WO2023017832A1 - Method for manufacturing semiconductor device, and semiconductor wafer with adhesive sheet for semiconductor processing - Google Patents

Method for manufacturing semiconductor device, and semiconductor wafer with adhesive sheet for semiconductor processing Download PDF

Info

Publication number
WO2023017832A1
WO2023017832A1 PCT/JP2022/030513 JP2022030513W WO2023017832A1 WO 2023017832 A1 WO2023017832 A1 WO 2023017832A1 JP 2022030513 W JP2022030513 W JP 2022030513W WO 2023017832 A1 WO2023017832 A1 WO 2023017832A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
semiconductor
layer
meth
thermally expandable
Prior art date
Application number
PCT/JP2022/030513
Other languages
French (fr)
Japanese (ja)
Inventor
康彦 垣内
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN202280055049.XA priority Critical patent/CN117795650A/en
Priority to KR1020237039010A priority patent/KR20240045163A/en
Publication of WO2023017832A1 publication Critical patent/WO2023017832A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor wafer with an adhesive sheet for semiconductor processing.
  • the adhesive sheet for semiconductor processing one having an adhesive layer and a substrate supporting the adhesive layer is usually used.
  • the adhesive layer of the adhesive sheet for semiconductor processing is attached to the circuit surface of the semiconductor wafer, and in a state in which the base material is fixed to a support device such as a chuck table, the back side of the semiconductor wafer is ground while the circuit surface is protected, and the semiconductor wafer is singulated. etc. After the predetermined processing, the adhesive sheet for semiconductor processing is peeled off from the surface of the semiconductor wafer.
  • the surface of the semiconductor wafer to which the adhesive sheet for semiconductor processing is attached is not necessarily flat, and the adhesive sheet for semiconductor processing may be attached to the surface having protrusions.
  • a semiconductor wafer having a plurality of bumps having a height of about several tens to several hundreds of ⁇ m formed on the circuit surface hereinafter also referred to as a “bumped wafer”.
  • a flip-chip bonding technique has been put into practical use, in which these bumps are directly bonded to a wiring substrate after back-grinding and individualizing the bumps.
  • the portion covering the bumps of the adhesive sheet for semiconductor processing swells more than the other portion, and the surface of the base material opposite to the attachment surface is projected. part may occur. If the back surface of the semiconductor wafer is ground with the surface having the protrusions fixed, the thickness uniformity of the semiconductor wafer after back grinding is poor.
  • Patent Document 1 discloses, as a temporary fixing tape for grinding a substrate, a temporary fixing tape comprising a support base and an adhesive layer laminated on one surface of the support base, wherein the support base The material has a first layer that supports the substrate, and a second layer that is positioned between the first layer and the adhesive layer and has cushioning properties, and has projections on at least one surface.
  • the projections provided on the surface of the substrate penetrate the adhesive layer and are positioned within the second layer corresponding to the intermediate layer. As a result, it is possible to apply a uniform pressing force over the entire surface of the substrate, so that the substrate can be made thin with a uniform thickness.
  • the protrusions on the surface of the adhesive sheet for semiconductor processing on the substrate side are formed. It tends to be possible to suppress the occurrence. However, for example, when the height of the protrusion is large, or when the area of the protrusion is large, it may be difficult to suppress the occurrence of protrusions only by the method of embedding the protrusion in the intermediate layer. In addition, if the embedding property is enhanced, the mechanical strength of the intermediate layer is lowered, and the protection around the protrusion may become insufficient, and part of the intermediate layer may adhere to the periphery of the protrusion after peeling. Therefore, there is a limit to suppressing the occurrence of protrusions in the pressure-sensitive adhesive sheet for semiconductor processing applied to a semiconductor wafer having protrusions only by the method of embedding the protrusions in the intermediate layer.
  • the present invention has been made in view of the above circumstances, and is intended to reduce the difference in height between convex portions and non-convex portions generated in a semiconductor processing pressure-sensitive adhesive sheet attached to a semiconductor wafer having protrusions. It is an object of the present invention to provide a semiconductor device manufacturing method capable of enhancing processing accuracy, and a semiconductor wafer with an adhesive sheet for semiconductor processing that can be used in this manufacturing method.
  • the present inventors have a substrate, an intermediate layer, and an adhesive layer in this order, and are selected from the group consisting of the substrate, the intermediate layer, and the adhesive layer.
  • the above problems are solved by using a semiconductor processing pressure-sensitive adhesive sheet in which one or more layers are thermally expandable layers containing thermally expandable particles, and by partially expanding the semiconductor processing pressure-sensitive adhesive sheet by a specific method. After discovering that it is possible, the following invention was completed.
  • the present invention relates to the following [1] to [14].
  • [1] having a substrate, an intermediate layer, and an adhesive layer in this order, wherein one or more layers selected from the group consisting of the substrate, the intermediate layer, and the adhesive layer are thermally expandable
  • Step 1 Attaching the adhesive sheet for semiconductor processing to the surface (W ⁇ ) having the protrusions of the semiconductor wafer (W) having the protrusions using the adhesive layer as the attachment surface
  • Step 2 The attached semiconductor On the surface (S ⁇ ) on the base material side of the pressure-sensitive adhesive sheet for processing, among the convex portions caused by the convex portions and the non-convex portions that are portions other than the convex portions, the upper surface of the convex portions
  • Step 3 contacting the coolant, by heating the semiconductor wafer (W) having the protrusions to the expansion start temperature (t) of the thermally expandable particles or higher while contacting the coolant,
  • the pressure-sensitive adhesive sheet for semiconductor processing is heated from the side of the semiconductor wafer (W) having the protrusions, and the cooling effect of the coolant suppresses the expansion of the portion of the pressure-sensitive adhesive sheet for semiconductor processing having the protrusions as a surface.
  • Step 4 With the base material of the pressure-sensitive adhesive sheet for semiconductor processing fixed, [2] The method of manufacturing a semiconductor device according to [1] above, wherein the heat conductivity of the coolant at 20° C. is 50 W/m ⁇ K or more. . [3] The method of manufacturing a semiconductor device according to [1] or [2] above, wherein the coolant is metal. [4] The method of manufacturing a semiconductor device according to any one of [1] to [3] above, wherein the thickness of the coolant is 100 times or more the thickness of the thermal expansion layer.
  • a semiconductor wafer with an adhesive sheet for semiconductor processing which is attached to a surface (W ⁇ ) having The adhesive sheet for semiconductor processing, in plan view, a void-containing or void-free region (a); a region (b) having a higher void volume content than the region (a) and a thickness greater than the region (a); A semiconductor wafer with an adhesive sheet for semiconductor processing, wherein the substrate-side surface (S ⁇ ) is flattened by a difference in thickness between the region (a) and the region (b).
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the pressure-sensitive adhesive sheet for semiconductor processing; It is a top view for demonstrating the semiconductor wafer (W) which has a protrusion part. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention.
  • (meth)acrylic acid refers to both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the term "energy ray” means an electromagnetic wave or charged particle beam that has an energy quantum, and examples thereof include ultraviolet rays, radiation, electron beams, and the like.
  • Ultraviolet rays can be applied by using, for example, an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, a UV-LED, or the like as an ultraviolet light source.
  • the electron beam can be generated by an electron beam accelerator or the like.
  • energy ray-polymerizable means the property of polymerizing by irradiation with energy rays.
  • energy ray curability means the property of being cured by irradiation with an energy ray.
  • a "layer” is a "non-thermally expandable layer” or a “thermally expandable layer” is determined as follows.
  • the layer to be judged contains thermally expandable particles, the layer is heat-treated for 3 minutes at the expansion start temperature (t) of the thermally expandable particles. If the volume change rate calculated from the following formula is less than 5%, the layer is determined to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer”. judge there is.
  • ⁇ Volume change rate (%) ⁇ (volume of the layer after heat treatment - volume of the layer before heat treatment) / volume of the layer before heat treatment ⁇ x 100
  • a layer containing no thermally expandable particles is referred to as a "non-thermally expandable layer”.
  • the volume change rate (%) of the non-thermally expandable layer calculated from the above formula is less than 5%, preferably less than 2%. , more preferably less than 1%, more preferably less than 0.1%, even more preferably less than 0.01%.
  • the non-thermally expandable layer when the "layer" is a non-thermally expandable layer, the non-thermally expandable layer preferably does not contain thermally expandable particles. It may contain expandable particles.
  • the content is preferably as small as possible, preferably less than 3% by mass, more preferably less than 3% by mass, based on the total mass (100% by mass) of the non-thermally expandable layer. is less than 1% by weight, more preferably less than 0.1% by weight, even more preferably less than 0.01% by weight, and even more preferably less than 0.001% by weight.
  • circuit surface of the semiconductor wafer refers to the surface on which the circuits are formed
  • back surface refers to the surface on which the circuits are not formed
  • semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • a wafer comprising integrated circuits
  • a thinned wafer comprising integrated circuits
  • a chip comprising integrated circuits
  • a thinned chip comprising integrated circuits
  • electronic components comprising these chips, and electronic equipment comprising such electronic components and the like.
  • the thickness of each layer is the thickness at 23°C and means the value measured by the method described in Examples.
  • a method for manufacturing a semiconductor device includes a substrate, an intermediate layer, and an adhesive layer in this order, and is selected from the group consisting of the substrate, the intermediate layer, and the adhesive layer.
  • Step 1 Attaching the adhesive sheet for semiconductor processing to the surface (W ⁇ ) having the protrusions of the semiconductor wafer (W) having the protrusions using the adhesive layer as the attachment surface
  • Step 2 The attached semiconductor On the surface (S ⁇ ) on the base material side of the pressure-sensitive adhesive sheet for processing, among the convex portions caused by the convex portions and the non-convex portions that are portions other than the convex portions, the upper surface of the convex portions
  • Step 3 contacting the coolant, by heating the semiconductor wafer (W) having the protrusions to the expansion start temperature (t) of the thermally expandable particles or higher while contacting the coolant,
  • the pressure-sensitive adhesive sheet for semiconductor processing is heated from the side of the semiconductor wafer (W) having the protrusions, and the cooling effect of the coolant suppresses the expansion of the portion of the pressure-sensitive adhesive sheet for semiconductor processing having the protrusions as a surface.
  • Step 4 With the base material of the pressure-sensitive adhesive sheet for semiconductor processing fixed, A step of processing the semiconductor wafer (W) having the projections
  • a pressure-sensitive adhesive sheet for semiconductor processing according to one embodiment of the present invention (hereinafter also simply referred to as "pressure-sensitive adhesive sheet”) is a pressure-sensitive adhesive sheet having a substrate, an intermediate layer, and an adhesive layer in this order.
  • the pressure-sensitive adhesive sheet of one embodiment of the present invention is attached to the surface (W ⁇ ) having projections of the semiconductor wafer (W), and is used to perform predetermined processing on the semiconductor wafer (W) while protecting the surface. Then, after the semiconductor wafer (W) is subjected to predetermined processing, the adhesive sheet of one embodiment of the present invention is peeled off.
  • FIG. 1(a) shows a pressure-sensitive adhesive sheet 10a in which a substrate 1, an intermediate layer 2 and a pressure-sensitive adhesive layer 3 are laminated in this order, which is a pressure-sensitive adhesive sheet of one embodiment of the present invention.
  • the pressure-sensitive adhesive sheet of one embodiment of the present invention may have only a substrate, an intermediate layer and a pressure-sensitive adhesive layer like the pressure-sensitive adhesive sheet 10a, but may have other layers as necessary. good too. Other layers include, for example, a release sheet provided on the surface of the pressure-sensitive adhesive layer opposite to the intermediate layer.
  • FIG. 1(b) shows a pressure-sensitive adhesive sheet 10b of one embodiment of the present invention having a release sheet 4 as another layer. The release sheet 4 is laminated on the adhesive surface of the adhesive layer 3 in the adhesive sheet 10b.
  • one or more layers selected from the group consisting of a substrate, an intermediate layer, and a pressure-sensitive adhesive layer are thermally expandable layers containing thermally expandable particles.
  • the pressure-sensitive adhesive sheet of one aspect of the present invention may have two or more thermally expandable layers, but preferably has only one layer.
  • the pressure-sensitive adhesive sheet of one embodiment of the present invention may have a layer other than the thermally expandable layer between the thermally expandable layers. It does not have to have any layers other than the thermally expandable layer.
  • the pressure-sensitive adhesive sheet of one embodiment of the present invention preferably has an embodiment in which the intermediate layer is a thermally expandable layer, and an embodiment in which the intermediate layer is a thermally expandable layer and the substrate and the adhesive layer are non-thermally expandable layers. more preferred.
  • the intermediate layer is a heat-expandable layer and the substrate and the pressure-sensitive adhesive layer are non-heat-expandable layers, it is difficult for unevenness caused by the heat-expandable particles after thermal expansion to appear on the surface of the pressure-sensitive adhesive layer or the substrate.
  • the adhesiveness to the semiconductor wafer (W) or the holding property by a support device such as a chuck table tends to be improved.
  • the thickness of the thermally expandable layer is not particularly limited, and may be appropriately determined according to which layer is the thermally expandable layer among the layers included in the pressure-sensitive adhesive sheet of one embodiment of the present invention.
  • thickness of the thermally expandable layer means the total thickness of all the thermally expandable layers included in the pressure-sensitive adhesive sheet of one embodiment of the present invention.
  • the thickness of the layer is the thickness of the thermally expandable layer. .
  • the total thickness of the two or more layers is the thickness of the thermally expandable layer. It is.
  • the thermally expandable particles may be particles that expand when heated.
  • the thermally expandable particles may be used singly or in combination of two or more.
  • the expansion start temperature (t) of the thermally expandable particles is preferably 50° C. or more and less than 125° C., more preferably 55 to 120° C., still more preferably 60 to 115° C., still more preferably 70 to 110° C., still more preferably is 75-105°C.
  • the expansion start temperature (t) of the thermally expandable particles is 50°C or higher, unintended expansion tends to be suppressed.
  • the expansion start temperature (t) of the thermally expandable particles is less than 125° C., the heating temperature at the time of heat peeling can be kept low.
  • the expansion start temperature (t) of thermally expandable particles means a value measured based on the following method.
  • the thermally expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an encapsulated component that is encapsulated in the outer shell and vaporizes when heated to a predetermined temperature.
  • the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent includes, for example, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, or structural units contained in these thermoplastic resins. Examples thereof include copolymers obtained by polymerizing two or more of the monomers to be formed.
  • Examples of encapsulated components that are encapsulated in the outer shell of the microencapsulated foaming agent include propane, propylene, butene, n-butane, isobutane, isopentane, neopentane, n-pentane, n-hexane, isohexane, n- Low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane, and petroleum ether are included.
  • the expansion start temperature (t) of the thermally expandable particles is 50 ° C.
  • the average particle size of the thermally expandable particles before expansion at 23° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, still more preferably 10 to 50 ⁇ m.
  • the average particle size of the thermally expandable particles before expansion is the volume-median particle size (D 50 ), and is measured by a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name "Mastersizer 3000").
  • D 50 volume-median particle size
  • the 90% particle diameter (D 90 ) of the thermally expandable particles before expansion at 23° C. is preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m, still more preferably 20 to 90 ⁇ m, still more preferably 25 to 80 ⁇ m. .
  • the 90% particle diameter (D 90 ) of the thermally expandable particles before expansion is measured using a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name “Mastersizer 3000”). In the particle distribution of the thermally expandable particles before expansion, it means a particle size corresponding to a cumulative volume frequency of 90% calculated from the smaller particle size of the thermally expandable particles before expansion.
  • the maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles used in one aspect of the present invention is preferably 1.5 to 200 times, more preferably 2 to 150 times, and further It is preferably 2.5 to 120 times, and more preferably 3 to 100 times.
  • the content of the thermally expandable particles is preferably 0.05 to 25% by mass, more preferably 0.1 to 15% by mass, still more preferably 0, based on the total mass (100% by mass) of the thermally expandable layer. .2 to 10% by weight, more preferably 0.3 to 5% by weight.
  • the content of the thermally expandable particles is 0.05% by mass or more, the protrusions of the adhesive sheet caused by the protrusions of the semiconductor wafer (W) tend to be flattened easily.
  • the content of the thermally expandable particles is 25% by mass or less, the unevenness of the thermally expandable particles before thermal expansion becomes difficult to appear on the surface of the adhesive layer or the base material, and the semiconductor wafer (W) and the There is a tendency that adhesion or retention by a support device such as a chuck table tends to be improved.
  • the substrate used in one aspect of the present invention is not particularly limited as long as it is made of a material capable of supporting the semiconductor wafer (W).
  • the substrate is preferably a non-adhesive substrate.
  • the probe tack value on the surface of the substrate is usually less than 50 mN/5 mm ⁇ , preferably less than 30 mN/5 mm ⁇ , more preferably less than 10 mN/5 mm ⁇ , still more preferably less than 5 mN/5 mm ⁇ .
  • the probe tack value on the surface of the substrate means the value measured by the following method. ⁇ Probe tack value> After cutting the base material to be measured into a square with a side of 10 mm, a test sample was left to stand in an environment of 23 ° C. and 50% RH (relative humidity) for 24 hours.
  • the probe tack value on the surface of the test sample is measured in accordance with JIS Z0237: 1991. be able to. Specifically, a stainless steel probe with a diameter of 5 mm is brought into contact with the surface of the test sample for 1 second with a contact load of 0.98 N/cm 2 , and then the probe is moved at a speed of 10 mm/second to the test sample. The force required to remove it from the surface can be measured and the resulting value taken as the probe tack value for that test sample.
  • a tacking tester product name “NTS-4800” manufactured by Nippon Tokushu Sokki Co., Ltd.
  • Examples of materials for the substrate include resins, metals, paper materials, and the like.
  • resins include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, Polyester resins such as polybutylene terephthalate and polyethylene naphthalate; Polystyrene; Acrylonitrile-butadiene-styrene copolymer; Cellulose triacetate; Polycarbonate; ketone; polyether sulfone; polyphenylene sulfide; polyimide-based resin such as polyetherimide and polyimide; polyamide-based resin;
  • metals include aluminum, tin, chromium, and titanium.
  • the paper material examples include thin paper, medium quality paper, fine paper, impregnated paper, coated paper, art paper, parchment paper, and glassine paper.
  • polyester-based resins such as polyethylene terephthalate (hereinafter also referred to as “PET”), polybutylene terephthalate, and polyethylene naphthalate are preferred.
  • forming materials may be composed of one type, or two or more types may be used in combination.
  • substrates using two or more kinds of forming materials include those obtained by laminating a paper material with a thermoplastic resin such as polyethylene, a resin film or sheet containing a resin, and a metal film formed on the surface of the sheet. .
  • a method for forming the metal layer for example, a method of depositing the above metal by a PVD method such as vacuum deposition, sputtering, or ion plating, or a method of attaching a metal foil made of the above metal using a general adhesive. and the like.
  • the surface of the base material is treated by an oxidation method, a roughening method, etc., and an easy adhesion Treatment or primer treatment may be applied.
  • the base material may contain base material additives as necessary.
  • base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, colorants, and the like.
  • One of these base material additives may be used alone, or two or more thereof may be used in combination.
  • the substrate is a thermally expandable layer containing thermally expandable particles (hereinafter also referred to as "thermally expandable substrate”)
  • the substrate is treated with a substrate composition containing a resin and thermally expandable particles. can be formed.
  • Preferred aspects of the type and content of the thermally expandable particles are the same as the preferred aspects of the type and content of the thermally expandable particles in the description of the thermally expandable layer above.
  • urethane-based resins and olefin-based resins are preferable, urethane-based resins are more preferable, and acrylic-modified polyurethanes are even more preferable.
  • the base composition contains an acrylic-modified polyurethane
  • the base composition further contains an energy ray-polymerizable monomer, a photopolymerization initiator, etc.
  • a non-solvent resin composition containing no solvent may also be used.
  • the solventless resin composition does not contain a solvent, the energy ray-polymerizable monomer contributes to the improvement of plasticity.
  • the non-thermally expansible base material When the non-thermally expansible base material is arranged on the side opposite to the intermediate layer, it becomes difficult for the unevenness due to the expanded thermally expandable particles to appear on the surface opposite to the intermediate layer, so that it is held by a support device such as a chuck table. tend to have good properties.
  • a support device such as a chuck table.
  • the non-thermally expandable base material is arranged on the intermediate layer side, the unintentional expansion of the thermally expandable base material due to frictional heat or the like during processing of the adherend (W) is suppressed. tend to be easy.
  • the thickness of the substrate is preferably 5-500 ⁇ m, more preferably 15-300 ⁇ m, still more preferably 20-200 ⁇ m.
  • the thickness of the substrate is 5 ⁇ m or more, the deformation resistance of the pressure-sensitive adhesive sheet tends to be easily improved.
  • the thickness of the base material is 500 ⁇ m or less, the handleability of the pressure-sensitive adhesive sheet tends to be improved.
  • the thickness of a base material means the thickness of the whole base material.
  • the thickness of a base material composed of multiple layers means the total thickness of all layers constituting the base material.
  • Examples of resins contained in the intermediate layer composition include urethane (meth)acrylates and acrylic resins.
  • the weight average molecular weight (Mw) of the urethane (meth)acrylate is preferably 10,000 to 100,000, more preferably 20,000 to 90,000, still more preferably 25,000 to 70,000, still more preferably 30,000 to 60,000.
  • a urethane (meth)acrylate can be obtained, for example, by reacting a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyvalent isocyanate compound with a (meth)acrylate having a hydroxy group.
  • polyol compounds examples include alkylene-type polyols, ether-type polyols, ester-type polyols, esteramide-type polyols, ester/ether-type polyols, and carbonate-type polyols.
  • a polyol compound may be used individually by 1 type, and may use 2 or more types together.
  • (Meth)acrylates having a hydroxy group include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 -hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like.
  • the (meth)acrylates having a hydroxy group may be used alone or in combination of two or more.
  • the content of urethane (meth)acrylate in the intermediate layer composition is preferably 20 to 90% by mass, more preferably 35 to 80% by mass, based on the total amount (100% by mass) of active ingredients in the intermediate layer composition. % by mass, more preferably 50 to 70% by mass.
  • acrylic resin examples of the acrylic resin that can be used as the resin contained in the intermediate layer composition include the same acrylic resins that can be used as the adhesive resin of the adhesive layer described below.
  • the intermediate layer composition more preferably contains the urethane (meth)acrylate and a polymerizable monomer other than the urethane (meth)acrylate.
  • the polymerizable monomer is preferably a polymerizable compound other than urethane (meth)acrylate and is polymerizable with other components by irradiation with energy rays.
  • the polymerizable monomer is preferably a compound having at least one (meth)acryloyl group.
  • the polymerizable monomers may be used singly or in combination of two or more.
  • polymerizable monomers examples include (meth)acrylates having an alkyl group having 1 to 30 carbon atoms; (meth)acrylates having a functional group such as a hydroxyl group, an amide group, an amino group, and an epoxy group; (Meth)acrylates having a cyclic structure; (meth)acrylates having an aromatic structure; (meth)acrylates having a heterocyclic structure; styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinylpyrrolidone , vinyl compounds such as N-vinylcaprolactam; allyl compounds such as allyl glycidyl ether;
  • (Meth)acrylates having an alkyl group having 1 to 30 carbon atoms include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (Meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate , nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, hexadecyl (meth)acrylate,
  • (Meth)acrylates having a functional group include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 -Hydroxy group-containing (meth)acrylates such as hydroxybutyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate; (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N-butyl (meth)acrylamide, N - amide group-containing compounds such as methylol (meth)acrylamide, N-methylolpropane (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide; primary amino group-containing (meth)acrylate , secondary amino group-containing (meth)acrylates, tertiary amino group-containing (meth)acrylates; glycidyl (meth)
  • (Meth)acrylates having an alicyclic structure include, for example, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, cyclohexyl (meth)acrylate, ) acrylate, trimethylcyclohexyl (meth)acrylate, adamantane (meth)acrylate, and the like.
  • isobornyl (meth)acrylate and trimethylcyclohexyl (meth)acrylate are preferred.
  • (Meth)acrylates having an aromatic structure include, for example, phenylhydroxypropyl (meth)acrylate, benzyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate and the like.
  • (Meth)acrylates having a heterocyclic structure include, for example, tetrahydrofurfuryl (meth)acrylate and morpholine (meth)acrylate.
  • the intermediate layer composition should contain a (meth)acrylate having an alkyl group having 1 to 30 carbon atoms and a (meth)acrylate having an alicyclic structure. is preferred.
  • the content of the (meth)acrylate having an alkyl group having 1 to 30 carbon atoms in the intermediate layer composition is preferably 1 with respect to the total amount (100% by mass) of the active ingredients in the intermediate layer composition. to 30% by mass, more preferably 3 to 20% by mass, and even more preferably 5 to 15% by mass.
  • the content of the (meth)acrylate having an alicyclic structure in the intermediate layer composition is preferably 5 to 50% by mass, more than It is preferably 10 to 40% by mass, more preferably 15 to 30% by mass.
  • the intermediate layer composition preferably further contains a photopolymerization initiator together with the urethane (meth)acrylate and the polymerizable monomer.
  • a photopolymerization initiator in the intermediate layer composition, the curing reaction can be sufficiently advanced even by irradiation with relatively low-energy energy rays.
  • a photoinitiator may be used individually by 1 type, and may use 2 or more types together.
  • the content of the photopolymerization initiator in the intermediate layer composition is preferably 0.05 to 15 parts by mass, more preferably 0 parts by mass, with respect to the total of 100 parts by mass of the urethane (meth)acrylate and the polymerizable monomer. .5 to 10 parts by mass, more preferably 1 to 5 parts by mass.
  • the intermediate layer composition preferably further contains a chain transfer agent together with the urethane (meth)acrylate and the polymerizable monomer.
  • a chain transfer agent may be used individually by 1 type, and may use 2 or more types together.
  • chain transfer agents include thiol group-containing compounds.
  • thiol group-containing compounds include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, and 1,2,3-propanetrithiol.
  • the content of the chain transfer agent in the intermediate layer composition is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 10 parts by mass, based on the total of 100 parts by mass of the urethane (meth)acrylate and the polymerizable monomer. 3 to 5 parts by mass, more preferably 0.5 to 3 parts by mass.
  • the intermediate layer is a thermally expandable layer containing thermally expandable particles
  • the intermediate layer can be formed from an intermediate layer composition containing thermally expandable particles.
  • Preferred aspects of the type and content of the thermally expandable particles are the same as the preferred aspects of the type and content of the thermally expandable particles in the description of the thermally expandable layer above.
  • the intermediate layer composition may contain intermediate layer additives in addition to the components described above, as long as the effects of the present invention are not impaired.
  • additives for the intermediate layer include antioxidants, softeners (plasticizers), fillers, rust inhibitors, pigments, dyes, tackifiers and the like. These intermediate layer additives may be used singly or in combination of two or more.
  • the content of each intermediate layer additive is independently 100 mass in total of the urethane (meth)acrylate and the polymerizable monomer. 0.0001 to 20 parts by mass, more preferably 0.001 to 10 parts by mass.
  • the intermediate layer composition used in one aspect of the present invention may contain a solvent as long as the effects of the present invention are not impaired. It is preferably a solvent-free resin composition that does not contain. Although the solvent-free resin composition does not contain a solvent, the polymerizable monomer mentioned above contributes to the improvement of the plasticity of the resin. By irradiating the solvent-free resin composition with energy rays, the urethane (meth)acrylate, the polymerizable monomer, etc. are polymerized to form the intermediate layer.
  • the thickness of the intermediate layer is preferably 10-500 ⁇ m, more preferably 20-350 ⁇ m, still more preferably 30-200 ⁇ m.
  • the thickness of the intermediate layer is 10 ⁇ m or more, it tends to be easy to embed the projections of the semiconductor wafer (W).
  • the thickness of the intermediate layer is 500 ⁇ m or less, the handleability of the pressure-sensitive adhesive sheet tends to be improved.
  • the thickness of the intermediate layer means the thickness of the entire intermediate layer.
  • the thickness of an intermediate layer composed of multiple layers means the total thickness of all the layers that make up the intermediate layer.
  • the pressure-sensitive adhesive layer is a layer provided on the side of the intermediate layer opposite to the base material, and is a layer that is attached to the surface (W ⁇ ) having protrusions of the semiconductor wafer (W).
  • the adhesive layer is preferably a layer having energy ray curability. Since the adhesive layer has energy ray curability, the surface of the semiconductor wafer (W) can be well protected with sufficient adhesiveness before energy ray curing, and the peeling force is reduced after energy ray curing. and can be easily separated from the semiconductor wafer (W).
  • the adhesive layer can be formed from an adhesive composition containing an adhesive resin.
  • the pressure-sensitive adhesive composition include the following X-type pressure-sensitive adhesive composition, Y-type pressure-sensitive adhesive composition, and XY-type pressure-sensitive adhesive composition.
  • X-type adhesive composition Energy ray-curable containing a non-energy ray-curable adhesive resin (hereinafter also referred to as “adhesive resin I”) and an energy ray-curable compound other than the adhesive resin
  • Adhesive composition Y-type adhesive composition an energy ray-curable adhesive resin in which an unsaturated group is introduced into the side chain of a non-energy ray-curable adhesive resin (hereinafter, also referred to as "adhesive resin II" ) and does not contain an energy ray-curable compound other than the adhesive resin
  • XY-type adhesive composition the energy ray-curable adhesive resin II and other than the adhesive resin and an energy ray-curable pressure-sensitive adhesive composition containing: and an energy ray-curable
  • tacky resin is used as a term indicating one or both of tacky resin I and tacky resin II.
  • the adhesive resin may be an adhesive resin having no functional group, but is preferably an adhesive resin having a functional group.
  • the adhesive resin can obtain, for example, reactivity with a cross-linking agent and energy ray curability, which will be described later.
  • functional groups possessed by the adhesive resin include unsaturated groups having energy beam polymerizability such as (meth)acryloyl groups, vinyl groups, and allyl groups; hydroxy groups, carboxy groups, amino groups, epoxy groups, and the like. . Among these, a (meth)acryloyl group and a hydroxy group are preferred.
  • the adhesive resin may have one type of functional group, or may have two or more types of functional groups.
  • adhesive resins examples include acrylic resins, urethane resins, rubber resins, and silicone resins. Among these, acrylic resins are preferable.
  • the acrylic resin is not particularly limited as long as it is a polymer containing an acrylic monomer as a monomer component, but preferably contains a structural unit derived from an alkyl (meth)acrylate.
  • alkyl (meth)acrylates include alkyl (meth)acrylates in which the alkyl group has 1 to 20 carbon atoms.
  • the alkyl group of the alkyl (meth)acrylate may be linear or branched.
  • the acrylic resin preferably contains a structural unit derived from an alkyl (meth)acrylate having an alkyl group with 4 or more carbon atoms.
  • the structural unit derived from the alkyl (meth)acrylate having 4 or more carbon atoms in the alkyl group contained in the acrylic resin may be one type alone or two or more types.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate having 4 or more carbon atoms in the alkyl group is preferably 4 to 12, more preferably 4 to 8, and still more preferably 4 to 6.
  • alkyl (meth)acrylates in which the alkyl group has 4 or more carbon atoms include butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl ( meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate and the like.
  • 2-ethylhexyl (meth)acrylate is preferred, and 2-ethylhexyl acrylate is more preferred.
  • the content of the alkyl (meth)acrylate whose alkyl group has 4 or more carbon atoms is preferable among the structural units derived from acrylic monomers constituting the acrylic resin, from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer. is 30 to 90% by mass, more preferably 40 to 80% by mass, and still more preferably 50 to 70% by mass.
  • the acrylic resin has a structural unit derived from an alkyl (meth)acrylate having an alkyl group having 4 or more carbon atoms, and an alkyl group having a carbon number of 4 or more. It preferably contains structural units derived from 1 to 3 alkyl (meth)acrylates.
  • the structural unit derived from the alkyl (meth)acrylate having 1 to 3 carbon atoms in the alkyl group contained in the acrylic resin may be of one type or two or more types.
  • alkyl (meth)acrylates having 1 to 3 carbon atoms in the alkyl group examples include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-propyl (meth)acrylate and the like. . Among these, methyl (meth)acrylate and ethyl (meth)acrylate are preferred, and methyl methacrylate and ethyl acrylate are more preferred.
  • the content of structural units derived from alkyl (meth)acrylates having 1 to 3 carbon atoms in the alkyl group is preferably 1 to 35% by mass, in the structural units derived from acrylic monomers constituting the acrylic resin. It is preferably 5 to 30% by mass, more preferably 15 to 25% by mass.
  • the acrylic resin preferably further contains structural units derived from functional group-containing monomers.
  • the acrylic resin contains a structural unit derived from a functional group-containing monomer, the functional group as a cross-linking starting point that reacts with the cross-linking agent or reacts with the unsaturated group-containing compound to create an unsaturated group in the side chain of the acrylic resin.
  • Functional groups can be introduced that allow the introduction of saturated groups.
  • the structural unit derived from the functional group-containing monomer contained in the acrylic resin may be one type alone or two or more types.
  • Examples of functional group-containing monomers include hydroxyl group-containing monomers, carboxy group-containing monomers, amino group-containing monomers, and epoxy group-containing monomers.
  • Examples of hydroxy group-containing monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( hydroxyalkyl (meth)acrylates such as meth)acrylate and 4-hydroxybutyl (meth)acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol;
  • Carboxy group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides ; 2-carboxy
  • the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, more preferably 5 to 30% by mass, more preferably 15% by mass in the structural unit derived from the acrylic monomer constituting the acrylic resin. ⁇ 25% by mass.
  • the acrylic resin may contain, in addition to the above structural units, structural units derived from other monomers copolymerizable with acrylic monomers. Constituent units derived from other monomers contained in the acrylic resin may be one type alone or two or more types. Other monomers include, for example, styrene, ⁇ -methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
  • the acrylic resin may further have an energy ray polymerizable unsaturated group introduced thereinto to impart energy ray curability.
  • the unsaturated group is, for example, a functional group of an acrylic resin containing structural units derived from a functional group-containing monomer, and a compound having a reactive substituent and an unsaturated group having reactivity with the functional group (hereinafter referred to as " (also referred to as "unsaturated group-containing compound").
  • the unsaturated group-containing compounds may be used singly or in combination of two or more. Examples of the unsaturated group that the unsaturated group-containing compound has include a (meth)acryloyl group, a vinyl group, and an allyl group.
  • a (meth)acryloyl group is preferred.
  • reactive substituents that the unsaturated group-containing compound has include an isocyanate group and a glycidyl group.
  • unsaturated group-containing compounds include 2-(meth)acryloyloxyethyl isocyanate, (meth)acryloylisocyanate, glycidyl (meth)acrylate and the like.
  • 2-(meth)acryloyloxyethyl isocyanate is preferred, and 2-methacryloyloxyethyl isocyanate is more preferred.
  • a functional group that reacts with the unsaturated group-containing compound is not particularly limited, but is preferably 30 to 90 mol%, more preferably 40 to 80 mol%, still more preferably 50 to 70 mol%.
  • the ratio of the functional group that reacts with the unsaturated group-containing compound is within the above range, sufficient energy ray curability can be imparted to the acrylic resin, and the functional group that has not reacted with the unsaturated group-containing compound is crosslinked.
  • the acrylic resin can be crosslinked by reacting with the agent.
  • the mass average molecular weight (Mw) of the acrylic resin is not particularly limited, but is preferably 300,000 to 1,500,000, more preferably 450,000 to 1,000,000, and still more preferably 600,000 to 900,000.
  • Mw mass average molecular weight
  • the content of the acrylic resin in the adhesive composition is preferably 70 to 99% by mass, more preferably 80 to 98% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition. It is preferably 90 to 97% by mass.
  • the pressure-sensitive adhesive composition contains a pressure-sensitive adhesive resin having a functional group, it preferably further contains a cross-linking agent.
  • the cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins using the functional group as a cross-linking starting point.
  • the cross-linking agents may be used alone or in combination of two or more.
  • cross-linking agents examples include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • isocyanate-based cross-linking agents are preferable from the viewpoints of increasing cohesive strength and improving adhesive strength, and from the viewpoints of availability and the like.
  • isocyanate-based cross-linking agents include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; Alicyclic polyisocyanates such as methylcyclohexylene diisocyanate, methylenebis(cyclohexyl isocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate acyclic aliphatic polyisocyanates such as; polyvalent isocyanate compounds such as; Examples of isocyanate-based cross-linking agents include trimethylolpropane adduct-type modified products of the polyvalent isocyanate compounds, biuret-type modified products reacted with water, isocyanurate-type modified products containing an
  • trimethylolpropane adduct-type modified polyisocyanate compounds are preferred, trimethylolpropane adduct-type modified aromatic polyisocyanate compounds are more preferred, and trimethylolpropane adduct-type modified tolylene diisocyanate is even more preferred. .
  • the content of the cross-linking agent in the pressure-sensitive adhesive composition is appropriately adjusted according to the number of functional groups possessed by the pressure-sensitive adhesive resin, but is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive resin. parts, more preferably 0.03 to 7 parts by mass, and still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition preferably further contains a photopolymerization initiator.
  • a photopolymerization initiator When the energy ray-curable pressure-sensitive adhesive contains a photopolymerization initiator, the energy ray curing reaction tends to proceed sufficiently even with relatively low-energy energy rays such as ultraviolet rays.
  • a photoinitiator may be used individually by 1 type, and may use 2 or more types together.
  • photopolymerization initiators examples include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram. monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, ⁇ -chloroanthraquinone, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and the like.
  • 2,2-dimethoxy-2-phenylacetophenone is preferred.
  • the content of the photopolymerization initiator in the adhesive composition is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 100 parts by mass of the total amount of the adhesive resin. is 0.05 to 3 parts by mass.
  • the pressure-sensitive adhesive composition may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the tackifier may be used alone or in combination of two or more.
  • tackifiers include rosin-based resins, terpene-based resins, styrene-based resins, pentene produced by thermal decomposition of petroleum naphtha, isoprene, piperine, obtained by copolymerizing C5 fractions such as 1,3-pentadiene. and C9 petroleum resins obtained by copolymerizing C9 fractions such as indene and vinyl toluene produced by thermal decomposition of petroleum naphtha, and hydrogenated resins obtained by hydrogenating these.
  • the content of the tackifier is preferably 0.01 to 65% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition, and more It is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass.
  • the pressure-sensitive adhesive composition may further contain an energy ray-curable compound other than the above components for the purpose of adjusting the cohesion of the pressure-sensitive adhesive layer.
  • the energy ray-curable compounds may be used singly or in combination of two or more. Examples of energy ray-curable compounds include monomers or oligomers that can be polymerized and cured by energy ray irradiation.
  • energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and 1,4-butylene glycol.
  • Polyvalent (meth)acrylate monomers such as di(meth)acrylate and 1,6-hexanediol (meth)acrylate; urethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, epoxy (meth)acrylate oligomers such as acrylate; Among these, from the viewpoint of curability, dipentaerythritol hexa(meth)acrylate is preferred, and dipentaerythritol hexaacrylate is more preferred.
  • the content of the energy ray-curable compound is not particularly limited, but is preferably 10 to 100 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the adhesive resin. is 20 to 70 parts by mass, more preferably 30 to 40 parts by mass.
  • the adhesive layer is a thermally expandable layer containing thermally expandable particles
  • the adhesive layer can be formed from an adhesive composition containing thermally expandable particles.
  • Preferred aspects of the type and content of the thermally expandable particles are the same as the preferred aspects of the type and content of the thermally expandable particles in the description of the thermally expandable layer above.
  • the pressure-sensitive adhesive composition contains additives for pressure-sensitive adhesives that are commonly used in pressure-sensitive adhesives, in addition to the components described above, within a range that does not impair the effects of the present invention. good too.
  • adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), and ultraviolet absorbers. These adhesive additives may be used singly or in combination of two or more.
  • the content of each adhesive additive is preferably 0.0001 to 0.0001 to 100 parts by mass of the adhesive resin independently. 20 parts by mass, more preferably 0.001 to 10 parts by mass.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1-80 ⁇ m, more preferably 2-60 ⁇ m, still more preferably 3-40 ⁇ m.
  • the thickness of the adhesive layer is 1 ⁇ m or more, good adhesiveness is obtained, and the circuit surface of the semiconductor wafer (W) tends to be better protected during processing.
  • the thickness of the adhesive layer is 80 ⁇ m or less, it tends to be easy to suppress the generation of tape scraps when the adhesive sheet is cut.
  • the method for producing the adhesive sheet of one embodiment of the present invention is not particularly limited, and the adhesive sheet can be produced by a known method.
  • the pressure-sensitive adhesive sheet for semiconductor processing of one embodiment of the present invention can be produced, for example, by forming an intermediate layer on a substrate and then laminating a pressure-sensitive adhesive layer on the intermediate layer.
  • a commercially available base material may be used for the base material of the pressure-sensitive adhesive sheet of one embodiment of the present invention, and may be formed by a known method.
  • the substrate is a substrate laminate in which a thermally expandable substrate and a non-thermally expandable substrate are laminated
  • the substrate laminate includes, for example, a thermally expandable substrate on one side of the non-thermally expandable substrate. It can be formed by applying the solventless resin composition for forming the substrate and then irradiating it with an energy ray.
  • known methods can be used, for example, spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, and die coating. method, gravure coating method, and the like.
  • Examples of the method for forming the intermediate layer on the substrate include a method in which the intermediate layer composition is applied onto the substrate and then cured by irradiation with energy rays.
  • the method for applying the intermediate layer composition includes the same method as the method for applying the solventless resin composition.
  • the intermediate layer composition may be irradiated with energy rays only once, it is preferable to irradiate the intermediate layer multiple times from the viewpoint of facilitating control of the degree of curing of the intermediate layer.
  • the energy beam is ultraviolet rays
  • the ultraviolet irradiation conditions for the first irradiation are such that the ultraviolet illuminance is preferably 30 to 500 mW/cm 2 , more preferably 50 to 340 mW/cm 2 , and the ultraviolet irradiation amount is It is preferably 100 to 2,500 mJ/cm 2 , more preferably 150 to 2,000 mJ/cm 2 .
  • the ultraviolet irradiation conditions for the second irradiation are such that the ultraviolet irradiation intensity is preferably 100 to 1,000 mW/cm 2 , more preferably 200 to 500 mW/cm 2 , and the ultraviolet irradiation amount is preferably 300 to 5,000 mW/cm 2 . 000 mJ/cm 2 , more preferably 500 to 3,000 mJ/cm 2 . It is preferable that the illuminance and the amount of irradiation be higher than the illuminance and the amount of irradiation in the irradiation of the first time. Irradiation with energy rays is preferably carried out in a state in which the coating film is shielded from oxygen. As a method of shielding the coating film from oxygen, for example, a method of sticking a release sheet on the coating film can be mentioned.
  • Another method for forming an intermediate layer on a substrate includes, for example, applying the intermediate layer composition described above to the release-treated surface of a release sheet, and then irradiating an energy beam to form an intermediate layer, A method of attaching the intermediate layer to one surface of the base material may be mentioned. Preferred aspects of the method of applying the intermediate layer composition and the irradiation conditions of energy rays are the same as those described above.
  • a pressure-sensitive adhesive layer is laminated on the surface of the intermediate layer of the substrate-attached intermediate layer. If a release sheet is attached to the intermediate layer, the release sheet is peeled off.
  • a method of laminating the pressure-sensitive adhesive layer on the intermediate layer for example, a method of directly applying the pressure-sensitive adhesive composition to the surface of the intermediate layer and then drying it to form the pressure-sensitive adhesive layer may be used.
  • the adhesive composition is coated on the release-treated surface of the release sheet, dried to form an adhesive layer, and the adhesive layer is formed. A method of attaching the layer to the surface of the intermediate layer may also be used.
  • the method of applying the adhesive composition includes the same method as the method of applying the intermediate layer composition.
  • the conditions for drying the pressure-sensitive adhesive composition may be appropriately adjusted according to the type and content of the solvent in the pressure-sensitive adhesive composition.
  • a semiconductor processing pressure-sensitive adhesive sheet having a substrate, an intermediate layer and a pressure-sensitive adhesive layer in this order is obtained.
  • the pressure-sensitive adhesive sheet for semiconductor processing is subjected to the manufacturing method of one embodiment of the present invention after removing the release sheet.
  • the semiconductor wafer (W) is obtained by forming circuits, bumps, etc. on a semiconductor wafer substrate.
  • Substrates for semiconductor wafers include, for example, silicon wafers; wafers of gallium arsenide, silicon carbide, sapphire, lithium tantalate, lithium niobate, gallium nitride, indium phosphide, etc.; and glass wafers.
  • the shape of the semiconductor wafer (W) in plan view is not particularly limited, but a disk-like one is usually used.
  • the size of the disk-shaped semiconductor wafer (W) may be appropriately selected according to the equipment used in each process, the manufacturing method, etc. For example, a diameter of 8 inches (200 mm), a diameter of 12 inches (300 mm), etc. are mentioned.
  • the thickness of the portion of the semiconductor wafer (W) excluding the protrusions is not particularly limited, but is preferably 100 to 1,000 ⁇ m, more preferably 200 to 900 ⁇ m, from the viewpoint of handling and workability of the semiconductor wafer (W). , more preferably 300 to 800 ⁇ m.
  • the semiconductor wafer (W) has projections on one surface (W ⁇ ).
  • Examples of protrusions include circuits and bumps formed on the surface (W ⁇ ) of the semiconductor wafer (W).
  • the semiconductor wafer (W) preferably has bumps.
  • Examples of bumps include bumps made of metals such as gold, silver, copper, nickel, tin, lead, and alloys containing these metals.
  • the shape of the bump is not particularly limited, and examples thereof include spherical, cylindrical, elliptical cylindrical, spheroidal, conical, elliptical conical, cubic, rectangular parallelepiped, and trapezoidal shapes.
  • the number of bumps formed on the semiconductor wafer (W) is not particularly limited, and can be appropriately changed according to design requirements.
  • the height of the projections of the semiconductor wafer (W) is not particularly limited, but is preferably 10 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m from the viewpoint of significantly exhibiting the effects of the method for manufacturing a semiconductor device according to one embodiment of the present invention. 15 to 400 ⁇ m, more preferably 20 to 300 ⁇ m.
  • FIG. 2 shows a schematic plan view of a semiconductor wafer W having bumps as protrusions (hereinafter also referred to as "wafer with bumps W").
  • a plurality of devices 6 partitioned by dividing lines 5 are formed on the surface W ⁇ of the wafer W with bumps.
  • a circuit (not shown) is formed in each device 6, and as shown in the enlarged view of FIG. 2, a plurality of bumps 7 are formed as protrusions.
  • the surface W ⁇ of the wafer W with bumps has a device region 8 in which a plurality of devices 6 are arranged via the dividing lines 5 and a device non-formation region 9 which becomes a remaining portion when singulating.
  • Step 1 is a step of attaching the pressure-sensitive adhesive sheet for semiconductor processing according to one aspect of the present invention to the surface (W ⁇ ) having the protrusions of the semiconductor wafer (W) having the protrusions, using the adhesive layer as the attachment surface. be.
  • FIGS. 3A and 3B show cross-sectional views for explaining the process of attaching the pressure-sensitive adhesive sheet 10 of one embodiment of the present invention to the surface W ⁇ of the wafer W with bumps.
  • FIG. 3(a) corresponds to a cross-sectional view of the wafer W with bumps shown in FIG. That is, the wafer W with bumps has, on the surface W ⁇ , a plurality of devices 6 partitioned by the dividing lines 5, a plurality of bumps 7 formed on each device 6, a device region 8 and a device non-formation region 9.
  • FIG. FIG. 3B shows a state in which the adhesive sheet 10 is attached to the surface W ⁇ of the wafer W with bumps.
  • the adhesive sheet 10 is attached to the surface W ⁇ using the adhesive layer as the attachment surface, and the surface opposite to the attachment surface is the surface on the substrate side. S ⁇ .
  • the adhesive sheet 10 may be an adhesive sheet for semiconductor processing used in the method for manufacturing a semiconductor device according to one embodiment of the present invention, and is, for example, the adhesive sheet 10a described above.
  • FIG. 3B on the substrate-side surface S ⁇ of the adhesive sheet 10 attached to the wafer W with bumps, there are convex portions 11 caused by the bumps 7 and portions other than the convex portions 11 .
  • a certain non-convex portion 12 is formed.
  • the area of the pressure-sensitive adhesive sheet 10 covering the device area 8 shown in FIG. is the non-convex portion 12 .
  • step 1 the method of attaching the adhesive sheet is not particularly limited, and for example, a conventionally known method using a laminator or the like can be applied.
  • Step 2 on the substrate-side surface (S ⁇ ) of the attached pressure-sensitive adhesive sheet for semiconductor processing, convex portions caused by the protrusions and non-convex portions other than the convex portions are removed. Among these steps, this is the step of bringing the coolant into contact with the upper surface of the convex portion.
  • the coolant used in step 2 is brought into contact with the upper surface of the protrusions formed on the surface (S ⁇ ) of the adhesive sheet on the substrate side, and when the heating in step 3 is performed, the cooling effect cools the protrusions. It is used for the purpose of suppressing the thermal expansion of the adhesive sheet on the surface.
  • the material of the coolant is not particularly limited as long as it has a cooling effect, but it is preferably a heat conductor.
  • the coolant is a heat conductor, heat is conducted from the upper surface of the convex portion with which the heat conductor is in contact with the heat conductor, so that the portion having the convex portion on the surface can be cooled.
  • the heat conductor used as the coolant may have an artificial cooling mechanism such as a coolant or the like circulating inside in order to enhance the cooling effect. , it may be one that does not have an artificial cooling mechanism. That is, the heat conductor itself may be intentionally uncooled. Even in this case, the heat conductor can exhibit a cooling effect by naturally dissipating the heat absorbed from the portion in contact with the upper surface of the convex portion of the adhesive sheet from the surface of the heat conductor itself.
  • Metal is preferable as a heat conductor.
  • metals include single metals such as copper, silver, gold, iron, zinc, lead, tin, nickel, chromium and aluminum; alloys such as stainless steel and brass.
  • copper and aluminum are preferred, and copper is more preferred, from the viewpoint of versatility and thermal conductivity.
  • the thermal conductivity of the heat conductor at 20°C is preferably 50 W/m ⁇ K or more, more preferably 100 W/m ⁇ K or more, still more preferably 200 W/m ⁇ K or more, from the viewpoint of enhancing the cooling effect. again.
  • the thermal conductivity of the coolant, which is a heat conductor, at 20 ° C. may be 1,000 W / m K or less, may be 700 W / m K or less, or may be 500 W / It may be m ⁇ K or less.
  • the coolant preferably has a flat surface as a surface (hereinafter also referred to as "surface (C ⁇ )") to be brought into contact with the surface (S ⁇ ) on the substrate side.
  • surface (C ⁇ ) a flat surface as a surface
  • the shape and size of the flat surface are not particularly limited.
  • the shape and size of the surface (C ⁇ ) of the coolant is set to be substantially the same as the shape and size of the upper surface of the convex portion, and the shape of the surface (C ⁇ ) and the shape of the upper surface of the convex portion are arranged to match the shape of the surface (C ⁇ ). It becomes easy to selectively suppress the thermal expansion of the adhesive sheet in the portion having the above.
  • the shape and size of the coolant surface (C ⁇ ) are not limited to those described above.
  • the area of the coolant surface (C ⁇ ) may be smaller than the area of the upper surface of the convex portion.
  • the cooling effect is likely to be exerted over a wider area than the area where the coolant surface (C ⁇ ) is in contact, so the area should be smaller than the area of the top surface of the protrusion.
  • the surface (C ⁇ ) of the coolant having the surface is brought into contact with a part of the upper surface of the convex portion, there is a tendency that the thermal expansion of the portion of the adhesive sheet having the convex portion on the surface can be suppressed.
  • the area of the surface (C ⁇ ) of the coolant may be made larger than the area of the top surface of the protrusion, and the coolant may be brought into contact with the entire top surface of the protrusion. Increasing the area of the coolant surface (C ⁇ ) tends to increase the cooling effect of the projections with which the coolant surface (C ⁇ ) is in contact.
  • the thickness of the coolant is preferably 100 times or more, more preferably 500 times or more, and still more preferably 1,000 times or more the thickness of the thermally expandable layer.
  • the thickness of the coolant may be 10,000 times or less, 6,000 times or less, or 3,000 times the thickness of the thermally expandable layer from the viewpoint of ease of handling. It may be below.
  • FIG. 4 among the convex portions 11 generated on the substrate-side surface S ⁇ of the adhesive sheet 10 and the non-convex portions 12 which are portions other than the convex portions, the coolant 13 is brought into contact with the upper surface of the convex portions 11.
  • a cross-sectional view illustrating the process is shown.
  • the coolant 13 is in contact with the entire upper surface of the convex portion 11, and the size of the surface C ⁇ that contacts the surface S ⁇ of the coolant 13 on the substrate side is substantially the same as the size of the upper surface of the convex portion 11. is.
  • step 3 the semiconductor processing pressure-sensitive adhesive sheet is heated to a temperature (t) at which the thermally expandable particles start to expand by heating the semiconductor wafer (W) having the protrusions while being in contact with the coolant. is heated from the side of the semiconductor wafer (W) having the protrusions, and the cooling effect of the coolant suppresses the expansion of the portion of the pressure-sensitive adhesive sheet for semiconductor processing that has the protrusions as a surface, while the non-
  • This is a step of expanding a portion having a convex portion as a surface to reduce the height difference between the convex portion and the non-convex portion.
  • step 3 the semiconductor wafer (W) is heated to the expansion start temperature (t) of the thermally expandable particles or higher, so that the adhesive sheet attached to the semiconductor wafer (W) is removed from the semiconductor wafer (W) side. heat up.
  • a method of heating the semiconductor wafer (W) for example, a method of heating a surface (W ⁇ ) opposite to the surface (W ⁇ ) of the semiconductor wafer (W) may be used. When a part is exposed, the exposed surface (W ⁇ ) may be heated.
  • the semiconductor wafer (W) which has excellent thermal conductivity, can heat the entire semiconductor wafer (W) using heat conduction even by heating a part of the semiconductor wafer (W).
  • the method of heating the semiconductor wafer (W) is preferably a method of bringing a heated thermal conductor into contact with the semiconductor wafer (W) from the viewpoint of facilitating control of the location to be heated and the heating temperature.
  • a more preferred method is to bring a heated thermal conductor into contact with the surface (W ⁇ ) of the .
  • the method of contacting the semiconductor wafer (W) with a heated heat conductor is preferably a method of contacting a heat conductor having a smooth surface with the semiconductor wafer (W) from the viewpoint of uniform heating. is more preferable.
  • Examples of the heating plate include metal plates and ceramic plates.
  • the surface temperature of the heated thermal conductor brought into contact with the semiconductor wafer (W) is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, preferably "a temperature higher than the expansion start temperature (t)", more preferably. is “expansion start temperature (t) + 2°C” or higher, more preferably “expansion start temperature (t) + 4°C” or higher, and still more preferably “expansion start temperature (t) + 5°C” or higher.
  • the surface temperature of the heated heat conductor is preferably "expansion start temperature (t) + 50 ° C.” or less from the viewpoint of energy saving and suppressing thermal change of the semiconductor wafer (W) during heat peeling.
  • the surface temperature of the heated thermal conductor brought into contact with the semiconductor wafer (W) is preferably within the range of the expansion start temperature (t) or higher from the viewpoint of suppressing thermal change of the semiconductor wafer (W). It is 130° C. or lower, more preferably 120° C. or lower, and still more preferably 115° C. or lower.
  • the surface W ⁇ of the wafer W with bumps opposite to the surface W ⁇ is expanded by the thermally expandable particles while the coolant 13 is in contact with the upper surfaces of the protrusions 11.
  • FIGS. The step of heating above temperature (t) is shown.
  • the adhesive sheet 10 is heated by bringing a heating plate 14 into contact with the surface W ⁇ of the wafer W with bumps. At this time, the cooling effect of the coolant 13 suppresses the thermal expansion of the portion of the adhesive sheet 10 having the projections 11 with which the coolant 13 is in contact.
  • the height of the portion 12' where the non-convex portion 12 expands in FIG. the height difference between the convex portions 11 and the non-convex portions 12 is reduced, and the surface S ⁇ on the substrate side is flattened.
  • the amount of expansion of the portion having the non-convex portion 12 on the surface in step 3 can be adjusted, for example, by the content of the thermally expandable particles in the thermally expandable layer. That is, if the height difference between the convex portion and the non-convex portion is large before step 3, the amount of expansion may be increased by increasing the content of the thermally expandable particles in the thermally expandable layer. Further, if the height difference between the convex portion and the non-convex portion is small before step 3, the amount of expansion may be reduced by reducing the content of the thermally expandable particles in the thermally expandable layer.
  • Step 4 is a step of processing the semiconductor wafer (W) having the protrusions in a state where the base material of the adhesive sheet for semiconductor processing is fixed.
  • the processing performed in step 4 includes, for example, grinding the back surface of the semiconductor wafer (W) having protrusions, singulating the semiconductor wafer (W) having protrusions, and the like.
  • the processing in the method for manufacturing a semiconductor device of one embodiment of the present invention is preferably backside grinding of a semiconductor wafer (W) having protrusions, and is backside grinding of a semiconductor wafer having bumps as protrusions. is more preferable.
  • FIG. 6 shows a cross-sectional view for explaining the step of thinning the wafer W with bumps while the surface S ⁇ of the adhesive sheet 10 on the substrate side is fixed.
  • the substrate-side surface S ⁇ of the adhesive sheet 10 is fixed to a support device 15 such as a chuck table, and the back surface W ⁇ of the bumped wafer W is ground by a grinder 16 to a desired thickness. Since the substrate-side surface S ⁇ of the adhesive sheet 10 has excellent flatness, a uniform pressing force is applied to the entire back surface of the semiconductor wafer, and the semiconductor wafer W can be made thin with a uniform thickness.
  • a peeling step of peeling the adhesive sheet for semiconductor processing from the processed semiconductor wafer (W) may be performed.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is formed from an energy ray-curable pressure-sensitive adhesive
  • the pressure-sensitive adhesive is cured by irradiation with energy rays to reduce the peel strength of the pressure-sensitive adhesive layer, and then the pressure-sensitive adhesive sheet is removed. exfoliate.
  • a semiconductor wafer with a pressure-sensitive adhesive sheet for semiconductor processing is a pressure-sensitive adhesive sheet for semiconductor processing having a substrate, an intermediate layer, and an adhesive layer in this order, A semiconductor wafer with an adhesive sheet for semiconductor processing, which is attached to the surface (W ⁇ ) having the protrusions of the semiconductor wafer (W) having the protrusions,
  • the adhesive sheet for semiconductor processing in plan view, a void-containing or void-free region (a); a region (b) having a higher void volume content than the region (a) and a thickness greater than the region (a);
  • a semiconductor wafer with an adhesive sheet for semiconductor processing wherein the surface (S ⁇ ) on the substrate side is flattened by the difference in thickness between the region (a) and the region (b).
  • a semiconductor wafer with an adhesive sheet for semiconductor processing according to one aspect of the present invention is produced by using expandable thermally expandable particles as the thermally expandable particles in the method for manufacturing a semiconductor device according to one aspect of the present invention, and performing steps 1 to 3 above. It corresponds to a semiconductor wafer with an adhesive sheet for semiconductor processing in which the height difference between the convex portions and the non-convex portions of the adhesive sheet for semiconductor processing is reduced. Therefore, the semiconductor wafer with the pressure-sensitive adhesive sheet for semiconductor processing according to one embodiment of the present invention can be produced by the above steps 1 to 3.
  • the region (a) containing voids or not containing voids is a convex portion generated due to the protrusion portion of the adhesive sheet for semiconductor processing attached to the semiconductor wafer (W) in plan view. This is the area where there was.
  • the convex portion is formed in the region ( a) does not contain voids, or if it does contain voids, it has a lower volume content than region (b).
  • the region (b) is the non-convex region of the semiconductor processing adhesive sheet of one embodiment of the present invention attached to the semiconductor wafer (W) in plan view.
  • the non-convex portion is less likely to be affected by the cooling effect of the coolant.
  • the region (b) contains more voids than the region (a).
  • the region (b) is thicker than the region (a) due to the presence of voids, and the difference in thickness between the region (a) and the region (b) causes the surface of the base material to (S ⁇ ) is flattened.
  • the present invention will be specifically described by the following examples, but the present invention is not limited to the following examples.
  • the physical property values in each example are values measured by the following methods.
  • the thickness accuracy of the silicon wafer after back grinding is measured by measuring the thickness of the entire surface of the silicon wafer at a measurement pitch of 5 mm using a thickness measuring device (manufactured by Hamamatsu Photonics Co., Ltd., product name “C8870”). The difference between the thickness and the minimum thickness was calculated and evaluated as TTV (Total Thickness Variation).
  • the intermediate layer composition obtained above is coated on a substrate PET film (manufactured by Toyobo Co., Ltd., trade name “Cosmo Shine A4160", thickness 50 ⁇ m) using a knife method. An intermediate layer composition layer was formed by coating so that the thickness was 100 ⁇ m. Next, a PET-based release film (manufactured by Lintec Corporation, trade name “SP-PET381130”, thickness 38 ⁇ m) is laminated on the exposed surface of the formed intermediate layer composition layer. The layer was shielded from oxygen.
  • a PET-based release film manufactured by Lintec Corporation, trade name “SP-PET381130”, thickness 38 ⁇ m
  • the first UV irradiation is performed under the conditions of an illuminance of 80 mW/cm 2 and an irradiation amount of 200 mJ/cm 2 , and then using a high-pressure mercury lamp, an illuminance of 330 mW/cm 2 and an irradiation amount.
  • the intermediate layer composition layer was cured by performing a second UV irradiation under the condition of 1,260 mJ/cm 2 to produce a substrate with an intermediate layer having a release sheet.
  • EHA 2-ethylhexyl acrylate
  • EA ethyl acrylate
  • MMA methyl methacrylate
  • HOA 2-hydroxyethyl acrylate
  • MOI 2-methacryloyloxyethyl isocyanate
  • Polymer mass average molecular weight (Mw) 800,000) 100 parts by mass, trimethylolpropane adduct tolylene diisocyanate (manufactured by Tosoh Corporation, trade name “Coronate L”) 1.1 parts by mass as a cross-linking agent, and light 2.2 parts by mass of 2,2-dimethoxy-2-phenylacetophenone (manufactured by IGM Resins B.V., trade name “Omnirad 651”) as a polymerization initiator was blended, and toluene was added to adjust the solid content concentration. After adjusting to 30% by mass, stirring was performed for 30 minutes to prepare an adhesive composition.
  • Mw mass average molecular weight
  • the prepared adhesive composition is applied to a PET release film (manufactured by Lintec Corporation, trade name “SP-PET381130”, thickness 38 ⁇ m), dried, and a 10 ⁇ m thick adhesive on the release film. A layer was formed to obtain a pressure-sensitive adhesive layer with a release film.
  • Production example 4 [Production of adhesive sheet 4 for semiconductor processing] A pressure-sensitive adhesive sheet for semiconductor processing 4 was obtained in the same manner as in Production Example 1, except that the heat-expandable particles were not added to the intermediate layer composition.
  • a semiconductor device was manufactured using the pressure-sensitive adhesive sheet for semiconductor processing produced above.
  • the protrusions of the silicon wafer were formed using an adhesive sheet with a PET base material, and the adhesive sheet for semiconductor processing to be attached was intentionally forming an excessively large protrusion. This makes it easy to grasp the amount of reduction in height difference between the convex portion and the non-convex portion by the manufacturing method of the present invention.
  • the region containing the protrusions may be referred to as the "projection forming region” and the region not including the protrusions may be referred to as the "projection non-formation region”. be.
  • the silicon wafer with the adhesive sheet for semiconductor processing before thermal expansion is hereinafter referred to as "wafer with adhesive sheet (1)".
  • the silicon wafer side surface of the adhesive sheet-attached wafer (1) is placed on a flat surface, and the substrate side surface is arranged so as to be the contact surface of the constant pressure thickness gauge, and the protrusion is The thickness was measured at four points for each of the portion-formed region and the projection-non-formed region. The thickness was measured at four points on the circumference of the projection-forming region, which was concentric with the projection-forming region and whose diameter was about half the diameter of the projection-forming region. .
  • the projection non-formation area was set to four points equidistantly spaced from each other on a circumference concentric with the projection non-formation area and having a diameter of about 2/3 of the projection non-formation area.
  • Table 1 shows the average thickness of the protrusion-formed region and the average thickness of the non-protrusion-formed region in the adhesive sheet-attached wafer (1). As shown in Table 1, the thickness of the projection-formed region is greater than the thickness of the projection-free region, indicating that the projections are formed on the base-side surface of the pressure-sensitive adhesive sheet.
  • the wafer (1) with the adhesive sheet was placed on a flat surface so that the surface on the substrate side faces upward, and a cylindrical copper (60 mm diameter, 200 mm thick) coolant was placed on the wafer. It was laminated on the adhesive sheet-attached wafer (1) so that the bottom surface was aligned with the projection forming region on the surface on the base material side. Subsequently, the copper-laminated adhesive sheet-attached wafer (1) is placed so that the surface on the silicon wafer side comes into contact with the hot plate, and the surface on the substrate side of the copper-laminated adhesive sheet does not come into contact with the hot plate.
  • wafer with adhesive sheet (2) The wafer with the adhesive sheet after thermal expansion is hereinafter referred to as "wafer with adhesive sheet (2)".
  • the thickness difference [(B)-(A)] in the wafer with an adhesive sheet (1) before the heat expansion treatment is greater than the thickness difference [(B)-(A)] with the wafer with the adhesive sheet after the heat expansion treatment ( It can be seen that the thickness difference [(B)-(A)] in 2) is smaller.
  • the difference in thickness to be reduced varies depending on the content of the thermally expandable particles. It can be seen that the protrusions of the pressure-sensitive adhesive sheet can be flattened by adjusting .

Abstract

The present invention relates to a method for manufacturing a semiconductor device using an adhesive sheet for semiconductor processing having a base material, an intermediate layer, and an adhesive layer in that order, one or more layers selected from the group consisting of the base material, the intermediate layer, and the adhesive layer being a thermal expansion layer containing thermal expansion particles, and the method for manufacturing the semiconductor device including steps 1-4.

Description

半導体装置の製造方法及び半導体加工用粘着シート付き半導体ウエハSemiconductor device manufacturing method and semiconductor wafer with adhesive sheet for semiconductor processing
 本発明は、半導体装置の製造方法及び半導体加工用粘着シート付き半導体ウエハに関する。 The present invention relates to a semiconductor device manufacturing method and a semiconductor wafer with an adhesive sheet for semiconductor processing.
 情報端末機器の薄型化、小型化及び多機能化が急速に進む中、これらの機器に搭載される半導体装置にも、薄型化及び高密度化が求められている。
 半導体装置の製造方法においては、半導体ウエハの裏面研削、個片化等の加工が行われているが、これらの加工は、半導体ウエハの回路面を保護するため、半導体ウエハの回路面に半導体加工用粘着シートを貼付した状態で行われている。
2. Description of the Related Art As information terminal devices are rapidly becoming thinner, smaller, and multi-functional, there is a demand for thinner and higher-density semiconductor devices mounted on these devices.
In the method of manufacturing a semiconductor device, processing such as grinding the back surface of the semiconductor wafer and singulation is performed. This is done with an adhesive sheet attached.
 半導体加工用粘着シートとしては、通常、粘着剤層と、該粘着剤層を支持する基材と、を有するものが用いられる。該半導体加工用粘着シートの粘着剤層を半導体ウエハの回路面に貼付し、基材をチャックテーブル等の支持装置に固定した状態で、回路面を保護しながら半導体ウエハの裏面研削、個片化等を行う。そして、所定の加工を行った後、半導体加工用粘着シートは半導体ウエハの表面から剥離除去される。 As the adhesive sheet for semiconductor processing, one having an adhesive layer and a substrate supporting the adhesive layer is usually used. The adhesive layer of the adhesive sheet for semiconductor processing is attached to the circuit surface of the semiconductor wafer, and in a state in which the base material is fixed to a support device such as a chuck table, the back side of the semiconductor wafer is ground while the circuit surface is protected, and the semiconductor wafer is singulated. etc. After the predetermined processing, the adhesive sheet for semiconductor processing is peeled off from the surface of the semiconductor wafer.
 ところで、半導体加工用粘着シートを貼付する半導体ウエハの表面は必ずしも平面であるとは限らず、半導体加工用粘着シートは、突起部を有する表面に貼付される場合がある。例えば、近年、半導体デバイスモジュールを小型化するための技術として、回路面に数十~数百μm程度の高さを有するバンプが複数形成された半導体ウエハ(以下、「バンプ付きウエハ」ともいう)を裏面研削及び個片化した後、これらのバンプを配線基板に直接接合するフリップチップボンディング技術が実用化されている。 By the way, the surface of the semiconductor wafer to which the adhesive sheet for semiconductor processing is attached is not necessarily flat, and the adhesive sheet for semiconductor processing may be attached to the surface having protrusions. For example, in recent years, as a technique for miniaturizing a semiconductor device module, a semiconductor wafer having a plurality of bumps having a height of about several tens to several hundreds of μm formed on the circuit surface (hereinafter also referred to as a “bumped wafer”). A flip-chip bonding technique has been put into practical use, in which these bumps are directly bonded to a wiring substrate after back-grinding and individualizing the bumps.
 バンプ付きウエハのバンプ形成面に半導体加工用粘着シートを貼付すると、該半導体加工用粘着シートはバンプを覆う部分が他の部分よりも盛り上がり、貼付面とは反対側の基材側の表面に凸部が発生する場合がある。該凸部が発生した表面を固定して、半導体ウエハの裏面研削を行うと、裏面研削後の半導体ウエハは厚さの均一性に劣るものになる。 When the adhesive sheet for semiconductor processing is attached to the bump-formed surface of the wafer with bumps, the portion covering the bumps of the adhesive sheet for semiconductor processing swells more than the other portion, and the surface of the base material opposite to the attachment surface is projected. part may occur. If the back surface of the semiconductor wafer is ground with the surface having the protrusions fixed, the thickness uniformity of the semiconductor wafer after back grinding is poor.
 上記の問題を緩和するために、突起部を有する表面に貼付される半導体加工用粘着シートには、突起部を埋め込むための中間層を設けられることがある。
 特許文献1には、基板の研削用の仮固定用テープとして、支持基材と、該支持基材の一方の面に積層された粘着層とを備える仮固定用テープであって、前記支持基材は、前記基板を支持する第1の層と、該第1の層と前記粘着層との間に位置し、クッション性を有する第2の層とを有し、突起物を少なくとも一方の面の表面に有する前記基板を、前記粘着層に接合したとき、前記突起物の先端が前記粘着層を貫通して、前記第2の層内に位置しており、前記エネルギー線の照射後における前記粘着層の粘着力をF1[N/25mm]とし、前記第2の層の粘着力をF2[N/25mm]としたとき、F1>F2なる関係を満足することを特徴とする仮固定用テープが開示されている。
In order to alleviate the above problem, the adhesive sheet for semiconductor processing applied to the surface having protrusions is sometimes provided with an intermediate layer for embedding the protrusions.
Patent Document 1 discloses, as a temporary fixing tape for grinding a substrate, a temporary fixing tape comprising a support base and an adhesive layer laminated on one surface of the support base, wherein the support base The material has a first layer that supports the substrate, and a second layer that is positioned between the first layer and the adhesive layer and has cushioning properties, and has projections on at least one surface. When the substrate having the surface of is bonded to the adhesive layer, the tip of the protrusion penetrates the adhesive layer and is located in the second layer, and the tip of the protrusion penetrates the adhesive layer and is located in the second layer, When the adhesive force of the adhesive layer is F1 [N/25 mm] and the adhesive force of the second layer is F2 [N/25 mm], a temporary fixing tape that satisfies the relationship of F1>F2. is disclosed.
特開2020-77799号公報JP 2020-77799 A
 特許文献1の仮固定用テープによると、基板の表面に設けられた突起物は粘着層を貫通し、中間層に相当する第2の層内に位置した状態となる。これによって基板の全面に亘って、均一な押圧力を付与することができるため均一な厚さで薄くすることができるとされている。 According to the temporary fixing tape of Patent Document 1, the projections provided on the surface of the substrate penetrate the adhesive layer and are positioned within the second layer corresponding to the intermediate layer. As a result, it is possible to apply a uniform pressing force over the entire surface of the substrate, so that the substrate can be made thin with a uniform thickness.
 特許文献1の技術のように、半導体加工用粘着シートに中間層を形成し、該中間層によって半導体ウエハの突起部を埋め込む方法によって、半導体加工用粘着シートの基材側の表面における凸部の発生を抑制できる傾向にある。
 しかしながら、例えば、突起部の高さが大きい場合、又は突起部の面積が広い場合には、中間層に突起部を埋め込む方法のみによって凸部の発生を抑制することが困難な場合がある。また、埋め込み性を高めると中間層の機械強度が低くなり、突起部周辺の保護が不十分となったり、剥離後に、中間層の一部が突起部周辺に付着する場合がある。そのため、中間層に突起部を埋め込む方法のみによって、突起部を有する半導体ウエハに貼付した半導体加工用粘着シートにおける凸部の発生を抑制するには限界がある。
By forming an intermediate layer on the adhesive sheet for semiconductor processing and burying the projections of the semiconductor wafer with the intermediate layer as in the technique of Patent Document 1, the protrusions on the surface of the adhesive sheet for semiconductor processing on the substrate side are formed. It tends to be possible to suppress the occurrence.
However, for example, when the height of the protrusion is large, or when the area of the protrusion is large, it may be difficult to suppress the occurrence of protrusions only by the method of embedding the protrusion in the intermediate layer. In addition, if the embedding property is enhanced, the mechanical strength of the intermediate layer is lowered, and the protection around the protrusion may become insufficient, and part of the intermediate layer may adhere to the periphery of the protrusion after peeling. Therefore, there is a limit to suppressing the occurrence of protrusions in the pressure-sensitive adhesive sheet for semiconductor processing applied to a semiconductor wafer having protrusions only by the method of embedding the protrusions in the intermediate layer.
 本発明は、以上の実情に鑑みてなされたものであり、突起部を有する半導体ウエハに貼付された半導体加工用粘着シートに発生した凸部と非凸部の高低差を低減し、半導体ウエハの加工精度を高めることができる半導体装置の製造方法、及び、この製造方法に用いることができる半導体加工用粘着シート付き半導体ウエハを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to reduce the difference in height between convex portions and non-convex portions generated in a semiconductor processing pressure-sensitive adhesive sheet attached to a semiconductor wafer having protrusions. It is an object of the present invention to provide a semiconductor device manufacturing method capable of enhancing processing accuracy, and a semiconductor wafer with an adhesive sheet for semiconductor processing that can be used in this manufacturing method.
 本発明者らは、鋭意検討の結果、基材と、中間層と、粘着剤層と、をこの順で有し、前記基材、前記中間層及び前記粘着剤層からなる群から選択される1層以上が、熱膨張性粒子を含有する熱膨張性層である半導体加工用粘着シートを用い、特定の方法によって、前記半導体加工用粘着シートを部分的に膨張させる方法によって、上記課題を解決できることを見出し、以下の本発明を完成させた。 As a result of intensive studies, the present inventors have a substrate, an intermediate layer, and an adhesive layer in this order, and are selected from the group consisting of the substrate, the intermediate layer, and the adhesive layer. The above problems are solved by using a semiconductor processing pressure-sensitive adhesive sheet in which one or more layers are thermally expandable layers containing thermally expandable particles, and by partially expanding the semiconductor processing pressure-sensitive adhesive sheet by a specific method. After discovering that it is possible, the following invention was completed.
 すなわち、本発明は、下記[1]~[14]に関する。
[1]基材と、中間層と、粘着剤層と、をこの順で有し、前記基材、前記中間層及び前記粘着剤層からなる群から選択される1層以上が、熱膨張性粒子を含有する熱膨張性層である半導体加工用粘着シートを用いる半導体装置の製造方法であって、下記工程1~4を含む、半導体装置の製造方法。
工程1:前記半導体加工用粘着シートを、前記粘着剤層を貼付面として、突起部を有する半導体ウエハ(W)の前記突起部を有する面(Wα)に貼付する工程
工程2:前記貼付した半導体加工用粘着シートが有する前記基材側の表面(Sα)において、前記突起部に起因して生じた凸部、及び該凸部以外の部分である非凸部のうち、前記凸部の上面に冷却材を接触させる工程
工程3:前記冷却材を接触させた状態で、前記突起部を有する半導体ウエハ(W)を前記熱膨張性粒子の膨張開始温度(t)以上に加熱することによって、前記半導体加工用粘着シートを前記突起部を有する半導体ウエハ(W)側から加熱し、前記冷却材の冷却効果によって、前記半導体加工用粘着シートのうち、前記凸部を表面として有する部分の膨張を抑制しながら、前記非凸部を表面として有する部分を膨張させて、前記凸部と前記非凸部の高低差を低減させる工程
工程4:前記半導体加工用粘着シートの基材を固定した状態で、前記突起部を有する半導体ウエハ(W)を加工する工程
[2]前記冷却材の20℃における熱伝導率が、50W/m・K以上である、上記[1]に記載の半導体装置の製造方法。
[3]前記冷却材が、金属である、上記[1]又は[2]に記載の半導体装置の製造方法。
[4]前記冷却材の厚さが、前記熱膨張性層の厚さの100倍以上である、上記[1]~[3]のいずれかに記載の半導体装置の製造方法。
[5]前記中間層の厚さが、10~500μmである、上記[1]~[4]のいずれかに記載の半導体装置の製造方法。
[6]前記粘着剤層の厚さが、1~80μmである、上記[1]~[5]のいずれかに記載の半導体装置の製造方法。
[7]前記熱膨張性粒子の含有量が、前記熱膨張性層の全質量(100質量%)に対して、0.05~25質量%である、上記[1]~[6]のいずれかに記載の半導体装置の製造方法。
[8]前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、上記[1]~[7]のいずれかに記載の半導体装置の製造方法。
[9]前記中間層が、前記熱膨張性層である、上記[1]~[8]のいずれかに記載の半導体装置の製造方法。
[10]前記工程3における前記半導体加工用粘着シートの加熱を、前記突起部を有する半導体ウエハ(W)の前記面(Wα)とは反対側の面(Wβ)を加熱することによって行う、上記[1]~[9]のいずれかに記載の半導体装置の製造方法。
[11]前記突起部の高さが、10~500μmである、上記[1]~[10]のいずれかに記載の半導体装置の製造方法。
[12]前記突起部を有する半導体ウエハ(W)が、前記突起部としてバンプを有する半導体ウエハである、上記[1]~[11]のいずれかに記載の半導体装置の製造方法。
[13]前記工程4における加工が、前記バンプを有する半導体ウエハの裏面研削である、上記[12]に記載の半導体装置の製造方法。
[14]基材と、中間層と、粘着剤層と、をこの順で有する半導体加工用粘着シートが、前記粘着剤層を貼付面として、突起部を有する半導体ウエハ(W)の前記突起部を有する面(Wα)に貼付されてなる、半導体加工用粘着シート付き半導体ウエハであって、
 前記半導体加工用粘着シートは、平面視で、
 空隙を含有する又は空隙を含有しない領域(a)と、
 前記領域(a)よりも空隙の体積含有量が高く、かつ、前記領域(a)よりも厚さが大きい領域(b)と、を有し、
 前記領域(a)と前記領域(b)の厚さの差によって、前記基材側の表面(Sα)が平坦化されている、半導体加工用粘着シート付き半導体ウエハ。
That is, the present invention relates to the following [1] to [14].
[1] having a substrate, an intermediate layer, and an adhesive layer in this order, wherein one or more layers selected from the group consisting of the substrate, the intermediate layer, and the adhesive layer are thermally expandable A semiconductor device manufacturing method using a semiconductor processing pressure-sensitive adhesive sheet that is a thermally expandable layer containing particles, the method comprising the following steps 1 to 4.
Step 1: Attaching the adhesive sheet for semiconductor processing to the surface (Wα) having the protrusions of the semiconductor wafer (W) having the protrusions using the adhesive layer as the attachment surface Step 2: The attached semiconductor On the surface (Sα) on the base material side of the pressure-sensitive adhesive sheet for processing, among the convex portions caused by the convex portions and the non-convex portions that are portions other than the convex portions, the upper surface of the convex portions Step 3: contacting the coolant, by heating the semiconductor wafer (W) having the protrusions to the expansion start temperature (t) of the thermally expandable particles or higher while contacting the coolant, The pressure-sensitive adhesive sheet for semiconductor processing is heated from the side of the semiconductor wafer (W) having the protrusions, and the cooling effect of the coolant suppresses the expansion of the portion of the pressure-sensitive adhesive sheet for semiconductor processing having the protrusions as a surface. while expanding the portion having the non-convex portion as a surface to reduce the height difference between the convex portion and the non-convex portion Step 4: With the base material of the pressure-sensitive adhesive sheet for semiconductor processing fixed, [2] The method of manufacturing a semiconductor device according to [1] above, wherein the heat conductivity of the coolant at 20° C. is 50 W/m·K or more. .
[3] The method of manufacturing a semiconductor device according to [1] or [2] above, wherein the coolant is metal.
[4] The method of manufacturing a semiconductor device according to any one of [1] to [3] above, wherein the thickness of the coolant is 100 times or more the thickness of the thermal expansion layer.
[5] The method of manufacturing a semiconductor device according to any one of [1] to [4] above, wherein the intermediate layer has a thickness of 10 to 500 μm.
[6] The method for manufacturing a semiconductor device according to any one of [1] to [5] above, wherein the pressure-sensitive adhesive layer has a thickness of 1 to 80 μm.
[7] Any of the above [1] to [6], wherein the content of the thermally expandable particles is 0.05 to 25% by mass with respect to the total mass (100% by mass) of the thermally expandable layer. 2. A method of manufacturing a semiconductor device according to claim 1.
[8] The method for manufacturing a semiconductor device according to any one of [1] to [7] above, wherein the thermally expandable particles have an expansion start temperature (t) of 50°C or higher and lower than 125°C.
[9] The method of manufacturing a semiconductor device according to any one of [1] to [8] above, wherein the intermediate layer is the thermally expandable layer.
[10] The heating of the adhesive sheet for semiconductor processing in the step 3 is performed by heating the surface (Wβ) opposite to the surface (Wα) of the semiconductor wafer (W) having the protrusions. A method for manufacturing a semiconductor device according to any one of [1] to [9].
[11] The method of manufacturing a semiconductor device according to any one of [1] to [10] above, wherein the protrusion has a height of 10 to 500 μm.
[12] The method of manufacturing a semiconductor device according to any one of [1] to [11] above, wherein the semiconductor wafer (W) having protrusions is a semiconductor wafer having bumps as the protrusions.
[13] The method for manufacturing a semiconductor device according to [12] above, wherein the processing in the step 4 is back grinding of the semiconductor wafer having the bumps.
[14] A semiconductor processing adhesive sheet having a base material, an intermediate layer, and an adhesive layer in this order has the adhesive layer as an attachment surface, and the protrusions of the semiconductor wafer (W) having protrusions. A semiconductor wafer with an adhesive sheet for semiconductor processing, which is attached to a surface (Wα) having
The adhesive sheet for semiconductor processing, in plan view,
a void-containing or void-free region (a);
a region (b) having a higher void volume content than the region (a) and a thickness greater than the region (a);
A semiconductor wafer with an adhesive sheet for semiconductor processing, wherein the substrate-side surface (Sα) is flattened by a difference in thickness between the region (a) and the region (b).
 本発明によると、突起部を有する半導体ウエハに貼付された半導体加工用粘着シートに発生した凸部と非凸部の高低差を低減し、半導体ウエハの加工精度を高めることができる半導体装置の製造方法、及び、この製造方法に用いることができる半導体加工用粘着シート付き半導体ウエハを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to reduce the height difference between convex portions and non-convex portions generated in a semiconductor processing pressure-sensitive adhesive sheet attached to a semiconductor wafer having protrusions, thereby manufacturing a semiconductor device capable of enhancing processing accuracy of the semiconductor wafer. It is possible to provide a method and a semiconductor wafer with an adhesive sheet for semiconductor processing that can be used in this manufacturing method.
半導体加工用粘着シートの構成の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the configuration of the pressure-sensitive adhesive sheet for semiconductor processing; 突起部を有する半導体ウエハ(W)を説明するための平面図である。It is a top view for demonstrating the semiconductor wafer (W) which has a protrusion part. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention. 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。It is a sectional view explaining an example of a process of a manufacturing method of a semiconductor device of the present invention.
 本明細書において、好ましい数値範囲について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。 In this specification, the lower and upper limits described stepwise for preferred numerical ranges can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。 In this specification, for example, "(meth)acrylic acid" refers to both "acrylic acid" and "methacrylic acid", and the same applies to other similar terms.
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として無電極ランプ、高圧水銀ランプ、メタルハライドランプ、UV-LED等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本明細書において、「エネルギー線重合性」とは、エネルギー線を照射することにより重合する性質を意味する。また、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味する。
As used herein, the term "energy ray" means an electromagnetic wave or charged particle beam that has an energy quantum, and examples thereof include ultraviolet rays, radiation, electron beams, and the like. Ultraviolet rays can be applied by using, for example, an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, a UV-LED, or the like as an ultraviolet light source. The electron beam can be generated by an electron beam accelerator or the like.
As used herein, "energy ray-polymerizable" means the property of polymerizing by irradiation with energy rays. Moreover, "energy ray curability" means the property of being cured by irradiation with an energy ray.
 本明細書において、「層」が「非熱膨張性層」であるか「熱膨張性層」であるかは、以下のように判断する。
 判断の対象となる層が熱膨張性粒子を含有する場合、当該層を熱膨張性粒子の膨張開始温度(t)で、3分間加熱処理する。下記式から算出される体積変化率が5%未満である場合、当該層は「非熱膨張性層」であると判断し、5%以上である場合、当該層は「熱膨張性層」であると判断する。
・体積変化率(%)={(加熱処理後の前記層の体積-加熱処理前の前記層の体積)/加熱処理前の前記層の体積}×100
 なお、熱膨張性粒子を含有しない層は「非熱膨張性層」であるとする。
 本明細書において、「層」が非熱膨張性層である場合、上記式から算出される当該非熱膨張性層の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 また、本明細書において、「層」が非熱膨張性層である場合、当該非熱膨張性層は、熱膨張性粒子を含有しないことが好ましいが、本発明の目的に反しない範囲で熱膨張性粒子を含有していてもよい。当該非熱膨張性層が熱膨張性粒子を含有する場合、その含有量は少ないほど好ましく、非熱膨張性層の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
In this specification, whether a "layer" is a "non-thermally expandable layer" or a "thermally expandable layer" is determined as follows.
When the layer to be judged contains thermally expandable particles, the layer is heat-treated for 3 minutes at the expansion start temperature (t) of the thermally expandable particles. If the volume change rate calculated from the following formula is less than 5%, the layer is determined to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer". judge there is.
・Volume change rate (%) = {(volume of the layer after heat treatment - volume of the layer before heat treatment) / volume of the layer before heat treatment} x 100
A layer containing no thermally expandable particles is referred to as a "non-thermally expandable layer".
In this specification, when the "layer" is a non-thermally expandable layer, the volume change rate (%) of the non-thermally expandable layer calculated from the above formula is less than 5%, preferably less than 2%. , more preferably less than 1%, more preferably less than 0.1%, even more preferably less than 0.01%.
Further, in the present specification, when the "layer" is a non-thermally expandable layer, the non-thermally expandable layer preferably does not contain thermally expandable particles. It may contain expandable particles. When the non-thermally expandable layer contains thermally expandable particles, the content is preferably as small as possible, preferably less than 3% by mass, more preferably less than 3% by mass, based on the total mass (100% by mass) of the non-thermally expandable layer. is less than 1% by weight, more preferably less than 0.1% by weight, even more preferably less than 0.01% by weight, and even more preferably less than 0.001% by weight.
 本明細書において、半導体ウエハの「回路面」とは回路が形成された面を指し、半導体ウエハの「裏面」とは回路が形成されていない面を指す。 In this specification, the "circuit surface" of the semiconductor wafer refers to the surface on which the circuits are formed, and the "back surface" of the semiconductor wafer refers to the surface on which the circuits are not formed.
 本明細書において、「半導体装置」とは、半導体特性を利用することで機能し得る装置全般を指す。例えば、集積回路を備えるウエハ、集積回路を備える薄化されたウエハ、集積回路を備えるチップ、集積回路を備える薄化されたチップ、これらのチップを含む電子部品、及び当該電子部品を備える電子機器類等が挙げられる。 In this specification, "semiconductor device" refers to all devices that can function by utilizing semiconductor characteristics. For example, a wafer comprising integrated circuits, a thinned wafer comprising integrated circuits, a chip comprising integrated circuits, a thinned chip comprising integrated circuits, electronic components comprising these chips, and electronic equipment comprising such electronic components and the like.
 本明細書において、各層の厚さは、23℃における厚さであり、実施例に記載の方法により測定された値を意味する。 In this specification, the thickness of each layer is the thickness at 23°C and means the value measured by the method described in Examples.
 本明細書に記載されている作用機序は推測であって、本発明の効果を奏する機序を限定するものではない。 The mechanism of action described in this specification is speculation, and does not limit the mechanism of the effects of the present invention.
[半導体装置の製造方法]
 本発明の一態様の半導体装置の製造方法は、基材と、中間層と、粘着剤層と、をこの順で有し、前記基材、前記中間層及び前記粘着剤層からなる群から選択される1層以上が、熱膨張性粒子を含有する熱膨張性層である半導体加工用粘着シートを用いる半導体装置の製造方法であって、下記工程1~4を含む、半導体装置の製造方法である。
工程1:前記半導体加工用粘着シートを、前記粘着剤層を貼付面として、突起部を有する半導体ウエハ(W)の前記突起部を有する面(Wα)に貼付する工程
工程2:前記貼付した半導体加工用粘着シートが有する前記基材側の表面(Sα)において、前記突起部に起因して生じた凸部、及び該凸部以外の部分である非凸部のうち、前記凸部の上面に冷却材を接触させる工程
工程3:前記冷却材を接触させた状態で、前記突起部を有する半導体ウエハ(W)を前記熱膨張性粒子の膨張開始温度(t)以上に加熱することによって、前記半導体加工用粘着シートを前記突起部を有する半導体ウエハ(W)側から加熱し、前記冷却材の冷却効果によって、前記半導体加工用粘着シートのうち、前記凸部を表面として有する部分の膨張を抑制しながら、前記非凸部を表面として有する部分を膨張させて、前記凸部と前記非凸部の高低差を低減させる工程
工程4:前記半導体加工用粘着シートの基材を固定した状態で、前記突起部を有する半導体ウエハ(W)を加工する工程
[Method for manufacturing a semiconductor device]
A method for manufacturing a semiconductor device according to one aspect of the present invention includes a substrate, an intermediate layer, and an adhesive layer in this order, and is selected from the group consisting of the substrate, the intermediate layer, and the adhesive layer. A method for manufacturing a semiconductor device using a semiconductor processing pressure-sensitive adhesive sheet in which one or more layers are thermally expandable layers containing thermally expandable particles, comprising the following steps 1 to 4: be.
Step 1: Attaching the adhesive sheet for semiconductor processing to the surface (Wα) having the protrusions of the semiconductor wafer (W) having the protrusions using the adhesive layer as the attachment surface Step 2: The attached semiconductor On the surface (Sα) on the base material side of the pressure-sensitive adhesive sheet for processing, among the convex portions caused by the convex portions and the non-convex portions that are portions other than the convex portions, the upper surface of the convex portions Step 3: contacting the coolant, by heating the semiconductor wafer (W) having the protrusions to the expansion start temperature (t) of the thermally expandable particles or higher while contacting the coolant, The pressure-sensitive adhesive sheet for semiconductor processing is heated from the side of the semiconductor wafer (W) having the protrusions, and the cooling effect of the coolant suppresses the expansion of the portion of the pressure-sensitive adhesive sheet for semiconductor processing having the protrusions as a surface. while expanding the portion having the non-convex portion as a surface to reduce the height difference between the convex portion and the non-convex portion Step 4: With the base material of the pressure-sensitive adhesive sheet for semiconductor processing fixed, A step of processing the semiconductor wafer (W) having the projections
 以下、初めに本発明の一態様の半導体装置の製造方法に用いる半導体加工用粘着シートについて説明し、その後、本発明の一態様の半導体装置の製造方法に含まれる各工程について詳細に説明する。 Hereinafter, the semiconductor processing adhesive sheet used in the method for manufacturing a semiconductor device of one embodiment of the present invention will be described first, and then each step included in the method for manufacturing a semiconductor device of one embodiment of the present invention will be described in detail.
<半導体加工用粘着シート>
 本発明の一態様の半導体加工用粘着シート(以下、単に「粘着シート」ともいう)は、基材と、中間層と、粘着剤層と、をこの順で有する粘着シートである。
 本発明の一態様の粘着シートは、半導体ウエハ(W)の突起部を有する面(Wα)に貼付され、該面を保護しながら半導体ウエハ(W)に所定の加工を施すために用いられる。そして、半導体ウエハ(W)に対して所定の加工を施した後、本発明の一態様の粘着シートは、剥離除去される。
<Adhesive sheet for semiconductor processing>
A pressure-sensitive adhesive sheet for semiconductor processing according to one embodiment of the present invention (hereinafter also simply referred to as "pressure-sensitive adhesive sheet") is a pressure-sensitive adhesive sheet having a substrate, an intermediate layer, and an adhesive layer in this order.
The pressure-sensitive adhesive sheet of one embodiment of the present invention is attached to the surface (Wα) having projections of the semiconductor wafer (W), and is used to perform predetermined processing on the semiconductor wafer (W) while protecting the surface. Then, after the semiconductor wafer (W) is subjected to predetermined processing, the adhesive sheet of one embodiment of the present invention is peeled off.
 図1(a)には、本発明の一態様の粘着シートである、基材1、中間層2及び粘着剤層3がこの順で積層された粘着シート10aが示されている。
 本発明の一態様の粘着シートは、粘着シート10aのように、基材、中間層及び粘着剤層のみを有するものであってもよいが、必要に応じて、他の層を有していてもよい。他の層としては、例えば、粘着剤層の中間層とは反対側の面に設けられる剥離シート等が挙げられる。
 図1(b)には、他の層として剥離シート4を有する本発明の一態様の粘着シート10bが示されている。粘着シート10bにおいて、剥離シート4は、粘着剤層3の粘着表面上に積層されている。
FIG. 1(a) shows a pressure-sensitive adhesive sheet 10a in which a substrate 1, an intermediate layer 2 and a pressure-sensitive adhesive layer 3 are laminated in this order, which is a pressure-sensitive adhesive sheet of one embodiment of the present invention.
The pressure-sensitive adhesive sheet of one embodiment of the present invention may have only a substrate, an intermediate layer and a pressure-sensitive adhesive layer like the pressure-sensitive adhesive sheet 10a, but may have other layers as necessary. good too. Other layers include, for example, a release sheet provided on the surface of the pressure-sensitive adhesive layer opposite to the intermediate layer.
FIG. 1(b) shows a pressure-sensitive adhesive sheet 10b of one embodiment of the present invention having a release sheet 4 as another layer. The release sheet 4 is laminated on the adhesive surface of the adhesive layer 3 in the adhesive sheet 10b.
 次に、本発明の一態様の粘着シートが有する各層の好適な態様について説明する。 Next, preferred aspects of each layer included in the pressure-sensitive adhesive sheet of one aspect of the present invention will be described.
(熱膨張性層)
 本発明の一態様の粘着シートは、基材、中間層及び粘着剤層からなる群から選択される1層以上が、熱膨張性粒子を含有する熱膨張性層である。
 本発明の一態様の粘着シートは、熱膨張性層を2層以上有していてもよいが、1層のみ有する態様が好ましい。本発明の一態様の粘着シートが熱膨張性層を2層以上有する場合、熱膨張性層同士の間に熱膨張性層以外の層を有していてもよく、熱膨張性層同士の間に熱膨張性層以外の層を有していなくてもよい。
 本発明の一態様の粘着シートは、中間層が熱膨張性層である態様が好ましく、中間層が熱膨張性層であって、基材及び粘着剤層が非熱膨張性層である態様がより好ましい。中間層が熱膨張性層であって、基材及び粘着剤層が非熱膨張性層である場合、熱膨張後の熱膨張性粒子による凹凸が粘着剤層又は基材の表面に表出し難くなり、半導体ウエハ(W)との密着性又はチャックテーブル等の支持装置による保持性が良好になり易い傾向にある。
(Thermal expansion layer)
In one aspect of the pressure-sensitive adhesive sheet of the present invention, one or more layers selected from the group consisting of a substrate, an intermediate layer, and a pressure-sensitive adhesive layer are thermally expandable layers containing thermally expandable particles.
The pressure-sensitive adhesive sheet of one aspect of the present invention may have two or more thermally expandable layers, but preferably has only one layer. When the pressure-sensitive adhesive sheet of one embodiment of the present invention has two or more thermally expandable layers, it may have a layer other than the thermally expandable layer between the thermally expandable layers. It does not have to have any layers other than the thermally expandable layer.
The pressure-sensitive adhesive sheet of one embodiment of the present invention preferably has an embodiment in which the intermediate layer is a thermally expandable layer, and an embodiment in which the intermediate layer is a thermally expandable layer and the substrate and the adhesive layer are non-thermally expandable layers. more preferred. When the intermediate layer is a heat-expandable layer and the substrate and the pressure-sensitive adhesive layer are non-heat-expandable layers, it is difficult for unevenness caused by the heat-expandable particles after thermal expansion to appear on the surface of the pressure-sensitive adhesive layer or the substrate. As a result, the adhesiveness to the semiconductor wafer (W) or the holding property by a support device such as a chuck table tends to be improved.
 熱膨張性層の厚さは、特に限定されず、本発明の一態様の粘着シートが有する各層のうち、いずれの層が熱膨張性層であるかに応じて適宜決定すればよい。
 なお、本明細書中、単に「熱膨張性層の厚さ」という場合、これは本発明の一態様の粘着シートが有する全ての熱膨張性層の厚さの合計を意味する。例えば、本発明の一態様の粘着シートが有する基材、中間層及び粘着剤層のうち1層のみが熱膨張性層である場合、当該層の厚さが熱膨張性層の厚さである。また、本発明の一態様の粘着シートが有する基材、中間層及び粘着剤層のうち2層以上が熱膨張性層である場合、当該2層以上の合計厚さが熱膨張性層の厚さである。
The thickness of the thermally expandable layer is not particularly limited, and may be appropriately determined according to which layer is the thermally expandable layer among the layers included in the pressure-sensitive adhesive sheet of one embodiment of the present invention.
In this specification, simply referring to the "thickness of the thermally expandable layer" means the total thickness of all the thermally expandable layers included in the pressure-sensitive adhesive sheet of one embodiment of the present invention. For example, when only one of the base material, the intermediate layer, and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet of one embodiment of the present invention is a thermally expandable layer, the thickness of the layer is the thickness of the thermally expandable layer. . Further, when two or more of the base material, the intermediate layer and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet of one embodiment of the present invention are thermally expandable layers, the total thickness of the two or more layers is the thickness of the thermally expandable layer. It is.
〔熱膨張性粒子〕
 熱膨張性粒子は、加熱により膨張する粒子であればよい。
 熱膨張性粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Thermal expandable particles]
The thermally expandable particles may be particles that expand when heated.
The thermally expandable particles may be used singly or in combination of two or more.
 熱膨張性粒子の膨張開始温度(t)は、好ましくは50℃以上125℃未満、より好ましくは55~120℃、更に好ましくは60~115℃、より更に好ましくは70~110℃、更になお好ましくは75~105℃である。熱膨張性粒子の膨張開始温度(t)が50℃以上であると、意図しない膨張を抑制し易い傾向にある。また、熱膨張性粒子の膨張開始温度(t)が125℃未満であると、加熱剥離する際における加熱温度を低く抑えることができる。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
The expansion start temperature (t) of the thermally expandable particles is preferably 50° C. or more and less than 125° C., more preferably 55 to 120° C., still more preferably 60 to 115° C., still more preferably 70 to 110° C., still more preferably is 75-105°C. When the expansion start temperature (t) of the thermally expandable particles is 50°C or higher, unintended expansion tends to be suppressed. Moreover, when the expansion start temperature (t) of the thermally expandable particles is less than 125° C., the heating temperature at the time of heat peeling can be kept low.
In this specification, the expansion start temperature (t) of thermally expandable particles means a value measured based on the following method.
(熱膨張性粒子の膨張開始温度(t)の測定法)
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
(Method for measuring expansion start temperature (t) of thermally expandable particles)
An aluminum cup with a diameter of 6.0 mm (inner diameter of 5.65 mm) and a depth of 4.8 mm was filled with 0.5 mg of thermally expandable particles to be measured, and an aluminum lid (5.6 mm in diameter and 0.6 mm in thickness) was placed thereon. 1 mm) is placed on the sample.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured while a force of 0.01 N is applied to the sample from the top of the aluminum lid with a pressurizer. Then, while applying a force of 0.01 N by the pressurizer, heat is applied from 20° C. to 300° C. at a temperature increase rate of 10° C./min, and the amount of displacement in the vertical direction of the pressurizer is measured. Let the displacement start temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン、もしくはこれらの熱可塑性樹脂に含まれる構成単位を形成する単量体の2種以上を重合して得られる共重合体等が挙げられる。
The thermally expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an encapsulated component that is encapsulated in the outer shell and vaporizes when heated to a predetermined temperature. Preferably.
The thermoplastic resin constituting the outer shell of the microencapsulated foaming agent includes, for example, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, or structural units contained in these thermoplastic resins. Examples thereof include copolymers obtained by polymerizing two or more of the monomers to be formed.
 マイクロカプセル化発泡剤の外殻に内包される成分である内包成分としては、例えば、プロパン、プロピレン、ブテン、n-ブタン、イソブタン、イソペンタン、ネオペンタン、n-ペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、n-オクタン、シクロプロパン、シクロブタン、石油エーテル等の低沸点液体が挙げられる。これらの中でも、意図しない膨張を抑制しながらも、加熱剥離する際における加熱温度を低く抑えるという観点から、熱膨張性粒子の膨張開始温度(t)を50℃以上125℃未満とする場合、内包成分は、プロパン、イソブタン、n-ペンタン、シクロプロパンが好ましい。
 これらの内包成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of encapsulated components that are encapsulated in the outer shell of the microencapsulated foaming agent include propane, propylene, butene, n-butane, isobutane, isopentane, neopentane, n-pentane, n-hexane, isohexane, n- Low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane, and petroleum ether are included. Among these, from the viewpoint of suppressing unintended expansion and keeping the heating temperature at the time of heat peeling low, when the expansion start temperature (t) of the thermally expandable particles is 50 ° C. or higher and lower than 125 ° C., the inclusion Preferred components are propane, isobutane, n-pentane and cyclopropane.
These inclusion components may be used individually by 1 type, and may use 2 or more types together.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
 熱膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、熱膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
The average particle size of the thermally expandable particles before expansion at 23° C. is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, still more preferably 10 to 50 μm.
The average particle size of the thermally expandable particles before expansion is the volume-median particle size (D 50 ), and is measured by a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name "Mastersizer 3000"). In the particle distribution of the thermally expandable particles before expansion measured using , the particle size corresponding to a cumulative volume frequency of 50% calculated from the smallest particle size of the thermally expandable particles before expansion.
 熱膨張性粒子の23℃における膨張前の90%粒子径(D90)は、好ましくは10~150μm、より好ましくは15~100μm、更に好ましくは20~90μm、より更に好ましくは25~80μmである。
 なお、熱膨張性粒子の膨張前の90%粒子径(D90)とは、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒子径を意味する。
The 90% particle diameter (D 90 ) of the thermally expandable particles before expansion at 23° C. is preferably 10 to 150 μm, more preferably 15 to 100 μm, still more preferably 20 to 90 μm, still more preferably 25 to 80 μm. .
The 90% particle diameter (D 90 ) of the thermally expandable particles before expansion is measured using a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, product name “Mastersizer 3000”). In the particle distribution of the thermally expandable particles before expansion, it means a particle size corresponding to a cumulative volume frequency of 90% calculated from the smaller particle size of the thermally expandable particles before expansion.
 本発明の一態様で用いる熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~200倍、より好ましくは2~150倍、更に好ましくは2.5~120倍、より更に好ましくは3~100倍である。 The maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles used in one aspect of the present invention is preferably 1.5 to 200 times, more preferably 2 to 150 times, and further It is preferably 2.5 to 120 times, and more preferably 3 to 100 times.
 熱膨張性粒子の含有量は、熱膨張性層の全質量(100質量%)に対して、好ましくは0.05~25質量%、より好ましくは0.1~15質量%、更に好ましくは0.2~10質量%、より更に好ましくは0.3~5質量%である。熱膨張性粒子の含有量が0.05質量%以上であると、半導体ウエハ(W)の突起部に起因して生じた粘着シートの凸部を平坦化し易い傾向にある。また、熱膨張性粒子の含有量が25質量%以下であると、熱膨張前の熱膨張性粒子の凹凸が粘着剤層又は基材の表面に表出し難くなり、半導体ウエハ(W)との密着性又はチャックテーブル等の支持装置による保持性が良好になり易い傾向にある。 The content of the thermally expandable particles is preferably 0.05 to 25% by mass, more preferably 0.1 to 15% by mass, still more preferably 0, based on the total mass (100% by mass) of the thermally expandable layer. .2 to 10% by weight, more preferably 0.3 to 5% by weight. When the content of the thermally expandable particles is 0.05% by mass or more, the protrusions of the adhesive sheet caused by the protrusions of the semiconductor wafer (W) tend to be flattened easily. Further, when the content of the thermally expandable particles is 25% by mass or less, the unevenness of the thermally expandable particles before thermal expansion becomes difficult to appear on the surface of the adhesive layer or the base material, and the semiconductor wafer (W) and the There is a tendency that adhesion or retention by a support device such as a chuck table tends to be improved.
(基材)
 本発明の一態様で用いる基材としては、半導体ウエハ(W)を支持できる材料で構成されていれば特に制限されない。
(Base material)
The substrate used in one aspect of the present invention is not particularly limited as long as it is made of a material capable of supporting the semiconductor wafer (W).
 基材は、非粘着性の基材であることが好ましい。
 基材の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、基材の表面におけるプローブタック値は、以下の方法により測定された値を意味する。
<プローブタック値>
 測定対象となる基材を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとして、23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定することができる。具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とすることができる。
The substrate is preferably a non-adhesive substrate.
The probe tack value on the surface of the substrate is usually less than 50 mN/5 mmφ, preferably less than 30 mN/5 mmφ, more preferably less than 10 mN/5 mmφ, still more preferably less than 5 mN/5 mmφ.
In addition, in this specification, the probe tack value on the surface of the substrate means the value measured by the following method.
<Probe tack value>
After cutting the base material to be measured into a square with a side of 10 mm, a test sample was left to stand in an environment of 23 ° C. and 50% RH (relative humidity) for 24 hours. ), using a tacking tester (product name “NTS-4800” manufactured by Nippon Tokushu Sokki Co., Ltd.), the probe tack value on the surface of the test sample is measured in accordance with JIS Z0237: 1991. be able to. Specifically, a stainless steel probe with a diameter of 5 mm is brought into contact with the surface of the test sample for 1 second with a contact load of 0.98 N/cm 2 , and then the probe is moved at a speed of 10 mm/second to the test sample. The force required to remove it from the surface can be measured and the resulting value taken as the probe tack value for that test sample.
 基材の材質としては、例えば、樹脂、金属、紙材等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン系樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル系樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 これらの中でも、ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂が好ましい。
Examples of materials for the substrate include resins, metals, paper materials, and the like.
Examples of resins include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, Polyester resins such as polybutylene terephthalate and polyethylene naphthalate; Polystyrene; Acrylonitrile-butadiene-styrene copolymer; Cellulose triacetate; Polycarbonate; ketone; polyether sulfone; polyphenylene sulfide; polyimide-based resin such as polyetherimide and polyimide; polyamide-based resin;
Examples of metals include aluminum, tin, chromium, and titanium.
Examples of the paper material include thin paper, medium quality paper, fine paper, impregnated paper, coated paper, art paper, parchment paper, and glassine paper.
Among these, polyester-based resins such as polyethylene terephthalate (hereinafter also referred to as “PET”), polybutylene terephthalate, and polyethylene naphthalate are preferred.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した基材としては、例えば、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたもの、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one type, or two or more types may be used in combination.
Examples of substrates using two or more kinds of forming materials include those obtained by laminating a paper material with a thermoplastic resin such as polyethylene, a resin film or sheet containing a resin, and a metal film formed on the surface of the sheet. . As a method for forming the metal layer, for example, a method of depositing the above metal by a PVD method such as vacuum deposition, sputtering, or ion plating, or a method of attaching a metal foil made of the above metal using a general adhesive. and the like.
 なお、基材と積層する他の層との層間密着性を向上させる観点から、基材が樹脂を含む場合、基材の表面に対して、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。 In addition, from the viewpoint of improving the interlayer adhesion between the base material and other layers to be laminated, when the base material contains a resin, the surface of the base material is treated by an oxidation method, a roughening method, etc., and an easy adhesion Treatment or primer treatment may be applied.
 基材は、必要に応じて、基材用添加剤を含有してもよい。基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。なお、これらの基材用添加剤は、それぞれ1種を単独で用いてもよく、2種以上を併用してもよい。 The base material may contain base material additives as necessary. Examples of base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, colorants, and the like. One of these base material additives may be used alone, or two or more thereof may be used in combination.
 基材が熱膨張性粒子を含有する熱膨張性層(以下、「熱膨張性基材」ともいう)である場合、基材は、樹脂及び熱膨張性粒子を含有する基材用組成物によって形成することができる。
 熱膨張性粒子の種類及び含有量の好適な態様は、上記した熱膨張性層の説明における熱膨張性粒子の種類及び含有量の好適な態様と同じである。
When the substrate is a thermally expandable layer containing thermally expandable particles (hereinafter also referred to as "thermally expandable substrate"), the substrate is treated with a substrate composition containing a resin and thermally expandable particles. can be formed.
Preferred aspects of the type and content of the thermally expandable particles are the same as the preferred aspects of the type and content of the thermally expandable particles in the description of the thermally expandable layer above.
 基材用組成物に含有される樹脂の種類は、上記した樹脂の種類の中でも、ウレタン系樹脂、オレフィン系樹脂が好ましく、ウレタン系樹脂がより好ましく、アクリル変性ポリウレタンが更に好ましい。
 基材用組成物がアクリル変性ポリウレタンを含有する場合、基材用組成物は、アクリル変性ポリウレタン及び熱膨張性粒子に加えて、さらに、エネルギー線重合性モノマー、光重合開始剤等を含有し、溶剤を配合しない、無溶剤型樹脂組成物であってもよい。
 無溶剤型樹脂組成物では、溶剤を配合しないが、エネルギー線重合性モノマーが、可塑性の向上に寄与するものである。無溶剤型樹脂組成物に対して、エネルギー線を照射することで、アクリル変性ポリウレタン、エネルギー線重合性モノマー等が重合し、熱膨張性基材を形成することができる。
 エネルギー線重合性モノマー及び光重合開始剤としては、後述する中間層用組成物が含有していてもよい重合性単量体及び光重合開始剤と同じものが挙げられる。
Among the types of resins described above, urethane-based resins and olefin-based resins are preferable, urethane-based resins are more preferable, and acrylic-modified polyurethanes are even more preferable.
When the base composition contains an acrylic-modified polyurethane, the base composition further contains an energy ray-polymerizable monomer, a photopolymerization initiator, etc., in addition to the acrylic-modified polyurethane and the thermally expandable particles, A non-solvent resin composition containing no solvent may also be used.
Although the solventless resin composition does not contain a solvent, the energy ray-polymerizable monomer contributes to the improvement of plasticity. By irradiating the solvent-free resin composition with an energy ray, the acrylic-modified polyurethane, the energy ray-polymerizable monomer, and the like are polymerized to form a thermally expandable base material.
Examples of the energy ray-polymerizable monomer and photopolymerization initiator include the same polymerizable monomer and photopolymerization initiator that may be contained in the intermediate layer composition described below.
 基材は、熱膨張性基材と、非熱膨張性層である基材(以下、「非熱膨張性基材」ともいう)と、が積層された基材積層体であってもよい。
 基材が、上記の基材積層体である場合、熱膨張性基材が中間層側、非熱膨張性基材が中間層とは反対側に配置されていてもよいし、非熱膨張性基材が中間層側、熱膨張性基材が中間層とは反対側に配置されていてもよい。
 非熱膨張性基材が中間層とは反対側に配置されると、膨張した熱膨張性粒子による凹凸が中間層とは反対側の表面に表出し難くなり、チャックテーブル等の支持装置による保持性が良好になり易い傾向にある。一方、非熱膨張性基材が中間層側に配置されると、被着体(W)を加工する際の摩擦熱等によって、熱膨張性基材が意図せずに膨張することを抑制し易い傾向にある。
The substrate may be a substrate laminate in which a thermally expandable substrate and a substrate that is a non-thermally expandable layer (hereinafter also referred to as “non-thermally expandable substrate”) are laminated.
When the substrate is the substrate laminate described above, the thermally expandable substrate may be arranged on the intermediate layer side and the non-thermally expandable substrate may be arranged on the side opposite to the intermediate layer. The substrate may be arranged on the intermediate layer side, and the thermally expandable substrate may be arranged on the side opposite to the intermediate layer.
When the non-thermally expansible base material is arranged on the side opposite to the intermediate layer, it becomes difficult for the unevenness due to the expanded thermally expandable particles to appear on the surface opposite to the intermediate layer, so that it is held by a support device such as a chuck table. tend to have good properties. On the other hand, when the non-thermally expandable base material is arranged on the intermediate layer side, the unintentional expansion of the thermally expandable base material due to frictional heat or the like during processing of the adherend (W) is suppressed. tend to be easy.
 基材の厚さは、好ましくは5~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。基材の厚さが5μm以上であると、粘着シートの耐変形性を向上させ易い傾向にある。また、基材の厚さが500μm以下であると、粘着シートの取り扱い性を向上させ易い傾向にある。
 なお、基材の厚さは、基材全体の厚さを意味する。例えば、複数層から構成される基材の厚さは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the substrate is preferably 5-500 μm, more preferably 15-300 μm, still more preferably 20-200 μm. When the thickness of the substrate is 5 μm or more, the deformation resistance of the pressure-sensitive adhesive sheet tends to be easily improved. Moreover, when the thickness of the base material is 500 μm or less, the handleability of the pressure-sensitive adhesive sheet tends to be improved.
In addition, the thickness of a base material means the thickness of the whole base material. For example, the thickness of a base material composed of multiple layers means the total thickness of all layers constituting the base material.
(中間層)
 中間層は、基材と粘着剤層との間に配置される層である。
 中間層の組成は特に限定されないが、中間層は、樹脂を有する中間層用組成物から形成されるものが好ましい。
(middle layer)
The intermediate layer is a layer arranged between the substrate and the pressure-sensitive adhesive layer.
Although the composition of the intermediate layer is not particularly limited, the intermediate layer is preferably formed from an intermediate layer composition containing a resin.
 中間層用組成物が含有する樹脂としては、ウレタン(メタ)アクリレート、アクリル系樹脂等が挙げられる。 Examples of resins contained in the intermediate layer composition include urethane (meth)acrylates and acrylic resins.
〔ウレタン(メタ)アクリレート〕
 ウレタン(メタ)アクリレートは、少なくとも(メタ)アクリロイル基及びウレタン結合を有する化合物であり、エネルギー線の照射によって重合する性質を有するものである。中間層用組成物がウレタン(メタ)アクリレートを含有することによって、形成される中間層の柔軟性が良好になる傾向にある。
 ウレタン(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。
[Urethane (meth)acrylate]
A urethane (meth)acrylate is a compound having at least a (meth)acryloyl group and a urethane bond, and has the property of being polymerized by irradiation with energy rays. When the intermediate layer composition contains urethane (meth)acrylate, the resulting intermediate layer tends to have good flexibility.
Urethane (meth)acrylates may be used alone or in combination of two or more.
 ウレタン(メタ)アクリレートは、単官能ウレタン(メタ)アクリレートであってもよく、多官能ウレタン(メタ)アクリレートであってもよいが、多官能ウレタン(メタ)アクリレートであることが好ましく、2官能ウレタン(メタ)アクリレートであることがより好ましい。 The urethane (meth)acrylate may be a monofunctional urethane (meth)acrylate or a polyfunctional urethane (meth)acrylate. (Meth)acrylate is more preferred.
 ウレタン(メタ)アクリレートの質量平均分子量(Mw)は、好ましくは10,000~100,000、より好ましくは20,000~90,000、更に好ましくは25,000~70,000、より更に好ましくは30,000~60,000である。 The weight average molecular weight (Mw) of the urethane (meth)acrylate is preferably 10,000 to 100,000, more preferably 20,000 to 90,000, still more preferably 25,000 to 70,000, still more preferably 30,000 to 60,000.
 ウレタン(メタ)アクリレートは、例えば、ポリオール化合物と、多価イソシアネート化合物とを反応させて得られる末端イソシアネートウレタンプレポリマーに、ヒドロキシ基を有する(メタ)アクリレートを反応させて得ることができる。 A urethane (meth)acrylate can be obtained, for example, by reacting a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyvalent isocyanate compound with a (meth)acrylate having a hydroxy group.
 ポリオール化合物としては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 ポリオール化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of polyol compounds include alkylene-type polyols, ether-type polyols, ester-type polyols, esteramide-type polyols, ester/ether-type polyols, and carbonate-type polyols.
A polyol compound may be used individually by 1 type, and may use 2 or more types together.
 多価イソシアネートとしては、例えば、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
 多価イソシアネートは、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of polyvalent isocyanates include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. Further, these polyvalent isocyanates may be trimethylolpropane adduct-type modified products, biuret-type modified products reacted with water, and isocyanurate-type modified products containing an isocyanurate ring.
Polyvalent isocyanate may be used individually by 1 type, and may use 2 or more types together.
 ヒドロキシ基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
 ヒドロキシ基を有する(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。
(Meth)acrylates having a hydroxy group include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 -hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like.
The (meth)acrylates having a hydroxy group may be used alone or in combination of two or more.
 中間層用組成物中におけるウレタン(メタ)アクリレートの含有量は、中間層用組成物の有効成分の全量(100質量%)に対して、好ましくは20~90質量%、より好ましくは35~80質量%、更に好ましくは50~70質量%である。 The content of urethane (meth)acrylate in the intermediate layer composition is preferably 20 to 90% by mass, more preferably 35 to 80% by mass, based on the total amount (100% by mass) of active ingredients in the intermediate layer composition. % by mass, more preferably 50 to 70% by mass.
〔アクリル系樹脂〕
 中間層用組成物が含有する樹脂として使用することができるアクリル系樹脂としては、後述する粘着剤層の粘着性樹脂として使用することができるアクリル系樹脂と同じものが挙げられる。
[Acrylic resin]
Examples of the acrylic resin that can be used as the resin contained in the intermediate layer composition include the same acrylic resins that can be used as the adhesive resin of the adhesive layer described below.
 中間層用組成物は、上記ウレタン(メタ)アクリレートと、ウレタン(メタ)アクリレート以外の重合性単量体と、を含有することがより好ましい。 The intermediate layer composition more preferably contains the urethane (meth)acrylate and a polymerizable monomer other than the urethane (meth)acrylate.
〔重合性単量体〕
 重合性単量体は、ウレタン(メタ)アクリレート以外の重合性化合物であって、エネルギー線の照射により他の成分と重合可能な化合物であることが好ましい。具体的には、重合性単量体は、少なくとも1つの(メタ)アクリロイル基を有する化合物であることが好ましい。
 重合性単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Polymerizable monomer]
The polymerizable monomer is preferably a polymerizable compound other than urethane (meth)acrylate and is polymerizable with other components by irradiation with energy rays. Specifically, the polymerizable monomer is preferably a compound having at least one (meth)acryloyl group.
The polymerizable monomers may be used singly or in combination of two or more.
 重合性単量体としては、例えば、炭素数が1~30であるアルキル基を有する(メタ)アクリレート;ヒドロキシ基、アミド基、アミノ基、エポキシ基等の官能基を有する(メタ)アクリレート;脂環式構造を有する(メタ)アクリレート;芳香族構造を有する(メタ)アクリレート;複素環式構造を有する(メタ)アクリレート;スチレン、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、N-ビニルホルムアミド、N-ビニルピロリドン、N-ビニルカプロラクタム等のビニル化合物;アリルグリシジルエーテル等のアリル化合物;等が挙げられる。 Examples of polymerizable monomers include (meth)acrylates having an alkyl group having 1 to 30 carbon atoms; (meth)acrylates having a functional group such as a hydroxyl group, an amide group, an amino group, and an epoxy group; (Meth)acrylates having a cyclic structure; (meth)acrylates having an aromatic structure; (meth)acrylates having a heterocyclic structure; styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinylpyrrolidone , vinyl compounds such as N-vinylcaprolactam; allyl compounds such as allyl glycidyl ether;
 炭素数が1~30であるアルキル基を有する(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等が挙げられる。
 炭素数が1~30であるアルキル基を有する(メタ)アクリレートの炭素数は、好ましくは4~24、より好ましくは8~18、更に好ましくは10~14である。
(Meth)acrylates having an alkyl group having 1 to 30 carbon atoms include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (Meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate , nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, hexadecyl (meth)acrylate, octadecyl (meth)acrylate, eicosyl (Meth)acrylate and the like.
The (meth)acrylate having an alkyl group having 1 to 30 carbon atoms preferably has 4 to 24 carbon atoms, more preferably 8 to 18 carbon atoms, and still more preferably 10 to 14 carbon atoms.
 官能基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等のアミド基含有化合物;第1級アミノ基含有(メタ)アクリレート、第2級アミノ基含有(メタ)アクリレート、第3級アミノ基含有(メタ)アクリレート等のアミノ基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート等が挙げられる。 (Meth)acrylates having a functional group include, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 -Hydroxy group-containing (meth)acrylates such as hydroxybutyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate; (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N-butyl (meth)acrylamide, N - amide group-containing compounds such as methylol (meth)acrylamide, N-methylolpropane (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide; primary amino group-containing (meth)acrylate , secondary amino group-containing (meth)acrylates, tertiary amino group-containing (meth)acrylates; glycidyl (meth)acrylate, methylglycidyl (meth)acrylate and the like.
 脂環式構造を有する(メタ)アクリレートとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート等が挙げられる。これらの中でも、イソボルニル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレートが好ましい。 (Meth)acrylates having an alicyclic structure include, for example, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, cyclohexyl (meth)acrylate, ) acrylate, trimethylcyclohexyl (meth)acrylate, adamantane (meth)acrylate, and the like. Among these, isobornyl (meth)acrylate and trimethylcyclohexyl (meth)acrylate are preferred.
 芳香族構造を有する(メタ)アクリレートとしては、例えば、フェニルヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。
 複素環式構造を有する(メタ)アクリレートとしては、例えば、テトラヒドロフルフリル(メタ)アクリレート、モルホリン(メタ)アクリレート等が挙げられる。
(Meth)acrylates having an aromatic structure include, for example, phenylhydroxypropyl (meth)acrylate, benzyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate and the like.
(Meth)acrylates having a heterocyclic structure include, for example, tetrahydrofurfuryl (meth)acrylate and morpholine (meth)acrylate.
 以上の重合性単量体の選択肢の中でも、中間層用組成物は、炭素数が1~30であるアルキル基を有する(メタ)アクリレート及び脂環式構造を有する(メタ)アクリレートを含有することが好ましい。
 中間層用組成物中における炭素数が1~30であるアルキル基を有する(メタ)アクリレートの含有量は、中間層用組成物の有効成分の全量(100質量%)に対して、好ましくは1~30質量%、より好ましくは3~20質量%、更に好ましくは5~15質量%である。
 中間層用組成物中における脂環式構造を有する(メタ)アクリレートの含有量は、中間層用組成物の有効成分の全量(100質量%)に対して、好ましくは5~50質量%、より好ましくは10~40質量%、更に好ましくは15~30質量%である。
Among the above polymerizable monomer options, the intermediate layer composition should contain a (meth)acrylate having an alkyl group having 1 to 30 carbon atoms and a (meth)acrylate having an alicyclic structure. is preferred.
The content of the (meth)acrylate having an alkyl group having 1 to 30 carbon atoms in the intermediate layer composition is preferably 1 with respect to the total amount (100% by mass) of the active ingredients in the intermediate layer composition. to 30% by mass, more preferably 3 to 20% by mass, and even more preferably 5 to 15% by mass.
The content of the (meth)acrylate having an alicyclic structure in the intermediate layer composition is preferably 5 to 50% by mass, more than It is preferably 10 to 40% by mass, more preferably 15 to 30% by mass.
 中間層用組成物中における重合性単量体の合計含有量は、中間層用組成物の有効成分の全量(100質量%)に対して、好ましくは8~70質量%、より好ましくは15~50質量%、更に好ましくは30~40質量%である。 The total content of the polymerizable monomers in the intermediate layer composition is preferably 8 to 70% by mass, more preferably 15 to 70% by mass, based on the total amount (100% by mass) of the active ingredients in the intermediate layer composition. 50% by mass, more preferably 30 to 40% by mass.
 中間層用組成物中における、ウレタン(メタ)アクリレートの含有量と、重合性単量体の含有量との比(ウレタン(メタ)アクリレート/重合性単量体)は、質量基準で、好ましくは20/80~90/10、より好ましくは40/60~80/20、更に好ましくは60/40~70/30である。 The ratio of the urethane (meth)acrylate content to the polymerizable monomer content (urethane (meth)acrylate/polymerizable monomer) in the intermediate layer composition is preferably 20/80 to 90/10, more preferably 40/60 to 80/20, still more preferably 60/40 to 70/30.
〔光重合開始剤〕
 中間層用組成物は、さらに、ウレタン(メタ)アクリレート及び重合性単量体と共に、光重合開始剤を含有することが好ましい。中間層用組成物が光重合開始剤を含有することによって、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
 光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Photopolymerization initiator]
The intermediate layer composition preferably further contains a photopolymerization initiator together with the urethane (meth)acrylate and the polymerizable monomer. By including a photopolymerization initiator in the intermediate layer composition, the curing reaction can be sufficiently advanced even by irradiation with relatively low-energy energy rays.
A photoinitiator may be used individually by 1 type, and may use 2 or more types together.
 光重合開始剤としては、例えば、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、チオキサントン化合物、パーオキサイド化合物等の光重合開始剤、アミンやキノン等の光増感剤等が挙げられる。
 より具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等が挙げられる。
Examples of photopolymerization initiators include photopolymerization initiators such as benzoin compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, thioxanthone compounds, peroxide compounds, and photosensitizers such as amines and quinones. .
More specifically, for example, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2,2 -dimethoxy-1,2-diphenylethan-1-one and the like.
 中間層用組成物中における光重合開始剤の含有量は、ウレタン(メタ)アクリレート及び重合性単量体の合計100質量部に対して、好ましくは0.05~15質量部、より好ましくは0.5~10質量部、更に好ましくは1~5質量部である。 The content of the photopolymerization initiator in the intermediate layer composition is preferably 0.05 to 15 parts by mass, more preferably 0 parts by mass, with respect to the total of 100 parts by mass of the urethane (meth)acrylate and the polymerizable monomer. .5 to 10 parts by mass, more preferably 1 to 5 parts by mass.
〔連鎖移動剤〕
 中間層用組成物は、さらに、ウレタン(メタ)アクリレート及び重合性単量体と共に、連鎖移動剤を含有することが好ましい。中間層用組成物が連鎖移動剤を含有することによって、硬化後においても分子鎖の短い成分が比較的残存することが可能となり、硬化後の重合体が柔軟性を有するものになる。
 連鎖移動剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Chain transfer agent]
The intermediate layer composition preferably further contains a chain transfer agent together with the urethane (meth)acrylate and the polymerizable monomer. By containing the chain transfer agent in the composition for the intermediate layer, it becomes possible for components with relatively short molecular chains to remain even after curing, and the polymer after curing has flexibility.
A chain transfer agent may be used individually by 1 type, and may use 2 or more types together.
 連鎖移動剤としては、例えば、チオール基含有化合物が挙げられる。チオール基含有化合物としては、例えば、ノニルメルカプタン、1-ドデカンチオール、1,2-エタンジチオール、1,3-プロパンジチオール、トリアジンチオール、トリアジンジチオール、トリアジントリチオール、1,2,3-プロパントリチオール、テトラエチレングリコール-ビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキスチオグルコレート、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられる。これらの中でも、ペンタエリスリトールテトラキス(3-メルカプトブチレート)が好ましい。 Examples of chain transfer agents include thiol group-containing compounds. Examples of thiol group-containing compounds include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, and 1,2,3-propanetrithiol. , tetraethylene glycol-bis(3-mercaptopropionate), trimethylolpropane tris(3-mercaptopropionate), pentaerythritol tetrakis(3-mercaptopropionate), pentaerythritol tetrakisthioglucolate, dipentaerythritol hexakis(3-mercaptopropionate), tris[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, 1,4-bis(3-mercaptobutyryloxy)butane, pentaerythritol tetrakis(3-mercaptobutyric rate), 1,3,5-tris(3-mercaptobutyloxyethyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione and the like. Among these, pentaerythritol tetrakis(3-mercaptobutyrate) is preferred.
 中間層用組成物中における連鎖移動剤の含有量は、ウレタン(メタ)アクリレート及び重合性単量体の合計100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.3~5質量部、更に好ましくは0.5~3質量部である。 The content of the chain transfer agent in the intermediate layer composition is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 10 parts by mass, based on the total of 100 parts by mass of the urethane (meth)acrylate and the polymerizable monomer. 3 to 5 parts by mass, more preferably 0.5 to 3 parts by mass.
〔熱膨張性粒子〕
 中間層が、熱膨張性粒子を含有する熱膨張性層である場合、中間層は、熱膨張性粒子を含有する中間層用組成物によって形成することができる。熱膨張性粒子の種類及び含有量の好適な態様は、上記した熱膨張性層の説明における熱膨張性粒子の種類及び含有量の好適な態様と同じである。
[Thermal expandable particles]
When the intermediate layer is a thermally expandable layer containing thermally expandable particles, the intermediate layer can be formed from an intermediate layer composition containing thermally expandable particles. Preferred aspects of the type and content of the thermally expandable particles are the same as the preferred aspects of the type and content of the thermally expandable particles in the description of the thermally expandable layer above.
〔中間層用添加剤〕
 中間層用組成物は、本発明の効果を損なわない範囲において、上述の各成分以外にも、中間層用添加剤を含有してもよい。中間層用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、充填剤、防錆剤、顔料、染料、粘着付与剤等が挙げられる。
 なお、これらの中間層用添加剤は、それぞれ1種を単独で用いてもよく、2種以上を併用してもよい。
 中間層用組成物がこれらの中間層用添加剤を含有する場合、それぞれの中間層用添加剤の含有量は、それぞれ独立して、ウレタン(メタ)アクリレート及び重合性単量体の合計100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
[Additive for intermediate layer]
The intermediate layer composition may contain intermediate layer additives in addition to the components described above, as long as the effects of the present invention are not impaired. Examples of additives for the intermediate layer include antioxidants, softeners (plasticizers), fillers, rust inhibitors, pigments, dyes, tackifiers and the like.
These intermediate layer additives may be used singly or in combination of two or more.
When the intermediate layer composition contains these intermediate layer additives, the content of each intermediate layer additive is independently 100 mass in total of the urethane (meth)acrylate and the polymerizable monomer. 0.0001 to 20 parts by mass, more preferably 0.001 to 10 parts by mass.
 本発明の一態様で用いる中間層用組成物は、本発明の効果を損なわない範囲において溶剤を含有していてもよいが、ウレタン(メタ)アクリレート及び重合性単量体を含有し、溶剤を含有しない無溶剤型樹脂組成物であることが好ましい。
 無溶剤型樹脂組成物は、溶剤を含有しないが、上記した重合性単量体が、樹脂の可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物に対して、エネルギー線を照射することで、ウレタン(メタ)アクリレート、重合性単量体等が重合し、中間層が形成される。
The intermediate layer composition used in one aspect of the present invention may contain a solvent as long as the effects of the present invention are not impaired. It is preferably a solvent-free resin composition that does not contain.
Although the solvent-free resin composition does not contain a solvent, the polymerizable monomer mentioned above contributes to the improvement of the plasticity of the resin.
By irradiating the solvent-free resin composition with energy rays, the urethane (meth)acrylate, the polymerizable monomer, etc. are polymerized to form the intermediate layer.
〔中間層の厚さ〕
 本発明の一態様の粘着シートにおいて中間層の厚さは、好ましくは10~500μm、より好ましくは20~350μm、更に好ましくは30~200μmである。中間層の厚さが10μm以上であると、半導体ウエハ(W)が有する突起部を埋め込み易くなる傾向にある。また、中間層の厚さが500μm以下であると、粘着シートの取り扱い性を向上させ易い傾向にある。
 なお、中間層の厚さは、中間層全体の厚さを意味する。例えば、複数層から構成される中間層の厚さは、中間層を構成するすべての層の合計の厚さを意味する。
[Thickness of intermediate layer]
In the pressure-sensitive adhesive sheet of one embodiment of the present invention, the thickness of the intermediate layer is preferably 10-500 μm, more preferably 20-350 μm, still more preferably 30-200 μm. When the thickness of the intermediate layer is 10 μm or more, it tends to be easy to embed the projections of the semiconductor wafer (W). In addition, when the thickness of the intermediate layer is 500 μm or less, the handleability of the pressure-sensitive adhesive sheet tends to be improved.
The thickness of the intermediate layer means the thickness of the entire intermediate layer. For example, the thickness of an intermediate layer composed of multiple layers means the total thickness of all the layers that make up the intermediate layer.
(粘着剤層)
 粘着剤層は、中間層の基材とは反対の面側に設けられる層であり、半導体ウエハ(W)の突起部を有する面(Wα)に貼付される層である。
(Adhesive layer)
The pressure-sensitive adhesive layer is a layer provided on the side of the intermediate layer opposite to the base material, and is a layer that is attached to the surface (Wα) having protrusions of the semiconductor wafer (W).
 粘着剤層は、エネルギー線硬化性を有する層であることが好ましい。粘着剤層がエネルギー線硬化性を有することによって、エネルギー線硬化前においては十分な粘着性によって半導体ウエハ(W)の表面を良好に保護することができ、エネルギー線硬化後においては剥離力が低減され、半導体ウエハ(W)から容易に剥離することができる。 The adhesive layer is preferably a layer having energy ray curability. Since the adhesive layer has energy ray curability, the surface of the semiconductor wafer (W) can be well protected with sufficient adhesiveness before energy ray curing, and the peeling force is reduced after energy ray curing. and can be easily separated from the semiconductor wafer (W).
 粘着剤層は、粘着性樹脂を含む粘着剤組成物から形成することができる。
 粘着剤組成物としては、例えば、下記のX型の粘着剤組成物、Y型の粘着剤組成物、XY型の粘着剤組成物等が挙げられる。
 X型の粘着剤組成物:非エネルギー線硬化性の粘着性樹脂(以下、「粘着性樹脂I」ともいう)と、粘着性樹脂以外のエネルギー線硬化性化合物と、を含有するエネルギー線硬化性粘着剤組成物
 Y型の粘着剤組成物:非エネルギー線硬化性の粘着性樹脂の側鎖に不飽和基を導入したエネルギー線硬化性の粘着性樹脂(以下、「粘着性樹脂II」ともいう)を含有し、粘着性樹脂以外のエネルギー線硬化性化合物を含有しないエネルギー線硬化性粘着剤組成物
 XY型の粘着剤組成物:上記エネルギー線硬化性の粘着性樹脂IIと、粘着性樹脂以外のエネルギー線硬化性化合物と、を含有するエネルギー線硬化性粘着剤組成物
 これらの中でも、エネルギー線硬化性粘着剤は、XY型の粘着剤組成物であることが好ましい。
The adhesive layer can be formed from an adhesive composition containing an adhesive resin.
Examples of the pressure-sensitive adhesive composition include the following X-type pressure-sensitive adhesive composition, Y-type pressure-sensitive adhesive composition, and XY-type pressure-sensitive adhesive composition.
X-type adhesive composition: Energy ray-curable containing a non-energy ray-curable adhesive resin (hereinafter also referred to as “adhesive resin I”) and an energy ray-curable compound other than the adhesive resin Adhesive composition Y-type adhesive composition: an energy ray-curable adhesive resin in which an unsaturated group is introduced into the side chain of a non-energy ray-curable adhesive resin (hereinafter, also referred to as "adhesive resin II" ) and does not contain an energy ray-curable compound other than the adhesive resin XY-type adhesive composition: the energy ray-curable adhesive resin II and other than the adhesive resin and an energy ray-curable pressure-sensitive adhesive composition containing: and an energy ray-curable pressure-sensitive adhesive composition of XY type.
 次に、粘着剤層を構成する各成分について、より詳細に説明する。
 以下の説明において「粘着性樹脂」は、粘着性樹脂I及び粘着性樹脂IIの一方又は両方を指す用語として使用する。
Next, each component constituting the pressure-sensitive adhesive layer will be described in more detail.
In the following description, "tacky resin" is used as a term indicating one or both of tacky resin I and tacky resin II.
 粘着性樹脂は、官能基を有さない粘着性樹脂であってもよいが、官能基を有する粘着性樹脂であることが好ましい。粘着性樹脂は官能基を有することによって、例えば、後述する架橋剤との反応性、エネルギー線硬化性等が得られる。
 粘着性樹脂が有する官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエネルギー線重合性を有する不飽和基;ヒドロキシ基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。これらの中でも、(メタ)アクリロイル基、ヒドロキシ基が好ましい。粘着性樹脂は、1種の官能基を有するものであってもよく、2種以上の官能基を有するものであってもよい。
The adhesive resin may be an adhesive resin having no functional group, but is preferably an adhesive resin having a functional group. By having a functional group, the adhesive resin can obtain, for example, reactivity with a cross-linking agent and energy ray curability, which will be described later.
Examples of functional groups possessed by the adhesive resin include unsaturated groups having energy beam polymerizability such as (meth)acryloyl groups, vinyl groups, and allyl groups; hydroxy groups, carboxy groups, amino groups, epoxy groups, and the like. . Among these, a (meth)acryloyl group and a hydroxy group are preferred. The adhesive resin may have one type of functional group, or may have two or more types of functional groups.
 粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂等が挙げられる。これらの中でも、アクリル系樹脂が好ましい。 Examples of adhesive resins include acrylic resins, urethane resins, rubber resins, and silicone resins. Among these, acrylic resins are preferable.
〔アクリル系樹脂〕
 アクリル系樹脂は、アクリル系モノマーをモノマー成分として含有する重合体であれば特に限定されないが、アルキル(メタ)アクリレートに由来する構成単位を含有することが好ましい。
 アルキル(メタ)アクリレートとしては、例えば、アルキル基の炭素数が1~20であるアルキル(メタ)アクリレートが挙げられる。
 アルキル(メタ)アクリレートが有するアルキル基は、直鎖状であってもよいし、分岐状であってもよい。
[Acrylic resin]
The acrylic resin is not particularly limited as long as it is a polymer containing an acrylic monomer as a monomer component, but preferably contains a structural unit derived from an alkyl (meth)acrylate.
Examples of alkyl (meth)acrylates include alkyl (meth)acrylates in which the alkyl group has 1 to 20 carbon atoms.
The alkyl group of the alkyl (meth)acrylate may be linear or branched.
 アクリル系樹脂は、粘着剤層の粘着力をより向上させるという観点から、アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートに由来する構成単位を含有することが好ましい。
 アクリル系樹脂に含有されるアルキル基の炭素数が4以上であるアルキル(メタ)アクリレートに由来する構成単位は、1種単独又は2種以上であってもよい。
 アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートが有するアルキル基の炭素数は、好ましくは4~12、より好ましくは4~8、更に好ましくは4~6である。
 アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートとしては、例えば、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート等が挙げられる。これらの中でも、2-エチルヘキシル(メタ)アクリレートが好ましく、2-エチルヘキシルアクリレートがより好ましい。
 アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートの含有量は、粘着剤層の粘着力をより向上させるという観点から、アクリル系樹脂を構成するアクリル系モノマー由来の構成単位中、好ましくは30~90質量%、より好ましくは40~80質量%、更に好ましくは50~70質量%である。
From the viewpoint of further improving the adhesive strength of the adhesive layer, the acrylic resin preferably contains a structural unit derived from an alkyl (meth)acrylate having an alkyl group with 4 or more carbon atoms.
The structural unit derived from the alkyl (meth)acrylate having 4 or more carbon atoms in the alkyl group contained in the acrylic resin may be one type alone or two or more types.
The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate having 4 or more carbon atoms in the alkyl group is preferably 4 to 12, more preferably 4 to 8, and still more preferably 4 to 6.
Examples of alkyl (meth)acrylates in which the alkyl group has 4 or more carbon atoms include butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl ( meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate and the like. Among these, 2-ethylhexyl (meth)acrylate is preferred, and 2-ethylhexyl acrylate is more preferred.
The content of the alkyl (meth)acrylate whose alkyl group has 4 or more carbon atoms is preferable among the structural units derived from acrylic monomers constituting the acrylic resin, from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer. is 30 to 90% by mass, more preferably 40 to 80% by mass, and still more preferably 50 to 70% by mass.
 アクリル系樹脂は、粘着剤層の弾性率及び粘着特性を良好にするという観点から、アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートに由来する構成単位と共に、アルキル基の炭素数が1~3であるアルキル(メタ)アクリレートに由来する構成単位を含有することが好ましい。
 アクリル系樹脂に含有されるアルキル基の炭素数が1~3であるアルキル(メタ)アクリレートに由来する構成単位は、1種単独又は2種以上であってもよい。
 アルキル基の炭素数が1~3であるアルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-プロピル(メタ)アクリレート等が挙げられる。これらの中でも、メチル(メタ)アクリレート、エチル(メタ)アクリレートが好ましく、メチルメタクリレート、エチルアクリレートがより好ましい。
 アルキル基の炭素数が1~3であるアルキル(メタ)アクリレートに由来する構成単位の含有量は、アクリル系樹脂を構成するアクリル系モノマー由来の構成単位中、好ましくは1~35質量%、より好ましくは5~30質量%、更に好ましくは15~25質量%である。
From the viewpoint of improving the elastic modulus and adhesive properties of the pressure-sensitive adhesive layer, the acrylic resin has a structural unit derived from an alkyl (meth)acrylate having an alkyl group having 4 or more carbon atoms, and an alkyl group having a carbon number of 4 or more. It preferably contains structural units derived from 1 to 3 alkyl (meth)acrylates.
The structural unit derived from the alkyl (meth)acrylate having 1 to 3 carbon atoms in the alkyl group contained in the acrylic resin may be of one type or two or more types.
Examples of alkyl (meth)acrylates having 1 to 3 carbon atoms in the alkyl group include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-propyl (meth)acrylate and the like. . Among these, methyl (meth)acrylate and ethyl (meth)acrylate are preferred, and methyl methacrylate and ethyl acrylate are more preferred.
The content of structural units derived from alkyl (meth)acrylates having 1 to 3 carbon atoms in the alkyl group is preferably 1 to 35% by mass, in the structural units derived from acrylic monomers constituting the acrylic resin. It is preferably 5 to 30% by mass, more preferably 15 to 25% by mass.
 アクリル系樹脂は、さらに、官能基含有モノマーに由来する構成単位を含有することが好ましい。
 アクリル系樹脂が官能基含有モノマーに由来する構成単位を含有することによって、架橋剤と反応する架橋起点としての官能基、又は不飽和基含有化合物と反応して、アクリル系樹脂の側鎖に不飽和基を導入することを可能とする官能基を導入することができる。
 アクリル系樹脂に含有される官能基含有モノマーに由来する構成単位は、1種単独又は2種以上であってもよい。
The acrylic resin preferably further contains structural units derived from functional group-containing monomers.
When the acrylic resin contains a structural unit derived from a functional group-containing monomer, the functional group as a cross-linking starting point that reacts with the cross-linking agent or reacts with the unsaturated group-containing compound to create an unsaturated group in the side chain of the acrylic resin. Functional groups can be introduced that allow the introduction of saturated groups.
The structural unit derived from the functional group-containing monomer contained in the acrylic resin may be one type alone or two or more types.
 官能基含有モノマーとしては、例えば、ヒドロキシ基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ビニルアルコール、アリルアルコール等の不飽和アルコール;等が挙げられる。
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物;2-カルボキシエチルメタクリレート;等が挙げられる。
 これらの中でも、ヒドロキシ基含有モノマーが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましく、2-ヒドロキシエチルアクリレートが更に好ましい。
Examples of functional group-containing monomers include hydroxyl group-containing monomers, carboxy group-containing monomers, amino group-containing monomers, and epoxy group-containing monomers.
Examples of hydroxy group-containing monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( hydroxyalkyl (meth)acrylates such as meth)acrylate and 4-hydroxybutyl (meth)acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol;
Carboxy group-containing monomers include, for example, ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides ; 2-carboxyethyl methacrylate; and the like.
Among these, hydroxy group-containing monomers are preferred, 2-hydroxyethyl (meth)acrylate is more preferred, and 2-hydroxyethyl acrylate is even more preferred.
 官能基含有モノマーに由来する構成単位の含有量は、アクリル系樹脂を構成するアクリル系モノマー由来の構成単位中、好ましくは1~35質量%、より好ましくは5~30質量%、更に好ましくは15~25質量%である。 The content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, more preferably 5 to 30% by mass, more preferably 15% by mass in the structural unit derived from the acrylic monomer constituting the acrylic resin. ~25% by mass.
 アクリル系樹脂は、上記の構成単位以外にも、アクリル系モノマーと共重合可能なその他のモノマーに由来する構成単位を含有していてもよい。
 アクリル系樹脂に含有されるその他のモノマーに由来する構成単位は、1種単独又は2種以上であってもよい。
 その他のモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、蟻酸ビニル、酢酸ビニル、アクリロニトリル、アクリルアミド等が挙げられる。
The acrylic resin may contain, in addition to the above structural units, structural units derived from other monomers copolymerizable with acrylic monomers.
Constituent units derived from other monomers contained in the acrylic resin may be one type alone or two or more types.
Other monomers include, for example, styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
 アクリル系樹脂は、さらに、エネルギー線硬化性を付与するために、エネルギー線重合性を有する不飽和基を導入したものであってもよい。
 不飽和基は、例えば、官能基含有モノマーに由来する構成単位を含有するアクリル系樹脂の官能基と、該官能基と反応性を有する反応性置換基及び不飽和基を有する化合物(以下、「不飽和基含有化合物」ともいう)の反応性置換基と、を反応させることによって導入することができる。
 不飽和基含有化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 不飽和基含有化合物が有する不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等が挙げられる。これらの中でも、(メタ)アクリロイル基が好ましい。
 不飽和基含有化合物が有する反応性置換基としては、例えば、イソシアネート基、グリシジル基等が挙げられる。
 不飽和基含有化合物としては、例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられる。これらの中でも、2-(メタ)アクリロイルオキシエチルイソシアネートが好ましく、2-メタクリロイルオキシエチルイソシアネートがより好ましい。
The acrylic resin may further have an energy ray polymerizable unsaturated group introduced thereinto to impart energy ray curability.
The unsaturated group is, for example, a functional group of an acrylic resin containing structural units derived from a functional group-containing monomer, and a compound having a reactive substituent and an unsaturated group having reactivity with the functional group (hereinafter referred to as " (also referred to as "unsaturated group-containing compound").
The unsaturated group-containing compounds may be used singly or in combination of two or more.
Examples of the unsaturated group that the unsaturated group-containing compound has include a (meth)acryloyl group, a vinyl group, and an allyl group. Among these, a (meth)acryloyl group is preferred.
Examples of reactive substituents that the unsaturated group-containing compound has include an isocyanate group and a glycidyl group.
Examples of unsaturated group-containing compounds include 2-(meth)acryloyloxyethyl isocyanate, (meth)acryloylisocyanate, glycidyl (meth)acrylate and the like. Among these, 2-(meth)acryloyloxyethyl isocyanate is preferred, and 2-methacryloyloxyethyl isocyanate is more preferred.
 官能基含有モノマーに由来する構成単位を含有するアクリル系樹脂と、不飽和基含有化合物と、を反応させる場合、アクリル系樹脂中の官能基の総数中、不飽和基含有化合物と反応する官能基の比率は、特に限定されないが、好ましくは30~90モル%、より好ましくは40~80モル%、更に好ましくは50~70モル%である。
 不飽和基含有化合物と反応する官能基の比率が上記範囲であると、アクリル系樹脂に対して十分なエネルギー線硬化性を付与できると共に、不飽和基含有化合物と反応しなかった官能基を架橋剤と反応させてアクリル系樹脂を架橋させることができる。
When an acrylic resin containing a structural unit derived from a functional group-containing monomer is reacted with an unsaturated group-containing compound, among the total number of functional groups in the acrylic resin, a functional group that reacts with the unsaturated group-containing compound. is not particularly limited, but is preferably 30 to 90 mol%, more preferably 40 to 80 mol%, still more preferably 50 to 70 mol%.
When the ratio of the functional group that reacts with the unsaturated group-containing compound is within the above range, sufficient energy ray curability can be imparted to the acrylic resin, and the functional group that has not reacted with the unsaturated group-containing compound is crosslinked. The acrylic resin can be crosslinked by reacting with the agent.
 アクリル系樹脂の質量平均分子量(Mw)は、特に限定されないが、好ましくは30万~150万、より好ましくは45万~100万、更に好ましくは60万~90万である。アクリル系樹脂の質量平均分子量(Mw)が上記範囲であると、粘着剤層の粘着力及び凝集力がより良好になる傾向にある。 The mass average molecular weight (Mw) of the acrylic resin is not particularly limited, but is preferably 300,000 to 1,500,000, more preferably 450,000 to 1,000,000, and still more preferably 600,000 to 900,000. When the mass average molecular weight (Mw) of the acrylic resin is within the above range, the pressure-sensitive adhesive layer tends to have better adhesive strength and cohesive strength.
 粘着剤組成物中におけるアクリル系樹脂の含有量は、粘着剤組成物の有効成分の全量(100質量%)に対して、好ましくは70~99質量%、より好ましくは80~98質量%、更に好ましくは90~97質量%である。 The content of the acrylic resin in the adhesive composition is preferably 70 to 99% by mass, more preferably 80 to 98% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition. It is preferably 90 to 97% by mass.
〔架橋剤〕
 粘着剤組成物は、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
 架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Crosslinking agent]
When the pressure-sensitive adhesive composition contains a pressure-sensitive adhesive resin having a functional group, it preferably further contains a cross-linking agent.
The cross-linking agent reacts with the adhesive resin having a functional group to cross-link the adhesive resins using the functional group as a cross-linking starting point.
The cross-linking agents may be used alone or in combination of two or more.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。 Examples of cross-linking agents include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents. Among these cross-linking agents, isocyanate-based cross-linking agents are preferable from the viewpoints of increasing cohesive strength and improving adhesive strength, and from the viewpoints of availability and the like.
 イソシアネート系架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロヘプタントリイソシアネート、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、水添キシリレンジイソシアネート等の脂環式ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の非環式脂肪族ポリイソシアネート;等の多価イソシアネート化合物等が挙げられる。
 また、イソシアネート系架橋剤としては、例えば、当該多価イソシアネート化合物のトリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含むイソシアヌレート型変性体等も挙げられる。
 これらの中でも、多価イソシアネート化合物のトリメチロールプロパンアダクト型変性体が好ましく、芳香族ポリイソシアネート化合物のトリメチロールプロパンアダクト型変性体がより好ましく、トリレンジイソシアネートのトリメチロールプロパンアダクト型変性体が更に好ましい。
Examples of isocyanate-based cross-linking agents include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; Alicyclic polyisocyanates such as methylcyclohexylene diisocyanate, methylenebis(cyclohexyl isocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate acyclic aliphatic polyisocyanates such as; polyvalent isocyanate compounds such as;
Examples of isocyanate-based cross-linking agents include trimethylolpropane adduct-type modified products of the polyvalent isocyanate compounds, biuret-type modified products reacted with water, isocyanurate-type modified products containing an isocyanurate ring, and the like.
Among these, trimethylolpropane adduct-type modified polyisocyanate compounds are preferred, trimethylolpropane adduct-type modified aromatic polyisocyanate compounds are more preferred, and trimethylolpropane adduct-type modified tolylene diisocyanate is even more preferred. .
 粘着剤組成物中における架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the cross-linking agent in the pressure-sensitive adhesive composition is appropriately adjusted according to the number of functional groups possessed by the pressure-sensitive adhesive resin, but is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive resin. parts, more preferably 0.03 to 7 parts by mass, and still more preferably 0.05 to 5 parts by mass.
〔光重合開始剤〕
 粘着剤組成物は、さらに光重合開始剤を含有することが好ましい。エネルギー線硬化性粘着剤が光重合開始剤を含有することによって、紫外線等の比較的低エネルギーのエネルギー線でも、エネルギー線硬化反応が十分に進行する傾向にある。
 光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Photopolymerization initiator]
The pressure-sensitive adhesive composition preferably further contains a photopolymerization initiator. When the energy ray-curable pressure-sensitive adhesive contains a photopolymerization initiator, the energy ray curing reaction tends to proceed sufficiently even with relatively low-energy energy rays such as ultraviolet rays.
A photoinitiator may be used individually by 1 type, and may use 2 or more types together.
 光重合開始剤としては、例えば、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、β-クロロアンスラキノン、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド等が挙げられる。これらの中でも、2,2-ジメトキシ-2-フェニルアセトフェノンが好ましい。 Examples of photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram. monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, β-chloroanthraquinone, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and the like. Among these, 2,2-dimethoxy-2-phenylacetophenone is preferred.
 粘着剤組成物中における光重合開始剤の含有量は、粘着性樹脂の全量100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~3質量部である。 The content of the photopolymerization initiator in the adhesive composition is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 100 parts by mass of the total amount of the adhesive resin. is 0.05 to 3 parts by mass.
〔粘着付与剤〕
 粘着剤組成物は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 粘着付与剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。
 粘着剤組成物が粘着付与剤を含有する場合、粘着付与剤の含有量は、粘着剤組成物の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%である。
[Tackifier]
The pressure-sensitive adhesive composition may further contain a tackifier from the viewpoint of further improving the adhesive strength.
The tackifier may be used alone or in combination of two or more.
Examples of tackifiers include rosin-based resins, terpene-based resins, styrene-based resins, pentene produced by thermal decomposition of petroleum naphtha, isoprene, piperine, obtained by copolymerizing C5 fractions such as 1,3-pentadiene. and C9 petroleum resins obtained by copolymerizing C9 fractions such as indene and vinyl toluene produced by thermal decomposition of petroleum naphtha, and hydrogenated resins obtained by hydrogenating these.
When the adhesive composition contains a tackifier, the content of the tackifier is preferably 0.01 to 65% by mass, relative to the total amount (100% by mass) of the active ingredients of the adhesive composition, and more It is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass.
〔エネルギー線硬化性化合物〕
 粘着剤組成物は、粘着剤層の凝集力を調整する目的で、さらに、上記各成分以外のエネルギー線硬化性化合物を含有していてもよい。
 エネルギー線硬化性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 エネルギー線硬化性化合物としては、エネルギー線照射により重合硬化可能なモノマー又はオリゴマーが挙げられる。
 エネルギー線硬化性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレートモノマー;ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、エポキシ(メタ)アクリレート等のオリゴマー;等が挙げられる。これらの中でも、硬化性の観点から、ジペンタエリスリトールヘキサ(メタ)アクリレートが好ましく、ジペンタエリスリトールヘキサアクリレートがより好ましい。
 粘着剤組成物がエネルギー線硬化性化合物を含有する場合、エネルギー線硬化性化合物の含有量は、特に限定されないが、粘着性樹脂100質量部に対して、好ましくは10~100質量部、より好ましくは20~70質量部、更に好ましくは30~40質量部である。
[Energy ray-curable compound]
The pressure-sensitive adhesive composition may further contain an energy ray-curable compound other than the above components for the purpose of adjusting the cohesion of the pressure-sensitive adhesive layer.
The energy ray-curable compounds may be used singly or in combination of two or more.
Examples of energy ray-curable compounds include monomers or oligomers that can be polymerized and cured by energy ray irradiation.
Examples of energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and 1,4-butylene glycol. Polyvalent (meth)acrylate monomers such as di(meth)acrylate and 1,6-hexanediol (meth)acrylate; urethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, epoxy (meth)acrylate oligomers such as acrylate; Among these, from the viewpoint of curability, dipentaerythritol hexa(meth)acrylate is preferred, and dipentaerythritol hexaacrylate is more preferred.
When the pressure-sensitive adhesive composition contains an energy ray-curable compound, the content of the energy ray-curable compound is not particularly limited, but is preferably 10 to 100 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the adhesive resin. is 20 to 70 parts by mass, more preferably 30 to 40 parts by mass.
〔熱膨張性粒子〕
 粘着剤層が、熱膨張性粒子を含有する熱膨張性層である場合、粘着剤層は、熱膨張性粒子を含有する粘着剤組成物によって形成することができる。熱膨張性粒子の種類及び含有量の好適な態様は、上記した熱膨張性層の説明における熱膨張性粒子の種類及び含有量の好適な態様と同じである。
[Thermal expandable particles]
When the adhesive layer is a thermally expandable layer containing thermally expandable particles, the adhesive layer can be formed from an adhesive composition containing thermally expandable particles. Preferred aspects of the type and content of the thermally expandable particles are the same as the preferred aspects of the type and content of the thermally expandable particles in the description of the thermally expandable layer above.
〔粘着剤用添加剤〕
 本発明の一態様において、粘着剤組成物は、本発明の効果を損なわない範囲で、上述の各成分以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ1種を単独で用いてもよく、2種以上を併用してもよい。
 粘着剤組成物がこれらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、それぞれ独立して、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
[Additive for adhesive]
In one aspect of the present invention, the pressure-sensitive adhesive composition contains additives for pressure-sensitive adhesives that are commonly used in pressure-sensitive adhesives, in addition to the components described above, within a range that does not impair the effects of the present invention. good too.
Examples of such adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), and ultraviolet absorbers.
These adhesive additives may be used singly or in combination of two or more.
When the adhesive composition contains these adhesive additives, the content of each adhesive additive is preferably 0.0001 to 0.0001 to 100 parts by mass of the adhesive resin independently. 20 parts by mass, more preferably 0.001 to 10 parts by mass.
〔粘着剤層の厚さ〕
 粘着剤層の厚さは、好ましくは1~80μm、より好ましくは2~60μm、更に好ましくは3~40μmである。粘着剤層の厚さが1μm以上であると、良好な粘着性が得られ、加工時に半導体ウエハ(W)の回路面をより良好に保護できる傾向にある。また、粘着剤層の厚さが80μm以下であると、粘着シートの切断時におけるテープ屑の発生を抑制し易い傾向にある。
[Thickness of adhesive layer]
The thickness of the pressure-sensitive adhesive layer is preferably 1-80 μm, more preferably 2-60 μm, still more preferably 3-40 μm. When the thickness of the adhesive layer is 1 μm or more, good adhesiveness is obtained, and the circuit surface of the semiconductor wafer (W) tends to be better protected during processing. Moreover, when the thickness of the adhesive layer is 80 μm or less, it tends to be easy to suppress the generation of tape scraps when the adhesive sheet is cut.
(半導体加工用粘着シートの製造方法)
 本発明の一態様の粘着シートの製造方法は特に制限されず、公知の方法によって製造することができる。
 本発明の一態様の半導体加工用粘着シートは、例えば、基材上に中間層を形成した後、該中間層上に粘着剤層を積層する方法によって製造することができる。
(Manufacturing method of adhesive sheet for semiconductor processing)
The method for producing the adhesive sheet of one embodiment of the present invention is not particularly limited, and the adhesive sheet can be produced by a known method.
The pressure-sensitive adhesive sheet for semiconductor processing of one embodiment of the present invention can be produced, for example, by forming an intermediate layer on a substrate and then laminating a pressure-sensitive adhesive layer on the intermediate layer.
 本発明の一態様の粘着シートが有する基材は、商業的に入手可能なものを用いてもよく、公知の方法で形成してもよい。
 基材が、熱膨張性基材と非熱膨張性基材とが積層された基材積層体である場合、基材積層体は、例えば、非熱膨張性基材の片面に、熱膨張性基材を形成するための上記無溶剤型樹脂組成物を塗布した後、エネルギー線を照射することによって形成することができる。
 無溶剤型樹脂組成物を塗布する方法としては、公知の方法を利用することができ、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
A commercially available base material may be used for the base material of the pressure-sensitive adhesive sheet of one embodiment of the present invention, and may be formed by a known method.
When the substrate is a substrate laminate in which a thermally expandable substrate and a non-thermally expandable substrate are laminated, the substrate laminate includes, for example, a thermally expandable substrate on one side of the non-thermally expandable substrate. It can be formed by applying the solventless resin composition for forming the substrate and then irradiating it with an energy ray.
As a method for applying the solventless resin composition, known methods can be used, for example, spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, and die coating. method, gravure coating method, and the like.
 基材上に中間層を形成する方法としては、例えば、上記した中間層用組成物を、基材上に塗布した後、エネルギー線を照射して硬化させる方法が挙げられる。
 中間層用組成物を塗布する方法としては、上記無溶剤型樹脂組成物を塗布する方法と同じ方法が挙げられる。
Examples of the method for forming the intermediate layer on the substrate include a method in which the intermediate layer composition is applied onto the substrate and then cured by irradiation with energy rays.
The method for applying the intermediate layer composition includes the same method as the method for applying the solventless resin composition.
 中間層用組成物へのエネルギー線の照射は1回のみ行ってもよいが、中間層の硬化の度合いを制御し易いという観点から、複数回行うことが好ましい。
 エネルギー線が紫外線である場合、1回目に行う紫外線の照射条件は、紫外線の照度が、好ましくは30~500mW/cm、より好ましくは50~340mW/cmであり、紫外線の照射量が、好ましくは100~2,500mJ/cm、より好ましくは150~2,000mJ/cmである。
 2回目に行う紫外線の照射条件は、紫外線の照度が、好ましくは100~1,000mW/cm、より好ましくは200~500mW/cmであり、紫外線の照射量が、好ましくは300~5,000mJ/cm、より好ましくは500~3,000mJ/cmである。2回目に行う紫外線の照射条件は、照度及び照射量が、1回目の照射における照度及び照射量よりも大きいことが好ましい。
 エネルギー線の照射は、塗布膜が酸素から遮断された状態で行うことが好ましい。塗布膜を酸素から遮断する方法としては、例えば、塗布膜上に剥離シートを貼付する方法が挙げられる。
Although the intermediate layer composition may be irradiated with energy rays only once, it is preferable to irradiate the intermediate layer multiple times from the viewpoint of facilitating control of the degree of curing of the intermediate layer.
When the energy beam is ultraviolet rays, the ultraviolet irradiation conditions for the first irradiation are such that the ultraviolet illuminance is preferably 30 to 500 mW/cm 2 , more preferably 50 to 340 mW/cm 2 , and the ultraviolet irradiation amount is It is preferably 100 to 2,500 mJ/cm 2 , more preferably 150 to 2,000 mJ/cm 2 .
The ultraviolet irradiation conditions for the second irradiation are such that the ultraviolet irradiation intensity is preferably 100 to 1,000 mW/cm 2 , more preferably 200 to 500 mW/cm 2 , and the ultraviolet irradiation amount is preferably 300 to 5,000 mW/cm 2 . 000 mJ/cm 2 , more preferably 500 to 3,000 mJ/cm 2 . It is preferable that the illuminance and the amount of irradiation be higher than the illuminance and the amount of irradiation in the irradiation of the first time.
Irradiation with energy rays is preferably carried out in a state in which the coating film is shielded from oxygen. As a method of shielding the coating film from oxygen, for example, a method of sticking a release sheet on the coating film can be mentioned.
 基材上に中間層を形成する別の方法としては、例えば、上記した中間層用組成物を、剥離シートの剥離処理面上に塗布した後、エネルギー線を照射して中間層を形成し、該中間層を基材の一方の面に貼付する方法が挙げられる。中間層用組成物を塗布する方法及びエネルギー線の照射条件の好ましい態様は上記と同様である。 Another method for forming an intermediate layer on a substrate includes, for example, applying the intermediate layer composition described above to the release-treated surface of a release sheet, and then irradiating an energy beam to form an intermediate layer, A method of attaching the intermediate layer to one surface of the base material may be mentioned. Preferred aspects of the method of applying the intermediate layer composition and the irradiation conditions of energy rays are the same as those described above.
 次いで、基材付き中間層の中間層の表面に粘着剤層を積層する。なお、中間層に剥離シートが貼付されている場合は剥離シートを剥離除去する。
 粘着剤層を中間層に積層する方法としては、例えば、粘着剤組成物を中間層の表面に直接塗布した後、乾燥させて粘着剤層を形成する方法であってもよい。
 また、粘着剤層を中間層に積層する別の方法としては、例えば、粘着剤組成物を、剥離シートの剥離処理面上に塗布した後、乾燥させて粘着剤層を形成し、該粘着剤層を中間層の表面に貼付する方法であってもよい。
 粘着剤組成物を塗布する方法としては、中間層用組成物を塗布する方法と同様の方法が挙げられる。粘着剤組成物を乾燥する条件は、粘着剤組成物中の溶剤の種類及び含有量に応じて適宜調整すればよい。
 以上のようにして、基材、中間層及び粘着剤層をこの順に有する半導体加工用粘着シートが得られる。半導体加工用粘着シートの粘着剤層の表面に剥離シートが貼付されている場合は、半導体加工用粘着シートは、剥離シートを除去してから本発明の一態様の製造方法に供される。
Next, a pressure-sensitive adhesive layer is laminated on the surface of the intermediate layer of the substrate-attached intermediate layer. If a release sheet is attached to the intermediate layer, the release sheet is peeled off.
As a method of laminating the pressure-sensitive adhesive layer on the intermediate layer, for example, a method of directly applying the pressure-sensitive adhesive composition to the surface of the intermediate layer and then drying it to form the pressure-sensitive adhesive layer may be used.
Further, as another method for laminating the adhesive layer to the intermediate layer, for example, the adhesive composition is coated on the release-treated surface of the release sheet, dried to form an adhesive layer, and the adhesive layer is formed. A method of attaching the layer to the surface of the intermediate layer may also be used.
The method of applying the adhesive composition includes the same method as the method of applying the intermediate layer composition. The conditions for drying the pressure-sensitive adhesive composition may be appropriately adjusted according to the type and content of the solvent in the pressure-sensitive adhesive composition.
As described above, a semiconductor processing pressure-sensitive adhesive sheet having a substrate, an intermediate layer and a pressure-sensitive adhesive layer in this order is obtained. When a release sheet is attached to the surface of the adhesive layer of the pressure-sensitive adhesive sheet for semiconductor processing, the pressure-sensitive adhesive sheet for semiconductor processing is subjected to the manufacturing method of one embodiment of the present invention after removing the release sheet.
[半導体装置の製造方法]
 次に、本発明の一態様の半導体装置の製造方法の加工対象である突起部を有する半導体ウエハ(W)に関して説明した後、本発明の一態様の半導体装置の製造方法の各工程について順に説明する。
[Method for manufacturing a semiconductor device]
Next, after the semiconductor wafer (W) having protrusions, which is a processing target of the method for manufacturing a semiconductor device of one embodiment of the present invention, is described, each step of the method for manufacturing a semiconductor device of one embodiment of the present invention is sequentially described. do.
<半導体ウエハ(W)>
 半導体ウエハ(W)は、半導体ウエハ用の基板に対して、回路、バンプ等を形成してなるものである。
 半導体ウエハ用の基板としては、例えば、シリコンウエハ;ガリウム砒素、炭化ケイ素、サファイア、タンタル酸リチウム、ニオブ酸リチウム、窒化ガリウム、インジウム燐等のウエハ;ガラスウエハ等が挙げられる。
<Semiconductor wafer (W)>
The semiconductor wafer (W) is obtained by forming circuits, bumps, etc. on a semiconductor wafer substrate.
Substrates for semiconductor wafers include, for example, silicon wafers; wafers of gallium arsenide, silicon carbide, sapphire, lithium tantalate, lithium niobate, gallium nitride, indium phosphide, etc.; and glass wafers.
 半導体ウエハ(W)の平面視における形状は特に限定されないが、通常は円板状のものが用いられる。円板状の半導体ウエハ(W)のサイズは、各工程に用いる装置、製造方式等に合わせて適宜選択すればよいが、例えば、直径8インチ(200mm)、直径12インチ(300mm)のもの等が挙げられる。 The shape of the semiconductor wafer (W) in plan view is not particularly limited, but a disk-like one is usually used. The size of the disk-shaped semiconductor wafer (W) may be appropriately selected according to the equipment used in each process, the manufacturing method, etc. For example, a diameter of 8 inches (200 mm), a diameter of 12 inches (300 mm), etc. are mentioned.
 半導体ウエハ(W)の突起部を除く部分の厚さは、特に限定されないが、半導体ウエハ(W)の取り扱い性及び加工性の観点から、好ましくは100~1,000μm、より好ましくは200~900μm、更に好ましくは300~800μmである。 The thickness of the portion of the semiconductor wafer (W) excluding the protrusions is not particularly limited, but is preferably 100 to 1,000 μm, more preferably 200 to 900 μm, from the viewpoint of handling and workability of the semiconductor wafer (W). , more preferably 300 to 800 μm.
 半導体ウエハ(W)は一方の面(Wα)に突起部を有するものである。
 突起部としては、例えば、半導体ウエハ(W)の面(Wα)に形成された回路、バンプ等が挙げられる。これらの中でも、半導体ウエハ(W)はバンプを有するものが好ましい。
 バンプとしては、例えば、金、銀、銅、ニッケル、錫、鉛、これらの金属を含む合金等の金属からなるバンプが挙げられる。
 バンプの形状は特に限定されず、例えば、球状、円柱状、楕円柱状、回転楕円体、円錐状、楕円錐状、立方体状、直方体状、台形状等が挙げられる。
 半導体ウエハ(W)に形成されるバンプの個数は、特に限定されず、設計上の要求に応じて適宜変更される。
The semiconductor wafer (W) has projections on one surface (Wα).
Examples of protrusions include circuits and bumps formed on the surface (Wα) of the semiconductor wafer (W). Among these, the semiconductor wafer (W) preferably has bumps.
Examples of bumps include bumps made of metals such as gold, silver, copper, nickel, tin, lead, and alloys containing these metals.
The shape of the bump is not particularly limited, and examples thereof include spherical, cylindrical, elliptical cylindrical, spheroidal, conical, elliptical conical, cubic, rectangular parallelepiped, and trapezoidal shapes.
The number of bumps formed on the semiconductor wafer (W) is not particularly limited, and can be appropriately changed according to design requirements.
 半導体ウエハ(W)が有する突起部の高さは、特に限定されないが、本発明の一態様の半導体装置の製造方法の効果を顕著に発現させるという観点から、好ましくは10~500μm、より好ましくは15~400μm、更に好ましくは20~300μmである。 The height of the projections of the semiconductor wafer (W) is not particularly limited, but is preferably 10 μm to 500 μm, more preferably 10 μm to 500 μm from the viewpoint of significantly exhibiting the effects of the method for manufacturing a semiconductor device according to one embodiment of the present invention. 15 to 400 μm, more preferably 20 to 300 μm.
 図2には、半導体ウエハ(W)の一例として、突起部としてバンプを有する半導体ウエハW(以下、「バンプ付きウエハW」ともいう)の平面視における模式図が示されている。
 バンプ付きウエハWの面Wαには、分割予定ライン5によって区画された複数のデバイス6が形成されている。各デバイス6には、回路(図示せず)が形成され、図2の拡大図に示されるように、突起部である複数のバンプ7が形成されている。
 バンプ付きウエハWの面Wαは、複数のデバイス6が分割予定ライン5を介して配列しているデバイス領域8と、個片化する際の残余部となるデバイス非形成領域9と、を有する。
As an example of the semiconductor wafer (W), FIG. 2 shows a schematic plan view of a semiconductor wafer W having bumps as protrusions (hereinafter also referred to as "wafer with bumps W").
A plurality of devices 6 partitioned by dividing lines 5 are formed on the surface Wα of the wafer W with bumps. A circuit (not shown) is formed in each device 6, and as shown in the enlarged view of FIG. 2, a plurality of bumps 7 are formed as protrusions.
The surface Wα of the wafer W with bumps has a device region 8 in which a plurality of devices 6 are arranged via the dividing lines 5 and a device non-formation region 9 which becomes a remaining portion when singulating.
 次に、図面を参照しながら、本発明の一態様の製造方法の各工程について説明する。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大したり、簡略化して示している。そのため、各構成要素の寸法比率、数等は実際と同じであるとは限らない。 Next, each step of the manufacturing method of one embodiment of the present invention will be described with reference to the drawings. In the drawings used in the following description, for the sake of convenience, essential parts are shown enlarged or simplified in order to facilitate understanding of the features of the present invention. Therefore, the dimensional ratio, number, etc. of each component are not necessarily the same as in reality.
<工程1>
 工程1は、本発明の一態様の半導体加工用粘着シートを、前記粘着剤層を貼付面として、突起部を有する半導体ウエハ(W)の前記突起部を有する面(Wα)に貼付する工程である。
<Step 1>
Step 1 is a step of attaching the pressure-sensitive adhesive sheet for semiconductor processing according to one aspect of the present invention to the surface (Wα) having the protrusions of the semiconductor wafer (W) having the protrusions, using the adhesive layer as the attachment surface. be.
 図3(a)及び(b)には、バンプ付きウエハWの面Wαに、本発明の一態様の粘着シート10を貼付する工程を説明する断面図が示されている。
 図3(a)は、図2に示したバンプ付きウエハWの断面図に相当するものである。すなわち、バンプ付きウエハWは、面Wαに、分割予定ライン5によって区画された複数のデバイス6、各デバイス6に形成された複数のバンプ7、デバイス領域8及びデバイス非形成領域9を有する。
 図3(b)には、バンプ付きウエハWの面Wαに粘着シート10を貼付された状態が示されている。なお、粘着シート10の各層の図示は省略しているが、粘着シート10は、粘着剤層を貼付面として面Wαに貼付されており、貼付面と反対側の表面が、基材側の表面Sαである。粘着シート10は、本発明の一態様の半導体装置の製造方法に用いられる半導体加工用粘着シートであればよく、例えば、上述の粘着シート10aである。
 図3(b)に示される通り、バンプ付きウエハWに貼付した粘着シート10の基材側の表面Sαには、バンプ7に起因して生じた凸部11と、凸部11以外の部分である非凸部12が形成されている。図3(b)の態様においては、粘着シート10のうち、図3(a)に示すデバイス領域8を覆う領域が凸部11となり、図3(a)に示すデバイス非形成領域9を覆う部分が非凸部12となっている。
FIGS. 3A and 3B show cross-sectional views for explaining the process of attaching the pressure-sensitive adhesive sheet 10 of one embodiment of the present invention to the surface Wα of the wafer W with bumps.
FIG. 3(a) corresponds to a cross-sectional view of the wafer W with bumps shown in FIG. That is, the wafer W with bumps has, on the surface Wα, a plurality of devices 6 partitioned by the dividing lines 5, a plurality of bumps 7 formed on each device 6, a device region 8 and a device non-formation region 9. FIG.
FIG. 3B shows a state in which the adhesive sheet 10 is attached to the surface Wα of the wafer W with bumps. Although illustration of each layer of the adhesive sheet 10 is omitted, the adhesive sheet 10 is attached to the surface Wα using the adhesive layer as the attachment surface, and the surface opposite to the attachment surface is the surface on the substrate side. Sα. The adhesive sheet 10 may be an adhesive sheet for semiconductor processing used in the method for manufacturing a semiconductor device according to one embodiment of the present invention, and is, for example, the adhesive sheet 10a described above.
As shown in FIG. 3B, on the substrate-side surface Sα of the adhesive sheet 10 attached to the wafer W with bumps, there are convex portions 11 caused by the bumps 7 and portions other than the convex portions 11 . A certain non-convex portion 12 is formed. In the embodiment of FIG. 3(b), the area of the pressure-sensitive adhesive sheet 10 covering the device area 8 shown in FIG. is the non-convex portion 12 .
 工程1において、粘着シートを貼付する方法は特に限定されず、例えば、ラミネーター等を使用する、従来公知の方法を適用することができる。 In step 1, the method of attaching the adhesive sheet is not particularly limited, and for example, a conventionally known method using a laminator or the like can be applied.
<工程2>
 工程2は、前記貼付した半導体加工用粘着シートが有する前記基材側の表面(Sα)において、前記突起部に起因して生じた凸部、及び該凸部以外の部分である非凸部のうち、前記凸部の上面に冷却材を接触させる工程である。
<Step 2>
In step 2, on the substrate-side surface (Sα) of the attached pressure-sensitive adhesive sheet for semiconductor processing, convex portions caused by the protrusions and non-convex portions other than the convex portions are removed. Among these steps, this is the step of bringing the coolant into contact with the upper surface of the convex portion.
(冷却材)
 工程2で用いる冷却材は、粘着シートの基材側の表面(Sα)において生じた凸部の上面に接触させるものであって、工程3の加熱を行う際に、その冷却効果によって凸部を表面に有する部分の粘着シートの熱膨張を抑制する目的で使用される。
(coolant)
The coolant used in step 2 is brought into contact with the upper surface of the protrusions formed on the surface (Sα) of the adhesive sheet on the substrate side, and when the heating in step 3 is performed, the cooling effect cools the protrusions. It is used for the purpose of suppressing the thermal expansion of the adhesive sheet on the surface.
 冷却材の材質は、冷却効果を有するものであれば特に限定されないが、熱伝導体であることが好ましい。冷却材が熱伝導体である場合、熱伝導体を接触させている凸部上面から熱伝導体への熱伝導が生じることで、凸部を表面に有する部分の冷却効果が得られる。 The material of the coolant is not particularly limited as long as it has a cooling effect, but it is preferably a heat conductor. When the coolant is a heat conductor, heat is conducted from the upper surface of the convex portion with which the heat conductor is in contact with the heat conductor, so that the portion having the convex portion on the surface can be cooled.
 冷却材として用いる熱伝導体は、冷却効果を高めるために、例えば、内部に冷媒等を流通させる等の人工的な冷却機構を有するものであってもよいが、経済性及び生産性の観点から、人工的な冷却機構を有さないものであってもよい。すなわち、熱伝導体自体は意図的に冷却されていないものであってもよい。その場合においても、熱伝導体は、粘着シートの凸部上面と接触する箇所から吸熱した熱を、熱伝導体自体の表面から自然に放熱することによって冷却効果を奏することができる。 The heat conductor used as the coolant may have an artificial cooling mechanism such as a coolant or the like circulating inside in order to enhance the cooling effect. , it may be one that does not have an artificial cooling mechanism. That is, the heat conductor itself may be intentionally uncooled. Even in this case, the heat conductor can exhibit a cooling effect by naturally dissipating the heat absorbed from the portion in contact with the upper surface of the convex portion of the adhesive sheet from the surface of the heat conductor itself.
 熱伝導体としては、金属が好ましい。金属としては、例えば、銅、銀、金、鉄、亜鉛、鉛、錫、ニッケル、クロム、アルミニウム等の単金属;ステンレス鋼、真鍮等の合金等が挙げられる。これらの中でも、汎用性及び熱伝導性の観点から、銅、アルミニウムが好ましく、銅がより好ましい。 Metal is preferable as a heat conductor. Examples of metals include single metals such as copper, silver, gold, iron, zinc, lead, tin, nickel, chromium and aluminum; alloys such as stainless steel and brass. Among these, copper and aluminum are preferred, and copper is more preferred, from the viewpoint of versatility and thermal conductivity.
 熱伝導体の20℃における熱伝導率は、冷却効果を高める観点から、好ましくは50W/m・K以上、より好ましくは100W/m・K以上、更に好ましくは200W/m・K以上である。また。熱伝導体である冷却材の20℃における熱伝導率は、汎用性の観点から、1,000W/m・K以下であってもよく、700W/m・K以下であってもよく、500W/m・K以下であってもよい。 The thermal conductivity of the heat conductor at 20°C is preferably 50 W/m·K or more, more preferably 100 W/m·K or more, still more preferably 200 W/m·K or more, from the viewpoint of enhancing the cooling effect. again. From the viewpoint of versatility, the thermal conductivity of the coolant, which is a heat conductor, at 20 ° C. may be 1,000 W / m K or less, may be 700 W / m K or less, or may be 500 W / It may be m·K or less.
 冷却材は、基材側の表面(Sα)に接触させる面(以下、「面(Cα)」ともいう)として、平面を有しているものが好ましい。
 冷却材が面(Cα)として平面を有する場合、該平面の形状及び大きさは特に限定されないが、例えば、凸部上面の形状及び大きさと略同一としてもよい。冷却材の面(Cα)の形状及び大きさを、凸部上面の形状及び大きさと略同一として、面(Cα)の形状と凸部上面の形状を合わせて配置することによって、凸部を表面に有する部分の粘着シートの熱膨張を選択的に抑制し易くなる。
The coolant preferably has a flat surface as a surface (hereinafter also referred to as "surface (Cα)") to be brought into contact with the surface (Sα) on the substrate side.
When the coolant has a flat surface as the surface (Cα), the shape and size of the flat surface are not particularly limited. The shape and size of the surface (Cα) of the coolant is set to be substantially the same as the shape and size of the upper surface of the convex portion, and the shape of the surface (Cα) and the shape of the upper surface of the convex portion are arranged to match the shape of the surface (Cα). It becomes easy to selectively suppress the thermal expansion of the adhesive sheet in the portion having the above.
 冷却材の面(Cα)の形状及び大きさは上記態様に限られず、例えば、冷却材の面(Cα)の面積を凸部上面の面積よりも小さくしてもよい。冷却材の熱伝導率が高い場合は、冷却材の面(Cα)を接触させている領域よりも広い領域に対して冷却効果が発揮され易くなるため、凸部上面の面積よりも小さい面積を有する冷却材の面(Cα)を、凸部上面の一部に接触させる態様であっても、凸部を表面に有する部分の粘着シートの熱膨張を抑制できる傾向にある。
 一方、冷却材による冷却効果をより高めるために、冷却材の面(Cα)の面積を凸部上面の面積よりも大きいものとして、凸部上面の全面に接触させてもよい。冷却材の面(Cα)の面積を大きくすることによって、冷却材の面(Cα)を接触させている凸部の冷却効果が高まり易い傾向にある。
The shape and size of the coolant surface (Cα) are not limited to those described above. For example, the area of the coolant surface (Cα) may be smaller than the area of the upper surface of the convex portion. When the heat conductivity of the coolant is high, the cooling effect is likely to be exerted over a wider area than the area where the coolant surface (Cα) is in contact, so the area should be smaller than the area of the top surface of the protrusion. Even in a mode in which the surface (Cα) of the coolant having the surface is brought into contact with a part of the upper surface of the convex portion, there is a tendency that the thermal expansion of the portion of the adhesive sheet having the convex portion on the surface can be suppressed.
On the other hand, in order to further enhance the cooling effect of the coolant, the area of the surface (Cα) of the coolant may be made larger than the area of the top surface of the protrusion, and the coolant may be brought into contact with the entire top surface of the protrusion. Increasing the area of the coolant surface (Cα) tends to increase the cooling effect of the projections with which the coolant surface (Cα) is in contact.
 冷却材の厚さは、十分な冷却効果を得るという観点から、熱膨張性層の厚さの、好ましくは100倍以上、より好ましくは500倍以上、更に好ましくは1,000倍以上である。また、冷却材の厚さは、取り扱い性の観点から、熱膨張性層の厚さの、10,000倍以下であってもよく、6,000倍以下であってもよく、3,000倍以下であってもよい。 From the viewpoint of obtaining a sufficient cooling effect, the thickness of the coolant is preferably 100 times or more, more preferably 500 times or more, and still more preferably 1,000 times or more the thickness of the thermally expandable layer. In addition, the thickness of the coolant may be 10,000 times or less, 6,000 times or less, or 3,000 times the thickness of the thermally expandable layer from the viewpoint of ease of handling. It may be below.
 図4には、粘着シート10が有する基材側の表面Sαに生じた凸部11、及び凸部以外の部分である非凸部12のうち、凸部11の上面に冷却材13を接触させる工程を説明する断面図が示されている。
 図4において冷却材13は、凸部11の上面の全面に接触されており、冷却材13の基材側の表面Sαに接触させる面Cαの大きさは凸部11の上面の大きさと略同一である。
In FIG. 4, among the convex portions 11 generated on the substrate-side surface Sα of the adhesive sheet 10 and the non-convex portions 12 which are portions other than the convex portions, the coolant 13 is brought into contact with the upper surface of the convex portions 11. A cross-sectional view illustrating the process is shown.
In FIG. 4, the coolant 13 is in contact with the entire upper surface of the convex portion 11, and the size of the surface Cα that contacts the surface Sα of the coolant 13 on the substrate side is substantially the same as the size of the upper surface of the convex portion 11. is.
<工程3>
 工程3は、前記冷却材を接触させた状態で、前記突起部を有する半導体ウエハ(W)を前記熱膨張性粒子の膨張開始温度(t)以上に加熱することによって、前記半導体加工用粘着シートを前記突起部を有する半導体ウエハ(W)側から加熱し、前記冷却材の冷却効果によって、前記半導体加工用粘着シートのうち、前記凸部を表面として有する部分の膨張を抑制しながら、前記非凸部を表面として有する部分を膨張させて、前記凸部と前記非凸部の高低差を低減させる工程である。
<Step 3>
In step 3, the semiconductor processing pressure-sensitive adhesive sheet is heated to a temperature (t) at which the thermally expandable particles start to expand by heating the semiconductor wafer (W) having the protrusions while being in contact with the coolant. is heated from the side of the semiconductor wafer (W) having the protrusions, and the cooling effect of the coolant suppresses the expansion of the portion of the pressure-sensitive adhesive sheet for semiconductor processing that has the protrusions as a surface, while the non- This is a step of expanding a portion having a convex portion as a surface to reduce the height difference between the convex portion and the non-convex portion.
 工程3では、半導体ウエハ(W)を熱膨張性粒子の膨張開始温度(t)以上に加熱することによって、該半導体ウエハ(W)に貼付されている粘着シートを、半導体ウエハ(W)側から加熱する。
 半導体ウエハ(W)を加熱する方法としては、例えば、半導体ウエハ(W)の前記面(Wα)とは反対側の面(Wβ)を加熱する方法であってもよく、前記面(Wα)の一部が露出している場合は、当該露出している面(Wα)を加熱してもよい。熱伝導性に優れる半導体ウエハ(W)は、その一部を加熱することによっても、熱伝導を利用して半導体ウエハ(W)全体を加熱することができる。
 半導体ウエハ(W)を加熱する方法は、加熱する箇所及び加熱温度を制御し易いという観点から、半導体ウエハ(W)に、加熱された熱伝導体を接触させる方法が好ましく、半導体ウエハ(W)の面(Wβ)に、加熱された熱伝導体を接触させる方法がより好ましい。
 半導体ウエハ(W)に加熱された熱伝導体を接触させる方法は、均一に加熱するという観点から、半導体ウエハ(W)に、平滑な面を有する熱伝導体を接触させる方法が好ましく、加熱プレートを接触させる方法がより好ましい。加熱プレートとしては、例えば、金属プレート、セラミックスプレート等が挙げられる。
In step 3, the semiconductor wafer (W) is heated to the expansion start temperature (t) of the thermally expandable particles or higher, so that the adhesive sheet attached to the semiconductor wafer (W) is removed from the semiconductor wafer (W) side. heat up.
As a method of heating the semiconductor wafer (W), for example, a method of heating a surface (Wβ) opposite to the surface (Wα) of the semiconductor wafer (W) may be used. When a part is exposed, the exposed surface (Wα) may be heated. The semiconductor wafer (W), which has excellent thermal conductivity, can heat the entire semiconductor wafer (W) using heat conduction even by heating a part of the semiconductor wafer (W).
The method of heating the semiconductor wafer (W) is preferably a method of bringing a heated thermal conductor into contact with the semiconductor wafer (W) from the viewpoint of facilitating control of the location to be heated and the heating temperature. A more preferred method is to bring a heated thermal conductor into contact with the surface (Wβ) of the .
The method of contacting the semiconductor wafer (W) with a heated heat conductor is preferably a method of contacting a heat conductor having a smooth surface with the semiconductor wafer (W) from the viewpoint of uniform heating. is more preferable. Examples of the heating plate include metal plates and ceramic plates.
 半導体ウエハ(W)に接触させる加熱された熱伝導体の表面温度は、熱膨張性粒子の膨張開始温度(t)以上であり、好ましくは「膨張開始温度(t)より高い温度」、より好ましくは「膨張開始温度(t)+2℃」以上、更に好ましくは「膨張開始温度(t)+4℃」以上、より更に好ましくは「膨張開始温度(t)+5℃」以上である。また、加熱された熱伝導体の表面温度は、省エネルギー性及び加熱剥離時における半導体ウエハ(W)の熱変化を抑制する観点からは、好ましくは「膨張開始温度(t)+50℃」以下、より好ましくは「膨張開始温度(t)+40℃」以下、更に好ましくは「膨張開始温度(t)+30℃」以下である。
 また、半導体ウエハ(W)に接触させる加熱された熱伝導体の表面温度は、半導体ウエハ(W)の熱変化を抑制する観点からは、膨張開始温度(t)以上の範囲内において、好ましくは130℃以下、より好ましくは120℃以下、さらに好ましくは115℃以下である。
The surface temperature of the heated thermal conductor brought into contact with the semiconductor wafer (W) is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, preferably "a temperature higher than the expansion start temperature (t)", more preferably. is "expansion start temperature (t) + 2°C" or higher, more preferably "expansion start temperature (t) + 4°C" or higher, and still more preferably "expansion start temperature (t) + 5°C" or higher. In addition, the surface temperature of the heated heat conductor is preferably "expansion start temperature (t) + 50 ° C." or less from the viewpoint of energy saving and suppressing thermal change of the semiconductor wafer (W) during heat peeling. It is preferably "expansion start temperature (t) + 40°C" or lower, more preferably "expansion start temperature (t) + 30°C" or lower.
In addition, the surface temperature of the heated thermal conductor brought into contact with the semiconductor wafer (W) is preferably within the range of the expansion start temperature (t) or higher from the viewpoint of suppressing thermal change of the semiconductor wafer (W). It is 130° C. or lower, more preferably 120° C. or lower, and still more preferably 115° C. or lower.
 図5(a)及び(b)には、冷却材13を凸部11の上面に接触させた状態で、バンプ付きウエハWの面Wαとは反対側の面Wβを熱膨張性粒子の膨張開始温度(t)以上に加熱する工程が示されている。
 図5(a)に示す通り、バンプ付きウエハWの面Wβに加熱プレート14を接触させることによって粘着シート10を加熱している。このとき、粘着シート10のうち、冷却材13を接触させている凸部11を表面に有する部分は、冷却材13の冷却効果によって熱膨張が抑制される。一方、冷却材13を接触させていない非凸部12を表面に有する部分は、冷却材13の冷却効果が及び難いため熱膨張する。
 その結果、図5(b)に示されるように、図5(a)における非凸部12が膨張した部分12’の高さは、図5(a)における凸部11であった部分11’の高さと近づき、凸部11と非凸部12の高低差は低減され、基材側の表面Sαが平坦化される。
5(a) and 5(b), the surface Wβ of the wafer W with bumps opposite to the surface Wα is expanded by the thermally expandable particles while the coolant 13 is in contact with the upper surfaces of the protrusions 11. As shown in FIGS. The step of heating above temperature (t) is shown.
As shown in FIG. 5A, the adhesive sheet 10 is heated by bringing a heating plate 14 into contact with the surface Wβ of the wafer W with bumps. At this time, the cooling effect of the coolant 13 suppresses the thermal expansion of the portion of the adhesive sheet 10 having the projections 11 with which the coolant 13 is in contact. On the other hand, the portion having the non-convex portion 12 on the surface, which is not in contact with the coolant 13, thermally expands because the cooling effect of the coolant 13 is difficult to reach.
As a result, as shown in FIG. 5B, the height of the portion 12' where the non-convex portion 12 expands in FIG. , the height difference between the convex portions 11 and the non-convex portions 12 is reduced, and the surface Sα on the substrate side is flattened.
 工程3における非凸部12を表面に有する部分の膨張量は、例えば、熱膨張性層中の熱膨張性粒子の含有量によって調整することができる。すなわち、工程3の前において凸部と非凸部の高低差が大きい場合は、熱膨張性層中の熱膨張性粒子の含有量を多くすることによって、膨張量を大きくすればよい。また、工程3の前において凸部と非凸部の高低差が小さい場合は、熱膨張性層中の熱膨張性粒子の含有量を少なくすることによって、膨張量を小さくすればよい。 The amount of expansion of the portion having the non-convex portion 12 on the surface in step 3 can be adjusted, for example, by the content of the thermally expandable particles in the thermally expandable layer. That is, if the height difference between the convex portion and the non-convex portion is large before step 3, the amount of expansion may be increased by increasing the content of the thermally expandable particles in the thermally expandable layer. Further, if the height difference between the convex portion and the non-convex portion is small before step 3, the amount of expansion may be reduced by reducing the content of the thermally expandable particles in the thermally expandable layer.
<工程4>
 工程4は、前記半導体加工用粘着シートの基材を固定した状態で、前記突起部を有する半導体ウエハ(W)を加工する工程である。
<Step 4>
Step 4 is a step of processing the semiconductor wafer (W) having the protrusions in a state where the base material of the adhesive sheet for semiconductor processing is fixed.
 工程4で行う加工としては、例えば、突起部を有する半導体ウエハ(W)の裏面研削、突起部を有する半導体ウエハ(W)の個片化等が挙げられる。これらの中でも、本発明の一態様の半導体装置の製造方法における加工は、突起部を有する半導体ウエハ(W)の裏面研削であることが好ましく、突起部としてバンプを有する半導体ウエハの裏面研削であることがより好ましい。 The processing performed in step 4 includes, for example, grinding the back surface of the semiconductor wafer (W) having protrusions, singulating the semiconductor wafer (W) having protrusions, and the like. Among these, the processing in the method for manufacturing a semiconductor device of one embodiment of the present invention is preferably backside grinding of a semiconductor wafer (W) having protrusions, and is backside grinding of a semiconductor wafer having bumps as protrusions. is more preferable.
 図6には、粘着シート10の基材側の表面Sαを固定した状態で、バンプ付きウエハWを薄化させる工程を説明する断面図が示されている。
 図6において、粘着シート10の基材側の表面Sαは、チャックテーブル等の支持装置15に固定され、バンプ付きウエハWは、その裏面Wβをグラインダー16によって所望の厚さまで研削される。粘着シート10の基材側の表面Sαは平坦性に優れるため、半導体ウエハの裏面の全面に亘って、均一な押圧力が付与され、半導体ウエハWを均一な厚さで薄くすることができる。
FIG. 6 shows a cross-sectional view for explaining the step of thinning the wafer W with bumps while the surface Sα of the adhesive sheet 10 on the substrate side is fixed.
In FIG. 6, the substrate-side surface Sα of the adhesive sheet 10 is fixed to a support device 15 such as a chuck table, and the back surface Wβ of the bumped wafer W is ground by a grinder 16 to a desired thickness. Since the substrate-side surface Sα of the adhesive sheet 10 has excellent flatness, a uniform pressing force is applied to the entire back surface of the semiconductor wafer, and the semiconductor wafer W can be made thin with a uniform thickness.
<剥離工程>
 工程4において加工を施した後、加工後の半導体ウエハ(W)から半導体加工用粘着シートを剥離する剥離工程を行ってもよい。
 粘着シートの粘着剤層がエネルギー線硬化性粘着剤から形成される場合には、エネルギー線を照射することによって粘着剤を硬化させて、粘着剤層の剥離力を小さくしてから、粘着シートを剥離する。
<Peeling process>
After processing in step 4, a peeling step of peeling the adhesive sheet for semiconductor processing from the processed semiconductor wafer (W) may be performed.
When the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is formed from an energy ray-curable pressure-sensitive adhesive, the pressure-sensitive adhesive is cured by irradiation with energy rays to reduce the peel strength of the pressure-sensitive adhesive layer, and then the pressure-sensitive adhesive sheet is removed. exfoliate.
[半導体加工用粘着シート付き半導体ウエハ]
 本発明の一態様の半導体加工用粘着シート付き半導体ウエハは、基材と、中間層と、粘着剤層と、をこの順で有する半導体加工用粘着シートが、前記粘着剤層を貼付面として、突起部を有する半導体ウエハ(W)の前記突起部を有する面(Wα)に貼付されてなる、半導体加工用粘着シート付き半導体ウエハであって、
 前記半導体加工用粘着シートは、平面視で、
 空隙を含有する又は空隙を含有しない領域(a)と、
 前記領域(a)よりも空隙の体積含有量が高く、かつ、前記領域(a)よりも厚さが大きい領域(b)と、を有し、
 前記領域(a)と前記領域(b)の厚さの差によって、前記基材側の表面(Sα)が平坦化されている、半導体加工用粘着シート付き半導体ウエハである。
[Semiconductor wafer with adhesive sheet for semiconductor processing]
A semiconductor wafer with a pressure-sensitive adhesive sheet for semiconductor processing according to one aspect of the present invention is a pressure-sensitive adhesive sheet for semiconductor processing having a substrate, an intermediate layer, and an adhesive layer in this order, A semiconductor wafer with an adhesive sheet for semiconductor processing, which is attached to the surface (Wα) having the protrusions of the semiconductor wafer (W) having the protrusions,
The adhesive sheet for semiconductor processing, in plan view,
a void-containing or void-free region (a);
a region (b) having a higher void volume content than the region (a) and a thickness greater than the region (a);
A semiconductor wafer with an adhesive sheet for semiconductor processing, wherein the surface (Sα) on the substrate side is flattened by the difference in thickness between the region (a) and the region (b).
 本発明の一態様の半導体加工用粘着シート付き半導体ウエハは、本発明の一態様の半導体装置の製造方法において、熱膨張性粒子として発泡性の熱膨張性粒子を用い、上記工程1~3を経て、半導体加工用粘着シートの凸部と非凸部の高低差が低減された半導体加工用粘着シート付き半導体ウエハに相当するものである。そのため、本発明の一態様の半導体加工用粘着シート付き半導体ウエハは、上記工程1~3によって製造することができる。 A semiconductor wafer with an adhesive sheet for semiconductor processing according to one aspect of the present invention is produced by using expandable thermally expandable particles as the thermally expandable particles in the method for manufacturing a semiconductor device according to one aspect of the present invention, and performing steps 1 to 3 above. It corresponds to a semiconductor wafer with an adhesive sheet for semiconductor processing in which the height difference between the convex portions and the non-convex portions of the adhesive sheet for semiconductor processing is reduced. Therefore, the semiconductor wafer with the pressure-sensitive adhesive sheet for semiconductor processing according to one embodiment of the present invention can be produced by the above steps 1 to 3.
 すなわち、空隙を含有する又は空隙を含有しない領域(a)とは、平面視で、半導体ウエハ(W)に貼付された半導体加工用粘着シートのうち、突起部に起因して発生した凸部であった領域である。該凸部は、本発明の一態様の半導体装置の製造方法の工程3において、冷却材の冷却効果によって、半導体加工用粘着シート中の熱膨張性粒子の膨張が抑制されているため、領域(a)は、空隙を含有しないか、含有していても領域(b)よりもその体積含有量は小さい。
 そして、領域(b)は、平面視で、半導体ウエハ(W)に貼付された本発明の一態様の半導体加工用粘着シートのうち、非凸部であった領域である。該非凸部は、本発明の一態様の半導体装置の製造方法の工程3において、冷却材の冷却効果が及び難いため、半導体加工用粘着シート中の熱膨張性粒子は加熱により膨張され、領域(a)よりも空隙の体積含有量が高い。
 このように、本発明の一態様の半導体加工用粘着シート付き半導体ウエハにおいては、領域(b)は、領域(a)よりも多くの空隙を含有する。そして、空隙の存在に起因して領域(b)は領域(a)よりも厚さが大きくなっており、この領域(a)と領域(b)の厚さの差によって、基材側の表面(Sα)が平坦化されているものである。
That is, the region (a) containing voids or not containing voids is a convex portion generated due to the protrusion portion of the adhesive sheet for semiconductor processing attached to the semiconductor wafer (W) in plan view. This is the area where there was. The convex portion is formed in the region ( a) does not contain voids, or if it does contain voids, it has a lower volume content than region (b).
Then, the region (b) is the non-convex region of the semiconductor processing adhesive sheet of one embodiment of the present invention attached to the semiconductor wafer (W) in plan view. In step 3 of the method for manufacturing a semiconductor device according to one embodiment of the present invention, the non-convex portion is less likely to be affected by the cooling effect of the coolant. A higher volume content of voids than in a).
Thus, in the semiconductor wafer with the pressure-sensitive adhesive sheet for semiconductor processing according to one aspect of the present invention, the region (b) contains more voids than the region (a). The region (b) is thicker than the region (a) due to the presence of voids, and the difference in thickness between the region (a) and the region (b) causes the surface of the base material to (Sα) is flattened.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、各実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described by the following examples, but the present invention is not limited to the following examples. The physical property values in each example are values measured by the following methods.
[質量平均分子量(Mw)]
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
[Mass average molecular weight (Mw)]
Using a gel permeation chromatograph (manufactured by Tosoh Corporation, product name “HLC-8020”), measurement was performed under the following conditions, and the values measured in terms of standard polystyrene were used.
(Measurement condition)
・ Column: "TSK guard column HXL-L", "TSK gel G2500HXL", "TSK gel G2000HXL", "TSK gel G1000HXL" (both manufactured by Tosoh Corporation) are sequentially connected ・Column temperature: 40 ° C.
・Developing solvent: tetrahydrofuran ・Flow rate: 1.0 mL/min
[各層の厚さ]
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて、23℃にて測定した。
[Thickness of each layer]
It was measured at 23° C. using a constant-pressure thickness measuring instrument manufactured by Teclock Co., Ltd. (model number: “PG-02J”, standard: conforming to JIS K6783, Z1702, Z1709).
[熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)]
 レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定した。そして、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)」とした。
[Average particle size (D 50 ) and 90% particle size (D 90 ) of thermally expandable particles]
The particle distribution of the thermally expandable particles before expansion at 23° C. was measured using a laser diffraction particle size distribution analyzer (eg, product name “Mastersizer 3000” manufactured by Malvern). Then, the particle diameters corresponding to the cumulative volume frequencies of 50% and 90% calculated from the smaller particle diameter in the particle distribution are defined as the "average particle diameter of the thermally expandable particles (D 50 )" and the "thermally expandable particles 90% particle diameter (D 90 ) of
[裏面研削後のシリコンウエハの厚さ精度]
 裏面研削後のシリコンウエハの厚さ精度は、厚さ計測装置(浜松ホトニクス株式会社製、商品名「C8870」)を用いて、測定ピッチ5mmにて、シリコンウエハ全面の厚さを測定し、最大厚さと最小厚さとの差をTTV(Total Thickness Variation)として算出して評価した。
[Thickness accuracy of silicon wafer after back grinding]
The thickness accuracy of the silicon wafer after back grinding is measured by measuring the thickness of the entire surface of the silicon wafer at a measurement pitch of 5 mm using a thickness measuring device (manufactured by Hamamatsu Photonics Co., Ltd., product name “C8870”). The difference between the thickness and the minimum thickness was calculated and evaluated as TTV (Total Thickness Variation).
[半導体加工用粘着シートの製造]
製造例1~3
〔半導体加工用粘着シート1~3の製造〕
 以下に示す方法によって半導体加工用粘着シート1~3を製造した。
 なお、以下の説明において、共重合体の組成を表す「X/Y/Z=A/B/C」等の記載は、当該共重合体がモノマーX、モノマーY及びモノマーZの共重合体であり、A質量部のモノマーXと、B質量部のモノマーYと、C質量部のモノマーZとを共重合させて得られたものであることを示す。
[Manufacture of adhesive sheets for semiconductor processing]
Production Examples 1-3
[Production of semiconductor processing adhesive sheets 1 to 3]
Semiconductor processing pressure-sensitive adhesive sheets 1 to 3 were produced by the method described below.
In the following description, descriptions such as "X/Y/Z=A/B/C" representing the composition of a copolymer mean that the copolymer is a copolymer of monomer X, monomer Y, and monomer Z. It is obtained by copolymerizing A parts by weight of monomer X, B parts by weight of monomer Y, and C parts by weight of monomer Z.
(中間層用組成物の調製)
 ウレタンアクリレート系オリゴマー(アルケマ株式会社製、商品名「CN9021 NS」)65質量部と、イソボルニルアクリレート25質量部と、ドデシルアクリレート10質量部と、光重合開始剤(IGM Resins B.V.製、商品名「Omnirad1173」、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン)3.4質量部と、連鎖移動剤(昭和電工株式会社製、商品名「カレンズMT PE1」、ペンタエリスリトールテトラキス(3-メルカプトブチレート))1.0質量部と、形成される中間層全質量(100質量%)に対して、表1に記載の含有量になる熱膨張性粒子(Nouryon社製、製品名「Expancel(登録商標)031-40」(DUタイプ)、膨張開始温度(t)=88℃、平均粒子径(D50)=12.6μm、90%粒子径(D90)=26.2μm)と、を配合し、無溶剤型樹脂組成物である中間層用組成物を得た。
(Preparation of intermediate layer composition)
65 parts by mass of urethane acrylate oligomer (manufactured by Arkema Co., Ltd., trade name "CN9021 NS"), 25 parts by mass of isobornyl acrylate, 10 parts by mass of dodecyl acrylate, and a photopolymerization initiator (manufactured by IGM Resins B.V. , trade name “Omnirad 1173”, 2-hydroxy-2-methyl-1-phenylpropan-1-one) 3.4 parts by mass, and a chain transfer agent (manufactured by Showa Denko Co., Ltd., trade name “Karens MT PE1”, penta Erythritol tetrakis (3-mercaptobutyrate)) 1.0 parts by mass and thermally expandable particles (manufactured by Nouryon Co., Ltd. , product name “Expancel (registered trademark) 031-40” (DU type), expansion start temperature (t) = 88 ° C., average particle size (D 50 ) = 12.6 μm, 90% particle size (D 90 ) = 26 .2 μm) and were blended to obtain an intermediate layer composition which is a solventless resin composition.
(中間層付き基材の作製)
 上記で得られた中間層用組成物を、ナイフ方式により、基材であるPETフィルム(東洋紡株式会社製、商品名「コスモシャイン A4160」、厚さ50μm)上に、形成される中間層の厚さが100μmになるように塗工して中間層用組成物層を形成した。
 次に、形成した中間層用組成物層の表出している表面に、PET系剥離フィルム(リンテック株式会社製、商品名「SP-PET381130」、厚さ38μm)をラミネートして、中間層用組成物層を酸素から遮断した。続いて、高圧水銀ランプを用いて、照度80mW/cm、照射量200mJ/cmの条件で1回目の紫外線照射を行った後、高圧水銀ランプを用いて、照度330mW/cm、照射量1,260mJ/cmの条件で2回目の紫外線照射を行うことによって中間層用組成物層を硬化させて、剥離シートを有する中間層付き基材を作製した。
(Preparation of substrate with intermediate layer)
The intermediate layer composition obtained above is coated on a substrate PET film (manufactured by Toyobo Co., Ltd., trade name "Cosmo Shine A4160", thickness 50 μm) using a knife method. An intermediate layer composition layer was formed by coating so that the thickness was 100 μm.
Next, a PET-based release film (manufactured by Lintec Corporation, trade name “SP-PET381130”, thickness 38 μm) is laminated on the exposed surface of the formed intermediate layer composition layer. The layer was shielded from oxygen. Subsequently, using a high-pressure mercury lamp, the first UV irradiation is performed under the conditions of an illuminance of 80 mW/cm 2 and an irradiation amount of 200 mJ/cm 2 , and then using a high-pressure mercury lamp, an illuminance of 330 mW/cm 2 and an irradiation amount. The intermediate layer composition layer was cured by performing a second UV irradiation under the condition of 1,260 mJ/cm 2 to produce a substrate with an intermediate layer having a release sheet.
(粘着剤組成物の調製)
 アクリル系共重合体(日本合成化学工業株式会社製、2-エチルヘキシルアクリレート(2EHA)/エチルアクリレート(EA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)=60/15/5/20(質量比)のアクリル共重合体であって、2-メタクリロイルオキシエチルイソシアネート(MOI)を、当該アクリル系共重合体の全ヒドロキシ基のうち60モル%のヒドロキシ基に付加するように反応させた重合体、質量平均分子量(Mw)800,000)100質量部と、架橋剤としてのトリメチロールプロパンアダクトトリレンジイソシアネート(東ソー株式会社製、商品名「コロネートL」)1.1質量部と、光重合開始剤としての2,2-ジメトキシ-2-フェニルアセトフェノン(IGM Resins B.V.製、商品名「Omnirad651」)2.2質量部と、を配合し、さらにトルエンを加えて固形分濃度を30質量%に調整した後、30分間撹拌を行って粘着剤組成物を調製した。
(Preparation of adhesive composition)
Acrylic copolymer (Nippon Synthetic Chemical Industry Co., Ltd., 2-ethylhexyl acrylate (2EHA) / ethyl acrylate (EA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) = 60/15/5/20 (mass ratio) of acrylic copolymer, 2-methacryloyloxyethyl isocyanate (MOI) was reacted so as to add to 60 mol% of all hydroxy groups of the acrylic copolymer. Polymer, mass average molecular weight (Mw) 800,000) 100 parts by mass, trimethylolpropane adduct tolylene diisocyanate (manufactured by Tosoh Corporation, trade name "Coronate L") 1.1 parts by mass as a cross-linking agent, and light 2.2 parts by mass of 2,2-dimethoxy-2-phenylacetophenone (manufactured by IGM Resins B.V., trade name “Omnirad 651”) as a polymerization initiator was blended, and toluene was added to adjust the solid content concentration. After adjusting to 30% by mass, stirring was performed for 30 minutes to prepare an adhesive composition.
(剥離フィルム付き粘着剤層の作製)
 次いで、調製した粘着剤組成物を、PET系剥離フィルム(リンテック株式会社製、商品名「SP-PET381130」、厚さ38μm)に塗布し、乾燥させて、剥離フィルム上に厚さ10μmの粘着剤層を形成して、剥離フィルム付き粘着剤層を得た。
(Preparation of adhesive layer with release film)
Next, the prepared adhesive composition is applied to a PET release film (manufactured by Lintec Corporation, trade name “SP-PET381130”, thickness 38 μm), dried, and a 10 μm thick adhesive on the release film. A layer was formed to obtain a pressure-sensitive adhesive layer with a release film.
(半導体加工用粘着シートの作製)
 上記で得られた中間層付き基材の剥離フィルムを除去し、表出した中間層の表面に、上記で得られた剥離フィルム付き粘着剤層の粘着剤層を貼り合わせて、基材、中間層、粘着剤層及び剥離シートをこの順に有する半導体加工用粘着シート1~3を得た。
(Production of adhesive sheet for semiconductor processing)
The release film of the substrate with the intermediate layer obtained above is removed, and the adhesive layer of the adhesive layer with the release film obtained above is attached to the surface of the exposed intermediate layer, and the substrate, the intermediate Semiconductor processing adhesive sheets 1 to 3 having a layer, an adhesive layer and a release sheet in this order were obtained.
製造例4
〔半導体加工用粘着シート4の製造〕
 製造例1において、中間層用組成物に熱膨張性粒子を配合しなかったこと以外は、製造例1と同様にして、半導体加工用粘着シート4を得た。
Production example 4
[Production of adhesive sheet 4 for semiconductor processing]
A pressure-sensitive adhesive sheet for semiconductor processing 4 was obtained in the same manner as in Production Example 1, except that the heat-expandable particles were not added to the intermediate layer composition.
[半導体装置の製造]
 次に、上記で作製した半導体加工用粘着シートを用いて半導体装置を製造をした。
 なお、以下の実施例及び比較例においては、本発明の効果を把握し易くするため、シリコンウエハの突起部はPET基材付き粘着シートを用いて形成し、貼付する半導体加工用粘着シートに対して意図的に過度に大きい凸部を形成している。これによって、本発明の製造方法による凸部と非凸部の高低差の低減量の把握を容易にしている。
[Manufacture of semiconductor devices]
Next, a semiconductor device was manufactured using the pressure-sensitive adhesive sheet for semiconductor processing produced above.
In the following examples and comparative examples, in order to make it easier to understand the effects of the present invention, the protrusions of the silicon wafer were formed using an adhesive sheet with a PET base material, and the adhesive sheet for semiconductor processing to be attached was intentionally forming an excessively large protrusion. This makes it easy to grasp the amount of reduction in height difference between the convex portion and the non-convex portion by the manufacturing method of the present invention.
実施例1~3、比較例1
(1.突起部の形成)
 円板状(直径200mm、厚さ740μm)のシリコンウエハの一方の面の中央に、突起部として、直径60mmの円形に裁断したPET基材付き粘着シート(厚さ125μm)の粘着表面を貼付した。これによってシリコンウエハの中央に、高さ125μmの突起部を形成した。
Examples 1 to 3, Comparative Example 1
(1. Formation of protrusions)
An adhesive surface of an adhesive sheet with a PET substrate (thickness: 125 μm) cut into a circle with a diameter of 60 mm was attached as a protrusion to the center of one surface of a disk-shaped silicon wafer (diameter: 200 mm, thickness: 740 μm). . As a result, a protrusion having a height of 125 μm was formed in the center of the silicon wafer.
(2.半導体加工用粘着シート付きシリコンウエハの作製)
 次に、各製造例で得られた半導体加工用粘着シートから剥離フィルムを除去し、表出した粘着剤層を貼付面として、シリコンウエハの突起部を形成した側の表面全体に、BGテープラミネーター(リンテック株式会社製、製品名「RAD 3510F/12」)を用いてテーブルを65℃に加熱しながら、ラミネート速度5mm/sec、ラミネート圧0.3MPaにて貼付した。
 上記の工程によって、一方の表面に突起部が形成されたシリコンウエハと、該シリコンウエハの突起部を形成した側の表面全体に貼付された半導体加工用粘着シートと、からなる、加熱膨張前の半導体加工用粘着シート付きシリコンウエハを得た。
 なお、以下、半導体加工用粘着シート付きシリコンウエハを平面視した場合に、突起部を含む領域を「突起部形成領域」、突起部を含まない領域を「突起部非形成領域」と称する場合がある。
 また、以下、加熱膨張前の半導体加工用粘着シート付きシリコンウエハを「粘着シート付きウエハ(1)」と称する。
(2. Preparation of silicon wafer with adhesive sheet for semiconductor processing)
Next, the release film is removed from the semiconductor processing pressure-sensitive adhesive sheet obtained in each production example, and the exposed pressure-sensitive adhesive layer is used as a sticking surface. (Lintec Co., Ltd., product name "RAD 3510F/12") was used to laminate at a lamination speed of 5 mm/sec and a lamination pressure of 0.3 MPa while heating the table to 65°C.
A silicon wafer having projections formed on one surface thereof by the above steps, and an adhesive sheet for semiconductor processing applied to the entire surface of the silicon wafer on which the projections are formed, before thermal expansion. A silicon wafer with an adhesive sheet for semiconductor processing was obtained.
In the following, when the silicon wafer with the pressure-sensitive adhesive sheet for semiconductor processing is viewed from above, the region containing the protrusions may be referred to as the "projection forming region" and the region not including the protrusions may be referred to as the "projection non-formation region". be.
Further, the silicon wafer with the adhesive sheet for semiconductor processing before thermal expansion is hereinafter referred to as "wafer with adhesive sheet (1)".
(3.粘着シート付きウエハ(1)の厚さ測定)
 次に、上記の粘着シート付きウエハ(1)のシリコンウエハ側の表面を平坦面上に載置し、基材側の表面が定圧厚さ測定器の接触面になるように配置して、突起部形成領域及び突起部非形成領域の各々について4点の厚さを測定した。なお、厚さの測定点は、突起部形成領域は、突起部形成領域と同心であって直径が突起部形成領域の約1/2である円周上で互いに等間隔になる4点とした。また、突起部非形成領域は、突起部非形成領域と同心であって直径が突起部非形成領域の約2/3である円周上で互いに等間隔になる4点とした。表1に、粘着シート付きウエハ(1)における、突起部形成領域の厚さの平均値、及び突起部非形成領域の厚さの平均値を示す。表1に示される通り、突起部形成領域の厚さは、突起部非形成領域の厚さよりも大きくなっており、粘着シートの基材側の表面に凸部が形成されていることが分かる。
(3. Measurement of thickness of wafer (1) with adhesive sheet)
Next, the silicon wafer side surface of the adhesive sheet-attached wafer (1) is placed on a flat surface, and the substrate side surface is arranged so as to be the contact surface of the constant pressure thickness gauge, and the protrusion is The thickness was measured at four points for each of the portion-formed region and the projection-non-formed region. The thickness was measured at four points on the circumference of the projection-forming region, which was concentric with the projection-forming region and whose diameter was about half the diameter of the projection-forming region. . In addition, the projection non-formation area was set to four points equidistantly spaced from each other on a circumference concentric with the projection non-formation area and having a diameter of about 2/3 of the projection non-formation area. Table 1 shows the average thickness of the protrusion-formed region and the average thickness of the non-protrusion-formed region in the adhesive sheet-attached wafer (1). As shown in Table 1, the thickness of the projection-formed region is greater than the thickness of the projection-free region, indicating that the projections are formed on the base-side surface of the pressure-sensitive adhesive sheet.
(4.粘着シートの加熱膨張処理)
 次に、粘着シート付きウエハ(1)を、基材側の表面が上側になるように平坦面上に載置し、冷却材としての円柱形の銅(直径60mm、厚さ200mm)を、その底面が、基材側の表面のうち、突起部形成領域上に合わさるようにして粘着シート付きウエハ(1)の上に積層した。
 続いて、銅を積層した粘着シート付きウエハ(1)を、シリコンウエハ側の表面が、ホットプレートと接触し、銅を積層した粘着シートの基材側の表面がホットプレートと接触しない側になるようにホットプレート上に載置し、熱膨張性粒子の膨張開始温度以上である110℃で2分間加熱した。その後、標準環境(23℃、50%RH(相対湿度))にて60分間静置したものを、加熱膨張後の粘着シート付きウエハとした。以下、加熱膨張後の粘着シート付きウエハを「粘着シート付きウエハ(2)」と称する。
(4. Heat expansion treatment of adhesive sheet)
Next, the wafer (1) with the adhesive sheet was placed on a flat surface so that the surface on the substrate side faces upward, and a cylindrical copper (60 mm diameter, 200 mm thick) coolant was placed on the wafer. It was laminated on the adhesive sheet-attached wafer (1) so that the bottom surface was aligned with the projection forming region on the surface on the base material side.
Subsequently, the copper-laminated adhesive sheet-attached wafer (1) is placed so that the surface on the silicon wafer side comes into contact with the hot plate, and the surface on the substrate side of the copper-laminated adhesive sheet does not come into contact with the hot plate. It was placed on a hot plate and heated for 2 minutes at 110° C., which is higher than the expansion start temperature of the thermally expandable particles. After that, the wafer was left standing for 60 minutes in a standard environment (23° C., 50% RH (relative humidity)) to obtain a wafer with an adhesive sheet after thermal expansion. The wafer with the adhesive sheet after thermal expansion is hereinafter referred to as "wafer with adhesive sheet (2)".
(5.粘着シート付きウエハ(2)の厚さ測定)
 次に、上記「3.粘着シート付きウエハ(1)の厚さ測定」と同様の方法で、粘着シート付きウエハ(2)の厚さを測定した。表1に、粘着シート付きウエハ(2)における、突起部形成領域の厚さの平均値、及び突起部非形成領域の厚さの平均値を示す。
(5. Measurement of thickness of wafer (2) with adhesive sheet)
Next, the thickness of the adhesive sheet-attached wafer (2) was measured in the same manner as in "3. Thickness measurement of the adhesive sheet-attached wafer (1)". Table 1 shows the average thickness of the protrusion-formed region and the average thickness of the non-protrusion-formed region in the adhesive sheet-attached wafer (2).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~3では、加熱膨張処理前の粘着シート付きウエハ(1)における厚さの差〔(B)-(A)〕よりも、加熱膨張処理後の粘着シート付きウエハ(2)における厚さの差〔(B)-(A)〕の方が小さくなっていることが分かる。また、実施例1~3では、熱膨張性粒子の含有量に応じて、低減される厚さの差が変化していることから、凸部の高さに応じて熱膨張性粒子の含有量を調整することによって、粘着シートの凸部を平坦化できることが分かる。 From Table 1, in Examples 1 to 3, the thickness difference [(B)-(A)] in the wafer with an adhesive sheet (1) before the heat expansion treatment is greater than the thickness difference [(B)-(A)] with the wafer with the adhesive sheet after the heat expansion treatment ( It can be seen that the thickness difference [(B)-(A)] in 2) is smaller. In addition, in Examples 1 to 3, the difference in thickness to be reduced varies depending on the content of the thermally expandable particles. It can be seen that the protrusions of the pressure-sensitive adhesive sheet can be flattened by adjusting .
(6.シリコンウエハの裏面研削)
 次に、実施例3及び比較例1で得られた粘着シート付きウエハ(2)の基材側の表面をチャックテーブルによって固定し、グラインダーを用いて、所定の厚さになるまでシリコンウエハの裏面を研削した。
 但し、比較例1は、基材側の表面における凸部が高すぎることによって裏面研削中にシリコンウエハが割れたため、裏面研削を途中で中止した。裏面研削を終了した後、上記した方法によって、裏面研削後のシリコンウエハのTTVを測定したところ、実施例3のシリコンウエハのTTVは、比較例1のシリコンウエハのTTVに対して、50%程度以上低減していた。
(6. Back surface grinding of silicon wafer)
Next, the substrate-side surface of the adhesive sheet-attached wafer (2) obtained in Example 3 and Comparative Example 1 was fixed by a chuck table, and the back surface of the silicon wafer was ground to a predetermined thickness using a grinder. was ground.
However, in Comparative Example 1, the silicon wafer cracked during back grinding due to excessively high protrusions on the surface on the base material side, so back grinding was stopped halfway. After finishing the backside grinding, the TTV of the silicon wafer after backside grinding was measured by the method described above. had been reduced.
1 基材
2 中間層
3 粘着剤層
4 剥離シート
5 分割予定ライン
6 デバイス
7 バンプ
8 デバイス領域
9 デバイス非形成領域
10、10a、10b 半導体加工用粘着シート
11 凸部
11’凸部11であった部分
12 非凸部
12’ 非凸部12が膨張した部分
13 冷却材
14 加熱プレート
15 支持装置
16 グラインダー
W  被着体
Wα 被着体の一方の面
Wβ 被着体の他方の面
Sα 粘着シート10が有する基材側の表面
Cα 基材側の表面Sαに接触させる冷却材の面
1 base material 2 intermediate layer 3 adhesive layer 4 release sheet 5 division line 6 device 7 bump 8 device region 9 device non-forming region 10, 10a, 10b adhesive sheet for semiconductor processing 11 convex portion 11' was convex portion 11 Portion 12 Non-convex portion 12 ′ Portion 13 where non-convex portion 12 expands Coolant 14 Heating plate 15 Support device 16 Grinder W Adherend Wα One surface Wβ of adherend Other surface Sα of adherend Adhesive sheet 10 The surface of the coolant that is in contact with the substrate-side surface Cα of the substrate-side surface Sα of

Claims (14)

  1.  基材と、中間層と、粘着剤層と、をこの順で有し、前記基材、前記中間層及び前記粘着剤層からなる群から選択される1層以上が、熱膨張性粒子を含有する熱膨張性層である半導体加工用粘着シートを用いる半導体装置の製造方法であって、下記工程1~4を含む、半導体装置の製造方法。
    工程1:前記半導体加工用粘着シートを、前記粘着剤層を貼付面として、突起部を有する半導体ウエハ(W)の前記突起部を有する面(Wα)に貼付する工程
    工程2:前記貼付した半導体加工用粘着シートが有する前記基材側の表面(Sα)において、前記突起部に起因して生じた凸部、及び該凸部以外の部分である非凸部のうち、前記凸部の上面に冷却材を接触させる工程
    工程3:前記冷却材を接触させた状態で、前記突起部を有する半導体ウエハ(W)を前記熱膨張性粒子の膨張開始温度(t)以上に加熱することによって、前記半導体加工用粘着シートを前記突起部を有する半導体ウエハ(W)側から加熱し、前記冷却材の冷却効果によって、前記半導体加工用粘着シートのうち、前記凸部を表面として有する部分の膨張を抑制しながら、前記非凸部を表面として有する部分を膨張させて、前記凸部と前記非凸部の高低差を低減させる工程
    工程4:前記半導体加工用粘着シートの基材を固定した状態で、前記突起部を有する半導体ウエハ(W)を加工する工程
    It has a substrate, an intermediate layer, and an adhesive layer in this order, and one or more layers selected from the group consisting of the substrate, the intermediate layer, and the adhesive layer contain thermally expandable particles. A semiconductor device manufacturing method using a semiconductor processing pressure-sensitive adhesive sheet that is a thermally expandable layer, comprising the following steps 1 to 4.
    Step 1: Attaching the adhesive sheet for semiconductor processing to the surface (Wα) having the protrusions of the semiconductor wafer (W) having the protrusions using the adhesive layer as the attachment surface Step 2: The attached semiconductor On the surface (Sα) on the base material side of the pressure-sensitive adhesive sheet for processing, among the convex portions caused by the convex portions and the non-convex portions that are portions other than the convex portions, the upper surface of the convex portions Step 3: contacting the coolant, by heating the semiconductor wafer (W) having the protrusions to the expansion start temperature (t) of the thermally expandable particles or higher while contacting the coolant, The pressure-sensitive adhesive sheet for semiconductor processing is heated from the side of the semiconductor wafer (W) having the protrusions, and the cooling effect of the coolant suppresses the expansion of the portion of the pressure-sensitive adhesive sheet for semiconductor processing having the protrusions as a surface. while expanding the portion having the non-convex portion as a surface to reduce the height difference between the convex portion and the non-convex portion Step 4: With the base material of the pressure-sensitive adhesive sheet for semiconductor processing fixed, A step of processing the semiconductor wafer (W) having the projections
  2.  前記冷却材の20℃における熱伝導率が、50W/m・K以上である、請求項1に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the coolant has a thermal conductivity of 50 W/m·K or more at 20°C.
  3.  前記冷却材が、金属である、請求項1又は2に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the coolant is metal.
  4.  前記冷却材の厚さが、前記熱膨張性層の厚さの100倍以上である、請求項1又は2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the coolant is 100 times or more the thickness of the thermal expansion layer.
  5.  前記中間層の厚さが、10~500μmである、請求項1又は2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the intermediate layer has a thickness of 10 to 500 µm.
  6.  前記粘着剤層の厚さが、1~80μmである、請求項1又は2に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the adhesive layer has a thickness of 1 to 80 µm.
  7.  前記熱膨張性粒子の含有量が、前記熱膨張性層の全質量(100質量%)に対して、0.05~25質量%である、請求項1又は2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein the content of said thermally expandable particles is 0.05 to 25% by mass with respect to the total mass (100% by mass) of said thermally expandable layer. .
  8.  前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、請求項1又は2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the thermally expandable particles have an expansion start temperature (t) of 50°C or higher and lower than 125°C.
  9.  前記中間層が、前記熱膨張性層である、請求項1又は2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein said intermediate layer is said thermally expandable layer.
  10.  前記工程3における前記突起部を有する半導体ウエハ(W)の加熱を、前記突起部を有する半導体ウエハ(W)の前記面(Wα)とは反対側の面(Wβ)を加熱することによって行う、請求項1又は2に記載の半導体装置の製造方法。 The heating of the semiconductor wafer (W) having the projections in the step 3 is performed by heating the surface (Wβ) opposite to the surface (Wα) of the semiconductor wafer (W) having the projections. 3. The method of manufacturing a semiconductor device according to claim 1.
  11.  前記突起部の高さが、10~500μmである、請求項1又は2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the protrusion has a height of 10 to 500 µm.
  12.  前記突起部を有する半導体ウエハ(W)が、前記突起部としてバンプを有する半導体ウエハである、請求項1又は2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the semiconductor wafer (W) having the protrusions is a semiconductor wafer having bumps as the protrusions.
  13.  前記工程4における加工が、前記バンプを有する半導体ウエハの裏面研削である、請求項12に記載の半導体装置の製造方法。 13. The method of manufacturing a semiconductor device according to claim 12, wherein the processing in said step 4 is back grinding of said semiconductor wafer having said bumps.
  14.  基材と、中間層と、粘着剤層と、をこの順で有する半導体加工用粘着シートが、前記粘着剤層を貼付面として、突起部を有する半導体ウエハ(W)の前記突起部を有する面(Wα)に貼付されてなる、半導体加工用粘着シート付き半導体ウエハであって、
     前記半導体加工用粘着シートは、平面視で、
     空隙を含有する又は空隙を含有しない領域(a)と、
     前記領域(a)よりも空隙の体積含有量が高く、かつ、前記領域(a)よりも厚さが大きい領域(b)と、を有し、
     前記領域(a)と前記領域(b)の厚さの差によって、前記基材側の表面(Sα)が平坦化されている、半導体加工用粘着シート付き半導体ウエハ。
    A semiconductor processing pressure-sensitive adhesive sheet having a substrate, an intermediate layer, and an adhesive layer in this order is attached to the surface of a semiconductor wafer (W) having protrusions, with the adhesive layer serving as an attachment surface. A semiconductor wafer with an adhesive sheet for semiconductor processing, which is attached to (Wα),
    The adhesive sheet for semiconductor processing, in plan view,
    a void-containing or void-free region (a);
    a region (b) having a higher void volume content than the region (a) and a thickness greater than the region (a);
    A semiconductor wafer with an adhesive sheet for semiconductor processing, wherein the substrate-side surface (Sα) is flattened by a difference in thickness between the region (a) and the region (b).
PCT/JP2022/030513 2021-08-13 2022-08-10 Method for manufacturing semiconductor device, and semiconductor wafer with adhesive sheet for semiconductor processing WO2023017832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280055049.XA CN117795650A (en) 2021-08-13 2022-08-10 Method for manufacturing semiconductor device and semiconductor wafer with adhesive sheet for semiconductor processing
KR1020237039010A KR20240045163A (en) 2021-08-13 2022-08-10 Manufacturing method of semiconductor device and semiconductor wafer with adhesive sheet for semiconductor processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132019 2021-08-13
JP2021132019 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023017832A1 true WO2023017832A1 (en) 2023-02-16

Family

ID=85200623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030513 WO2023017832A1 (en) 2021-08-13 2022-08-10 Method for manufacturing semiconductor device, and semiconductor wafer with adhesive sheet for semiconductor processing

Country Status (4)

Country Link
KR (1) KR20240045163A (en)
CN (1) CN117795650A (en)
TW (1) TW202316508A (en)
WO (1) WO2023017832A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794751B2 (en) * 2001-06-29 2004-09-21 Intel Corporation Multi-purpose planarizing/back-grind/pre-underfill arrangements for bumped wafers and dies
JP2005019666A (en) * 2003-06-26 2005-01-20 Nitto Denko Corp Method for grinding semiconductor wafer and adhesive sheet for grinding semiconductor wafer
JP2005116610A (en) * 2003-10-03 2005-04-28 Nitto Denko Corp Processing method of semiconductor wafer, and adhesive sheet for processing semiconductor wafer
JP2013021017A (en) * 2011-07-07 2013-01-31 Disco Abrasive Syst Ltd Wafer grinding method
JP2013087131A (en) * 2011-10-13 2013-05-13 Lintec Corp Pressure-sensitive adhesive sheet and method for using the same
JP2017103441A (en) * 2015-12-01 2017-06-08 株式会社岡本工作機械製作所 Method for flattening device substrate with bump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259272B2 (en) 2018-11-08 2023-04-18 住友ベークライト株式会社 Temporary fixing tape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794751B2 (en) * 2001-06-29 2004-09-21 Intel Corporation Multi-purpose planarizing/back-grind/pre-underfill arrangements for bumped wafers and dies
JP2005019666A (en) * 2003-06-26 2005-01-20 Nitto Denko Corp Method for grinding semiconductor wafer and adhesive sheet for grinding semiconductor wafer
JP2005116610A (en) * 2003-10-03 2005-04-28 Nitto Denko Corp Processing method of semiconductor wafer, and adhesive sheet for processing semiconductor wafer
JP2013021017A (en) * 2011-07-07 2013-01-31 Disco Abrasive Syst Ltd Wafer grinding method
JP2013087131A (en) * 2011-10-13 2013-05-13 Lintec Corp Pressure-sensitive adhesive sheet and method for using the same
JP2017103441A (en) * 2015-12-01 2017-06-08 株式会社岡本工作機械製作所 Method for flattening device substrate with bump

Also Published As

Publication number Publication date
KR20240045163A (en) 2024-04-05
CN117795650A (en) 2024-03-29
TW202316508A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
JP7185638B2 (en) Semiconductor device manufacturing method
WO2018181765A1 (en) Adhesive sheet
WO2020196755A1 (en) Adhesive sheet, production method for adhesive sheet, and production method for semiconductor device
WO2020189568A1 (en) Adhesive sheet and semiconductor device production method
JPWO2018181766A1 (en) Method for manufacturing semiconductor device and double-sided pressure-sensitive adhesive sheet
JP7273792B2 (en) Processed product manufacturing method and adhesive laminate
WO2021049570A1 (en) Method of manufacturing semiconductor device
WO2020196756A1 (en) Adhesive-sheet manufacturing method, semiconductor-device manufacturing method, and adhesive sheet
WO2021200789A1 (en) Double-sided adhesive sheet, and method for manufacturing semiconductor device
WO2020196757A1 (en) Adhesive sheet, adhesive-sheet manufacturing method, and semiconductor-device manufacturing method
WO2020196758A1 (en) Pressure-sensitive adhesive sheet, method for producing pressure-sensitive adhesive sheet, and method for producing semiconductor device
WO2018181770A1 (en) Adhesive sheet
WO2023017832A1 (en) Method for manufacturing semiconductor device, and semiconductor wafer with adhesive sheet for semiconductor processing
WO2023017831A1 (en) Method for expanding pressure-sensitive adhesive sheet
JPWO2019112033A1 (en) Adhesive laminate, how to use the adhesive laminate, and how to manufacture semiconductor devices
JP7188668B2 (en) singulation sheet
JP7157861B1 (en) Semiconductor device manufacturing method
WO2023054318A1 (en) Method for producing semiconductor device
WO2022196752A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP7185637B2 (en) Semiconductor device manufacturing method
TWI836046B (en) Adhesive sheet, manufacturing method of adhesive sheet, and manufacturing method of semiconductor device
WO2024058094A1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541455

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE