conductor with a surface (Pα) opposite to the adhesive layer (X2) of the workpiece (P). Equipment manufacturing equipment.
  15.  前記冷却された熱伝導体が、冷却されたプレートである、請求項14に記載の半導体装置の製造装置。 15. The semiconductor device manufacturing apparatus according to claim 14, wherein said cooled thermal conductor is a cooled plate.
  16.  前記加熱機構が、前記支持体(S)の前記粘着剤層(X1)とは反対側の面(Sα)に加熱されたプレートを接触させる機構である、請求項12~15のいずれか1項に記載の半導体装置の製造装置。 Any one of claims 12 to 15, wherein the heating mechanism is a mechanism for bringing a heated plate into contact with the surface (Sα) of the support (S) opposite to the pressure-sensitive adhesive layer (X1). 3. The apparatus for manufacturing the semiconductor device according to 1.
PCT/JP2022/012171 2021-03-17 2022-03-17 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus WO2022196752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043516 2021-03-17
JP2021-043516 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196752A1 true WO2022196752A1 (en) 2022-09-22

Family

ID=83321123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012171 WO2022196752A1 (en) 2021-03-17 2022-03-17 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus

Country Status (2)

Country Link
TW (1) TW202301426A (en)
WO (1) WO2022196752A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116679A (en) * 2003-10-06 2005-04-28 Nitto Denko Corp Method of separating semiconductor wafer from support member and device using same
WO2019181447A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Method for producing processed article and adhesive layered body
WO2020196756A1 (en) * 2019-03-28 2020-10-01 リンテック株式会社 Adhesive-sheet manufacturing method, semiconductor-device manufacturing method, and adhesive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116679A (en) * 2003-10-06 2005-04-28 Nitto Denko Corp Method of separating semiconductor wafer from support member and device using same
WO2019181447A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Method for producing processed article and adhesive layered body
WO2020196756A1 (en) * 2019-03-28 2020-10-01 リンテック株式会社 Adhesive-sheet manufacturing method, semiconductor-device manufacturing method, and adhesive sheet

Also Published As

Publication number Publication date
TW202301426A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
JP7185638B2 (en) Semiconductor device manufacturing method
JP7241744B2 (en) Semiconductor chip manufacturing method
WO2021117695A1 (en) Adhesive sheet and method for producing semiconductor device
WO2020189568A1 (en) Adhesive sheet and semiconductor device production method
WO2020196755A1 (en) Adhesive sheet, production method for adhesive sheet, and production method for semiconductor device
WO2019031533A1 (en) Thermal peeling method for machining inspection objects
WO2021200789A1 (en) Double-sided adhesive sheet, and method for manufacturing semiconductor device
JP7273792B2 (en) Processed product manufacturing method and adhesive laminate
WO2021049570A1 (en) Method of manufacturing semiconductor device
WO2020196756A1 (en) Adhesive-sheet manufacturing method, semiconductor-device manufacturing method, and adhesive sheet
WO2020196758A1 (en) Pressure-sensitive adhesive sheet, method for producing pressure-sensitive adhesive sheet, and method for producing semiconductor device
WO2020196757A1 (en) Adhesive sheet, adhesive-sheet manufacturing method, and semiconductor-device manufacturing method
WO2022196752A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP7188668B2 (en) singulation sheet
JP7157861B1 (en) Semiconductor device manufacturing method
WO2023054318A1 (en) Method for producing semiconductor device
WO2024058094A1 (en) Method for manufacturing semiconductor device
WO2022054889A1 (en) Adhesive sheet and method for producing semiconductor device
JP7185637B2 (en) Semiconductor device manufacturing method
TWI836046B (en) Adhesive sheet, manufacturing method of adhesive sheet, and manufacturing method of semiconductor device
WO2023017832A1 (en) Method for manufacturing semiconductor device, and semiconductor wafer with adhesive sheet for semiconductor processing
WO2023017831A1 (en) Method for expanding pressure-sensitive adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771497

Country of ref document: EP

Kind code of ref document: A1