WO2023054318A1 - Method for producing semiconductor device - Google Patents

Method for producing semiconductor device Download PDF

Info

Publication number
WO2023054318A1
WO2023054318A1 PCT/JP2022/035847 JP2022035847W WO2023054318A1 WO 2023054318 A1 WO2023054318 A1 WO 2023054318A1 JP 2022035847 W JP2022035847 W JP 2022035847W WO 2023054318 A1 WO2023054318 A1 WO 2023054318A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive adhesive
pressure
adhesive layer
double
layer
Prior art date
Application number
PCT/JP2022/035847
Other languages
French (fr)
Japanese (ja)
Inventor
康喜 中石
智則 篠田
拓 根本
桜子 田村
章生 加太
智史 川田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023551504A priority Critical patent/JPWO2023054318A1/ja
Publication of WO2023054318A1 publication Critical patent/WO2023054318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device.
  • semiconductor wafers are processed into semiconductor chips through a grinding process to reduce the thickness by grinding and a singulation process to cut and separate into individual pieces.
  • the semiconductor wafer is subjected to a predetermined processing while being temporarily fixed to the temporary fixing sheet.
  • an expanding step is performed to widen the gap between the semiconductor chips, and a re-arrangement of a plurality of semiconductor chips with widened gaps is performed.
  • a reversing process for reversing the front and back of the semiconductor chip, and the like are appropriately performed, the semiconductor chip is mounted on the substrate.
  • a temporary fixing sheet suitable for each application can be used.
  • Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing when cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one side of a base material. .
  • the heat-peelable pressure-sensitive adhesive sheet can secure a contact area of a predetermined size with respect to the adherend when cutting electronic parts, and thus exhibits adhesiveness capable of preventing adhesion defects such as chip flying.
  • the heat-expandable microspheres are expanded by heating after use, the contact area with the adherend can be reduced, so that they can be easily peeled off.
  • the temporary fixing sheet When the temporary fixing sheet is used for processing an object, one surface of the temporary fixing sheet is attached to the object and the other surface is attached to a support, and then subjected to a predetermined process.
  • a double-sided pressure-sensitive adhesive sheet having pressure-sensitive adhesive layers on both sides is used as the temporary fixing sheet.
  • an object to be processed is attached to the adhesive layer on one side of the double-sided adhesive sheet, and the adhesive layer on the other side is a heat-peelable adhesive layer whose adhesive strength is reduced by the action of thermal expansion.
  • the surface on which the heat-peelable pressure-sensitive adhesive layer is provided is attached to a support, there is a problem that the object to be processed is sometimes difficult to separate from the surface of the double-sided pressure-sensitive adhesive sheet attached to the object.
  • the present invention has been made in view of the above-mentioned problems, and an object to be processed is attached to a pressure-sensitive adhesive layer, which is an outer layer on one side of a double-sided pressure-sensitive adhesive sheet.
  • a method for manufacturing a semiconductor device in which an object to be processed is processed by attaching a support to a layer, and the object to be processed and the support can be easily separated from the double-sided adhesive sheet after processing. With the goal.
  • the present inventors have proposed a double-sided pressure-sensitive adhesive sheet in which the pressure-sensitive adhesive layer as the outer layer on one side is a heat-peelable pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer as the outer layer on the other side is an energy ray-curable pressure-sensitive adhesive.
  • Manufacture of a semiconductor device in which a double-sided adhesive sheet is used as a layer an object to be processed is attached to the energy ray-curable adhesive layer, a support is attached to the heat-peelable adhesive layer, and the object is processed.
  • the inventors have found that the above problems can be solved by performing the energy ray irradiation step for curing the energy ray-curable pressure-sensitive adhesive layer at a specific time, and have completed the present invention.
  • the present invention relates to the following [1] to [12].
  • [1] having at least an adhesive layer (X1) as an outer layer on one side and an adhesive layer (X2) as an outer layer on the other side,
  • the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer
  • a double-sided pressure-sensitive adhesive sheet in which at least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles, Having the following steps 1 to 4 in this order, Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet.
  • Step 2 Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet
  • Step 3 Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher
  • Step 4 separating the pressure-sensitive adhesive layer (X2) and the object to be processed
  • a method of manufacturing a semiconductor device comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
  • Step 1 A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive
  • Step 2 Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet
  • Step 3 Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher
  • Step 4 separating the pressure-sensitive adhesive layer (X2) and the object to be processed
  • a method of manufacturing a semiconductor device comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
  • Energy beam irradiation step the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet so that the temperature of the thermally expandable layer does not exceed a temperature lower than the expansion start temperature (t) of the thermally expandable particles by 5°C.
  • the step of curing the pressure-sensitive adhesive layer (X2) by irradiating energy rays to [3] the pressure-sensitive adhesive layer (X1) as an outer layer on one side and the pressure-sensitive adhesive layer (X2) as an outer layer on the other side ) is a double-sided pressure-sensitive adhesive sheet having at least
  • the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer
  • At least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles
  • a laminate obtained by laminating a glass plate made of soda lime glass and having a thickness of 1.1 mm on the adhesive layer (X2) of the double-sided adhesive sheet was placed at a temperature of 22°C + the expansion start temperature (t) of the thermally expandable particles.
  • Step 1 A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet.
  • Step 2 Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet
  • Step 3 Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher
  • Step 4 separating the pressure-sensitive adhesive layer (X2) and the object to be processed
  • a method for manufacturing a semiconductor device comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
  • Energy ray irradiation step Step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with energy rays to cure the pressure-sensitive adhesive layer (X2) [4] Applying the energy ray irradiation step to the double-sided pressure-sensitive adhesive sheet
  • the energy beam irradiation step is a step performed in a chamber filled with gas and satisfies the following requirements (I) or (II): A method for manufacturing a semiconductor device according to any one of the above.
  • the energy beam irradiation step is a step of replacing at least part of the gas filled in the chamber with gas supplied from outside the chamber during the energy beam irradiation step.
  • the energy ray irradiation step further repeats a cycle of irradiating one double-sided pressure-sensitive adhesive sheet with an energy ray and then starting irradiation of another double-sided pressure-sensitive adhesive sheet with an energy ray to obtain a plurality of double-sided pressure-sensitive adhesive sheets.
  • a step of sequentially irradiating the adhesive sheet with energy rays is In at least one cycle, after irradiating the one double-sided pressure-sensitive adhesive sheet with an energy ray and before starting irradiation of the energy ray on the other double-sided pressure-sensitive adhesive sheet, the gas filled in the chamber is replaced with gas supplied from outside the chamber.
  • the step 2 includes grinding the workpiece, The above [1] to [5], wherein the energy beam irradiation step is performed at least at any time after the step of attaching the workpiece in step 1 and before the step of grinding the workpiece.
  • the step 1 is a step of performing the support attaching step after the processing object attaching step, The method for manufacturing a semiconductor device according to any one of [1] to [6] above, wherein the energy beam irradiation step is performed after the object attachment step and before the support attachment step.
  • All layers other than the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet and the support have energy ray transparency, The above [1], wherein the energy ray irradiation step is performed by irradiating the energy ray from the side of the support after the step of attaching the support in the step 1 and before the step 3 at least at any time.
  • the double-sided pressure-sensitive adhesive sheet further has a base layer (Y), and the pressure-sensitive adhesive layer (X1), the base layer (Y), and the pressure-sensitive adhesive layer (X2) are The method for manufacturing a semiconductor device according to any one of the above [1] to [9], comprising: [11] The method of manufacturing a semiconductor device according to [10] above, wherein at least one of the adhesive layer (X1) and the base layer (Y) is the thermally expandable layer.
  • the step 2 includes a step of grinding and singulating the workpiece, As a preliminary step for singulation of the object to be processed, A step of forming a groove as a dividing line on the surface of the object to be processed that is attached to the adhesive layer (X2) before the step of grinding and singulating, or the grinding and singulation a step of forming a modified region, which is a line to be divided, inside the object before the step of converting, The step of grinding and singulating the object to be processed is performed on the adhesive layer (X2) of the object to be processed in a state in which the object to be processed is supported by the support via the double-sided adhesive sheet.
  • the above [ 1] A method for manufacturing a semiconductor device according to any one of [11].
  • an object to be processed is attached to the pressure-sensitive adhesive layer that is the outer layer on one side of the double-sided pressure-sensitive adhesive sheet, and a support is attached to the adhesive layer that is the outer layer on the other side of the double-sided pressure-sensitive adhesive sheet. It is possible to provide a method for manufacturing a semiconductor device to be processed, in which the object to be processed and the support can be easily separated from the double-sided pressure-sensitive adhesive sheet after processing.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a double-sided pressure-sensitive adhesive sheet used in the production method of the present invention
  • FIG. FIG. 4 is a cross-sectional view showing another example of the configuration of the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention
  • It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention.
  • active ingredient means an ingredient excluding the diluent solvent among the ingredients contained in the target composition.
  • (meth)acrylic acid means both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • semiconductor device means all devices that can function by utilizing semiconductor characteristics. Examples of semiconductor devices include wafers with integrated circuits, thinned wafers with integrated circuits, chips with integrated circuits, thinned chips with integrated circuits, electronic components including these chips, and electronic components. and electronic equipment.
  • energy ray means an electromagnetic wave or charged particle beam having an energy quantum, and examples thereof include electromagnetic radiation such as ultraviolet rays and gamma rays; particle radiation such as electron beams.
  • energy ray-polymerizable means the property of polymerizing by irradiation with energy rays.
  • energy ray curability means the property of being cured by irradiation with an energy ray.
  • a "layer” is a "non-thermally expandable layer” or a “thermally expandable layer” is determined by the following method.
  • the layer to be judged contains thermally expandable particles
  • the layer is heat-treated for 3 minutes at the expansion start temperature (t) of the thermally expandable particles. If the volume change rate calculated from the following formula is less than 5%, the layer is determined to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer”. judge there is.
  • ⁇ Volume change rate (%) ⁇ (volume of the layer after heat treatment - volume of the layer before heat treatment) / volume of the layer before heat treatment ⁇ x 100
  • the volume change rate (%) of the non-thermally expandable layer calculated from the above formula is less than 5%, preferably less than 2%, More preferably less than 1%, still more preferably less than 0.1%, even more preferably less than 0.01%.
  • the layer to be evaluated does not substantially contain thermally expandable particles
  • the layer is referred to as "non-thermally It is judged to be an inflatable layer.
  • the content of the thermally expandable particles in the non-thermally expandable layer is preferably less than 3% by mass, more preferably 1% by mass, relative to the total mass (100% by mass) of the non-thermally expandable layer. %, more preferably less than 0.1% by weight, even more preferably less than 0.01% by weight, even more preferably less than 0.001% by weight, and is most preferably free of thermally expandable particles.
  • the "circuit surface” of the semiconductor wafer means the surface on which the circuits are formed
  • the "back surface” of the semiconductor wafer means the surface on which the circuits are not formed
  • the thickness of each layer is the thickness at 23°C, specifically the value measured based on the method described in the Examples.
  • the adhesive strength of each layer means the adhesive strength to the mirror surface of the silicon mirror wafer, and in an environment of 23° C. and 50% RH (relative humidity), 180° peeling based on JIS Z0237:2000. means the adhesive force measured at a pulling speed of 300 mm/min according to the Law.
  • the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in Examples. is.
  • the total light transmittance is a value obtained by measuring a transmission spectrum by ultraviolet-visible spectroscopy, specifically a value measured based on the method described in Examples.
  • the method for manufacturing a semiconductor device according to the first aspect of the present invention comprises: At least having an adhesive layer (X1) as an outer layer on one side and an adhesive layer (X2) as an outer layer on the other side,
  • the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
  • Using a double-sided pressure-sensitive adhesive sheet in which at least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles Having the following steps 1 to 4 in this order, Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet.
  • Step 2 Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet
  • Step 3 Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher
  • Step 4 separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step
  • the method for manufacturing a semiconductor device includes the following energy beam irradiation step after the process object attaching step of the step 1 and before the step 3 at least at any time.
  • Energy ray irradiation step A step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2) without expanding the thermally expandable particles.
  • the method for manufacturing a semiconductor device according to the second aspect of the present invention uses the double-sided pressure-sensitive adhesive sheet and includes the steps 1 to 4 in this order,
  • a method for manufacturing a semiconductor device comprising the following energy beam irradiation step at least at any time after step 1 of attaching an object to be processed and before step 3.
  • Energy beam irradiation step the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet so that the temperature of the thermally expandable layer does not exceed a temperature lower than the expansion start temperature (t) of the thermally expandable particles by 5°C.
  • the method for manufacturing a semiconductor device comprises: A double-sided pressure-sensitive adhesive sheet having at least a pressure-sensitive adhesive layer (X1) as an outer layer on one side and a pressure-sensitive adhesive layer (X2) as an outer layer on the other side,
  • the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer
  • At least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles
  • a laminate obtained by laminating a glass plate made of soda lime glass and having a thickness of 1.1 mm on the adhesive layer (X2) of the double-sided adhesive sheet was placed at a temperature of 22°C + the expansion start temperature (t) of the thermally expandable particles.
  • the method for manufacturing a semiconductor device includes the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
  • Energy ray irradiation step a step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2)
  • the outer layer on one side has an adhesive layer (X1) that is a heat-peelable adhesive layer, and the outer layer on the other side is an energy ray-curable adhesive layer.
  • a double-sided pressure-sensitive adhesive sheet having a certain pressure-sensitive adhesive layer (X2) a support is attached to the pressure-sensitive adhesive layer (X1), and the processing object is processed in a state in which the processing target is attached to the pressure-sensitive adhesive layer (X2). .
  • the pressure-sensitive adhesive layer on one side of the double-sided pressure-sensitive adhesive sheet and the pressure-sensitive adhesive layer on the other side of the double-sided pressure-sensitive adhesive sheet have different mechanisms of action for reducing the adhesive force, so that the pressure-sensitive adhesive layer on either side is It is possible to avoid unintentionally lowering the adhesive strength of the other adhesive layer when performing the treatment for reducing the adhesive strength.
  • the double-sided pressure-sensitive adhesive sheet is peeled off from the support and the object after processing.
  • An energy ray irradiation step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2) is also included.
  • the expansion of the thermally expandable particles in the thermally expandable layer is still suppressed when the pressure-sensitive adhesive layer (X2) is irradiated with energy rays.
  • the pressure-sensitive adhesive layer (X2) is irradiated with energy rays after the thermally expandable particles in the thermally expandable layer have expanded, the transmittance of the energy rays in the thermally expandable layer decreases due to the expanded thermally expandable particles. This makes it difficult for the irradiated energy rays to reach the pressure-sensitive adhesive layer (X2). Therefore, curing of the pressure-sensitive adhesive layer (X2) may be insufficient.
  • the energy beam irradiated toward the pressure-sensitive adhesive layer (X2) can reach the pressure-sensitive adhesive layer (X2) satisfactorily even through the thermally expandable layer. is.
  • the pressure-sensitive adhesive layer (X2) can be efficiently cured, and the processed object can be easily separated from the pressure-sensitive adhesive layer (X2).
  • the double-sided pressure-sensitive adhesive sheets used in the manufacturing methods of the first, second, and third embodiments will be described first, and then each step will be described.
  • the double-sided pressure-sensitive adhesive sheet used in the production method of the present embodiment includes a pressure-sensitive adhesive layer (X1) as an outer layer on one side and a and a pressure-sensitive adhesive layer (X2) as an outer layer, the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer, and at least one of the layers other than the pressure-sensitive adhesive layer (X2) is heated.
  • a thermally expandable layer containing expandable particles is a thermally expandable layer containing expandable particles.
  • the double-sided pressure-sensitive adhesive sheet of this embodiment may have only the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2). From the viewpoint of improving the handleability of the double-sided pressure-sensitive adhesive sheet and the processing accuracy of the object to be processed, it further has a base layer (Y), the pressure-sensitive adhesive layer (X1), the base layer (Y), and the adhesive and agent layer (X2) in this order.
  • the double-sided pressure-sensitive adhesive sheet 1a shown in FIG. 1(a) is a double-sided pressure-sensitive adhesive sheet having only the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2).
  • the double-sided pressure-sensitive adhesive sheet 1b shown in FIG. 1(b) is a double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer (X1), a base layer (Y), and a pressure-sensitive adhesive layer (X2) in this order.
  • the double-sided PSA sheet of this embodiment at least one of the layers other than the PSA layer (X2) is a thermally expandable layer containing thermally expandable particles.
  • the number of thermally expandable layers may be one, or two or more, but preferably one.
  • the thermally expandable layer may be the adhesive layer (X1) or a layer other than the adhesive layer (X1).
  • the double-sided pressure-sensitive adhesive sheet of the present embodiment has a base layer (Y)
  • at least one of the pressure-sensitive adhesive layer (X1) and the base layer (Y) is preferably a thermally expandable layer, More preferably, the substrate layer (Y) is a thermally expandable layer.
  • the substrate layer (Y) is a thermally expandable layer
  • unevenness due to the thermally expandable particles before thermal expansion is less likely to appear on the surface of the adhesive layer (X1), and the adhesive layer (X1) and the support It tends to have good adhesion to the body.
  • the thickness of the thermally expandable layer needs to be appropriately determined depending on which layer is the thermally expandable layer among the layers of the double-sided pressure-sensitive adhesive sheet of the present embodiment. from the viewpoint of improving the adhesiveness, the winding aptitude when the double-sided pressure-sensitive adhesive sheet is produced in a long state, etc. is more preferred.
  • the thermally expandable particles are not particularly limited as long as they are particles that expand when heated.
  • the thermally expandable particles may be used singly or in combination of two or more.
  • the expansion initiation temperature (t) of the thermally expandable particles is preferably 50° C. or higher and lower than 225° C., more preferably 55 to 200° C., still more preferably 60 to 180° C., even more preferably 70 to 155° C., still more preferably is 75-130°C.
  • the expansion start temperature (t) of the thermally expandable particles is 50° C. or higher, it tends to be possible to suppress unintended expansion due to frictional heat generated when processing an object to be processed, reaction heat during the energy beam irradiation step, and the like. be.
  • the expansion start temperature (t) of the thermally expandable particles is less than 225°C, there is a tendency that the thermal change of the object to be processed during thermal separation can be suppressed.
  • a thermosetting film is attached to the back surface of the object to be processed in step 3 described later, from the viewpoint of suppressing the progress of an unintended curing reaction of the thermosetting film, etc. It is preferable to lower the expansion start temperature (t) of the thermally expandable particles. Specifically, it may be in the range of 50.degree.
  • the expansion start temperature (t) of thermally expandable particles means a value measured based on the following method.
  • Method for measuring expansion start temperature (t) of thermally expandable particles >> An aluminum cup with a diameter of 6.0 mm (inner diameter of 5.65 mm) and a depth of 4.8 mm was filled with 0.5 mg of thermally expandable particles to be measured, and an aluminum lid (5.6 mm in diameter and 0.6 mm in thickness) was placed on top of the cup. 1 mm) is placed on the sample. Using a dynamic viscoelasticity measuring device, the height of the sample is measured while a force of 0.01 N is applied to the sample from the top of the aluminum lid with a pressurizer.
  • the pressurizer With a force of 0.01 N applied by the pressurizer, it was heated from 20° C. to 300° C. at a temperature increase rate of 10° C./min, and the amount of displacement in the vertical direction of the pressurizer was measured.
  • the displacement start temperature be the expansion start temperature (t).
  • the thermally expandable particles are preferably microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an encapsulated component that is encapsulated in the outer shell and vaporizes when heated to a predetermined temperature.
  • the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent includes, for example, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, or structural units contained in these thermoplastic resins. Examples thereof include copolymers obtained by polymerizing two or more of the monomers to be formed.
  • Examples of encapsulated components that are encapsulated in the outer shell of the microencapsulated foaming agent include propane, propylene, butene, n-butane, isobutane, isopentane, neopentane, n-pentane, n-hexane, isohexane, n- Low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane, and petroleum ether are included.
  • the expansion start temperature (t) of the thermally expandable particles is 50° C.
  • the expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
  • the average particle diameter (D 50 ) of the thermally expandable particles before expansion at 23° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, even more preferably 6 to 60 ⁇ m, still more preferably 10 to 50 ⁇ m.
  • the 90% particle diameter (D 90 ) of the thermally expandable particles before expansion at 23° C. is preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m, still more preferably 20 to 90 ⁇ m, still more preferably 25 to 80 ⁇ m. .
  • the average particle size (D 50 ) and 90% particle size (D 90 ) of the thermally expandable particles before expansion can be measured by the method described in Examples.
  • the maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles is preferably 1.5 to 200 times, more preferably 2 to 150 times, and still more preferably 2.5 to 120. times, more preferably 3 to 100 times.
  • the content of the thermally expandable particles in the thermally expandable layer is preferably 3 to 45% by mass, more preferably 7 to 40% by mass, and still more preferably the total mass (100% by mass) of the thermally expandable layer. is 10 to 35% by mass.
  • the content of the thermally expandable particles is 3% by mass or more, the peelability tends to be improved during heat peeling.
  • the content of the thermally expandable particles is 45% by mass or less, the thermally expandable particles and other components tend to be easily mixed in the preparation of the composition for forming the thermally expandable layer. be.
  • the pressure-sensitive adhesive layer (X1) is a pressure-sensitive adhesive layer as an outer layer on one side of the double-sided pressure-sensitive adhesive sheet of the present embodiment.
  • the pressure-sensitive adhesive layer (X1) is a layer on the surface of which irregularities are formed due to thermally expandable particles expanded by heating. The contact area is reduced and it can be easily peeled off from the adherend.
  • the adhesive layer (X1) can be formed, for example, from an adhesive composition (x-1) containing an adhesive resin.
  • the adhesive composition (x-1) contains an adhesive resin.
  • Adhesive resin for example, a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more can be mentioned.
  • adhesive resin may not have adhesiveness by itself, but may express adhesiveness by addition of a tackifier or a plasticizer.
  • the mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000 to 100, from the viewpoint of improving the adhesive strength of the adhesive layer (X1). Ten thousand.
  • Adhesive resin may be used individually by 1 type, and may use 2 or more types together.
  • the tacky resin may be a polymer having a single structural unit, or a copolymer having two or more structural units.
  • the form of the copolymer may be block copolymer, random copolymer or graft copolymer.
  • adhesive resins examples include acrylic resins, urethane resins, polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of expressing excellent adhesive strength in the adhesive layer (X1).
  • the content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 30 to 100% by mass, based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x-1). is 50 to 100% by mass, more preferably 70 to 100% by mass, and even more preferably 85 to 100% by mass.
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, and even more preferably 500,000 to 1,100,000.
  • acrylic resins include polymers containing structural units derived from alkyl (meth)acrylates having alkyl groups, polymers containing structural units derived from (meth)acrylates having a cyclic structure, and the like. .
  • a polymer containing a structural unit derived from an alkyl (meth)acrylate having an alkyl group is preferable, and is derived from an alkyl (meth)acrylate (a1′) (hereinafter also referred to as “monomer (a1′)”).
  • a functional group-containing monomer (a2′) hereinafter also referred to as “monomer (a2′)”.
  • the number of carbon atoms in the alkyl group of the monomer (a1′) is preferably 1 to 24, more preferably 1 to 12, and even more preferably 2 to 2, from the viewpoint of exhibiting excellent adhesive strength in the adhesive layer (X1). 10, more preferably 4-8.
  • the "alkyl group” may be linear or branched.
  • Examples of the monomer (a1′) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, iso-butyl (meth)acrylate, Acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate and the like. Among these, n-butyl acrylate and 2-ethylhexyl acrylate are preferred. Monomer (a1′) may be used alone or in combination of two or more.
  • the content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 70 to 97.0% by mass, and even more preferably 80 to 95.0% by mass.
  • Examples of functional groups possessed by the monomer (a2′) include hydroxyl groups, carboxyl groups, amino groups, epoxy groups and the like. That is, examples of the monomer (a2′) include hydroxyl group-containing monomers, carboxy group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, and the like. Among these, hydroxyl group-containing monomers and carboxy group-containing monomers are preferable, and hydroxyl group-containing monomers are more preferable.
  • Monomer (a2') may be used alone or in combination of two or more.
  • hydroxyl group-containing monomers examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, ) hydroxyalkyl (meth)acrylates such as acrylate and 4-hydroxybutyl (meth)acrylate; and hydroxyl group-containing compounds such as unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • Carboxy group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides ; 2-(acryloyloxy)ethyl succinate, 2-carboxyethyl (meth)acrylate and the like.
  • monocarboxylic acids such as (meth)acrylic acid and crotonic acid
  • dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides
  • 2-(acryloyloxy)ethyl succinate 2-carboxyethyl (meth)acrylate and the like.
  • the content of the structural unit (a2) is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 1.0 to 15% by mass, and even more preferably 3.0 to 10% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
  • the total content of the structural units (a1) and (a2) is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass.
  • the content of the adhesive resin in the adhesive composition (x-1) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-1), More preferably 50 to 100% by mass, still more preferably 60 to 100% by mass, still more preferably 70 to 99.5% by mass.
  • the pressure-sensitive adhesive composition (x-1) contains a pressure-sensitive adhesive resin having a functional group, it preferably further contains a cross-linking agent.
  • the cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins with each other using the functional group as a cross-linking starting point.
  • cross-linking agents examples include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • the cross-linking agents may be used alone or in combination of two or more.
  • isocyanate-based cross-linking agents are preferable from the viewpoints of increasing cohesive strength and improving adhesive strength, and from the viewpoints of availability and the like.
  • isocyanate-based cross-linking agents include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; Alicyclic polyisocyanates such as methylcyclohexylene diisocyanate, methylenebis(cyclohexyl isocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate acyclic aliphatic polyisocyanates such as; polyvalent isocyanate compounds such as; Examples of the isocyanate-based cross-linking agent include trimethylolpropane adduct-type modified products of the above polyvalent isocyanate compounds, biuret-type modified products reacted with water, and isocyanurate-type modified products
  • an isocyanurate ring from the viewpoint of suppressing a decrease in the elastic modulus of the pressure-sensitive adhesive layer (X1) during heating and suppressing adhesion of residues derived from the pressure-sensitive adhesive layer (X1) to the support. It is preferable to use an isocyanurate-type modified product, more preferably to use an isocyanurate-type modified product of acyclic aliphatic polyisocyanate, and even more preferably to use an isocyanurate-type modified product of hexamethylene diisocyanate.
  • the content of the cross-linking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin. More preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x-1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • tackifier refers to a component that supplementarily improves the adhesive strength of the adhesive resin and has a weight-average molecular weight (Mw) of less than 10,000.
  • the weight average molecular weight (Mw) of the tackifier is less than 10,000, preferably 400 to 9,000, more preferably 500 to 8,000, still more preferably 800 to 5,000.
  • tackifiers include rosin-based resins, terpene-based resins, styrene-based resins, pentene produced by thermal decomposition of petroleum naphtha, isoprene, piperine, obtained by copolymerizing C5 fractions such as 1,3-pentadiene.
  • C5 petroleum resins obtained by thermal decomposition of petroleum naphtha C9 petroleum resins obtained by copolymerizing C9 fractions such as indene and vinyltoluene generated by thermal decomposition of petroleum naphtha, and hydrogenated resins obtained by hydrogenating these.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x-1). %, more preferably 1 to 40% by mass, and even more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (x-1) may contain additives for pressure-sensitive adhesives used in general pressure-sensitive adhesives, in addition to the components described above, as long as the effects of the present invention are not impaired.
  • adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), and ultraviolet absorbers.
  • the additives for pressure-sensitive adhesives may be used alone, respectively, or two or more of them may be used in combination.
  • the content of each pressure-sensitive adhesive additive is independently preferably 0 per 100 parts by mass of the pressure-sensitive adhesive resin. 0.0001 to 20 parts by mass, more preferably 0.001 to 10 parts by mass.
  • the pressure-sensitive adhesive layer (X1) When the pressure-sensitive adhesive layer (X1) is a thermally expandable layer, the pressure-sensitive adhesive layer (X1) may be formed from the above-described pressure-sensitive adhesive composition (x-1), but the heat from the drying step after application From the viewpoint of suppressing the expansion of the expandable particles, it is preferable to irradiate the polymerizable composition containing the energy ray-polymerizable component and the thermally expandable particles with an energy ray.
  • a polymerizable composition for forming the pressure-sensitive adhesive layer (X1) there is no need to use a solvent and the drying step can be omitted, so the thermally expandable particles having a relatively low expansion initiation temperature (t) can be selected.
  • the energy ray-polymerizable component for example, various monomers exemplified as raw material monomers for the acrylic resin described above as the adhesive resin can be used.
  • the polymerizable composition preferably contains a photopolymerization initiator from the viewpoint of sufficiently advancing the energy ray polymerization reaction.
  • the photopolymerization initiator the photopolymerization initiator described in the solventless resin composition (y-1a) described later can be used.
  • the polymerizable composition may contain the crosslinking agent, tackifier, adhesive additive, etc. described in the above adhesive composition (x-1).
  • the adhesive strength of the pressure-sensitive adhesive layer (X1) before thermally expanding the thermally expandable layer is preferably 0.1 to 12.0 N/25 mm, more preferably 0.5 to 9.0 N/25 mm, still more preferably 1 .0 to 8.0 N/25 mm, more preferably 1.2 to 7.5 N/25 mm.
  • the adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable layer is 0.1 N/25 mm or more, unintended peeling from the support during temporary fixing, positional displacement, etc. can be more effectively prevented. tend to be suppressed.
  • the adhesive strength is 12.0 N/25 mm or less, the peelability at the time of heat peeling can be further improved.
  • the adhesive strength of the adhesive layer (X1) after thermal expansion of the thermally expandable layer is preferably 1.5 N/25 mm or less, more preferably 0.05 N/25 mm or less, and still more preferably 0.01 N/25 mm or less. , and more preferably 0 N/25 mm.
  • the adhesive force of 0 N/25 mm means an adhesive force below the measurable limit in the method for measuring adhesive force described above. A case of unintentional peeling is also included.
  • the thickness of the adhesive layer (X1) expresses good adhesive strength, and when a layer other than the adhesive layer (X1) such as the base layer (Y) is a thermally expandable layer, the thermal expansion From the viewpoint of forming good unevenness on the adhesive surface of the adhesive layer (X1) when the thermally expandable particles in the adhesive layer are expanded by heating, it is preferably 3 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, and further It is preferably 3 to 7 ⁇ m.
  • the substrate layer (Y) is preferably a layer made of a non-adhesive substrate.
  • the probe tack value on the surface of the substrate layer (Y) is usually less than 50 mN/5 mm ⁇ , preferably less than 30 mN/5 mm ⁇ , more preferably less than 10 mN/5 mm ⁇ , still more preferably less than 5 mN/5 mm ⁇ .
  • the probe tack value on the surface of the substrate means the value measured by the following method. ⁇ How to measure the probe tack value ⁇ After cutting the base material to be measured into a square with a side of 10 mm, a test sample was left to stand in an environment of 23 ° C.
  • the probe tack value on the surface of the test sample is measured in accordance with JIS Z0237: 1991. be able to. Specifically, a stainless steel probe with a diameter of 5 mm was brought into contact with the surface of the test sample at a contact load of 0.98 N/cm 2 for 1 second, and then the probe was moved at a speed of 10 mm/second to the surface of the test sample. The force required to remove it from the surface can be measured and the resulting value taken as the probe tack value for that test sample.
  • the substrate layer (Y) may be subjected to, for example, a surface treatment such as an oxidation method or a roughening method, an adhesion-facilitating treatment, or a primer treatment, from the viewpoint of improving interlayer adhesion with other layers.
  • a surface treatment such as an oxidation method or a roughening method, an adhesion-facilitating treatment, or a primer treatment
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, ultraviolet irradiation treatment, etc.
  • roughening methods include sandblasting, solvent treatment, and the like. is mentioned.
  • the substrate layer (Y) may be a thermally expandable layer (hereinafter also referred to as “thermally expandable substrate layer (Y1)”), a non-thermally expandable layer (hereinafter, “non-thermally expandable substrate layer (Y2)”).
  • thermally expandable substrate layer (Y1) a thermally expandable layer
  • non-thermally expandable substrate layer (Y2) a non-thermally expandable layer
  • the substrate layer (Y) includes the thermally expandable substrate layer (Y1)
  • the deformation of the thermally expandable substrate layer (Y1) due to the expansion of the thermally expandable particles is well transmitted to the adhesive layer (X1).
  • the double-sided pressure-sensitive adhesive sheet of the present embodiment comprises a pressure-sensitive adhesive layer (X1), a thermally expandable base layer (Y1), a non-thermally expandable base layer (Y2), and a pressure-sensitive adhesive layer (X2). , in this order.
  • a pressure-sensitive adhesive layer (X1), a thermally expandable substrate layer (Y1), a non-thermally expandable substrate layer (Y2), and an adhesive layer (X2) are laminated in this order.
  • a cross-sectional schematic diagram of a double-sided pressure-sensitive adhesive sheet 1c having a laminated structure is shown.
  • the thermally expandable substrate layer (Y1) can be formed, for example, from a resin composition (y-1) containing a resin and thermally expandable particles.
  • Resin composition (y-1) is a resin composition containing a resin and thermally expandable particles.
  • the resin may be a non-adhesive resin or a tacky resin. Even if the resin contained in the resin composition (y-1) is an adhesive resin, in the process of forming the thermally expandable base layer (Y1) from the resin composition (y-1), the adhesive resin is It suffices that the polymerizable compound undergoes a polymerization reaction, the resulting resin becomes a non-adhesive resin, and the thermally expandable substrate layer (Y1) becomes non-adhesive.
  • One of the resins may be used alone, or two or more of them may be used in combination.
  • the mass average molecular weight (Mw) of the resin is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000.
  • the resin may be a polymer having a single structural unit, or a copolymer having two or more structural units.
  • the form of the copolymer may be block copolymer, random copolymer or graft copolymer.
  • the resin contained in the resin composition (y-1) from the viewpoint of facilitating the formation of unevenness on the adhesive surface of the pressure-sensitive adhesive layer (X1) and from the viewpoint of improving the sheet shape retention after thermal expansion, It preferably contains one or more selected from the group consisting of acrylic urethane resins and olefin resins.
  • acrylic urethane resin As the acrylic urethane resin, the following acrylic urethane resin (U1) is preferable. • An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth)acrylic acid ester.
  • prepolymer means a compound obtained by polymerizing a monomer and capable of forming a polymer by further polymerization.
  • Urethane prepolymers (UP) include reaction products of polyols and polyvalent isocyanates. In addition, it is preferable that the urethane prepolymer (UP) is obtained by subjecting the urethane prepolymer (UP) to a chain extension reaction using a chain extension agent.
  • polyols used as raw materials for urethane prepolymers include alkylene-type polyols, ether-type polyols, ester-type polyols, esteramide-type polyols, ester/ether-type polyols, and carbonate-type polyols. These polyols may be used alone or in combination of two or more.
  • the polyol is preferably a diol, more preferably an ester-type diol, an alkylene-type diol or a carbonate-type diol, and still more preferably an ester-type diol or a carbonate-type diol.
  • ester diols include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol; ethylene glycol, propylene glycol, 1 or 2 or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; ,4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Condensation products of one or more selected from dicarboxylic acids such as hydrophthalic acid, hexahydroisophthalic acid, hexahydro
  • polyvalent isocyanates used as raw materials for urethane prepolymers include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
  • Polyvalent isocyanate may be used individually by 1 type, and may use 2 or more types together. Further, the polyvalent isocyanate may be a trimethylolpropane adduct-type modified product, a biuret-type modified product reacted with water, or an isocyanurate-type modified product containing an isocyanurate ring.
  • diisocyanates are preferred as polyvalent isocyanates, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2, 6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanates are more preferred.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6-tolylene diisocyanate 2,6-tolylene diisocyanate
  • HMDI hexamethylene diisocyanate
  • alicyclic diisocyanates are more preferred.
  • Alicyclic diisocyanates include, for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane Examples include diisocyanate, methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, and isophorone diisocyanate (IPDI) is preferred.
  • IPDI isophorone diisocyanate
  • the urethane prepolymer (UP) is preferably a linear urethane prepolymer having ethylenically unsaturated groups at both ends.
  • ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and allyl groups, and among these, (meth)acryloyl groups are preferred.
  • an NCO group at the end of the straight-chain urethane prepolymer obtained by reacting a diol with a diisocyanate compound and a hydroxyalkyl (meth) A method of reacting with acrylate can be mentioned.
  • the hydroxyalkyl (meth)acrylate to be reacted with the terminal NCO group include the same hydroxyalkyl (meth)acrylates as the monomer (a2′) described above.
  • An olefin resin is a polymer having at least structural units derived from an olefin monomer.
  • ⁇ -olefins having 2 to 8 carbon atoms are preferable, and specific examples include ethylene, propylene, butylene, isobutylene, 1-hexene, and the like. Among these, ethylene and propylene are preferred.
  • the olefin-based resin may be a modified olefin-based resin that has undergone one or more modifications selected from acid modification, hydroxyl modification, and acrylic modification.
  • Examples of the acid-modified olefin resin obtained by subjecting an olefin resin to acid modification include a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or its anhydride to an unmodified olefin resin. be done.
  • unsaturated carboxylic acids or anhydrides thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth)acrylic acid, maleic anhydride, itaconic anhydride, and anhydride.
  • glutaconic acid citraconic anhydride, aconitic anhydride, norbornenedicarboxylic anhydride, tetrahydrophthalic anhydride and the like.
  • One type of unsaturated carboxylic acid or its anhydride may be used alone, or two or more types may be used in combination.
  • acrylic-modified olefin-based resins obtained by subjecting olefin-based resins to acrylic modification include, for example, modification obtained by graft-polymerizing alkyl (meth)acrylates as side chains to unmodified olefin-based resins that are main chains. polymers.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1-20, more preferably 1-16, still more preferably 1-12.
  • alkyl (meth)acrylates include the same alkyl (meth)acrylates listed above as the monomer (a1′).
  • Examples of the hydroxyl group-modified olefin resin obtained by modifying the olefin resin with hydroxyl groups include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to an unmodified olefin resin that is the main chain.
  • the hydroxyl group-containing compound includes, for example, the same hydroxyl group-containing compounds as the monomer (a2′) described above.
  • the resin composition (y-1) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin within a range that does not impair the effects of the present invention.
  • resins examples include vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; Coalescence; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resins; polysulfone; polyetheretherketone; polyethersulfone; polyphenylene sulfide; ; fluorine-based resins and the like.
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate
  • polystyrene acrylonitrile-butadiene-styrene copolymer
  • Coalescence
  • the content of the resin other than the acrylic urethane resin and the olefin resin in the resin composition (y-1) is preferably small, and is not contained. is more preferable.
  • the resin composition (y-1) contains a resin other than the acrylic urethane resin and the olefin resin
  • the content thereof is the total amount (100% by mass) of the resin contained in the resin composition (y-1). , preferably less than 30% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, even more preferably less than 5% by mass, and even more preferably less than 1% by mass.
  • the resin composition (y-1) may contain additives for base materials, if necessary, to the extent that the effects of the present invention are not impaired.
  • base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, colorants, and the like.
  • the base material additives may be used alone or in combination of two or more.
  • the content of each base material additive is preferably 0.0001 to 0.0001 to 100 parts by mass of the resin independently. 20 parts by mass, more preferably 0.001 to 10 parts by mass.
  • the resin composition (y-1) may be diluted with a solvent.
  • the solvent include aromatic hydrocarbons such as toluene; esters such as ethyl acetate; ketones such as methyl ethyl ketone and acetone; and organic solvents such as alcohols such as isopropyl alcohol.
  • the pressure-sensitive adhesive layer (X1) contains thermally expandable particles, from the viewpoint of suppressing the expansion of the thermally expandable particles during the drying process after coating, the energy ray-polymerizable component and the thermally expandable It is preferable to form the thermally expandable substrate layer (Y1) by irradiating the solvent-free resin composition (y-1a) containing particles and containing no solvent with energy rays.
  • solvent-free resin composition (y-1a) As one aspect of the solvent-free resin composition (y-1a), an oligomer having an ethylenically unsaturated group with a mass average molecular weight (Mw) of 50,000 or less as an energy ray-polymerizable component (hereinafter simply referred to as "ethylenic (also referred to as “an unsaturated group-containing oligomer”), an energy ray-polymerizable monomer, and the above-described thermally expandable particles, and a resin composition containing no solvent.
  • Mw mass average molecular weight
  • the solvent-free resin composition (y-1a) does not contain a solvent, the energy ray-polymerizable monomer contributes to improving the plasticity of the oligomer having an ethylenically unsaturated group.
  • an oligomer having an ethylenically unsaturated group, an energy ray-polymerizable monomer, etc. are polymerized to form a thermally expandable base layer (Y1 ) is formed.
  • the ethylenically unsaturated group include those mentioned above, and among these, a (meth)acryloyl group is preferred.
  • the weight average molecular weight (Mw) of the oligomer having an ethylenically unsaturated group is 50,000 or less, preferably 1,000 to 50,000, more preferably 2,000 to 40,000, still more preferably 3,000. 000 to 35,000, more preferably 4,000 to 30,000.
  • the oligomer having an ethylenically unsaturated group among the resins contained in the above resin composition (y-1), those having an ethylenically unsaturated group with a weight average molecular weight (Mw) of 50,000 or less.
  • Mw weight average molecular weight
  • the urethane prepolymer (UP) described above is more preferable, and a linear urethane prepolymer having ethylenically unsaturated groups at both ends is even more preferable.
  • a modified olefinic resin having an ethylenically unsaturated group obtained by introducing an ethylenically unsaturated group into the above-described olefinic resin can also be used.
  • the total content of the oligomer having an ethylenically unsaturated group and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is the total amount (100 mass of the solvent-free resin composition (y-1a) %), preferably 70 to 99.5 mass%, more preferably 75 to 99.2 mass%, still more preferably 80 to 98.8 mass%, still more preferably 85 to 98.5 mass% be.
  • An energy ray-polymerizable monomer is a monomer having an energy ray-polymerizable functional group.
  • energy ray-polymerizable functional groups include ethylenically unsaturated groups such as (meth)acryloyl groups, vinyl groups, and allyl groups. Among these, a (meth)acryloyl group is preferred.
  • the energy ray-polymerizable monomer may be an energy ray-polymerizable monofunctional monomer having only one energy ray-polymerizable functional group, or an energy ray-polymerizable polyfunctional monomer having two or more energy ray-polymerizable functional groups.
  • Energy ray-polymerizable monofunctional monomers include, for example, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, cyclohexyl (meth)acrylate, alicyclic polymerizable compounds such as adamantane (meth)acrylate and tricyclodecane acrylate; aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate, and phenol ethylene oxide-modified acrylate; Examples thereof include heterocyclic polymerizable compounds such as N-vinylpyrrolidone and N-vinylcaprolactam.
  • the energy ray-polymerizable monomer may be used singly or in combination of two or more, or an energy ray-polymerizable monofunctional monomer and an energy ray-polymerizable polyfunctional monomer may be used in combination. good.
  • oligomer having an ethylenically unsaturated group and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is preferably 20/80 to 85/15, more preferably 25/75 to 80/20, still more preferably 30/70 to 75/25, in mass ratio.
  • the solvent-free resin composition (y-1a) preferably contains a photopolymerization initiator from the viewpoint of allowing the curing reaction to proceed sufficiently even when irradiated with relatively low-energy energy rays.
  • photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram.
  • a photoinitiator may be used individually by 1 type, and may use 2 or more types together.
  • the content of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01, with respect to the total amount (100 parts by mass) of the oligomer having an ethylenically unsaturated group and the energy ray-polymerizable monomer. to 4 parts by mass, more preferably 0.02 to 3 parts by mass.
  • the thickness of the thermally expandable substrate layer (Y1) before thermal expansion is preferably 15 to 250 ⁇ m, more preferably 50 to 225 ⁇ m, even more preferably 75 to 150 ⁇ m.
  • the thickness of the thermally expandable base layer (Y1) before thermal expansion is 15 ⁇ m or more, unevenness caused by the thermally expandable particles before thermal expansion tends to be difficult to appear on the surface of the pressure-sensitive adhesive layer (X1). It is easy to improve the peelability at the time of heat peeling.
  • the thickness of the thermally expandable substrate layer (Y1) before thermal expansion is 250 ⁇ m or less, the double-sided pressure-sensitive adhesive sheet tends to be excellent in handleability.
  • Non-thermally expandable base layer (Y2) examples include resins, metals, and paper materials.
  • resins include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyethersulfone; polyphenylene sulfide; polyimide resins such as polyetherimide and polyimide; polyamide resins; acrylic resins; Examples of metals include aluminum, tin, chromium, and titanium.
  • the paper material examples include thin paper, medium quality paper, fine paper, impregnated paper, coated paper, art paper, parchment paper, and glassine paper.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferred.
  • these forming materials may be composed of one type, or two or more types may be used in combination.
  • the non-thermally expandable base material layer (Y2) using a combination of two or more forming materials include those obtained by laminating a paper material with a thermoplastic resin such as polyethylene, a resin film containing a resin, or a sheet having a metal layer on its surface. Examples include those having a film formed thereon.
  • the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. and the like.
  • the non-thermally expandable base material layer (Y2) contains a resin
  • it may contain the above base material additives that can also be contained in the resin composition (y-1) together with the resin.
  • the storage modulus E'(23) of the non-thermally expandable substrate layer (Y2) at 23° C. is preferably 5.0 ⁇ 10 7 to 5.0 ⁇ 10 9 Pa, more preferably 5.0 ⁇ 10 8 to 4.5 ⁇ 10 9 Pa, more preferably 1.0 ⁇ 10 9 to 4.0 ⁇ 10 9 Pa.
  • the storage elastic modulus E′(23) of the non-thermally expandable base material layer (Y2) is 5.0 ⁇ 10 7 Pa or more, the deformation resistance of the double-sided PSA sheet tends to be easily improved.
  • the storage elastic modulus E′(23) of the non-thermally expandable base layer (Y2) is 5.0 ⁇ 10 9 Pa or less, the double-sided PSA sheet tends to be excellent in handleability.
  • the storage elastic modulus E'(23) of the non-thermally expandable base layer (Y2) means a value measured by the method described in Examples.
  • the thickness of the non-thermally expandable base layer (Y2) is preferably 5-500 ⁇ m, more preferably 15-300 ⁇ m, and still more preferably 20-200 ⁇ m.
  • the thickness of the non-thermally expandable substrate layer (Y2) is 5 ⁇ m or more, the deformation resistance of the double-sided PSA sheet tends to be easily improved.
  • the thickness of the non-thermally expandable base material layer (Y2) is 500 ⁇ m or less, the double-sided pressure-sensitive adhesive sheet tends to be excellent in handleability.
  • the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer as an outer layer on the other side of the double-sided pressure-sensitive adhesive sheet of the present embodiment, and is an energy ray-curable pressure-sensitive adhesive layer having the property of being cured by irradiation with energy rays. be.
  • the pressure-sensitive adhesive layer (X2) can be formed, for example, from a pressure-sensitive adhesive composition (x-2) containing an energy ray-polymerizable component.
  • the adhesive composition (x-2) contains an energy ray-polymerizable component.
  • the energy ray-polymerizable component it is preferable to contain an adhesive resin having an energy ray-polymerizable functional group (hereinafter also referred to as "energy ray-polymerizable adhesive resin").
  • the energy ray-polymerizable adhesive resin may not have adhesiveness by itself, and may express adhesiveness by adding a tackifier or a plasticizer.
  • Examples of the energy ray-polymerizable functional group possessed by the energy ray-polymerizable adhesive resin include the same groups as those described above. Among these, a (meth)acryloyl group is preferred.
  • the energy ray-polymerizable adhesive resin may be used alone or in combination of two or more.
  • the energy ray-polymerizable adhesive resin may have a single structural unit, or may be a copolymer having two or more structural units.
  • the form of the copolymer may be any of block copolymer, random copolymer and graft copolymer.
  • energy ray-polymerizable adhesive resins examples include acrylic resins, urethane-based resins, rubber-based resins, and silicone-based resins that have energy ray-polymerizable properties.
  • acrylic resins having energy ray polymerizability are preferred, and acrylic copolymers having energy ray polymerizability (hereinafter also referred to as “acrylic copolymer (A2)”) are more preferred.
  • the acrylic copolymer (A2) contains a structural unit derived from an alkyl (meth)acrylate having an alkyl group having 4 or more carbon atoms from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X2). is preferred.
  • Structural units derived from alkyl (meth)acrylates having an alkyl group with 4 or more carbon atoms may be used singly or in combination of two or more.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate having 4 or more carbon atoms in the alkyl group is preferably 4 to 12, more preferably 4 to 8, and still more preferably 4 to 6.
  • alkyl (meth)acrylates in which the alkyl group has 4 or more carbon atoms include butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, and nonyl (meth)acrylate.
  • butyl (meth)acrylate is preferred, and butyl acrylate is more preferred.
  • the content of the alkyl (meth)acrylate whose alkyl group has 4 or more carbon atoms is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, still more preferably 40 to 60% by mass.
  • the acrylic copolymer (A2) is a structural unit derived from an alkyl (meth)acrylate having an alkyl group having 4 or more carbon atoms. In addition, it preferably contains a structural unit derived from an alkyl (meth)acrylate having 1 to 3 carbon atoms in the alkyl group. Structural units derived from alkyl (meth)acrylates in which the alkyl group has 1 to 3 carbon atoms may be used singly or in combination of two or more.
  • alkyl (meth)acrylates having 1 to 3 carbon atoms in the alkyl group examples include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-propyl (meth)acrylate and the like. . Among these, methyl (meth)acrylate and ethyl (meth)acrylate are preferred, and methyl methacrylate and ethyl acrylate are more preferred.
  • the content of structural units derived from alkyl (meth)acrylates in which the alkyl group has 1 to 3 carbon atoms is preferably 1 in all structural units derived from acrylic monomers constituting the acrylic copolymer (A2). to 35% by mass, more preferably 5 to 30% by mass, and even more preferably 15 to 25% by mass.
  • the acrylic copolymer (A2) preferably further contains structural units derived from functional group-containing monomers.
  • the acrylic copolymer (A2) reacts with a functional group as a cross-linking starting point that reacts with a cross-linking agent, or with an ethylenically unsaturated group-containing compound to form an acrylic A functional group can be introduced that enables introduction of an ethylenically unsaturated group into the side chain of the system copolymer (A2).
  • the structural units derived from the functional group-containing monomers contained in the acrylic copolymer (A2) may be one type alone or two or more types.
  • Examples of functional group-containing monomers include the same hydroxyl group-containing monomers and carboxy group-containing monomers as the monomer (a2') described above. Among these, hydroxyl group-containing monomers are preferred, 2-hydroxyethyl (meth)acrylate is more preferred, and 2-hydroxyethyl acrylate is even more preferred.
  • the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 40% by mass, more preferably 10 to 35% by mass, in all the structural units derived from the acrylic monomer constituting the acrylic copolymer (A2). %, more preferably 20 to 30 mass %.
  • the acrylic copolymer (A2) may contain, in addition to the above structural units, structural units derived from other monomers copolymerizable with acrylic monomers.
  • the structural units derived from other monomers contained in the acrylic copolymer (A2) may be of one type alone or two or more types.
  • the acrylic copolymer (A2) is preferably one into which an ethylenically unsaturated group is introduced in order to impart energy ray curability.
  • the ethylenically unsaturated group is, for example, a functional group of the acrylic copolymer (A2) containing a structural unit derived from a functional group-containing monomer, a reactive substituent having reactivity with the functional group, and an ethylenically unsaturated group. It can be introduced by reacting with a reactive substituent of a compound having a saturated group (hereinafter also referred to as "unsaturated group-containing compound").
  • the unsaturated group-containing compounds may be used singly or in combination of two or more.
  • Examples of the ethylenically unsaturated group possessed by the unsaturated group-containing compound include those mentioned above, and among these, a (meth)acryloyl group is preferred.
  • Examples of reactive substituents that the unsaturated group-containing compound has include an isocyanate group and a glycidyl group.
  • Examples of unsaturated group-containing compounds include 2-(meth)acryloyloxyethyl isocyanate, (meth)acryloylisocyanate, glycidyl (meth)acrylate and the like. Among these, 2-(meth)acryloyloxyethyl isocyanate is preferred, and 2-methacryloyloxyethyl isocyanate is more preferred.
  • the total number of functional groups in the acrylic copolymer (A2) is The ratio of functional groups that react with the unsaturated group-containing compound is preferably 30 to 96 mol%, more preferably 60 to 94 mol%, still more preferably 80 to 92 mol%.
  • the ratio of the functional group that reacts with the unsaturated group-containing compound is within the above range, it is easy to adjust the energy ray curability imparted to the acrylic copolymer (A2), and the unsaturated group-containing compound and The non-reacted functional groups can be reacted with a cross-linking agent to cross-link the acrylic copolymer (A2).
  • the mass average molecular weight (Mw) of the acrylic copolymer (A2) is preferably 200,000 to 1,500,000, more preferably 300,000 to 1,000,000, still more preferably 400,000 to 600,000.
  • Mw mass average molecular weight of the acrylic copolymer
  • the content of the acrylic copolymer (A2) in the adhesive composition (x-2) is preferably 60 with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-2). ⁇ 99% by mass, more preferably 70 to 95% by mass, still more preferably 80 to 90% by mass.
  • the pressure-sensitive adhesive composition (x-2) may further contain an energy ray-curable compound other than the above components for the purpose of adjusting the cohesive force of the pressure-sensitive adhesive layer (X2).
  • the energy ray-curable compounds may be used singly or in combination of two or more.
  • Energy ray-curable compounds include, for example, monomers or oligomers that can be polymerized and cured by energy ray irradiation.
  • Examples of energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and 1,4-butylene glycol.
  • Polyvalent (meth)acrylate monomers such as di(meth)acrylate and 1,6-hexanediol (meth)acrylate; urethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, epoxy (meth)acrylate oligomers such as acrylate; Among these, urethane (meth)acrylate is preferred.
  • Urethane (meth)acrylate is preferably polyfunctional urethane (meth)acrylate.
  • the content of the energy ray-curable compound is preferably 1 to 30 mass parts with respect to 100 parts by mass of the energy ray-polymerizable adhesive resin. parts, more preferably 5 to 20 parts by mass, still more preferably 8 to 15 parts by mass.
  • the pressure-sensitive adhesive composition (x-2) preferably contains a photopolymerization initiator from the viewpoint of allowing the curing reaction to proceed sufficiently even when irradiated with relatively low-energy energy rays.
  • the photopolymerization initiator includes, for example, the same photopolymerization initiators mentioned in the description of the solvent-free resin composition (y-1a). Among these, 2,2-dimethoxy-2-phenylacetophenone is preferred.
  • a photoinitiator may be used individually by 1 type, and may use 2 or more types together.
  • the content of the photopolymerization initiator in the adhesive composition (x-2) is preferably 0.01 to 10 parts by mass, more preferably 0 parts by mass, with respect to 100 parts by mass of the total amount of the energy ray-polymerizable adhesive resin. 0.03 to 5 parts by mass, more preferably 0.05 to 3 parts by mass.
  • the adhesive composition (x-2) preferably further contains a cross-linking agent.
  • the cross-linking agent includes, for example, the same cross-linking agents as mentioned in the description of the pressure-sensitive adhesive composition (x-1). Among these, trimethylolpropane adduct-type modified polyisocyanate compounds are preferred, trimethylolpropane adduct-type modified aromatic polyisocyanate compounds are more preferred, and trimethylolpropane adduct-type modified tolylene diisocyanate is even more preferred. .
  • the content of the cross-linking agent in the pressure-sensitive adhesive composition (x-2) is appropriately adjusted according to the number of functional groups possessed by the energy-ray-polymerizable adhesive resin. 0.01 to 10 parts by mass, more preferably 0.03 to 7 parts by mass, and still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x-2) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the tackifier includes, for example, the same tackifiers mentioned in the description of the adhesive composition (x-1).
  • the pressure-sensitive adhesive composition (x-2) may contain additives for pressure-sensitive adhesives used in general pressure-sensitive adhesives, in addition to the additives described above, within a range that does not impair the effects of the present invention.
  • the adhesive additive for example, the same ones as the adhesive additive mentioned in the explanation of the adhesive composition (x-1) can be mentioned.
  • the thickness of the pressure-sensitive adhesive layer (X2) is preferably 5-150 ⁇ m, more preferably 8-100 ⁇ m, even more preferably 12-70 ⁇ m, still more preferably 15-50 ⁇ m. When the thickness of the pressure-sensitive adhesive layer (X2) is within the above range, there is a tendency that the workpiece can be well fixed.
  • ⁇ Total light transmittance of double-sided adhesive sheet> As described above, in the production method of the present embodiment, when the pressure-sensitive adhesive layer (X2) is cured, it is difficult to be affected by the decrease in energy ray transmittance due to the expanded thermally expandable layer. Therefore, according to the manufacturing method of the present embodiment, for example, the content of the thermally expandable particles in the thermally expandable layer is high, or the thickness of the thermally expandable layer is large, and the energy generated by the thermally expandable layer after expansion Even in the case of using a double-sided PSA sheet with a large decrease in line transmittance, the PSA layer (X2) has a feature of obtaining good curability.
  • the laminate for total light transmittance measurement (L A ) obtained by heating the laminate for 1 minute at a temperature of expansion start temperature (t) of the thermally expandable particles + 22 ° C. Wavelength 380 nm in the thickness direction
  • the total light transmittance (T A ) of, for example, may be less than 60%, may be less than 50%, may be less than 40%, may be less than 30%, may be less than 20 %, may be less than 15%, or may be less than 10%.
  • the characteristic of the production method of the present embodiment that good curability of the pressure-sensitive adhesive layer (X2) can be obtained is effective.
  • the total light transmittance (T A ) of the double-sided PSA sheet it is preferable that the total light transmittance (T A ) of the double-sided PSA sheet is low.
  • a double-sided PSA sheet having a light transmittance (T A ) of less than 20% is used.
  • the thermally expandable layer has a higher content of thermally expandable particles, or the thermally expandable layer has a higher content of thermally expandable particles.
  • a double-sided pressure-sensitive adhesive sheet when a material having low energy ray transmittance is selected for the substrate layer (Y) or the pressure-sensitive adhesive layer (X1) can be used.
  • the method for producing the double-sided pressure-sensitive adhesive sheet of the present embodiment is not particularly limited, and for example, the double-sided pressure-sensitive adhesive sheet can be produced by a method including a step of forming the pressure-sensitive adhesive layer (X1), a step of forming the pressure-sensitive adhesive layer (X2), and the like. .
  • the order of these steps is not particularly limited, and they may be performed simultaneously.
  • the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2) constitute, for example, the pressure-sensitive adhesive composition (x-1) or the pressure-sensitive adhesive composition (x-2), the release sheet or the base layer (Y). It can be formed by coating on a substrate and then drying. When the pressure-sensitive adhesive layer (X1) is formed using a polymerizable composition, the polymerizable composition is applied onto a release sheet or a substrate constituting the substrate layer (Y), and then irradiated with energy rays. Thus, the pressure-sensitive adhesive layer (X1) can be formed. Examples of methods for applying the adhesive composition (x-1) and the adhesive composition (x-2) include spin coating, spray coating, bar coating, knife coating, roll coating, and blade coating. method, die coating method, gravure coating method, and the like.
  • the pressure-sensitive adhesive layer (X1) or the pressure-sensitive adhesive layer (X2) formed on the release sheet is formed by, for example, attaching the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2) to each other according to the configuration of the desired double-sided pressure-sensitive adhesive sheet.
  • the adhesive layer (X1) may be attached to one surface of the substrate and the adhesive layer (X2) may be attached to the other surface of the substrate.
  • FIGS. 3 to 9 show an embodiment in which a double-sided pressure-sensitive adhesive sheet 1c is used as a double-sided pressure-sensitive adhesive sheet, and a semiconductor wafer W, which is an object to be processed, is ground and singulated by a stealth dicing method. is not limited to the following embodiments.
  • Step 1 is a process object attaching step of attaching a workpiece to the adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support attaching step of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. And, it is a step including.
  • the support is attached to the pressure-sensitive adhesive layer (X1) whose adhesion is greatly reduced by heating.
  • the double-sided pressure-sensitive adhesive sheet and the support can be easily separated without bending the two.
  • workpieces examples include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, LED elements, sapphire substrates, glass substrates, displays, and panel substrates.
  • the manufacturing method of the present embodiment is suitable for processing semiconductor wafers.
  • semiconductor wafers include silicon wafers; wafers of gallium arsenide, silicon carbide, lithium tantalate, lithium niobate, gallium nitride, indium phosphide, and the like.
  • the thickness of a semiconductor wafer before processing is typically 500-1,000 ⁇ m.
  • the material of the support may be appropriately selected depending on the type of object to be processed, the details of processing, etc., and considering the required properties such as mechanical strength and heat resistance.
  • Materials of the support include, for example, metallic materials such as SUS; nonmetallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, polyamideimide resins, and the like. resin materials; compound materials such as glass epoxy resins; among these, SUS, glass, and silicon wafers are preferable.
  • Engineering plastics include, for example, nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
  • Super engineering plastics include, for example, polyphenylene sulfide (PPS), polyethersulfone (PES), polyetheretherketone (PEEK), and the like.
  • PPS polyphenylene sulfide
  • PES polyethersulfone
  • PEEK polyetheretherketone
  • the support is A material having energy ray transparency is preferred.
  • the support having energy ray transparency include glass and resin materials.
  • examples of the support having low energy ray transmittance include metal materials and silicon wafers.
  • the support is preferably attached to the entire adhesive surface of the adhesive layer (X1). Therefore, the area of the surface of the support on the adhesive surface of the adhesive layer (X1) is preferably equal to or greater than the area of the adhesive surface of the adhesive layer (X1). Further, the surface of the support on the side to be attached to the adhesive surface of the adhesive layer (X1) is preferably planar. Although the shape of the support is not particularly limited, it is preferably plate-like. The thickness of the support may be appropriately selected in consideration of the required properties, preferably 20 ⁇ m or more and 50 mm or less, more preferably 60 ⁇ m or more and 20 mm or less.
  • FIG. 3 shows a cross-sectional view in which the semiconductor wafer W is attached to the adhesive layer (X2) of the double-sided adhesive sheet 1c, and the support 2 is attached to the adhesive layer (X1).
  • the semiconductor wafer W is attached so that the circuit surface W1 faces the adhesive layer (X2).
  • Step 2 is a step of processing the surface of the object opposite to the surface attached to the pressure-sensitive adhesive layer (X2) while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet. is.
  • Step 2 preferably includes a step of performing one or more processes selected from grinding and singulation on the object to be processed (hereinafter also referred to as “shape processing step”), and grinds and singulates the object to be processed. It is more preferable to include the step of fragmenting.
  • shape processing process for example, grinding processing using a grinder, etc.; singulation processing by blade dicing method, laser dicing method, plasma dicing method; blade tip dicing method (DBG; Dicing Before Grinding), stealth tip dicing method (SDBG) : Grinding and singulation by Stealth Dicing Before Grinding; Among these, grinding and singulation by a blade tip dicing method or a stealth tip dicing method are preferable.
  • grooves are formed in advance on one surface of an object to be processed to a depth shallower than the thickness of the object to be divided lines. It is a method of separating into individual pieces. The grooves reached by the ground surface become cuts penetrating the object to be cut into pieces along the dividing line.
  • the pre-formed grooves can be formed, for example, by dicing using a wafer dicing machine equipped with a dicing blade. If the workpiece is a semiconductor wafer, the grooves are formed in the circuit surface of the semiconductor wafer.
  • a modified region which is a line to be divided, is formed inside an object to be processed such as a semiconductor wafer by irradiating it with a laser beam, and a grinding process is performed to make the object to be processed into pieces while thinning them.
  • the method Specifically, while the object to be processed having the modified region is ground and thinned, the pressure applied to the object at that time is applied to the adhesive layer of the object to be adhered with the modified region as a starting point. The crack is extended toward and the object to be processed is separated into individual pieces along the planned division line.
  • the grinding thickness after forming the modified region may be a thickness that reaches the modified region. It may be broken by processing pressure of a grinding wheel or the like.
  • the modified region is a portion embrittled by multiphoton absorption, and is formed by laser beam irradiation focused inside the object to be processed.
  • the incident surface of the laser beam is not particularly limited, and the object may be irradiated with the laser beam through the double-sided adhesive sheet.
  • step 2 includes a step of grinding and singulating the object, as a preliminary step for singulating the object, an adhesive layer ( X2) Forming a modified region, which is a line to be divided, inside the object before the step of forming a groove, which is a line to be divided, on the surface to be attached to X2), or the step of grinding and singulating. preferably further comprising the steps of: Then, in the step of grinding and singulating the object to be processed, the object to be processed is attached to the adhesive layer (X2) of the object to be processed in a state where the object is supported by the support via the double-sided adhesive sheet.
  • the step is a step of grinding the surface on the opposite side of the surface and dividing the workpiece along the planned division lines with the grooves or the modified regions as starting points to individualize the workpiece.
  • the method for forming the groove and the method for forming the modified region are as described above.
  • the formation of the grooves is performed before attaching the workpiece to the double-sided pressure-sensitive adhesive sheet of the present embodiment.
  • the formation of the modified region may be performed before or after the object to be processed is attached to the double-sided pressure-sensitive adhesive sheet of the present embodiment. From the viewpoint that the object can be held on the support from the formation of the modified region to the separation into individual pieces, it is preferable to carry out the adhesion after the application.
  • the thickness of the object to be processed after grinding is preferably 5 to 100 ⁇ m, more preferably 10 to 45 ⁇ m.
  • the size of the obtained chips in plan view is preferably less than 600 mm 2 , more preferably less than 400 mm 2 , More preferably less than 300 mm 2 .
  • planar view means seeing in a thickness direction.
  • the shape of the chip in plan view may be a square or an elongated shape such as a rectangle.
  • FIG. 4 shows a step of forming a plurality of modified regions 4 on the semiconductor wafer W adhered to the adhesive layer (X2) using the laser beam irradiation device 3.
  • a laser beam is irradiated from the back surface W2 side of the semiconductor wafer W, and a plurality of modified regions 4 are formed inside the semiconductor wafer W at substantially equal intervals.
  • FIG. 5(a) and 5(b) show cross-sectional views for explaining the process of separating the semiconductor wafer W into a plurality of semiconductor chips CP while thinning it.
  • the rear surface W2 of the semiconductor wafer W on which the modified region 4 is formed is ground by a grinder 5.
  • the pressure applied to the semiconductor wafer W cuts the semiconductor wafer W from the modified region 4 as a starting point. give rise to
  • FIG. 5B a plurality of semiconductor chips CP obtained by thinning and singulating the semiconductor wafer W are obtained.
  • the support 2 is preferably fixed on a fixed table such as a chuck table.
  • Step 2 includes, if necessary, a step of applying a semiconductor tape to the surface of the object opposite to the adhesive layer (X2) (hereinafter also referred to as a "semiconductor tape applying step").
  • semiconductor tapes include known semiconductor tapes such as die attach films and dicing tapes. Only one type of semiconductor tape may be applied, or two or more types may be applied.
  • the semiconductor tape is preferably attached to the surface of the object to be processed on the side opposite to the adhesive layer (X2) after the shape processing step. Later, it is more preferable to attach the adhesive layer (X2) to the surface of the individualized object opposite to the adhesive layer (X2).
  • FIG. 6 shows a cross-sectional view in which a thermosetting film 6 having a support sheet 7 is attached as a die attach film to the surface of a plurality of semiconductor chips CP opposite to the adhesive layer (X2). It is
  • the manufacturing method of the present embodiment has an energy ray irradiation step at least at some time after the step of sticking an object to be processed in Step 1 and before Step 3.
  • the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet is irradiated with energy rays to cure the pressure-sensitive adhesive layer (X2).
  • the semiconductor wafer which is the object to be processed, itself has low energy ray transparency, or even if it has energy ray transparency, the energy ray is transmitted by the circuit wiring, electrodes, etc. provided on the object to be processed. Permeation is blocked.
  • the double-sided pressure-sensitive adhesive sheet is irradiated with energy rays so as to face the surface opposite to the surface to which the object to be processed is attached.
  • the energy beam irradiation step is performed before step 3, the energy beam irradiated toward the adhesive layer (X2) can be applied to the adhesive even through the thermally expandable layer. It is possible to reach layer (X2).
  • the energy beam irradiation step may be performed only once, or may be performed in multiple steps.
  • the timing of performing the energy ray irradiation step is not particularly limited as long as it is after the process of attaching the workpiece in Step 1 and before Step 3, and examples thereof include the following timings (a) to (c). (a) after the step of attaching the workpiece in step 1 and at least at any time before step 2 (b) at any time within step 2 (c) after step 2 and step 3 Before
  • the semiconductor wafer W is still singulated into a plurality of semiconductor chips CP in the energy beam irradiation step. It has not been.
  • the energy beam irradiation step is performed after the semiconductor wafer W is singulated into a plurality of semiconductor chips CP, the energy beams pass through the gaps between the plurality of semiconductor chips CP and the semiconductor tape is irradiated with the energy beams. If the adhesive has energy ray reactivity, the reaction may proceed. This may cause problems such as peeling of the plurality of semiconductor chips CP from the semiconductor tape.
  • step 1 is a step of performing the support sticking step after the work object sticking step
  • step 1 is after the work object sticking step and before the support sticking step
  • step 1 is after the support sticking step or the supporting step.
  • step 2 includes a singulation preliminary step
  • step 2 includes a shape processing step and a shape processing step. After the shape processing step and before the semiconductor tape applying step when the subsequent semiconductor tape applying step is included
  • step 2 includes a step of grinding the object to be processed as a shape processing step, and the energy beam irradiation step is performed during at least one of the periods (a) and (b1), i.e., grinding the object to be processed.
  • the energy beam irradiation step is performed before the step, the pressure-sensitive adhesive layer (X2) attached to the object is hardened and has a high elastic modulus when the object is ground. Therefore, sinking, vibration, movement, etc. of the object to be processed during grinding can be effectively suppressed, and the machining accuracy of the object to be processed can be improved. Specifically, it is possible to suppress variations in the thickness of the workpiece thinned by grinding, chipping during singulation, and the like.
  • the vibration caused by the cured adhesive layer (X2) during transportation can be effectively suppressed, so damage to the workpiece can be suppressed.
  • the adhesive layer (X2) is reduced in adhesive strength by performing the energy beam irradiation step, but it is sufficient for processing in which force is applied in the shearing direction or the pressing direction, such as grinding and singulation. can exert a strong holding power.
  • the energy ray irradiation step is performed during the period (a1), since the support is not attached during the energy ray irradiation, a support having low energy ray transmittance can be selected.
  • the energy ray irradiation step is performed after the support attachment step of step 1. , and at least some time before step 3, energy rays may be irradiated from the support side.
  • the thermally expandable particles of the thermally expandable layer may unintentionally expand due to reaction heat or the like generated at that time.
  • a heat having a low expansion start temperature (t) is used to suppress thermal change of the semiconductor tape during thermal peeling.
  • Expandable particles may be used. In that case, the unintended expansion described above tends to occur easily.
  • a double-sided PSA sheet with expanded thermally expandable particles may unintentionally peel off from the support before step 3.
  • the degree of expansion of the thermally expandable particles may become uneven depending on the area, making it difficult to process.
  • the thickness accuracy of the object after grinding is lowered, and cracks, chipping, etc., may occur in the object to be processed.
  • non-uniformity in the thickness of the double-sided pressure-sensitive adhesive sheet may affect the accuracy of the laser irradiation position.
  • the temperature of the thermally expandable layer is the expansion start temperature (t) of the thermally expandable particles.
  • the fact that the thermally expandable particles are not expanded can be confirmed, for example, by the fact that the thickness of the thermally expandable layer does not change before and after the energy beam irradiation step. can.
  • the temperature not exceeding 5 ° C. lower than the expansion start temperature (t) of the thermally expandable particles is, for example, the [Energy beam irradiation step during the energy beam irradiation step of the example described later. Temperature Measurement of Adhesive Sheet].
  • Methods for suppressing the expansion of the thermally expandable particles during the energy beam irradiation step include, for example, a method of performing the energy beam irradiation step while cooling the double-sided adhesive sheet, a method of adjusting the light intensity of the energy beam, and the like. is mentioned.
  • Examples of the method of performing cooling while performing cooling include, for example, a method in which the cooling is performed by lowering the temperature of the atmosphere in which the double-sided pressure-sensitive adhesive sheet exists, and a method in which a heat conductor is directly or indirectly added to the double-sided pressure-sensitive adhesive sheet as the cooling. Examples include a method of performing a process of bringing them into contact with each other.
  • the step of irradiating an energy ray, in which the temperature of the atmosphere in which the double-sided pressure-sensitive adhesive sheet exists is lowered, is a step performed in a chamber filled with gas, and a step satisfying the following requirement (I) or (II). preferable.
  • the energy beam irradiation step is a step of replacing at least part of the gas filled in the chamber with gas supplied from outside the chamber during the energy beam irradiation step.
  • a cycle of irradiating one double-sided pressure-sensitive adhesive sheet with an energy beam and then starting irradiation of another double-sided pressure-sensitive adhesive sheet with an energy beam is repeated to obtain a plurality of double-sided pressure-sensitive adhesive sheets.
  • the temperature of the atmosphere in the chamber can be lowered, thereby cooling the double-sided PSA sheet.
  • the gas inside the chamber and the gas supplied from outside the chamber may be air or an inert gas such as nitrogen or argon. A gas is preferred, and nitrogen is more preferred.
  • the temperature of the gas supplied from outside the chamber may be lower than the temperature of the atmosphere inside the chamber, and may be, for example, room temperature or may be cooled below room temperature.
  • gas replacement may be performed continuously or intermittently during energy beam irradiation.
  • the timing of the gas replacement cycle is not particularly limited, and may be performed periodically, or may be performed irregularly depending on the temperature of the atmosphere in the chamber. It is preferable to do this every time.
  • the pressure-sensitive adhesive layer (X2) of the object to be processed attached to the pressure-sensitive adhesive layer (X2) is A step of irradiating the energy beam with a heat conductor in contact with the opposite surface.
  • the heat conductor may have an artificial cooling mechanism such as circulating a coolant inside, or it may not have an artificial cooling mechanism. good too. Even if the heat conductor itself is not intentionally cooled, the heat absorbed from the contact surface with the double-sided pressure-sensitive adhesive sheet can be naturally radiated from the surface of the heat conductor itself, thereby producing a cooling effect.
  • the material of the heat conductor is not particularly limited, metals such as copper, aluminum, iron, and stainless steel are preferable from the viewpoint of thermal conductivity. Further, heat radiation means such as heat radiation fins may be provided.
  • the light intensity may be appropriately selected so that the temperature of the double-sided pressure-sensitive adhesive sheet is within a range in which the thermally expandable particles do not expand. Just do it.
  • the amount of light at a wavelength of 365 nm is preferably 50 to 1,000 mJ/cm 2 from the viewpoint of curing the pressure-sensitive adhesive layer (X2) while suppressing temperature rise of the double-sided pressure-sensitive adhesive sheet. , more preferably 100 to 900 mJ/cm 2 , still more preferably 300 to 850 mJ/cm 2 .
  • the temperature rise of the double-sided pressure-sensitive adhesive sheet can be suppressed by performing energy beam irradiation in multiple times.
  • LED-UV is preferable from the viewpoint that it is easy to suppress the temperature rise of the double-sided pressure-sensitive adhesive sheet.
  • a reflector when irradiating an ultraviolet-ray, as a reflector, well-known reflectors, such as an aluminum mirror and a cold mirror, can be used, for example.
  • a cold mirror is preferable from the viewpoint that it is easy to suppress the temperature rise of the double-sided pressure-sensitive adhesive sheet.
  • an ultraviolet light source such as LED-UV, which has excellent straightness, the reflector may not be used.
  • Two or more methods for suppressing the expansion of the thermally expandable particles during the energy beam irradiation step may be employed in combination.
  • the light intensity of the energy rays may be adjusted while performing a process of lowering the temperature of the atmosphere in which the double-sided pressure-sensitive adhesive sheet exists. It is preferable to suppress the temperature rise of the thermally expandable layer by adopting these means, etc., but the temperature of the thermally expandable layer preferably does not exceed 70°C, more preferably does not exceed 60°C.
  • the temperature of the thermally expandable layer during energy beam irradiation is usually maintained at 5°C or higher, preferably 10°C or higher.
  • Step 3 is a step of heating the double-sided pressure-sensitive adhesive sheet to the expansion start temperature (t) of the thermally expandable particles or higher to separate the pressure-sensitive adhesive layer (X1) from the support.
  • FIG. 7 shows a cross-sectional view for explaining the process of heating the double-sided pressure-sensitive adhesive sheet 1c to separate the pressure-sensitive adhesive layer (X1) from the support 2. As shown in FIG.
  • the heating temperature in step 3 is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, preferably "a temperature higher than the expansion start temperature (t)", more preferably “expansion start temperature (t) + 2°C” or higher. More preferably, it is “expansion start temperature (t) + 4°C” or higher, and still more preferably “expansion start temperature (t) + 5°C” or higher.
  • the heating temperature in step 3 is preferably “expansion start temperature (t) + 50 ° C.” or less, more preferably “expansion start temperature ( t) + 40°C” or less, more preferably “expansion start temperature (t) + 20°C” or less.
  • the heating temperature in step 3 is preferably less than 125°C, more preferably 120°C or less, and still more preferably 115°C within a range equal to or higher than the expansion start temperature (t). Below, more preferably 110° C. or less, still more preferably 105° C. or less.
  • Step 4 is a step of separating the pressure-sensitive adhesive layer (X2) and the object to be processed. Since the pressure-sensitive adhesive layer (X2) is cured by the energy ray irradiation process and its adhesive strength is lowered, it can be easily peeled off from the object to be processed by a known peeling means.
  • FIG. 8 shows a cross-sectional view for explaining the step of separating the adhesive layer (X2) and the plurality of semiconductor chips CP.
  • the obtained thermosetting film 6 to which the plurality of semiconductor chips CP are attached is preferably divided into the same shape as the semiconductor chips CP to obtain the semiconductor chips CP with the thermosetting film 6 .
  • a method for dividing the thermosetting film 6 for example, a method such as laser dicing using a laser beam, expansion, or fusion cutting can be applied.
  • FIG. 9 shows semiconductor chips CP with thermosetting films 6 that are divided on the support sheet 7 in the same shape as the semiconductor chips CP.
  • the semiconductor chip CP with the thermosetting film 6 on the support sheet 7 is further subjected to an expansion process or the like for widening the gap between the semiconductor chips CP as necessary, and then picked up and placed on the thermosetting film 6 side. is attached (die attached) to the substrate from the After that, the semiconductor chip CP and the substrate can be fixed by thermosetting the thermosetting film 6 .
  • the present invention will be specifically described by the following examples, but the present invention is not limited to the following examples.
  • the physical property value in each example is the value measured by the following method.
  • thermocouple for temperature measurement was placed on the surface of the pressure-sensitive adhesive sheet opposite to the surface bonded to the silicon wafer. The installation position of the thermocouple was set at the center of the circular adhesive sheet in plan view of the adhesive sheet. Next, using "RAD-2010m/12" manufactured by Lintec Co., Ltd.
  • the pressure-sensitive adhesive sheet is irradiated with ultraviolet rays at an illuminance of 230 mW/cm 2 at a wavelength of 365 nm and a light amount (at a wavelength of 365 nm) shown in Table 1. After that, the temperature of the adhesive sheet was measured.
  • the UV lamp attached to the ultraviolet irradiation device was a high-pressure mercury lamp, and the reflector was an aluminum mirror.
  • Reference example 2 In Reference Example 1, the pressure-sensitive adhesive sheet was irradiated with ultraviolet rays and the temperature of the pressure-sensitive adhesive sheet was measured in the same manner as in Reference Example 1, except that the reflector was changed to a cold mirror. Table 1 shows the results.
  • Reference example 3 In Reference Example 1, the procedure was the same as in Reference Example 1, except that the ultraviolet irradiation device was changed to an LED-UV lamp having a selective light intensity at 365 nm, and the illuminance was changed to 2,000 mW/cm 2 .
  • the pressure-sensitive adhesive sheet was irradiated with ultraviolet rays, and the temperature of the pressure-sensitive adhesive sheet was measured. Note that the LED-UV lamp does not have a reflector because the emitted ultraviolet rays travel straight. Table 1 shows the results.
  • the temperature of the adhesive sheet increases as the amount of ultraviolet light irradiated to the energy ray-curable adhesive layer increases. Further, by comparing Reference Examples 1 to 3, it can be seen that the cold mirror suppresses the temperature rise of the adhesive sheet more than the aluminum mirror, and the LED-UV lamp suppresses the temperature rise more than the high-pressure mercury lamp.
  • MOI 2-methacryloy
  • Isocyanate-based cross-linking agent ⁇ Isocyanate-based cross-linking agent (i): manufactured by Tosoh Corporation, product name "Coronate (registered trademark) HX", isocyanurate-type modified form of hexamethylene diisocyanate, solid content concentration: 100% by mass ⁇ Isocyanate cross-linking agent (ii): manufactured by Tosoh Corporation, product name “Coronate (registered trademark) L", solution containing trimethylolpropane-modified tolylene diisocyanate, solid content concentration: 75% by mass
  • Photoinitiator - Photoinitiator (i): bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide - Photoinitiator (ii): 1-hydroxycyclohexylphenyl ketone
  • a terminal isocyanate urethane prepolymer obtained by reacting an ester diol and isophorone diisocyanate (IPDI) is reacted with 2-hydroxyethyl acrylate to form an oligomer having a mass average molecular weight (Mw) of 5,000 at both ends.
  • a linear urethane prepolymer having an ethylenically unsaturated group (an oligomer having an ethylenically unsaturated group) was obtained.
  • thermally expandable particles are added to the energy ray-curable composition so that the content of the thermally expandable particles is 30% by mass with respect to the total mass (100% by mass) of the resulting thermally expandable substrate layer (Y1).
  • a solvent-free resin composition (y-1a) was prepared by blending and containing no solvent.
  • a PET film manufactured by Toyobo Co., Ltd., product name “Cosmoshine (registered trademark) A4300”, thickness: 50 ⁇ m
  • the non-solvent resin composition (y-1a) was applied to one side of the PET film so that the thermally expandable substrate layer (Y1) formed had a thickness of 100 ⁇ m to form a coating film.
  • the laminate for total light transmittance measurement (L B ) prepared in the same manner as above was heated so that the glass plate was on the side in contact with the hot plate and the double-sided adhesive sheet was on the side not in contact with the hot plate. It was placed on a plate and heated at 110° C. (that is, 88° C.+22° C., which is the expansion start temperature (t) of the thermally expandable particles) for 1 minute.
  • a laminate for total light transmittance measurement (L A ) in which the thermally expanded double-sided pressure-sensitive adhesive sheet and the glass plate were laminated was produced.
  • the laminate for total light transmittance measurement (L A ) and the laminate for total light transmittance measurement (L B ) prepared above as measurement samples under the above conditions, the light incident surface is the pressure-sensitive adhesive layer (X1 ) side, the total light transmittance at a wavelength of 380 nm in the thickness direction of the double-sided pressure-sensitive adhesive sheet was measured.
  • the value of the total light transmittance (T B ) of the laminate for total light transmittance measurement (L B ) in which the double-sided pressure-sensitive adhesive sheet and the glass plate before thermal expansion were laminated was 40.1%.
  • the value of the total light transmittance (T A ) of the laminate for total light transmittance measurement (L A ) in which the double-sided pressure-sensitive adhesive sheet and the glass plate were laminated after expansion was 15.2 % . From the above results, it can be seen that the double-sided pressure-sensitive adhesive sheet of Production Example 1 has a significantly reduced UV transmittance after being peeled off by heating. Therefore, even if the pressure-sensitive adhesive layer (X2) is irradiated with ultraviolet rays through the thermally expandable layer after the thermal peeling, it is difficult to sufficiently cure the pressure-sensitive adhesive layer (X2).
  • the pressure-sensitive adhesive layer (X2) Since the expansion of the thermally expandable layer is suppressed when the adhesive layer (X2) is irradiated with ultraviolet rays, it is possible to sufficiently cure the pressure-sensitive adhesive layer (X2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

The present invention relates to a method for producing a semiconductor device, the method using a double-sided adhesive sheet which has at least an adhesive layer (X1) that serves as the one surface-side outer layer and an adhesive layer (X2) that serves as the other surface-side outer layer, wherein the adhesive layer (X2) is an energy ray-curable adhesive layer and at least one of the layers other than the adhesive layer (X2) is a thermally expandable layer that contains thermally expandable particles. This method for producing a semiconductor device comprises specific steps 1 to 4 in this order, while comprising an energy ray irradiation step at a specific timing.

Description

半導体装置の製造方法Semiconductor device manufacturing method
 本発明は、半導体装置の製造方法に関する。 The present invention relates to a method of manufacturing a semiconductor device.
 半導体装置の製造過程において、半導体ウエハは、研削によって厚さを薄くする研削工程、切断分離して個片化する個片化工程等を経て、半導体チップに加工される。このとき、半導体ウエハは、仮固定用シートに仮固定された状態で所定の加工が施される。所定の加工を施して得られた半導体チップは、仮固定用シートから分離された後、必要に応じて、半導体チップ同士の間隔を広げるエキスパンド工程、間隔を広げた複数の半導体チップを配列させる再配列工程、半導体チップの表裏を反転させる反転工程等が適宜施された後、基板に実装される。上記各工程においても、それぞれの用途に適した仮固定用シートを使用することができる。 In the manufacturing process of semiconductor devices, semiconductor wafers are processed into semiconductor chips through a grinding process to reduce the thickness by grinding and a singulation process to cut and separate into individual pieces. At this time, the semiconductor wafer is subjected to a predetermined processing while being temporarily fixed to the temporary fixing sheet. After the semiconductor chips obtained by performing the predetermined processing are separated from the temporary fixing sheet, if necessary, an expanding step is performed to widen the gap between the semiconductor chips, and a re-arrangement of a plurality of semiconductor chips with widened gaps is performed. After an arrangement process, a reversing process for reversing the front and back of the semiconductor chip, and the like are appropriately performed, the semiconductor chip is mounted on the substrate. Also in each of the above steps, a temporary fixing sheet suitable for each application can be used.
 特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用の加熱剥離型粘着シートが開示されている。同文献には、該加熱剥離型粘着シートは、電子部品切断時には、被着体に対して所定の大きさの接触面積を確保できるため、チップ飛び等の接着不具合を防止し得る接着性を発揮できる一方で、使用後には、加熱して熱膨張性微小球を膨張させれば、被着体との接触面積を減少させることで、容易に剥離することができる旨の記載がある。 Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing when cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one side of a base material. . In the same document, the heat-peelable pressure-sensitive adhesive sheet can secure a contact area of a predetermined size with respect to the adherend when cutting electronic parts, and thus exhibits adhesiveness capable of preventing adhesion defects such as chip flying. On the other hand, it is described that if the heat-expandable microspheres are expanded by heating after use, the contact area with the adherend can be reduced, so that they can be easily peeled off.
特許第3594853号公報Japanese Patent No. 3594853
 仮固定用シートを加工対象物の加工に利用する際、仮固定用シートの一方の面を加工対象物に貼付し、他方の面を支持体に貼付した状態で所定の加工を施すことがある。この場合、仮固定用シートとしては、両面に粘着剤層を有する両面粘着シートが用いられる。
 ここで、両面粘着シートの一方の面の粘着剤層に加工対象物を貼付し、他方の面の粘着剤層を、熱膨張の作用を利用して粘着力が低下する加熱剥離型粘着剤層とし、加熱剥離型粘着剤層が設けられた面を支持体に貼付する場合、両面粘着シートの加工対象物に貼付した面から、加工対象物を分離しづらいことがあるという問題があった。
When the temporary fixing sheet is used for processing an object, one surface of the temporary fixing sheet is attached to the object and the other surface is attached to a support, and then subjected to a predetermined process. . In this case, a double-sided pressure-sensitive adhesive sheet having pressure-sensitive adhesive layers on both sides is used as the temporary fixing sheet.
Here, an object to be processed is attached to the adhesive layer on one side of the double-sided adhesive sheet, and the adhesive layer on the other side is a heat-peelable adhesive layer whose adhesive strength is reduced by the action of thermal expansion. However, when the surface on which the heat-peelable pressure-sensitive adhesive layer is provided is attached to a support, there is a problem that the object to be processed is sometimes difficult to separate from the surface of the double-sided pressure-sensitive adhesive sheet attached to the object.
 本発明は、上記問題点に鑑みてなされたものであって、両面粘着シートの一方の面側の外層である粘着剤層に加工対象物を貼付し、他方の面側の外層である粘着剤層に支持体を貼付して加工対象物を加工する半導体装置の製造方法であり、加工後に、加工対象物及び支持体を、両面粘着シートから容易に分離できる半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object to be processed is attached to a pressure-sensitive adhesive layer, which is an outer layer on one side of a double-sided pressure-sensitive adhesive sheet. Provided is a method for manufacturing a semiconductor device in which an object to be processed is processed by attaching a support to a layer, and the object to be processed and the support can be easily separated from the double-sided adhesive sheet after processing. With the goal.
 本発明者等は、両面粘着シートとして、一方の面側の外層としての粘着剤層が加熱剥離型粘着剤層であり、他方の面側の外層としての粘着剤層がエネルギー線硬化性粘着剤層である両面粘着シートを用い、上記エネルギー線硬化性粘着剤層に加工対象物を貼付し、上記加熱剥離型粘着剤層に支持体を貼付して、加工対象物を加工する半導体装置の製造方法において、エネルギー線硬化性粘着剤層を硬化させるためのエネルギー線照射工程を特定の時期に行うことによって、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have proposed a double-sided pressure-sensitive adhesive sheet in which the pressure-sensitive adhesive layer as the outer layer on one side is a heat-peelable pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer as the outer layer on the other side is an energy ray-curable pressure-sensitive adhesive. Manufacture of a semiconductor device in which a double-sided adhesive sheet is used as a layer, an object to be processed is attached to the energy ray-curable adhesive layer, a support is attached to the heat-peelable adhesive layer, and the object is processed. In the method, the inventors have found that the above problems can be solved by performing the energy ray irradiation step for curing the energy ray-curable pressure-sensitive adhesive layer at a specific time, and have completed the present invention.
 すなわち、本発明は、下記[1]~[12]に関する。
[1]一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有し、
 前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
 前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層である両面粘着シートを用い、
 下記工程1~4をこの順で有し、
 工程1:前記両面粘着シートが有する前記粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、前記両面粘着シートが有する前記粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程
 工程2:前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物を加工する工程
 工程3:前記両面粘着シートを前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
 工程4:前記粘着剤層(X2)と前記加工対象物とを分離する工程
 前記工程1の加工対象物貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する、半導体装置の製造方法。
 エネルギー線照射工程:前記熱膨張性粒子を膨張させずに、前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
[2]一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有し、
 前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
 前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層である両面粘着シートを用い、
 下記工程1~4をこの順で有し、
 工程1:前記両面粘着シートが有する前記粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、前記両面粘着シートが有する前記粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程
 工程2:前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物を加工する工程
 工程3:前記両面粘着シートを前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
 工程4:前記粘着剤層(X2)と前記加工対象物とを分離する工程
 前記工程1の加工対象物貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する、半導体装置の製造方法。
 エネルギー線照射工程:前記熱膨張性層の温度が、前記熱膨張性粒子の膨張開始温度(t)よりも5℃低い温度を超えないように、前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
[3]一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有する両面粘着シートであり、
 前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
 前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層であり、
 前記両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、20%未満である両面粘着シートを用い、
 下記工程1~4をこの順で有し、
 工程1:前記両面粘着シートが有する前記粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、前記両面粘着シートが有する前記粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程
 工程2:前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物を加工する工程
 工程3:前記両面粘着シートを前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
 工程4:前記粘着剤層(X2)と前記加工対象物とを分離する工程
 前記工程1の加工対象物貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する半導体装置の製造方法。
 エネルギー線照射工程:前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
[4]前記エネルギー線照射工程を、前記両面粘着シートに対して、冷却処理を施しながら行う、上記[1]~[3]のいずれかに記載の半導体装置の製造方法。
[5]前記エネルギー線照射工程が、ガスが充填されたチャンバー内で行われる工程であって、下記の要件(I)又は(II)を満たすものである、上記[1]~[4]のいずれかに記載の半導体装置の製造方法。
(I)前記エネルギー線照射工程が、前記エネルギー線照射工程中に、前記チャンバー内に充填されたガスの少なくとも一部を前記チャンバー外から供給されるガスに置換する工程である。
(II)前記エネルギー線照射工程が、さらに、一の両面粘着シートに対してエネルギー線を照射した後、別の両面粘着シートに対してエネルギー線の照射を開始するサイクルを繰り返して、複数の両面粘着シートに対して、順次、エネルギー線を照射する工程であり、
 前記繰り返されるサイクルが、
 少なくとも1回のサイクルにおいて、前記一の両面粘着シートに対してエネルギー線を照射した後、前記別の両面粘着シートに対してエネルギー線の照射を開始する前に、前記チャンバー内に充填されたガスの少なくとも一部を前記チャンバー外から供給されるガスに置換するものである。
[6]前記工程2が前記加工対象物を研削する工程を含み、
 前記エネルギー線照射工程を、前記工程1の加工対象物貼付工程の後であって、前記加工対象物を研削する工程の前の少なくともいずれかの時期に行う、上記[1]~[5]のいずれかに記載の半導体装置の製造方法。
[7]前記工程1が、前記加工対象物貼付工程の後に、前記支持体貼付工程を行う工程であって、
 前記エネルギー線照射工程を、前記加工対象物貼付工程の後であって、前記支持体貼付工程の前に行う、上記[1]~[6]のいずれかに記載の半導体装置の製造方法。
[8]前記両面粘着シートが有する前記粘着剤層(X2)以外の全ての層及び前記支持体が、エネルギー線透過性を有するものであって、
 前記エネルギー線照射工程を、前記工程1の支持体貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、前記支持体側からエネルギー線を照射して行う、上記[1]~[7]のいずれかに記載の半導体装置の製造方法。
[9]前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、上記[1]~[8]のいずれかに記載の半導体装置の製造方法。
[10]前記両面粘着シートが、さらに、基材層(Y)を有し、前記粘着剤層(X1)と、前記基材層(Y)と、前記粘着剤層(X2)と、をこの順に有する、上記[1]~[9]のいずれかに記載の半導体装置の製造方法。
[11]前記粘着剤層(X1)及び前記基材層(Y)のうちの少なくともいずれかが前記熱膨張性層である、上記[10]に記載の半導体装置の製造方法。
[12]前記工程2が、前記加工対象物を研削及び個片化する工程を含み、
 前記加工対象物の個片化予備工程として、
 前記研削及び個片化する工程よりも前に、前記加工対象物の前記粘着剤層(X2)に貼付される側の面に分割予定ラインである溝を形成する工程、又は
 前記研削及び個片化する工程よりも前に、前記加工対象物の内部に分割予定ラインである改質領域を形成する工程、をさらに有し、
 前記加工対象物を研削及び個片化する工程が、前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物の、前記粘着剤層(X2)に貼付されている面とは反対側の面を研削して、前記加工対象物を、前記溝又は前記改質領域を起点として前記分割予定ラインで分割して個片化する工程である、上記[1]~[11]のいずれかに記載の半導体装置の製造方法。
That is, the present invention relates to the following [1] to [12].
[1] having at least an adhesive layer (X1) as an outer layer on one side and an adhesive layer (X2) as an outer layer on the other side,
The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
Using a double-sided pressure-sensitive adhesive sheet in which at least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
Having the following steps 1 to 4 in this order,
Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. Step 2: Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet Step 3: Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher Step 4: separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step A method of manufacturing a semiconductor device, comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
energy ray irradiation step: a step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2) without expanding the thermally expandable particles [2] At least a pressure-sensitive adhesive layer (X1) as an outer layer on the surface side and a pressure-sensitive adhesive layer (X2) as an outer layer on the other surface side,
The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
Using a double-sided pressure-sensitive adhesive sheet in which at least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
Having the following steps 1 to 4 in this order,
Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. Step 2: Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet Step 3: Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher Step 4: separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step A method of manufacturing a semiconductor device, comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
Energy beam irradiation step: the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet so that the temperature of the thermally expandable layer does not exceed a temperature lower than the expansion start temperature (t) of the thermally expandable particles by 5°C. The step of curing the pressure-sensitive adhesive layer (X2) by irradiating energy rays to [3] the pressure-sensitive adhesive layer (X1) as an outer layer on one side and the pressure-sensitive adhesive layer (X2) as an outer layer on the other side ) is a double-sided pressure-sensitive adhesive sheet having at least
The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
At least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
A laminate obtained by laminating a glass plate made of soda lime glass and having a thickness of 1.1 mm on the adhesive layer (X2) of the double-sided adhesive sheet was placed at a temperature of 22°C + the expansion start temperature (t) of the thermally expandable particles. Using a double-sided adhesive sheet having a total light transmittance (T A ) at a wavelength of 380 nm in the thickness direction of the laminate (L A ) for measuring the total light transmittance obtained by heating for 1 minute at a temperature of less than 20%,
Having the following steps 1 to 4 in this order,
Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. Step 2: Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet Step 3: Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher Step 4: separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step A method for manufacturing a semiconductor device, comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
Energy ray irradiation step: Step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with energy rays to cure the pressure-sensitive adhesive layer (X2) [4] Applying the energy ray irradiation step to the double-sided pressure-sensitive adhesive sheet On the other hand, the method for manufacturing a semiconductor device according to any one of [1] to [3], wherein the method is performed while performing a cooling treatment.
[5] The above [1] to [4], wherein the energy beam irradiation step is a step performed in a chamber filled with gas and satisfies the following requirements (I) or (II): A method for manufacturing a semiconductor device according to any one of the above.
(I) The energy beam irradiation step is a step of replacing at least part of the gas filled in the chamber with gas supplied from outside the chamber during the energy beam irradiation step.
(II) The energy ray irradiation step further repeats a cycle of irradiating one double-sided pressure-sensitive adhesive sheet with an energy ray and then starting irradiation of another double-sided pressure-sensitive adhesive sheet with an energy ray to obtain a plurality of double-sided pressure-sensitive adhesive sheets. A step of sequentially irradiating the adhesive sheet with energy rays,
The repeated cycle is
In at least one cycle, after irradiating the one double-sided pressure-sensitive adhesive sheet with an energy ray and before starting irradiation of the energy ray on the other double-sided pressure-sensitive adhesive sheet, the gas filled in the chamber is replaced with gas supplied from outside the chamber.
[6] The step 2 includes grinding the workpiece,
The above [1] to [5], wherein the energy beam irradiation step is performed at least at any time after the step of attaching the workpiece in step 1 and before the step of grinding the workpiece. A method for manufacturing a semiconductor device according to any one of the above.
[7] The step 1 is a step of performing the support attaching step after the processing object attaching step,
The method for manufacturing a semiconductor device according to any one of [1] to [6] above, wherein the energy beam irradiation step is performed after the object attachment step and before the support attachment step.
[8] All layers other than the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet and the support have energy ray transparency,
The above [1], wherein the energy ray irradiation step is performed by irradiating the energy ray from the side of the support after the step of attaching the support in the step 1 and before the step 3 at least at any time. A method for manufacturing a semiconductor device according to any one of [7].
[9] The method for manufacturing a semiconductor device according to any one of [1] to [8] above, wherein the thermally expandable particles have an expansion start temperature (t) of 50°C or higher and lower than 125°C.
[10] The double-sided pressure-sensitive adhesive sheet further has a base layer (Y), and the pressure-sensitive adhesive layer (X1), the base layer (Y), and the pressure-sensitive adhesive layer (X2) are The method for manufacturing a semiconductor device according to any one of the above [1] to [9], comprising:
[11] The method of manufacturing a semiconductor device according to [10] above, wherein at least one of the adhesive layer (X1) and the base layer (Y) is the thermally expandable layer.
[12] The step 2 includes a step of grinding and singulating the workpiece,
As a preliminary step for singulation of the object to be processed,
A step of forming a groove as a dividing line on the surface of the object to be processed that is attached to the adhesive layer (X2) before the step of grinding and singulating, or the grinding and singulation a step of forming a modified region, which is a line to be divided, inside the object before the step of converting,
The step of grinding and singulating the object to be processed is performed on the adhesive layer (X2) of the object to be processed in a state in which the object to be processed is supported by the support via the double-sided adhesive sheet. The above [ 1] A method for manufacturing a semiconductor device according to any one of [11].
 本発明によると、両面粘着シートの一方の面側の外層である粘着剤層に加工対象物を貼付し、他方の面側の外層である粘着剤層に支持体を貼付して加工対象物を加工する半導体装置の製造方法であり、加工後に、加工対象物及び支持体を、両面粘着シートから容易に分離できる半導体装置の製造方法を提供することができる。 According to the present invention, an object to be processed is attached to the pressure-sensitive adhesive layer that is the outer layer on one side of the double-sided pressure-sensitive adhesive sheet, and a support is attached to the adhesive layer that is the outer layer on the other side of the double-sided pressure-sensitive adhesive sheet. It is possible to provide a method for manufacturing a semiconductor device to be processed, in which the object to be processed and the support can be easily separated from the double-sided pressure-sensitive adhesive sheet after processing.
本発明の製造方法に用いられる両面粘着シートの構成の一例を示す断面図である。1 is a cross-sectional view showing an example of the configuration of a double-sided pressure-sensitive adhesive sheet used in the production method of the present invention; FIG. 本発明の製造方法に用いられる両面粘着シートの構成の別の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the configuration of the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention; 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention.
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。 In this specification, the lower and upper limits described stepwise for preferable numerical ranges (for example, ranges of contents, etc.) can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also
 本明細書の説明で用いる図は、便宜上、要部となる部分を拡大したり、簡略化して示している。そのため、各構成要素の寸法比率、数等は実際と同じであるとは限らない。 For the sake of convenience, the drawings used in the description of this specification show the main parts enlarged or simplified. Therefore, the dimensional ratio, number, etc. of each component are not necessarily the same as in reality.
 本明細書に記載されている作用機序は推測であって、本発明の効果を奏する機序を限定するものではない。 The mechanism of action described in this specification is speculation, and does not limit the mechanism of the effects of the present invention.
 本明細書において、「有効成分」とは、対象となる組成物に含有される成分のうち、希釈溶剤を除いた成分を意味する。 As used herein, the term "active ingredient" means an ingredient excluding the diluent solvent among the ingredients contained in the target composition.
 本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を意味し、他の類似用語も同様である。 As used herein, "(meth)acrylic acid" means both "acrylic acid" and "methacrylic acid", and the same applies to other similar terms.
 本明細書において、「半導体装置」とは、半導体特性を利用することで機能し得る装置全般を意味する。半導体装置としては、例えば、集積回路を備えるウエハ、集積回路を備える薄化されたウエハ、集積回路を備えるチップ、集積回路を備える薄化されたチップ、これらのチップを含む電子部品、該電子部品を備える電子機器類等が挙げられる。 In this specification, the term "semiconductor device" means all devices that can function by utilizing semiconductor characteristics. Examples of semiconductor devices include wafers with integrated circuits, thinned wafers with integrated circuits, chips with integrated circuits, thinned chips with integrated circuits, electronic components including these chips, and electronic components. and electronic equipment.
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、例えば、紫外線、ガンマ線等の電磁放射線;電子線等の粒子放射線等が挙げられる。
 本明細書において、「エネルギー線重合性」とは、エネルギー線を照射することにより重合する性質を意味する。また、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味する。
As used herein, the term "energy ray" means an electromagnetic wave or charged particle beam having an energy quantum, and examples thereof include electromagnetic radiation such as ultraviolet rays and gamma rays; particle radiation such as electron beams.
As used herein, "energy ray-polymerizable" means the property of polymerizing by irradiation with energy rays. Moreover, "energy ray curability" means the property of being cured by irradiation with an energy ray.
 本明細書において、「層」が「非熱膨張性層」であるか「熱膨張性層」であるかは、以下の方法によって判断する。
 判断の対象となる層が熱膨張性粒子を含有する場合、該層を熱膨張性粒子の膨張開始温度(t)で、3分間加熱処理する。下記式から算出される体積変化率が5%未満である場合、該層は「非熱膨張性層」であると判断し、5%以上である場合、該層は「熱膨張性層」であると判断する。
・体積変化率(%)={(加熱処理後の前記層の体積-加熱処理前の前記層の体積)/加熱処理前の前記層の体積}×100
 本明細書において、「層」が非熱膨張性層である場合、上記式から算出される非熱膨張性層の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 また、本明細書において、非熱膨張性層は熱膨張性粒子を実質的に含有せず、判断の対象となる層が熱膨張性粒子を実質的に含まない場合、該層は「非熱膨張性層」であると判断する。具体的には、非熱膨張性層中の熱膨張性粒子の含有量は、非熱膨張性層の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、更になお好ましくは0.001質量%未満であり、熱膨張性粒子を含有しないことが最も好ましい。
In this specification, whether a "layer" is a "non-thermally expandable layer" or a "thermally expandable layer" is determined by the following method.
When the layer to be judged contains thermally expandable particles, the layer is heat-treated for 3 minutes at the expansion start temperature (t) of the thermally expandable particles. If the volume change rate calculated from the following formula is less than 5%, the layer is determined to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer". judge there is.
・Volume change rate (%) = {(volume of the layer after heat treatment - volume of the layer before heat treatment) / volume of the layer before heat treatment} x 100
In this specification, when the "layer" is a non-thermally expandable layer, the volume change rate (%) of the non-thermally expandable layer calculated from the above formula is less than 5%, preferably less than 2%, More preferably less than 1%, still more preferably less than 0.1%, even more preferably less than 0.01%.
Further, in this specification, when the non-thermally expandable layer does not substantially contain thermally expandable particles, and the layer to be evaluated does not substantially contain thermally expandable particles, the layer is referred to as "non-thermally It is judged to be an inflatable layer. Specifically, the content of the thermally expandable particles in the non-thermally expandable layer is preferably less than 3% by mass, more preferably 1% by mass, relative to the total mass (100% by mass) of the non-thermally expandable layer. %, more preferably less than 0.1% by weight, even more preferably less than 0.01% by weight, even more preferably less than 0.001% by weight, and is most preferably free of thermally expandable particles.
 本明細書において、半導体ウエハの「回路面」とは、回路が形成された面を意味し、半導体ウエハの「裏面」とは回路が形成されていない面を意味する。 In this specification, the "circuit surface" of the semiconductor wafer means the surface on which the circuits are formed, and the "back surface" of the semiconductor wafer means the surface on which the circuits are not formed.
 本明細書において、各層の厚さは、23℃における厚さであり、具体的には実施例に記載の方法に基づいて測定した値である。 In this specification, the thickness of each layer is the thickness at 23°C, specifically the value measured based on the method described in the Examples.
 本明細書において、各層の粘着力は、シリコンミラーウエハのミラー面に対する粘着力を意味し、23℃、50%RH(相対湿度)の環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/minにて測定される粘着力を意味する。 In this specification, the adhesive strength of each layer means the adhesive strength to the mirror surface of the silicon mirror wafer, and in an environment of 23° C. and 50% RH (relative humidity), 180° peeling based on JIS Z0237:2000. means the adhesive force measured at a pulling speed of 300 mm/min according to the Law.
 本明細書において、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。 In the present specification, the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in Examples. is.
 本明細書において、全光線透過率は、紫外可視分光法により透過スペクトルを測定することで得られる値であり、具体的には実施例に記載の方法に基づいて測定した値である。 In this specification, the total light transmittance is a value obtained by measuring a transmission spectrum by ultraviolet-visible spectroscopy, specifically a value measured based on the method described in Examples.
[半導体装置の製造方法]
 本発明の第一態様の半導体装置の製造方法(以下、「第一態様の製造方法」ともいう)は、
 一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有し、
 前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
 前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層である両面粘着シートを用い、
 下記工程1~4をこの順で有し、
 工程1:前記両面粘着シートが有する前記粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、前記両面粘着シートが有する前記粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程
 工程2:前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物を加工する工程
 工程3:前記両面粘着シートを前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
 工程4:前記粘着剤層(X2)と前記加工対象物とを分離する工程
 前記工程1の加工対象物貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する、半導体装置の製造方法である。
 エネルギー線照射工程:前記熱膨張性粒子を膨張させずに、前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
[Method for manufacturing a semiconductor device]
The method for manufacturing a semiconductor device according to the first aspect of the present invention (hereinafter also referred to as the “method for manufacturing the first aspect”) comprises:
At least having an adhesive layer (X1) as an outer layer on one side and an adhesive layer (X2) as an outer layer on the other side,
The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
Using a double-sided pressure-sensitive adhesive sheet in which at least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
Having the following steps 1 to 4 in this order,
Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. Step 2: Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet Step 3: Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher Step 4: separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step The method for manufacturing a semiconductor device includes the following energy beam irradiation step after the process object attaching step of the step 1 and before the step 3 at least at any time.
Energy ray irradiation step: A step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2) without expanding the thermally expandable particles.
 本発明の第二態様の半導体装置の製造方法(以下、「第二態様の製造方法」ともいう)は、上記両面粘着シートを用い、上記工程1~4をこの順で有し、
 工程1の加工対象物貼付工程の後であって、工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する、半導体装置の製造方法である。
 エネルギー線照射工程:前記熱膨張性層の温度が、前記熱膨張性粒子の膨張開始温度(t)よりも5℃低い温度を超えないように、前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
The method for manufacturing a semiconductor device according to the second aspect of the present invention (hereinafter also referred to as the "manufacturing method of the second aspect") uses the double-sided pressure-sensitive adhesive sheet and includes the steps 1 to 4 in this order,
A method for manufacturing a semiconductor device, comprising the following energy beam irradiation step at least at any time after step 1 of attaching an object to be processed and before step 3.
Energy beam irradiation step: the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet so that the temperature of the thermally expandable layer does not exceed a temperature lower than the expansion start temperature (t) of the thermally expandable particles by 5°C. The step of curing the pressure-sensitive adhesive layer (X2) by irradiating with an energy ray
 本発明の第三態様の半導体装置の製造方法(以下、「第三態様の製造方法」ともいう)は、
 一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有する両面粘着シートであり、
 前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
 前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層であり、
 前記両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、20%未満である両面粘着シートを用い、
 上記工程1~4をこの順で有し、
 工程1の加工対象物貼付工程の後であって、工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する半導体装置の製造方法である。
 エネルギー線照射工程:前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
The method for manufacturing a semiconductor device according to the third aspect of the present invention (hereinafter also referred to as the "manufacturing method of the third aspect") comprises:
A double-sided pressure-sensitive adhesive sheet having at least a pressure-sensitive adhesive layer (X1) as an outer layer on one side and a pressure-sensitive adhesive layer (X2) as an outer layer on the other side,
The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
At least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
A laminate obtained by laminating a glass plate made of soda lime glass and having a thickness of 1.1 mm on the adhesive layer (X2) of the double-sided adhesive sheet was placed at a temperature of 22°C + the expansion start temperature (t) of the thermally expandable particles. Using a double-sided adhesive sheet having a total light transmittance (T A ) at a wavelength of 380 nm in the thickness direction of the laminate (L A ) for measuring the total light transmittance obtained by heating for 1 minute at a temperature of less than 20%,
Having the above steps 1 to 4 in this order,
The method for manufacturing a semiconductor device includes the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
Energy ray irradiation step: a step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2)
 なお、以下の説明は、特に断らない限り、第一態様、第二態様及び第三態様の製造方法の全てについて説明しているものとする。 In addition, unless otherwise specified, the following description shall explain all of the manufacturing methods of the first, second and third aspects.
 本実施形態の製造方法では、一方の面側の外層として、加熱剥離型粘着剤層である粘着剤層(X1)を有し、他方の面側の外層として、エネルギー線硬化性粘着剤層である粘着剤層(X2)を有する両面粘着シートを用い、粘着剤層(X1)に支持体を貼付し、粘着剤層(X2)に加工対象物を貼付した状態で、加工対象物を加工する。このように、両面粘着シートの一方の面の粘着剤層と、他方の面の粘着剤層とで、粘着力を低下させる作用機構を異なるものにすることで、いずれか一方の粘着剤層の粘着力を低下させる処理を行う際に、意図せず他方の粘着剤層の粘着力まで低下させてしまうことを回避することができる。
 加工対象物の加工後には、両面粘着シートは支持体及び加工後の加工対象物から剥離されるが、本実施形態の製造方法は、粘着剤層(X1)を支持体から加熱剥離する工程よりも前に、両面粘着シートの粘着剤層(X2)にエネルギー線を照射して粘着剤層(X2)を硬化させるエネルギー線照射工程を有する。すなわち、本実施形態の製造方法によると、粘着剤層(X2)にエネルギー線を照射する際に、熱膨張性層の熱膨張性粒子は未だ膨張が抑制された状態である。熱膨張性層の熱膨張性粒子が膨張した後に、粘着剤層(X2)にエネルギー線を照射した場合、膨張した熱膨張性粒子に起因して熱膨張性層のエネルギー線の透過率が低下し、照射したエネルギー線が粘着剤層(X2)に到達し難くなる。そのため、粘着剤層(X2)の硬化が不十分になることがある。一方、本実施形態の製造方法によれば、粘着剤層(X2)に向けて照射したエネルギー線は、熱膨張性層を介しても、良好に粘着剤層(X2)に到達することが可能である。その結果、粘着剤層(X2)を効率的に硬化させることができ、加工後の加工対象物は粘着剤層(X2)から容易に分離することができる。
In the production method of the present embodiment, the outer layer on one side has an adhesive layer (X1) that is a heat-peelable adhesive layer, and the outer layer on the other side is an energy ray-curable adhesive layer. Using a double-sided pressure-sensitive adhesive sheet having a certain pressure-sensitive adhesive layer (X2), a support is attached to the pressure-sensitive adhesive layer (X1), and the processing object is processed in a state in which the processing target is attached to the pressure-sensitive adhesive layer (X2). . In this way, the pressure-sensitive adhesive layer on one side of the double-sided pressure-sensitive adhesive sheet and the pressure-sensitive adhesive layer on the other side of the double-sided pressure-sensitive adhesive sheet have different mechanisms of action for reducing the adhesive force, so that the pressure-sensitive adhesive layer on either side is It is possible to avoid unintentionally lowering the adhesive strength of the other adhesive layer when performing the treatment for reducing the adhesive strength.
After processing the object to be processed, the double-sided pressure-sensitive adhesive sheet is peeled off from the support and the object after processing. An energy ray irradiation step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2) is also included. That is, according to the production method of the present embodiment, the expansion of the thermally expandable particles in the thermally expandable layer is still suppressed when the pressure-sensitive adhesive layer (X2) is irradiated with energy rays. When the pressure-sensitive adhesive layer (X2) is irradiated with energy rays after the thermally expandable particles in the thermally expandable layer have expanded, the transmittance of the energy rays in the thermally expandable layer decreases due to the expanded thermally expandable particles. This makes it difficult for the irradiated energy rays to reach the pressure-sensitive adhesive layer (X2). Therefore, curing of the pressure-sensitive adhesive layer (X2) may be insufficient. On the other hand, according to the production method of the present embodiment, the energy beam irradiated toward the pressure-sensitive adhesive layer (X2) can reach the pressure-sensitive adhesive layer (X2) satisfactorily even through the thermally expandable layer. is. As a result, the pressure-sensitive adhesive layer (X2) can be efficiently cured, and the processed object can be easily separated from the pressure-sensitive adhesive layer (X2).
 以下、初めに第一態様、第二態様及び第三態様の製造方法に用いられる両面粘着シートについて説明し、その後、各工程について説明する。 The double-sided pressure-sensitive adhesive sheets used in the manufacturing methods of the first, second, and third embodiments will be described first, and then each step will be described.
[両面粘着シート]
 本実施形態の製造方法に用いられる両面粘着シート(以下、「本実施形態の両面粘着シート」ともいう)は、一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有し、粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層である。
[Double-sided adhesive sheet]
The double-sided pressure-sensitive adhesive sheet used in the production method of the present embodiment (hereinafter also referred to as "double-sided pressure-sensitive adhesive sheet of the present embodiment") includes a pressure-sensitive adhesive layer (X1) as an outer layer on one side and a and a pressure-sensitive adhesive layer (X2) as an outer layer, the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer, and at least one of the layers other than the pressure-sensitive adhesive layer (X2) is heated. A thermally expandable layer containing expandable particles.
 本実施形態の両面粘着シートは、構成を簡素化する観点から、粘着剤層(X1)及び粘着剤層(X2)のみを有するものであってもよいが、両面粘着シートの自己支持性を高めて両面粘着シートの取り扱い性及び加工対象物の加工精度を向上させるという観点から、さらに、基材層(Y)を有し、粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)と、をこの順に有するものが好ましい。 From the viewpoint of simplifying the configuration, the double-sided pressure-sensitive adhesive sheet of this embodiment may have only the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2). From the viewpoint of improving the handleability of the double-sided pressure-sensitive adhesive sheet and the processing accuracy of the object to be processed, it further has a base layer (Y), the pressure-sensitive adhesive layer (X1), the base layer (Y), and the adhesive and agent layer (X2) in this order.
 図1(a)及び(b)には、本実施形態の両面粘着シートの断面模式図が示されている。
 図1(a)に示す両面粘着シート1aは、粘着剤層(X1)及び粘着剤層(X2)のみを有する両面粘着シートである。
 図1(b)に示す両面粘着シート1bは、粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)と、をこの順に有する両面粘着シートである。
1(a) and 1(b) show schematic cross-sectional views of the double-sided pressure-sensitive adhesive sheet of this embodiment.
The double-sided pressure-sensitive adhesive sheet 1a shown in FIG. 1(a) is a double-sided pressure-sensitive adhesive sheet having only the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2).
The double-sided pressure-sensitive adhesive sheet 1b shown in FIG. 1(b) is a double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer (X1), a base layer (Y), and a pressure-sensitive adhesive layer (X2) in this order.
<熱膨張性層>
 本実施形態の両面粘着シートは、粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層である。
 熱膨張性層の数は、1層であってもよく、2層以上であってもよいが、1層であることが好ましい。
 熱膨張性層は、粘着剤層(X1)であってもよく、粘着剤層(X1)以外の層であってもよい。本実施形態の両面粘着シートが、基材層(Y)を有する場合は、粘着剤層(X1)及び基材層(Y)のうちの少なくともいずれかが熱膨張性層であることが好ましく、基材層(Y)が熱膨張性層であることがより好ましい。
 基材層(Y)が熱膨張性層であると、熱膨張前の熱膨張性粒子に起因する凹凸が粘着剤層(X1)の表面に表出し難くなり、粘着剤層(X1)と支持体との密着性が良好になり易い傾向にある。
<Thermal expansion layer>
In the double-sided PSA sheet of this embodiment, at least one of the layers other than the PSA layer (X2) is a thermally expandable layer containing thermally expandable particles.
The number of thermally expandable layers may be one, or two or more, but preferably one.
The thermally expandable layer may be the adhesive layer (X1) or a layer other than the adhesive layer (X1). When the double-sided pressure-sensitive adhesive sheet of the present embodiment has a base layer (Y), at least one of the pressure-sensitive adhesive layer (X1) and the base layer (Y) is preferably a thermally expandable layer, More preferably, the substrate layer (Y) is a thermally expandable layer.
When the substrate layer (Y) is a thermally expandable layer, unevenness due to the thermally expandable particles before thermal expansion is less likely to appear on the surface of the adhesive layer (X1), and the adhesive layer (X1) and the support It tends to have good adhesion to the body.
 熱膨張性層の厚さは、本実施形態の両面粘着シートが有する各層のうち、いずれの層が熱膨張性層であるかに応じて適宜決定する必要があるが、加熱剥離時の剥離性を向上させる観点、両面粘着シートを長尺の状態で製造した場合の巻取り適性の観点等から、15~250μmであることが好ましく、50~225μmであることがより好ましく、75~150μmであることが更に好ましい。 The thickness of the thermally expandable layer needs to be appropriately determined depending on which layer is the thermally expandable layer among the layers of the double-sided pressure-sensitive adhesive sheet of the present embodiment. from the viewpoint of improving the adhesiveness, the winding aptitude when the double-sided pressure-sensitive adhesive sheet is produced in a long state, etc. is more preferred.
(熱膨張性粒子)
 熱膨張性粒子は、加熱により膨張する粒子であれば特に限定されない。
 熱膨張性粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Thermal expandable particles)
The thermally expandable particles are not particularly limited as long as they are particles that expand when heated.
The thermally expandable particles may be used singly or in combination of two or more.
 熱膨張性粒子の膨張開始温度(t)は、好ましくは50℃以上225℃未満、より好ましくは55~200℃、更に好ましくは60~180℃、より更に好ましくは70~155℃、更になお好ましくは75~130℃である。
 熱膨張性粒子の膨張開始温度(t)が50℃以上であると、加工対象物を加工する際に発生する摩擦熱、エネルギー線照射工程時における反応熱等による意図しない膨張を抑制できる傾向にある。また、熱膨張性粒子の膨張開始温度(t)が225℃未満であると、加熱剥離する際における加工対象物の熱変化を抑制できる傾向にある。
 また、上記の理由に加え、後述する工程3において、加工対象物の裏面に熱硬化性フィルムが貼付されている場合に、熱硬化性フィルムの意図しない硬化反応の進行を抑制する観点等から、熱膨張性粒子の膨張開始温度(t)を低くすることが好ましく、具体的には、50℃以上125℃未満、好ましくは70~110℃の範囲としてもよい。
The expansion initiation temperature (t) of the thermally expandable particles is preferably 50° C. or higher and lower than 225° C., more preferably 55 to 200° C., still more preferably 60 to 180° C., even more preferably 70 to 155° C., still more preferably is 75-130°C.
When the expansion start temperature (t) of the thermally expandable particles is 50° C. or higher, it tends to be possible to suppress unintended expansion due to frictional heat generated when processing an object to be processed, reaction heat during the energy beam irradiation step, and the like. be. Further, when the expansion start temperature (t) of the thermally expandable particles is less than 225°C, there is a tendency that the thermal change of the object to be processed during thermal separation can be suppressed.
In addition to the above reasons, when a thermosetting film is attached to the back surface of the object to be processed in step 3 described later, from the viewpoint of suppressing the progress of an unintended curing reaction of the thermosetting film, etc. It is preferable to lower the expansion start temperature (t) of the thermally expandable particles. Specifically, it may be in the range of 50.degree.
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
≪熱膨張性粒子の膨張開始温度(t)の測定法≫
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
In this specification, the expansion start temperature (t) of thermally expandable particles means a value measured based on the following method.
<<Method for measuring expansion start temperature (t) of thermally expandable particles>>
An aluminum cup with a diameter of 6.0 mm (inner diameter of 5.65 mm) and a depth of 4.8 mm was filled with 0.5 mg of thermally expandable particles to be measured, and an aluminum lid (5.6 mm in diameter and 0.6 mm in thickness) was placed on top of the cup. 1 mm) is placed on the sample.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured while a force of 0.01 N is applied to the sample from the top of the aluminum lid with a pressurizer. Then, with a force of 0.01 N applied by the pressurizer, it was heated from 20° C. to 300° C. at a temperature increase rate of 10° C./min, and the amount of displacement in the vertical direction of the pressurizer was measured. Let the displacement start temperature be the expansion start temperature (t).
 熱膨張性粒子は、熱可塑性樹脂から構成された外殻と、該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤が好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン、もしくはこれらの熱可塑性樹脂に含まれる構成単位を形成する単量体の2種以上を重合して得られる共重合体等が挙げられる。
The thermally expandable particles are preferably microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an encapsulated component that is encapsulated in the outer shell and vaporizes when heated to a predetermined temperature. .
The thermoplastic resin constituting the outer shell of the microencapsulated foaming agent includes, for example, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, or structural units contained in these thermoplastic resins. Examples thereof include copolymers obtained by polymerizing two or more of the monomers to be formed.
 マイクロカプセル化発泡剤の外殻に内包される成分である内包成分としては、例えば、プロパン、プロピレン、ブテン、n-ブタン、イソブタン、イソペンタン、ネオペンタン、n-ペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、n-オクタン、シクロプロパン、シクロブタン、石油エーテル等の低沸点液体が挙げられる。これらの中でも、熱膨張性粒子の膨張開始温度(t)を50℃以上125℃未満とする場合、内包成分は、プロパン、イソブタン、n-ペンタン、シクロプロパンが好ましい。
 内包成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of encapsulated components that are encapsulated in the outer shell of the microencapsulated foaming agent include propane, propylene, butene, n-butane, isobutane, isopentane, neopentane, n-pentane, n-hexane, isohexane, n- Low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane, and petroleum ether are included. Among these, when the expansion start temperature (t) of the thermally expandable particles is 50° C. or higher and lower than 125° C., propane, isobutane, n-pentane, and cyclopropane are preferable as the encapsulated component.
One type of inclusion component may be used alone, or two or more types may be used in combination.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
 熱膨張性粒子の23℃における膨張前の平均粒子径(D50)は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 熱膨張性粒子の23℃における膨張前の90%粒子径(D90)は、好ましくは10~150μm、より好ましくは15~100μm、更に好ましくは20~90μm、より更に好ましくは25~80μmである。
 熱膨張性粒子の膨張前の平均粒子径(D50)及び90%粒子径(D90)は、各々、実施例に記載の方法によって測定することができる。
The average particle diameter (D 50 ) of the thermally expandable particles before expansion at 23° C. is preferably 3 to 100 μm, more preferably 4 to 70 μm, even more preferably 6 to 60 μm, still more preferably 10 to 50 μm.
The 90% particle diameter (D 90 ) of the thermally expandable particles before expansion at 23° C. is preferably 10 to 150 μm, more preferably 15 to 100 μm, still more preferably 20 to 90 μm, still more preferably 25 to 80 μm. .
The average particle size (D 50 ) and 90% particle size (D 90 ) of the thermally expandable particles before expansion can be measured by the method described in Examples.
 熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~200倍、より好ましくは2~150倍、更に好ましくは2.5~120倍、より更に好ましくは3~100倍である。 The maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles is preferably 1.5 to 200 times, more preferably 2 to 150 times, and still more preferably 2.5 to 120. times, more preferably 3 to 100 times.
 熱膨張性層中の熱膨張性粒子の含有量は、熱膨張性層の全質量(100質量%)に対して、好ましくは3~45質量%、より好ましくは7~40質量%、更に好ましくは10~35質量%である。
 熱膨張性粒子の含有量が3質量%以上であると、加熱剥離時の剥離性が向上する傾向にある。また、熱膨張性粒子の含有量が45質量%以下であると、熱膨張性層を形成するための組成物の調製において、熱膨張性粒子と他の成分との混合が容易となる傾向にある。
The content of the thermally expandable particles in the thermally expandable layer is preferably 3 to 45% by mass, more preferably 7 to 40% by mass, and still more preferably the total mass (100% by mass) of the thermally expandable layer. is 10 to 35% by mass.
When the content of the thermally expandable particles is 3% by mass or more, the peelability tends to be improved during heat peeling. Further, when the content of the thermally expandable particles is 45% by mass or less, the thermally expandable particles and other components tend to be easily mixed in the preparation of the composition for forming the thermally expandable layer. be.
<粘着剤層(X1)>
 粘着剤層(X1)は、本実施形態の両面粘着シートにおける一方の面側の外層としての粘着剤層である。
 粘着剤層(X1)は、加熱によって膨張した熱膨張性粒子に起因する凹凸が表面に形成される層であり、表面に凹凸が形成された粘着剤層(X1)は、被着体との接触面積が低下し、被着体から容易に剥離することが可能である。
 粘着剤層(X1)は、例えば、粘着性樹脂を含有する粘着剤組成物(x-1)から形成することができる。
<Adhesive layer (X1)>
The pressure-sensitive adhesive layer (X1) is a pressure-sensitive adhesive layer as an outer layer on one side of the double-sided pressure-sensitive adhesive sheet of the present embodiment.
The pressure-sensitive adhesive layer (X1) is a layer on the surface of which irregularities are formed due to thermally expandable particles expanded by heating. The contact area is reduced and it can be easily peeled off from the adherend.
The adhesive layer (X1) can be formed, for example, from an adhesive composition (x-1) containing an adhesive resin.
(粘着剤組成物(x-1))
 粘着剤組成物(x-1)は、粘着性樹脂を含有するものである。
(Adhesive composition (x-1))
The adhesive composition (x-1) contains an adhesive resin.
〔粘着性樹脂〕
 粘着性樹脂としては、例えば、樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体が挙げられる。なお、粘着性樹脂は、単独では粘着性を有さず、粘着付与剤や可塑剤の添加により粘着性を発現するものであってもよい。
 粘着性樹脂の質量平均分子量(Mw)は、粘着剤層(X1)の粘着力向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
 粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Adhesive resin]
As the adhesive resin, for example, a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more can be mentioned. In addition, adhesive resin may not have adhesiveness by itself, but may express adhesiveness by addition of a tackifier or a plasticizer.
The mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000 to 100, from the viewpoint of improving the adhesive strength of the adhesive layer (X1). Ten thousand.
Adhesive resin may be used individually by 1 type, and may use 2 or more types together.
 粘着性樹脂は、1種単独の構成単位を有する重合体であってもよく、2種以上の構成単位を有する共重合体であってもよい。粘着性樹脂が共重合体である場合、共重合体の形態は、ブロック共重合体、ランダム共重合体及びグラフト共重合体のいずれであってもよい。 The tacky resin may be a polymer having a single structural unit, or a copolymer having two or more structural units. When the adhesive resin is a copolymer, the form of the copolymer may be block copolymer, random copolymer or graft copolymer.
 粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。これらの中でも、粘着剤層(X1)に優れた粘着力を発現させるという観点から、粘着性樹脂はアクリル系樹脂を含有することが好ましい。 Examples of adhesive resins include acrylic resins, urethane resins, polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. Among these, the adhesive resin preferably contains an acrylic resin from the viewpoint of expressing excellent adhesive strength in the adhesive layer (X1).
 粘着性樹脂中のアクリル系樹脂の含有量は、粘着剤組成物(x-1)に含有される粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。 The content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 30 to 100% by mass, based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x-1). is 50 to 100% by mass, more preferably 70 to 100% by mass, and even more preferably 85 to 100% by mass.
 アクリル系樹脂の質量平均分子量(Mw)は、好ましくは10万~150万、より好ましくは20万~130万、更に好ましくは35万~120万、より更に好ましくは50万~110万である。 The mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, and even more preferably 500,000 to 1,100,000.
 アクリル系樹脂としては、例えば、アルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含有する重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含有する重合体等が挙げられる。これらの中でも、アルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含有する重合体が好ましく、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。 Examples of acrylic resins include polymers containing structural units derived from alkyl (meth)acrylates having alkyl groups, polymers containing structural units derived from (meth)acrylates having a cyclic structure, and the like. . Among these, a polymer containing a structural unit derived from an alkyl (meth)acrylate having an alkyl group is preferable, and is derived from an alkyl (meth)acrylate (a1′) (hereinafter also referred to as “monomer (a1′)”). and a functional group-containing monomer (a2′) (hereinafter also referred to as “monomer (a2′)”).
 モノマー(a1’)が有するアルキル基の炭素数は、粘着剤層(X1)に優れた粘着力を発現させるという観点から、好ましくは1~24、より好ましくは1~12、更に好ましくは2~10、より更に好ましくは4~8である。
 なお、本明細書中、特に断らない限り、「アルキル基」は、直鎖状であってもよく、分岐鎖状であってもよいものとする。
The number of carbon atoms in the alkyl group of the monomer (a1′) is preferably 1 to 24, more preferably 1 to 12, and even more preferably 2 to 2, from the viewpoint of exhibiting excellent adhesive strength in the adhesive layer (X1). 10, more preferably 4-8.
In this specification, unless otherwise specified, the "alkyl group" may be linear or branched.
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。これらの中でも、n-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。
 モノマー(a1’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the monomer (a1′) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, iso-butyl (meth)acrylate, Acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate and the like. Among these, n-butyl acrylate and 2-ethylhexyl acrylate are preferred.
Monomer (a1′) may be used alone or in combination of two or more.
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、更に好ましくは70~97.0質量%、より更に好ましくは80~95.0質量%である。 The content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 70 to 97.0% by mass, and even more preferably 80 to 95.0% by mass.
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。これらの中でも、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
 モノマー(a2’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of functional groups possessed by the monomer (a2′) include hydroxyl groups, carboxyl groups, amino groups, epoxy groups and the like.
That is, examples of the monomer (a2′) include hydroxyl group-containing monomers, carboxy group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, and the like. Among these, hydroxyl group-containing monomers and carboxy group-containing monomers are preferable, and hydroxyl group-containing monomers are more preferable.
Monomer (a2') may be used alone or in combination of two or more.
 水酸基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等の水酸基含有化合物が挙げられる。 Examples of hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, ) hydroxyalkyl (meth)acrylates such as acrylate and 4-hydroxybutyl (meth)acrylate; and hydroxyl group-containing compounds such as unsaturated alcohols such as vinyl alcohol and allyl alcohol.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物;2-(アクリロイルオキシ)エチルサクシネート、2-カルボキシエチル(メタ)アクリレート等が挙げられる。 Carboxy group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides ; 2-(acryloyloxy)ethyl succinate, 2-carboxyethyl (meth)acrylate and the like.
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~30質量%、より好ましくは0.5~20質量%、更に好ましくは1.0~15質量%、より更に好ましくは3.0~10質量%である。 The content of the structural unit (a2) is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total structural units (100% by mass) of the acrylic copolymer (A1). %, more preferably 1.0 to 15% by mass, and even more preferably 3.0 to 10% by mass.
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来する構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の合計含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
The acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
In the acrylic copolymer (A1), the total content of the structural units (a1) and (a2) is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass.
 粘着剤組成物(x-1)中における粘着性樹脂の含有量は、粘着剤組成物(x-1)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~100質量%、より更に好ましくは70~99.5質量%である。 The content of the adhesive resin in the adhesive composition (x-1) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-1), More preferably 50 to 100% by mass, still more preferably 60 to 100% by mass, still more preferably 70 to 99.5% by mass.
〔架橋剤〕
 粘着剤組成物(x-1)は、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 架橋剤は、官能基を有する粘着性樹脂と反応して、該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
[Crosslinking agent]
When the pressure-sensitive adhesive composition (x-1) contains a pressure-sensitive adhesive resin having a functional group, it preferably further contains a cross-linking agent.
The cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins with each other using the functional group as a cross-linking starting point.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
 イソシアネート系架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロヘプタントリイソシアネート、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、水添キシリレンジイソシアネート等の脂環式ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の非環式脂肪族ポリイソシアネート;等の多価イソシアネート化合物等が挙げられる。
 また、イソシアネート系架橋剤としては、例えば、上記多価イソシアネート化合物のトリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含むイソシアヌレート型変性体等も挙げられる。
 これらの中でも、加熱時における粘着剤層(X1)の弾性率の低下を抑制して、粘着剤層(X1)由来の残渣が支持体に付着するのを抑制する観点から、イソシアヌレート環を含むイソシアヌレート型変性体を用いることが好ましく、非環式脂肪族ポリイソシアネートのイソシアヌレート型変性体を用いることがより好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体を用いることが更に好ましい。
Examples of cross-linking agents include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
The cross-linking agents may be used alone or in combination of two or more.
Among these cross-linking agents, isocyanate-based cross-linking agents are preferable from the viewpoints of increasing cohesive strength and improving adhesive strength, and from the viewpoints of availability and the like.
Examples of isocyanate-based cross-linking agents include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; Alicyclic polyisocyanates such as methylcyclohexylene diisocyanate, methylenebis(cyclohexyl isocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate acyclic aliphatic polyisocyanates such as; polyvalent isocyanate compounds such as;
Examples of the isocyanate-based cross-linking agent include trimethylolpropane adduct-type modified products of the above polyvalent isocyanate compounds, biuret-type modified products reacted with water, and isocyanurate-type modified products containing an isocyanurate ring.
Among these, it contains an isocyanurate ring from the viewpoint of suppressing a decrease in the elastic modulus of the pressure-sensitive adhesive layer (X1) during heating and suppressing adhesion of residues derived from the pressure-sensitive adhesive layer (X1) to the support. It is preferable to use an isocyanurate-type modified product, more preferably to use an isocyanurate-type modified product of acyclic aliphatic polyisocyanate, and even more preferably to use an isocyanurate-type modified product of hexamethylene diisocyanate.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the cross-linking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin. More preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
〔粘着付与剤〕
 粘着剤組成物(x-1)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 本明細書において、「粘着付与剤」とは、粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のものを指す。
 粘着付与剤の質量平均分子量(Mw)は1万未満であり、好ましくは400~9,000、より好ましくは500~8,000、更に好ましくは800~5,000である。
[Tackifier]
The pressure-sensitive adhesive composition (x-1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
As used herein, the term "tackifier" refers to a component that supplementarily improves the adhesive strength of the adhesive resin and has a weight-average molecular weight (Mw) of less than 10,000.
The weight average molecular weight (Mw) of the tackifier is less than 10,000, preferably 400 to 9,000, more preferably 500 to 8,000, still more preferably 800 to 5,000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、これらを水素化した水素化樹脂等が挙げられる。 Examples of tackifiers include rosin-based resins, terpene-based resins, styrene-based resins, pentene produced by thermal decomposition of petroleum naphtha, isoprene, piperine, obtained by copolymerizing C5 fractions such as 1,3-pentadiene. C5 petroleum resins obtained by thermal decomposition of petroleum naphtha, C9 petroleum resins obtained by copolymerizing C9 fractions such as indene and vinyltoluene generated by thermal decomposition of petroleum naphtha, and hydrogenated resins obtained by hydrogenating these.
 粘着付与剤の含有量は、粘着剤組成物(x-1)の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%、より更に好ましくは2~30質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x-1). %, more preferably 1 to 40% by mass, and even more preferably 2 to 30% by mass.
〔粘着剤用添加剤〕
 粘着剤組成物(x-1)は、本発明の効果を損なわない範囲で、上記各成分以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤等が挙げられる。
 なお、粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
[Additive for adhesive]
The pressure-sensitive adhesive composition (x-1) may contain additives for pressure-sensitive adhesives used in general pressure-sensitive adhesives, in addition to the components described above, as long as the effects of the present invention are not impaired.
Examples of adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), and ultraviolet absorbers.
In addition, the additives for pressure-sensitive adhesives may be used alone, respectively, or two or more of them may be used in combination.
 粘着剤組成物(x-1)が粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、それぞれ独立して、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。 When the pressure-sensitive adhesive composition (x-1) contains a pressure-sensitive adhesive additive, the content of each pressure-sensitive adhesive additive is independently preferably 0 per 100 parts by mass of the pressure-sensitive adhesive resin. 0.0001 to 20 parts by mass, more preferably 0.001 to 10 parts by mass.
(重合性組成物)
 粘着剤層(X1)が熱膨張性層である場合、粘着剤層(X1)は、上記した粘着剤組成物(x-1)によって形成してもよいが、塗布した後の乾燥工程による熱膨張性粒子の膨張を抑制するという観点からは、エネルギー線重合性成分及び熱膨張性粒子を含有する重合性組成物に対してエネルギー線を照射して形成することが好ましい。粘着剤層(X1)の形成に重合性組成物を用いることで、溶剤を使用する必要がなく、乾燥工程を省くことができるため、比較的低い膨張開始温度(t)を有する熱膨張性粒子を選択することができる。
 エネルギー線重合性成分としては、例えば、上記した粘着性樹脂として説明したアクリル系樹脂の原料モノマーとして挙げられた各種モノマーを用いることができる。
 重合性組成物は、エネルギー線重合反応を十分に進行させる観点から、光重合開始剤を含有することが好ましい。光重合開始剤は、後述する無溶剤型樹脂組成物(y-1a)で説明する光重合開始剤を用いることができる。また、重合性組成物は上記した粘着剤組成物(x-1)で説明した架橋剤、粘着付与剤、粘着剤用添加剤等を含有していてもよい。
(Polymerizable composition)
When the pressure-sensitive adhesive layer (X1) is a thermally expandable layer, the pressure-sensitive adhesive layer (X1) may be formed from the above-described pressure-sensitive adhesive composition (x-1), but the heat from the drying step after application From the viewpoint of suppressing the expansion of the expandable particles, it is preferable to irradiate the polymerizable composition containing the energy ray-polymerizable component and the thermally expandable particles with an energy ray. By using a polymerizable composition for forming the pressure-sensitive adhesive layer (X1), there is no need to use a solvent and the drying step can be omitted, so the thermally expandable particles having a relatively low expansion initiation temperature (t) can be selected.
As the energy ray-polymerizable component, for example, various monomers exemplified as raw material monomers for the acrylic resin described above as the adhesive resin can be used.
The polymerizable composition preferably contains a photopolymerization initiator from the viewpoint of sufficiently advancing the energy ray polymerization reaction. As the photopolymerization initiator, the photopolymerization initiator described in the solventless resin composition (y-1a) described later can be used. In addition, the polymerizable composition may contain the crosslinking agent, tackifier, adhesive additive, etc. described in the above adhesive composition (x-1).
(熱膨張性層を熱膨張させる前の粘着剤層(X1)の粘着力)
 熱膨張性層を熱膨張させる前の粘着剤層(X1)の粘着力は、好ましくは0.1~12.0N/25mm、より好ましくは0.5~9.0N/25mm、更に好ましくは1.0~8.0N/25mm、より更に好ましくは1.2~7.5N/25mmである。
 熱膨張性層を熱膨張させる前の粘着剤層(X1)の粘着力が0.1N/25mm以上であると、仮固定時における支持体からの意図しない剥離、位置ズレ等をより効果的に抑制できる傾向にある。また、上記粘着力が12.0N/25mm以下であると、加熱剥離時の剥離性をより向上させることができる。
(Adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable layer)
The adhesive strength of the pressure-sensitive adhesive layer (X1) before thermally expanding the thermally expandable layer is preferably 0.1 to 12.0 N/25 mm, more preferably 0.5 to 9.0 N/25 mm, still more preferably 1 .0 to 8.0 N/25 mm, more preferably 1.2 to 7.5 N/25 mm.
When the adhesive strength of the adhesive layer (X1) before thermally expanding the thermally expandable layer is 0.1 N/25 mm or more, unintended peeling from the support during temporary fixing, positional displacement, etc. can be more effectively prevented. tend to be suppressed. Further, when the adhesive strength is 12.0 N/25 mm or less, the peelability at the time of heat peeling can be further improved.
(熱膨張性層を熱膨張させた後の粘着剤層(X1)の粘着力)
 熱膨張性層を熱膨張させた後の粘着剤層(X1)の粘着力は、好ましくは1.5N/25mm以下、より好ましくは0.05N/25mm以下、更に好ましくは0.01N/25mm以下、より更に好ましくは0N/25mmである。なお、粘着力が0N/25mmであるとは、上記した粘着力の測定方法において、測定限界以下の粘着力を意味し、測定のために両面粘着シートを固定する際に粘着力が小さすぎて意図せず剥離する場合も含まれる。
(Adhesive strength of adhesive layer (X1) after thermally expanding the thermally expandable layer)
The adhesive strength of the adhesive layer (X1) after thermal expansion of the thermally expandable layer is preferably 1.5 N/25 mm or less, more preferably 0.05 N/25 mm or less, and still more preferably 0.01 N/25 mm or less. , and more preferably 0 N/25 mm. The adhesive force of 0 N/25 mm means an adhesive force below the measurable limit in the method for measuring adhesive force described above. A case of unintentional peeling is also included.
(粘着剤層(X1)の厚さ)
 粘着剤層(X1)の厚さは、良好な粘着力を発現させると共に、基材層(Y)等の粘着剤層(X1)以外の層が熱膨張性層である場合に、該熱膨張性層中の熱膨張性粒子を加熱により膨張させた際に、粘着剤層(X1)の粘着表面に凹凸を良好に形成させる観点から、好ましくは3~10μm、より好ましくは3~8μm、更に好ましくは3~7μmである。
(Thickness of adhesive layer (X1))
The thickness of the adhesive layer (X1) expresses good adhesive strength, and when a layer other than the adhesive layer (X1) such as the base layer (Y) is a thermally expandable layer, the thermal expansion From the viewpoint of forming good unevenness on the adhesive surface of the adhesive layer (X1) when the thermally expandable particles in the adhesive layer are expanded by heating, it is preferably 3 to 10 μm, more preferably 3 to 8 μm, and further It is preferably 3 to 7 μm.
<基材層(Y)>
 基材層(Y)は、非粘着性の基材からなる層であることが好ましい。
 基材層(Y)の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、基材の表面におけるプローブタック値は、以下の方法により測定された値を意味する。
≪プローブタック値の測定方法≫
 測定対象となる基材を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとして、23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定することができる。具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とすることができる。
<Base material layer (Y)>
The substrate layer (Y) is preferably a layer made of a non-adhesive substrate.
The probe tack value on the surface of the substrate layer (Y) is usually less than 50 mN/5 mmφ, preferably less than 30 mN/5 mmφ, more preferably less than 10 mN/5 mmφ, still more preferably less than 5 mN/5 mmφ.
In addition, in this specification, the probe tack value on the surface of the substrate means the value measured by the following method.
≪How to measure the probe tack value≫
After cutting the base material to be measured into a square with a side of 10 mm, a test sample was left to stand in an environment of 23 ° C. and 50% RH (relative humidity) for 24 hours. ), using a tacking tester (manufactured by Nippon Tokushu Sokki Co., Ltd., product name “NTS-4800”), the probe tack value on the surface of the test sample is measured in accordance with JIS Z0237: 1991. be able to. Specifically, a stainless steel probe with a diameter of 5 mm was brought into contact with the surface of the test sample at a contact load of 0.98 N/cm 2 for 1 second, and then the probe was moved at a speed of 10 mm/second to the surface of the test sample. The force required to remove it from the surface can be measured and the resulting value taken as the probe tack value for that test sample.
 基材層(Y)には、他の層との層間密着性を向上させる観点から、例えば、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
The substrate layer (Y) may be subjected to, for example, a surface treatment such as an oxidation method or a roughening method, an adhesion-facilitating treatment, or a primer treatment, from the viewpoint of improving interlayer adhesion with other layers.
Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, ultraviolet irradiation treatment, etc. Examples of roughening methods include sandblasting, solvent treatment, and the like. is mentioned.
 基材層(Y)は、熱膨張性層(以下、「熱膨張性基材層(Y1)」ともいう)であってもよく、非熱膨張性層(以下、「非熱膨張性基材層(Y2)」ともいう)であってもよい。
 基材層(Y)が熱膨張性基材層(Y1)を含む場合、熱膨張性粒子の膨張による熱膨張性基材層(Y1)の変形を、粘着剤層(X1)に良好に伝える観点から、熱膨張性基材層(Y1)と共に、非熱膨張性基材層(Y2)を含むことが好ましい。すなわち、本実施形態の両面粘着シートは、粘着剤層(X1)と、熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とを、この順で有することが好ましい。
 図2には、粘着剤層(X1)と、熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)と、がこの順に積層された積層構造を有する両面粘着シート1cの断面模式図が示されている。
The substrate layer (Y) may be a thermally expandable layer (hereinafter also referred to as “thermally expandable substrate layer (Y1)”), a non-thermally expandable layer (hereinafter, “non-thermally expandable substrate layer (Y2)”).
When the substrate layer (Y) includes the thermally expandable substrate layer (Y1), the deformation of the thermally expandable substrate layer (Y1) due to the expansion of the thermally expandable particles is well transmitted to the adhesive layer (X1). From a viewpoint, it is preferable to include a non-thermally expandable substrate layer (Y2) together with the thermally expandable substrate layer (Y1). That is, the double-sided pressure-sensitive adhesive sheet of the present embodiment comprises a pressure-sensitive adhesive layer (X1), a thermally expandable base layer (Y1), a non-thermally expandable base layer (Y2), and a pressure-sensitive adhesive layer (X2). , in this order.
In FIG. 2, an adhesive layer (X1), a thermally expandable substrate layer (Y1), a non-thermally expandable substrate layer (Y2), and an adhesive layer (X2) are laminated in this order. A cross-sectional schematic diagram of a double-sided pressure-sensitive adhesive sheet 1c having a laminated structure is shown.
<熱膨張性基材層(Y1)>
 熱膨張性基材層(Y1)は、例えば、樹脂及び熱膨張性粒子を含有する樹脂組成物(y-1)から形成することができる。
<Thermal expandable base layer (Y1)>
The thermally expandable substrate layer (Y1) can be formed, for example, from a resin composition (y-1) containing a resin and thermally expandable particles.
(樹脂組成物(y-1))
 樹脂組成物(y-1)は、樹脂及び熱膨張性粒子を含有する樹脂組成物である。
(Resin composition (y-1))
Resin composition (y-1) is a resin composition containing a resin and thermally expandable particles.
〔樹脂〕
 樹脂は、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。樹脂組成物(y-1)に含有される樹脂が粘着性樹脂であっても、樹脂組成物(y-1)から熱膨張性基材層(Y1)を形成する過程において、粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、熱膨張性基材層(Y1)が非粘着性となればよい。
 樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
〔resin〕
The resin may be a non-adhesive resin or a tacky resin. Even if the resin contained in the resin composition (y-1) is an adhesive resin, in the process of forming the thermally expandable base layer (Y1) from the resin composition (y-1), the adhesive resin is It suffices that the polymerizable compound undergoes a polymerization reaction, the resulting resin becomes a non-adhesive resin, and the thermally expandable substrate layer (Y1) becomes non-adhesive.
One of the resins may be used alone, or two or more of them may be used in combination.
 樹脂の質量平均分子量(Mw)は、好ましくは1,000~100万、より好ましくは1,000~70万、更に好ましくは1,000~50万である。 The mass average molecular weight (Mw) of the resin is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000.
 樹脂は、1種単独の構成単位を有する重合体であってもよく、2種以上の構成単位を有する共重合体であってもよい。樹脂が共重合体である場合、共重合体の形態は、ブロック共重合体、ランダム共重合体及びグラフト共重合体のいずれであってもよい。 The resin may be a polymer having a single structural unit, or a copolymer having two or more structural units. When the resin is a copolymer, the form of the copolymer may be block copolymer, random copolymer or graft copolymer.
 樹脂組成物(y-1)に含有される樹脂としては、粘着剤層(X1)の粘着表面に凹凸を形成し易くする観点、及び熱膨張後のシート形状維持性を良好にする観点から、アクリルウレタン系樹脂及びオレフィン系樹脂からなる群から選ばれる1種以上を含有することが好ましい。 As the resin contained in the resin composition (y-1), from the viewpoint of facilitating the formation of unevenness on the adhesive surface of the pressure-sensitive adhesive layer (X1) and from the viewpoint of improving the sheet shape retention after thermal expansion, It preferably contains one or more selected from the group consisting of acrylic urethane resins and olefin resins.
≪アクリルウレタン系樹脂≫
 アクリルウレタン系樹脂としては、以下のアクリルウレタン系樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含有するビニル化合物と、を重合してなるアクリルウレタン系樹脂(U1)。
 なお、本明細書において、プレポリマーとは、モノマーが重合してなる化合物であって、さらなる重合を行うことでポリマーを構成することが可能な化合物を意味する。
≪Acrylic urethane resin≫
As the acrylic urethane resin, the following acrylic urethane resin (U1) is preferable.
• An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth)acrylic acid ester.
In the present specification, the term "prepolymer" means a compound obtained by polymerizing a monomer and capable of forming a polymer by further polymerization.
 ウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
Urethane prepolymers (UP) include reaction products of polyols and polyvalent isocyanates.
In addition, it is preferable that the urethane prepolymer (UP) is obtained by subjecting the urethane prepolymer (UP) to a chain extension reaction using a chain extension agent.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール、カーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of polyols used as raw materials for urethane prepolymers (UP) include alkylene-type polyols, ether-type polyols, ester-type polyols, esteramide-type polyols, ester/ether-type polyols, and carbonate-type polyols.
These polyols may be used alone or in combination of two or more.
The polyol is preferably a diol, more preferably an ester-type diol, an alkylene-type diol or a carbonate-type diol, and still more preferably an ester-type diol or a carbonate-type diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、例えば、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール、ポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of ester diols include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and 1,6-hexanediol; ethylene glycol, propylene glycol, 1 or 2 or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; ,4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Condensation products of one or more selected from dicarboxylic acids such as hydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, methylhexahydrophthalic acid, and anhydrides thereof may be mentioned.
Specifically, for example, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, polydiethylene adipate diol, poly(polytetramethylene ether) adipate diol, poly(3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol, polyneopentyl terephthalate diol and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、例えば、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 多価イソシアネートは、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Examples of polyvalent isocyanates used as raw materials for urethane prepolymers (UP) include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
Polyvalent isocyanate may be used individually by 1 type, and may use 2 or more types together.
Further, the polyvalent isocyanate may be a trimethylolpropane adduct-type modified product, a biuret-type modified product reacted with water, or an isocyanurate-type modified product containing an isocyanurate ring.
 これらの中でも、多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、脂環式ジイソシアネートがより好ましい。 Among these, diisocyanates are preferred as polyvalent isocyanates, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2, 6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanates are more preferred.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Alicyclic diisocyanates include, for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane Examples include diisocyanate, methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, and isophorone diisocyanate (IPDI) is preferred.
 ウレタンプレポリマー(UP)は、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 エチレン性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等が挙げられ、これらの中でも、(メタ)アクリロイル基が好ましい。
 直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、例えば、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
 末端のNCO基と反応させるヒドロキシアルキル(メタ)アクリレートとしては、例えば、上述したモノマー(a2’)として挙げられたヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。
The urethane prepolymer (UP) is preferably a linear urethane prepolymer having ethylenically unsaturated groups at both ends.
Examples of ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and allyl groups, and among these, (meth)acryloyl groups are preferred.
As a method for introducing ethylenically unsaturated groups at both ends of a straight-chain urethane prepolymer, for example, an NCO group at the end of the straight-chain urethane prepolymer obtained by reacting a diol with a diisocyanate compound and a hydroxyalkyl (meth) A method of reacting with acrylate can be mentioned.
Examples of the hydroxyalkyl (meth)acrylate to be reacted with the terminal NCO group include the same hydroxyalkyl (meth)acrylates as the monomer (a2′) described above.
≪オレフィン系樹脂≫
 オレフィン系樹脂は、オレフィンモノマーに由来する構成単位を少なくとも有する重合体である。
 オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。これらの中でも、エチレン、プロピレンが好ましい。
≪Olefin resin≫
An olefin resin is a polymer having at least structural units derived from an olefin monomer.
As the olefin monomer, α-olefins having 2 to 8 carbon atoms are preferable, and specific examples include ethylene, propylene, butylene, isobutylene, 1-hexene, and the like. Among these, ethylene and propylene are preferred.
 オレフィン系樹脂は、さらに、酸変性、水酸基変性及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 The olefin-based resin may be a modified olefin-based resin that has undergone one or more modifications selected from acid modification, hydroxyl modification, and acrylic modification.
 オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、例えば、無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 不飽和カルボン酸又はその無水物は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the acid-modified olefin resin obtained by subjecting an olefin resin to acid modification include a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or its anhydride to an unmodified olefin resin. be done.
Examples of unsaturated carboxylic acids or anhydrides thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth)acrylic acid, maleic anhydride, itaconic anhydride, and anhydride. glutaconic acid, citraconic anhydride, aconitic anhydride, norbornenedicarboxylic anhydride, tetrahydrophthalic anhydride and the like.
One type of unsaturated carboxylic acid or its anhydride may be used alone, or two or more types may be used in combination.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、例えば、主鎖である無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 アルキル(メタ)アクリレートとしては、例えば、上述したモノマー(a1’)として挙げられたアルキル(メタ)アクリレートと同じものが挙げられる。
Examples of acrylic-modified olefin-based resins obtained by subjecting olefin-based resins to acrylic modification include, for example, modification obtained by graft-polymerizing alkyl (meth)acrylates as side chains to unmodified olefin-based resins that are main chains. polymers.
The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1-20, more preferably 1-16, still more preferably 1-12.
Examples of alkyl (meth)acrylates include the same alkyl (meth)acrylates listed above as the monomer (a1′).
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、例えば、主鎖である無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 水酸基含有化合物としては、例えば、上述したモノマー(a2’)として挙げられた水酸基含有化合物と同じものが挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by modifying the olefin resin with hydroxyl groups include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to an unmodified olefin resin that is the main chain.
The hydroxyl group-containing compound includes, for example, the same hydroxyl group-containing compounds as the monomer (a2′) described above.
≪アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂≫
 樹脂組成物(y-1)は、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル系樹脂;フッ素系樹脂等が挙げられる。
<<Resins other than acrylic urethane resins and olefin resins>>
The resin composition (y-1) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin within a range that does not impair the effects of the present invention.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; Coalescence; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resins; polysulfone; polyetheretherketone; polyethersulfone; polyphenylene sulfide; ; fluorine-based resins and the like.
 ただし、熱膨張後のシート形状維持性を良好にする観点から、樹脂組成物(y-1)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有量は、少ない方が好ましく、含有しないことがより好ましい。
 樹脂組成物(y-1)がアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有する場合、その含有量は、樹脂組成物(y-1)に含有される樹脂の全量(100質量%)に対して、好ましくは30質量%未満、より好ましくは20質量%未満、更に好ましくは10質量%未満、より更に好ましくは5質量%未満、更になお好ましくは1質量%未満である。
However, from the viewpoint of improving the sheet shape retention property after thermal expansion, the content of the resin other than the acrylic urethane resin and the olefin resin in the resin composition (y-1) is preferably small, and is not contained. is more preferable.
When the resin composition (y-1) contains a resin other than the acrylic urethane resin and the olefin resin, the content thereof is the total amount (100% by mass) of the resin contained in the resin composition (y-1). , preferably less than 30% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, even more preferably less than 5% by mass, and even more preferably less than 1% by mass.
〔基材用添加剤〕
 樹脂組成物(y-1)は、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 樹脂組成物(y-1)が基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、それぞれ独立して、樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
[Base material additive]
The resin composition (y-1) may contain additives for base materials, if necessary, to the extent that the effects of the present invention are not impaired.
Examples of base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, colorants, and the like.
The base material additives may be used alone or in combination of two or more.
When the resin composition (y-1) contains a base material additive, the content of each base material additive is preferably 0.0001 to 0.0001 to 100 parts by mass of the resin independently. 20 parts by mass, more preferably 0.001 to 10 parts by mass.
 樹脂組成物(y-1)は、溶剤で希釈されていてもよい。溶剤としては、トルエン等の芳香族炭化水素類;酢酸エチル等のエステル類;メチルエチルケトン、アセトン等のケトン類;イソプロピルアルコール等のアルコール類等の有機溶剤が挙げられる。ただし、粘着剤層(X1)が熱膨張性粒子を含有する場合と同様、塗布した後の乾燥工程による熱膨張性粒子の膨張を抑制するという観点からは、エネルギー線重合性成分及び熱膨張性粒子を含有し、溶剤を含まない無溶剤型樹脂組成物(y-1a)に対してエネルギー線を照射して熱膨張性基材層(Y1)を形成することが好ましい。 The resin composition (y-1) may be diluted with a solvent. Examples of the solvent include aromatic hydrocarbons such as toluene; esters such as ethyl acetate; ketones such as methyl ethyl ketone and acetone; and organic solvents such as alcohols such as isopropyl alcohol. However, as in the case where the pressure-sensitive adhesive layer (X1) contains thermally expandable particles, from the viewpoint of suppressing the expansion of the thermally expandable particles during the drying process after coating, the energy ray-polymerizable component and the thermally expandable It is preferable to form the thermally expandable substrate layer (Y1) by irradiating the solvent-free resin composition (y-1a) containing particles and containing no solvent with energy rays.
(無溶剤型樹脂組成物(y-1a))
 無溶剤型樹脂組成物(y-1a)の一態様として、エネルギー線重合性成分としての質量平均分子量(Mw)が50,000以下のエチレン性不飽和基を有するオリゴマー(以下、単に「エチレン性不飽和基を有するオリゴマー」ともいう)及びエネルギー線重合性モノマーと、上述の熱膨張性粒子と、を配合してなり、溶剤を配合しない樹脂組成物が挙げられる。
 このような無溶剤型樹脂組成物(y-1a)には、溶剤を配合しないが、エネルギー線重合性モノマーが、エチレン性不飽和基を有するオリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y-1a)に対して、エネルギー線を照射することで、エチレン性不飽和基を有するオリゴマー、エネルギー線重合性モノマー等が重合し、熱膨張性基材層(Y1)が形成される。
 エチレン性不飽和基としては、上述したものと同じものが挙げられ、これらの中でも、(メタ)アクリロイル基が好ましい。
(Solvent-free resin composition (y-1a))
As one aspect of the solvent-free resin composition (y-1a), an oligomer having an ethylenically unsaturated group with a mass average molecular weight (Mw) of 50,000 or less as an energy ray-polymerizable component (hereinafter simply referred to as "ethylenic (also referred to as "an unsaturated group-containing oligomer"), an energy ray-polymerizable monomer, and the above-described thermally expandable particles, and a resin composition containing no solvent.
Although the solvent-free resin composition (y-1a) does not contain a solvent, the energy ray-polymerizable monomer contributes to improving the plasticity of the oligomer having an ethylenically unsaturated group.
By irradiating the solvent-free resin composition (y-1a) with an energy ray, an oligomer having an ethylenically unsaturated group, an energy ray-polymerizable monomer, etc. are polymerized to form a thermally expandable base layer (Y1 ) is formed.
Examples of the ethylenically unsaturated group include those mentioned above, and among these, a (meth)acryloyl group is preferred.
 エチレン性不飽和基を有するオリゴマーの質量平均分子量(Mw)は、50,000以下であり、好ましくは1,000~50,000、より好ましくは2,000~40,000、更に好ましくは3,000~35,000、より更に好ましくは4,000~30,000である。 The weight average molecular weight (Mw) of the oligomer having an ethylenically unsaturated group is 50,000 or less, preferably 1,000 to 50,000, more preferably 2,000 to 40,000, still more preferably 3,000. 000 to 35,000, more preferably 4,000 to 30,000.
 エチレン性不飽和基を有するオリゴマーとしては、上述の樹脂組成物(y-1)に含有される樹脂のうち、質量平均分子量(Mw)が50,000以下のエチレン性不飽和基を有するものが好ましく、その中でも、上述のウレタンプレポリマー(UP)がより好ましく、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが更に好ましい。
 エチレン性不飽和基を有するオリゴマーとしては、上述のオレフィン系樹脂に対してエチレン性不飽和基を導入して得られるエチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
As the oligomer having an ethylenically unsaturated group, among the resins contained in the above resin composition (y-1), those having an ethylenically unsaturated group with a weight average molecular weight (Mw) of 50,000 or less. Among them, the urethane prepolymer (UP) described above is more preferable, and a linear urethane prepolymer having ethylenically unsaturated groups at both ends is even more preferable.
As the oligomer having an ethylenically unsaturated group, a modified olefinic resin having an ethylenically unsaturated group obtained by introducing an ethylenically unsaturated group into the above-described olefinic resin can also be used.
 無溶剤型樹脂組成物(y-1a)中における、エチレン性不飽和基を有するオリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y-1a)の全量(100質量%)に対して、好ましくは70~99.5質量%、より好ましくは75~99.2質量%、更に好ましくは80~98.8質量%、より更に好ましくは85~98.5質量%である。 The total content of the oligomer having an ethylenically unsaturated group and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is the total amount (100 mass of the solvent-free resin composition (y-1a) %), preferably 70 to 99.5 mass%, more preferably 75 to 99.2 mass%, still more preferably 80 to 98.8 mass%, still more preferably 85 to 98.5 mass% be.
 エネルギー線重合性モノマーは、エネルギー線重合性官能基を有するモノマーである。
 エネルギー線重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和基が挙げられる。これらの中でも、(メタ)アクリロイル基が好ましい。エネルギー線重合性モノマーは、エネルギー線重合性官能基を1つのみ有するエネルギー線重合性単官能モノマーであってもよいし、エネルギー線重合性官能基を2つ以上有するエネルギー線重合性多官能モノマーであってもよいが、熱膨張性粒子の膨張を妨げない柔軟な熱膨張性基材層(Y1)を得る観点からは、少なくともエネルギー線重合性単官能モノマーを用いることが好ましい。
 エネルギー線重合性単官能モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。これらの中でも、イソボルニル(メタ)アクリレート、フェニルヒドロキシプロピルアクリレート、シクロヘキシル(メタ)アクリレートが好ましい。
 エネルギー線重合性モノマーは、1種を単独で用いてもよく、2種以上を併用してもよく、エネルギー線重合性単官能モノマーと、エネルギー線重合性多官能モノマーとを組み合わせて用いてもよい。
An energy ray-polymerizable monomer is a monomer having an energy ray-polymerizable functional group.
Examples of energy ray-polymerizable functional groups include ethylenically unsaturated groups such as (meth)acryloyl groups, vinyl groups, and allyl groups. Among these, a (meth)acryloyl group is preferred. The energy ray-polymerizable monomer may be an energy ray-polymerizable monofunctional monomer having only one energy ray-polymerizable functional group, or an energy ray-polymerizable polyfunctional monomer having two or more energy ray-polymerizable functional groups. However, from the viewpoint of obtaining a flexible thermally expandable substrate layer (Y1) that does not hinder the expansion of the thermally expandable particles, it is preferable to use at least an energy ray-polymerizable monofunctional monomer.
Energy ray-polymerizable monofunctional monomers include, for example, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, cyclohexyl (meth)acrylate, alicyclic polymerizable compounds such as adamantane (meth)acrylate and tricyclodecane acrylate; aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate, and phenol ethylene oxide-modified acrylate; Examples thereof include heterocyclic polymerizable compounds such as N-vinylpyrrolidone and N-vinylcaprolactam. Among these, isobornyl (meth)acrylate, phenylhydroxypropyl acrylate, and cyclohexyl (meth)acrylate are preferred.
The energy ray-polymerizable monomer may be used singly or in combination of two or more, or an energy ray-polymerizable monofunctional monomer and an energy ray-polymerizable polyfunctional monomer may be used in combination. good.
 無溶剤型樹脂組成物(y-1a)中における、エチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーとの含有量比[エチレン性不飽和基を有するオリゴマー/エネルギー線重合性モノマー]は、質量比で、好ましくは20/80~85/15、より好ましくは25/75~80/20、更に好ましくは30/70~75/25である。 Content ratio of the oligomer having an ethylenically unsaturated group and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) [oligomer having an ethylenically unsaturated group/energy ray-polymerizable monomer] is preferably 20/80 to 85/15, more preferably 25/75 to 80/20, still more preferably 30/70 to 75/25, in mass ratio.
 無溶剤型樹脂組成物(y-1a)は、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることを可能にする観点から、光重合開始剤を含有することが好ましい。
 光重合開始剤としては、例えば、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、β-クロロアンスラキノン、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド等が挙げられる。これらの中でも、1-ヒドロキシシクロへキシルフェニルケトンが好ましい。
 光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 光重合開始剤の含有量は、エチレン性不飽和基を有するオリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。
The solvent-free resin composition (y-1a) preferably contains a photopolymerization initiator from the viewpoint of allowing the curing reaction to proceed sufficiently even when irradiated with relatively low-energy energy rays. .
Examples of photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram. monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, β-chloroanthraquinone, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and the like. Among these, 1-hydroxycyclohexylphenyl ketone is preferred.
A photoinitiator may be used individually by 1 type, and may use 2 or more types together.
The content of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01, with respect to the total amount (100 parts by mass) of the oligomer having an ethylenically unsaturated group and the energy ray-polymerizable monomer. to 4 parts by mass, more preferably 0.02 to 3 parts by mass.
(熱膨張性基材層(Y1)の厚さ)
 熱膨張性基材層(Y1)の熱膨張前の厚さは、15~250μmであることが好ましく、50~225μmであることがより好ましく、75~150μmであることが更に好ましい。
 熱膨張性基材層(Y1)の熱膨張前の厚さが15μm以上であると、熱膨張前の熱膨張性粒子に起因する凹凸が粘着剤層(X1)の表面に表出し難くなる傾向にあり、加熱剥離時の剥離性も向上させやすい。また、熱膨張性基材層(Y1)の熱膨張前の厚さが250μm以下であると、両面粘着シートの取り扱い性に優れる傾向にある。
(Thickness of thermally expandable base layer (Y1))
The thickness of the thermally expandable substrate layer (Y1) before thermal expansion is preferably 15 to 250 μm, more preferably 50 to 225 μm, even more preferably 75 to 150 μm.
When the thickness of the thermally expandable base layer (Y1) before thermal expansion is 15 μm or more, unevenness caused by the thermally expandable particles before thermal expansion tends to be difficult to appear on the surface of the pressure-sensitive adhesive layer (X1). It is easy to improve the peelability at the time of heat peeling. Moreover, when the thickness of the thermally expandable substrate layer (Y1) before thermal expansion is 250 μm or less, the double-sided pressure-sensitive adhesive sheet tends to be excellent in handleability.
<非熱膨張性基材層(Y2)>
 非熱膨張性基材層(Y2)の形成材料としては、例えば、樹脂、金属、紙材等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル系樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 これらの中でも、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂が好ましい。
<Non-thermally expandable base layer (Y2)>
Examples of materials for forming the non-thermally expandable base material layer (Y2) include resins, metals, and paper materials.
Examples of resins include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyethersulfone; polyphenylene sulfide; polyimide resins such as polyetherimide and polyimide; polyamide resins; acrylic resins;
Examples of metals include aluminum, tin, chromium, and titanium.
Examples of the paper material include thin paper, medium quality paper, fine paper, impregnated paper, coated paper, art paper, parchment paper, and glassine paper.
Among these, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferred.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非熱膨張性基材層(Y2)としては、例えば、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたもの、樹脂を含有する樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one type, or two or more types may be used in combination.
Examples of the non-thermally expandable base material layer (Y2) using a combination of two or more forming materials include those obtained by laminating a paper material with a thermoplastic resin such as polyethylene, a resin film containing a resin, or a sheet having a metal layer on its surface. Examples include those having a film formed thereon.
As a method for forming the metal layer, for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. and the like.
 非熱膨張性基材層(Y2)が樹脂を含有する場合、該樹脂と共に、樹脂組成物(y-1)にも含有し得る、上述の基材用添加剤を含有してもよい。 When the non-thermally expandable base material layer (Y2) contains a resin, it may contain the above base material additives that can also be contained in the resin composition (y-1) together with the resin.
(非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23))
 非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×10Pa、より好ましくは5.0×10~4.5×10Pa、更に好ましくは1.0×10~4.0×10Paである。
 非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以上であると、両面粘着シートの耐変形性を向上させ易い傾向にある。また、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以下であると、両面粘着シートの取り扱い性に優れる傾向にある。
 なお、本明細書において、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)は、実施例に記載の方法により測定された値を意味する。
(Storage elastic modulus E′ (23) at 23° C. of the non-thermally expandable base layer (Y2))
The storage modulus E'(23) of the non-thermally expandable substrate layer (Y2) at 23° C. is preferably 5.0×10 7 to 5.0×10 9 Pa, more preferably 5.0×10 8 to 4.5×10 9 Pa, more preferably 1.0×10 9 to 4.0×10 9 Pa.
When the storage elastic modulus E′(23) of the non-thermally expandable base material layer (Y2) is 5.0×10 7 Pa or more, the deformation resistance of the double-sided PSA sheet tends to be easily improved. Moreover, when the storage elastic modulus E′(23) of the non-thermally expandable base layer (Y2) is 5.0×10 9 Pa or less, the double-sided PSA sheet tends to be excellent in handleability.
In addition, in this specification, the storage elastic modulus E'(23) of the non-thermally expandable base layer (Y2) means a value measured by the method described in Examples.
(非熱膨張性基材層(Y2)の厚さ)
 非熱膨張性基材層(Y2)の厚さは、好ましくは5~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。
 非熱膨張性基材層(Y2)の厚さが5μm以上であると、両面粘着シートの耐変形性を向上させ易い傾向にある。また、非熱膨張性基材層(Y2)の厚さが500μm以下であると、両面粘着シートの取り扱い性に優れる傾向にある。
(Thickness of non-thermally expandable base layer (Y2))
The thickness of the non-thermally expandable base layer (Y2) is preferably 5-500 μm, more preferably 15-300 μm, and still more preferably 20-200 μm.
When the thickness of the non-thermally expandable substrate layer (Y2) is 5 μm or more, the deformation resistance of the double-sided PSA sheet tends to be easily improved. Moreover, when the thickness of the non-thermally expandable base material layer (Y2) is 500 μm or less, the double-sided pressure-sensitive adhesive sheet tends to be excellent in handleability.
<粘着剤層(X2)>
 粘着剤層(X2)は、本実施形態の両面粘着シートにおける他方の面側の外層としての粘着剤層であり、エネルギー線を照射することにより硬化する性質を有するエネルギー線硬化性粘着剤層である。
 粘着剤層(X2)は、例えば、エネルギー線重合性成分を含有する粘着剤組成物(x-2)から形成することができる。
<Adhesive layer (X2)>
The pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer as an outer layer on the other side of the double-sided pressure-sensitive adhesive sheet of the present embodiment, and is an energy ray-curable pressure-sensitive adhesive layer having the property of being cured by irradiation with energy rays. be.
The pressure-sensitive adhesive layer (X2) can be formed, for example, from a pressure-sensitive adhesive composition (x-2) containing an energy ray-polymerizable component.
(粘着剤組成物(x-2))
 粘着剤組成物(x-2)は、エネルギー線重合性成分を含有するものである。
 エネルギー線重合性成分としては、エネルギー線重合性官能基を有する粘着性樹脂(以下、「エネルギー線重合性粘着性樹脂」ともいう)を含有することが好ましい。なお、エネルギー線重合性粘着性樹脂は、単独では粘着性を有さず、粘着付与剤や可塑剤の添加により粘着性を発現するものであってもよい。
(Adhesive composition (x-2))
The adhesive composition (x-2) contains an energy ray-polymerizable component.
As the energy ray-polymerizable component, it is preferable to contain an adhesive resin having an energy ray-polymerizable functional group (hereinafter also referred to as "energy ray-polymerizable adhesive resin"). In addition, the energy ray-polymerizable adhesive resin may not have adhesiveness by itself, and may express adhesiveness by adding a tackifier or a plasticizer.
〔エネルギー線重合性粘着性樹脂〕
 エネルギー線重合性粘着性樹脂が有するエネルギー線重合性官能基としては、上述したものと同じものが挙げられる。これらの中でも、(メタ)アクリロイル基が好ましい。
 エネルギー線重合性粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Energy beam polymerizable adhesive resin]
Examples of the energy ray-polymerizable functional group possessed by the energy ray-polymerizable adhesive resin include the same groups as those described above. Among these, a (meth)acryloyl group is preferred.
The energy ray-polymerizable adhesive resin may be used alone or in combination of two or more.
 エネルギー線重合性粘着性樹脂は、1種単独の構成単位を有するものであってもよく、2種以上の構成単位を有する共重合体であってもよい。エネルギー線重合性粘着性樹脂が共重合体である場合、共重合体の形態は、ブロック共重合体、ランダム共重合体及びグラフト共重合体のいずれであってもよい。 The energy ray-polymerizable adhesive resin may have a single structural unit, or may be a copolymer having two or more structural units. When the energy ray-polymerizable adhesive resin is a copolymer, the form of the copolymer may be any of block copolymer, random copolymer and graft copolymer.
 エネルギー線重合性粘着性樹脂としては、例えば、エネルギー線重合性を有する、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂等が挙げられる。これらの中でも、エネルギー線重合性を有するアクリル系樹脂が好ましく、エネルギー線重合性を有するアクリル系共重合体(以下、「アクリル系共重合体(A2)」ともいう)がより好ましい。 Examples of energy ray-polymerizable adhesive resins include acrylic resins, urethane-based resins, rubber-based resins, and silicone-based resins that have energy ray-polymerizable properties. Among these, acrylic resins having energy ray polymerizability are preferred, and acrylic copolymers having energy ray polymerizability (hereinafter also referred to as “acrylic copolymer (A2)”) are more preferred.
 アクリル系共重合体(A2)は、粘着剤層(X2)の粘着力をより向上させるという観点から、アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートに由来する構成単位を含有することが好ましい。
 アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートに由来する構成単位は、1種単独又は2種以上であってもよい。
 アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートが有するアルキル基の炭素数は、好ましくは4~12、より好ましくは4~8、更に好ましくは4~6である。
 アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートとしては、例えば、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート等が挙げられる。これらの中でも、ブチル(メタ)アクリレートが好ましく、ブチルアクリレートがより好ましい。
 アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートの含有量は、粘着性の観点から、アクリル系共重合体(A2)を構成するアクリル系モノマーに由来する全構成単位中、好ましくは20~80質量%、より好ましくは30~70質量%、更に好ましくは40~60質量%である。
The acrylic copolymer (A2) contains a structural unit derived from an alkyl (meth)acrylate having an alkyl group having 4 or more carbon atoms from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X2). is preferred.
Structural units derived from alkyl (meth)acrylates having an alkyl group with 4 or more carbon atoms may be used singly or in combination of two or more.
The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate having 4 or more carbon atoms in the alkyl group is preferably 4 to 12, more preferably 4 to 8, and still more preferably 4 to 6.
Examples of alkyl (meth)acrylates in which the alkyl group has 4 or more carbon atoms include butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, and nonyl (meth)acrylate. Acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate and the like. Among these, butyl (meth)acrylate is preferred, and butyl acrylate is more preferred.
From the viewpoint of adhesiveness, the content of the alkyl (meth)acrylate whose alkyl group has 4 or more carbon atoms is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, still more preferably 40 to 60% by mass.
 アクリル系共重合体(A2)は、粘着剤層(X2)の弾性率及び粘着特性を良好にするという観点から、アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートに由来する構成単位と共に、アルキル基の炭素数が1~3であるアルキル(メタ)アクリレートに由来する構成単位を含有することが好ましい。
 アルキル基の炭素数が1~3であるアルキル(メタ)アクリレートに由来する構成単位は、1種単独又は2種以上であってもよい。
 アルキル基の炭素数が1~3であるアルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-プロピル(メタ)アクリレート等が挙げられる。これらの中でも、メチル(メタ)アクリレート、エチル(メタ)アクリレートが好ましく、メチルメタクリレート、エチルアクリレートがより好ましい。
 アルキル基の炭素数が1~3であるアルキル(メタ)アクリレートに由来する構成単位の含有量は、アクリル系共重合体(A2)を構成するアクリル系モノマー由来の全構成単位中、好ましくは1~35質量%、より好ましくは5~30質量%、更に好ましくは15~25質量%である。
From the viewpoint of improving the elastic modulus and adhesive properties of the pressure-sensitive adhesive layer (X2), the acrylic copolymer (A2) is a structural unit derived from an alkyl (meth)acrylate having an alkyl group having 4 or more carbon atoms. In addition, it preferably contains a structural unit derived from an alkyl (meth)acrylate having 1 to 3 carbon atoms in the alkyl group.
Structural units derived from alkyl (meth)acrylates in which the alkyl group has 1 to 3 carbon atoms may be used singly or in combination of two or more.
Examples of alkyl (meth)acrylates having 1 to 3 carbon atoms in the alkyl group include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-propyl (meth)acrylate and the like. . Among these, methyl (meth)acrylate and ethyl (meth)acrylate are preferred, and methyl methacrylate and ethyl acrylate are more preferred.
The content of structural units derived from alkyl (meth)acrylates in which the alkyl group has 1 to 3 carbon atoms is preferably 1 in all structural units derived from acrylic monomers constituting the acrylic copolymer (A2). to 35% by mass, more preferably 5 to 30% by mass, and even more preferably 15 to 25% by mass.
 アクリル系共重合体(A2)は、さらに、官能基含有モノマーに由来する構成単位を含有することが好ましい。
 アクリル系共重合体(A2)が官能基含有モノマーに由来する構成単位を含有することによって、架橋剤と反応する架橋起点としての官能基、又はエチレン性不飽和基含有化合物と反応して、アクリル系共重合体(A2)の側鎖にエチレン性不飽和基を導入することを可能とする官能基を導入することができる。
 アクリル系共重合体(A2)に含有される官能基含有モノマーに由来する構成単位は、1種単独又は2種以上であってもよい。
The acrylic copolymer (A2) preferably further contains structural units derived from functional group-containing monomers.
By containing a structural unit derived from a functional group-containing monomer, the acrylic copolymer (A2) reacts with a functional group as a cross-linking starting point that reacts with a cross-linking agent, or with an ethylenically unsaturated group-containing compound to form an acrylic A functional group can be introduced that enables introduction of an ethylenically unsaturated group into the side chain of the system copolymer (A2).
The structural units derived from the functional group-containing monomers contained in the acrylic copolymer (A2) may be one type alone or two or more types.
 官能基含有モノマーとしては、例えば、上述したモノマー(a2’)として挙げられた水酸基含有モノマー、カルボキシ基含有モノマーと同じものが挙げられる。これらの中でも、水酸基含有モノマーが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましく、2-ヒドロキシエチルアクリレートが更に好ましい。 Examples of functional group-containing monomers include the same hydroxyl group-containing monomers and carboxy group-containing monomers as the monomer (a2') described above. Among these, hydroxyl group-containing monomers are preferred, 2-hydroxyethyl (meth)acrylate is more preferred, and 2-hydroxyethyl acrylate is even more preferred.
 官能基含有モノマーに由来する構成単位の含有量は、アクリル系共重合体(A2)を構成するアクリル系モノマー由来の全構成単位中、好ましくは1~40質量%、より好ましくは10~35質量%、更に好ましくは20~30質量%である。 The content of the structural unit derived from the functional group-containing monomer is preferably 1 to 40% by mass, more preferably 10 to 35% by mass, in all the structural units derived from the acrylic monomer constituting the acrylic copolymer (A2). %, more preferably 20 to 30 mass %.
 アクリル系共重合体(A2)は、上記の構成単位以外にも、アクリル系モノマーと共重合可能なその他のモノマーに由来する構成単位を含有していてもよい。
 アクリル系共重合体(A2)に含有されるその他のモノマーに由来する構成単位は、1種単独又は2種以上であってもよい。
The acrylic copolymer (A2) may contain, in addition to the above structural units, structural units derived from other monomers copolymerizable with acrylic monomers.
The structural units derived from other monomers contained in the acrylic copolymer (A2) may be of one type alone or two or more types.
 アクリル系共重合体(A2)は、エネルギー線硬化性を付与するために、エチレン性不飽和基が導入されたものであることが好ましい。
 エチレン性不飽和基は、例えば、官能基含有モノマーに由来する構成単位を含有するアクリル系共重合体(A2)の官能基と、該官能基と反応性を有する反応性置換基及びエチレン性不飽和基を有する化合物(以下、「不飽和基含有化合物」ともいう)の反応性置換基と、を反応させることによって導入することができる。不飽和基含有化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
The acrylic copolymer (A2) is preferably one into which an ethylenically unsaturated group is introduced in order to impart energy ray curability.
The ethylenically unsaturated group is, for example, a functional group of the acrylic copolymer (A2) containing a structural unit derived from a functional group-containing monomer, a reactive substituent having reactivity with the functional group, and an ethylenically unsaturated group. It can be introduced by reacting with a reactive substituent of a compound having a saturated group (hereinafter also referred to as "unsaturated group-containing compound"). The unsaturated group-containing compounds may be used singly or in combination of two or more.
 不飽和基含有化合物が有するエチレン性不飽和基としては、上述したものと同じものが挙げられ、これらの中でも、(メタ)アクリロイル基が好ましい。
 不飽和基含有化合物が有する反応性置換基としては、例えば、イソシアネート基、グリシジル基等が挙げられる。
 不飽和基含有化合物としては、例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられる。これらの中でも、2-(メタ)アクリロイルオキシエチルイソシアネートが好ましく、2-メタクリロイルオキシエチルイソシアネートがより好ましい。
Examples of the ethylenically unsaturated group possessed by the unsaturated group-containing compound include those mentioned above, and among these, a (meth)acryloyl group is preferred.
Examples of reactive substituents that the unsaturated group-containing compound has include an isocyanate group and a glycidyl group.
Examples of unsaturated group-containing compounds include 2-(meth)acryloyloxyethyl isocyanate, (meth)acryloylisocyanate, glycidyl (meth)acrylate and the like. Among these, 2-(meth)acryloyloxyethyl isocyanate is preferred, and 2-methacryloyloxyethyl isocyanate is more preferred.
 官能基含有モノマーに由来する構成単位を含有するアクリル系共重合体(A2)と、不飽和基含有化合物と、を反応させる場合、アクリル系共重合体(A2)中の官能基の総数中、不飽和基含有化合物と反応する官能基の比率は、好ましくは30~96モル%、より好ましくは60~94モル%、更に好ましくは80~92モル%である。
 不飽和基含有化合物と反応する官能基の比率が上記範囲であると、アクリル系共重合体(A2)に対して付与するエネルギー線硬化性の調整が容易であると共に、不飽和基含有化合物と反応しなかった官能基を架橋剤と反応させてアクリル系共重合体(A2)を架橋させることができる。
When the acrylic copolymer (A2) containing structural units derived from functional group-containing monomers is reacted with the unsaturated group-containing compound, the total number of functional groups in the acrylic copolymer (A2) is The ratio of functional groups that react with the unsaturated group-containing compound is preferably 30 to 96 mol%, more preferably 60 to 94 mol%, still more preferably 80 to 92 mol%.
When the ratio of the functional group that reacts with the unsaturated group-containing compound is within the above range, it is easy to adjust the energy ray curability imparted to the acrylic copolymer (A2), and the unsaturated group-containing compound and The non-reacted functional groups can be reacted with a cross-linking agent to cross-link the acrylic copolymer (A2).
 アクリル系共重合体(A2)の質量平均分子量(Mw)は、好ましくは20万~150万、より好ましくは30万~100万、更に好ましくは40万~60万である。
 アクリル系共重合体(A2)の質量平均分子量(Mw)が上記範囲であると、粘着力及び凝集力がより良好になる傾向にある。
The mass average molecular weight (Mw) of the acrylic copolymer (A2) is preferably 200,000 to 1,500,000, more preferably 300,000 to 1,000,000, still more preferably 400,000 to 600,000.
When the mass average molecular weight (Mw) of the acrylic copolymer (A2) is within the above range, the adhesive strength and cohesive strength tend to be better.
 粘着剤組成物(x-2)中におけるアクリル系共重合体(A2)の含有量は、粘着剤組成物(x-2)の有効成分の全量(100質量%)に対して、好ましくは60~99質量%、より好ましくは70~95質量%、更に好ましくは80~90質量%である。 The content of the acrylic copolymer (A2) in the adhesive composition (x-2) is preferably 60 with respect to the total amount (100% by mass) of the active ingredients in the adhesive composition (x-2). ~99% by mass, more preferably 70 to 95% by mass, still more preferably 80 to 90% by mass.
〔エネルギー線硬化性化合物〕
 粘着剤組成物(x-2)は、粘着剤層(X2)の凝集力を調整する目的で、さらに、上記各成分以外のエネルギー線硬化性化合物を含有していてもよい。
 エネルギー線硬化性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 エネルギー線硬化性化合物としては、例えば、エネルギー線照射により重合硬化可能なモノマー又はオリゴマーが挙げられる。
 エネルギー線硬化性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレートモノマー;ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、エポキシ(メタ)アクリレート等のオリゴマー;等が挙げられる。これらの中でも、ウレタン(メタ)アクリレートが好ましい。ウレタン(メタ)アクリレートは、多官能ウレタン(メタ)アクリレートであることが好ましい。
 粘着剤組成物(x-2)がエネルギー線硬化性化合物を含有する場合、エネルギー線硬化性化合物の含有量は、エネルギー線重合性粘着性樹脂100質量部に対して、好ましくは1~30質量部、より好ましくは5~20質量部、更に好ましくは8~15質量部である。
[Energy ray-curable compound]
The pressure-sensitive adhesive composition (x-2) may further contain an energy ray-curable compound other than the above components for the purpose of adjusting the cohesive force of the pressure-sensitive adhesive layer (X2).
The energy ray-curable compounds may be used singly or in combination of two or more.
Energy ray-curable compounds include, for example, monomers or oligomers that can be polymerized and cured by energy ray irradiation.
Examples of energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and 1,4-butylene glycol. Polyvalent (meth)acrylate monomers such as di(meth)acrylate and 1,6-hexanediol (meth)acrylate; urethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, epoxy (meth)acrylate oligomers such as acrylate; Among these, urethane (meth)acrylate is preferred. Urethane (meth)acrylate is preferably polyfunctional urethane (meth)acrylate.
When the pressure-sensitive adhesive composition (x-2) contains an energy ray-curable compound, the content of the energy ray-curable compound is preferably 1 to 30 mass parts with respect to 100 parts by mass of the energy ray-polymerizable adhesive resin. parts, more preferably 5 to 20 parts by mass, still more preferably 8 to 15 parts by mass.
〔光重合開始剤〕
 粘着剤組成物(x-2)は、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることを可能にする観点から、光重合開始剤を含有することが好ましい。
 光重合開始剤としては、例えば、無溶剤型樹脂組成物(y-1a)の説明で挙げられた光重合開始剤と同じものが挙げられる。これらの中でも、2,2-ジメトキシ-2-フェニルアセトフェノンが好ましい。
 光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 粘着剤組成物(x-2)中における光重合開始剤の含有量は、エネルギー線重合性粘着性樹脂の全量100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~3質量部である。
[Photopolymerization initiator]
The pressure-sensitive adhesive composition (x-2) preferably contains a photopolymerization initiator from the viewpoint of allowing the curing reaction to proceed sufficiently even when irradiated with relatively low-energy energy rays.
The photopolymerization initiator includes, for example, the same photopolymerization initiators mentioned in the description of the solvent-free resin composition (y-1a). Among these, 2,2-dimethoxy-2-phenylacetophenone is preferred.
A photoinitiator may be used individually by 1 type, and may use 2 or more types together.
The content of the photopolymerization initiator in the adhesive composition (x-2) is preferably 0.01 to 10 parts by mass, more preferably 0 parts by mass, with respect to 100 parts by mass of the total amount of the energy ray-polymerizable adhesive resin. 0.03 to 5 parts by mass, more preferably 0.05 to 3 parts by mass.
〔架橋剤〕
 エネルギー線重合性粘着性樹脂が、エネルギー線重合性官能基以外の官能基をさらに有するものである場合、粘着剤組成物(x-2)は、さらに架橋剤を含有することが好ましい。
 架橋剤としては、例えば、粘着剤組成物(x-1)の説明で挙げられた架橋剤と同じものが挙げられる。これらの中でも、多価イソシアネート化合物のトリメチロールプロパンアダクト型変性体が好ましく、芳香族ポリイソシアネート化合物のトリメチロールプロパンアダクト型変性体がより好ましく、トリレンジイソシアネートのトリメチロールプロパンアダクト型変性体が更に好ましい。
 粘着剤組成物(x-2)中における架橋剤の含有量は、エネルギー線重合性粘着性樹脂が有する官能基の数により適宜調整されるものであるが、エネルギー線重合性粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。
[Crosslinking agent]
When the energy ray-polymerizable adhesive resin further has a functional group other than the energy ray-polymerizable functional group, the adhesive composition (x-2) preferably further contains a cross-linking agent.
The cross-linking agent includes, for example, the same cross-linking agents as mentioned in the description of the pressure-sensitive adhesive composition (x-1). Among these, trimethylolpropane adduct-type modified polyisocyanate compounds are preferred, trimethylolpropane adduct-type modified aromatic polyisocyanate compounds are more preferred, and trimethylolpropane adduct-type modified tolylene diisocyanate is even more preferred. .
The content of the cross-linking agent in the pressure-sensitive adhesive composition (x-2) is appropriately adjusted according to the number of functional groups possessed by the energy-ray-polymerizable adhesive resin. 0.01 to 10 parts by mass, more preferably 0.03 to 7 parts by mass, and still more preferably 0.05 to 5 parts by mass.
〔粘着付与剤〕
 粘着剤組成物(x-2)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。粘着付与剤としては、例えば、粘着剤組成物(x-1)の説明で挙げられた粘着付与剤と同じものが挙げられる。
[Tackifier]
The pressure-sensitive adhesive composition (x-2) may further contain a tackifier from the viewpoint of further improving the adhesive strength. The tackifier includes, for example, the same tackifiers mentioned in the description of the adhesive composition (x-1).
〔粘着剤用添加剤〕
 粘着剤組成物(x-2)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 粘着剤用添加剤としては、例えば、粘着剤組成物(x-1)の説明で挙げられた粘着剤用添加剤と同じものが挙げられる。
[Additive for adhesive]
The pressure-sensitive adhesive composition (x-2) may contain additives for pressure-sensitive adhesives used in general pressure-sensitive adhesives, in addition to the additives described above, within a range that does not impair the effects of the present invention. .
As the adhesive additive, for example, the same ones as the adhesive additive mentioned in the explanation of the adhesive composition (x-1) can be mentioned.
(粘着剤層(X2)の厚さ)
 粘着剤層(X2)の厚さは、好ましくは5~150μm、より好ましくは8~100μm、更に好ましくは12~70μm、より更に好ましくは15~50μmである。
 粘着剤層(X2)の厚さが上記範囲であると、加工対象物を良好に固定できる傾向にある。
(Thickness of adhesive layer (X2))
The thickness of the pressure-sensitive adhesive layer (X2) is preferably 5-150 μm, more preferably 8-100 μm, even more preferably 12-70 μm, still more preferably 15-50 μm.
When the thickness of the pressure-sensitive adhesive layer (X2) is within the above range, there is a tendency that the workpiece can be well fixed.
<両面粘着シートの全光線透過率>
 上記の通り、本実施形態の製造方法は、粘着剤層(X2)を硬化させる際に、膨張後の熱膨張性層によるエネルギー線透過性の低下の影響を受け難いものである。そのため、本実施形態の製造方法によると、例えば、熱膨張性層中の熱膨張性粒子の含有量が高く、あるいは、熱膨張性層の厚さが厚く、膨張後の熱膨張性層によるエネルギー線透過性の低下が大きい両面粘着シートを用いる場合においても、粘着剤層(X2)の良好な硬化性が得られるという特徴を有する。
 そのため、熱膨張性層を膨張させた後の両面粘着シートのエネルギー線透過性の指標である、両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)は、例えば、60%未満であってもよく、50%未満であってもよく、40%未満であってもよく、30%未満であってもよく、20%未満であってもよく、15%未満であってもよく、10%未満であってもよい。
 以上の範囲の中でも、膨張後の熱膨張性層によるエネルギー線透過性の低下が大きい場合でも、粘着剤層(X2)の良好な硬化性が得られるという本実施形態の製造方法の特徴を効果的に発現させる観点からは、両面粘着シートの全光線透過率(T)は低いことが好ましく、係る観点から、本発明の第三態様の製造方法に用いられる両面粘着シートは、上記の全光線透過率(T)が20%未満である両面粘着シートが用いられる。
 なお、全光線透過率(T)が20%未満である両面粘着シートとしては、上記の通り、熱膨張性層中の熱膨張性粒子の含有量を高くしたものや、熱膨張性層の厚さが厚いものに加えて、例えば、基材層(Y)又は粘着剤層(X1)にエネルギー線透過性が低い材料を選択した場合の両面粘着シートが挙げられる。
<Total light transmittance of double-sided adhesive sheet>
As described above, in the production method of the present embodiment, when the pressure-sensitive adhesive layer (X2) is cured, it is difficult to be affected by the decrease in energy ray transmittance due to the expanded thermally expandable layer. Therefore, according to the manufacturing method of the present embodiment, for example, the content of the thermally expandable particles in the thermally expandable layer is high, or the thickness of the thermally expandable layer is large, and the energy generated by the thermally expandable layer after expansion Even in the case of using a double-sided PSA sheet with a large decrease in line transmittance, the PSA layer (X2) has a feature of obtaining good curability.
Therefore, a 1.1 mm thick glass plate made of soda-lime glass was placed on the adhesive layer (X2) of the double-sided adhesive sheet, which is an indicator of the energy ray transmittance of the double-sided adhesive sheet after the thermally expandable layer was expanded. The laminate for total light transmittance measurement (L A ) obtained by heating the laminate for 1 minute at a temperature of expansion start temperature (t) of the thermally expandable particles + 22 ° C. Wavelength 380 nm in the thickness direction The total light transmittance (T A ) of, for example, may be less than 60%, may be less than 50%, may be less than 40%, may be less than 30%, may be less than 20 %, may be less than 15%, or may be less than 10%.
Among the above ranges, even when the energy ray transmittance is greatly reduced by the thermally expandable layer after expansion, the characteristic of the production method of the present embodiment that good curability of the pressure-sensitive adhesive layer (X2) can be obtained is effective. From the viewpoint of effectively expressing the total light transmittance (T A ) of the double-sided PSA sheet, it is preferable that the total light transmittance (T A ) of the double-sided PSA sheet is low. A double-sided PSA sheet having a light transmittance (T A ) of less than 20% is used.
As the double-sided PSA sheet having a total light transmittance (T A ) of less than 20%, as described above, the thermally expandable layer has a higher content of thermally expandable particles, or the thermally expandable layer has a higher content of thermally expandable particles. In addition to those having a large thickness, for example, a double-sided pressure-sensitive adhesive sheet when a material having low energy ray transmittance is selected for the substrate layer (Y) or the pressure-sensitive adhesive layer (X1) can be used.
<両面粘着シートの製造方法>
 本実施形態の両面粘着シートの製造方法は、特に制限はなく、例えば、粘着剤層(X1)を形成する工程、粘着剤層(X2)を形成する工程等を含む方法によって製造することができる。これらの工程の順番は特に限定されず、同時に行ってもよい。
<Method for producing double-sided adhesive sheet>
The method for producing the double-sided pressure-sensitive adhesive sheet of the present embodiment is not particularly limited, and for example, the double-sided pressure-sensitive adhesive sheet can be produced by a method including a step of forming the pressure-sensitive adhesive layer (X1), a step of forming the pressure-sensitive adhesive layer (X2), and the like. . The order of these steps is not particularly limited, and they may be performed simultaneously.
 粘着剤層(X1)及び粘着剤層(X2)は、例えば、粘着剤組成物(x-1)又は粘着剤組成物(x-2)を、剥離シート又は基材層(Y)を構成する基材上に塗布した後、乾燥することによって形成することができる。粘着剤層(X1)を、重合性組成物を用いて形成する場合は、重合性組成物を剥離シート又は基材層(Y)を構成する基材上に塗布した後、エネルギー線を照射することによって粘着剤層(X1)を形成することができる。
 粘着剤組成物(x-1)及び粘着剤組成物(x-2)を塗布する方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
The pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2) constitute, for example, the pressure-sensitive adhesive composition (x-1) or the pressure-sensitive adhesive composition (x-2), the release sheet or the base layer (Y). It can be formed by coating on a substrate and then drying. When the pressure-sensitive adhesive layer (X1) is formed using a polymerizable composition, the polymerizable composition is applied onto a release sheet or a substrate constituting the substrate layer (Y), and then irradiated with energy rays. Thus, the pressure-sensitive adhesive layer (X1) can be formed.
Examples of methods for applying the adhesive composition (x-1) and the adhesive composition (x-2) include spin coating, spray coating, bar coating, knife coating, roll coating, and blade coating. method, die coating method, gravure coating method, and the like.
 剥離シート上に形成した粘着剤層(X1)又は粘着剤層(X2)は、所望する両面粘着シートの構成に応じて、例えば、粘着剤層(X1)及び粘着剤層(X2)同士を貼り合わせてもよいし、粘着剤層(X1)を基材の一方の面、粘着剤層(X2)を基材の他方の面に貼り合わせてもよい。 The pressure-sensitive adhesive layer (X1) or the pressure-sensitive adhesive layer (X2) formed on the release sheet is formed by, for example, attaching the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2) to each other according to the configuration of the desired double-sided pressure-sensitive adhesive sheet. Alternatively, the adhesive layer (X1) may be attached to one surface of the substrate and the adhesive layer (X2) may be attached to the other surface of the substrate.
 次に、図3~9を参照しながら、本実施形態の製造方法の各工程について説明する。
 なお、図3~9には、両面粘着シートとして両面粘着シート1cを用いて、加工対象物である半導体ウエハWをステルス先ダイシング法によって研削及び個片化する実施形態を示すが、本実施形態の製造方法は、以下の実施形態に限定されるものではない。
Next, each step of the manufacturing method of this embodiment will be described with reference to FIGS.
3 to 9 show an embodiment in which a double-sided pressure-sensitive adhesive sheet 1c is used as a double-sided pressure-sensitive adhesive sheet, and a semiconductor wafer W, which is an object to be processed, is ground and singulated by a stealth dicing method. is not limited to the following embodiments.
<工程1>
 工程1は、両面粘着シートが有する粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、両面粘着シートが有する粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程である。
<Step 1>
Step 1 is a process object attaching step of attaching a workpiece to the adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support attaching step of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. And, it is a step including.
 本実施形態の製造方法では、加熱によって大きく密着性が低下する粘着剤層(X1)に支持体を貼付する。これによって、支持体が硬質な材質からなるものである場合も、両面粘着シート及び支持体を屈曲させなくても、両者を容易に分離することが可能である。 In the manufacturing method of the present embodiment, the support is attached to the pressure-sensitive adhesive layer (X1) whose adhesion is greatly reduced by heating. As a result, even when the support is made of a hard material, the double-sided pressure-sensitive adhesive sheet and the support can be easily separated without bending the two.
(加工対象物)
 加工対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、LED素子、サファイア基板、ガラス基板、ディスプレイ、パネル用基板等が挙げられる。これらの中でも、本実施形態の製造方法は、半導体ウエハの加工に好適である。なお、サファイアやガラスのような絶縁体で、直接的に半導体装置の半導体特性に関与しない材料であっても、半導体装置に用いられる限り、本実施形態の加工対象物となり得る。
 半導体ウエハとしては、例えば、シリコンウエハ;ガリウム砒素、炭化ケイ素、タンタル酸リチウム、ニオブ酸リチウム、窒化ガリウム、インジウム燐等のウエハ等が挙げられる。
 半導体ウエハの加工前の厚さは、通常は500~1,000μmである。
(object to be processed)
Examples of workpieces include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, LED elements, sapphire substrates, glass substrates, displays, and panel substrates. Among these, the manufacturing method of the present embodiment is suitable for processing semiconductor wafers. Note that even materials that are insulators, such as sapphire and glass, and that do not directly affect the semiconductor characteristics of the semiconductor device can serve as objects to be processed in the present embodiment as long as they are used in the semiconductor device.
Examples of semiconductor wafers include silicon wafers; wafers of gallium arsenide, silicon carbide, lithium tantalate, lithium niobate, gallium nitride, indium phosphide, and the like.
The thickness of a semiconductor wafer before processing is typically 500-1,000 μm.
(支持体)
 支持体の材質は、加工対象物の種類、加工内容等に応じて、機械強度、耐熱性等の要求される特性を考慮の上、適宜選択すればよい。
 支持体の材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル系樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、シリコンウエハが好ましい。
 エンジニアリングプラスチックとしては、例えば、ナイロン、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)等が挙げられる。
 スーパーエンジニアリングプラスチックとしては、例えば、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)等が挙げられる。
 後述するように、エネルギー線照射工程を、工程1の支持体貼付工程の後、工程3の前の少なくともいずれかの時期に、支持体側からエネルギー線を照射して行う場合には、支持体はエネルギー線透過性を有するものが好ましい。エネルギー線透過性を有する支持体としては、ガラス、樹脂材料等が挙げられる。一方、エネルギー線透過性が低い支持体としては、金属材料、シリコンウエハ等が挙げられる。
(support)
The material of the support may be appropriately selected depending on the type of object to be processed, the details of processing, etc., and considering the required properties such as mechanical strength and heat resistance.
Materials of the support include, for example, metallic materials such as SUS; nonmetallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, polyamideimide resins, and the like. resin materials; compound materials such as glass epoxy resins; among these, SUS, glass, and silicon wafers are preferable.
Engineering plastics include, for example, nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
Super engineering plastics include, for example, polyphenylene sulfide (PPS), polyethersulfone (PES), polyetheretherketone (PEEK), and the like.
As will be described later, when the energy ray irradiation step is performed by irradiating the energy ray from the side of the support after the step of attaching the support in step 1 and before step 3, at least at any time, the support is A material having energy ray transparency is preferred. Examples of the support having energy ray transparency include glass and resin materials. On the other hand, examples of the support having low energy ray transmittance include metal materials and silicon wafers.
 支持体は、粘着剤層(X1)の粘着表面の全面に貼付されることが好ましい。そのため、粘着剤層(X1)の粘着表面に貼付される側の支持体の表面の面積は、粘着剤層(X1)の粘着表面の面積以上であることが好ましい。また、粘着剤層(X1)の粘着表面に貼付される側の支持体の面は平面状であることが好ましい。
 支持体の形状は、特に限定されないが、板状であることが好ましい。
 支持体の厚さは、要求される特性を考慮して適宜選択すればよいが、好ましくは20μm以上50mm以下、より好ましくは60μm以上20mm以下である。
The support is preferably attached to the entire adhesive surface of the adhesive layer (X1). Therefore, the area of the surface of the support on the adhesive surface of the adhesive layer (X1) is preferably equal to or greater than the area of the adhesive surface of the adhesive layer (X1). Further, the surface of the support on the side to be attached to the adhesive surface of the adhesive layer (X1) is preferably planar.
Although the shape of the support is not particularly limited, it is preferably plate-like.
The thickness of the support may be appropriately selected in consideration of the required properties, preferably 20 μm or more and 50 mm or less, more preferably 60 μm or more and 20 mm or less.
 図3には、両面粘着シート1cが有する粘着剤層(X2)に半導体ウエハWが貼付され、粘着剤層(X1)に支持体2が貼付されている断面図が示されている。
 半導体ウエハWは、回路面W1が粘着剤層(X2)側になるように貼付される。
FIG. 3 shows a cross-sectional view in which the semiconductor wafer W is attached to the adhesive layer (X2) of the double-sided adhesive sheet 1c, and the support 2 is attached to the adhesive layer (X1).
The semiconductor wafer W is attached so that the circuit surface W1 faces the adhesive layer (X2).
<工程2>
 工程2は、両面粘着シートを介して加工対象物が支持体に支持された状態で、加工対象物の、粘着剤層(X2)に貼付されている面とは反対側の面を加工する工程である。
<Step 2>
Step 2 is a step of processing the surface of the object opposite to the surface attached to the pressure-sensitive adhesive layer (X2) while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet. is.
 工程2は、加工対象物に対して研削及び個片化から選択される1以上の加工を施す工程(以下、「形状加工工程」ともいう)を含むことが好ましく、加工対象物を研削及び個片化する工程を含むことがより好ましい。 Step 2 preferably includes a step of performing one or more processes selected from grinding and singulation on the object to be processed (hereinafter also referred to as “shape processing step”), and grinds and singulates the object to be processed. It is more preferable to include the step of fragmenting.
 形状加工工程としては、例えば、グラインダー等を用いる研削処理;ブレードダイシング法、レーザーダイシング法、プラズマダイシング法による個片化処理;ブレード先ダイシング法(DBG;Dicing Before Grinding)、ステルス先ダイシング法(SDBG:Stealth Dicing Before Grinding)による研削及び個片化;等が挙げられる。これらの中でも、ブレード先ダイシング法又はステルス先ダイシング法による研削及び個片化が好適である。 As the shape processing process, for example, grinding processing using a grinder, etc.; singulation processing by blade dicing method, laser dicing method, plasma dicing method; blade tip dicing method (DBG; Dicing Before Grinding), stealth tip dicing method (SDBG) : Grinding and singulation by Stealth Dicing Before Grinding; Among these, grinding and singulation by a blade tip dicing method or a stealth tip dicing method are preferable.
 ブレード先ダイシング法は、予め加工対象物の一方の面に、その厚さより浅い深さで分割予定ラインである溝を形成した後、研削面が少なくとも溝に到達するまで裏面研削して薄化させつつ個片化する方法である。研削面が到達した溝は、加工対象物を貫通する切り込みとなって分割予定ラインで個片化される。予め形成される溝は、例えば、ダイシングブレードを備えるウエハダイシング装置等を用いたダイシングにより形成することができる。加工対象物が半導体ウエハである場合、溝は半導体ウエハの回路面に形成される。 In the blade tip dicing method, grooves are formed in advance on one surface of an object to be processed to a depth shallower than the thickness of the object to be divided lines. It is a method of separating into individual pieces. The grooves reached by the ground surface become cuts penetrating the object to be cut into pieces along the dividing line. The pre-formed grooves can be formed, for example, by dicing using a wafer dicing machine equipped with a dicing blade. If the workpiece is a semiconductor wafer, the grooves are formed in the circuit surface of the semiconductor wafer.
 ステルス先ダイシング法は、レーザー光の照射により半導体ウエハ等の加工対象物の内部に分割予定ラインである改質領域を形成し、研削処理を行って加工対象物を薄化させつつ個片化する方法である。具体的には、改質領域を有する加工対象物を研削して薄化させつつ、その際に加工対象物にかかる圧力によって該改質領域を起点として加工対象物の粘着剤層との貼付面に向けて亀裂を伸展させ、加工対象物を分割予定ラインで個片化する。
 改質領域を形成した後の研削厚さは、改質領域に至る厚さであってもよいが、厳密に改質領域にまで至らなくても、改質領域に近接する位置まで研削して研削砥石等の加工圧力で割断させてもよい。
 改質領域は、多光子吸収によって脆質化された部分であり、加工対象物の内部に焦点を合わせたレーザー光の照射によって形成される。レーザー光の入射面は特に限定されず、両面粘着シートを介して加工対象物に照射してもよい。
In the stealth dicing method, a modified region, which is a line to be divided, is formed inside an object to be processed such as a semiconductor wafer by irradiating it with a laser beam, and a grinding process is performed to make the object to be processed into pieces while thinning them. The method. Specifically, while the object to be processed having the modified region is ground and thinned, the pressure applied to the object at that time is applied to the adhesive layer of the object to be adhered with the modified region as a starting point. The crack is extended toward and the object to be processed is separated into individual pieces along the planned division line.
The grinding thickness after forming the modified region may be a thickness that reaches the modified region. It may be broken by processing pressure of a grinding wheel or the like.
The modified region is a portion embrittled by multiphoton absorption, and is formed by laser beam irradiation focused inside the object to be processed. The incident surface of the laser beam is not particularly limited, and the object may be irradiated with the laser beam through the double-sided adhesive sheet.
 工程2が、加工対象物を研削及び個片化する工程を含む場合、研削及び個片化する工程よりも前に、加工対象物の個片化予備工程として、加工対象物の粘着剤層(X2)に貼付される側の面に分割予定ラインである溝を形成する工程、又は研削及び個片化する工程よりも前に加工対象物の内部に分割予定ラインである改質領域を形成する工程、をさらに含むことが好ましい。そして、加工対象物を研削及び個片化する工程は、両面粘着シートを介して加工対象物が支持体に支持された状態で、加工対象物の、粘着剤層(X2)に貼付されている面とは反対側の面を研削して、加工対象物を、上記溝又は改質領域を起点として分割予定ラインで分割して個片化する工程であることが好ましい。
 溝の形成方法及び改質領域の形成方法は、上記で説明した通りである。
 溝の形成は、加工対象物を本実施形態の両面粘着シートに貼付する前に実施される。
 一方、改質領域の形成は、加工対象物を本実施形態の両面粘着シートに貼付する前に実施してもよく、貼付した後に実施してもよいが、脆質化された部分を有する加工対象物を改質領域の形成から個片化までの間、支持体上に保持することができる観点からは、貼付した後に実施することが好ましい。
When step 2 includes a step of grinding and singulating the object, as a preliminary step for singulating the object, an adhesive layer ( X2) Forming a modified region, which is a line to be divided, inside the object before the step of forming a groove, which is a line to be divided, on the surface to be attached to X2), or the step of grinding and singulating. preferably further comprising the steps of: Then, in the step of grinding and singulating the object to be processed, the object to be processed is attached to the adhesive layer (X2) of the object to be processed in a state where the object is supported by the support via the double-sided adhesive sheet. It is preferable that the step is a step of grinding the surface on the opposite side of the surface and dividing the workpiece along the planned division lines with the grooves or the modified regions as starting points to individualize the workpiece.
The method for forming the groove and the method for forming the modified region are as described above.
The formation of the grooves is performed before attaching the workpiece to the double-sided pressure-sensitive adhesive sheet of the present embodiment.
On the other hand, the formation of the modified region may be performed before or after the object to be processed is attached to the double-sided pressure-sensitive adhesive sheet of the present embodiment. From the viewpoint that the object can be held on the support from the formation of the modified region to the separation into individual pieces, it is preferable to carry out the adhesion after the application.
 本実施形態の製造方法において、加工対象物を研削する場合、研削後の加工対象物の厚さは、好ましくは5~100μm、より好ましくは10~45μmである。
 本実施形態の製造方法において、半導体ウエハ等の加工対象物を個片化してチップを製造する場合、得られるチップの平面視における大きさは、好ましくは600mm未満、より好ましくは400mm未満、更に好ましくは300mm未満である。なお、平面視とは厚さ方向に見ることをいう。
 チップの平面視における形状は、方形であってもよく、矩形等の細長形状であってもよい。
In the manufacturing method of the present embodiment, when the object to be processed is ground, the thickness of the object to be processed after grinding is preferably 5 to 100 μm, more preferably 10 to 45 μm.
In the manufacturing method of the present embodiment, when chips are manufactured by singulating an object to be processed such as a semiconductor wafer, the size of the obtained chips in plan view is preferably less than 600 mm 2 , more preferably less than 400 mm 2 , More preferably less than 300 mm 2 . In addition, planar view means seeing in a thickness direction.
The shape of the chip in plan view may be a square or an elongated shape such as a rectangle.
 図4には、粘着剤層(X2)に貼付した半導体ウエハWに対して、レーザー光照射装置3を用いて複数の改質領域4を形成する工程が示されている。
 レーザー光は半導体ウエハWの裏面W2側から照射され、半導体ウエハWの内部に複数の改質領域4が略等間隔に形成されている。
FIG. 4 shows a step of forming a plurality of modified regions 4 on the semiconductor wafer W adhered to the adhesive layer (X2) using the laser beam irradiation device 3. As shown in FIG.
A laser beam is irradiated from the back surface W2 side of the semiconductor wafer W, and a plurality of modified regions 4 are formed inside the semiconductor wafer W at substantially equal intervals.
 図5(a)及び(b)には、半導体ウエハWを薄化させつつ複数の半導体チップCPに個片化する工程を説明する断面図が示されている。
 図5(a)に示されるように、改質領域4を形成した半導体ウエハWの裏面W2をグラインダー5によって研削し、その際、半導体ウエハWにかかる圧力により改質領域4を起点とする割断を生じさせる。これにより、図5(b)に示されるように、半導体ウエハWが薄化及び個片化された複数の半導体チップCPが得られる。半導体ウエハWを研削及び個片化する際、支持体2はチャックテーブル等の固定テーブル上に固定することが好ましい。
5(a) and 5(b) show cross-sectional views for explaining the process of separating the semiconductor wafer W into a plurality of semiconductor chips CP while thinning it.
As shown in FIG. 5A, the rear surface W2 of the semiconductor wafer W on which the modified region 4 is formed is ground by a grinder 5. At this time, the pressure applied to the semiconductor wafer W cuts the semiconductor wafer W from the modified region 4 as a starting point. give rise to As a result, as shown in FIG. 5B, a plurality of semiconductor chips CP obtained by thinning and singulating the semiconductor wafer W are obtained. When grinding and singulating the semiconductor wafer W, the support 2 is preferably fixed on a fixed table such as a chuck table.
 工程2は、必要に応じて、加工対象物の粘着剤層(X2)とは反対側の面に半導体用テープを貼付する工程(以下、「半導体用テープ貼付工程」ともいう)を含んでいてもよい。
 半導体用テープとしては、例えば、ダイアタッチフィルム、ダイシングテープ等の公知の半導体用テープが挙げられる。半導体用テープは1種のみを貼付してもよく、2種以上を貼付してもよい。
 半導体用テープは、上記の形状加工工程の後に、加工対象物の粘着剤層(X2)とは反対側の面に貼付することが好ましく、上記の加工対象物を研削及び個片化する工程の後に、個片化された加工対象物の粘着剤層(X2)とは反対側の面に貼付することがより好ましい。
Step 2 includes, if necessary, a step of applying a semiconductor tape to the surface of the object opposite to the adhesive layer (X2) (hereinafter also referred to as a "semiconductor tape applying step"). good too.
Examples of semiconductor tapes include known semiconductor tapes such as die attach films and dicing tapes. Only one type of semiconductor tape may be applied, or two or more types may be applied.
The semiconductor tape is preferably attached to the surface of the object to be processed on the side opposite to the adhesive layer (X2) after the shape processing step. Later, it is more preferable to attach the adhesive layer (X2) to the surface of the individualized object opposite to the adhesive layer (X2).
 図6には、複数の半導体チップCPの、粘着剤層(X2)とは反対側の面に、ダイアタッチフィルムとして、支持シート7を備える熱硬化性フィルム6を貼付されている断面図が示されている。 FIG. 6 shows a cross-sectional view in which a thermosetting film 6 having a support sheet 7 is attached as a die attach film to the surface of a plurality of semiconductor chips CP opposite to the adhesive layer (X2). It is
<エネルギー線照射工程>
 本実施形態の製造方法は、工程1の加工対象物貼付工程の後であって、工程3の前の少なくともいずれかの時期に、エネルギー線照射工程を有する。
 エネルギー線照射工程では、両面粘着シートの粘着剤層(X2)にエネルギー線を照射して粘着剤層(X2)を硬化させる。加工対象物である半導体ウエハ等は、それ自体がエネルギー線透過性が低いか、エネルギー線透過性を有していたとしても、加工対象物上に設けられた回路配線や電極等によりエネルギー線の透過が妨げられる。そのため、両面粘着シートには、加工対象物が貼付された面とは逆側の面に対向して、エネルギー線が照射される。本実施形態の製造方法では、工程3よりも前にエネルギー線照射工程を行うため、粘着剤層(X2)に向けて照射したエネルギー線は、熱膨張性層を介しても、良好に粘着剤層(X2)に到達することが可能である。
 エネルギー線照射工程は、1回のみ行ってもよく、複数回に分けて行ってもよい。
<Energy beam irradiation process>
The manufacturing method of the present embodiment has an energy ray irradiation step at least at some time after the step of sticking an object to be processed in Step 1 and before Step 3.
In the energy ray irradiation step, the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet is irradiated with energy rays to cure the pressure-sensitive adhesive layer (X2). The semiconductor wafer, which is the object to be processed, itself has low energy ray transparency, or even if it has energy ray transparency, the energy ray is transmitted by the circuit wiring, electrodes, etc. provided on the object to be processed. Permeation is blocked. Therefore, the double-sided pressure-sensitive adhesive sheet is irradiated with energy rays so as to face the surface opposite to the surface to which the object to be processed is attached. In the production method of the present embodiment, since the energy beam irradiation step is performed before step 3, the energy beam irradiated toward the adhesive layer (X2) can be applied to the adhesive even through the thermally expandable layer. It is possible to reach layer (X2).
The energy beam irradiation step may be performed only once, or may be performed in multiple steps.
 エネルギー線照射工程を行う時期は、工程1の加工対象物貼付工程の後であって工程3の前であれば特に限定されず、例えば、下記の時期(a)~(c)が挙げられる。
(a)工程1の加工対象物貼付工程の後であって、工程2の前の少なくともいずれかの時期
(b)工程2内のいずれかの時期
(c)工程2の後であって工程3の前
The timing of performing the energy ray irradiation step is not particularly limited as long as it is after the process of attaching the workpiece in Step 1 and before Step 3, and examples thereof include the following timings (a) to (c).
(a) after the step of attaching the workpiece in step 1 and at least at any time before step 2 (b) at any time within step 2 (c) after step 2 and step 3 Before
 上記時期(a)においてエネルギー線照射工程を行う場合、ブレード先ダイシング法やステルス先ダイシング法を採用したとしても、エネルギー線照射工程において、半導体ウエハWは未だ複数の半導体チップCPへと個片化されていない。半導体ウエハWが複数の半導体チップCPへと個片化された後にエネルギー線照射工程を実施すると、複数の半導体チップCP同士の間隙を通ってエネルギー線が半導体用テープに照射され、半導体用テープが有する粘着剤がエネルギー線反応性のものである場合に、反応が進行してしまうおそれがある。これにより、半導体用テープからの複数の半導体チップCPの剥離等の問題が生じうる。上記時期(a)を、エネルギー線照射工程を行う時期として選択することで、このような問題を防止することが可能である。上記時期(a)は、より具体的には、工程1で行う加工の順序に応じて、例えば、下記の時期(a1)~(a3)の少なくともいずれかを選択することができる。
(a1)工程1が、加工対象物貼付工程の後に、支持体貼付工程を行う工程である場合における、加工対象物貼付工程の後であって、支持体貼付工程の前
(a2)工程1が、加工対象物貼付工程の後に、支持体貼付工程を行う工程である場合における、支持体貼付工程の後であって、工程2の前
(a3)工程1が、支持体貼付工程の後又は支持体貼付工程と同時に、加工対象物貼付工程を行う工程である場合における、加工対象物貼付工程の後であって、工程2の前
When performing the energy beam irradiation step at the time (a), even if the blade tip dicing method or the stealth tip dicing method is adopted, the semiconductor wafer W is still singulated into a plurality of semiconductor chips CP in the energy beam irradiation step. It has not been. When the energy beam irradiation step is performed after the semiconductor wafer W is singulated into a plurality of semiconductor chips CP, the energy beams pass through the gaps between the plurality of semiconductor chips CP and the semiconductor tape is irradiated with the energy beams. If the adhesive has energy ray reactivity, the reaction may proceed. This may cause problems such as peeling of the plurality of semiconductor chips CP from the semiconductor tape. Such a problem can be prevented by selecting the timing (a) as the timing for performing the energy beam irradiation step. For the period (a), more specifically, at least one of the following periods (a1) to (a3) can be selected according to the order of processing performed in step 1.
(a1) In the case where step 1 is a step of performing the support sticking step after the work object sticking step, (a2) step 1 after the work object sticking step and before the support sticking step , in the case of the step of performing the support sticking step after the work object sticking step, after the support sticking step and before step 2 (a3), step 1 is after the support sticking step or the supporting step. After the step of attaching the object to be processed and before step 2 in the case of performing the step of attaching the object to be processed at the same time as the body attaching step
 上記時期(b)は、より具体的には、工程2で行う加工内容に応じて、例えば、下記の時期(b1)及び(b2)の少なくともいずれかを選択することができる。
(b1)工程2が、個片化予備工程を含む場合は、個片化予備工程後であって、その後の研削及び個片化の前
(b2)工程2が、形状加工工程及び形状加工工程後の半導体用テープ貼付工程を含む場合は、形状加工工程の後であって、半導体用テープ貼付工程の前
For the period (b), more specifically, at least one of the following periods (b1) and (b2) can be selected according to the processing performed in step 2.
(b1) When step 2 includes a singulation preliminary step, after the singulation preliminary step and before subsequent grinding and singulation, (b2) step 2 includes a shape processing step and a shape processing step. After the shape processing step and before the semiconductor tape applying step when the subsequent semiconductor tape applying step is included
 工程2が形状加工工程として、加工対象物を研削する工程を含み、上記時期(a)及び(b1)の少なくともいずれかの時期にエネルギー線照射工程を行う場合、すなわち、加工対象物を研削する工程よりも前にエネルギー線照射工程を行う場合、加工対象物を研削する際に、加工対象物に貼付されている粘着剤層(X2)は硬化して弾性率が高い状態になる。そのため、研削時における加工対象物の沈み込み、振動、移動等が効果的に抑制され、加工対象物の加工精度を向上させることができる。具体的には、研削によって薄化された加工対象物の厚さのバラつき、個片化する際のチッピング等を抑制することができる。
 一方、時期(c)として、例えば、工程2を終えた後、工程3を行うための搬送前にエネルギー線照射工程を行う場合にも、硬化した粘着剤層(X2)によって搬送時に生じる振動等を効果的に抑制できるため、加工対象物の破損を抑制することができる。
 なお、粘着剤層(X2)は、エネルギー線照射工程を行うことで粘着力が低下するが、研削及び個片化のように、せん断方向又は加圧方向に力が加わる加工に対しては十分な保持力を発揮できる。
When step 2 includes a step of grinding the object to be processed as a shape processing step, and the energy beam irradiation step is performed during at least one of the periods (a) and (b1), i.e., grinding the object to be processed. When the energy beam irradiation step is performed before the step, the pressure-sensitive adhesive layer (X2) attached to the object is hardened and has a high elastic modulus when the object is ground. Therefore, sinking, vibration, movement, etc. of the object to be processed during grinding can be effectively suppressed, and the machining accuracy of the object to be processed can be improved. Specifically, it is possible to suppress variations in the thickness of the workpiece thinned by grinding, chipping during singulation, and the like.
On the other hand, as the timing (c), for example, even when the energy beam irradiation step is performed after the step 2 is completed and before the transportation for performing the step 3, the vibration caused by the cured adhesive layer (X2) during transportation can be effectively suppressed, so damage to the workpiece can be suppressed.
The adhesive layer (X2) is reduced in adhesive strength by performing the energy beam irradiation step, but it is sufficient for processing in which force is applied in the shearing direction or the pressing direction, such as grinding and singulation. can exert a strong holding power.
 また、時期(a1)にエネルギー線照射工程を行う場合には、エネルギー線照射時に支持体が貼付されていないため、支持体としてエネルギー線透過性が低いものを選択することができる。
 なお、両面粘着シートが有する粘着剤層(X2)以外の全ての層及び支持体が、エネルギー線透過性を有するものである場合は、エネルギー線照射工程を、工程1の支持体貼付工程の後、工程3の前の少なくともいずれかの時期に、支持体側からエネルギー線を照射して行うこともできる。
Further, when the energy ray irradiation step is performed during the period (a1), since the support is not attached during the energy ray irradiation, a support having low energy ray transmittance can be selected.
When all the layers other than the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet and the support have energy ray transparency, the energy ray irradiation step is performed after the support attachment step of step 1. , and at least some time before step 3, energy rays may be irradiated from the support side.
 エネルギー線を照射することによって、粘着剤層(X2)は硬化するが、その際に発生する反応熱等によって、熱膨張性層の熱膨張性粒子が意図せず膨張する場合がある。特に、上記した半導体用テープ貼付工程によって、半導体用テープを加工対象物に貼付する場合には、加熱剥離時における半導体用テープの熱変化を抑制するために、膨張開始温度(t)が低い熱膨張性粒子が使用される場合がある。その場合には、上記の意図しない膨張が生じ易くなる傾向にある。
 熱膨張性粒子が膨張した両面粘着シートは、工程3よりも前に意図せず支持体から剥離するおそれがあるだけでなく、領域によって熱膨張性粒子の膨張の度合いが不均一となり、加工対象物の研削後の厚さ精度が低下したり、加工対象物にクラック、チッピング等が生じる場合がある。また、個片化予備工程を行う際に、両面粘着シートの厚さの不均一性が、レーザーの照射位置の正確性に影響を及ぼす場合がある。
 係る観点から、本発明の第一態様の製造方法は、エネルギー線照射工程として、熱膨張性粒子を膨張させずに、両面粘着シートの粘着剤層(X2)にエネルギー線を照射して粘着剤層(X2)を硬化させる工程を有するものであり、本発明の第二態様の製造方法は、エネルギー線照射工程として、熱膨張性層の温度が、熱膨張性粒子の膨張開始温度(t)よりも5℃低い温度を超えないように、両面粘着シートの粘着剤層(X2)にエネルギー線を照射して粘着剤層(X2)を硬化させる工程を有する。
 なお、本発明の第一態様の製造方法において、熱膨張性粒子が膨張していないことは、例えば、エネルギー線照射工程前後で熱膨張性層の厚さに変化が無いことから確認することができる。
 また、本発明の第二態様の製造方法において、熱膨張性粒子の膨張開始温度(t)よりも5℃低い温度を超えないことは、例えば、後述する実施例の[エネルギー線照射工程時における粘着シートの温度測定]に記載の方法に準拠する方法によって確認することができる。
Although the pressure-sensitive adhesive layer (X2) is cured by irradiation with energy rays, the thermally expandable particles of the thermally expandable layer may unintentionally expand due to reaction heat or the like generated at that time. In particular, when a semiconductor tape is applied to an object to be processed by the above-described semiconductor tape applying step, a heat having a low expansion start temperature (t) is used to suppress thermal change of the semiconductor tape during thermal peeling. Expandable particles may be used. In that case, the unintended expansion described above tends to occur easily.
A double-sided PSA sheet with expanded thermally expandable particles may unintentionally peel off from the support before step 3. In addition, the degree of expansion of the thermally expandable particles may become uneven depending on the area, making it difficult to process. In some cases, the thickness accuracy of the object after grinding is lowered, and cracks, chipping, etc., may occur in the object to be processed. In addition, when performing the singulation preliminary step, non-uniformity in the thickness of the double-sided pressure-sensitive adhesive sheet may affect the accuracy of the laser irradiation position.
From this point of view, in the production method of the first aspect of the present invention, in the energy beam irradiation step, the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet is irradiated with energy beams without expanding the thermally expandable particles to produce the pressure-sensitive adhesive. It has a step of curing the layer (X2), and in the production method of the second aspect of the present invention, in the energy beam irradiation step, the temperature of the thermally expandable layer is the expansion start temperature (t) of the thermally expandable particles. A step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with energy rays to cure the pressure-sensitive adhesive layer (X2) so as not to exceed a temperature lower than 5°C.
In addition, in the production method of the first aspect of the present invention, the fact that the thermally expandable particles are not expanded can be confirmed, for example, by the fact that the thickness of the thermally expandable layer does not change before and after the energy beam irradiation step. can.
Further, in the production method of the second aspect of the present invention, the temperature not exceeding 5 ° C. lower than the expansion start temperature (t) of the thermally expandable particles is, for example, the [Energy beam irradiation step during the energy beam irradiation step of the example described later. Temperature Measurement of Adhesive Sheet].
 エネルギー線照射工程時に熱膨張性粒子の膨張を抑制する方法としては、例えば、エネルギー線照射工程を、両面粘着シートに対して、冷却処理を施しながら行う方法、エネルギー線の光量を調整する方法等が挙げられる。 Methods for suppressing the expansion of the thermally expandable particles during the energy beam irradiation step include, for example, a method of performing the energy beam irradiation step while cooling the double-sided adhesive sheet, a method of adjusting the light intensity of the energy beam, and the like. is mentioned.
 冷却処理を施しながら行う方法としては、例えば、冷却処理として、両面粘着シートが存在する雰囲気の温度を低下させる処理を行う方法、冷却処理として、両面粘着シートに直接又は間接的に熱伝導体を接触させる処理を行う方法等が挙げられる。 Examples of the method of performing cooling while performing cooling include, for example, a method in which the cooling is performed by lowering the temperature of the atmosphere in which the double-sided pressure-sensitive adhesive sheet exists, and a method in which a heat conductor is directly or indirectly added to the double-sided pressure-sensitive adhesive sheet as the cooling. Examples include a method of performing a process of bringing them into contact with each other.
 両面粘着シートが存在する雰囲気の温度を低下させる処理を行うエネルギー線照射工程は、ガスが充填されたチャンバー内で行われる工程であって、下記の要件(I)又は(II)を満たす工程が好ましい。
(I)エネルギー線照射工程が、エネルギー線照射工程中に、チャンバー内に充填されたガスの少なくとも一部をチャンバー外から供給されるガスに置換する工程である。
(II)エネルギー線照射工程が、さらに、一の両面粘着シートに対してエネルギー線を照射した後、別の両面粘着シートに対してエネルギー線の照射を開始するサイクルを繰り返して、複数の両面粘着シートに対して、順次、エネルギー線を照射する工程であり、該繰り返されるサイクルが、少なくとも1回のサイクルにおいて、上記一の両面粘着シートに対してエネルギー線を照射した後、上記別の両面粘着シートに対してエネルギー線の照射を開始する前に、チャンバー内に充填されたガスの少なくとも一部をチャンバー外から供給されるガスに置換するものである。
The step of irradiating an energy ray, in which the temperature of the atmosphere in which the double-sided pressure-sensitive adhesive sheet exists is lowered, is a step performed in a chamber filled with gas, and a step satisfying the following requirement (I) or (II). preferable.
(I) The energy beam irradiation step is a step of replacing at least part of the gas filled in the chamber with gas supplied from outside the chamber during the energy beam irradiation step.
(II) In the energy beam irradiation step, a cycle of irradiating one double-sided pressure-sensitive adhesive sheet with an energy beam and then starting irradiation of another double-sided pressure-sensitive adhesive sheet with an energy beam is repeated to obtain a plurality of double-sided pressure-sensitive adhesive sheets. A step of sequentially irradiating the sheet with an energy beam, wherein the repeated cycle includes irradiating the one double-sided pressure-sensitive adhesive sheet with an energy beam, and then irradiating the other double-sided pressure-sensitive adhesive sheet with the energy beam in at least one cycle. At least a part of the gas filled in the chamber is replaced with gas supplied from outside the chamber before starting to irradiate the sheet with energy rays.
 上記要件(I)又は(II)を満たすことによって、チャンバー内の雰囲気の温度を低くすることができ、これにより両面粘着シートを冷却することができる。
 チャンバー内のガス及びチャンバー外から供給されるガスは、空気であってもよく、窒素、アルゴン等の不活性ガスであってもよいが、エネルギー線硬化反応を良好に進行させる観点から、不活性ガスが好ましく、窒素がより好ましい。
 チャンバー外から供給されるガスの温度は、チャンバー内の雰囲気の温度より低いものであればよく、例えば、室温であってもよいし、室温未満に冷却されていてもよい。
 上記要件(I)において、ガスの置換は、エネルギー線照射を行っている間、連続的に行ってもよいし、断続的に行ってもよい。
 上記要件(II)において、ガスの置換を行うサイクルの時期は特に限定されず、定期的に行ってもよく、チャンバー内の雰囲気の温度に応じて、不定期に行ってもよいが、1サイクル毎に行うことが好ましい。
By satisfying the requirement (I) or (II), the temperature of the atmosphere in the chamber can be lowered, thereby cooling the double-sided PSA sheet.
The gas inside the chamber and the gas supplied from outside the chamber may be air or an inert gas such as nitrogen or argon. A gas is preferred, and nitrogen is more preferred.
The temperature of the gas supplied from outside the chamber may be lower than the temperature of the atmosphere inside the chamber, and may be, for example, room temperature or may be cooled below room temperature.
In the requirement (I) above, gas replacement may be performed continuously or intermittently during energy beam irradiation.
In the above requirement (II), the timing of the gas replacement cycle is not particularly limited, and may be performed periodically, or may be performed irregularly depending on the temperature of the atmosphere in the chamber. It is preferable to do this every time.
 両面粘着シートに直接又は間接的に熱伝導体を接触させる処理を行うエネルギー線照射工程としては、例えば、粘着剤層(X2)に貼付されている加工対象物の粘着剤層(X2)とは反対側の表面に熱伝導体を接触させた状態で、エネルギー線照射を行う工程が好ましい。
 熱伝導体は、冷却効果を高めるために、例えば、内部に冷媒等を流通させる等の人工的な冷却機構を有するものであってもよく、人工的な冷却機構を有さないものであってもよい。熱伝導体自体は意図的に冷却されていなくても、両面粘着シートとの接触面から吸熱した熱を、熱伝導体自体の表面から自然に放熱することによって冷却効果を奏することができる。熱伝導体の材質は特に限定されないが、熱伝導率の観点から、例えば、銅、アルミニウム、鉄、ステンレス鋼等の金属が好ましい。また、放熱フィン等の放熱手段を設けられていてもよい。
As the energy beam irradiation step in which the heat conductor is directly or indirectly brought into contact with the double-sided pressure-sensitive adhesive sheet, for example, the pressure-sensitive adhesive layer (X2) of the object to be processed attached to the pressure-sensitive adhesive layer (X2) is A step of irradiating the energy beam with a heat conductor in contact with the opposite surface is preferred.
In order to enhance the cooling effect, the heat conductor may have an artificial cooling mechanism such as circulating a coolant inside, or it may not have an artificial cooling mechanism. good too. Even if the heat conductor itself is not intentionally cooled, the heat absorbed from the contact surface with the double-sided pressure-sensitive adhesive sheet can be naturally radiated from the surface of the heat conductor itself, thereby producing a cooling effect. Although the material of the heat conductor is not particularly limited, metals such as copper, aluminum, iron, and stainless steel are preferable from the viewpoint of thermal conductivity. Further, heat radiation means such as heat radiation fins may be provided.
 エネルギー線の光量を調整する方法としては、例えば、エネルギー線の種類及び両面粘着シートの構成に応じて、両面粘着シートの温度が熱膨張性粒子が膨張しない範囲になるような光量を適宜選択すればよい。
 例えば、エネルギー線として紫外線を用いる場合、波長365nmにおける光量は、両面粘着シートの温度上昇を抑制しながら、粘着剤層(X2)を硬化させるという観点から、好ましくは50~1,000mJ/cm、より好ましくは100~900mJ/cm、更に好ましくは300~850mJ/cmである。
 また、必要に応じて、エネルギー線照射を複数回に分けて行うことで、両面粘着シートの温度上昇を抑制することもできる。
As a method for adjusting the light intensity of the energy beam, for example, depending on the type of energy beam and the structure of the double-sided pressure-sensitive adhesive sheet, the light intensity may be appropriately selected so that the temperature of the double-sided pressure-sensitive adhesive sheet is within a range in which the thermally expandable particles do not expand. Just do it.
For example, when ultraviolet light is used as the energy beam, the amount of light at a wavelength of 365 nm is preferably 50 to 1,000 mJ/cm 2 from the viewpoint of curing the pressure-sensitive adhesive layer (X2) while suppressing temperature rise of the double-sided pressure-sensitive adhesive sheet. , more preferably 100 to 900 mJ/cm 2 , still more preferably 300 to 850 mJ/cm 2 .
In addition, if necessary, the temperature rise of the double-sided pressure-sensitive adhesive sheet can be suppressed by performing energy beam irradiation in multiple times.
 エネルギー線として紫外線を用いる場合、紫外線源として、例えば、無電極ランプ、高圧水銀ランプ、メタルハライドランプ、LED-UV等を用いることができる。これらの中でも、両面粘着シートの温度上昇を抑制し易いという観点から、LED-UVが好ましい。
 また、紫外線を照射する際に反射板を用いる場合、反射板としては、例えば、アルミミラー、コールドミラー等の公知の反射板を用いることができる。これらの中でも、両面粘着シートの温度上昇を抑制し易いという観点から、コールドミラーが好ましい。但し、LED-UV等の直進性に優れる紫外線源を用いる場合は、反射板は使用しなくてもよい。
When ultraviolet rays are used as energy rays, for example, electrodeless lamps, high-pressure mercury lamps, metal halide lamps, LED-UV, and the like can be used as ultraviolet light sources. Among these, LED-UV is preferable from the viewpoint that it is easy to suppress the temperature rise of the double-sided pressure-sensitive adhesive sheet.
Moreover, when using a reflector when irradiating an ultraviolet-ray, as a reflector, well-known reflectors, such as an aluminum mirror and a cold mirror, can be used, for example. Among these, a cold mirror is preferable from the viewpoint that it is easy to suppress the temperature rise of the double-sided pressure-sensitive adhesive sheet. However, when using an ultraviolet light source such as LED-UV, which has excellent straightness, the reflector may not be used.
 エネルギー線照射工程時に熱膨張性粒子の膨張を抑制する方法は、2つ以上を組み合わせて採用してもよい。例えば、両面粘着シートが存在する雰囲気の温度を低下させる処理を行いつつ、エネルギー線の光量を調整してもよい。
 これらの手段の採用等により、熱膨張性層の温度上昇を抑えることが好ましいが、熱膨張性層の温度が好ましくは70℃を超えないように、より好ましくは60℃を超えないように本工程を実施することで、例えば、膨張開始温度(t)の値が75~105℃である熱膨張性粒子を用いる場合に、熱膨張性粒子の膨張を効率的に抑制することができる。エネルギー線照射時の熱膨張性層の温度は通常5℃以上、好ましくは10℃以上に維持される。
Two or more methods for suppressing the expansion of the thermally expandable particles during the energy beam irradiation step may be employed in combination. For example, the light intensity of the energy rays may be adjusted while performing a process of lowering the temperature of the atmosphere in which the double-sided pressure-sensitive adhesive sheet exists.
It is preferable to suppress the temperature rise of the thermally expandable layer by adopting these means, etc., but the temperature of the thermally expandable layer preferably does not exceed 70°C, more preferably does not exceed 60°C. By carrying out the steps, for example, when thermally expandable particles having an expansion start temperature (t) of 75 to 105° C. are used, expansion of the thermally expandable particles can be efficiently suppressed. The temperature of the thermally expandable layer during energy beam irradiation is usually maintained at 5°C or higher, preferably 10°C or higher.
<工程3>
 工程3は、両面粘着シートを熱膨張性粒子の膨張開始温度(t)以上に加熱して、粘着剤層(X1)と支持体とを分離する工程である。
 図7には、両面粘着シート1cを加熱して、粘着剤層(X1)と支持体2とを分離する工程を説明する断面図が示されている。
<Step 3>
Step 3 is a step of heating the double-sided pressure-sensitive adhesive sheet to the expansion start temperature (t) of the thermally expandable particles or higher to separate the pressure-sensitive adhesive layer (X1) from the support.
FIG. 7 shows a cross-sectional view for explaining the process of heating the double-sided pressure-sensitive adhesive sheet 1c to separate the pressure-sensitive adhesive layer (X1) from the support 2. As shown in FIG.
 工程3における加熱温度は、熱膨張性粒子の膨張開始温度(t)以上であり、好ましくは「膨張開始温度(t)より高い温度」、より好ましくは「膨張開始温度(t)+2℃」以上、更に好ましくは「膨張開始温度(t)+4℃」以上、より更に好ましくは「膨張開始温度(t)+5℃」以上である。
 また、工程3における加熱温度は省エネルギー性及び加熱剥離時における加工対象物の熱変化を抑制する観点からは、好ましくは「膨張開始温度(t)+50℃」以下、より好ましくは「膨張開始温度(t)+40℃」以下、更に好ましくは「膨張開始温度(t)+20℃」以下である。
 工程3における加熱温度は、加工対象物の熱変化を抑制する観点からは、膨張開始温度(t)以上の範囲内において、好ましくは125℃未満、より好ましくは120℃以下、更に好ましくは115℃以下、より更に好ましくは110℃以下、更になお好ましくは105℃以下である。
The heating temperature in step 3 is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, preferably "a temperature higher than the expansion start temperature (t)", more preferably "expansion start temperature (t) + 2°C" or higher. More preferably, it is "expansion start temperature (t) + 4°C" or higher, and still more preferably "expansion start temperature (t) + 5°C" or higher.
In addition, the heating temperature in step 3 is preferably “expansion start temperature (t) + 50 ° C.” or less, more preferably “expansion start temperature ( t) + 40°C" or less, more preferably "expansion start temperature (t) + 20°C" or less.
From the viewpoint of suppressing thermal change of the object to be processed, the heating temperature in step 3 is preferably less than 125°C, more preferably 120°C or less, and still more preferably 115°C within a range equal to or higher than the expansion start temperature (t). Below, more preferably 110° C. or less, still more preferably 105° C. or less.
<工程4>
 工程4は、粘着剤層(X2)と加工対象物とを分離する工程である。
 粘着剤層(X2)は、エネルギー線照射工程によって硬化して粘着力が低下しているため、公知の剥離手段によって加工対象物から容易に剥離することができる。
<Step 4>
Step 4 is a step of separating the pressure-sensitive adhesive layer (X2) and the object to be processed.
Since the pressure-sensitive adhesive layer (X2) is cured by the energy ray irradiation process and its adhesive strength is lowered, it can be easily peeled off from the object to be processed by a known peeling means.
 図8には、粘着剤層(X2)と複数の半導体チップCPとを分離する工程を説明する断面図が示されている。
 得られた複数の半導体チップCPが貼付されている熱硬化性フィルム6は、半導体チップCPと同形状に分割して、熱硬化性フィルム6付き半導体チップCPを得ることが好ましい。熱硬化性フィルム6の分割方法としては、例えば、レーザー光によるレーザーダイシング、エキスパンド、溶断等の方法を適用することができる。
 図9には、支持シート7上で半導体チップCPと同形状に分割された熱硬化性フィルム6付き半導体チップCPが示されている。
FIG. 8 shows a cross-sectional view for explaining the step of separating the adhesive layer (X2) and the plurality of semiconductor chips CP.
The obtained thermosetting film 6 to which the plurality of semiconductor chips CP are attached is preferably divided into the same shape as the semiconductor chips CP to obtain the semiconductor chips CP with the thermosetting film 6 . As a method for dividing the thermosetting film 6, for example, a method such as laser dicing using a laser beam, expansion, or fusion cutting can be applied.
FIG. 9 shows semiconductor chips CP with thermosetting films 6 that are divided on the support sheet 7 in the same shape as the semiconductor chips CP.
 支持シート7上の熱硬化性フィルム6付き半導体チップCPは、さらに、必要に応じて、半導体チップCP同士の間隔を広げるエキスパンド工程等が適宜施された後、ピックアップされ、熱硬化性フィルム6側から基板に貼付(ダイアタッチ)される。その後、熱硬化性フィルム6を熱硬化させることで半導体チップCPと基板とを固着することができる。 The semiconductor chip CP with the thermosetting film 6 on the support sheet 7 is further subjected to an expansion process or the like for widening the gap between the semiconductor chips CP as necessary, and then picked up and placed on the thermosetting film 6 side. is attached (die attached) to the substrate from the After that, the semiconductor chip CP and the substrate can be fixed by thermosetting the thermosetting film 6 .
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されない。なお、各例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described by the following examples, but the present invention is not limited to the following examples. In addition, the physical property value in each example is the value measured by the following method.
[質量平均分子量(Mw)]
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
[Mass average molecular weight (Mw)]
Using a gel permeation chromatograph (manufactured by Tosoh Corporation, product name "HLC-8020"), measurement was performed under the following conditions, and the values measured in terms of standard polystyrene were used.
(Measurement condition)
・ Column: "TSK guard column HXL-L", "TSK gel G2500HXL", "TSK gel G2000HXL", "TSK gel G1000HXL" (both manufactured by Tosoh Corporation) are sequentially connected ・Column temperature: 40 ° C.
・Developing solvent: tetrahydrofuran ・Flow rate: 1.0 mL/min
[各層の厚さ]
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて、23℃にて測定した。
[Thickness of each layer]
It was measured at 23° C. using a constant pressure thickness measuring instrument manufactured by Teclock Co., Ltd. (model number: “PG-02J”, standard specifications: conforming to JIS K6783, Z1702, Z1709).
[熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)]
 レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定し、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)」とした。
[Average particle size (D 50 ) and 90% particle size (D 90 ) of thermally expandable particles]
Using a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name "Mastersizer 3000"), the particle distribution of the thermally expandable particles before expansion at 23 ° C. is measured, and the particle size of the particle distribution is small. The particle diameters corresponding to the cumulative volume frequencies of 50% and 90% calculated from the method are defined as the "average particle diameter of the thermally expandable particles ( D50 )" and the "90% particle diameter of the thermally expandable particles ( D90 ), respectively. "
[非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23)]
 縦30mm×横5mmに裁断した非熱膨張性基材層(Y2)を試験サンプルとして、動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度200℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、23℃における貯蔵弾性率E’を測定した。その結果、後述する非熱膨張性基材層(Y2)であるPETフィルムの23℃における貯蔵弾性率E’(23)は、2.27×10Paであった。
[Storage elastic modulus E′ (23) at 23° C. of the non-thermally expandable base layer (Y2)]
Using a non-thermally expandable base material layer (Y2) cut to 30 mm long and 5 mm wide as a test sample, using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name "DMAQ800"), the test start temperature The storage elastic modulus E′ at 23° C. was measured under the conditions of 0° C., test end temperature of 200° C., temperature increase rate of 3° C./min, frequency of 1 Hz, and amplitude of 20 μm. As a result, the storage elastic modulus E′(23) at 23° C. of the PET film, which is the non-thermally expandable base layer (Y2) described later, was 2.27×10 9 Pa.
[厚さ方向における波長380nmの全光線透過率の測定方法]
 以下の条件にて、各測定試料の透過スペクトルを測定し、厚さ方向における波長380nmの全光線透過率を取得した。
<測定条件>
 測定波長範囲:200~800nm
 測定温度:23℃
 測定雰囲気:空気
 測定装置:積分球付属装置(株式会社島津製作所製、製品名「ISR-3100」)を備えた紫外可視近赤外分光光度計(株式会社島津製作所製、製品名「UV-3600」)
[Method for measuring total light transmittance at a wavelength of 380 nm in the thickness direction]
The transmission spectrum of each measurement sample was measured under the following conditions to obtain the total light transmittance at a wavelength of 380 nm in the thickness direction.
<Measurement conditions>
Measurement wavelength range: 200-800nm
Measurement temperature: 23°C
Measurement atmosphere: air Measurement device: UV-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600") equipped with an integrating sphere accessory (manufactured by Shimadzu Corporation, product name "ISR-3100") ”)
[エネルギー線照射工程時における粘着シートの温度測定]
 本実施形態の製造方法に適するエネルギー線照射条件を見出すことを目的として、エネルギー線硬化型粘着剤層に対するエネルギー線照射による温度上昇について調査した。
[Temperature measurement of adhesive sheet during energy beam irradiation process]
For the purpose of finding energy ray irradiation conditions suitable for the manufacturing method of the present embodiment, an investigation was made on the temperature rise due to energy ray irradiation of the energy ray-curable pressure-sensitive adhesive layer.
参考例1
 12インチ規格のシリコンウエハ及びリングフレームに、紫外線硬化性の粘着剤層を有する片面粘着シートとしてリンテック株式会社製の半導体加工用シート「D-675」を貼付した。そして、該粘着シートのシリコンウエハに接着した表面とは反対側の表面上に、温度測定用の熱電対を設置した。熱電対の設置位置は、粘着シートの平面視において、円形の粘着シートの中心とした。次いで、紫外線照射装置として、リンテック株式会社製「RAD-2010m/12」を用いて、波長365nmにおける照度230mW/cm、表1に示す光量(波長365nmにおけるもの)で、粘着シートに紫外線を照射した後の、粘着シートの温度を測定した。なお、上記の紫外線照射装置に装着されたUVランプは、高圧水銀ランプであり、反射板はアルミミラーである。
Reference example 1
A semiconductor processing sheet "D-675" manufactured by Lintec Corporation was attached as a single-sided adhesive sheet having an ultraviolet curable adhesive layer to a 12-inch standard silicon wafer and ring frame. A thermocouple for temperature measurement was placed on the surface of the pressure-sensitive adhesive sheet opposite to the surface bonded to the silicon wafer. The installation position of the thermocouple was set at the center of the circular adhesive sheet in plan view of the adhesive sheet. Next, using "RAD-2010m/12" manufactured by Lintec Co., Ltd. as an ultraviolet irradiation device, the pressure-sensitive adhesive sheet is irradiated with ultraviolet rays at an illuminance of 230 mW/cm 2 at a wavelength of 365 nm and a light amount (at a wavelength of 365 nm) shown in Table 1. After that, the temperature of the adhesive sheet was measured. The UV lamp attached to the ultraviolet irradiation device was a high-pressure mercury lamp, and the reflector was an aluminum mirror.
参考例2
 参考例1において、反射板をコールドミラーに変更したこと以外は、参考例1と同様にして粘着シートに紫外線を照射し、粘着シートの温度を測定した。結果を表1に示す。
Reference example 2
In Reference Example 1, the pressure-sensitive adhesive sheet was irradiated with ultraviolet rays and the temperature of the pressure-sensitive adhesive sheet was measured in the same manner as in Reference Example 1, except that the reflector was changed to a cold mirror. Table 1 shows the results.
参考例3
 参考例1において、紫外線照射装置を、365nmに選択的に光線強度を有するLED-UVランプに変更し、かつ、照度を2,000mW/cmに変更したこと以外は、参考例1と同様にして粘着シートに紫外線を照射し、粘着シートの温度を測定した。なお、LED-UVランプは、照射する紫外線に直進性があるため反射板は設けていない。結果を表1に示す。
Reference example 3
In Reference Example 1, the procedure was the same as in Reference Example 1, except that the ultraviolet irradiation device was changed to an LED-UV lamp having a selective light intensity at 365 nm, and the illuminance was changed to 2,000 mW/cm 2 . The pressure-sensitive adhesive sheet was irradiated with ultraviolet rays, and the temperature of the pressure-sensitive adhesive sheet was measured. Note that the LED-UV lamp does not have a reflector because the emitted ultraviolet rays travel straight. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、エネルギー線硬化性粘着剤層に対して照射する紫外線の光量が多くなるほど、粘着シートの温度が高くなることが分かる。また、参考例1~3の対比によって、アルミミラーよりもコールドミラーの方が、高圧水銀ランプよりもLED-UVランプの方が、粘着シートの温度上昇を抑制できていることが分かる。 From Table 1, it can be seen that the temperature of the adhesive sheet increases as the amount of ultraviolet light irradiated to the energy ray-curable adhesive layer increases. Further, by comparing Reference Examples 1 to 3, it can be seen that the cold mirror suppresses the temperature rise of the adhesive sheet more than the aluminum mirror, and the LED-UV lamp suppresses the temperature rise more than the high-pressure mercury lamp.
[両面粘着シートの製造及び全光線透過率の測定]
 次に、本実施形態の製造方法に用い得る両面粘着シートを製造し、該両面粘着シートの熱膨張性層を膨張させた場合における、全光線透過率への影響を調査した。
 両面粘着シートの製造に使用した材料の詳細は以下の通りである。
[Production of double-sided pressure-sensitive adhesive sheet and measurement of total light transmittance]
Next, a double-sided pressure-sensitive adhesive sheet that can be used in the manufacturing method of the present embodiment was manufactured, and the influence on the total light transmittance when the thermally expandable layer of the double-sided pressure-sensitive adhesive sheet was expanded was investigated.
The details of the materials used to manufacture the double-sided pressure-sensitive adhesive sheet are as follows.
(粘着性樹脂)
・アクリル系共重合体(A1):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/アクリル酸(AA)/2-ヒドロキシエチルアクリレート(HEA)=86/8/1/5(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体を含有する溶液、希釈溶剤:酢酸エチル、固形分濃度:40質量%
・アクリル系共重合体(A2):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)=52/20/28(質量比)からなる原料モノマーに由来する構成単位を有するアクリル系共重合体に、2-メタクリロイルオキシエチルイソシアネート(MOI)をアクリル系共重合体中の全水酸基に対する付加率がモル数基準で90%となるように反応させた、Mw50万のエネルギー線硬化性のアクリル系共重合体を含有する溶液、希釈溶剤:酢酸エチル、固形分濃度:35質量%
(adhesive resin)
・ Acrylic copolymer (A1): n-butyl acrylate (BA) / methyl methacrylate (MMA) / acrylic acid (AA) / 2-hydroxyethyl acrylate (HEA) = 86/8/1/5 (mass ratio) solution containing an acrylic copolymer with Mw of 600,000, diluent solvent: ethyl acetate, solid content concentration: 40 mass%
・Acrylic copolymer (A2): A structure derived from a raw material monomer consisting of n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) = 52/20/28 (mass ratio) An acrylic copolymer having a unit is reacted with 2-methacryloyloxyethyl isocyanate (MOI) so that the addition rate to all hydroxyl groups in the acrylic copolymer is 90% on a molar basis, Mw 500,000 Solution containing energy ray-curable acrylic copolymer, dilution solvent: ethyl acetate, solid content concentration: 35% by mass
(架橋剤)
・イソシアネート系架橋剤(i):東ソー株式会社製、製品名「コロネート(登録商標)HX」、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体、固形分濃度:100質量%
・イソシアネート系架橋剤(ii):東ソー株式会社製、製品名「コロネート(登録商標)L」、トリメチロールプロパン変性トリレンジイソシアネートを含有する溶液、固形分濃度:75質量%
(crosslinking agent)
· Isocyanate-based cross-linking agent (i): manufactured by Tosoh Corporation, product name "Coronate (registered trademark) HX", isocyanurate-type modified form of hexamethylene diisocyanate, solid content concentration: 100% by mass
· Isocyanate cross-linking agent (ii): manufactured by Tosoh Corporation, product name "Coronate (registered trademark) L", solution containing trimethylolpropane-modified tolylene diisocyanate, solid content concentration: 75% by mass
(エネルギー線硬化性化合物)
・エネルギー線硬化性化合物(i):日本合成化学工業株式会社製、製品名「シコウUT-4332」、多官能ウレタンアクリレート
(Energy ray-curable compound)
・ Energy ray-curable compound (i): manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name “Shikou UT-4332”, polyfunctional urethane acrylate
(光重合開始剤)
・光重合開始剤(i):ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド
・光重合開始剤(ii):1-ヒドロキシシクロヘキシルフェニルケトン
(Photoinitiator)
- Photoinitiator (i): bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide - Photoinitiator (ii): 1-hydroxycyclohexylphenyl ketone
(添加剤)
・フタロシアニン系顔料
(Additive)
・Phthalocyanine pigment
(熱膨張性粒子)
・熱膨張性粒子:Nouryon社製、製品名「Expancel(登録商標)031-40」(DUタイプ)、膨張開始温度(t)=88℃、平均粒子径(D50)=12.6μm、90%粒子径(D90)=26.2μm
(Thermal expandable particles)
・Thermal expandable particles: manufactured by Nouryon, product name “Expancel (registered trademark) 031-40” (DU type), expansion start temperature (t) = 88 ° C., average particle diameter (D 50 ) = 12.6 μm, 90 % particle size ( D90 ) = 26.2 µm
(剥離材)
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
(Release material)
・ Heavy release film: manufactured by Lintec Corporation, product name "SP-PET382150", polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm
・ Light release film: manufactured by Lintec Corporation, product name "SP-PET381031", a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm
<両面粘着シートの製造>
製造例1
(粘着剤層(X1)の形成)
 アクリル系共重合体(A1)の固形分100質量部に、イソシアネート系架橋剤(i)0.74質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、有効成分濃度25質量%の粘着剤組成物(x-1)を調製した。そして、重剥離フィルムの剥離面上に、粘着剤組成物(x-1)を塗布して塗膜を形成し、該塗膜を100℃で60秒間乾燥して、厚さ5μmの粘着剤層(X1)を形成した。
<Production of double-sided adhesive sheet>
Production example 1
(Formation of adhesive layer (X1))
To 100 parts by mass of the solid content of the acrylic copolymer (A1), 0.74 parts by mass of the isocyanate cross-linking agent (i) (solid content ratio) is blended, diluted with toluene, stirred uniformly, and the active ingredient A pressure-sensitive adhesive composition (x-1) having a concentration of 25% by mass was prepared. Then, on the release surface of the heavy release film, the adhesive composition (x-1) is applied to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to form a 5 μm thick adhesive layer. (X1) was formed.
(粘着剤層(X2)の形成)
 アクリル系共重合体(A2)の固形分100質量部に、エネルギー線硬化性化合物(i)12質量部(固形分比)、イソシアネート系架橋剤(ii)1.1質量部(固形分比)、光重合開始剤(i)1質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、有効成分濃度30質量%の粘着剤組成物(x-2)を調製した。そして、軽剥離フィルムの剥離面上に、粘着剤組成物(x-2)を塗布して塗膜を形成し、該塗膜を100℃で60秒間乾燥して、厚さ20μmの粘着剤層(X2)を形成した。
(Formation of adhesive layer (X2))
To 100 parts by mass of the solid content of the acrylic copolymer (A2), 12 parts by mass of the energy ray-curable compound (i) (solid content ratio), and 1.1 parts by mass of the isocyanate cross-linking agent (ii) (solid content ratio) , Photopolymerization initiator (i) 1 part by mass (solid content ratio) was blended, diluted with toluene, and stirred uniformly to prepare an adhesive composition (x-2) having an active ingredient concentration of 30% by mass. . Then, the adhesive composition (x-2) is applied to the release surface of the light release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to form a 20 μm thick adhesive layer. (X2) was formed.
(熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とを積層した基材積層体の形成)
 エステル型ジオールと、イソホロンジイソシアネート(IPDI)を反応させて得られた末端イソシアネートウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させて、質量平均分子量(Mw)5,000のオリゴマーである、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマー(エチレン性不飽和基を有するオリゴマー)を得た。
 そして、上記で合成したウレタンプレポリマー40質量部(固形分比)に、エネルギー線重合性モノマーとして、イソボルニルアクリレート(IBXA)40質量部(固形分比)、及びフェニルヒドロキシプロピルアクリレート(HPPA)20質量部(固形分比)を配合し、さらにシクロヘキシルアクリレート(CHA)20質量部(固形分比)、光重合開始剤(ii)2.0質量部(固形分比)、及び、添加剤として、フタロシアニン系顔料0.2質量部(固形分比)を配合し、エネルギー線硬化性組成物を調製した。
 そして、該エネルギー線硬化性組成物に熱膨張性粒子を、得られる熱膨張性基材層(Y1)全質量(100質量%)に対する熱膨張性粒子の含有量が30質量%になるように配合し、溶剤を含有しない、無溶剤型樹脂組成物(y-1a)を調製した。
(Formation of substrate laminate by laminating thermally expandable substrate layer (Y1) and non-thermally expandable substrate layer (Y2))
A terminal isocyanate urethane prepolymer obtained by reacting an ester diol and isophorone diisocyanate (IPDI) is reacted with 2-hydroxyethyl acrylate to form an oligomer having a mass average molecular weight (Mw) of 5,000 at both ends. A linear urethane prepolymer having an ethylenically unsaturated group (an oligomer having an ethylenically unsaturated group) was obtained.
Then, to 40 parts by mass (solid content ratio) of the urethane prepolymer synthesized above, 40 parts by mass (solid content ratio) of isobornyl acrylate (IBXA) and phenylhydroxypropyl acrylate (HPPA) are added as energy ray-polymerizable monomers. 20 parts by mass (solid content ratio) are blended, and 20 parts by mass of cyclohexyl acrylate (CHA) (solid content ratio), 2.0 parts by mass of photopolymerization initiator (ii) (solid content ratio), and as additives , and 0.2 parts by mass (solid content ratio) of a phthalocyanine pigment were blended to prepare an energy ray-curable composition.
Then, thermally expandable particles are added to the energy ray-curable composition so that the content of the thermally expandable particles is 30% by mass with respect to the total mass (100% by mass) of the resulting thermally expandable substrate layer (Y1). A solvent-free resin composition (y-1a) was prepared by blending and containing no solvent.
 次に、非熱膨張性基材層(Y2)として、PETフィルム(東洋紡株式会社製、製品名「コスモシャイン(登録商標)A4300」、厚さ:50μm)を準備した。該PETフィルムの片面に無溶剤型樹脂組成物(y-1a)を、形成される熱膨張性基材層(Y1)の厚さが100μmになるように塗布して塗膜を形成した。
 そして、紫外線照射装置(アイグラフィックス株式会社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィックス株式会社製、製品名「H04-L41」)を用いて、照度160mW/cm、光量500mJ/cmの条件で紫外線を照射し、該塗膜を硬化させ、熱膨張性基材層(Y1)が非熱膨張性基材層(Y2)としてのPETフィルム上に形成された基材積層体を得た。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
Next, a PET film (manufactured by Toyobo Co., Ltd., product name “Cosmoshine (registered trademark) A4300”, thickness: 50 μm) was prepared as a non-thermally expandable base layer (Y2). The non-solvent resin composition (y-1a) was applied to one side of the PET film so that the thermally expandable substrate layer (Y1) formed had a thickness of 100 μm to form a coating film.
Then, using an ultraviolet irradiation device (manufactured by Eyegraphics Co., Ltd., product name “ECS-401GX”) and a high-pressure mercury lamp (manufactured by Eyegraphics Co., Ltd., product name “H04-L41”), an illuminance of 160 mW / cm 2 , and irradiated with ultraviolet rays under the conditions of a light amount of 500 mJ / cm 2 to cure the coating film, and the thermally expandable base layer (Y1) was formed on the PET film as the non-thermally expandable base layer (Y2). A substrate laminate was obtained. The above illuminance and light amount during ultraviolet irradiation are values measured using an illuminance/photometer (manufactured by EIT, product name “UV Power Puck II”).
(剥離材付き両面粘着シートの形成)
 上記で形成した粘着剤層(X1)の粘着表面と、基材積層体の熱膨張性基材層(Y1)の表面とを貼り合わせた。次に、上記で形成した粘着剤層(X2)の粘着表面と、基材積層体のPETフィルムの表面とを貼り合わせた。
 これにより、以下の構成を有する剥離材付き両面粘着シートを作製した。
 <重剥離フィルム>/<粘着剤層(X1)、厚さ:5μm>/<熱膨張性基材層(Y1)、厚さ:100μm>/<非熱膨張性基材層(Y2)、厚さ:50μm>/<粘着剤層(X2)、厚さ:20μm>/<軽剥離フィルム>
(Formation of double-sided adhesive sheet with release material)
The adhesive surface of the adhesive layer (X1) formed above and the surface of the thermally expandable substrate layer (Y1) of the substrate laminate were bonded together. Next, the adhesive surface of the adhesive layer (X2) formed above and the surface of the PET film of the substrate laminate were bonded together.
As a result, a double-sided pressure-sensitive adhesive sheet with a release material having the following structure was produced.
<Heavy Release Film>/<Adhesive Layer (X1), Thickness: 5 μm>/<Thermal Expandable Base Layer (Y1), Thickness: 100 μm>/<Non-thermally Expandable Base Layer (Y2), Thickness Thickness: 50 μm>/<Adhesive layer (X2), thickness: 20 μm>/<Light release film>
<全光線透過率(T)及び(T)の測定>
 製造例1で得られた剥離材付き両面粘着シートの粘着剤層(X2)から軽剥離フィルムを除去し、表出した粘着剤層(X2)の粘着表面上に、ガラス板(ソーダライムガラス、厚さ1.1mm)を真空ラミネータ(ニッコーマテリアルズ株式会社製、製品名「V-130」)を用いて、60℃で0.2MPaの条件にて30秒間プレスして貼付し、粘着剤層(X1)から重剥離フィルムを除去して、熱膨張前の両面粘着シートとガラス板とが積層された全光線透過率測定用積層体(L)を作製した。
 また、上記と同じ方法で作製した全光線透過率測定用積層体(L)を、ガラス板がホットプレートと接触する側になり、両面粘着シートがホットプレートと接触しない側になるようにホットプレート上に載置し、110℃(すなわち、熱膨張性粒子の膨張開始温度(t)である88℃+22℃の温度)で1分間加熱した。これにより、熱膨張後の両面粘着シートとガラス板とが積層された全光線透過率測定用積層体(L)を作製した。
 上記で作製した全光線透過率測定用積層体(L)及び全光線透過率測定用積層体(L)を測定試料として、上記の条件にて、光線の入射面は粘着剤層(X1)側の面として、両面粘着シートの厚さ方向における波長380nmの全光線透過率を測定した。その結果、熱膨張前の両面粘着シートとガラス板とが積層された全光線透過率測定用積層体(L)の全光線透過率(T)の値が40.1%であり、熱膨張後の両面粘着シートとガラス板とが積層された全光線透過率測定用積層体(L)の全光線透過率(T)の値が15.2%であった。
 以上の結果から、製造例1の両面粘着シートは、加熱剥離後には紫外線の透過性が大きく低下していることが分かる。そのため、加熱剥離後に熱膨張性層を介して粘着剤層(X2)に対して紫外線を照射しても、粘着剤層(X2)を十分に硬化させることが困難である。
 一方、本実施形態の製造方法では、製造例1で得られた両面粘着シートのように、加熱剥離後に紫外線の透過性が大きく低下する両面粘着シートを用いる場合においても、粘着剤層(X2)に紫外線を照射する際には熱膨張性層の膨張が抑制されているため、粘着剤層(X2)を十分に硬化させることが可能である。
<Measurement of total light transmittance (T A ) and (T B )>
The light release film was removed from the adhesive layer (X2) of the double-sided adhesive sheet with a release material obtained in Production Example 1, and a glass plate (soda lime glass, Thickness 1.1 mm) using a vacuum laminator (manufactured by Nikko Materials Co., Ltd., product name “V-130”) and pressed for 30 seconds at 60 ° C. and 0.2 MPa to attach the adhesive layer. By removing the heavy release film from (X1), a laminate for total light transmittance measurement (L B ) in which a double-sided pressure-sensitive adhesive sheet before thermal expansion and a glass plate were laminated was produced.
In addition, the laminate for total light transmittance measurement (L B ) prepared in the same manner as above was heated so that the glass plate was on the side in contact with the hot plate and the double-sided adhesive sheet was on the side not in contact with the hot plate. It was placed on a plate and heated at 110° C. (that is, 88° C.+22° C., which is the expansion start temperature (t) of the thermally expandable particles) for 1 minute. Thus, a laminate for total light transmittance measurement (L A ) in which the thermally expanded double-sided pressure-sensitive adhesive sheet and the glass plate were laminated was produced.
Using the laminate for total light transmittance measurement (L A ) and the laminate for total light transmittance measurement (L B ) prepared above as measurement samples, under the above conditions, the light incident surface is the pressure-sensitive adhesive layer (X1 ) side, the total light transmittance at a wavelength of 380 nm in the thickness direction of the double-sided pressure-sensitive adhesive sheet was measured. As a result, the value of the total light transmittance (T B ) of the laminate for total light transmittance measurement (L B ) in which the double-sided pressure-sensitive adhesive sheet and the glass plate before thermal expansion were laminated was 40.1%. The value of the total light transmittance (T A ) of the laminate for total light transmittance measurement (L A ) in which the double-sided pressure-sensitive adhesive sheet and the glass plate were laminated after expansion was 15.2 % .
From the above results, it can be seen that the double-sided pressure-sensitive adhesive sheet of Production Example 1 has a significantly reduced UV transmittance after being peeled off by heating. Therefore, even if the pressure-sensitive adhesive layer (X2) is irradiated with ultraviolet rays through the thermally expandable layer after the thermal peeling, it is difficult to sufficiently cure the pressure-sensitive adhesive layer (X2).
On the other hand, in the production method of the present embodiment, even when using a double-sided pressure-sensitive adhesive sheet, such as the double-sided pressure-sensitive adhesive sheet obtained in Production Example 1, in which the UV transmittance is greatly reduced after being peeled off by heating, the pressure-sensitive adhesive layer (X2) Since the expansion of the thermally expandable layer is suppressed when the adhesive layer (X2) is irradiated with ultraviolet rays, it is possible to sufficiently cure the pressure-sensitive adhesive layer (X2).
 1a、1b、1c 両面粘着シート
 2 支持体
 3 レーザー光照射装置
 4 改質領域
 5 グラインダー
 6 熱硬化性フィルム
 7 支持シート
 W 半導体ウエハ
 W1 半導体ウエハの回路面
 W2 半導体ウエハの裏面
 CP 半導体チップ
(X1) 粘着剤層(X1)
(X2) 粘着剤層(X2)
(Y)  基材層(Y)
(Y1) 熱膨張性基材層(Y1)
(Y2) 非熱膨張性基材層(Y2)
1a, 1b, 1c double-sided adhesive sheet 2 support 3 laser beam irradiation device 4 modified region 5 grinder 6 thermosetting film 7 support sheet W semiconductor wafer W1 circuit surface of semiconductor wafer W2 back surface of semiconductor wafer CP semiconductor chip (X1) Adhesive layer (X1)
(X2) Adhesive layer (X2)
(Y) Base layer (Y)
(Y1) Thermally expandable base layer (Y1)
(Y2) Non-thermally expandable base layer (Y2)

Claims (12)

  1.  一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有し、
     前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
     前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層である両面粘着シートを用い、
     下記工程1~4をこの順で有し、
     工程1:前記両面粘着シートが有する前記粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、前記両面粘着シートが有する前記粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程
     工程2:前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物を加工する工程
     工程3:前記両面粘着シートを前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
     工程4:前記粘着剤層(X2)と前記加工対象物とを分離する工程
     前記工程1の加工対象物貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する、半導体装置の製造方法。
     エネルギー線照射工程:前記熱膨張性粒子を膨張させずに、前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
    At least having an adhesive layer (X1) as an outer layer on one side and an adhesive layer (X2) as an outer layer on the other side,
    The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
    Using a double-sided pressure-sensitive adhesive sheet in which at least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
    Having the following steps 1 to 4 in this order,
    Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. Step 2: Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet Step 3: Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher Step 4: separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step A method of manufacturing a semiconductor device, comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
    Energy ray irradiation step: A step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2) without expanding the thermally expandable particles.
  2.  一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有し、
     前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
     前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層である両面粘着シートを用い、
     下記工程1~4をこの順で有し、
     工程1:前記両面粘着シートが有する前記粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、前記両面粘着シートが有する前記粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程
     工程2:前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物を加工する工程
     工程3:前記両面粘着シートを前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
     工程4:前記粘着剤層(X2)と前記加工対象物とを分離する工程
     前記工程1の加工対象物貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する、半導体装置の製造方法。
     エネルギー線照射工程:前記熱膨張性層の温度が、前記熱膨張性粒子の膨張開始温度(t)よりも5℃低い温度を超えないように、前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
    At least having an adhesive layer (X1) as an outer layer on one side and an adhesive layer (X2) as an outer layer on the other side,
    The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
    Using a double-sided pressure-sensitive adhesive sheet in which at least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
    Having the following steps 1 to 4 in this order,
    Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. Step 2: Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet Step 3: Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher Step 4: separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step A method of manufacturing a semiconductor device, comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
    Energy beam irradiation step: the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet so that the temperature of the thermally expandable layer does not exceed a temperature lower than the expansion start temperature (t) of the thermally expandable particles by 5°C. The step of curing the pressure-sensitive adhesive layer (X2) by irradiating with an energy ray
  3.  一方の面側の外層としての粘着剤層(X1)と、他方の面側の外層としての粘着剤層(X2)とを少なくとも有する両面粘着シートであり、
     前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
     前記粘着剤層(X2)以外の層の少なくともいずれかの層が熱膨張性粒子を含有する熱膨張性層であり、
     前記両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、20%未満である両面粘着シートを用い、
     下記工程1~4をこの順で有し、
     工程1:前記両面粘着シートが有する前記粘着剤層(X2)に加工対象物を貼付する加工対象物貼付工程と、前記両面粘着シートが有する前記粘着剤層(X1)に支持体を貼付する支持体貼付工程と、を含む工程
     工程2:前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物を加工する工程
     工程3:前記両面粘着シートを前記熱膨張性粒子の膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
     工程4:前記粘着剤層(X2)と前記加工対象物とを分離する工程
     前記工程1の加工対象物貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、下記エネルギー線照射工程を有する半導体装置の製造方法。
     エネルギー線照射工程:前記両面粘着シートの前記粘着剤層(X2)にエネルギー線を照射して前記粘着剤層(X2)を硬化させる工程
    A double-sided pressure-sensitive adhesive sheet having at least a pressure-sensitive adhesive layer (X1) as an outer layer on one side and a pressure-sensitive adhesive layer (X2) as an outer layer on the other side,
    The pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer,
    At least one of the layers other than the pressure-sensitive adhesive layer (X2) is a thermally expandable layer containing thermally expandable particles,
    A laminate obtained by laminating a glass plate made of soda lime glass and having a thickness of 1.1 mm on the adhesive layer (X2) of the double-sided adhesive sheet was placed at a temperature of 22°C + the expansion start temperature (t) of the thermally expandable particles. Using a double-sided adhesive sheet having a total light transmittance (T A ) at a wavelength of 380 nm in the thickness direction of the laminate for total light transmittance measurement (L A ) obtained by heating for 1 minute at a temperature of less than 20%,
    Having the following steps 1 to 4 in this order,
    Step 1: A process object attaching step of attaching an object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and a support of attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet. Step 2: Processing the object while the object is supported by the support via the double-sided pressure-sensitive adhesive sheet Step 3: Attaching the double-sided pressure-sensitive adhesive sheet to the A step of separating the pressure-sensitive adhesive layer (X1) and the support by heating to the expansion start temperature (t) of the thermally expandable particles or higher Step 4: separating the pressure-sensitive adhesive layer (X2) and the object to be processed Separating step A method for manufacturing a semiconductor device, comprising the following energy ray irradiation step after step 1 of attaching an object to be processed and before step 3 at least at any time.
    Energy ray irradiation step: a step of irradiating the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet with an energy ray to cure the pressure-sensitive adhesive layer (X2)
  4.  前記エネルギー線照射工程を、前記両面粘着シートに対して、冷却処理を施しながら行う、請求項1~3のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the energy beam irradiation step is performed while cooling the double-sided adhesive sheet.
  5.  前記エネルギー線照射工程が、ガスが充填されたチャンバー内で行われる工程であって、下記の要件(I)又は(II)を満たすものである、請求項1~3のいずれか1項に記載の半導体装置の製造方法。
    (I)前記エネルギー線照射工程が、前記エネルギー線照射工程中に、前記チャンバー内に充填されたガスの少なくとも一部を前記チャンバー外から供給されるガスに置換する工程である。
    (II)前記エネルギー線照射工程が、さらに、一の両面粘着シートに対してエネルギー線を照射した後、別の両面粘着シートに対してエネルギー線の照射を開始するサイクルを繰り返して、複数の両面粘着シートに対して、順次、エネルギー線を照射する工程であり、
     前記繰り返されるサイクルが、
     少なくとも1回のサイクルにおいて、前記一の両面粘着シートに対してエネルギー線を照射した後、前記別の両面粘着シートに対してエネルギー線の照射を開始する前に、前記チャンバー内に充填されたガスの少なくとも一部を前記チャンバー外から供給されるガスに置換するものである。
    4. The energy beam irradiation step according to any one of claims 1 to 3, wherein the step is performed in a chamber filled with gas and satisfies the following requirements (I) or (II): and a method for manufacturing a semiconductor device.
    (I) The energy beam irradiation step is a step of replacing at least part of the gas filled in the chamber with gas supplied from outside the chamber during the energy beam irradiation step.
    (II) The energy ray irradiation step further repeats a cycle of irradiating one double-sided pressure-sensitive adhesive sheet with an energy ray and then starting irradiation of another double-sided pressure-sensitive adhesive sheet with an energy ray to obtain a plurality of double-sided pressure-sensitive adhesive sheets. A step of sequentially irradiating the adhesive sheet with energy rays,
    The repeated cycle is
    In at least one cycle, after irradiating the one double-sided pressure-sensitive adhesive sheet with an energy ray and before starting irradiation of the energy ray on the other double-sided pressure-sensitive adhesive sheet, the gas filled in the chamber is replaced with gas supplied from outside the chamber.
  6.  前記工程2が前記加工対象物を研削する工程を含み、
     前記エネルギー線照射工程を、前記工程1の加工対象物貼付工程の後であって、前記加工対象物を研削する工程の前の少なくともいずれかの時期に行う、請求項1~3のいずれか1項に記載の半導体装置の製造方法。
    The step 2 includes grinding the workpiece,
    4. Any one of claims 1 to 3, wherein the energy beam irradiation step is performed at least at any time after the step of attaching the workpiece in step 1 and before the step of grinding the workpiece. A method for manufacturing the semiconductor device according to the above item.
  7.  前記工程1が、前記加工対象物貼付工程の後に、前記支持体貼付工程を行う工程であって、
     前記エネルギー線照射工程を、前記加工対象物貼付工程の後であって、前記支持体貼付工程の前に行う、請求項1~3のいずれか1項に記載の半導体装置の製造方法。
    The step 1 is a step of performing the support attaching step after the process object attaching step,
    4. The method of manufacturing a semiconductor device according to claim 1, wherein said energy ray irradiation step is performed after said object attachment step and before said support attachment step.
  8.  前記両面粘着シートが有する前記粘着剤層(X2)以外の全ての層及び前記支持体が、エネルギー線透過性を有するものであって、
     前記エネルギー線照射工程を、前記工程1の支持体貼付工程の後であって、前記工程3の前の少なくともいずれかの時期に、前記支持体側からエネルギー線を照射して行う、請求項1~3のいずれか1項に記載の半導体装置の製造方法。
    All layers other than the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet and the support have energy ray transparency,
    Claims 1 to 1, wherein the energy ray irradiation step is performed by irradiating an energy ray from the side of the support at least some time after the step 1 of attaching the support and before the step 3. 4. The method for manufacturing a semiconductor device according to any one of 3.
  9.  前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、請求項1~3のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the thermally expandable particles have an expansion start temperature (t) of 50°C or higher and lower than 125°C.
  10.  前記両面粘着シートが、さらに、基材層(Y)を有し、前記粘着剤層(X1)と、前記基材層(Y)と、前記粘着剤層(X2)と、をこの順に有する、請求項1~3のいずれか1項に記載の半導体装置の製造方法。 The double-sided pressure-sensitive adhesive sheet further has a base layer (Y), and has the pressure-sensitive adhesive layer (X1), the base layer (Y), and the pressure-sensitive adhesive layer (X2) in this order. 4. The method of manufacturing a semiconductor device according to claim 1.
  11.  前記粘着剤層(X1)及び前記基材層(Y)のうちの少なくともいずれかが前記熱膨張性層である、請求項10に記載の半導体装置の製造方法。 11. The method of manufacturing a semiconductor device according to claim 10, wherein at least one of said adhesive layer (X1) and said base material layer (Y) is said thermally expandable layer.
  12.  前記工程2が、前記加工対象物を研削及び個片化する工程を含み、
     前記加工対象物の個片化予備工程として、
     前記研削及び個片化する工程よりも前に、前記加工対象物の前記粘着剤層(X2)に貼付される側の面に分割予定ラインである溝を形成する工程、又は
     前記研削及び個片化する工程よりも前に、前記加工対象物の内部に分割予定ラインである改質領域を形成する工程、をさらに有し、
     前記加工対象物を研削及び個片化する工程が、前記両面粘着シートを介して前記加工対象物が前記支持体に支持された状態で、前記加工対象物の、前記粘着剤層(X2)に貼付されている面とは反対側の面を研削して、前記加工対象物を、前記溝又は前記改質領域を起点として前記分割予定ラインで分割して個片化する工程である、請求項1~3のいずれか1項に記載の半導体装置の製造方法。
    The step 2 includes a step of grinding and singulating the workpiece,
    As a preliminary step for singulation of the object to be processed,
    A step of forming a groove as a dividing line on the surface of the object to be processed that is attached to the adhesive layer (X2) before the step of grinding and singulating, or the grinding and singulation a step of forming a modified region, which is a line to be divided, inside the object before the step of converting,
    The step of grinding and singulating the object to be processed is performed on the adhesive layer (X2) of the object to be processed in a state in which the object to be processed is supported by the support via the double-sided adhesive sheet. It is a step of grinding the surface opposite to the surface to which it is attached, and dividing the workpiece along the planned division lines with the groove or the modified region as a starting point to separate the object into individual pieces. 4. The method for manufacturing a semiconductor device according to any one of 1 to 3.
PCT/JP2022/035847 2021-09-29 2022-09-27 Method for producing semiconductor device WO2023054318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551504A JPWO2023054318A1 (en) 2021-09-29 2022-09-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021159601 2021-09-29
JP2021-159601 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054318A1 true WO2023054318A1 (en) 2023-04-06

Family

ID=85782709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035847 WO2023054318A1 (en) 2021-09-29 2022-09-27 Method for producing semiconductor device

Country Status (3)

Country Link
JP (1) JPWO2023054318A1 (en)
TW (1) TW202333211A (en)
WO (1) WO2023054318A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250735A (en) * 2006-03-15 2007-09-27 Sekisui Chem Co Ltd Method of stripping adhesive tape
JP2010278066A (en) * 2009-05-26 2010-12-09 Nitto Denko Corp Ultraviolet irradiation device
JP2012184292A (en) * 2011-03-03 2012-09-27 Nitto Denko Corp Thermally peelable adhesive sheet
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250735A (en) * 2006-03-15 2007-09-27 Sekisui Chem Co Ltd Method of stripping adhesive tape
JP2010278066A (en) * 2009-05-26 2010-12-09 Nitto Denko Corp Ultraviolet irradiation device
JP2012184292A (en) * 2011-03-03 2012-09-27 Nitto Denko Corp Thermally peelable adhesive sheet
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device

Also Published As

Publication number Publication date
JPWO2023054318A1 (en) 2023-04-06
TW202333211A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP7185638B2 (en) Semiconductor device manufacturing method
WO2021117695A1 (en) Adhesive sheet and method for producing semiconductor device
WO2021200789A1 (en) Double-sided adhesive sheet, and method for manufacturing semiconductor device
JP6792700B2 (en) Method of heat peeling of processing inspection object
WO2018181765A1 (en) Adhesive sheet
WO2020189568A1 (en) Adhesive sheet and semiconductor device production method
JPWO2019216262A1 (en) Semiconductor chip manufacturing method
WO2020196755A1 (en) Adhesive sheet, production method for adhesive sheet, and production method for semiconductor device
JP7273792B2 (en) Processed product manufacturing method and adhesive laminate
WO2020196756A1 (en) Adhesive-sheet manufacturing method, semiconductor-device manufacturing method, and adhesive sheet
WO2020196757A1 (en) Adhesive sheet, adhesive-sheet manufacturing method, and semiconductor-device manufacturing method
WO2021049570A1 (en) Method of manufacturing semiconductor device
WO2020196758A1 (en) Pressure-sensitive adhesive sheet, method for producing pressure-sensitive adhesive sheet, and method for producing semiconductor device
JPWO2019112033A1 (en) Adhesive laminate, how to use the adhesive laminate, and how to manufacture semiconductor devices
WO2023054318A1 (en) Method for producing semiconductor device
JP7490417B2 (en) Adhesive sheet
WO2022196752A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP7157861B1 (en) Semiconductor device manufacturing method
WO2023017831A1 (en) Method for expanding pressure-sensitive adhesive sheet
WO2023017832A1 (en) Method for manufacturing semiconductor device, and semiconductor wafer with adhesive sheet for semiconductor processing
JP7185637B2 (en) Semiconductor device manufacturing method
WO2022054889A1 (en) Adhesive sheet and method for producing semiconductor device
TWI846851B (en) Adhesive sheet manufacturing method, semiconductor device manufacturing method and adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551504

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE