WO2019181447A1 - Method for producing processed article and adhesive layered body - Google Patents

Method for producing processed article and adhesive layered body Download PDF

Info

Publication number
WO2019181447A1
WO2019181447A1 PCT/JP2019/008260 JP2019008260W WO2019181447A1 WO 2019181447 A1 WO2019181447 A1 WO 2019181447A1 JP 2019008260 W JP2019008260 W JP 2019008260W WO 2019181447 A1 WO2019181447 A1 WO 2019181447A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive layer
adhesive sheet
layer
Prior art date
Application number
PCT/JP2019/008260
Other languages
French (fr)
Japanese (ja)
Inventor
中山 武人
岡本 直也
高志 阿久津
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020207023470A priority Critical patent/KR20200133209A/en
Priority to JP2020508132A priority patent/JP7273792B2/en
Priority to CN201980018435.XA priority patent/CN111837219A/en
Publication of WO2019181447A1 publication Critical patent/WO2019181447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Definitions

  • the present invention relates to a method for producing a processed product subjected to at least one of cutting and grinding, and an adhesive laminate used in the production method.
  • the pressure-sensitive adhesive sheet is not only used for semi-permanently fixing members, but also for temporary fixing for temporarily fixing target members when processing or inspecting building materials, interior materials, and electronic parts. May be used.
  • Such a pressure-sensitive adhesive sheet for temporarily fixing is required to satisfy both adhesiveness at the time of use and peelability after use.
  • Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing at the time of cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a substrate. ing.
  • This heat-peelable pressure-sensitive adhesive sheet adjusts the maximum particle size of the heat-expandable microspheres with respect to the thickness of the heat-expandable pressure-sensitive adhesive layer, and calculates the center line average roughness of the surface of the heat-expandable pressure-sensitive adhesive layer before heating. It is adjusted to 0.4 ⁇ m or less.
  • the heat-peelable pressure-sensitive adhesive sheet can secure a contact area with an adherend when cutting an electronic component, it can exhibit adhesiveness that can prevent adhesion failure such as chip jumping, After use, there is a description that it can be easily peeled by heating to expand the thermally expandable microspheres to reduce the contact area with the adherend.
  • an object to be processed (hereinafter also referred to as “processing object”) using the pressure-sensitive adhesive sheet is temporarily fixed, and predetermined processing is performed on the processing object. After being applied, the processing object is separated from the adhesive sheet.
  • processing object is separated from the adhesive sheet.
  • a plurality of processing steps including at least one of a step of cutting a workpiece and a step of grinding are often performed. Therefore, for example, after the processing object temporarily fixed to the adhesive sheet is subjected to at least one of the cutting process and the grinding process, the processing object is removed from the adhesive sheet.
  • the separated workpiece is pasted on a new pressure-sensitive adhesive sheet and used for the next step.
  • the processing object is separated from the adhesive sheet and separated.
  • the processing object is affixed to a new pressure-sensitive adhesive sheet, and at least one of the processing steps of cutting and grinding the processing object is performed.
  • the workpiece after the workpiece is fixed to the support and the workpiece is processed, the workpiece can be easily separated from the support in a lump with a slight force.
  • the processing object separated from the support can be used for the next process as a state of being attached to the adhesive sheet, and the processing object is at least at any timing before and after the separation of the processing object from the support.
  • a method for manufacturing a processed product that has been subjected to at least one of cutting and grinding, and at least one of cutting and grinding has been performed. It aims at providing the adhesive laminated body for manufacture of a processed article.
  • the present inventors have a heat-expandable pressure-sensitive adhesive sheet (I) having a base material and a pressure-sensitive adhesive layer, and a layer containing heat-expandable particles in any layer, and a base material and a pressure-sensitive adhesive layer.
  • a pressure-sensitive adhesive laminate comprising the pressure-sensitive adhesive sheet (II) and directly laminated with the base material of the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (II) is subjected to at least one of cutting and grinding. It has been found that the above problem can be solved by manufacturing a processed product.
  • a method of manufacturing a processed product subjected to at least one of cutting and grinding using It has the following steps (1) to (3) in this order, Step (1): A step of sticking the surface of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate to a support and sticking a workpiece to the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive laminate. Step (2): Step of performing one or more processings on the workpiece. Step (3): Heating the thermal expandable particles at a thermal expansion start temperature (t) or higher, thereby sticking the workpiece to the adhesive.
  • the pressure-sensitive adhesive laminate is separated at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) while maintaining the state of being stuck on the surface of the pressure-sensitive adhesive layer (X2).
  • the said process (4) is the following.
  • (X) The manufacturing method of the processed goods implemented in at least any one of (Y).
  • the first pressure-sensitive adhesive layer (X11) is a heat-expandable pressure-sensitive adhesive layer containing the heat-expandable particles
  • the second pressure-sensitive adhesive layer (X12) is a non-thermally expandable pressure-sensitive adhesive layer
  • the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly The manufacturing method according to the above [1] or [2], wherein the surface of the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive sheet (I) having a laminated structure is a surface to be attached to the support.
  • the storage elastic modulus G ′ (23 ° C.) of the pressure-sensitive adhesive layer (X2) is 0.1 MPa or more.
  • the workpiece is a semiconductor wafer
  • the one or more processes in the step (2) include the following step (2-A): Step (2-A): a step of forming a modified region serving as a division starting point on the semiconductor wafer.
  • the step (4) is the following step (4-A): Step (4-A): A step of grinding the surface of the semiconductor wafer opposite to the surface to be adhered to the adhesive layer (X2).
  • the step (4-A) includes the following (XA ) Or (YA), the production method according to any one of [1] to [12] above.
  • the object to be processed is a semiconductor chip
  • the one or more processes in the step (2) include the following step (2-B): Step (2-B): covering the semiconductor chip and the periphery of the semiconductor chip among the adhesive surfaces of the adhesive layer (X2) with a sealing material, and curing the sealing material; A step of obtaining a cured encapsulant in which the semiconductor chip is encapsulated in a cured encapsulant
  • the step (4) is performed in at least one of the following (XB) and (YB), [1] The production method according to [12].
  • the workpiece after the workpiece is fixed to the support and the workpiece is processed, the workpiece can be easily separated from the support with a slight force.
  • the object to be processed separated from the support can be applied to the next process as being attached to the adhesive sheet, and the process can be performed at least before or after the separation of the object to be processed from the support.
  • a method for manufacturing a workpiece that has been subjected to at least one of cutting and grinding, and at least one of cutting and grinding can be performed. It is possible to provide an adhesive laminate for producing a processed product.
  • whether the “layer” is a “non-thermally expandable layer” or a “thermally expandable layer” is determined as follows.
  • the target layer is heat-treated for 3 minutes at the expansion start temperature (t) of the heat-expandable particles contained in the layer containing the heat-expandable particles.
  • t expansion start temperature
  • Volume change rate (%) ⁇ (volume of the layer after heat treatment ⁇ volume of the layer before heat treatment) / volume of the layer before heat treatment ⁇ ⁇ 100
  • the layer not containing the thermally expandable particles is assumed to be a “non-thermally expandable layer”.
  • the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
  • the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in Examples. It is.
  • GPC gel permeation chromatography
  • (meth) acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the lower limit value and the upper limit value described in a stepwise manner can be independently combined for a preferable numerical range (for example, a range such as content). For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
  • the method for producing a processed product according to the present invention includes a base material (Y1) and a pressure-sensitive adhesive layer (X1), and one of the layers includes a heat-expandable pressure-sensitive adhesive containing heat-expandable particles having a thermal expansion start temperature (t).
  • a sheet (I) and a pressure-sensitive adhesive sheet (II) having a base material (Y2) and a pressure-sensitive adhesive layer (X2) are provided, and the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
  • the pressure-sensitive adhesive laminate is separated at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) while maintaining the state of being stuck on the surface of the pressure-sensitive adhesive layer (X2).
  • the said process (4) is the following. It is carried out in at least one of (X) and (Y).
  • the adhesive laminate used in the production method of the present invention will be described. Then, each manufacturing process including the steps (1) to (4) will be described.
  • the pressure-sensitive adhesive laminate used in the production method of the present invention has a base material (Y1) and a pressure-sensitive adhesive layer (X1), and includes a heat-expandable particle in any layer (I). And a pressure sensitive adhesive sheet (II) having a base material (Y2) and a pressure sensitive adhesive layer (X2), and the pressure sensitive adhesive sheet (I) and the base material (Y2) of the pressure sensitive adhesive sheet (II) are directly laminated.
  • the predetermined processing means the processing in step (2) in the production method of the present invention.
  • step (4) may be performed as one of the one or more processes in step (2). Therefore, the predetermined processing may include step (4) in the manufacturing method of the present invention.
  • the surface of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (I) is a surface to which a support is attached.
  • the surface of the second pressure-sensitive adhesive layer (X12) is the surface to which the support is attached, and the first pressure-sensitive adhesive layer
  • the surface of the agent layer (X11) is a surface laminated on the base material (Y2) side of the pressure-sensitive adhesive sheet (II).
  • the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) is a surface on which a workpiece is pasted.
  • the adhesive laminated body used for the manufacturing method of this invention is the base material of adhesive sheet (I) and adhesive sheet (II) by heat processing at the temperature more than the expansion start temperature (t) of a thermally expansible particle. Separation is possible at the interface P with (Y2).
  • the heat treatment is also referred to as “separation heat treatment”. 1 to 3 are schematic cross-sectional views showing the structures of the first, second, and third embodiments of the pressure-sensitive adhesive laminate used in the production method of the present invention, respectively.
  • the pressure-sensitive adhesive laminates 1a and 1b include a pressure-sensitive adhesive sheet (I) having a base material (Y1) and a pressure-sensitive adhesive layer (X1), and a pressure-sensitive adhesive sheet (II) having a base material (Y2) and a pressure-sensitive adhesive layer (X2).
  • the base material (Y1) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
  • any layer of the pressure-sensitive adhesive sheet (I) is a layer containing thermally expandable particles so that it can be separated at the interface P by the heat treatment for separation. .
  • the thermally expandable particles are expanded by the heat treatment for separation, and irregularities are generated on the surface of the layer containing the thermally expandable particles. Thereby, the contact area of the base material (Y2) of adhesive sheet (I) and adhesive sheet (II) reduces.
  • the processing object can be fixed to the support via the above-mentioned adhesive laminate and the predetermined processing can be performed, and the processing target subjected to the predetermined processing Objects can be easily separated from the support body with a slight force.
  • the object to be processed separated from the support can be used as it is in the next step as it is attached to the adhesive sheet (II). Therefore, it is not necessary to perform an operation of attaching the processed object after separation subjected to the predetermined processing to a new pressure-sensitive adhesive sheet, and workability and product productivity can be improved.
  • the substrate (Y1) has a thermally expandable substrate layer (Y1-1) containing thermally expandable particles like the adhesive laminates 1a and 1b shown in FIG. Is preferred.
  • the base material (Y1) has a single-layer structure having only a thermally expandable base material layer (Y1-1) containing heat-expandable particles, like the adhesive laminate 1a shown in FIG. 1 (a). May be.
  • the base material (Y1) is composed of a heat-expandable base material layer (Y1-1) and a non-heat-expandable base material layer (Y1-2) like the adhesive laminate 1b shown in FIG. 1 (b).
  • a multilayer structure having
  • the heat-expandable particles contained in the heat-expandable base material layer (Y1-1) constituting the base material (Y1) are expanded by the heat treatment for separation, Unevenness occurs on the surface of the base material (Y1) on the pressure-sensitive adhesive sheet (II) side, and the contact area between the base material (Y1) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) decreases.
  • the adhesive layer (X1) which the adhesive laminated body 1a has is affixed with the support body, an unevenness
  • the adhesive laminate 1a can be easily separated by a slight force at the interface P between the base material (Y1) of the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II). It becomes.
  • the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate 1a from a pressure-sensitive adhesive composition that increases the pressure-sensitive adhesive force to the support, it can be more easily separated at the interface P. It is also possible to design.
  • the thermally expandable particles contained in the thermally expandable substrate layer (Y1-1) constituting the substrate (Y1) are expanded by the heat treatment for separation. And the unevenness
  • the non-thermally expandable base material layer (Y1-2) constituting the base material (Y1) has a small degree of expansion due to heat treatment, and therefore the surface of the base material (Y1) on the pressure-sensitive adhesive layer (X1) side. It is difficult to form irregularities on the surface.
  • the adhesive laminate 1b can be easily separated by a slight force at the interface P between the base material (Y1) of the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II). It becomes.
  • the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate 1b is formed from a pressure-sensitive adhesive composition that enhances the adhesive strength to the support, whereby the interface P Therefore, it is also possible to design so as to be more easily separable.
  • the base material (Y1) has a thermally expandable base material layer (Y1-1) on one surface side. And a non-thermally expandable base material layer (Y1-2) on the other surface side.
  • the adhesive laminates 1a and 1b are made of an adhesive sheet (I). It is preferable that the thermally expandable base material layer (Y1-1) of the base material (Y1) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
  • the pressure-sensitive adhesive laminates 1c and 1d have a configuration in which the pressure-sensitive adhesive sheet (I) has a substrate (Y1) sandwiched between the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12).
  • the first pressure-sensitive adhesive layer (X11) of (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
  • the surface of a 2nd adhesive layer (X12) turns into a surface affixed with a support body.
  • the substrate (Y1) has a thermally expandable substrate layer (Y1-1) containing thermally expandable particles like the adhesive laminates 1c and 1d shown in FIG. Is preferred.
  • the base material (Y1) has a single-layer structure having only a heat-expandable base material layer (Y1-1) containing heat-expandable particles, like the adhesive laminate 1c shown in FIG. 2 (a). May be.
  • the base material (Y1) is composed of a heat-expandable base material layer (Y1-1) and a non-heat-expandable base material layer (Y1-2) as in the adhesive laminate 1d shown in FIG. 2 (b).
  • the substrate (Y1) has a multi-layer structure having a thermally expandable substrate layer (Y1-1) and a non-thermally expandable substrate layer (Y1-2), the thermally expandable substrate layer (Y1-1) is preferably disposed on the pressure-sensitive adhesive sheet (II) side, and the non-thermally expandable base material layer (Y1-2) is preferably disposed on the second pressure-sensitive adhesive layer (X12) side.
  • the heat-expandable particles in the heat-expandable base material layer (Y1-1) constituting the base material (Y1) are expanded by the heat treatment for separation. Unevenness occurs on the surface of the material (Y1) on the first pressure-sensitive adhesive layer (X11) side. And the 1st adhesive layer (X11) is also pushed up by the unevenness which arose on the surface of substrate (Y1), and the unevenness is formed also in the surface at the side of adhesive sheet (II) of the 1st adhesive layer (X11). . Thereby, the contact area of the 1st adhesive layer (X11) and the base material (Y2) of adhesive sheet (II) reduces.
  • the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive laminate 1c is formed from a pressure-sensitive adhesive composition that increases the pressure-sensitive adhesive force to the support so that it can be more easily separated at the interface P. It is also possible to design.
  • the thermally expandable particles contained in the thermally expandable substrate layer (Y1-1) constituting the substrate (Y1) are expanded by the heat treatment for separation.
  • corrugation arises in the surface at the side of the 1st adhesive layer (X11) of a base material (Y1).
  • the 1st adhesive layer (X11) is also pushed up by the unevenness which arose on the surface of substrate (Y1), and the unevenness is formed also in the surface at the side of adhesive sheet (II) of the 1st adhesive layer (X11). .
  • the contact area of the 1st adhesive layer (X11) and the base material (Y2) of adhesive sheet (II) reduces.
  • the non-thermally expandable base material layer (Y1-2) constituting the base material (Y1) has a small degree of expansion due to the heat treatment, and therefore the second pressure-sensitive adhesive layer (X12) side of the base material (Y1). It is difficult for irregularities to be formed on the surface. Thereby, an unevenness
  • corrugation can be efficiently formed in the surface at the side of the 1st adhesive layer (X11) of a base material (Y1). As a result, the adhesive laminate 1d can be easily separated by a slight force at the interface P between the base material (Y1) of the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II). It becomes.
  • the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive laminate 1d from a pressure-sensitive adhesive composition that increases the adhesive strength to the support, It is also possible to design so as to be more easily separable at the interface P.
  • the adhesive laminates 1c and 1d are adhesive sheets (I) from the viewpoint of forming an adhesive laminate that can be easily separated at a slight force at the interface P. It is preferable that the thermally expandable base material layer (Y1-1) of the base material (Y1) and the first pressure-sensitive adhesive layer (X11) are directly laminated. In this case, it is more preferable that the first pressure-sensitive adhesive layer (X11) and the base material (Y2) of the resin film-forming sheet (II) are directly laminated.
  • ⁇ Adhesive laminate of the third aspect> The adhesive laminates 1a and 1b of the first embodiment and the adhesive laminates 1c and 1d of the second embodiment used in the production method of the present invention are all heated as one of the layers constituting the substrate (Y1). A layer containing expandable particles is included.
  • the adhesive laminate of the third aspect used in the production method of the present invention the thermally expandable adhesive containing the thermally expandable particles on the surface on the interface P side of the base material (Y1) of the adhesive sheet (I).
  • the structure which provided the agent layer and provided the non-heat-expandable adhesive layer in the other surface of a base material (Y1) may be sufficient.
  • the adhesive sheet (I) is made of a base material (Y1) by the first adhesive layer (X11) and the second adhesive layer (X12). ) Are sandwiched, the first pressure-sensitive adhesive layer (X11) is a heat-expandable pressure-sensitive adhesive layer containing heat-expandable particles, and the second pressure-sensitive adhesive layer (X12) is a non-heat-expandable pressure-sensitive adhesive layer.
  • the adhesive layer include a layer in which the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
  • the surface of a 2nd adhesive layer (X12) is a surface stuck with a support body.
  • a base material (Y1) is a non-thermally expansible base material.
  • the surface of the thermally expandable pressure-sensitive adhesive layer that is the first pressure-sensitive adhesive layer (X11) is uneven by the heat treatment for separation, and the first pressure-sensitive adhesive layer (X11) and The contact area between the adhesive sheet (II) and the base material (Y2) is reduced.
  • the surface of the first pressure-sensitive adhesive layer (X11) on the base material (Y1) side is not easily uneven because the base material (Y1) that is a non-thermally expandable base material is laminated. Therefore, unevenness is efficiently formed on the surface of the first pressure-sensitive adhesive layer (X11) on the pressure-sensitive adhesive sheet (II) side.
  • the pressure-sensitive adhesive laminate 2 can be easily collected with a slight force at the interface P between the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II). Can be separated.
  • ⁇ Configuration of adhesive laminate having release material> In one embodiment of the pressure-sensitive adhesive laminate used in the production method of the present invention, one or both of the surface of the pressure-sensitive adhesive layer (X1) to which the support is stuck and the surface of the pressure-sensitive adhesive layer (X2) to which the workpiece is stuck are attached. Further, a configuration in which a release material is further laminated may be employed. For example, in the adhesive laminates 1a and 1b shown in FIGS. 1 (a) and 1 (b), one adhesive surface of the adhesive layer (X1) and the adhesive layer (X2) is subjected to a peeling treatment on both sides. It is good also as a structure which wound what the release material laminated
  • One embodiment of the pressure-sensitive adhesive laminate used in the production method of the present invention is based on the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (II) by heat treatment at a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles.
  • the peeling force (F 1 ) when separating at the interface P by heat treatment at a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles is as follows.
  • the release force (F 1) is in the case of 0 mN / 25 mm, even trying to measure the peel strength by the method described in Example, includes the case where the measurement impossible because peel strength is too small.
  • the layer between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) from the viewpoint of sufficiently fixing the object to be processed and not adversely affecting the processing work before the heat treatment. It is preferable that the adhesiveness is high.
  • the peeling force (F 0 ) when separating at the interface P before performing the heat treatment is preferably 100 mN / 25 mm or more, More preferably, it is 300 mN / 25 mm or more, More preferably, it is 500 mN / 25 mm or more, Preferably it is 50000 mN / 25 mm or less.
  • the peel force (F 0 ) is greater than the peel force (F 1 ).
  • the ratio [(F 1 ) / (F 0 )] between the peel force (F 1 ) and the peel force (F 0 ) is preferably 0 to 0.9, more preferably 0 to 0.8. More preferably, it is 0 to 0.5, and still more preferably 0 to 0.2.
  • thermally expandable particles may be any temperature at which expansion.
  • the temperature conditions used for measuring the peel force (F 0) but may be less than the expansion start temperature (t), is basically a room temperature (23 ° C.).
  • more specific measurement conditions and measurement methods for the peel force (F 1 ) and the peel force (F 0 ) are based on the methods described in the examples.
  • the pressure-sensitive adhesive layer (X1) (first pressure-sensitive adhesive layer (X11) and second pressure-sensitive adhesive) of the pressure-sensitive adhesive sheet (I) at room temperature (23 ° C.)
  • the pressure-sensitive adhesive strength of the layer (X12) and the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) are each independently preferably 0.1 to 10.0 N / 25 mm, more preferably 0.
  • the range is from 0.2 to 8.0 N / 25 mm, more preferably from 0.4 to 6.0 N / 25 mm, still more preferably from 0.5 to 4.0 N / 25 mm.
  • the adhesive strengths of the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12) are respectively The above-mentioned range is preferable, but from the viewpoint of improving the adhesion with the support and enabling easy separation at the interface P all at once, the second pressure-sensitive adhesive layer (X12) to be attached to the support is used. More preferably, the adhesive strength is higher than the adhesive strength of the first adhesive layer (X11).
  • the base material (Y1) included in the pressure-sensitive adhesive sheet (I) and the base material (Y2) included in the pressure-sensitive adhesive sheet (II) are non-adhesive base materials.
  • whether or not the non-adhesive substrate is determined if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mm ⁇ with respect to the surface of the target substrate.
  • the said base material is judged as a "non-adhesive base material".
  • the probe tack values on the surface of the base material (Y1) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) used in one embodiment of the present invention are each independently usually less than 50 mN / 5 mm ⁇ . However, it is preferably less than 30 mN / 5 mm ⁇ , more preferably less than 10 mN / 5 mm ⁇ , and even more preferably less than 5 mN / 5 mm ⁇ .
  • the specific measuring method of the probe tack value on the surface of a thermally expansible base material is based on the method as described in an Example.
  • the pressure-sensitive adhesive sheet (I) of the pressure-sensitive adhesive laminate used in the production method of the present invention has a base material (Y1) and a pressure-sensitive adhesive layer (X1), and the base material of the pressure-sensitive adhesive sheet (II) by heat treatment for separation. It is a heat-expandable pressure-sensitive adhesive sheet containing heat-expandable particles in any layer so that it can be separated at the interface with (Y2).
  • the thermal expansion start temperature (t) of the thermally expandable particles is preferably 60 to 270 ° C.
  • -Pressure-sensitive adhesive sheet (I) of the first aspect Pressure-sensitive adhesive sheet (I) having a heat-expandable base material layer (Y1-1) containing heat-expandable particles as the base material (Y1).
  • -Adhesive sheet (I) of 2nd aspect 1st adhesive layer (X11) which is a thermally expansible adhesive layer containing a thermally expansible particle on both surfaces of a base material (Y1), and non-thermally expandable adhesive Adhesive sheet (I) which has the 2nd adhesive layer (X12) which is an agent layer.
  • -Adhesive sheet (I) whose base material (Y1) is a non-thermally expandable base material.
  • the substrate (Y1) has a thermally expandable substrate layer (Y1-1) containing thermally expandable particles. It is done.
  • the pressure-sensitive adhesive sheet (I) of the first embodiment is adhesive from the viewpoint that it can be easily separated with a slight force at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II).
  • the agent layer (X1) is preferably a non-thermally expandable pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer (X1) is preferably a non-thermally expandable pressure-sensitive adhesive layer.
  • both the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12) are non-thermally expandable pressure-sensitive adhesives.
  • An agent layer is preferred.
  • the thickness of the base material (Y1) before the heat treatment for separation of the pressure-sensitive adhesive sheet (I) of the first aspect is preferably 10 to 1000 ⁇ m, more preferably 20 to 700 ⁇ m, still more preferably 25 to 500 ⁇ m, and still more preferably. 30 to 300 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer (X1) before separation heat treatment of the pressure-sensitive adhesive sheet (I) of the first aspect is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably. Is 5 to 30 ⁇ m.
  • the above “thickness of the pressure-sensitive adhesive layer (X1)” It means the thickness of the agent layer (in FIG. 2, the thickness of each of the adhesive layers (X11) and (X12)).
  • the thickness of each layer which comprises an adhesive laminated body means the value measured by the method as described in an Example.
  • the thickness ratio [(Y1-1) / (X1) between the heat-expandable base material layer (Y1-1) and the pressure-sensitive adhesive layer (X1) before the heat treatment for separation. ]] Is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and still more preferably 30 or less. If the thickness ratio is 1000 or less, it can be easily separated by a heat treatment at the interface P between the pressure sensitive adhesive sheet (I) and the base material (Y2) of the pressure sensitive adhesive sheet (II). It can be set as an adhesive laminated body.
  • the thickness ratio is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and still more preferably 5.0 or more.
  • the base material (Y1) is composed only of the thermally expandable base material layer (Y1-1) as shown in FIG. 1 (a). As shown in FIG. 1B, it has a heat-expandable base material layer (Y1-1) on the pressure-sensitive adhesive sheet (II) side, and a non-heat-expandable base material layer on the pressure-sensitive adhesive layer (X1) side. It may have (Y1-2).
  • the thickness ratio between the thermally expandable substrate layer (Y1-1) and the non-thermally expandable substrate layer (Y1-2) [(Y1 -1) / (Y1-2)] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
  • the pressure-sensitive adhesive sheet (I) of the second embodiment is a first pressure-sensitive adhesive layer that is a heat-expandable pressure-sensitive adhesive layer containing heat-expandable particles on both sides of the base material (Y1).
  • (X11) and what has the 2nd adhesive layer (X12) which is a non-thermally expandable adhesive layer are mentioned.
  • the 1st adhesive layer (X11) which is a thermally expansible adhesive layer, and the base material (Y2) of adhesive sheet (II) contact directly.
  • a base material (Y1) is a non-thermally expandable base material layer.
  • the first pressure-sensitive adhesive layer (X11) which is a thermally expandable pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer which is a non-thermally expandable pressure-sensitive adhesive layer before the heat treatment for separation.
  • the thickness ratio [(X11) / (X12)] to (X12) is preferably 0.1 to 80, more preferably 0.3 to 50, and still more preferably 0.5 to 15.
  • the thickness ratio between the first pressure-sensitive adhesive layer (X11) which is a thermally expandable pressure-sensitive adhesive layer and the base material (Y1) before the heat treatment for separation [( X11) / (Y1)] is preferably 0.05 to 20, more preferably 0.1 to 10, and still more preferably 0.2 to 3.
  • thermally expandable substrate layer (Y1-1) constituting the substrate (Y1) non-thermally expanded
  • the adhesive base layer (Y1-2) and the pressure-sensitive adhesive layer (X1) will be described in detail.
  • the thermally expandable particles used in the present invention may be particles that expand by heating, but are preferably particles whose expansion start temperature (t) is adjusted to 60 to 270 ° C. Expansion start temperature (t) is suitably selected according to the use of an adhesive layered product. For example, in the manufacturing method of the present invention, when the adhesive laminate is not exposed to a high temperature environment in the steps (1) and (2) (for example, a modified region is formed as a division starting point in the semiconductor wafer) The expansion start temperature of the thermally expandable particles is preferably as low as possible within the above temperature range.
  • separating an adhesive sheet (I) and an adhesive sheet (1I) can be made into a small thing, and the manufacturing cost of a cut material and / or a ground material can be reduced. Further, the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (1I) can be separated without giving an excessive heat history to the workpiece.
  • the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
  • the thermally expandable particles are microencapsulated foaming agents composed of an outer shell composed of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature.
  • a thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane.
  • the average particle diameter of the thermally expandable particles before expansion at 23 ° C. used in one embodiment of the present invention is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, still more preferably 10 to 50 ⁇ m.
  • the average particle diameter of the thermally expandable particles before expansion is the volume-median particle diameter (D 50 ), and is a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern).
  • the cumulative volume frequency calculated from the smaller particle diameter of the heat-expandable particles before expansion means a particle diameter corresponding to 50%.
  • the 90% particle diameter (D 90 ) before expansion at 23 ° C. of the thermally expandable particles used in one embodiment of the present invention is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, still more preferably 25 to 90 ⁇ m, More preferably, it is 30 to 80 ⁇ m.
  • grain is expansion
  • the particle diameter corresponding to 90% of the cumulative volume frequency calculated from the smaller particle diameter of the thermally expandable particles before expansion is meant.
  • the maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles used in one embodiment of the present invention is preferably 1.5 to 100 times, more preferably 2 to 80 times, Preferably it is 2.5 to 60 times, and more preferably 3 to 40 times.
  • Thermal expansion base material layer (Y1-1) preferably satisfies the following requirement (1).
  • the storage elastic modulus E ′ (t) of the thermally expandable base material layer (Y1-1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 ⁇ 10 7 Pa or less. is there.
  • the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) at a predetermined temperature means a value measured by the method described in the examples.
  • the requirement (1) can be said to be an index indicating the rigidity of the thermally expandable substrate layer (Y1-1) immediately before the thermally expandable particles expand.
  • the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) decreases as the temperature rises.
  • the thermally expandable particles start to expand before and after reaching the expansion start temperature (t) of the thermally expandable particles, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) is decreased. It is suppressed.
  • the temperature is higher than the expansion start temperature (t). It is necessary to make it easy to form unevenness on the surface of the pressure-sensitive adhesive sheet (I) on the side laminated with the base material (Y2) by heating. That is, the thermally expandable substrate layer (Y1-1) satisfying the above requirement (1) becomes sufficiently large by expansion of the thermally expandable particles at the expansion start temperature (t), and the substrate of the pressure-sensitive adhesive sheet (II) Unevenness is easily formed on the surface of the pressure-sensitive adhesive sheet (I) on the side laminated with (Y2). As a result, it can be an adhesive laminate that can be easily and collectively separated with a slight force at the interface P between the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II).
  • the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable substrate layer (Y1-1) used in the present invention is preferably 9.0 ⁇ 10 6 Pa or less, more preferably Is 8.0 ⁇ 10 6 Pa or less, more preferably 6.0 ⁇ 10 6 Pa or less, and still more preferably 4.0 ⁇ 10 6 Pa or less. Moreover, the flow of the expanded thermally expandable particles is suppressed, and the shape maintaining property of the unevenness formed on the surface of the pressure-sensitive adhesive sheet (I) on the side laminated with the base material (Y2) of the pressure-sensitive adhesive sheet (II) is improved.
  • the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable base material layer (Y1-1) is preferably It is 1.0 ⁇ 10 3 Pa or more, more preferably 1.0 ⁇ 10 4 Pa or more, and further preferably 1.0 ⁇ 10 5 Pa or more.
  • the content of the heat-expandable particles in the heat-expandable base material layer (Y1-1) Preferably, it is 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably 10 to 30% by mass, and still more preferably 15 to 30% by mass with respect to the total mass (100% by mass) of the layer (Y1-1). 25% by mass.
  • the surface of the heat-expandable base material layer (Y1-1) is oxidized or You may perform surface treatment by an uneven
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment.
  • the unevenness method include sand blast method and solvent treatment method. Etc.
  • the thermally expandable substrate layer (Y1-1) is preferably formed from a resin composition (y) containing a resin and thermally expandable particles.
  • the additive for base materials in the resin composition (y) in the range which does not impair the effect of this invention as needed.
  • the substrate additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
  • These base material additives may be used alone or in combination of two or more. When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to about 100 parts by mass of the resin. 10 parts by mass.
  • the thermally expandable particles contained in the resin composition (y), which is a material for forming the thermally expandable base material layer (Y1-1), are as described above.
  • the content of the heat-expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10% with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). To 30% by mass, and more preferably 15 to 25% by mass.
  • the resin contained in the resin composition (y) that is a material for forming the thermally expandable base material layer (Y1-1) may be a non-adhesive resin or an adhesive resin. That is, even if the resin contained in the resin composition (y) is an adhesive resin, in the process of forming the thermally expandable substrate layer (Y1-1) from the resin composition (y), the adhesive resin
  • the resin obtained by polymerization reaction with the polymerizable compound may be a non-adhesive resin, and the thermally expandable base material layer (Y1-1) containing the resin may be non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000. Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). %, More preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y) is selected from acrylic urethane resins and olefin resins. It is preferable that 1 or more types included are included. Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
  • urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
  • Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols. These polyols may be used independently and may use 2 or more types together.
  • the polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
  • ester type diols include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarbox
  • alkylene type diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
  • alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol
  • ethylene glycol, propylene glycol And alkylene glycols such as diethylene glycol and dipropylene glycol
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
  • polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) examples include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. These polyvalent isocyanates may be used alone or in combination of two or more. These polyisocyanates may be a trimethylolpropane adduct type modified product, a burette type modified product reacted with water, or an isocyanurate type modified product containing an isocyanurate ring.
  • the polyisocyanate used in one embodiment of the present invention is preferably diisocyanate, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • alicyclic diisocyanate examples include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane.
  • IPDI isophorone diisocyanate
  • Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends.
  • a urethane prepolymer is preferred.
  • an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the (meth) acrylic acid ester is preferably one or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
  • the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
  • the carbon number of the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
  • hydroxyalkyl (meth) acrylate the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce
  • vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate.
  • Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide). These may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound.
  • the amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the acrylic urethane-based resin (U1) used in one embodiment of the present invention is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester and polymerizing both.
  • the polymerization is preferably performed by adding a radical initiator.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35 by mass ratio. / 65 to 55/45.
  • the olefin resin suitable as the resin contained in the resin composition (y) is a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like. Among these, ethylene and propylene are preferable.
  • olefinic resins for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); ethylene -Vinyl alcohol copolymer (EVOH); ethylene-propylene Olefinic terpolymers such as-(5-ethylid)
  • the olefin resin may be a modified olefin resin further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
  • an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride.
  • unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride.
  • Glutaconic anhydride citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
  • unsaturated carboxylic acid or its anhydride may be used independently, and may use 2 or more types together.
  • An acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification is a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin that is a main chain.
  • a polymer is mentioned.
  • the number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
  • As said alkyl (meth) acrylate the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
  • Examples of the hydroxyl group-modified olefin resin obtained by subjecting an olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
  • Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl.
  • Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • the resin composition (y) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
  • resins examples include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer Polycarbonate; Polyurethane; Polyetheretherketone; Polyethersulfone; Polyphenylenesulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Fluorine resin etc. are mentioned.
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polystyrene acrylonitrile-butadiene-styrene copolymer
  • Polycarbonate Polyurethane
  • the content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin in the resin composition (y) is: Less is preferable.
  • the content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by mass, still more preferably less than 5 parts by mass, and even more preferably less than 1 part by mass.
  • solvent-free resin composition (y1) As one embodiment of the resin composition (y) used in one embodiment of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-described thermal expansibility A solvent-free resin composition (y1) that includes particles and does not contain a solvent is exemplified. In the solventless resin composition (y1), no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer. By irradiating the coating film formed from the solventless resin composition (y1) with energy rays, it is easy to form the thermally expandable base material layer (Y1-1) satisfying the requirement (1).
  • Mw mass average molecular weight
  • the mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
  • oligomer As said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight is 50000 or less among resin contained in the above-mentioned resin composition (y), but the above-mentioned urethane prepolymer (UP ) Is preferred.
  • a modified olefin resin having an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably 50 to 100% with respect to the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
  • Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Cycloaliphatic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
  • the content ratio [oligomer / energy ray polymerizable monomer] of the oligomer and the energy ray polymerizable monomer in the solventless resin composition (y1) is preferably 20/80 to 90 / in mass ratio. 10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
  • the solventless resin composition (y1) is further blended with a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned. These photoinitiators may be used independently and may use 2 or more types together.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer.
  • the amount is preferably 0.02 to 3 parts by mass.
  • Non-thermally expandable substrate layer (Y1-2) Examples of the material for forming the non-thermally expandable base material layer (Y1-2) constituting the base material (Y1) include paper materials, resins, metals, and the like. It can select suitably according to a use.
  • Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfate paper, glassine paper, and the like.
  • Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resin such as polyurethane and acrylic modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as poly
  • These forming materials may be composed of one kind or in combination of two or more kinds.
  • a method for forming the metal layer for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. And the like.
  • non-thermally expandable base material layer (Y1-2) contains a resin
  • it may contain the above-mentioned base material additive that can be contained in the resin composition (y) together with the resin.
  • the non-thermally expandable base material layer (Y1-2) is a non-thermally expandable layer that is determined based on the above-described method. Therefore, the volume change rate (%) of the non-thermally expandable substrate layer (Y1-2) calculated from the above formula is less than 5%, preferably less than 2%, more preferably less than 1%. More preferably, it is less than 0.1%, and still more preferably less than 0.01%.
  • the non-thermally expandable substrate layer (Y1-2) may contain thermally expandable particles as long as the volume change rate is in the above range.
  • the volume change rate can be adjusted to the above range even if the thermally expandable particles are included.
  • the specific content of the heat-expandable particles is usually less than 3% by weight, preferably less than 1% by weight, based on the total weight (100% by weight) of the non-heat-expandable base material layer (Y1-2).
  • the heat-expandable particles are not contained in the non-heat-expandable base material layer (Y1-2).
  • the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (I) used in the first aspect of the present invention can be formed from a pressure-sensitive adhesive composition (x1) containing a pressure-sensitive adhesive resin.
  • the pressure-sensitive adhesive composition (x1) may contain pressure-sensitive adhesive additives such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator as necessary.
  • pressure-sensitive adhesive additives such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator as necessary.
  • the pressure-sensitive adhesive sheet (I) has the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12), the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12) are also used. It can be formed from a pressure-sensitive adhesive composition (x1) containing the following components.
  • any polymer may be used as long as the resin has adhesiveness and has a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and even more preferably 30,000, from the viewpoint of improving the adhesive strength. ⁇ 1 million.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used independently and may use 2 or more types together. In addition, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
  • the adhesive resin used in one embodiment of the present invention may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
  • a polymerizable functional group include a (meth) acryloyl group and a vinyl group.
  • energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
  • the adhesive resin contains an acrylic resin from the viewpoint of developing excellent adhesive force.
  • the first pressure-sensitive adhesive layer (X11) in contact with the resin film-forming sheet (II) Includes an acrylic resin, it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer.
  • the content of the acrylic resin in the adhesive resin is preferably 30 to 100 with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x1) or the adhesive layer (X1). % By mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
  • the acrylic resin that can be used as the adhesive resin includes, for example, a polymer including a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, a cyclic structure And a polymer containing a structural unit derived from a (meth) acrylate having a hydrogen atom.
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, still more preferably 500,000 to 1,100,000. .
  • a structural unit (a1) derived from an alkyl (meth) acrylate (a1 ′) (hereinafter also referred to as “monomer (a1 ′)”) and a functional group-containing monomer (a2).
  • An acrylic copolymer (A1) having a structural unit (a2) derived from ') (hereinafter also referred to as “monomer (a2')") is more preferred.
  • the number of carbon atoms of the alkyl group contained in the monomer (a1 ′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and still more preferably 4 to 8 from the viewpoint of improving adhesive properties. It is.
  • the alkyl group contained in the monomer (a1 ′) may be a linear alkyl group or a branched alkyl group.
  • Examples of the monomer (a1 ′) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( Examples include meth) acrylate and stearyl (meth) acrylate. These monomers (a1 ′) may be used alone or in combination of two or more. As the monomer (a1 ′), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
  • the content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass with respect to the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, and still more preferably 80 to 95.0% by mass.
  • a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer. These monomers (a2 ′) may be used alone or in combination of two or more. Among these, as the monomer (a2 ′), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable.
  • Examples of the hydroxyl group-containing monomer include the same hydroxyl group-containing compounds as described above.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof.
  • ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid
  • dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof.
  • the content of the structural unit (a2) is preferably 0.1 to 40% by weight, more preferably 0.5 to 35% by weight with respect to all the structural units (100% by weight) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, and still more preferably 3.0 to 25% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from another monomer (a3 ′) other than the monomers (a1 ′) and (a2 ′).
  • the content of the structural units (a1) and (a2) is preferably 70 with respect to the total structural units (100% by mass) of the acrylic copolymer (A1).
  • To 100% by mass more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and still more preferably 95 to 100% by mass.
  • Examples of the monomer (a3 ′) include olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene, and chloroprene; cyclohexyl (meth) acrylate, It has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate, etc.
  • olefins such as ethylene, propylene, and isobutylene
  • halogenated olefins such as vinyl chloride and vinylidene chloride
  • diene monomers such as butadiene, iso
  • the acrylic copolymer (A1) may be an energy ray curable acrylic copolymer having a polymerizable functional group introduced into the main chain and / or side chain.
  • the polymerizable functional group and the energy ray are as described above.
  • the polymerizable functional group includes an acrylic copolymer having the above structural units (a1) and (a2), and a substituent that can be bonded to the functional group of the structural unit (a2) of the acrylic copolymer.
  • a polymerizable compound (Xa) having a polymerizable functional group can be introduced.
  • Examples of the polymerizable compound (Xa) include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate, (meth) Acrylic acid etc. are mentioned.
  • the adhesive composition (x1) contains the adhesive resin which has a functional group like the above-mentioned acrylic copolymer (A1), it may contain a crosslinking agent further. preferable.
  • the said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge
  • crosslinking agent examples include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent. These crosslinking agents may be used independently and may use 2 or more types together. Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force, and availability.
  • the content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
  • the mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
  • Examples of the tackifier are obtained by copolymerizing C5 fractions such as rosin resin, terpene resin, styrene resin, pentene, isoprene, piperine, 1,3-pentadiene generated by thermal decomposition of petroleum naphtha.
  • C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
  • the “softening point” of the tackifier means a value measured according to JIS K2531.
  • a tackifier may be used independently and may use 2 or more types from which a softening point and a structure differ. And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifier belongs to the said range.
  • the content of the tackifier is preferably 0.01 to the total amount (100% by mass) of the active ingredient in the adhesive composition (x1) or the total mass (100% by mass) of the adhesive layer (X1). 65% by mass, more preferably 0.05 to 55% by mass, still more preferably 0.1 to 50% by mass, still more preferably 0.5 to 45% by mass, still more preferably 1.0 to 40% by mass. is there.
  • the pressure-sensitive adhesive composition (x1) includes an energy ray-curable pressure-sensitive adhesive resin as the pressure-sensitive adhesive resin
  • a pressure-sensitive polymerization initiator is further contained.
  • the adhesive layer formed from the adhesive composition can be irradiated with a relatively low energy energy beam. It is possible to sufficiently advance the curing reaction and adjust the adhesive strength to a desired range.
  • mode of this invention the same thing as what is mix
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 0.001 parts by mass with respect to 100 parts by mass of the energy ray curable adhesive resin. 05 to 2 parts by mass.
  • the pressure-sensitive adhesive composition (x1) contains additives for pressure-sensitive adhesives used for general pressure-sensitive adhesives in addition to the above-mentioned additives, as long as the effects of the present invention are not impaired. You may do it.
  • an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, and the like. These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
  • each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ⁇ 10 parts by mass.
  • the 1st adhesive layer (X11) which is a thermally expansible adhesive layer is further It is formed from a heat-expandable pressure-sensitive adhesive composition (x11) containing heat-expandable particles.
  • the thermally expandable particles are as described above.
  • the content of the heat-expandable particles is preferably based on the total amount (100% by mass) of the active ingredient of the heat-expandable pressure-sensitive adhesive composition (x11) or the total mass (100% by mass) of the heat-expandable pressure-sensitive adhesive layer. Is 1 to 70% by mass, more preferably 2 to 60% by mass, still more preferably 3 to 50% by mass, and still more preferably 5 to 40% by mass.
  • the content of the heat-expandable particles in the non-heat-expandable pressure-sensitive adhesive composition that is a material for forming the non-heat-expandable pressure-sensitive adhesive layer is The less it is, the better.
  • the content of the heat-expandable particles is preferably based on the total amount (100% by mass) of the active ingredients of the non-thermally expandable pressure-sensitive adhesive composition or the total mass (100% by mass) of the non-heat-expandable pressure-sensitive adhesive layer.
  • the heat-expandable particles are not contained in the non-heat-expandable pressure-sensitive adhesive composition or the non-heat-expandable pressure-sensitive adhesive layer.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11) which is a non-thermally expandable pressure-sensitive adhesive layer at 23 ° C. is preferably 1.0 ⁇ 10 8 Pa or less. Preferably it is 5.0 * 10 ⁇ 7 > Pa or less, More preferably, it is 1.0 * 10 ⁇ 7 > Pa or less.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11) which is a non-thermally expandable pressure-sensitive adhesive layer is 1.0 ⁇ 10 8 Pa or less, for example, the pressure-sensitive adhesive laminate shown in FIG.
  • the first is in contact with the pressure-sensitive adhesive sheet (II) due to the expansion of the thermally expandable particles in the thermally expandable substrate layer (Y1-1) by the heat treatment for separation. Unevenness is easily formed on the surface of the pressure-sensitive adhesive layer (X11).
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11), which is a non-thermally expandable pressure-sensitive adhesive layer, at 23 ° C. is preferably 1.0 ⁇ 10 4 Pa or more, more preferably 5 0.0 ⁇ 10 4 Pa or more, more preferably 1.0 ⁇ 10 5 Pa or more.
  • the storage shear elastic modulus G '(23) of an adhesive layer means the value measured by the method as described in an Example.
  • the pressure-sensitive adhesive sheet (II) of the pressure-sensitive adhesive laminate used in the production method of the present invention has a base material (Y2) and a pressure-sensitive adhesive layer (X2), and the base material (Y2) is directly laminated with the pressure-sensitive adhesive sheet (I). To do.
  • the above-described oxidation method or unevenness method is applied to the surface of the base material (Y2) on the side where the pressure-sensitive adhesive layer is laminated.
  • the surface treatment by such as, easy adhesion treatment, or primer treatment may be performed.
  • the surface of the adhesive layer (X2) such as a semiconductor wafer having bumps, from the viewpoint of suppressing the residue of the adhesive layer (X2) from adhering to the cut object and / or the ground object.
  • the adhesive sheet (II) is based on the viewpoint that the followability is excellent with respect to the workpiece having large irregularities and the temporal stability of the adhesive force of the adhesive layer (X2) is excellent.
  • the surface of the base material (Y2) on the pressure-sensitive adhesive layer (X2) side may be subjected to antistatic treatment. When it has an intermediate
  • the substrate (Y2) is preferably a non-thermally expandable substrate.
  • the pressure-sensitive adhesive layer (X2) is also a non-thermally expandable pressure-sensitive adhesive layer from the viewpoint of maintaining good adhesion to the adherend before and after the heat treatment.
  • the intermediate layer (Z2) is also preferably a non-thermally expandable layer.
  • the volume change rate (%) of the base material (Y2), the pressure-sensitive adhesive layer (X2), and the intermediate layer (Z2) calculated from the above formulas is independently less than 5%, preferably Is less than 2%, more preferably less than 1%, still more preferably less than 0.1%, still more preferably less than 0.01%. More preferably, the base material (Y2), the pressure-sensitive adhesive layer (X2), and the intermediate layer (Z2) are free from thermally expandable particles.
  • the substrate (Y2), the pressure-sensitive adhesive layer (X2), and the intermediate layer (Z2) will be described.
  • Base material (Y2) examples include the same materials as those for forming the non-thermally expandable base material layer (Y1-2) described above.
  • a base material (Y2) contains resin, and it is more preferable that the resin layer containing resin is formed in the surface of the base material (Y2) at the side of laminating
  • the base material (Y2) is more preferably a resin film or a resin sheet. Further, among the resin film or resin sheet, the grinding of the workpiece in the step (4) has the property of stably holding the workpiece even when the workpiece is ground extremely thin.
  • a polyethylene film, a polypropylene film, an ethylene-vinyl acetate copolymer (EVA) film, and a polyethylene terephthalate film are preferable, and an ethylene-vinyl acetate copolymer (EVA) film is more preferable.
  • the above-mentioned resin film or resin sheet may contain a well-known filler, a coloring agent, an antistatic agent, antioxidant, an organic lubricant, a catalyst, etc.
  • coloring or metal may be vapor-deposited as desired.
  • the surface of the base material (Y2) to be laminated on the pressure-sensitive adhesive sheet (I) has been subjected to a peeling treatment from the viewpoint of enabling easy separation with a slight force at the interface P after the heat treatment for separation. Also good.
  • the base material (Y2) has a viewpoint that it is easy to prevent positional displacement when the processing object is applied to the adhesive layer (X2), and the adhesive layer ( From the viewpoint of easily preventing excessive subsidence in X2), the storage elastic modulus E ′ (23) at 23 ° C. is preferably 1.0 ⁇ 10 6 Pa or more.
  • the base material (Y2) may contain thermally expandable particles as long as the volume change rate is in the above range. From the above viewpoint, the content of the thermally expandable particles in the base material (Y2) is Less is preferable.
  • the content of the heat-expandable particles in the substrate (Y2) is usually less than 3% by mass, preferably less than 1% by mass, more preferably relative to the total mass (100% by mass) of the substrate (Y2). It is less than 0.1% by mass, more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass. More preferably, the thermally expandable particles are not contained in the base material (Y2).
  • the thickness of the substrate (Y2) is preferably 5 to 500 ⁇ m, more preferably 15 to 300 ⁇ m, and still more preferably 20 to 200 ⁇ m. If the thickness of the substrate (Y2) is 5 ⁇ m or more, it is easy to make it excellent in deformation resistance (dimensional stability) at high temperatures. On the other hand, when the thickness of the base material is 500 ⁇ m or less, the pressure-sensitive adhesive sheet (II) due to vibration is applied when at least one of cutting and grinding is performed on the workpiece attached to the pressure-sensitive adhesive sheet (II). Therefore, it is easy to improve processing accuracy such as film thickness accuracy.
  • the pressure-sensitive adhesive layer (X2) of the resin film-forming sheet (II) can be formed by using the above-mentioned pressure-sensitive adhesive composition (x1). It is the same as the pressure-sensitive adhesive composition (x1).
  • the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive resin having a polymerizable functional group introduced in the side chain as a pressure-sensitive adhesive resin.
  • the pressure-sensitive adhesive composition is preferably a formed layer and contains an energy ray-curable acrylic polymer (B) (hereinafter also referred to as “acrylic polymer (B)” or “component (B)”). More preferably, the layer is formed from.
  • the pressure-sensitive adhesive layer (X2) formed from the pressure-sensitive adhesive composition has excellent adhesive strength that can sufficiently hold the object to be processed before irradiation with energy rays, but the adhesive strength decreases after irradiation with energy rays. To do. Therefore, the processed product can be easily separated from the pressure-sensitive adhesive sheet (II).
  • the content of the component (B) in the pressure-sensitive adhesive composition is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass with respect to the total amount (100% by mass) of the pressure-sensitive adhesive composition. % Or more, preferably 99.9% by mass or less, more preferably 99.0% by mass or less, and still more preferably 98.0% by mass or less.
  • the thickness of the pressure-sensitive adhesive layer (X2) has a good adhesive force and has good followability to a workpiece to be processed such as a semiconductor wafer having bumps and the like having a large surface unevenness difference.
  • the thickness is preferably 1 to 100 ⁇ m, more preferably 1 to 75 ⁇ m, and still more preferably 1 to 50 ⁇ m.
  • the pressure-sensitive adhesive composition which is a material for forming the pressure-sensitive adhesive layer (X2)
  • contains an energy ray-curable pressure-sensitive adhesive resin such as an energy ray-curable acrylic polymer (B), a crosslinking agent or It is preferable to contain a photopolymerization initiator.
  • the crosslinking agent include those similar to those blended in the above-mentioned acrylic resin, and the content range is also as described above, but the gel fraction of the pressure-sensitive adhesive layer (X2) is increased and processed.
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group. 5 to 15 parts by mass, more preferably 1.0 to 10 parts by mass.
  • a photoinitiator the thing similar to what is mix
  • the energy ray-curable acrylic polymer (B) contained in the pressure-sensitive adhesive composition will be described.
  • the energy ray-curable acrylic polymer (B) used in one embodiment of the present invention is an acrylic in which a polymerizable functional group is introduced into the side chain and / or main chain of the non-energy ray-curable acrylic polymer.
  • Copolymer Non-energy ray curable acrylic polymers include, for example, acrylic polymers having structural units derived from alkyl (meth) acrylates having linear or branched alkyl groups, and (meth) acrylates having a cyclic structure. An acrylic polymer having a derived structural unit can be used.
  • the polymerizable functional group is as described above, a (meth) acryloyl group is preferable from the viewpoint of easy introduction into a non-energy ray curable acrylic polymer.
  • the weight average molecular weight (Mw) of the component (B) is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,200,000, more preferably 250,000 to 1,000,000, still more preferably 300,000 to 900,000. Preferably, it is 350,000 to 800,000.
  • an alkyl (meth) acrylate (b1 ′) having an alkyl group having 1 to 18 carbon atoms (b1 ′) (hereinafter referred to as “adhesive sheet”) whose adhesive strength can be effectively reduced by irradiation with energy rays
  • a structural unit (b2) derived from a structural unit (b1) derived from a monomer (b1 ′) and a functional group-containing monomer (b2 ′) hereinafter also referred to as “monomer (b2 ′)”.
  • the form of copolymerization of the acrylic copolymers (B0) and (B1) is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the content of the acrylic copolymer (B1) is preferably 70 to 100% by mass, more preferably 80 to 100%, based on the total amount (100% by mass) of the component (B) contained in the pressure-sensitive adhesive composition. % By mass, more preferably 90 to 100% by mass, and still more preferably 100% by mass.
  • the number of carbon atoms of the alkyl group contained in the monomer (b1 ′) is preferably 1 to 18, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 6.
  • Examples of the monomer (b1 ′) include those exemplified as the above-described monomer (a1 ′), but butyl (meth) acrylate or 2-ethylhexyl (meth) acrylate is preferable, and butyl (meth) acrylate is more preferable.
  • the content of the structural unit (b1) in the acrylic copolymer (B0) is the total structural unit (100 mass) of the acrylic copolymer (B0) from the viewpoint of improving the adhesive strength of the pressure-sensitive adhesive layer to be formed. %) Is preferably 50 to 99.5% by mass, more preferably 60 to 99% by mass, still more preferably 70 to 98% by mass, and still more preferably 80 to 96% by mass.
  • Examples of the monomer (b2 ′) include those exemplified as the above-mentioned monomer (a2 ′), but one or more selected from a hydroxyl group-containing monomer, a carboxy group-containing monomer, and an epoxy group-containing monomer are preferable. Is more preferable, and 2-hydroxyethyl (meth) acrylate is still more preferable.
  • the content of the structural unit (b2) in the acrylic copolymer (B0) is preferably 0.5 to 40% by weight with respect to the total structural unit (100% by weight) of the acrylic copolymer (B0). More preferably, it is 1 to 30% by mass, still more preferably 2 to 25% by mass, and still more preferably 3 to 15% by mass.
  • content of a structural unit (b2) is 0.5 mass% or more, content of the structural unit (b2) which has a functional group used as a reaction point with polymeric compound (Xb) can fully be ensured, and energy Since a highly curable pressure-sensitive adhesive layer (X2) can be formed by irradiation with a line, when the cut and / or ground material is peeled from the pressure-sensitive adhesive layer (X2), the cut and / or ground material It can peel, preventing generation
  • the polymerizable compound (Xb) is a substituent that can be bonded to a functional group in the structural unit (b2) of the acrylic copolymer (B0) (hereinafter also referred to as “reactive functional group”) and polymerizable.
  • a compound having a functional group is meant.
  • the acrylic copolymer (B0) may have a structural unit (b3) derived from a monomer (b3 ′) other than the monomers (b1 ′) and (b2 ′).
  • Examples of the other monomer (b3 ′) include those exemplified as the monomer (a3 ′) described above.
  • the content of the structural unit (b3) in the acrylic copolymer (B0) is preferably 0 to 20% by weight, based on the total structural units (100% by weight) of the acrylic copolymer (B0).
  • the content is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and still more preferably 0 to 1% by mass.
  • the monomers (b1 ′) to (b3 ′) described above may be used alone or in combination of two or more.
  • the energy ray curable acrylic copolymer (B1) is obtained by reacting the acrylic copolymer (B0) having the structural units (b1) and (b2) with the polymerizable compound (Xb). It is done.
  • the polymerizable compound (Xb) include those exemplified as the above-described polymerizable compound (Xa). Among them, the polymerizable compound (Xb) has a reactive functional group and 1 to 5 polymerizable functional groups per molecule. It is preferable that it is a compound which has.
  • an isocyanate group, a carboxyl group, an epoxy group etc. are mentioned, for example, An isocyanate group is preferable.
  • polymerizable functional group (meth) acryloyl group, a vinyl group, etc. are mentioned as above-mentioned, (meth) acryloyl group is preferable.
  • polymerizable compound (Xb) (meth) acryloyloxyethyl isocyanate is preferable.
  • the relationship between the number of functional groups of the acrylic copolymer (B0) and the blending amount of the polymerizable compound (Xb) has an appropriate adhesive force before irradiation with energy rays.
  • the value of ⁇ calculated from the following formula (1) is preferably 0.5 to 50, more preferably 1. It is 0 to 40, more preferably 1.2 to 35, and still more preferably 1.5 to 30.
  • the value ⁇ corresponds to the number of polymerizable functional groups that the acrylic copolymer (B1) has.
  • Formula (1): ⁇ [P B ] ⁇ [Q B ] ⁇ [R B ] / 100
  • [P B ] represents the content of the structural unit (b2) with respect to 100 parts by mass of all the structural units of the acrylic copolymer (B0).
  • [Q B ] represents the acrylic copolymer. for functional group 100 equivalents from the functional group-containing monomer polymer of (B0) has,. shows the equivalent weight of the polymerizable compound (Xb)
  • R B] shows the polymerizable functional groups of the polymerizable compound (Xb) has .
  • the intermediate layer (Z2) is a composition for forming an intermediate layer (z2) comprising a non-energy ray curable acrylic polymer (C) and an energy ray curable acrylic polymer (D). ).
  • the pressure-sensitive adhesive sheet (II) is excellent in followability with respect to an object to be processed having large surface irregularities such as a semiconductor wafer having bumps.
  • middle layer (Z2) may have adhesiveness and does not need to have adhesiveness.
  • the thickness of the intermediate layer (Z2) is appropriately selected depending on the degree of unevenness of the workpiece, for example, when the workpiece is a semiconductor wafer or semiconductor chip, the height of the bumps of the semiconductor wafer or semiconductor chip. However, it is preferably 10 to 800 ⁇ m, more preferably 15 to 600 ⁇ m, and still more preferably 20 to 400 ⁇ m. If the thickness of the intermediate layer (Z2) is 10 ⁇ m or more, it is possible to improve the followability with respect to the workpiece having a large unevenness difference. On the other hand, if the thickness of the intermediate layer is 800 ⁇ m or less, the deformation of the pressure-sensitive adhesive sheet (II) can be easily suppressed.
  • the intermediate layer forming layer composition (z2) which is a material for forming the intermediate layer (Z2), provides adhesion between the intermediate layer (Z2) and the adhesive layer (X2) of the adhesive sheet (II) after irradiation with energy rays.
  • the intermediate layer forming layer composition (z2) which is a material for forming the intermediate layer (Z2), provides adhesion between the intermediate layer (Z2) and the adhesive layer (X2) of the adhesive sheet (II) after irradiation with energy rays.
  • a non-energy ray curable acrylic polymer (C) (hereinafter also referred to as “acrylic polymer (C)” or “(C) component”), and a mass average molecular weight
  • acrylic polymer (C) (hereinafter also referred to as “acrylic polymer (C)” or “(D) component”)
  • mass average molecular weight Preferably contains 50,000 to 250,000 energy ray-curable acrylic polymer (D) (hereinafter also referred to as “acrylic polymer (D)” or “(D) component”).
  • the content of the component (D) in the intermediate layer forming composition (z2) is , (C)
  • the amount is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 37 parts by mass or more, and still more preferably 40 parts by mass or more with respect to 100 parts by mass of the component (C).
  • the content of the component is preferably 150 parts by mass or less, more preferably 140 parts by mass or less, and still more preferably 130 parts by mass or less with respect to 100 parts by mass of the component (C).
  • the total content of the component (C) and the component (D) in the intermediate layer forming composition (z2) is preferably 70% by mass with respect to the total amount (100% by mass) of the intermediate layer forming composition (z2). % Or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, preferably 99.9% by weight or less, more preferably 99.0% by weight or less, still more preferably 98.0% by weight. It is as follows.
  • middle layer formation contains a photoinitiator and a crosslinking agent further in addition to the said (C) component and (D) component.
  • a crosslinking agent the thing similar to what is mix
  • a photoinitiator the thing similar to what is mix
  • the non-energy ray curable acrylic polymer (C) and the energy ray curable acrylic polymer (D) contained in the intermediate layer forming composition (z2) will be described.
  • non-energy ray curable acrylic polymer (C) examples include a polymer having a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, and a cyclic structure (meth). Examples thereof include a polymer having a structural unit derived from acrylate.
  • the mass average molecular weight (Mw) of the component (C) is preferably 300,000 to 1,500,000, more preferably 350,000 to 1,300,000, more preferably 400,000 to 1,200,000, still more preferably 400,000 to 1,100,000, and even more It is preferably 450,000 to 900,000.
  • an alkyl (meth) acrylate (c1 ′) having an alkyl group having 1 to 18 carbon atoms hereinafter also referred to as “monomer (c1 ′)”.
  • an acrylic copolymer (C1) having a structural unit (c2) derived from a structural unit (c1) derived from a functional group-containing monomer (c2 ′) hereinafter also referred to as “monomer (c2 ′)
  • the form of copolymerization of the acrylic copolymer (C1) is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the content of the acrylic copolymer (C1) is preferably 70 to 100% by mass with respect to the total amount (100% by mass) of the component (C) contained in the intermediate layer forming composition (z2).
  • the amount is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and still more preferably 100% by mass.
  • the number of carbon atoms of the alkyl group contained in the monomer (c1 ′) is more preferably 4 to 12, further preferably 4 to 8, and still more preferably 4 to 6, from the viewpoint of compatibility with the component (D). .
  • Examples of the monomer (c1 ′) include the same as the monomer (a1 ′) described above. Among these, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable, and butyl (meth) acrylate is more preferable.
  • the content of the structural unit (c1) in the acrylic copolymer (C1) is preferably 50 to 99.5 mass% with respect to the total structural units (100 mass%) of the acrylic copolymer (C1). More preferably, it is 60 to 99% by mass, still more preferably 70 to 95% by mass, and still more preferably 80 to 93% by mass. If the content of the structural unit (c1) is 50% by mass or more, it is preferable because the pressure-sensitive adhesive sheet has a good followability with respect to a workpiece with a large unevenness difference. Moreover, if content of a structural unit (c1) is 99.5 mass% or less, content of a structural unit (c2) can fully be ensured, and compatibility with (D) component can be made favorable. Therefore, it is preferable.
  • the acrylic copolymer (C1) is an alkyl group having an alkyl group having 4 or more carbon atoms (preferably 4 to 12, more preferably 4 to 8, more preferably 4 to 6) as the structural unit (c1). It is preferable to have a structural unit (c11) derived from (meth) acrylate.
  • the content ratio of the structural unit (c11) in the structural unit (c1) is preferably 60% by weight or more with respect to the total amount (100% by weight) of the structural unit (c1) included in the acrylic copolymer (C1). More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, More preferably, it is 85 mass% or more, Preferably it is 100 mass% or less.
  • a functional group which a monomer (c2 ') has As a functional group which a monomer (c2 ') has, the thing similar to the functional group which the monomer (a2') mentioned above has is mentioned.
  • Specific examples of the monomer (c2 ′) include those similar to the monomer (a2 ′) described above. Among these, 1 or more types chosen from a hydroxyl group containing monomer, a carboxy group containing monomer, and an epoxy group containing monomer are preferable, and a carboxy group containing monomer is more preferable. Specific examples of the hydroxyl group-containing monomer, the carboxy group-containing monomer, and the epoxy group-containing monomer are the same as those of the monomer (a2 ′) described above.
  • the content of the structural unit (c2) in the acrylic copolymer (C1) is preferably 0.5 to 50% by weight with respect to all the structural units (100% by weight) of the acrylic copolymer (C1). More preferably, it is 1 to 40% by mass, still more preferably 5 to 30% by mass, and still more preferably 7 to 20% by mass. If content of a structural unit (c2) is 0.5 mass% or more, since compatibility with (D) component can be made favorable, it is preferable. Moreover, if content of a structural unit (c2) is 50 mass% or less, since it can be set as an adhesive sheet with the favorable followable
  • the acrylic copolymer (C1) may have a structural unit (c3) derived from a monomer (c3 ′) other than the monomers (c1 ′) and (c2 ′).
  • Examples of the other monomer (c3 ′) include those similar to the monomer (a3 ′) described above.
  • the content of the structural unit (c3) in the acrylic copolymer (C1) is preferably 0 to 30% by mass, more preferably 0 to 30% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (C1).
  • the content is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, and still more preferably 0 to 5% by mass.
  • the monomers (c1 ′) to (c3 ′) described above may be used alone or in combination of two or more.
  • the energy ray curable acrylic polymer (D) is an acrylic polymer in which a polymerizable functional group is introduced to a non-energy ray curable acrylic polymer.
  • the polymerizable functional group is introduced into the main chain and / or side chain of the non-energy ray curable acrylic polymer.
  • the adhesive layer (X2) and the intermediate layer (Z2) are hardened and adhesive residue can be suppressed. Therefore, the adhesion of the pressure-sensitive adhesive layer (X2) can be suppressed when the cut and / or ground material is peeled from the pressure-sensitive adhesive sheet (II).
  • non-energy ray curable acrylic polymers include acrylic polymers having structural units derived from alkyl (meth) acrylates having linear or branched alkyl groups, and (meth) acrylates having a cyclic structure.
  • An acrylic polymer having a derived structural unit can be used.
  • the polymerizable functional group may be any group containing an energy beam polymerizable carbon-carbon double bond, and examples thereof include a (meth) acryloyl group and a vinyl group. From the viewpoint of being present, a (meth) acryloyl group is preferred.
  • the energy beam polymerizable group may be bonded to the main chain or side chain of the non-energy beam curable acrylic polymer via an alkylene group, an alkyleneoxy group, a polyalkyleneoxy group, or the like.
  • the weight average molecular weight (Mw) of the component (D) is preferably 50,000 to 250,000, more preferably 60,000 to 220,000, still more preferably 70,000 to 200,000, still more preferably 80,000 to 180,000. More preferably, it is 850,000 to 150,000.
  • Mw of the component (D) is less than 50,000, the stability of the obtained pressure-sensitive adhesive sheet tends to be poor. That is, when the pressure-sensitive adhesive sheet is stored for a long time, a part of the component (D) moves into the pressure-sensitive adhesive layer, the pressure-sensitive adhesive force of the pressure-sensitive adhesive sheet becomes unstable, and the pressure-sensitive adhesive layer ( X2) tends to harden excessively.
  • the pressure-sensitive adhesive sheet when used after long-term storage, or when left for a long time with the object to be processed attached, the adhesion between the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) after irradiation with energy rays Since the property becomes insufficient, when the pressure-sensitive adhesive sheet is peeled off, the pressure-sensitive adhesive layer (X2) may be broken or the residue of the pressure-sensitive adhesive layer (X2) may adhere to the cut and / or ground material.
  • the adhesion between the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) after irradiation with energy rays tends to be inferior, and the cut or searched material is removed from the pressure-sensitive adhesive sheet (II ),
  • the adhesive layer (X2) may break or the residue of the adhesive layer (X2) may adhere to the cut product and / or the ground product.
  • a pressure-sensitive adhesive sheet having excellent temporal stability, and a pressure-sensitive adhesive with improved adhesion after irradiation with energy rays between the formed intermediate layer (Z2) and pressure-sensitive adhesive layer (X2)
  • component (D) contains a structural unit (d1) derived from an alkyl (meth) acrylate (d1 ′) having an alkyl group having 1 to 18 carbon atoms (hereinafter also referred to as “monomer (d1 ′)”) and a functional group.
  • the energy beam-curable acrylic copolymer (D1) is included, and more preferable is the energy beam-curable acrylic copolymer (D1).
  • the form of copolymerization of the acrylic copolymers (D0) and (D1) is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the content of the acrylic copolymer (D1) is preferably 70 to 100% by mass with respect to the total amount (100% by mass) of the component (D) contained in the intermediate layer forming composition (z2).
  • the amount is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and still more preferably 100% by mass.
  • the number of carbon atoms of the alkyl group contained in the monomer (d1 ′) is more preferably 4 to 12, still more preferably 4 to 8, and still more preferably 4 to 6.
  • the monomer (d1 ′) those exemplified as the aforementioned monomer (a1 ′) can be mentioned.
  • butyl (meth) acrylate or 2-ethylhexyl (meth) acrylate is preferable, and butyl (meth) acrylate is more preferable.
  • the content of the structural unit (d1) in the acrylic copolymer (D0) is preferably 50 to 99% by weight, based on the total structural unit (100% by weight) of the acrylic copolymer (D0).
  • the amount is preferably 55 to 95% by mass, more preferably 60 to 90% by mass, and still more preferably 65 to 85% by mass.
  • a content of the structural unit (d1) of 50% by mass or more is preferable because the shape of the intermediate layer (Z2) to be formed can be sufficiently maintained.
  • content of a structural unit (d1) is 99 mass% or less
  • content of the structural unit (d2) which has a functional group used as a reaction point with polymeric compound (Xd) can fully be ensured, and formation
  • the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) to be adhered can be improved since the adhesion after irradiation with energy rays can be improved.
  • Examples of the monomer (d2 ′) include those exemplified as the above-mentioned monomer (a2 ′), but one or more selected from a hydroxyl group-containing monomer, a carboxy group-containing monomer, and an epoxy group-containing monomer are preferable. Is more preferable, hydroxyacryl (meth) acrylate is more preferable, and 2-hydroxyethyl (meth) acrylate is still more preferable.
  • the content of the structural unit (d2) in the acrylic copolymer (D0) is preferably 1 to 50% by weight, based on the total structural unit (100% by weight) of the acrylic copolymer (D0).
  • the amount is preferably 5 to 45% by mass, more preferably 10 to 40% by mass, and still more preferably 15 to 35% by mass.
  • the content of the structural unit (d2) is 1% by mass or more, sufficient polymerizability to improve the adhesion between the intermediate layer (Z2) to be formed and the pressure-sensitive adhesive layer (X2) after irradiation with energy rays. It is preferable because a reaction point with the compound (Xd) can be secured.
  • content of a structural unit (d2) is 50 mass% or less, since the shape of the intermediate
  • the acrylic copolymer (D0) may have a structural unit (b3) derived from another monomer (d3 ′) other than the monomers (d1 ′) and (d2 ′).
  • Examples of the other monomer (d3 ′) include those exemplified as the monomer (a3 ′) described above.
  • the content of the structural unit (d3) in the acrylic copolymer (D0) is preferably 0 to 30% by weight, based on the total structural unit (100% by weight) of the acrylic copolymer (D0).
  • the content is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, and still more preferably 0 to 5% by mass.
  • the monomers (d1 ′) to (d3 ′) described above may be used alone or in combination of two or more.
  • the energy ray-curable acrylic copolymer (D1) is obtained by reacting the functional group in the structural unit (d2) of the acrylic copolymer (D0) with the polymerizable compound (Xd).
  • the polymerizable functional group possessed by (Xd) is introduced into at least one of the main chain and the side chain of the acrylic copolymer (D0).
  • the polymerizable compound (Xd) is a compound having a polymerizable functional group and is not particularly limited as long as it is a compound having a reactive functional group.
  • a compound having the above-described reactive substituent and having 1 to 5 polymerizable functional groups per molecule is preferable.
  • an isocyanate group, a carboxyl group, an epoxy group etc. are mentioned, for example, An isocyanate group is preferable.
  • As said polymerizable functional group (meth) acryloyl group, a vinyl group, etc. are mentioned as above-mentioned, (meth) acryloyl group is preferable.
  • polymerizable compound (Xd) examples include the same compounds as the polymerizable compound (Xb) described above.
  • the polymerizable compound (Xd) may be used alone or in combination of two or more.
  • (Meth) acryloyloxyethyl isocyanate is preferred.
  • the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) are formed with respect to the relationship between the number of functional groups of the acrylic copolymer (D0) and the blending amount of the polymerizable compound (Xd).
  • the value of ⁇ calculated from the following formula (2) is preferably 1 to 50, more preferably 2 to 40, still more preferably 3 to 35, More preferably, it is 5-30.
  • the value of ⁇ corresponds to the number of energy ray polymerizable groups possessed by the acrylic copolymer (D1).
  • the intermediate layer forming composition (z2) may contain other additives as long as the effects of the present invention are not impaired.
  • other additives include antioxidants, softeners (plasticizers), fillers, rust inhibitors, pigments, dyes, tackifiers, and the like.
  • the content of each additive is preferably 0.01 to 6 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of component (A). is there.
  • a release material may be further laminated on the surfaces of the pressure-sensitive adhesive layers (X1) and (X2) to be attached to the workpiece.
  • a release material a release sheet that has been subjected to a double-sided release process, a release sheet that has been subjected to a single-sided release process, or the like is used. Examples include a release material coated on a release material substrate.
  • Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and kraft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; and olefins such as polypropylene resin and polyethylene resin.
  • a plastic film such as a resin film;
  • release agent examples include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
  • the thickness of the release material is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 25 to 170 ⁇ m, and still more preferably 35 to 80 ⁇ m.
  • the pressure-sensitive adhesive sheet (II) preferably satisfies one or more of the following requirements ( ⁇ ) to ( ⁇ ). It is more preferable to satisfy any two of ( ⁇ ) to ( ⁇ ), and it is further preferable to satisfy all of the requirements ( ⁇ ) to ( ⁇ ).
  • -Requirement ((alpha)) Young's modulus of a base material (Y2) is 1.0 Mpa or more.
  • -Requirement ((beta)) The thickness of a base material (Y2) is 5 micrometers or more.
  • the storage elastic modulus G ′ (23 ° C.) of the pressure-sensitive adhesive layer (X2) is 0.10 MPa or more.
  • the Young's modulus of the base material (Y2) defined by the requirement ( ⁇ ) is preferably 1.0 to 1000 MPa, preferably 1.5 to 800 MPa is more preferable, and 2.0 to 500 MPa is still more preferable.
  • the thickness of the base material (Y2) defined by the requirement ( ⁇ ) is preferably 5 to 250 ⁇ m, and preferably 10 to 230 ⁇ m. Is more preferably 20 to 210 ⁇ m.
  • the storage elastic modulus G ′ (23 ° C.) of the pressure-sensitive adhesive layer (X2) defined by the requirement ( ⁇ ) is 0.10 to 1 MPa. It is preferably 0.12 to 0.9 MPa, more preferably 0.14 to 0.8 MPa.
  • the method for producing a processed product according to the present invention includes a base material (Y1) and a pressure-sensitive adhesive layer (X1), and one of the layers includes a heat-expandable pressure-sensitive adhesive containing heat-expandable particles having a thermal expansion start temperature (t).
  • a sheet (I) and a pressure-sensitive adhesive sheet (II) having a base material (Y2) and a pressure-sensitive adhesive layer (X2) are provided, and the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
  • Step (4) a step of performing at least one of cutting and grinding on the surface opposite to the surface of the workpiece to be adhered to the adhesive layer (X2). It is carried out in at least one of the following (X) and (Y).
  • the above-mentioned adhesive laminate is used. Specifically, the surface of the adhesive layer (X1) of the adhesive sheet (I) of the adhesive laminate is affixed to the support, and the adhesive layer (X2) of the adhesive sheet (II) of the adhesive laminate is An object to be processed is attached to the surface for use. Therefore, a predetermined process can be performed in a state where the object to be processed is fixed to the support. Moreover, after the predetermined processing is performed, the adhesive sheet (II) to which the processing object subjected to the predetermined processing is pasted can be easily separated from the adhesive sheet (I) in a lump with a slight force. can do.
  • the pressure-sensitive adhesive sheet (II) to which the processing object subjected to the predetermined processing is attached can be easily separated from the support. Therefore, it can use for the following process, without sticking the processing target object which performed the said predetermined process to a new adhesive sheet.
  • FIG.4 and FIG.5 each process of the manufacturing method of this invention is demonstrated, referring FIG.4 and FIG.5 suitably.
  • FIG. 4A and FIG. 5A are schematic cross-sectional views showing a state where a processing object is attached to a support via an adhesive laminate.
  • step (1) as shown in FIGS. 4 (a) and 5 (a), the workpieces 60 and 70 are affixed to the support 50 via the adhesive laminate 1a of the first aspect, The support, the adhesive laminate, and the workpiece are laminated in this order.
  • FIG.4 and FIG.5 although the example using the adhesive laminated body 1a shown to Fig.1 (a) is shown, also when using the adhesive laminated body of this invention which has another structure, Similarly, the support, the adhesive laminate, and the workpiece are laminated in this order.
  • the processing objects 60 and 70 are affixed on the adhesive layer (X2) of the adhesive sheet (II) which the said adhesive laminated body has. And the adhesive layer (X1) of the adhesive sheet (I) which the said adhesive laminated body has and the support body 50 are stuck.
  • the object to be processed may be a semiconductor wafer or the like having a cut groove formed on the surface, and the surface on which the cut groove is formed may be bonded to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II).
  • the object to be processed may be a semiconductor wafer or the like in which a modified region is previously formed inside by laser beam irradiation.
  • the cut groove or the modified region serves as a division starting point, and the workpiece can be divided. That is, when the workpiece is a semiconductor wafer having a cut groove formed on the surface, in the manufacturing method of one embodiment of the present invention, the step (1) is the following step (1-C), and the step (4) ) Is the following step (4-C).
  • Step / step (4-C) for attaching a surface having a groove a step of grinding the surface of the semiconductor wafer opposite to the adhesive layer (X2) to be attached.
  • step (4) is the following step (4-A).
  • the support is used for fixing the object to be processed in step (2) and increasing the processing accuracy. It is preferable that the said support body is affixed on the whole adhesive surface of the adhesive layer (X1) of an adhesive laminated body. Therefore, the support is preferably plate-shaped. Moreover, as shown in FIG.4 and FIG.5, the area of the surface of the support body 50 by which the adhesive surface 122a of the adhesive layer (X1) is stuck is more than the area of the adhesive surface 122a of an adhesive layer (X1). It is preferable that
  • the material constituting the support is appropriately selected in consideration of required properties such as mechanical strength and heat resistance according to the type of the object to be processed and the processing performed in step (2).
  • Specific materials constituting the support include, for example, metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, Examples thereof include resin materials such as polyamideimide resin; composite materials such as glass epoxy resin, and among these, SUS, glass, silicon wafer and the like are preferable.
  • Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
  • Examples of super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
  • the thickness of the support is appropriately selected in consideration of required characteristics and the like, but is preferably 20 ⁇ m or more and 50 mm or less, more preferably 60 ⁇ m or more and 20 mm or less.
  • the temperature condition in the step (1) may be less than the expansion start temperature (t) of the thermally expandable particles.
  • ⁇ Step (2)> one or more processes are performed with respect to the said process target object stuck on the adhesive layer (X2) of the adhesive laminated body of this invention at the process (1).
  • the processing performed in the step (2) include, for example, a sealing process using a resin for the processing target, a process for forming a modified region serving as a division starting point on the processing target, a circuit forming process, an etching process, and a plating process. , Sputtering treatment, vapor deposition treatment, protective film formation treatment, laminating treatment using a separately prepared adhesive sheet, and the like.
  • the processing applied in the step (2) may be at least one of cutting and grinding for the workpiece.
  • the processing performed in the step (2) may be processing including at least one of the step of cutting the workpiece and the step of grinding, or the step of cutting the workpiece and the step of grinding Processing that does not include Similarly to the step (1), the temperature condition in the step (2) may be less than the expansion start temperature (t) of the thermally expandable particles.
  • the sealing process using the resin for the processing object (process (2) -B)) will be described as an example.
  • Step (2-A) is a step in which the object to be processed is a semiconductor wafer, and a modified region serving as a division starting point is formed on the semiconductor wafer.
  • the surface opposite to the surface of the semiconductor wafer attached to the adhesive sheet (II) is the laser light incident surface, and the condensing point of the laser light is the semiconductor wafer.
  • a modified region 71 by multiphoton absorption or the like is formed.
  • the modified region 71 functions as a starting point for dividing the semiconductor wafer by grinding in the step (4).
  • FIG. 4B the surface opposite to the surface of the semiconductor wafer attached to the adhesive sheet (II) is the laser light incident surface, and the condensing point of the laser light is the semiconductor wafer.
  • step (4) is performed after step (3), but one of one or more processes in step (2) is performed after step (2-A).
  • the grinding in the step (4) may be performed.
  • the separated semiconductor wafer can be subjected to the next process while being attached to the adhesive sheet (II) without separating the separated semiconductor wafer from the adhesive sheet (II).
  • the workpiece is a semiconductor wafer
  • the one or more processes in the step (2) include the following step (2-A): Step (2-A): A step of forming a modified region serving as a division starting point on the semiconductor wafer.
  • Step (4) is the following step (4-A): Step (4-A): A step of grinding the surface of the semiconductor wafer opposite to the surface to which the adhesive layer (X2) is attached Step (4-A) is the following (XA) Or (YA). (XA): Implemented after step (2-A) as one or more processes (YA): Implemented after step (3)
  • the object to be processed is a semiconductor chip, and the semiconductor chip and a peripheral portion of the semiconductor chip in the adhesive surface of the adhesive layer (X2) are covered with a sealing material,
  • This is a step of curing the encapsulant to obtain a cured encapsulant in which the semiconductor chip is encapsulated with a cured encapsulant.
  • the semiconductor chip 60 is used as a processing object.
  • a conventionally known semiconductor chip 60 can be used, and an integrated circuit composed of circuit elements such as transistors, resistors, and capacitors is formed on the circuit surface. And it is preferable to mount so that the circuit surface of the semiconductor chip 60 may be covered with the adhesive surface of the adhesive layer (X2) of adhesive sheet (II).
  • a known device such as a flip chip bonder or a die bonder can be used. The layout, number of arrangements, etc. of the semiconductor chip 60 may be appropriately determined according to the target package form, the number of production, etc.
  • the semiconductor chip 60 is covered with a sealing material in a region larger than the chip size, such as FOWLP and FOPLP, and not only the circuit surface of the semiconductor chip 60 but also the sealing. It is preferable to be applied to a package for forming a rewiring layer also in the surface region of the stopper. Therefore, the semiconductor chip 60 is placed on a part of the adhesive surface of the adhesive layer (X2), and the plurality of semiconductor chips 60 are arranged in a state of being spaced apart at a certain interval.
  • a sealing material in a region larger than the chip size, such as FOWLP and FOPLP, and not only the circuit surface of the semiconductor chip 60 but also the sealing. It is preferable to be applied to a package for forming a rewiring layer also in the surface region of the stopper. Therefore, the semiconductor chip 60 is placed on a part of the adhesive surface of the adhesive layer (X2), and the plurality of semiconductor chips 60 are arranged in a state of being spaced apart at a certain interval.
  • the plurality of semiconductor chips 60 be mounted on the adhesive surface in a state of being arranged in a matrix of a plurality of rows and a plurality of columns with a certain interval.
  • the interval between the semiconductor chips 60 may be appropriately determined according to the target package form and the like.
  • the semiconductor chip 60 and the adhesive surface of the adhesive layer (X1) at least in the peripheral portion of the semiconductor chip 60 are covered with a sealing material (hereinafter referred to as “coating step”). Also, the sealing material is cured to obtain a cured sealing body 61 in which the semiconductor chip 60 is sealed with the cured sealing material (hereinafter also referred to as a “curing step”).
  • the semiconductor chip 60 is placed on a part of the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X2), so that the peripheral portion of the semiconductor chip 60 is formed on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X2). That is, the peripheral portion of the semiconductor chip 60 refers to the adhesive surface of the adhesive layer (X2) corresponding to the gap between the adjacent semiconductor chips 60 among the plurality of semiconductor chips 60.
  • the semiconductor chip 60 and the peripheral portion of the semiconductor chip 60 on the adhesive surface of the adhesive layer (X2) are covered with a sealing material.
  • the sealing material fills the gaps between the plurality of semiconductor chips CP while covering the entire exposed surface of the semiconductor chip CP.
  • the sealing material has a function of protecting the semiconductor chip CP and its accompanying elements from the external environment.
  • any material used as a semiconductor sealing material can be appropriately selected and used.
  • a sealing material containing a thermosetting resin or an energy ray curable resin can be used. And the like.
  • the sealing material may be a solid such as a granule or a sheet at room temperature, or a liquid in the form of a composition. From the viewpoint of workability, the sealing material is in the form of a sheet. Is preferred.
  • a method of covering the semiconductor chip 60 and its peripheral part using the sealing material it is appropriately selected and applied according to the type of the sealing material from methods conventionally used in the semiconductor sealing process. For example, a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, a compression molding mold method, or the like can be applied.
  • the sealing material can be hardened and the hardening sealing body 61 by which the semiconductor chip 60 is sealed with the hardening sealing material can be obtained.
  • the covering step and the curing step in step (2-B) are preferably performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles.
  • the coating step and the curing step may be performed separately. However, when the sealing material is heated in the coating step, the sealing material is cured as it is by the heating, and the coating step and the curing step are performed. May be performed simultaneously. In the manufacturing example shown in FIG. 5, step (4) is performed after step (3), but one of one or more processes in step (2) is performed after step (2-B).
  • step (4) may be performed.
  • the cured encapsulant can be subjected to the next step without being separated from the adhesive sheet (II) while being adhered to the adhesive sheet (II).
  • the object to be processed is a semiconductor chip
  • the one or more processes in the step (2) include the following step (2-B): Step (2-B): covering the semiconductor chip and the periphery of the semiconductor chip among the adhesive surfaces of the adhesive layer (X2) with a sealing material, and curing the sealing material; Step (4) of obtaining a cured sealing body in which the semiconductor chip is sealed with a curing sealing material is performed in at least one of the following (XB) and (YB).
  • Step (3) the adhesive sheet (I) of the adhesive laminate and the base material (Y2) of the adhesive sheet (II) by heat treatment (separation heat treatment) at a temperature equal to or higher than the expansion start temperature (t).
  • FIG. 4C and FIG. 5C are schematic cross-sectional views showing a state separated at the interface P by the heat treatment for separation. 4 (c) and 5 (c) show a state in which the object to be processed that has been subjected to the predetermined processing is separated in a state of being stacked on the pressure-sensitive adhesive sheet (II) by the heat treatment for separation.
  • the “temperature higher than the expansion start temperature (t)” in the separation heat treatment is “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is preferable that it is “expansion start temperature (t) + 15 ° C.” or more and “expansion start temperature (t) + 40 ° C.” or less.
  • the pressure-sensitive adhesive sheet (II) is separated from the pressure-sensitive adhesive sheet (I) and separated from the support in a state where the processing objects subjected to the predetermined processing in the step (2) are laminated (attached). Therefore, it is possible to omit the work of attaching the processed object after separation to the adhesive sheet and use it for the next step.
  • the step (4) at least one of cutting and grinding is performed on the surface of the object to be processed which is opposite to the surface to be adhered to the adhesive layer (X2).
  • the workpiece can be divided into a desired size by cutting the workpiece.
  • the said workpiece can be adjusted to desired thickness by performing grinding. It is also possible to perform both cutting and grinding, and to divide the workpiece and adjust the thickness.
  • the surface of the semiconductor wafer in which the modified region serving as the division starting point is formed by laser light irradiation is opposite to the surface to which the adhesive sheet (II) is attached.
  • a gap 72 is generated with the modified region 71 as a division starting point by a processing pressure of a grinding wheel or the like, so that the semiconductor wafer has a predetermined size. It can be separated into a semiconductor chip.
  • the cured sealing body 61a obtained by separating the cured sealing body 61 into individual semiconductor chip CP units is obtained. Can do.
  • the cutting method for dividing the cured sealing body 61 into individual pieces is not particularly limited, and examples thereof include cutting means such as a dicing saw.
  • the cured sealing body 61 may be ground for the purpose of exposing the circuit surface of the semiconductor chip.
  • process (1)-(4) you may have another process between process (1)-(4), before process (1), and after process (4).
  • a rewiring forming process may be included.
  • step (4) may be performed as one of one or more processes in step (2), or may be performed after step (3). Furthermore, the step (4) may be performed as one of the one or more processes in the step (2) and may be performed after the step (3).
  • grinding is performed on the surface of the object to be processed which is opposite to the sticking surface to the adhesive layer (X2), and the cutting is performed after the process (3). It is also possible to perform.
  • one direction of the surface opposite to the surface to be adhered to the pressure-sensitive adhesive layer (X2) of the object to be processed (for example, of the XY plane of the object to be processed)
  • the workpiece is cut into strips by cutting only in the X-axis direction, and the strip is cut only in another direction (for example, the Y-axis direction in the XY plane of the workpiece) after step (3).
  • the particle distribution of the thermally expandable particles before expansion at 23 ° C. was measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern).
  • the particle diameters corresponding to 50% and 90% of the cumulative volume frequency calculated from the smaller particle diameter of the particle distribution are expressed as “average particle diameter (D 50 ) of thermally expandable particles” and “thermally expandable particles”, respectively. 90% particle diameter (D 90 ) ”.
  • the formed heat-expandable base material layer (Y1-1) was 5 mm long ⁇ 30 mm wide ⁇ 200 ⁇ m thick, and the test piece was prepared by removing the release material.
  • a dynamic viscoelasticity measuring apparatus TA Instruments, product name “DMAQ800”
  • a test start temperature 0 ° C.
  • a test end temperature of 300 ° C. a temperature increase rate of 3 ° C./min
  • a frequency of 1 Hz and an amplitude of 20 ⁇ m
  • the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
  • a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
  • ⁇ Probe tack value> A substrate to be measured was cut into a square with a side of 10 mm, and then allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity) as a test sample. Using a tacking tester (manufactured by NIPPON SPECIAL INSTRUMENTS CO., LTD., Product name “NTS-4800”) in an environment of 23 ° C. and 50% RH (relative humidity), the probe tack value on the surface of the test sample is measured according to JIS. It measured based on Z0237: 1991.
  • a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is moved at a speed of 10 mm / sec. The force required to separate from the surface was measured, and the value obtained was used as the probe tack value of the test sample.
  • Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) 80.0 / 20.0 (mass ratio), An acrylic copolymer having a Mw of 600,000.
  • Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid 86.0 / 8.0 / 5.0 / 1.
  • Isocyanate crosslinking agent (i): manufactured by Tosoh Corporation, product name “Coronate L”, solid content concentration: 75 mass%.
  • Photopolymerization initiator (i): manufactured by BASF, product name “Irgacure 184”, 1-hydroxy-cyclohexyl-phenyl-ketone.
  • Heavy release film manufactured by Lintec Corporation, product name “SP-PET382150”, a polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 ⁇ m.
  • Light release film manufactured by Lintec Co., Ltd., product name “SP-PET381031”, a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 ⁇ m.
  • Example 1 In the adhesive laminate 1d shown in FIG. 2B, a release material was further laminated on the second adhesive layer (X12) of the adhesive sheet (I) and the adhesive layer (X2) of the adhesive sheet (II).
  • a pressure-sensitive adhesive laminate having a configuration and having an intermediate layer (Z2) provided between the base material (Y2) and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) was produced by the following procedure.
  • the 1st adhesive layer (X11) which is an adhesive layer was formed.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11) at 23 ° C. was 2.5 ⁇ 10 5 Pa.
  • the adhesive force of the 1st adhesive layer (X11) measured based on the said method was 0.3 N / 25mm.
  • Second Adhesive Layer 100 parts by mass of the acrylic copolymer (ii), which is an adhesive resin, is added to the isocyanate crosslinking agent (i) 0.8 mass. Parts (solid content ratio) were mixed, diluted with toluene, and stirred uniformly to prepare a PSA composition having a solid content concentration (active ingredient concentration) of 25% by mass. And the said adhesive composition is apply
  • the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X12) at 23 ° C. was 9.0 ⁇ 10 4 Pa.
  • the adhesive force of the 2nd adhesive layer (X12) measured based on the said method was 1.0 N / 25mm.
  • an ultraviolet irradiation device product name “ECS-401GX” manufactured by Eye Graphics Co., Ltd.
  • a high-pressure mercury lamp product name “H04-L41” manufactured by Eye Graphics Co., Ltd.
  • the coating film was cured by irradiating with ultraviolet rays under conditions of cm 2 to form a thermally expandable substrate (Y-1) having a thickness of 50 ⁇ m.
  • the above illuminance and light intensity during ultraviolet irradiation are values measured using an illuminance / light meter (product name “UV Power Pack II” manufactured by EIT).
  • the PET film as the non-thermally expandable substrate corresponds to the non-thermally expandable substrate layer (Y1-2).
  • the resin composition is applied to the surface of the release agent layer of the light release film to form a coating film, The membrane was dried at 100 ° C. for 120 seconds to similarly form a 50 ⁇ m thick thermally expandable substrate layer (Y1-1).
  • the storage elastic modulus and probe tack value at each temperature of the thermally expandable substrate layer (Y1-1) were measured. The measurement results were as follows. -Storage elastic modulus E '(23) at 23 ° C.
  • the substrate (Y2) was a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m (manufactured by Toyobo Co., Ltd., product name “Cosmo Shine A4300”, probe tack value: 0 mN / 5 mm ⁇ ).
  • PET polyethylene terephthalate
  • Intermediate layer (Z2) (1) Preparation of intermediate layer forming composition 100 parts by mass of non-energy ray curable acrylic copolymer C1, 68 parts by mass of energy ray curable acrylic copolymer D1, tolylene diisocyanate crosslinking agent (product) Name: BHS 8515, manufactured by Toyochem Co., Ltd. (2.8 parts by mass) and 2.7 parts by mass of the above photopolymerization initiator (i) were added and diluted with ethyl acetate to obtain a solid content concentration (active ingredient concentration). A 35% by mass solution of the intermediate layer forming composition was prepared.
  • non-energy ray-curable acrylic copolymer C1 90 parts by mass of butyl acrylate (BA) and 10 parts by mass of acrylic acid (AAc) are added to an ethyl acetate solvent, and azo is used as a polymerization initiator. 1.0 part by mass of bisisobutyronitrile (AIBN) was added and the solution polymerization proceeded to obtain a non-energy ray curable acrylic copolymer C1 (Mw: 500,000).
  • AIBN bisisobutyronitrile
  • methacryloyloxyethyl isocyanate is added to the acrylic copolymer in an amount such that the number of isocyanate groups is 80 equivalents relative to the total number of hydroxyl groups in the added HEA of 100 equivalents.
  • An energy ray-curable acrylic copolymer D1 (Mw: 100,000) having a group was obtained.
  • the value of ⁇ calculated from the above formula (2) is 22.4.
  • peeling force (F 0 ) the peeling force measured when peeling at the interface P at a pulling speed of 300 mm / min by the 180 ° peeling method based on JIS Z0237: 2000 is referred to as “peeling force (F 0 )”.
  • peeling force (F 1 ) The peeling force measured when peeling at the interface P was defined as “peeling force (F 1 )”.
  • peel force (F 1 ) when the adhesive sheet (I) of the adhesive laminate was fixed with the upper chuck of the universal tensile testing machine, the adhesive sheet (I) was completely separated at the interface P. Therefore, when the fixing was not possible, the measurement was terminated, and the peeling force (F 1 ) at that time was set to “0 mN / 25 mm”.
  • Example 2 The pressure-sensitive adhesive sheet (II) in a state where the object to be processed was affixed was produced by the following procedure. (1) Fixing of semiconductor wafer The light release film of the pressure-sensitive adhesive laminate produced in Example 1 was removed, and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive sheet (I) exposed was a support ( Glass). And the surface by the side of the circuit surface of the semiconductor wafer which has the circuit surface in which the pattern was formed, and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) are bonded to each other through the pressure-sensitive adhesive laminate produced in Example 1. A semiconductor wafer was fixed to the support.
  • the adhesive laminate was subjected to a heat treatment at 120 ° C. for 3 minutes, which is higher than the expansion start temperature (90 ° C.) of the thermally expandable particles. And it was able to be easily separated collectively at the interface P between the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II). Then, after separation, an adhesive sheet (II) was obtained in which a semiconductor wafer having a modified region formed therein was affixed.
  • Adhesive laminate (I) Adhesive sheet (X1) Adhesive layer (X11) First adhesive layer (X12) Second adhesive layer (Y1) Base material (Y1-1) Thermally expandable substrate layer (Y1-2) Non-thermally expandable substrate layer (II) Adhesive sheet (X2) Adhesive layer (Z2) Intermediate layer (Y2) Substrate 50 Supports 60, 70 Workpiece 61 Curing Sealed body 61a Separated product 71 of cured sealed body Modified region 72 Gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A method for producing a processed article using an adhesive layered body that comprises a thermally expanding adhesive sheet (I) having a substrate (Y1) and an adhesive layer (X1) and containing thermally expanding particles in either of the layers and an adhesive sheet (II) having a substrate (Y2) and an adhesive layer (X2), the substrate (Y2) of the adhesive sheet (II) being directly layered on the adhesive sheet (I), said method sequentially comprising the step (1) of applying the surface of the adhesive layer (X1) of the adhesive layered body onto a support and applying an article to be treated onto the surface of the adhesive layer (X2) of the adhesive layered body, the step (2) of subjecting the article to one or more treatments, and the step (3) of heating at the thermal expansion start temperature of the thermally expanding particles or higher to separate the adhesive layered body at the interface between the adhesive sheet (I) and the substrate (Y2) of the adhesive sheet (II) while keeping the article applied to the surface of the adhesive layer (X2) of the adhesive layered body, said method further involving carrying out during step (2) or after step (3) the step (4) of cutting and/or grinding the surface of the article on the opposite side from the surface applied to the adhesive layer (X2).

Description

加工品の製造方法及び粘着性積層体Processed product manufacturing method and adhesive laminate
 本発明は、切削及び研削の少なくともいずれかの加工が施された加工品の製造方法、並びに、当該製造方法に用いられる粘着性積層体に関する。 The present invention relates to a method for producing a processed product subjected to at least one of cutting and grinding, and an adhesive laminate used in the production method.
 粘着シートは、部材を半永久的に固定する用途だけでなく、建材、内装材、及び電子部品等を加工したり検査したりする際に、対象となる部材を仮固定するための仮固定用途に使用される場合がある。
 このような仮固定用途の粘着シートには、使用時の接着性と、使用後の剥離性との両立が要求される。
The pressure-sensitive adhesive sheet is not only used for semi-permanently fixing members, but also for temporary fixing for temporarily fixing target members when processing or inspecting building materials, interior materials, and electronic parts. May be used.
Such a pressure-sensitive adhesive sheet for temporarily fixing is required to satisfy both adhesiveness at the time of use and peelability after use.
 例えば、特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用の加熱剥離型粘着シートが開示されている。
 この加熱剥離型粘着シートは、熱膨張性粘着層の厚さに対して、熱膨張性微小球の最大粒径を調整し、加熱前の熱膨張性粘着層の表面の中心線平均粗さを0.4μm以下に調整している。
 特許文献1には、当該加熱剥離型粘着シートは、電子部品切断時には、被着体との接触面積を確保できるため、チップ飛び等の接着不具合を防止し得る接着性を発揮でき、一方で、使用後には、加熱して熱膨張性微小球を膨張させて、被着体との接触面積を減少させることで、容易に剥離することができる旨の記載がある。
For example, Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing at the time of cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a substrate. ing.
This heat-peelable pressure-sensitive adhesive sheet adjusts the maximum particle size of the heat-expandable microspheres with respect to the thickness of the heat-expandable pressure-sensitive adhesive layer, and calculates the center line average roughness of the surface of the heat-expandable pressure-sensitive adhesive layer before heating. It is adjusted to 0.4 μm or less.
In Patent Document 1, since the heat-peelable pressure-sensitive adhesive sheet can secure a contact area with an adherend when cutting an electronic component, it can exhibit adhesiveness that can prevent adhesion failure such as chip jumping, After use, there is a description that it can be easily peeled by heating to expand the thermally expandable microspheres to reduce the contact area with the adherend.
特許第3594853号公報Japanese Patent No. 3594853
 特許文献1に記載の粘着シートを用いた加工の工程では、粘着シートを用いて加工すべき対象物(以下、「加工対象物」ともいう)が仮固定され、加工対象物に所定の加工が施された後、当該加工対象物が粘着シートから分離される。
 ところで、特に電子部品等の製造においては、加工対象物を切削する工程及び研削する工程の少なくともいずれかの工程を含む、複数の加工工程を経ることが多い。
 そのため、例えば、粘着シートに仮固定された加工対象物に対し、当該加工対象物を切削する工程及び研削する工程の少なくともいずれかの加工工程が実施された後、当該加工対象物が粘着シートから分離され、分離された加工対象物が新たな粘着シートに貼付されて、次工程に供されることがある。
 また、粘着シートに仮固定された加工対象物に対し、当該加工対象物を切削する工程及び研削する工程以外の加工工程が実施された後、加工対象物が粘着シートから分離され、分離された加工対象物が新たな粘着シートに貼付されて、加工対象物を切削する工程及び研削する工程の少なくともいずれかの加工工程が実施されることもある。
In the processing step using the pressure-sensitive adhesive sheet described in Patent Document 1, an object to be processed (hereinafter also referred to as “processing object”) using the pressure-sensitive adhesive sheet is temporarily fixed, and predetermined processing is performed on the processing object. After being applied, the processing object is separated from the adhesive sheet.
By the way, especially in the manufacture of electronic components and the like, a plurality of processing steps including at least one of a step of cutting a workpiece and a step of grinding are often performed.
Therefore, for example, after the processing object temporarily fixed to the adhesive sheet is subjected to at least one of the cutting process and the grinding process, the processing object is removed from the adhesive sheet. In some cases, the separated workpiece is pasted on a new pressure-sensitive adhesive sheet and used for the next step.
In addition, after the processing object other than the process of cutting and grinding the processing object is performed on the processing object temporarily fixed to the adhesive sheet, the processing object is separated from the adhesive sheet and separated. There is a case where the processing object is affixed to a new pressure-sensitive adhesive sheet, and at least one of the processing steps of cutting and grinding the processing object is performed.
 しかしながら、上記のような手順で製品を製造すると、作業が煩雑になるだけでなく、製品の生産性の低下にも繋がる。そこで、作業の煩雑性を抑えながらも、製品の生産性を向上させることのできる手法の確立が望まれる。 However, if a product is manufactured according to the procedure as described above, the work is not only complicated, but also the productivity of the product is reduced. Therefore, it is desired to establish a technique that can improve the productivity of products while suppressing the complexity of work.
 本発明は、加工対象物を支持体に固定して、当該加工対象物に対する加工を実施した後、当該加工対象物をわずかな力で支持体から一括して容易に分離することができ、しかも、支持体から分離した当該加工対象物を粘着シートに貼付した状態として次工程の加工に供することができ、当該加工対象物の支持体からの分離前後の少なくともいずれかのタイミングで当該加工対象物の切削及び研削の少なくともいずれかの加工を行うことができる、切削及び研削の少なくともいずれかの加工が施された加工品の製造方法、並びに、切削及び研削の少なくともいずれかの加工が施された加工品の製造のための粘着性積層体を提供することを目的とする。 In the present invention, after the workpiece is fixed to the support and the workpiece is processed, the workpiece can be easily separated from the support in a lump with a slight force. The processing object separated from the support can be used for the next process as a state of being attached to the adhesive sheet, and the processing object is at least at any timing before and after the separation of the processing object from the support. A method for manufacturing a processed product that has been subjected to at least one of cutting and grinding, and at least one of cutting and grinding has been performed. It aims at providing the adhesive laminated body for manufacture of a processed article.
 本発明者らは、基材及び粘着剤層を有し、いずれかの層に熱膨張性粒子を含む層を含む、熱膨張性の粘着シート(I)と、基材及び粘着剤層を有する粘着シート(II)とを備え、粘着シート(I)と粘着シート(II)の基材とが直接積層してなる粘着性積層体を用いて、切削及び研削の少なくともいずれかの加工が施された加工品を製造することによって、上記課題を解決し得ることを見出した。 The present inventors have a heat-expandable pressure-sensitive adhesive sheet (I) having a base material and a pressure-sensitive adhesive layer, and a layer containing heat-expandable particles in any layer, and a base material and a pressure-sensitive adhesive layer. A pressure-sensitive adhesive laminate comprising the pressure-sensitive adhesive sheet (II) and directly laminated with the base material of the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (II) is subjected to at least one of cutting and grinding. It has been found that the above problem can be solved by manufacturing a processed product.
 すなわち、本発明は、以下の[1]~[17]関する。
[1] 基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に熱膨張開始温度(t)の熱膨張性粒子を含む熱膨張性の粘着シート(I)、並びに、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)を備え、粘着シート(I)と粘着シート(II)の基材(Y2)とが直接積層してなる粘着性積層体を用いて、切削及び研削の少なくともいずれかの加工が施された加工品を製造する方法であって、
 下記工程(1)~(3)をこの順で有し、
・工程(1):前記粘着性積層体の粘着剤層(X1)の表面を支持体に貼付するとともに、前記粘着性積層体の粘着剤層(X2)の表面に加工対象物を貼付する工程
・工程(2):前記加工対象物に一以上の加工を施す工程
・工程(3):前記熱膨張性粒子の熱膨張開始温度(t)以上での加熱によって、前記加工対象物を前記粘着性積層体の粘着剤層(X2)の表面に貼付した状態を維持しながら、前記粘着性積層体を粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pで分離する工程
 さらに、下記工程(4)を有し、
・工程(4):前記加工対象物の粘着剤層(X2)との貼付面とは反対側の表面に対して切削及び研削の少なくともいずれかの加工を施す工程
 前記工程(4)は、下記(X)及び(Y)の少なくともいずれかにおいて実施される、加工品の製造方法。
(X):前記一以上の加工として前記工程(2)において実施される
(Y):前記工程(3)の後において実施される
[2] 前記熱膨張性粒子の熱膨張開始温度(t)が60~270℃である、上記[1]に記載の製造方法。
[3] 粘着シート(I)が有する基材(Y1)が、前記熱膨張性粒子を含む熱膨張性基材層(Y1-1)を有する、上記[1]又は[2]に記載の製造方法。
[4] 粘着シート(I)が有する基材(Y1)が、熱膨張性基材層(Y1-1)と非熱膨張性基材層(Y1-2)とを有する、上記[3]に記載の製造方法。
[5] 粘着シート(I)が有する基材(Y1)の熱膨張性基材層(Y1-1)と、粘着シート(II)の基材(Y2)とが直接積層してなる、上記[3]又は[4]に記載の製造方法。
[6] 粘着シート(I)が、第1粘着剤層(X11)及び第2粘着剤層(X12)により基材(Y1)が挟持された構成を有し、粘着シート(I)の第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)とが直接積層した構成を有し、粘着シート(I)の第2粘着剤層(X12)の表面は、前記支持体に貼付される面である、上記[3]~[5]に記載の製造方法。
[7] 第1粘着剤層(X11)が、前記熱膨張性粒子を含む熱膨張性粘着剤層であり、
 第2粘着剤層(X12)が、非熱膨張性粘着剤層であり、粘着シート(I)の第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)とが直接積層した構成を有する、粘着シート(I)の第2粘着剤層(X12)の表面は、前記支持体に貼付される面である、上記[1]又は[2]に記載の製造方法。
[8] 基材(Y1)の第1粘着剤層(X11)が積層した側の表面が、易接着処理が施された表面である、上記[6]又は[7]に記載の製造方法。
[9] 基材(Y2)の粘着シート(I)が積層した側の表面が、剥離処理が施された表面である、上記[1]~[8]に記載の製造方法。
[10] 粘着シート(II)が、基材(Y2)と粘着剤層(X2)との間に、中間層(Z2)を有する、上記[1]~[9]に記載の製造方法。
[11] 粘着シート(II)の粘着剤層(X2)が、エネルギー線硬化型の粘着剤層である、上記[1]~[10]に記載の製造方法。
[12] 粘着シート(II)が、下記要件(α)~(γ)の1以上を満たす、上記[1]~[11]に記載の製造方法。
・要件(α):基材(Y2)のヤング率が1.0MPa以上である。
・要件(β):基材(Y2)の厚さが5μm以上である。
・要件(γ):粘着剤層(X2)の貯蔵弾性率G’(23℃)が0.1MPa以上である。
[13]  前記加工対象物が半導体ウエハであり、
 前記工程(2)における前記一以上の加工が、下記工程(2-A)を含み、
・工程(2-A):前記半導体ウエハに、分割起点となる改質領域を形成する工程
 前記工程(4)が、下記工程(4-A)であり、
・工程(4-A):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
 前記工程(4-A)は、下記(X-A)又は(Y-A)の少なくともいずれかにおいて実施される、上記[1]~[12]に記載の製造方法。
(X-A):前記一以上の加工として前記工程(2―A)の後に実施される
(Y-A):前記工程(3)の後に実施される
[14] 前記加工対象物が半導体チップであり、
 前記工程(2)における前記一以上の加工が、下記工程(2-B)を含み、
・工程(2-B):前記半導体チップと、粘着剤層(X2)の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程
 前記工程(4)は、下記(X-B)及び(Y-B)の少なくともいずれかにおいて実施される、上記[1]~[12]に記載の製造方法。
(X-B):前記一以上の加工として前記工程(2―B)の後に実施される
(Y-B):前記工程(3)の後に実施される
[15] 前記加工対象物が分割起点となる改質領域を有する半導体ウエハであり、
 前記工程(4)が下記工程(4-A)である、上記[1]~[12]に記載の製造方法。
・工程(4-A):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
[16] 前記加工対象物が分割起点となる切り込み溝を有する半導体ウエハであり、
 前記工程(1)が下記工程(1-C)であり、前記工程(4)が下記工程(4-C)である、上記[1]~[12]に記載の製造方法。
・工程(1-C):前記粘着性積層体の粘着剤層(X1)の表面を支持体に貼付するとともに、前記粘着性積層体の粘着剤層(X2)の表面に前記半導体ウエハの切り込み溝を有する面を貼付する工程
・工程(4-C):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
[17] 基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に熱膨張性粒子を含む熱膨張性の粘着シート(I)、並びに、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)を備え、粘着シート(I)と粘着シート(II)の基材(Y2)とが直接積層してなる、切削及び研削の少なくともいずれかの加工が施された加工品を製造するための、粘着性積層体。
That is, the present invention relates to the following [1] to [17].
[1] A heat-expandable pressure-sensitive adhesive sheet (I) having a base material (Y1) and a pressure-sensitive adhesive layer (X1), and including heat-expandable particles having a thermal expansion start temperature (t) in any layer, and An adhesive laminate comprising an adhesive sheet (II) having a substrate (Y2) and an adhesive layer (X2), wherein the adhesive sheet (I) and the substrate (Y2) of the adhesive sheet (II) are directly laminated. A method of manufacturing a processed product subjected to at least one of cutting and grinding using
It has the following steps (1) to (3) in this order,
Step (1): A step of sticking the surface of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate to a support and sticking a workpiece to the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive laminate. Step (2): Step of performing one or more processings on the workpiece. Step (3): Heating the thermal expandable particles at a thermal expansion start temperature (t) or higher, thereby sticking the workpiece to the adhesive. The pressure-sensitive adhesive laminate is separated at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) while maintaining the state of being stuck on the surface of the pressure-sensitive adhesive layer (X2). The following step (4)
-Process (4): The process of performing the process of at least one of cutting and grinding with respect to the surface on the opposite side to the sticking surface with the adhesive layer (X2) of the said process target object The said process (4) is the following. (X) The manufacturing method of the processed goods implemented in at least any one of (Y).
(X): Implemented in the step (2) as the one or more processes (Y): Implemented after the step (3) [2] Thermal expansion start temperature (t) of the thermally expandable particles The method according to [1] above, wherein the temperature is 60 to 270 ° C.
[3] The production according to [1] or [2] above, wherein the base material (Y1) of the pressure-sensitive adhesive sheet (I) has a thermally expandable base material layer (Y1-1) containing the thermally expandable particles. Method.
[4] The above [3], wherein the base material (Y1) of the pressure-sensitive adhesive sheet (I) has a heat-expandable base material layer (Y1-1) and a non-heat-expandable base material layer (Y1-2). The manufacturing method as described.
[5] The thermal expansion substrate layer (Y1-1) of the substrate (Y1) included in the adhesive sheet (I) and the substrate (Y2) of the adhesive sheet (II) are directly laminated. 3] or the production method according to [4].
[6] The pressure-sensitive adhesive sheet (I) has a configuration in which the substrate (Y1) is sandwiched between the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12), and the first pressure-sensitive adhesive sheet (I) The pressure-sensitive adhesive layer (X11) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated, and the surface of the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive sheet (I) The production method according to any one of [3] to [5] above, which is a surface to be affixed to the surface.
[7] The first pressure-sensitive adhesive layer (X11) is a heat-expandable pressure-sensitive adhesive layer containing the heat-expandable particles,
The second pressure-sensitive adhesive layer (X12) is a non-thermally expandable pressure-sensitive adhesive layer, and the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly The manufacturing method according to the above [1] or [2], wherein the surface of the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive sheet (I) having a laminated structure is a surface to be attached to the support.
[8] The production method according to the above [6] or [7], wherein the surface on which the first pressure-sensitive adhesive layer (X11) of the base material (Y1) is laminated is a surface subjected to an easy adhesion treatment.
[9] The production method according to the above [1] to [8], wherein the surface of the substrate (Y2) on which the pressure-sensitive adhesive sheet (I) is laminated is a surface subjected to a peeling treatment.
[10] The production method according to the above [1] to [9], wherein the pressure-sensitive adhesive sheet (II) has an intermediate layer (Z2) between the base material (Y2) and the pressure-sensitive adhesive layer (X2).
[11] The production method according to the above [1] to [10], wherein the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) is an energy ray curable pressure-sensitive adhesive layer.
[12] The production method according to the above [1] to [11], wherein the pressure-sensitive adhesive sheet (II) satisfies one or more of the following requirements (α) to (γ).
-Requirement ((alpha)): Young's modulus of a base material (Y2) is 1.0 Mpa or more.
-Requirement ((beta)): The thickness of a base material (Y2) is 5 micrometers or more.
Requirement (γ): The storage elastic modulus G ′ (23 ° C.) of the pressure-sensitive adhesive layer (X2) is 0.1 MPa or more.
[13] The workpiece is a semiconductor wafer,
The one or more processes in the step (2) include the following step (2-A):
Step (2-A): a step of forming a modified region serving as a division starting point on the semiconductor wafer. The step (4) is the following step (4-A):
Step (4-A): A step of grinding the surface of the semiconductor wafer opposite to the surface to be adhered to the adhesive layer (X2). The step (4-A) includes the following (XA ) Or (YA), the production method according to any one of [1] to [12] above.
(XA): implemented as the one or more processes after the step (2-A) (YA): performed after the process (3) [14] The object to be processed is a semiconductor chip And
The one or more processes in the step (2) include the following step (2-B):
Step (2-B): covering the semiconductor chip and the periphery of the semiconductor chip among the adhesive surfaces of the adhesive layer (X2) with a sealing material, and curing the sealing material; A step of obtaining a cured encapsulant in which the semiconductor chip is encapsulated in a cured encapsulant The step (4) is performed in at least one of the following (XB) and (YB), [1] The production method according to [12].
(XB): Performed after the step (2-B) as the one or more processings (YB): Implemented after the step (3) [15] The processing target is divided starting point A semiconductor wafer having a modified region,
The production method according to the above [1] to [12], wherein the step (4) is the following step (4-A).
Step (4-A): Step of grinding the surface of the semiconductor wafer opposite to the surface to be bonded to the adhesive layer (X2) [16] Cut groove where the workpiece is the starting point of division A semiconductor wafer having
The production method according to the above [1] to [12], wherein the step (1) is the following step (1-C) and the step (4) is the following step (4-C).
Step (1-C): The surface of the adhesive layer (X1) of the adhesive laminate is affixed to a support, and the semiconductor wafer is cut into the surface of the adhesive layer (X2) of the adhesive laminate Step / step (4-C) for applying a surface having a groove: Step for grinding the surface of the semiconductor wafer opposite to the surface to be attached to the adhesive layer (X2) [17] Y1) and a pressure-sensitive adhesive layer (X1), and any of the layers has a heat-expandable pressure-sensitive adhesive sheet (I) containing heat-expandable particles, and a substrate (Y2) and a pressure-sensitive adhesive layer (X2). Manufactures a processed product that includes an adhesive sheet (II) and is formed by directly laminating the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II). To make an adhesive laminate.
 本発明によれば、加工対象物を支持体に固定して、当該加工対象物に対する加工を実施した後、当該加工対象物をわずかな力で支持体から一括して容易に分離することができ、しかも、支持体から分離した当該加工対象物を粘着シートに貼付した状態として次工程の加工に供することができ、当該加工対象物の支持体からの分離前後の少なくともいずれかのタイミングで当該加工対象物の切削及び研削の少なくともいずれかの加工を行うことができる、切削及び研削の少なくともいずれかの加工が施された加工品の製造方法、並びに、切削及び研削の少なくともいずれかの加工が施された加工品の製造のための粘着性積層体を提供することができる。 According to the present invention, after the workpiece is fixed to the support and the workpiece is processed, the workpiece can be easily separated from the support with a slight force. In addition, the object to be processed separated from the support can be applied to the next process as being attached to the adhesive sheet, and the process can be performed at least before or after the separation of the object to be processed from the support. A method for manufacturing a workpiece that has been subjected to at least one of cutting and grinding, and at least one of cutting and grinding can be performed. It is possible to provide an adhesive laminate for producing a processed product.
本発明の製造方法に用いる第一態様の粘着性積層体の構成を示す、当該粘着性積層体の断面模式図である。It is a cross-sectional schematic diagram of the said adhesive laminated body which shows the structure of the adhesive laminated body of the 1st aspect used for the manufacturing method of this invention. 本発明の製造方法に用いる第二態様の粘着性積層体の構成を示す、当該粘着性積層体の断面模式図である。It is a cross-sectional schematic diagram of the said adhesive laminated body which shows the structure of the adhesive laminated body of the 2nd aspect used for the manufacturing method of this invention. 本発明の製造方法に用いる第三態様の粘着性積層体の構成を示す、当該粘着性積層体の断面模式図である。It is a cross-sectional schematic diagram of the said adhesive laminated body which shows the structure of the adhesive laminated body of the 3rd aspect used for the manufacturing method of this invention. 本発明の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of this invention. 本発明の製造方法の他の例を示す概略図である。It is the schematic which shows the other example of the manufacturing method of this invention.
 本明細書において、「層」が「非熱膨張性層」であるか「熱膨張性層」であるかは、以下のように判断する。
 対象となる層を、熱膨張性粒子を含む層に含まれる熱膨張性粒子の膨張開始温度(t)で、3分間加熱処理する。下記式から算出される体積変化率が5%未満である場合、当該層は「非熱膨張性層」であると判断し、5%以上である場合、当該層は「熱膨張性層」であると判断する。
・体積変化率(%)={(加熱処理後の前記層の体積-加熱処理前の前記層の体積)/加熱処理前の前記層の体積}×100
 なお、熱膨張性粒子を含有しない層は、「非熱膨張性層」であるとする。 
In this specification, whether the “layer” is a “non-thermally expandable layer” or a “thermally expandable layer” is determined as follows.
The target layer is heat-treated for 3 minutes at the expansion start temperature (t) of the heat-expandable particles contained in the layer containing the heat-expandable particles. When the volume change rate calculated from the following formula is less than 5%, the layer is determined to be a “non-thermally expandable layer”, and when it is 5% or more, the layer is a “thermally expandable layer”. Judge that there is.
Volume change rate (%) = {(volume of the layer after heat treatment−volume of the layer before heat treatment) / volume of the layer before heat treatment} × 100
The layer not containing the thermally expandable particles is assumed to be a “non-thermally expandable layer”.
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、希釈溶媒を除いた成分を指す。
 本明細書において、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
In the present specification, the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
In the present specification, the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in Examples. It is.
In the present specification, for example, “(meth) acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
In the present specification, the lower limit value and the upper limit value described in a stepwise manner can be independently combined for a preferable numerical range (for example, a range such as content). For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
[加工品の製造方法]
 本発明の加工品の製造方法は、基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に熱膨張開始温度(t)の熱膨張性粒子を含む熱膨張性の粘着シート(I)、並びに、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)を備え、粘着シート(I)と粘着シート(II)の基材(Y2)とが直接積層してなる粘着性積層体を用いて、切削及び研削の少なくともいずれかの加工が施された加工品を製造する方法であって、
 下記工程(1)~(3)をこの順で有し、
・工程(1):前記粘着性積層体の粘着剤層(X1)の表面を支持体に貼付するとともに、前記粘着性積層体の粘着剤層(X2)の表面に加工対象物を貼付する工程
・工程(2):前記加工対象物に一以上の加工を施す工程
・工程(3):前記熱膨張性粒子の熱膨張開始温度(t)以上での加熱によって、前記加工対象物を前記粘着性積層体の粘着剤層(X2)の表面に貼付した状態を維持しながら、前記粘着性積層体を粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pで分離する工程
 さらに、下記工程(4)を有し、
・工程(4):前記加工対象物の粘着剤層(X2)との貼付面とは反対側の表面に対して切削及び研削の少なくともいずれかの加工を施す工程
 前記工程(4)は、下記(X)及び(Y)の少なくともいずれかにおいて実施される。
(X):前記一以上の加工として前記工程(2)において実施される
(Y):前記工程(3)の後において実施される
 以下、本発明の製造方法に用いられる粘着性積層体について説明した後、工程(1)~(4)を含む各製造工程について説明する。
[Processed product manufacturing method]
The method for producing a processed product according to the present invention includes a base material (Y1) and a pressure-sensitive adhesive layer (X1), and one of the layers includes a heat-expandable pressure-sensitive adhesive containing heat-expandable particles having a thermal expansion start temperature (t). A sheet (I) and a pressure-sensitive adhesive sheet (II) having a base material (Y2) and a pressure-sensitive adhesive layer (X2) are provided, and the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated. A method for producing a processed product that has been subjected to at least one of cutting and grinding using an adhesive laminate formed by:
It has the following steps (1) to (3) in this order,
Step (1): A step of sticking the surface of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate to a support and sticking a workpiece to the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive laminate. Step (2): Step of performing one or more processings on the workpiece. Step (3): Heating the thermal expandable particles at a thermal expansion start temperature (t) or higher, thereby sticking the workpiece to the adhesive. The pressure-sensitive adhesive laminate is separated at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) while maintaining the state of being stuck on the surface of the pressure-sensitive adhesive layer (X2). The following step (4)
-Process (4): The process of performing the process of at least one of cutting and grinding with respect to the surface on the opposite side to the sticking surface with the adhesive layer (X2) of the said process target object The said process (4) is the following. It is carried out in at least one of (X) and (Y).
(X): Implemented in the step (2) as the one or more processes (Y): Implemented after the step (3) Hereinafter, the adhesive laminate used in the production method of the present invention will be described. Then, each manufacturing process including the steps (1) to (4) will be described.
[粘着性積層体の構成]
 本発明の製造方法に用いる粘着性積層体は、基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に熱膨張性粒子を含む、熱膨張性の粘着シート(I)と、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)と、を備え、粘着シート(I)と、粘着シート(II)の基材(Y2)とが直接積層してなり、加工対象物に所定の加工を施す際に加工対象物を支持体に固定するために用いられる。
 本明細書において、所定の加工とは、本発明の製造方法における工程(2)の加工を意味している。なお、本発明では、工程(2)における一以上の加工の一つとして工程(4)を実施することもある。したがって、所定の加工には、本発明の製造方法における工程(4)も含まれ得る。
 本発明の製造方法に用いる粘着性積層体において、粘着シート(I)の粘着剤層(X1)の表面は、支持体を貼付する面である。粘着シート(I)が第1粘着剤層(X11)と第2粘着剤層(X12)を有する場合、第2粘着剤層(X12)の表面が支持体を貼付する面であり、第1粘着剤層(X11)の表面は粘着シート(II)の基材(Y2)側に積層する面である。また、粘着シート(II)の粘着剤層(X2)の表面は、加工対象物を貼付する面である。
 そして、本発明の製造方法に用いる粘着性積層体は、熱膨張性粒子の膨張開始温度(t)以上の温度での加熱処理によって、粘着シート(I)と、粘着シート(II)の基材(Y2)との界面Pで分離可能である。以降の説明では、当該加熱処理のことを「分離用加熱処理」ともいう。
 図1~3は、それぞれ、本発明の製造方法に用いる第一態様、第二態様、及び第三態様の粘着性積層体の構成を示す断面模式図である。
[Configuration of adhesive laminate]
The pressure-sensitive adhesive laminate used in the production method of the present invention has a base material (Y1) and a pressure-sensitive adhesive layer (X1), and includes a heat-expandable particle in any layer (I). And a pressure sensitive adhesive sheet (II) having a base material (Y2) and a pressure sensitive adhesive layer (X2), and the pressure sensitive adhesive sheet (I) and the base material (Y2) of the pressure sensitive adhesive sheet (II) are directly laminated. Thus, it is used for fixing the processing object to the support when a predetermined processing is performed on the processing object.
In the present specification, the predetermined processing means the processing in step (2) in the production method of the present invention. In the present invention, step (4) may be performed as one of the one or more processes in step (2). Therefore, the predetermined processing may include step (4) in the manufacturing method of the present invention.
In the pressure-sensitive adhesive laminate used in the production method of the present invention, the surface of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (I) is a surface to which a support is attached. When the pressure-sensitive adhesive sheet (I) has the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12), the surface of the second pressure-sensitive adhesive layer (X12) is the surface to which the support is attached, and the first pressure-sensitive adhesive layer The surface of the agent layer (X11) is a surface laminated on the base material (Y2) side of the pressure-sensitive adhesive sheet (II). In addition, the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) is a surface on which a workpiece is pasted.
And the adhesive laminated body used for the manufacturing method of this invention is the base material of adhesive sheet (I) and adhesive sheet (II) by heat processing at the temperature more than the expansion start temperature (t) of a thermally expansible particle. Separation is possible at the interface P with (Y2). In the following description, the heat treatment is also referred to as “separation heat treatment”.
1 to 3 are schematic cross-sectional views showing the structures of the first, second, and third embodiments of the pressure-sensitive adhesive laminate used in the production method of the present invention, respectively.
<第一態様の粘着性積層体>
 本発明の製造方法に用いる第一態様の粘着性積層体としては、例えば図1(a)、(b)に示す粘着性積層体1a、1bが挙げられる。
 粘着性積層体1a、1bは、基材(Y1)及び粘着剤層(X1)を有する粘着シート(I)と、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)とを備え、粘着シート(I)の基材(Y1)と、粘着シート(II)の基材(Y2)とが直接積層した構成を有する。
<Adhesive laminate of the first aspect>
As an adhesive laminated body of the 1st aspect used for the manufacturing method of this invention, the adhesive laminated bodies 1a and 1b shown, for example to Fig.1 (a), (b) are mentioned.
The pressure-sensitive adhesive laminates 1a and 1b include a pressure-sensitive adhesive sheet (I) having a base material (Y1) and a pressure-sensitive adhesive layer (X1), and a pressure-sensitive adhesive sheet (II) having a base material (Y2) and a pressure-sensitive adhesive layer (X2). The base material (Y1) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
 本発明の製造方法に用いる粘着性積層体は、分離用加熱処理によって界面Pで分離することができるように、粘着シート(I)のいずれかの層を、熱膨張性粒子を含む層としている。
 本発明の製造方法に用いる粘着性積層体は、分離用加熱処理によって、熱膨張性粒子が膨張し、熱膨張性粒子を含む層の表面に凹凸が生じる。これにより、粘着シート(I)と粘着シート(II)の基材(Y2)との接触面積が減少する。
 その結果、粘着シート(II)の粘着剤層(X2)の表面上に加工対象物を貼付し、所定の加工を施した後、粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pで分離させることで、所定の加工が施された、粘着シート(II)に貼付された状態の加工対象物を得ることができる。
In the pressure-sensitive adhesive laminate used in the production method of the present invention, any layer of the pressure-sensitive adhesive sheet (I) is a layer containing thermally expandable particles so that it can be separated at the interface P by the heat treatment for separation. .
In the pressure-sensitive adhesive laminate used in the production method of the present invention, the thermally expandable particles are expanded by the heat treatment for separation, and irregularities are generated on the surface of the layer containing the thermally expandable particles. Thereby, the contact area of the base material (Y2) of adhesive sheet (I) and adhesive sheet (II) reduces.
As a result, after sticking a processing object on the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) and applying a predetermined processing, the base material (Y2) of the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (II) ) To be separated at the interface P), it is possible to obtain an object to be processed in a state of being applied to the pressure-sensitive adhesive sheet (II) that has been subjected to predetermined processing.
 そのため、本発明の製造方法によれば、上記の粘着性積層体を介して加工対象物を支持体に固定して所定の加工を実施することができるとともに、所定の加工が施された加工対象物をわずかな力で支持体から一括して容易に分離することができる。しかも、支持体から分離した加工対象物は粘着シート(II)に貼付した状態として、そのまま次工程に供することができる。
 したがって、所定の加工が施された分離後の加工対象物を新たな粘着シートに貼付する作業を行う必要がなく、作業性及び製品の生産性が向上し得る。
Therefore, according to the manufacturing method of the present invention, the processing object can be fixed to the support via the above-mentioned adhesive laminate and the predetermined processing can be performed, and the processing target subjected to the predetermined processing Objects can be easily separated from the support body with a slight force. In addition, the object to be processed separated from the support can be used as it is in the next step as it is attached to the adhesive sheet (II).
Therefore, it is not necessary to perform an operation of attaching the processed object after separation subjected to the predetermined processing to a new pressure-sensitive adhesive sheet, and workability and product productivity can be improved.
 本発明の第一態様において、基材(Y1)は、図1に示す粘着性積層体1a、1bのように、熱膨張性粒子を含む熱膨張性基材層(Y1-1)を有することが好ましい。
 なお、基材(Y1)は、図1(a)に示す粘着性積層体1aのように、熱膨張性粒子を含む熱膨張性基材層(Y1-1)のみを有する単層構成であってもよい。また、基材(Y1)は、図1(b)に示す粘着性積層体1bのように、熱膨張性基材層(Y1-1)と、非熱膨張性基材層(Y1-2)とを有する複層構成であってもよい。
In the first embodiment of the present invention, the substrate (Y1) has a thermally expandable substrate layer (Y1-1) containing thermally expandable particles like the adhesive laminates 1a and 1b shown in FIG. Is preferred.
The base material (Y1) has a single-layer structure having only a thermally expandable base material layer (Y1-1) containing heat-expandable particles, like the adhesive laminate 1a shown in FIG. 1 (a). May be. Further, the base material (Y1) is composed of a heat-expandable base material layer (Y1-1) and a non-heat-expandable base material layer (Y1-2) like the adhesive laminate 1b shown in FIG. 1 (b). A multilayer structure having
 図1(a)に示す粘着性積層体1aは、分離用加熱処理によって、基材(Y1)を構成する熱膨張性基材層(Y1-1)に含まれる熱膨張性粒子が膨張し、基材(Y1)の粘着シート(II)側の表面に凹凸が生じて、基材(Y1)と粘着シート(II)の基材(Y2)との接触面積が減少する。
 一方で、粘着性積層体1aが有する粘着剤層(X1)は、支持体と貼付されているため、基材(Y1)の粘着剤層(X1)側の表面には凹凸が形成され難い。これにより、粘着シート(II)と接している基材(Y1)の表面に凹凸を効率的に形成することができる。
 その結果、粘着性積層体1aは、粘着シート(I)の基材(Y1)と粘着シート(II)の基材(Y2)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、粘着性積層体1aが有する粘着剤層(X1)を、支持体に対する粘着力が高くなるような粘着剤組成物から形成することで、界面Pで、より容易に分離可能となるように設計することも可能である。
In the adhesive laminate 1a shown in FIG. 1 (a), the heat-expandable particles contained in the heat-expandable base material layer (Y1-1) constituting the base material (Y1) are expanded by the heat treatment for separation, Unevenness occurs on the surface of the base material (Y1) on the pressure-sensitive adhesive sheet (II) side, and the contact area between the base material (Y1) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) decreases.
On the other hand, since the adhesive layer (X1) which the adhesive laminated body 1a has is affixed with the support body, an unevenness | corrugation is hard to be formed in the surface at the side of the adhesive layer (X1) of a base material (Y1). Thereby, an unevenness | corrugation can be efficiently formed in the surface of the base material (Y1) which is in contact with adhesive sheet (II).
As a result, the adhesive laminate 1a can be easily separated by a slight force at the interface P between the base material (Y1) of the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II). It becomes.
In addition, by forming the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate 1a from a pressure-sensitive adhesive composition that increases the pressure-sensitive adhesive force to the support, it can be more easily separated at the interface P. It is also possible to design.
 また、図1(b)に示す粘着性積層体1bは、分離用加熱処理によって、基材(Y1)を構成する熱膨張性基材層(Y1-1)に含まれる熱膨張性粒子が膨張し、基材(Y1)の粘着シート(II)側の表面に凹凸が生じて、基材(Y1)と粘着シート(II)の基材(Y2)との接触面積が減少する。
 一方で、基材(Y1)を構成する非熱膨張性基材層(Y1-2)は、加熱処理による膨張の程度が小さいため、基材(Y1)の粘着剤層(X1)側の表面には凹凸が形成され難い。これにより、基材(Y1)の粘着シート(II)側の表面に凹凸を効率的に形成することができる。
 その結果、粘着性積層体1bは、粘着シート(I)の基材(Y1)と粘着シート(II)の基材(Y2)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、粘着性積層体1aの場合と同様に、粘着性積層体1bが有する粘着剤層(X1)を、支持体に対する粘着力が高くなるような粘着剤組成物から形成することで、界面Pで、より容易に分離可能となるように設計することも可能である。
Further, in the adhesive laminate 1b shown in FIG. 1B, the thermally expandable particles contained in the thermally expandable substrate layer (Y1-1) constituting the substrate (Y1) are expanded by the heat treatment for separation. And the unevenness | corrugation arises in the surface at the side of the adhesive sheet (II) of a base material (Y1), and the contact area of the base material (Y1) and the base material (Y2) of an adhesive sheet (II) reduces.
On the other hand, the non-thermally expandable base material layer (Y1-2) constituting the base material (Y1) has a small degree of expansion due to heat treatment, and therefore the surface of the base material (Y1) on the pressure-sensitive adhesive layer (X1) side. It is difficult to form irregularities on the surface. Thereby, an unevenness | corrugation can be efficiently formed in the surface at the side of the adhesive sheet (II) of a base material (Y1).
As a result, the adhesive laminate 1b can be easily separated by a slight force at the interface P between the base material (Y1) of the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II). It becomes.
As in the case of the pressure-sensitive adhesive laminate 1a, the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate 1b is formed from a pressure-sensitive adhesive composition that enhances the adhesive strength to the support, whereby the interface P Therefore, it is also possible to design so as to be more easily separable.
 上記観点から、本発明の第一態様において、図1(b)に示す粘着性積層体1bのように、基材(Y1)が、一方の表面側に熱膨張性基材層(Y1-1)を有し、他方の表面側に非熱膨張性基材層(Y1-2)を有するものであることが好ましい。 From the above viewpoint, in the first embodiment of the present invention, as in the adhesive laminate 1b shown in FIG. 1 (b), the base material (Y1) has a thermally expandable base material layer (Y1-1) on one surface side. And a non-thermally expandable base material layer (Y1-2) on the other surface side.
 また、本発明の第一態様において、界面Pでよりわずかな力で一括して容易に分離可能な粘着性積層体とする観点から、粘着性積層体1a、1bは、粘着シート(I)が有する基材(Y1)の熱膨張性基材層(Y1-1)と、粘着シート(II)の基材(Y2)とが直接積層した構成であることが好ましい。 Further, in the first aspect of the present invention, from the viewpoint of forming an adhesive laminate that can be easily separated at a slight force at the interface P, the adhesive laminates 1a and 1b are made of an adhesive sheet (I). It is preferable that the thermally expandable base material layer (Y1-1) of the base material (Y1) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
<第二態様の粘着性積層体>
 本発明の製造方法に用いる第二態様の粘着性積層体としては、例えば図2(a)、(b)に示す粘着性積層体1c、1dが挙げられる。
 粘着性積層体1c、1dは、粘着シート(I)が、第1粘着剤層(X11)及び第2粘着剤層(X12)により基材(Y1)が挟持された構成を有し、粘着シート(I)の第1粘着剤層(X11)と粘着シート(II)の基材(Y2)とが直接積層した構成を有する。
 なお、粘着性積層体1c、1dにおいて、第2粘着剤層(X12)の表面は、支持体と貼付される面となる。
<Adhesive Laminate of Second Aspect>
As an adhesive laminated body of the 2nd aspect used for the manufacturing method of this invention, the adhesive laminated bodies 1c and 1d shown, for example to Fig.2 (a), (b) are mentioned.
The pressure-sensitive adhesive laminates 1c and 1d have a configuration in which the pressure-sensitive adhesive sheet (I) has a substrate (Y1) sandwiched between the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12). The first pressure-sensitive adhesive layer (X11) of (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
In addition, in the adhesive laminated bodies 1c and 1d, the surface of a 2nd adhesive layer (X12) turns into a surface affixed with a support body.
 本発明の第二態様において、基材(Y1)は、図2に示す粘着性積層体1c、1dのように、熱膨張性粒子を含む熱膨張性基材層(Y1-1)を有することが好ましい。
 なお、基材(Y1)は、図2(a)に示す粘着性積層体1cのように、熱膨張性粒子を含む熱膨張性基材層(Y1-1)のみを有する単層構成であってもよい。また、基材(Y1)は、図2(b)に示す粘着性積層体1dのように、熱膨張性基材層(Y1-1)と、非熱膨張性基材層(Y1-2)とを有する複層構成であってもよい。
 また、基材(Y1)が、熱膨張性基材層(Y1-1)と、非熱膨張性基材層(Y1-2)とを有する複層構成である場合、熱膨張性基材層(Y1-1)は粘着シート(II)側に配置され、非熱膨張性基材層(Y1-2)は第2粘着剤層(X12)側に配置されることが好ましい。
In the second aspect of the present invention, the substrate (Y1) has a thermally expandable substrate layer (Y1-1) containing thermally expandable particles like the adhesive laminates 1c and 1d shown in FIG. Is preferred.
The base material (Y1) has a single-layer structure having only a heat-expandable base material layer (Y1-1) containing heat-expandable particles, like the adhesive laminate 1c shown in FIG. 2 (a). May be. Further, the base material (Y1) is composed of a heat-expandable base material layer (Y1-1) and a non-heat-expandable base material layer (Y1-2) as in the adhesive laminate 1d shown in FIG. 2 (b). A multilayer structure having
In the case where the substrate (Y1) has a multi-layer structure having a thermally expandable substrate layer (Y1-1) and a non-thermally expandable substrate layer (Y1-2), the thermally expandable substrate layer (Y1-1) is preferably disposed on the pressure-sensitive adhesive sheet (II) side, and the non-thermally expandable base material layer (Y1-2) is preferably disposed on the second pressure-sensitive adhesive layer (X12) side.
 図2(a)に示す粘着性積層体1cは、分離用加熱処理によって、基材(Y1)を構成する熱膨張性基材層(Y1-1)中の熱膨張性粒子が膨張し、基材(Y1)の第1粘着剤層(X11)側の表面に凹凸が生じる。そして、基材(Y1)の表面に生じた凹凸によって第1粘着剤層(X11)も押し上げられ、第1粘着剤層(X11)の粘着シート(II)側の表面にも凹凸が形成される。これにより、第1粘着剤層(X11)と粘着シート(II)の基材(Y2)との接触面積が減少する。
 一方で、第2粘着剤層(X12)には、支持体が貼付されるため、基材(Y1)の第2粘着剤層(X12)側の表面には凹凸が形成され難い。そのため、基材(Y1)の第1粘着層(X11)側の表面に効率的に凹凸が形成されて、第1粘着層(X11)の粘着シート(II)側の表面に効率的に凹凸が形成される。
 その結果、粘着性積層体1cは、粘着シート(I)の第1粘着剤層(X11)と粘着シート(II)の基材(Y2)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、粘着性積層体1cが有する第2粘着剤層(X12)を、支持体に対する粘着力が高くなるような粘着剤組成物から形成することで、界面Pでより容易に分離可能となるように設計することも可能である。
In the adhesive laminate 1c shown in FIG. 2 (a), the heat-expandable particles in the heat-expandable base material layer (Y1-1) constituting the base material (Y1) are expanded by the heat treatment for separation. Unevenness occurs on the surface of the material (Y1) on the first pressure-sensitive adhesive layer (X11) side. And the 1st adhesive layer (X11) is also pushed up by the unevenness which arose on the surface of substrate (Y1), and the unevenness is formed also in the surface at the side of adhesive sheet (II) of the 1st adhesive layer (X11). . Thereby, the contact area of the 1st adhesive layer (X11) and the base material (Y2) of adhesive sheet (II) reduces.
On the other hand, since a support is stuck to the second pressure-sensitive adhesive layer (X12), it is difficult for irregularities to be formed on the surface of the base material (Y1) on the second pressure-sensitive adhesive layer (X12) side. Therefore, unevenness is efficiently formed on the surface of the base material (Y1) on the first adhesive layer (X11) side, and the unevenness is efficiently formed on the surface of the first adhesive layer (X11) on the adhesive sheet (II) side. It is formed.
As a result, the pressure-sensitive adhesive laminate 1c can be easily collected with a slight force at the interface P between the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II). Can be separated.
The second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive laminate 1c is formed from a pressure-sensitive adhesive composition that increases the pressure-sensitive adhesive force to the support so that it can be more easily separated at the interface P. It is also possible to design.
 また、図2(b)に示す粘着性積層体1dは、分離用加熱処理によって、基材(Y1)を構成する熱膨張性基材層(Y1-1)に含まれる熱膨張性粒子が膨張し、基材(Y1)の第1粘着剤層(X11)側の表面に凹凸が生じる。そして、基材(Y1)の表面に生じた凹凸によって第1粘着剤層(X11)も押し上げられ、第1粘着剤層(X11)の粘着シート(II)側の表面にも凹凸が形成される。これにより、第1粘着剤層(X11)と粘着シート(II)の基材(Y2)との接触面積が減少する。
 一方で、基材(Y1)を構成する非熱膨張性基材層(Y1-2)は、加熱処理による膨張の程度が小さいため、基材(Y1)の第2粘着剤層(X12)側の表面には凹凸が形成され難い。これにより、基材(Y1)の第1粘着剤層(X11)側の表面に凹凸を効率的に形成することができる。
 その結果、粘着性積層体1dは、粘着シート(I)の基材(Y1)と粘着シート(II)の基材(Y2)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、粘着性積層体1cの場合と同様に、粘着性積層体1dが有する第2粘着剤層(X12)を、支持体に対する粘着力が高くなるような粘着剤組成物から形成することで、界面Pで、より容易に分離可能となるように設計することも可能である。
In addition, in the adhesive laminate 1d shown in FIG. 2B, the thermally expandable particles contained in the thermally expandable substrate layer (Y1-1) constituting the substrate (Y1) are expanded by the heat treatment for separation. And an unevenness | corrugation arises in the surface at the side of the 1st adhesive layer (X11) of a base material (Y1). And the 1st adhesive layer (X11) is also pushed up by the unevenness which arose on the surface of substrate (Y1), and the unevenness is formed also in the surface at the side of adhesive sheet (II) of the 1st adhesive layer (X11). . Thereby, the contact area of the 1st adhesive layer (X11) and the base material (Y2) of adhesive sheet (II) reduces.
On the other hand, the non-thermally expandable base material layer (Y1-2) constituting the base material (Y1) has a small degree of expansion due to the heat treatment, and therefore the second pressure-sensitive adhesive layer (X12) side of the base material (Y1). It is difficult for irregularities to be formed on the surface. Thereby, an unevenness | corrugation can be efficiently formed in the surface at the side of the 1st adhesive layer (X11) of a base material (Y1).
As a result, the adhesive laminate 1d can be easily separated by a slight force at the interface P between the base material (Y1) of the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II). It becomes.
As in the case of the pressure-sensitive adhesive laminate 1c, by forming the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive laminate 1d from a pressure-sensitive adhesive composition that increases the adhesive strength to the support, It is also possible to design so as to be more easily separable at the interface P.
 ここで、本発明の第二態様においても、界面Pでよりわずかな力で一括して容易に分離可能な粘着性積層体とする観点から、粘着性積層体1c、1dは、粘着シート(I)が有する基材(Y1)の熱膨張性基材層(Y1-1)と、第1粘着剤層(X11)とが直接積層した構成であることが好ましい。この場合、更に、第1粘着剤層(X11)と樹脂膜形成用シート(II)の基材(Y2)とが直接積層した構成であることがより好ましい。 Here, also in the second aspect of the present invention, the adhesive laminates 1c and 1d are adhesive sheets (I) from the viewpoint of forming an adhesive laminate that can be easily separated at a slight force at the interface P. It is preferable that the thermally expandable base material layer (Y1-1) of the base material (Y1) and the first pressure-sensitive adhesive layer (X11) are directly laminated. In this case, it is more preferable that the first pressure-sensitive adhesive layer (X11) and the base material (Y2) of the resin film-forming sheet (II) are directly laminated.
<第三態様の粘着性積層体>
 本発明の製造方法に用いる第一態様の粘着性積層体1a、1b、第二態様の粘着性積層体1c、1dは、いずれも、基材(Y1)を構成する層の一つとして、熱膨張性粒子を含む層が含まれるものである。
 一方で、本発明の製造方法に用いる第三態様の粘着性積層体として、粘着シート(I)の基材(Y1)の界面P側の表面に、前記熱膨張性粒子を含む熱膨張性粘着剤層を設け、基材(Y1)の他方の表面に、非熱膨張性粘着剤層を設けた構成であってもよい。
 このような態様としては、例えば図3に示す粘着性積層体2のように、粘着シート(I)が、第1粘着剤層(X11)及び第2粘着剤層(X12)により基材(Y1)が挟持された構成を有し、第1粘着剤層(X11)が、熱膨張性粒子を含む熱膨張性粘着剤層であり、第2粘着剤層(X12)が、非熱膨張性粘着剤層であり、粘着シート(I)の第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)とが直接積層した構成を有するものが挙げられる。
 なお、粘着性積層体2のような上記構成において、第2粘着剤層(X12)の表面は、支持体と貼付される面である。
 また、粘着性積層体2のような上記構成において、基材(Y1)は、非熱膨張性基材であることが好ましい。
<Adhesive laminate of the third aspect>
The adhesive laminates 1a and 1b of the first embodiment and the adhesive laminates 1c and 1d of the second embodiment used in the production method of the present invention are all heated as one of the layers constituting the substrate (Y1). A layer containing expandable particles is included.
On the other hand, as the adhesive laminate of the third aspect used in the production method of the present invention, the thermally expandable adhesive containing the thermally expandable particles on the surface on the interface P side of the base material (Y1) of the adhesive sheet (I). The structure which provided the agent layer and provided the non-heat-expandable adhesive layer in the other surface of a base material (Y1) may be sufficient.
As such an embodiment, for example, like the adhesive laminate 2 shown in FIG. 3, the adhesive sheet (I) is made of a base material (Y1) by the first adhesive layer (X11) and the second adhesive layer (X12). ) Are sandwiched, the first pressure-sensitive adhesive layer (X11) is a heat-expandable pressure-sensitive adhesive layer containing heat-expandable particles, and the second pressure-sensitive adhesive layer (X12) is a non-heat-expandable pressure-sensitive adhesive layer. Examples of the adhesive layer include a layer in which the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated.
In addition, in the said structure like the adhesive laminated body 2, the surface of a 2nd adhesive layer (X12) is a surface stuck with a support body.
Moreover, in the said structure like the adhesive laminated body 2, it is preferable that a base material (Y1) is a non-thermally expansible base material.
 図3に示す粘着性積層体2においては、分離用加熱処理によって、第1粘着剤層(X11)である熱膨張性粘着剤層の表面に凹凸が生じ、第1粘着剤層(X11)と粘着シート(II)の基材(Y2)との接触面積が減少する。
 一方で、第1粘着剤層(X11)の基材(Y1)側の表面は、非熱膨張性基材である基材(Y1)が積層しているため、凹凸は生じ難い。そのため、第1粘着剤層(X11)の、粘着シート(II)側の表面に効率的に凹凸が形成される。
 その結果、粘着性積層体2は、粘着シート(I)の第1粘着剤層(X11)と粘着シート(II)の基材(Y2)との界面Pで、わずかな力で一括して容易に分離可能となる。
In the pressure-sensitive adhesive laminate 2 shown in FIG. 3, the surface of the thermally expandable pressure-sensitive adhesive layer that is the first pressure-sensitive adhesive layer (X11) is uneven by the heat treatment for separation, and the first pressure-sensitive adhesive layer (X11) and The contact area between the adhesive sheet (II) and the base material (Y2) is reduced.
On the other hand, the surface of the first pressure-sensitive adhesive layer (X11) on the base material (Y1) side is not easily uneven because the base material (Y1) that is a non-thermally expandable base material is laminated. Therefore, unevenness is efficiently formed on the surface of the first pressure-sensitive adhesive layer (X11) on the pressure-sensitive adhesive sheet (II) side.
As a result, the pressure-sensitive adhesive laminate 2 can be easily collected with a slight force at the interface P between the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II). Can be separated.
<剥離材を有する粘着性積層体の構成>
 本発明の製造方法に用いる一態様の粘着性積層体において、支持体を貼付する粘着剤層(X1)の表面及び加工対象物を貼着する粘着剤層(X2)の表面の一方又は双方に、さらに剥離材を積層した構成としてもよい。
 また、例えば図1(a)、(b)に示す粘着性積層体1a、1bにおいて、粘着剤層(X1)及び粘着剤層(X2)の一方の粘着表面に、両面に剥離処理が施された剥離材が積層したものを、ロール状に巻いた構成としてもよい。図2(a)、(b)に示す粘着性積層体1c、1d、図3に示す粘着性積層体2についても、同様にロール状に巻いた構成としてもよい。
<Configuration of adhesive laminate having release material>
In one embodiment of the pressure-sensitive adhesive laminate used in the production method of the present invention, one or both of the surface of the pressure-sensitive adhesive layer (X1) to which the support is stuck and the surface of the pressure-sensitive adhesive layer (X2) to which the workpiece is stuck are attached. Further, a configuration in which a release material is further laminated may be employed.
For example, in the adhesive laminates 1a and 1b shown in FIGS. 1 (a) and 1 (b), one adhesive surface of the adhesive layer (X1) and the adhesive layer (X2) is subjected to a peeling treatment on both sides. It is good also as a structure which wound what the release material laminated | stacked on the roll shape. The adhesive laminates 1c and 1d shown in FIGS. 2 (a) and 2 (b) and the adhesive laminate 2 shown in FIG. 3 may be similarly rolled.
[粘着性積層体の各種物性]
 本発明の製造方法に用いる一態様の粘着性積層体は、熱膨張性粒子の膨張開始温度(t)以上の温度での加熱処理によって、粘着シート(I)と、粘着シート(II)の基材(Y2)との界面Pで、わずかな力で一括して容易に分離可能となる。
 ここで、本発明の一態様の粘着性積層体において、熱膨張性粒子の膨張開始温度(t)以上の温度での加熱処理によって、界面Pで分離する際の剥離力(F)としては、通常0~2000mN/25mm、好ましくは0~1000mN/25mm、より好ましくは0~150mN/25mm、更に好ましくは0~100mN/25mm、より更に好ましくは0~50mN/25mmである。
 なお、剥離力(F)が0mN/25mmである場合には、実施例に記載の方法で剥離力を測定しようとしても、剥離力が小さ過ぎるために測定不可となる場合も含まれる。
[Various physical properties of adhesive laminates]
One embodiment of the pressure-sensitive adhesive laminate used in the production method of the present invention is based on the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (II) by heat treatment at a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles. At the interface P with the material (Y2), separation can be easily performed at a time with a slight force.
Here, in the adhesive laminate of one embodiment of the present invention, the peeling force (F 1 ) when separating at the interface P by heat treatment at a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles is as follows. Usually, 0 to 2000 mN / 25 mm, preferably 0 to 1000 mN / 25 mm, more preferably 0 to 150 mN / 25 mm, still more preferably 0 to 100 mN / 25 mm, and still more preferably 0 to 50 mN / 25 mm.
The release force (F 1) is in the case of 0 mN / 25 mm, even trying to measure the peel strength by the method described in Example, includes the case where the measurement impossible because peel strength is too small.
 また、加熱処理前において、加工対象物を十分に固定して、加工作業に悪影響を及ぼさないようにする観点から、粘着シート(I)と粘着シート(II)の基材(Y2)との層間密着性は高いことが好ましい。
 上記観点から、本発明の製造方法に用いる一態様の粘着性積層体において、加熱処理を行う前における、界面Pで分離する際の剥離力(F)としては、好ましくは100mN/25mm以上、より好ましくは300mN/25mm以上、更に好ましくは500mN/25mm以上であり、また、好ましくは50000mN/25mm以下である。
In addition, the layer between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) from the viewpoint of sufficiently fixing the object to be processed and not adversely affecting the processing work before the heat treatment. It is preferable that the adhesiveness is high.
From the above viewpoint, in the adhesive laminate of one aspect used in the production method of the present invention, the peeling force (F 0 ) when separating at the interface P before performing the heat treatment is preferably 100 mN / 25 mm or more, More preferably, it is 300 mN / 25 mm or more, More preferably, it is 500 mN / 25 mm or more, Preferably it is 50000 mN / 25 mm or less.
 本発明の製造方法に用いる一態様の粘着性積層体において、剥離力(F)は剥離力(F)よりも大きい。具体的には、剥離力(F)と剥離力(F)との比〔(F)/(F)〕は、好ましくは0~0.9、より好ましくは0~0.8、更に好ましくは0~0.5、より更に好ましくは0~0.2である。 In the adhesive laminate of one embodiment used in the production method of the present invention, the peel force (F 0 ) is greater than the peel force (F 1 ). Specifically, the ratio [(F 1 ) / (F 0 )] between the peel force (F 1 ) and the peel force (F 0 ) is preferably 0 to 0.9, more preferably 0 to 0.8. More preferably, it is 0 to 0.5, and still more preferably 0 to 0.2.
 なお、剥離力(F)を測定する際の温度条件としては、膨張開始温度(t)以上であって、熱膨張性粒子が膨張する温度であればよい。
 また、剥離力(F)を測定する際の温度条件としては、膨張開始温度(t)未満であればよいが、基本的には、室温(23℃)である。
 ただし、剥離力(F)及び剥離力(F)のより具体的な測定条件及び測定方法は、実施例に記載の方法に基づく。
As the temperature conditions used for measuring the peel force (F 1), there is expansion starting temperature (t) above, thermally expandable particles may be any temperature at which expansion.
As the temperature conditions used for measuring the peel force (F 0), but may be less than the expansion start temperature (t), is basically a room temperature (23 ° C.).
However, more specific measurement conditions and measurement methods for the peel force (F 1 ) and the peel force (F 0 ) are based on the methods described in the examples.
 本発明の製造方法に用いる一態様の粘着性積層体において、室温(23℃)における、粘着シート(I)が有する粘着剤層(X1)(第1粘着剤層(X11)及び第2粘着剤層(X12))の粘着力、及び、粘着シート(II)が有する粘着剤層(X2)の粘着力としては、それぞれ独立に、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、更に好ましくは0.4~6.0N/25mm、より更に好ましくは0.5~4.0N/25mmである。
 粘着シート(I)が第1粘着剤層(X11)及び第2粘着剤層(X12)を有する場合、第1粘着剤層(X11)及び第2粘着剤層(X12)の粘着力は、それぞれ上記範囲であることが好ましいが、支持体との密着性を向上させ、界面Pで一括してより容易に分離可能とする観点から、支持体と貼付される第2粘着剤層(X12)の粘着力が、第1粘着剤層(X11)の粘着力よりも高いことがより好ましい。
In the pressure-sensitive adhesive laminate of one embodiment used in the production method of the present invention, the pressure-sensitive adhesive layer (X1) (first pressure-sensitive adhesive layer (X11) and second pressure-sensitive adhesive) of the pressure-sensitive adhesive sheet (I) at room temperature (23 ° C.) The pressure-sensitive adhesive strength of the layer (X12) and the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) are each independently preferably 0.1 to 10.0 N / 25 mm, more preferably 0. The range is from 0.2 to 8.0 N / 25 mm, more preferably from 0.4 to 6.0 N / 25 mm, still more preferably from 0.5 to 4.0 N / 25 mm.
When the pressure-sensitive adhesive sheet (I) has the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12), the adhesive strengths of the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12) are respectively The above-mentioned range is preferable, but from the viewpoint of improving the adhesion with the support and enabling easy separation at the interface P all at once, the second pressure-sensitive adhesive layer (X12) to be attached to the support is used. More preferably, the adhesive strength is higher than the adhesive strength of the first adhesive layer (X11).
 粘着シート(I)が有する基材(Y1)及び粘着シート(II)が有する基材(Y2)は、非粘着性の基材である。
 本発明において、非粘着性の基材か否かの判断は、対象となる基材の表面に対して、JIS Z0237:1991に準拠して測定したプローブタック値が50mN/5mmφ未満であれば、当該基材を「非粘着性の基材」と判断する。
 本発明の一態様で用いる粘着シート(I)が有する基材(Y1)及び粘着シート(II)が有する基材(Y2)の表面におけるプローブタック値は、それぞれ独立に、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、熱膨張性基材の表面におけるプローブタック値の具体的な測定方法は、実施例に記載の方法による。
The base material (Y1) included in the pressure-sensitive adhesive sheet (I) and the base material (Y2) included in the pressure-sensitive adhesive sheet (II) are non-adhesive base materials.
In the present invention, whether or not the non-adhesive substrate is determined if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mmφ with respect to the surface of the target substrate. The said base material is judged as a "non-adhesive base material".
The probe tack values on the surface of the base material (Y1) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) used in one embodiment of the present invention are each independently usually less than 50 mN / 5 mmφ. However, it is preferably less than 30 mN / 5 mmφ, more preferably less than 10 mN / 5 mmφ, and even more preferably less than 5 mN / 5 mmφ.
In addition, in this specification, the specific measuring method of the probe tack value on the surface of a thermally expansible base material is based on the method as described in an Example.
 以下、本発明の粘着性積層体を構成する各層について説明する。 Hereinafter, each layer constituting the adhesive laminate of the present invention will be described.
[粘着シート(I)の構成]
 本発明の製造方法に用いる粘着性積層体が有する粘着シート(I)は、基材(Y1)及び粘着剤層(X1)を有し、分離用加熱処理によって、粘着シート(II)の基材(Y2)との界面で分離できるように、いずれかの層に熱膨張性粒子を含む、熱膨張性の粘着シートである。
 本発明に一態様において、熱膨張性粒子の熱膨張開始温度(t)は、好ましくは60~270℃である。
[Configuration of adhesive sheet (I)]
The pressure-sensitive adhesive sheet (I) of the pressure-sensitive adhesive laminate used in the production method of the present invention has a base material (Y1) and a pressure-sensitive adhesive layer (X1), and the base material of the pressure-sensitive adhesive sheet (II) by heat treatment for separation. It is a heat-expandable pressure-sensitive adhesive sheet containing heat-expandable particles in any layer so that it can be separated at the interface with (Y2).
In one embodiment of the present invention, the thermal expansion start temperature (t) of the thermally expandable particles is preferably 60 to 270 ° C.
 本発明の一態様で用いる粘着シート(I)としては、以下の態様のものが好ましい。
・第1態様の粘着シート(I):基材(Y1)として、熱膨張性粒子を含む熱膨張性基材層(Y1-1)を有する粘着シート(I)。
・第2態様の粘着シート(I):基材(Y1)の両面側に、熱膨張性粒子を含む熱膨張性粘着剤層である第1粘着剤層(X11)と、非熱膨張性粘着剤層である第2粘着剤層(X12)を有する粘着シート(I)。
・基材(Y1)が非熱膨張性基材である、粘着シート(I)。
 以下、本発明の一態様で用いる、第一態様及び第二態様の粘着シート(I)について説明する。
As the pressure-sensitive adhesive sheet (I) used in one aspect of the present invention, the following aspects are preferred.
-Pressure-sensitive adhesive sheet (I) of the first aspect: Pressure-sensitive adhesive sheet (I) having a heat-expandable base material layer (Y1-1) containing heat-expandable particles as the base material (Y1).
-Adhesive sheet (I) of 2nd aspect: 1st adhesive layer (X11) which is a thermally expansible adhesive layer containing a thermally expansible particle on both surfaces of a base material (Y1), and non-thermally expandable adhesive Adhesive sheet (I) which has the 2nd adhesive layer (X12) which is an agent layer.
-Adhesive sheet (I) whose base material (Y1) is a non-thermally expandable base material.
Hereinafter, the pressure-sensitive adhesive sheet (I) of the first embodiment and the second embodiment used in one embodiment of the present invention will be described.
<第一態様の粘着シート(I)>
 第一態様の粘着シート(I)としては、図1~2に示すように、基材(Y1)が、熱膨張性粒子を含む熱膨張性基材層(Y1-1)を有するものが挙げられる。
<Adhesive sheet (I) of the first aspect>
As the pressure-sensitive adhesive sheet (I) of the first embodiment, as shown in FIGS. 1 and 2, the substrate (Y1) has a thermally expandable substrate layer (Y1-1) containing thermally expandable particles. It is done.
 第一態様の粘着シート(I)において、粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pでわずかな力で一括して容易に分離可能とする観点から、粘着剤層(X1)は、非熱膨張性粘着剤層であることが好ましい。
 具体的には、図1に示す粘着性積層体1a、1bが有する粘着シート(I)においては、粘着剤層(X1)が、非熱膨張性粘着剤層であることが好ましい。また、図2に示す粘着性積層体1c、1dが有する粘着シート(I)においては、第1粘着剤層(X11)及び第2粘着剤層(X12)のいずれもが、非熱膨張性粘着剤層であることが好ましい。
In the pressure-sensitive adhesive sheet (I) of the first embodiment, the pressure-sensitive adhesive sheet (I) is adhesive from the viewpoint that it can be easily separated with a slight force at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II). The agent layer (X1) is preferably a non-thermally expandable pressure-sensitive adhesive layer.
Specifically, in the pressure-sensitive adhesive sheet (I) of the pressure-sensitive adhesive laminates 1a and 1b shown in FIG. 1, the pressure-sensitive adhesive layer (X1) is preferably a non-thermally expandable pressure-sensitive adhesive layer. In the pressure-sensitive adhesive sheet (I) of the pressure-sensitive adhesive laminates 1c and 1d shown in FIG. 2, both the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12) are non-thermally expandable pressure-sensitive adhesives. An agent layer is preferred.
 第一態様の粘着シート(I)の分離用加熱処理前の基材(Y1)の厚さは、好ましくは10~1000μm、より好ましくは20~700μm、更に好ましくは25~500μm、より更に好ましくは30~300μmである。 The thickness of the base material (Y1) before the heat treatment for separation of the pressure-sensitive adhesive sheet (I) of the first aspect is preferably 10 to 1000 μm, more preferably 20 to 700 μm, still more preferably 25 to 500 μm, and still more preferably. 30 to 300 μm.
 第一態様の粘着シート(I)の分離用加熱処理前の粘着剤層(X1)の厚さは、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the pressure-sensitive adhesive layer (X1) before separation heat treatment of the pressure-sensitive adhesive sheet (I) of the first aspect is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably. Is 5 to 30 μm.
 なお、本明細書において、例えば、図2に示すように、粘着シート(I)が、複数の粘着剤層を有する場合、上記の「粘着剤層(X1)の厚さ」は、それぞれの粘着剤層の厚さ(図2では、粘着剤層(X11)及び(X12)のそれぞれの厚さ)を意味する。
 また、本明細書において、粘着性積層体を構成する各層の厚さは、実施例に記載の方法により測定された値を意味する。
In the present specification, for example, as shown in FIG. 2, when the pressure-sensitive adhesive sheet (I) has a plurality of pressure-sensitive adhesive layers, the above “thickness of the pressure-sensitive adhesive layer (X1)” It means the thickness of the agent layer (in FIG. 2, the thickness of each of the adhesive layers (X11) and (X12)).
Moreover, in this specification, the thickness of each layer which comprises an adhesive laminated body means the value measured by the method as described in an Example.
 第一態様の粘着シート(I)において、分離用加熱処理前における、熱膨張性基材層(Y1-1)と粘着剤層(X1)との厚さ比〔(Y1-1)/(X1)〕としては、好ましくは1000以下、より好ましくは200以下、更に好ましくは60以下、より更に好ましくは30以下である。
 当該厚さ比が1000以下であれば、加熱処理によって、粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pでわずかな力で一括して容易に分離可能となる粘着性積層体とすることができる。
 なお、当該厚さ比は、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは1.0以上、より更に好ましくは5.0以上である。
In the pressure-sensitive adhesive sheet (I) of the first aspect, the thickness ratio [(Y1-1) / (X1) between the heat-expandable base material layer (Y1-1) and the pressure-sensitive adhesive layer (X1) before the heat treatment for separation. ]] Is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and still more preferably 30 or less.
If the thickness ratio is 1000 or less, it can be easily separated by a heat treatment at the interface P between the pressure sensitive adhesive sheet (I) and the base material (Y2) of the pressure sensitive adhesive sheet (II). It can be set as an adhesive laminated body.
The thickness ratio is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and still more preferably 5.0 or more.
 また、第一態様の粘着シート(I)では、基材(Y1)が、図1(a)に示すような、熱膨張性基材層(Y1-1)のみから構成されたものであってもよく、図1(b)に示すような、粘着シート(II)側に熱膨張性基材層(Y1-1)を有し、粘着剤層(X1)側に非熱膨張性基材層(Y1-2)を有するものであってもよい。 Further, in the pressure-sensitive adhesive sheet (I) of the first aspect, the base material (Y1) is composed only of the thermally expandable base material layer (Y1-1) as shown in FIG. 1 (a). As shown in FIG. 1B, it has a heat-expandable base material layer (Y1-1) on the pressure-sensitive adhesive sheet (II) side, and a non-heat-expandable base material layer on the pressure-sensitive adhesive layer (X1) side. It may have (Y1-2).
 第一態様の粘着シート(I)において、分離用加熱処理前における、熱膨張性基材層(Y1-1)と非熱膨張性基材層(Y1-2)との厚さ比〔(Y1-1)/(Y1-2)〕としては、好ましくは0.02~200、より好ましくは0.03~150、更に好ましくは0.05~100である。 In the pressure-sensitive adhesive sheet (I) of the first embodiment, the thickness ratio between the thermally expandable substrate layer (Y1-1) and the non-thermally expandable substrate layer (Y1-2) [(Y1 -1) / (Y1-2)] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
<第二態様の粘着シート(I)>
 第二態様の粘着シート(I)としては、図3に示すように、基材(Y1)の両面側に、それぞれ、熱膨張性粒子を含む熱膨張性粘着剤層である第1粘着剤層(X11)と、非熱膨張性粘着剤層である第2粘着剤層(X12)を有するものが挙げられる。
 なお、第二態様の粘着シート(I)は、熱膨張性粘着剤層である第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)とが直接接触する。
 なお、第二態様の粘着シート(I)において、基材(Y1)は、非熱膨張性基材層であることが好ましい。
<Adhesive sheet (I) of the second aspect>
As shown in FIG. 3, the pressure-sensitive adhesive sheet (I) of the second embodiment is a first pressure-sensitive adhesive layer that is a heat-expandable pressure-sensitive adhesive layer containing heat-expandable particles on both sides of the base material (Y1). (X11) and what has the 2nd adhesive layer (X12) which is a non-thermally expandable adhesive layer are mentioned.
In addition, as for the adhesive sheet (I) of a 2nd aspect, the 1st adhesive layer (X11) which is a thermally expansible adhesive layer, and the base material (Y2) of adhesive sheet (II) contact directly.
In addition, in the adhesive sheet (I) of a 2nd aspect, it is preferable that a base material (Y1) is a non-thermally expandable base material layer.
 第二態様の粘着シート(I)において、分離用加熱処理前における、熱膨張性粘着剤層である第1粘着剤層(X11)と、非熱膨張性粘着剤層である第2粘着剤層(X12)との厚さ比〔(X11)/(X12)〕としては、好ましくは0.1~80、より好ましくは0.3~50、更に好ましくは0.5~15である。 In the pressure-sensitive adhesive sheet (I) of the second aspect, the first pressure-sensitive adhesive layer (X11) which is a thermally expandable pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer which is a non-thermally expandable pressure-sensitive adhesive layer before the heat treatment for separation. The thickness ratio [(X11) / (X12)] to (X12) is preferably 0.1 to 80, more preferably 0.3 to 50, and still more preferably 0.5 to 15.
 また、第二態様の粘着シート(I)において、分離用加熱処理前における、熱膨張性粘着剤層である第1粘着剤層(X11)と、基材(Y1)との厚さ比〔(X11)/(Y1)〕としては、好ましくは0.05~20、より好ましくは0.1~10、更に好ましくは0.2~3である。 Further, in the pressure-sensitive adhesive sheet (I) of the second aspect, the thickness ratio between the first pressure-sensitive adhesive layer (X11) which is a thermally expandable pressure-sensitive adhesive layer and the base material (Y1) before the heat treatment for separation [( X11) / (Y1)] is preferably 0.05 to 20, more preferably 0.1 to 10, and still more preferably 0.2 to 3.
 以下、粘着シート(I)を構成するいずれかの層に含まれる熱膨張性粒子について説明した上で、基材(Y1)を構成する熱膨張性基材層(Y1-1)、非熱膨張性基材層(Y1-2)、及び粘着剤層(X1)に関して詳述する。 Hereinafter, after explaining the thermally expandable particles contained in any of the layers constituting the pressure-sensitive adhesive sheet (I), the thermally expandable substrate layer (Y1-1) constituting the substrate (Y1), non-thermally expanded The adhesive base layer (Y1-2) and the pressure-sensitive adhesive layer (X1) will be described in detail.
<熱膨張性粒子>
 本発明で用いる熱膨張性粒子は、加熱により膨張する粒子であればよいが、膨張開始温度(t)が60~270℃に調整された粒子であることが好ましい。膨張開始温度(t)は、粘着性積層体の用途に応じて適宜選択される。
 例えば、本発明の製造方法において、工程(1)及び工程(2)で粘着性積層体が高温環境下に晒されることがない場合(例えば、半導体ウエハ内部に分割起点としての改質領域を形成する加工を行う場合等)、熱膨張性粒子の膨張開始温度は、上記温度範囲内でできるだけ低いことが好ましい。これにより、粘着シート(I)と粘着シート(1I)とを分離する際に要する加熱エネルギーを小さなものとして、切削物及び/又は研削物の製造コストを低減し得る。また、加工対象物に過剰な熱履歴を与えることなく、粘着シート(I)と粘着シート(1I)とを分離することができる。
 本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
<Thermal expandable particles>
The thermally expandable particles used in the present invention may be particles that expand by heating, but are preferably particles whose expansion start temperature (t) is adjusted to 60 to 270 ° C. Expansion start temperature (t) is suitably selected according to the use of an adhesive layered product.
For example, in the manufacturing method of the present invention, when the adhesive laminate is not exposed to a high temperature environment in the steps (1) and (2) (for example, a modified region is formed as a division starting point in the semiconductor wafer) The expansion start temperature of the thermally expandable particles is preferably as low as possible within the above temperature range. Thereby, the heating energy required when isolate | separating an adhesive sheet (I) and an adhesive sheet (1I) can be made into a small thing, and the manufacturing cost of a cut material and / or a ground material can be reduced. Further, the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (1I) can be separated without giving an excessive heat history to the workpiece.
In the present specification, the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
(熱膨張性粒子の膨張開始温度(t)の測定法)
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして。加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
(Measurement method of expansion start temperature (t) of thermally expandable particles)
To an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter 5.6 mm, thickness 0. 1 mm) is prepared.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured from the upper part of the aluminum lid while a force of 0.01 N is applied to the sample by a pressurizer. And then. With a force of 0.01 N applied by the pressurizer, heat from 20 ° C to 300 ° C at a heating rate of 10 ° C / min, measure the displacement of the pressurizer in the vertical direction, and start displacement in the positive direction Let temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
The thermally expandable particles are microencapsulated foaming agents composed of an outer shell composed of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature. Preferably there is.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソブタン、イソペンタン、イソヘキサン、イソヘプタン、イソオクタン、イソノナン、イソデカン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ネオペンタン、ドデカン、イソドデカン、シクロトリデカン、ヘキシルシクロヘキサン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、シクロトリデカン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等が挙げられる。
 これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane. , Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane, isotetradecane, isopentadecane, iso Hexadecane, 2,2,4,4,6,8,8-heptamethylnonane, isoheptadecane, isooctadecane, isonanodecane, , 6,10,14-tetramethylpentadecane, cyclotridecane, heptylcyclohexane, n-octylcyclohexane, cyclopentadecane, nonylcyclohexane, decylcyclohexane, pentadecylcyclohexane, hexadecylcyclohexane, heptadecylcyclohexane, octadecylcyclohexane, etc. .
These encapsulated components may be used alone or in combination of two or more.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、熱膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
The average particle diameter of the thermally expandable particles before expansion at 23 ° C. used in one embodiment of the present invention is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, still more preferably 10 to 50 μm.
The average particle diameter of the thermally expandable particles before expansion is the volume-median particle diameter (D 50 ), and is a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In the particle distribution of the heat-expandable particles before expansion measured by means of a particle diameter, the cumulative volume frequency calculated from the smaller particle diameter of the heat-expandable particles before expansion means a particle diameter corresponding to 50%.
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは20~100μm、更に好ましくは25~90μm、より更に好ましくは30~80μmである。
 なお、熱膨張性粒子の膨張前の90%粒子径(D90)とは、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒子径を意味する。
The 90% particle diameter (D 90 ) before expansion at 23 ° C. of the thermally expandable particles used in one embodiment of the present invention is preferably 10 to 150 μm, more preferably 20 to 100 μm, still more preferably 25 to 90 μm, More preferably, it is 30 to 80 μm.
In addition, 90% particle diameter ( D90 ) before expansion | swelling of a thermally expansible particle | grain is expansion | swelling measured using the laser diffraction type particle size distribution measuring apparatus (For example, the product name "Mastersizer 3000" by the Malvern company). In the particle distribution of the previous thermally expandable particles, the particle diameter corresponding to 90% of the cumulative volume frequency calculated from the smaller particle diameter of the thermally expandable particles before expansion is meant.
 本発明の一態様で用いる熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~100倍、より好ましくは2~80倍、更に好ましくは2.5~60倍、より更に好ましくは3~40倍である。 The maximum volume expansion coefficient when heated to a temperature equal to or higher than the expansion start temperature (t) of the thermally expandable particles used in one embodiment of the present invention is preferably 1.5 to 100 times, more preferably 2 to 80 times, Preferably it is 2.5 to 60 times, and more preferably 3 to 40 times.
<熱膨張性基材層(Y1-1)>
 本発明の一態様の粘着性積層体において、粘着シート(I)の基材(Y1)が、熱膨張性粒子を含む熱膨張性基材層(Y1-1)を有する場合、熱膨張性基材層(Y1-1)は、下記要件(1)を満たすものであることが好ましい。
・要件(1):熱膨張性粒子の膨張開始温度(t)における、熱膨張性基材層(Y1-1)の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
 なお、本明細書において、所定の温度における熱膨張性基材層(Y1-1)の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
<Thermal expansion base material layer (Y1-1)>
In the pressure-sensitive adhesive laminate of one embodiment of the present invention, when the base material (Y1) of the pressure-sensitive adhesive sheet (I) has a heat-expandable base material layer (Y1-1) containing heat-expandable particles, The material layer (Y1-1) preferably satisfies the following requirement (1).
Requirement (1): The storage elastic modulus E ′ (t) of the thermally expandable base material layer (Y1-1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 × 10 7 Pa or less. is there.
In the present specification, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) at a predetermined temperature means a value measured by the method described in the examples.
 上記要件(1)は、熱膨張性粒子が膨張する直前の熱膨張性基材層(Y1-1)の剛性を示す指標といえる。
 熱膨張性粒子の膨張前において、熱膨張性基材層(Y1-1)の貯蔵弾性率E’は昇温に伴い低下する。しかし、熱膨張性粒子の膨張開始温度(t)に到達する前後で、熱膨張性粒子が膨張し始めることで、熱膨張性基材層(Y1-1)の貯蔵弾性率E’の低下が抑制される。
 その一方で、粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pでわずかな力で容易に分離可能とするためには、膨張開始温度(t)以上の温度まで加熱することで、粘着シート(I)の基材(Y2)と積層している側の表面に、凹凸が形成され易くする必要がある。
 つまり、上記要件(1)を満たす熱膨張性基材層(Y1-1)は、膨張開始温度(t)で熱膨張性粒子が膨張して十分に大きくなり、粘着シート(II)の基材(Y2)と積層している側の粘着シート(I)の表面に、凹凸が形成され易い。
 その結果、粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pでわずかな力で一括して容易に分離可能となる粘着性積層体となり得る。
The requirement (1) can be said to be an index indicating the rigidity of the thermally expandable substrate layer (Y1-1) immediately before the thermally expandable particles expand.
Before the expansion of the thermally expandable particles, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) decreases as the temperature rises. However, since the thermally expandable particles start to expand before and after reaching the expansion start temperature (t) of the thermally expandable particles, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) is decreased. It is suppressed.
On the other hand, in order to enable easy separation with a slight force at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II), the temperature is higher than the expansion start temperature (t). It is necessary to make it easy to form unevenness on the surface of the pressure-sensitive adhesive sheet (I) on the side laminated with the base material (Y2) by heating.
That is, the thermally expandable substrate layer (Y1-1) satisfying the above requirement (1) becomes sufficiently large by expansion of the thermally expandable particles at the expansion start temperature (t), and the substrate of the pressure-sensitive adhesive sheet (II) Unevenness is easily formed on the surface of the pressure-sensitive adhesive sheet (I) on the side laminated with (Y2).
As a result, it can be an adhesive laminate that can be easily and collectively separated with a slight force at the interface P between the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II).
 本発明で用いる熱膨張性基材層(Y1-1)の要件(1)で規定する貯蔵弾性率E’(t)は、上記観点から、好ましくは9.0×10Pa以下、より好ましくは8.0×10Pa以下、更に好ましくは6.0×10Pa以下、より更に好ましくは4.0×10Pa以下である。
 また、膨張した熱膨張性粒子の流動を抑制し、粘着シート(II)の基材(Y2)と積層している側の粘着シート(I)の表面に形成される凹凸の形状維持性を向上させ、界面Pでわずかな力でより容易に分離可能とする観点から、熱膨張性基材層(Y1-1)の要件(1)で規定する貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
From the above viewpoint, the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable substrate layer (Y1-1) used in the present invention is preferably 9.0 × 10 6 Pa or less, more preferably Is 8.0 × 10 6 Pa or less, more preferably 6.0 × 10 6 Pa or less, and still more preferably 4.0 × 10 6 Pa or less.
Moreover, the flow of the expanded thermally expandable particles is suppressed, and the shape maintaining property of the unevenness formed on the surface of the pressure-sensitive adhesive sheet (I) on the side laminated with the base material (Y2) of the pressure-sensitive adhesive sheet (II) is improved. From the viewpoint of enabling easy separation at a slight force at the interface P, the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable base material layer (Y1-1) is preferably It is 1.0 × 10 3 Pa or more, more preferably 1.0 × 10 4 Pa or more, and further preferably 1.0 × 10 5 Pa or more.
 上記要件(1)を満たす熱膨張性基材層(Y1-1)とする観点から、熱膨張性基材層(Y1-1)中の熱膨張性粒子の含有量は、熱膨張性基材層(Y1-1)の全質量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。 From the viewpoint of making the heat-expandable base material layer (Y1-1) satisfying the above requirement (1), the content of the heat-expandable particles in the heat-expandable base material layer (Y1-1) Preferably, it is 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably 10 to 30% by mass, and still more preferably 15 to 30% by mass with respect to the total mass (100% by mass) of the layer (Y1-1). 25% by mass.
 なお、熱膨張性基材層(Y1-1)と積層する他の層との層間密着性を向上させる観点から、熱膨張性基材層(Y1-1)の表面に対して、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、及び紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
From the viewpoint of improving interlayer adhesion between the heat-expandable base material layer (Y1-1) and other layers to be laminated, the surface of the heat-expandable base material layer (Y1-1) is oxidized or You may perform surface treatment by an uneven | corrugated method etc., an easily bonding process, or a primer process.
Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment. Examples of the unevenness method include sand blast method and solvent treatment method. Etc.
 熱膨張性基材層(Y1-1)は、樹脂及び熱膨張性粒子を含む樹脂組成物(y)から形成することが好ましい。
 なお、樹脂組成物(y)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
The thermally expandable substrate layer (Y1-1) is preferably formed from a resin composition (y) containing a resin and thermally expandable particles.
In addition, you may contain the additive for base materials in the resin composition (y) in the range which does not impair the effect of this invention as needed.
Examples of the substrate additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
These base material additives may be used alone or in combination of two or more.
When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to about 100 parts by mass of the resin. 10 parts by mass.
 熱膨張性基材層(Y1-1)の形成材料である樹脂組成物(y)に含まれる熱膨張性粒子については、上述のとおりである。
 熱膨張性粒子の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。
The thermally expandable particles contained in the resin composition (y), which is a material for forming the thermally expandable base material layer (Y1-1), are as described above.
The content of the heat-expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10% with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). To 30% by mass, and more preferably 15 to 25% by mass.
 熱膨張性基材層(Y1-1)の形成材料である樹脂組成物(y)に含まれる樹脂としては、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y)から熱膨張性基材層(Y1-1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含む熱膨張性基材層(Y1-1)が非粘着性となればよい。
The resin contained in the resin composition (y) that is a material for forming the thermally expandable base material layer (Y1-1) may be a non-adhesive resin or an adhesive resin.
That is, even if the resin contained in the resin composition (y) is an adhesive resin, in the process of forming the thermally expandable substrate layer (Y1-1) from the resin composition (y), the adhesive resin The resin obtained by polymerization reaction with the polymerizable compound may be a non-adhesive resin, and the thermally expandable base material layer (Y1-1) containing the resin may be non-adhesive.
 樹脂組成物(y)に含まれる前記樹脂の質量平均分子量(Mw)としては、好ましくは1000~100万、より好ましくは1000~70万、更に好ましくは1000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
The mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000.
Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
 樹脂の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). %, More preferably 70 to 85% by mass.
 なお、上記要件(1)を満たす熱膨張性基材層(Y1-1)を形成する観点から、樹脂組成物(y)に含まれる前記樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含むことが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
From the viewpoint of forming the heat-expandable base material layer (Y1-1) that satisfies the above requirement (1), the resin contained in the resin composition (y) is selected from acrylic urethane resins and olefin resins. It is preferable that 1 or more types included are included.
Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
(アクリルウレタン系樹脂(U1))
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
(Acrylic urethane resin (U1))
Examples of the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
The urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols.
These polyols may be used independently and may use 2 or more types together.
The polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4'-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of ester type diols include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Hydrophthalic acid, Examples thereof include condensation polymers of one or more selected from dicarboxylic acids such as hexahydroisophthalic acid, hexahydroterephthalic acid, and methylhexahydrophthalic acid, and anhydrides thereof.
Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, Polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol and polyneo Examples thereof include pentyl terephthalate diol.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 Examples of the alkylene type diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Examples of the polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
These polyvalent isocyanates may be used alone or in combination of two or more.
These polyisocyanates may be a trimethylolpropane adduct type modified product, a burette type modified product reacted with water, or an isocyanurate type modified product containing an isocyanurate ring.
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。 Among these, the polyisocyanate used in one embodiment of the present invention is preferably diisocyanate, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Examples of the alicyclic diisocyanate include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane. Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
In one embodiment of the present invention, the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends. A urethane prepolymer is preferred.
As a method for introducing an ethylenically unsaturated group into both ends of the linear urethane prepolymer, an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
As a vinyl compound used as the side chain of acrylic urethane resin (U1), at least (meth) acrylic acid ester is included.
The (meth) acrylic acid ester is preferably one or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。 When alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are used in combination, the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。 The carbon number of the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。 Moreover, as hydroxyalkyl (meth) acrylate, the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce | transduce an ethylenically unsaturated group into the both ends of the above-mentioned linear urethane prepolymer is mentioned.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは単独で用いてもよく、2種以上を併用してもよい。
Examples of vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, α-methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide).
These may be used alone or in combination of two or more.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound. The amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)は、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを混合し、両者を重合することで得られる。
 当該重合においては、さらにラジカル開始剤を加えて行うことが好ましい。
The acrylic urethane-based resin (U1) used in one embodiment of the present invention is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester and polymerizing both.
The polymerization is preferably performed by adding a radical initiator.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in one embodiment of the present invention, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35 by mass ratio. / 65 to 55/45.
(オレフィン系樹脂)
 樹脂組成物(y)に含まれる樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
(Olefin resin)
The olefin resin suitable as the resin contained in the resin composition (y) is a polymer having at least a structural unit derived from an olefin monomer.
The olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like.
Among these, ethylene and propylene are preferable.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチル-1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレンービニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefinic resins, for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); ethylene -Vinyl alcohol copolymer (EVOH); ethylene-propylene Olefinic terpolymers such as-(5-ethylidene-2-norbornene); and the like.
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 In one embodiment of the present invention, the olefin resin may be a modified olefin resin further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、単独で用いてもよく、2種以上を併用してもよい。
For example, as an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification, a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride. Is mentioned.
Examples of the unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride. , Glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
In addition, unsaturated carboxylic acid or its anhydride may be used independently, and may use 2 or more types together.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
An acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification is a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin that is a main chain. A polymer is mentioned.
The number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
As said alkyl (meth) acrylate, the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by subjecting an olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl. Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
(アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂)
 本発明の一態様において、樹脂組成物(y)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
(Resin other than acrylic urethane resin and olefin resin)
In one embodiment of the present invention, the resin composition (y) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer Polycarbonate; Polyurethane; Polyetheretherketone; Polyethersulfone; Polyphenylenesulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Fluorine resin etc. are mentioned.
 ただし、上記要件(1)を満たす熱膨張性基材層(Y1-1)を形成する観点から、樹脂組成物(y)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合としては、樹脂組成物(y)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、更に好ましくは5質量部未満、より更に好ましくは1質量部未満である。
However, from the viewpoint of forming the thermally expandable substrate layer (Y1-1) that satisfies the above requirement (1), the content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin in the resin composition (y) is: Less is preferable.
The content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by mass, still more preferably less than 5 parts by mass, and even more preferably less than 1 part by mass.
(無溶剤型樹脂組成物(y1))
 本発明の一態様で用いる樹脂組成物(y)の一態様として、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の熱膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y1)が挙げられる。
 無溶剤型樹脂組成物(y1)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y1)から形成した塗膜に対して、エネルギー線を照射することで、上記要件(1)を満たす熱膨張性基材層(Y1-1)を形成し易い。
(Solvent-free resin composition (y1))
As one embodiment of the resin composition (y) used in one embodiment of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-described thermal expansibility A solvent-free resin composition (y1) that includes particles and does not contain a solvent is exemplified.
In the solventless resin composition (y1), no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
By irradiating the coating film formed from the solventless resin composition (y1) with energy rays, it is easy to form the thermally expandable base material layer (Y1-1) satisfying the requirement (1).
 なお、無溶剤型樹脂組成物(y1)に配合される熱膨張性粒子の種類や形状、配合量(含有量)については、上述のとおりである。 In addition, it is as above-mentioned about the kind and shape of a thermally expansible particle mix | blended with a solventless type resin composition (y1), and a compounding quantity (content).
 無溶剤型樹脂組成物(y1)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50000以下であるが、好ましくは1000~50000、より好ましくは2000~40000、更に好ましくは3000~35000、より更に好ましくは4000~30000である。 The mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
 また、前記オリゴマーとしては、上述の樹脂組成物(y)に含まれる樹脂のうち、質量平均分子量が50000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
Moreover, as said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight is 50000 or less among resin contained in the above-mentioned resin composition (y), but the above-mentioned urethane prepolymer (UP ) Is preferred.
As the oligomer, a modified olefin resin having an ethylenically unsaturated group can also be used.
 無溶剤型樹脂組成物(y1)中における、前記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y1)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably 50 to 100% with respect to the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、単独で用いてもよく、2種以上を併用してもよい。
Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Cycloaliphatic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam.
These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
 無溶剤型樹脂組成物(y1)中における、前記オリゴマーと、前記エネルギー線重合性モノマーとの含有量比[オリゴマー/エネルギー線重合性モノマー]は、質量比で、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 The content ratio [oligomer / energy ray polymerizable monomer] of the oligomer and the energy ray polymerizable monomer in the solventless resin composition (y1) is preferably 20/80 to 90 / in mass ratio. 10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
 本発明の一態様において、無溶剤型樹脂組成物(y1)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
In one embodiment of the present invention, it is preferable that the solventless resin composition (y1) is further blended with a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned.
These photoinitiators may be used independently and may use 2 or more types together.
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。 The blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. The amount is preferably 0.02 to 3 parts by mass.
<非熱膨張性基材層(Y1-2)>
 基材(Y1)を構成する非熱膨張性基材層(Y1-2)の形成材料としては、例えば、紙材、樹脂、金属等が挙げられ、本発明の一態様の粘着性積層体の用途に応じて適宜選択することができる。
<Non-thermally expandable substrate layer (Y1-2)>
Examples of the material for forming the non-thermally expandable base material layer (Y1-2) constituting the base material (Y1) include paper materials, resins, metals, and the like. It can select suitably according to a use.
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfate paper, glassine paper, and the like.
Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resin such as polyurethane and acrylic modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Tsu Motokei resin, and the like.
Examples of the metal include aluminum, tin, chromium, and titanium.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非熱膨張性基材層(Y1-2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたものや、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one kind or in combination of two or more kinds.
As the non-thermally expandable base material layer (Y1-2) using two or more kinds of forming materials in combination, a paper material laminated with a thermoplastic resin such as polyethylene, or a metal film on the surface of a resin film or sheet containing the resin Examples include those having a film formed.
As a method for forming the metal layer, for example, the above metal is deposited by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the above metal is attached using a general adhesive. And the like.
 なお、非熱膨張性基材層(Y1-2)と積層する他の層との層間密着性を向上させる観点から、非熱膨張性基材層(Y1-2)が樹脂を含む場合、非熱膨張性基材層(Y1-2)の表面に対しても、上述の熱膨張性基材層(Y1-1)と同様に、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。 From the viewpoint of improving interlayer adhesion between the non-thermally expandable substrate layer (Y1-2) and other layers to be laminated, when the non-thermally expandable substrate layer (Y1-2) contains a resin, Also on the surface of the heat-expandable base material layer (Y1-2), as in the case of the above-mentioned heat-expandable base material layer (Y1-1), surface treatment by an oxidation method or an unevenness method, easy adhesion treatment, Alternatively, primer treatment may be performed.
 また、非熱膨張性基材層(Y1-2)が樹脂を含む場合、当該樹脂と共に、樹脂組成物(y)にも含有し得る、上述の基材用添加剤を含有してもよい。 Further, when the non-thermally expandable base material layer (Y1-2) contains a resin, it may contain the above-mentioned base material additive that can be contained in the resin composition (y) together with the resin.
 非熱膨張性基材層(Y1-2)は、上述の方法に基づき判断される、非熱膨張性層である。
 そのため、上述の式から算出される非熱膨張性基材層(Y1-2)の体積変化率(%)としては、5%未満であるが、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
The non-thermally expandable base material layer (Y1-2) is a non-thermally expandable layer that is determined based on the above-described method.
Therefore, the volume change rate (%) of the non-thermally expandable substrate layer (Y1-2) calculated from the above formula is less than 5%, preferably less than 2%, more preferably less than 1%. More preferably, it is less than 0.1%, and still more preferably less than 0.01%.
 また、非熱膨張性基材層(Y1-2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよい。例えば、非熱膨張性基材層(Y1-2)に含まれる樹脂を選択することで、熱膨張性粒子が含まれていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非熱膨張性基材層(Y1-2)中の熱膨張性粒子の含有量は、少ないほど好ましい。
 具体的な熱膨張性粒子の含有量としては、非熱膨張性基材層(Y1-2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。一層好ましくは、非熱膨張性基材層(Y1-2)中に熱膨張性粒子が含まれないことである。
Further, the non-thermally expandable substrate layer (Y1-2) may contain thermally expandable particles as long as the volume change rate is in the above range. For example, by selecting a resin contained in the non-thermally expandable base material layer (Y1-2), the volume change rate can be adjusted to the above range even if the thermally expandable particles are included. .
However, the smaller the content of the heat-expandable particles in the non-heat-expandable base material layer (Y1-2), the better.
The specific content of the heat-expandable particles is usually less than 3% by weight, preferably less than 1% by weight, based on the total weight (100% by weight) of the non-heat-expandable base material layer (Y1-2). More preferably, it is less than 0.1 mass%, More preferably, it is less than 0.01 mass%, More preferably, it is less than 0.001 mass%. More preferably, the heat-expandable particles are not contained in the non-heat-expandable base material layer (Y1-2).
<粘着剤層(X1)>
 本発明の第一態様で用いる粘着シート(I)が有する粘着剤層(X1)は、粘着性樹脂を含む粘着剤組成物(x1)から形成することができる。
 なお、粘着剤組成物(x1)は、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 以下、粘着剤組成物(x1)に含まれる各成分について説明する。
 なお、粘着シート(I)が、第1粘着剤層(X11)及び第2粘着剤層(X12)を有する場合においても、第1粘着剤層(X11)及び第2粘着剤層(X12)も、以下に示す各成分を含有する粘着剤組成物(x1)から形成することができる。
<Adhesive layer (X1)>
The pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (I) used in the first aspect of the present invention can be formed from a pressure-sensitive adhesive composition (x1) containing a pressure-sensitive adhesive resin.
The pressure-sensitive adhesive composition (x1) may contain pressure-sensitive adhesive additives such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator as necessary.
Hereinafter, each component contained in the pressure-sensitive adhesive composition (x1) will be described.
Even when the pressure-sensitive adhesive sheet (I) has the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12), the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12) are also used. It can be formed from a pressure-sensitive adhesive composition (x1) containing the following components.
(粘着性樹脂)
 本発明の一態様で用いる粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であればよい。
 本発明の一態様で用いる粘着性樹脂の質量平均分子量(Mw)としては、粘着力の向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(Adhesive resin)
As the adhesive resin used in one embodiment of the present invention, any polymer may be used as long as the resin has adhesiveness and has a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and even more preferably 30,000, from the viewpoint of improving the adhesive strength. ~ 1 million.
 具体的な粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Specific examples of the adhesive resin include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins.
These adhesive resins may be used independently and may use 2 or more types together.
In addition, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
 本発明の一態様で用いる粘着性樹脂は、上記の粘着性樹脂の側鎖に重合性官能基を導入した、エネルギー線硬化型の粘着性樹脂であってもよい。
 当該重合性官能基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 また、エネルギー線としては、紫外線や電子線が挙げられるが、紫外線が好ましい。
The adhesive resin used in one embodiment of the present invention may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
Examples of the polymerizable functional group include a (meth) acryloyl group and a vinyl group.
Examples of energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
 本発明の一態様において、優れた粘着力を発現させる観点から、粘着性樹脂が、アクリル系樹脂を含むことが好ましい。
 なお、第1粘着剤層(X11)及び第2粘着剤層(X12)を有する粘着シート(I)を用いる場合、樹脂膜形成用シート(II)と接触している第1粘着剤層(X11)にアクリル系樹脂が含まれることで、第1粘着剤層の表面に凹凸を形成させ易くすることができる。
In one embodiment of the present invention, it is preferable that the adhesive resin contains an acrylic resin from the viewpoint of developing excellent adhesive force.
When the pressure-sensitive adhesive sheet (I) having the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12) is used, the first pressure-sensitive adhesive layer (X11) in contact with the resin film-forming sheet (II) ) Includes an acrylic resin, it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer.
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物(x1)又は粘着剤層(X1)に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。 The content of the acrylic resin in the adhesive resin is preferably 30 to 100 with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x1) or the adhesive layer (X1). % By mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
(アクリル系樹脂)
 本発明の一態様において、粘着性樹脂として使用し得る、アクリル系樹脂としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含む重合体等が挙げられる。
(Acrylic resin)
In one embodiment of the present invention, the acrylic resin that can be used as the adhesive resin includes, for example, a polymer including a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, a cyclic structure And a polymer containing a structural unit derived from a (meth) acrylate having a hydrogen atom.
 アクリル系樹脂の質量平均分子量(Mw)としては、好ましくは10万~150万、より好ましくは20万~130万、更に好ましくは35万~120万、より更に好ましくは50万~110万である。 The mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, still more preferably 500,000 to 1,100,000. .
 本発明の一態様で用いるアクリル系樹脂としては、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。 As an acrylic resin used in one embodiment of the present invention, a structural unit (a1) derived from an alkyl (meth) acrylate (a1 ′) (hereinafter also referred to as “monomer (a1 ′)”) and a functional group-containing monomer (a2). An acrylic copolymer (A1) having a structural unit (a2) derived from ') (hereinafter also referred to as "monomer (a2')") is more preferred.
 モノマー(a1’)が有するアルキル基の炭素数としては、粘着特性の向上の観点から、好ましくは1~24、より好ましくは1~12、更に好ましくは2~10、より更に好ましくは4~8である。
 なお、モノマー(a1’)が有するアルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
The number of carbon atoms of the alkyl group contained in the monomer (a1 ′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and still more preferably 4 to 8 from the viewpoint of improving adhesive properties. It is.
The alkyl group contained in the monomer (a1 ′) may be a linear alkyl group or a branched alkyl group.
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
 これらのモノマー(a1’)は、単独で用いてもよく、2種以上を併用してもよい。
 モノマー(a1’)としては、ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートが好ましい。
Examples of the monomer (a1 ′) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( Examples include meth) acrylate and stearyl (meth) acrylate.
These monomers (a1 ′) may be used alone or in combination of two or more.
As the monomer (a1 ′), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、更に好ましくは70~97.0質量%、より更に好ましくは80~95.0質量%である。 The content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass with respect to the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, and still more preferably 80 to 95.0% by mass.
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 これらのモノマー(a2’)は、単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、モノマー(a2’)としては、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましい。
As a functional group which a monomer (a2 ') has, a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. are mentioned, for example.
That is, examples of the monomer (a2 ′) include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
These monomers (a2 ′) may be used alone or in combination of two or more.
Among these, as the monomer (a2 ′), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable.
 水酸基含有モノマーとしては、例えば、上述した水酸基含有化合物と同じものが挙げられる。 Examples of the hydroxyl group-containing monomer include the same hydroxyl group-containing compounds as described above.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-(アクリロイルオキシ)エチルサクシネート、2-カルボキシエチル(メタ)アクリレート等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof. 2- (acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate, and the like.
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~40質量%、より好ましくは0.5~35質量%、更に好ましくは1.0~30質量%、より更に好ましくは3.0~25質量%である。 The content of the structural unit (a2) is preferably 0.1 to 40% by weight, more preferably 0.5 to 35% by weight with respect to all the structural units (100% by weight) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, and still more preferably 3.0 to 25% by mass.
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来の構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
The acrylic copolymer (A1) may further have a structural unit (a3) derived from another monomer (a3 ′) other than the monomers (a1 ′) and (a2 ′).
In the acrylic copolymer (A1), the content of the structural units (a1) and (a2) is preferably 70 with respect to the total structural units (100% by mass) of the acrylic copolymer (A1). To 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and still more preferably 95 to 100% by mass.
 モノマー(a3’)としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー類;シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート等の環状構造を有する(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリロイルモルホリン、N-ビニルピロリドン等が挙げられる。 Examples of the monomer (a3 ′) include olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene, and chloroprene; cyclohexyl (meth) acrylate, It has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate, etc. (Meth) acrylate; styrene, α-methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloyl Ruhorin, N- vinylpyrrolidone and the like.
 また、アクリル系共重合体(A1)は、主鎖及び/又は側鎖に重合性官能基を導入した、エネルギー線硬化型のアクリル系共重合体としてもよい。
 当該重合性官能基及び当該エネルギー線としては、上述のとおりである。
 なお、重合性官能基は、上述の構成単位(a1)及び(a2)を有するアクリル系共重合体と、当該アクリル系共重合体の構成単位(a2)が有する官能基と結合可能な置換基と重合性官能基とを有する重合性化合物(Xa)とを反応させることで導入することができる。
 重合性化合物(Xa)としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、(メタ)アクリロイルイソシアネート、アリルイソシアネート、グリシジル(メタ)アクリレート、(メタ)アクリル酸等が挙げられる。
The acrylic copolymer (A1) may be an energy ray curable acrylic copolymer having a polymerizable functional group introduced into the main chain and / or side chain.
The polymerizable functional group and the energy ray are as described above.
The polymerizable functional group includes an acrylic copolymer having the above structural units (a1) and (a2), and a substituent that can be bonded to the functional group of the structural unit (a2) of the acrylic copolymer. And a polymerizable compound (Xa) having a polymerizable functional group can be introduced.
Examples of the polymerizable compound (Xa) include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate, (meth) Acrylic acid etc. are mentioned.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x1)は、上述のアクリル系共重合体(A1)のように、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(Crosslinking agent)
1 aspect of this invention WHEREIN: When the adhesive composition (x1) contains the adhesive resin which has a functional group like the above-mentioned acrylic copolymer (A1), it may contain a crosslinking agent further. preferable.
The said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge | crosslinks adhesive resins by using the said functional group as a crosslinking origin.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
Examples of the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent.
These crosslinking agents may be used independently and may use 2 or more types together.
Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force, and availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x1)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~10000、より好ましくは500~8000、更に好ましくは800~5000である。
(Tackifier)
In one embodiment of the present invention, the pressure-sensitive adhesive composition (x1) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
In the present specification, the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
The mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 Examples of the tackifier are obtained by copolymerizing C5 fractions such as rosin resin, terpene resin, styrene resin, pentene, isoprene, piperine, 1,3-pentadiene generated by thermal decomposition of petroleum naphtha. And C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、単独で用いてもよく、軟化点や構造が異なる2種以上を併用してもよい。
 そして、2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
In the present specification, the “softening point” of the tackifier means a value measured according to JIS K2531.
A tackifier may be used independently and may use 2 or more types from which a softening point and a structure differ.
And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifier belongs to the said range.
 粘着付与剤の含有量は、粘着剤組成物(x1)の有効成分の全量(100質量%)又は粘着剤層(X1)の全質量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.05~55質量%、更に好ましくは0.1~50質量%、より更に好ましくは0.5~45質量%、更になお好ましくは1.0~40質量%である。 The content of the tackifier is preferably 0.01 to the total amount (100% by mass) of the active ingredient in the adhesive composition (x1) or the total mass (100% by mass) of the adhesive layer (X1). 65% by mass, more preferably 0.05 to 55% by mass, still more preferably 0.1 to 50% by mass, still more preferably 0.5 to 45% by mass, still more preferably 1.0 to 40% by mass. is there.
(光重合開始剤)
 本発明の一態様において、粘着剤組成物(x1)が、粘着性樹脂として、エネルギー線硬化型の粘着性樹脂を含む場合、さらに光重合開始剤を含有することが好ましい。
 エネルギー線硬化型の粘着性樹脂及び光重合開始剤を含有する粘着剤組成物とすることで、当該粘着剤組成物から形成される粘着剤層は、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させ、粘着力を所望の範囲に調整することが可能となる。
 なお、本発明の一態様で用いる光重合開始剤としては、上述の無溶剤型樹脂組成物(y1)に配合されるものと同じものが挙げられる。
(Photopolymerization initiator)
In one aspect of the present invention, when the pressure-sensitive adhesive composition (x1) includes an energy ray-curable pressure-sensitive adhesive resin as the pressure-sensitive adhesive resin, it is preferable that a pressure-sensitive polymerization initiator is further contained.
By forming an adhesive composition containing an energy ray-curable adhesive resin and a photopolymerization initiator, the adhesive layer formed from the adhesive composition can be irradiated with a relatively low energy energy beam. It is possible to sufficiently advance the curing reaction and adjust the adhesive strength to a desired range.
In addition, as a photoinitiator used by one aspect | mode of this invention, the same thing as what is mix | blended with the above-mentioned solvent-free resin composition (y1) is mentioned.
 光重合開始剤の含有量は、エネルギー線硬化型の粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。 The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 0.001 parts by mass with respect to 100 parts by mass of the energy ray curable adhesive resin. 05 to 2 parts by mass.
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(x1)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
(Adhesive additive)
In one aspect of the present invention, the pressure-sensitive adhesive composition (x1) contains additives for pressure-sensitive adhesives used for general pressure-sensitive adhesives in addition to the above-mentioned additives, as long as the effects of the present invention are not impaired. You may do it.
Examples of such an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, and the like.
These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。 When these pressure-sensitive adhesive additives are contained, the content of each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ~ 10 parts by mass.
 なお、図3に示す粘着性積層体2が有するような、上述の第2態様の粘着シート(I)を用いる場合、熱膨張性粘着剤層である第1粘着剤層(X11)は、さらに熱膨張性粒子を含有する熱膨張性粘着剤組成物(x11)から形成される。
 当該熱膨張性粒子は、上述のとおりである。
 熱膨張性粒子の含有量としては、熱膨張性粘着剤組成物(x11)の有効成分の全量(100質量%)又は熱膨張性粘着剤層の全質量(100質量%)に対して、好ましくは1~70質量%、より好ましくは2~60質量%、更に好ましくは3~50質量%、より更に好ましくは5~40質量%である。
In addition, when using the adhesive sheet (I) of the above-mentioned 2nd aspect which the adhesive laminated body 2 shown in FIG. 3 has, the 1st adhesive layer (X11) which is a thermally expansible adhesive layer is further It is formed from a heat-expandable pressure-sensitive adhesive composition (x11) containing heat-expandable particles.
The thermally expandable particles are as described above.
The content of the heat-expandable particles is preferably based on the total amount (100% by mass) of the active ingredient of the heat-expandable pressure-sensitive adhesive composition (x11) or the total mass (100% by mass) of the heat-expandable pressure-sensitive adhesive layer. Is 1 to 70% by mass, more preferably 2 to 60% by mass, still more preferably 3 to 50% by mass, and still more preferably 5 to 40% by mass.
 一方、粘着剤層(X1)が非熱膨張性粘着剤層である場合、非熱膨張性粘着剤層の形成材料である非熱膨張性粘着剤組成物中の熱膨張性粒子の含有量は極力少ないほど好ましい。
 熱膨張性粒子の含有量としては、非熱膨張性粘着剤組成物の有効成分の全量(100質量%)又は非熱膨張性粘着剤層の全質量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。一層好ましくは、非熱膨張性粘着剤組成物又は非熱膨張性粘着剤層中に、熱膨張性粒子が含まれないことである。
On the other hand, when the pressure-sensitive adhesive layer (X1) is a non-heat-expandable pressure-sensitive adhesive layer, the content of the heat-expandable particles in the non-heat-expandable pressure-sensitive adhesive composition that is a material for forming the non-heat-expandable pressure-sensitive adhesive layer is The less it is, the better.
The content of the heat-expandable particles is preferably based on the total amount (100% by mass) of the active ingredients of the non-thermally expandable pressure-sensitive adhesive composition or the total mass (100% by mass) of the non-heat-expandable pressure-sensitive adhesive layer. It is less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass. More preferably, the heat-expandable particles are not contained in the non-heat-expandable pressure-sensitive adhesive composition or the non-heat-expandable pressure-sensitive adhesive layer.
 なお、図2に示す粘着性積層体1c、1dのように、非熱膨張性粘着剤層である、第1粘着剤層(X11)及び第2粘着剤層(X12)を有する粘着シート(I)を用いる場合、23℃における、非熱膨張性粘着剤層である第1粘着剤層(X11)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以下、より好ましくは5.0×10Pa以下、更に好ましくは1.0×10Pa以下である。
 非熱膨張性粘着剤層である第1粘着剤層(X11)の貯蔵せん断弾性率G’(23)が1.0×10Pa以下であれば、例えば、図2に示す粘着性積層体1c、1dのような構成とした際に、分離用加熱処理による熱膨張性基材層(Y1-1)中の熱膨張性粒子の膨張により、粘着シート(II)と接触している第1粘着剤層(X11)の表面に凹凸が形成され易くなる。その結果、粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pでわずかな力で一括して容易に分離可能となる粘着性積層体とすることができる。
 なお、23℃における、非熱膨張性粘着剤層である第1粘着剤層(X11)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以上、より好ましくは5.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
In addition, the adhesive sheet (I) which has a 1st adhesive layer (X11) and a 2nd adhesive layer (X12) which are non-thermally expandable adhesive layers like the adhesive laminated bodies 1c and 1d shown in FIG. ), The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11) which is a non-thermally expandable pressure-sensitive adhesive layer at 23 ° C. is preferably 1.0 × 10 8 Pa or less. Preferably it is 5.0 * 10 < 7 > Pa or less, More preferably, it is 1.0 * 10 < 7 > Pa or less.
If the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11) which is a non-thermally expandable pressure-sensitive adhesive layer is 1.0 × 10 8 Pa or less, for example, the pressure-sensitive adhesive laminate shown in FIG. When the configuration such as 1c and 1d is adopted, the first is in contact with the pressure-sensitive adhesive sheet (II) due to the expansion of the thermally expandable particles in the thermally expandable substrate layer (Y1-1) by the heat treatment for separation. Unevenness is easily formed on the surface of the pressure-sensitive adhesive layer (X11). As a result, it can be set as the adhesive laminated body which can be easily isolate | separated collectively with a slight force at the interface P of the adhesive sheet (I) and the base material (Y2) of the adhesive sheet (II).
The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11), which is a non-thermally expandable pressure-sensitive adhesive layer, at 23 ° C. is preferably 1.0 × 10 4 Pa or more, more preferably 5 0.0 × 10 4 Pa or more, more preferably 1.0 × 10 5 Pa or more.
 なお、本明細書において、粘着剤層の貯蔵せん断弾性率G’(23)は、実施例に記載の方法により測定された値を意味する。 In addition, in this specification, the storage shear elastic modulus G '(23) of an adhesive layer means the value measured by the method as described in an Example.
[粘着シート(II)の構成]
 本発明の製造方法に用いる粘着性積層体が有する粘着シート(II)は、基材(Y2)及び粘着剤層(X2)を有し、基材(Y2)は粘着シート(I)と直接積層する。
 なお、基材(Y2)と粘着剤層(X2)との層間密着性を向上させる観点から、基材(Y2)の粘着剤層が積層する側の表面に、上述の酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 また、本発明の一態様で用いる粘着性積層体において、粘着剤層(X2)の残渣が切削物及び/又は研削物に付着することを抑制する観点、バンプを有する半導体ウエハ等のように表面凹凸が大きな加工対象物に対して追従性を優れたものとする観点、及び粘着剤層(X2)の粘着力の経時安定性を優れたものとする観点から、粘着シート(II)は、基材(Y2)と粘着剤層(X2)との間に、中間層(Z2)を有することが好ましい。
 また、例えば、基材(Y2)の粘着剤層(X2)側の表面は、帯電防止処理が施されていてもよい。中間層(Z2)を有する場合、基材(Y2)の中間層(Z2)側の表面は、帯電防止処理が施されていてもよい。
[Configuration of adhesive sheet (II)]
The pressure-sensitive adhesive sheet (II) of the pressure-sensitive adhesive laminate used in the production method of the present invention has a base material (Y2) and a pressure-sensitive adhesive layer (X2), and the base material (Y2) is directly laminated with the pressure-sensitive adhesive sheet (I). To do.
In addition, from the viewpoint of improving the interlayer adhesion between the base material (Y2) and the pressure-sensitive adhesive layer (X2), the above-described oxidation method or unevenness method is applied to the surface of the base material (Y2) on the side where the pressure-sensitive adhesive layer is laminated. The surface treatment by such as, easy adhesion treatment, or primer treatment may be performed.
In addition, in the adhesive laminate used in one embodiment of the present invention, the surface of the adhesive layer (X2), such as a semiconductor wafer having bumps, from the viewpoint of suppressing the residue of the adhesive layer (X2) from adhering to the cut object and / or the ground object. The adhesive sheet (II) is based on the viewpoint that the followability is excellent with respect to the workpiece having large irregularities and the temporal stability of the adhesive force of the adhesive layer (X2) is excellent. It is preferable to have an intermediate layer (Z2) between the material (Y2) and the pressure-sensitive adhesive layer (X2).
For example, the surface of the base material (Y2) on the pressure-sensitive adhesive layer (X2) side may be subjected to antistatic treatment. When it has an intermediate | middle layer (Z2), the antistatic process may be performed to the surface at the side of the intermediate | middle layer (Z2) of a base material (Y2).
 粘着シート(I)との界面Pでわずかな力で一括して容易に分離可能とする観点から、基材(Y2)は、非熱膨張性基材であることが好ましい。
 また、前記加熱処理の前後において、被着体との良好な密着性を保持する観点から、粘着剤層(X2)も、非熱膨張性粘着剤層であることが好ましい。
 さらに、中間層(Z2)も、非熱膨張性層であることが好ましい。
 そのため、上述の式から算出される基材(Y2)、粘着剤層(X2)、及び中間層(Z2)の体積変化率(%)としては、それぞれ独立に、5%未満であるが、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。なお、一層好ましくは、基材(Y2)、粘着剤層(X2)、及び中間層(Z2)中に、熱膨張性粒子が含まれないことである。
 以下、基材(Y2)、粘着剤層(X2)、及び中間層(Z2)について説明する。
From the viewpoint of enabling easy separation with a slight force at the interface P with the pressure-sensitive adhesive sheet (I), the substrate (Y2) is preferably a non-thermally expandable substrate.
Moreover, it is preferable that the pressure-sensitive adhesive layer (X2) is also a non-thermally expandable pressure-sensitive adhesive layer from the viewpoint of maintaining good adhesion to the adherend before and after the heat treatment.
Furthermore, the intermediate layer (Z2) is also preferably a non-thermally expandable layer.
Therefore, the volume change rate (%) of the base material (Y2), the pressure-sensitive adhesive layer (X2), and the intermediate layer (Z2) calculated from the above formulas is independently less than 5%, preferably Is less than 2%, more preferably less than 1%, still more preferably less than 0.1%, still more preferably less than 0.01%. More preferably, the base material (Y2), the pressure-sensitive adhesive layer (X2), and the intermediate layer (Z2) are free from thermally expandable particles.
Hereinafter, the substrate (Y2), the pressure-sensitive adhesive layer (X2), and the intermediate layer (Z2) will be described.
<基材(Y2)>
 基材(Y2)の形成材料としては、上述の非熱膨張性基材層(Y1-2)の形成材料と同様のものが挙げられる。
 なお、基材(Y2)は樹脂を含むことが好ましく、少なくとも粘着シート(I)と積層する側の基材(Y2)の表面には、樹脂を含む樹脂層が形成されていることがより好ましく、基材(Y2)が樹脂フィルム又は樹脂シートであることが更に好ましい。
 また、樹脂フィルム又は樹脂シートの中でも、工程(4)における加工対象物の研削において、加工対象物を極薄に研削する際にも、加工対象物を安定に保持し得る性質を有しているとの観点から、ポリエチレンフィルム、ポリプロピレンフィルム、エチレン-酢酸ビニル共重合体(EVA)フィルム、ポリエチレンテレフタレートフィルムが好ましく、エチレン-酢酸ビニル共重合体(EVA)フィルムがより好ましい。
 なお、上述の樹脂フィルム又は樹脂シートは、公知のフィラー、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒等を含有させてもよい。
 また、樹脂フィルム又は樹脂シートは、透明なものであっても、所望により着色又は金属等が蒸着されていてもよい。
 さらに、分離用加熱処理後に界面Pでわずかな力で一括して容易に分離可能とする観点から、粘着シート(I)に積層する側の基材(Y2)の表面は、剥離処理されていてもよい。
<Base material (Y2)>
Examples of the material for forming the base material (Y2) include the same materials as those for forming the non-thermally expandable base material layer (Y1-2) described above.
In addition, it is preferable that a base material (Y2) contains resin, and it is more preferable that the resin layer containing resin is formed in the surface of the base material (Y2) at the side of laminating | stacking at least with adhesive sheet (I). The base material (Y2) is more preferably a resin film or a resin sheet.
Further, among the resin film or resin sheet, the grinding of the workpiece in the step (4) has the property of stably holding the workpiece even when the workpiece is ground extremely thin. In view of the above, a polyethylene film, a polypropylene film, an ethylene-vinyl acetate copolymer (EVA) film, and a polyethylene terephthalate film are preferable, and an ethylene-vinyl acetate copolymer (EVA) film is more preferable.
In addition, the above-mentioned resin film or resin sheet may contain a well-known filler, a coloring agent, an antistatic agent, antioxidant, an organic lubricant, a catalyst, etc.
Moreover, even if the resin film or the resin sheet is transparent, coloring or metal may be vapor-deposited as desired.
Furthermore, the surface of the base material (Y2) to be laminated on the pressure-sensitive adhesive sheet (I) has been subjected to a peeling treatment from the viewpoint of enabling easy separation with a slight force at the interface P after the heat treatment for separation. Also good.
 また、基材(Y2)は、加工対象物を粘着剤層(X2)に貼付する際の位置ズレを防止しやすいものとする観点、及び、加工対象物を貼付する際に、粘着剤層(X2)への過度な沈み込みを防止しやすいものとする観点から、23℃における貯蔵弾性率E’(23)が1.0×10Pa以上であることが好ましい。 In addition, the base material (Y2) has a viewpoint that it is easy to prevent positional displacement when the processing object is applied to the adhesive layer (X2), and the adhesive layer ( From the viewpoint of easily preventing excessive subsidence in X2), the storage elastic modulus E ′ (23) at 23 ° C. is preferably 1.0 × 10 6 Pa or more.
 なお、基材(Y2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよいが、上記観点から、基材(Y2)中の熱膨張性粒子の含有量は、少ないほど好ましい。
 基材(Y2)中の熱膨張性粒子の含有量としては、基材(Y2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。一層好ましくは、基材(Y2)中に熱膨張性粒子が含まれないことである。
The base material (Y2) may contain thermally expandable particles as long as the volume change rate is in the above range. From the above viewpoint, the content of the thermally expandable particles in the base material (Y2) is Less is preferable.
The content of the heat-expandable particles in the substrate (Y2) is usually less than 3% by mass, preferably less than 1% by mass, more preferably relative to the total mass (100% by mass) of the substrate (Y2). It is less than 0.1% by mass, more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass. More preferably, the thermally expandable particles are not contained in the base material (Y2).
 基材(Y2)の厚さは、好ましくは5~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。
 基材(Y2)の厚さが5μm以上であれば、高温での耐変形性(寸法安定性)に優れたものとしやすい。一方、基材の厚みが500μm以下であれば、粘着シート(II)に貼付している加工対象物に対して切削及び研削の少なくともいずれかの加工を施す際に、振動による粘着シート(II)の変形を抑えることができるため、膜厚精度等の加工精度を向上させやすい。
The thickness of the substrate (Y2) is preferably 5 to 500 μm, more preferably 15 to 300 μm, and still more preferably 20 to 200 μm.
If the thickness of the substrate (Y2) is 5 μm or more, it is easy to make it excellent in deformation resistance (dimensional stability) at high temperatures. On the other hand, when the thickness of the base material is 500 μm or less, the pressure-sensitive adhesive sheet (II) due to vibration is applied when at least one of cutting and grinding is performed on the workpiece attached to the pressure-sensitive adhesive sheet (II). Therefore, it is easy to improve processing accuracy such as film thickness accuracy.
<粘着剤層(X2)>
 樹脂膜形成用シート(II)が有する粘着剤層(X2)は、上述の粘着剤組成物(x1)を用いて形成することができ、好適な成分や各成分の含有量の好適範囲も、粘着剤組成物(x1)と同じである。
<Adhesive layer (X2)>
The pressure-sensitive adhesive layer (X2) of the resin film-forming sheet (II) can be formed by using the above-mentioned pressure-sensitive adhesive composition (x1). It is the same as the pressure-sensitive adhesive composition (x1).
 ここで、本発明の一態様において、粘着剤層(X2)は、粘着性樹脂として、側鎖に重合性官能基が導入されたエネルギー線硬化型の粘着性樹脂を含む粘着剤組成物生物から形成された層であることが好ましく、エネルギー線硬化型のアクリル系重合体(B)(以下、「アクリル系重合体(B)」又は「(B)成分」ともいう)を含む粘着剤組成物から形成された層であることがより好ましい。
 当該粘着剤組成物から形成された粘着剤層(X2)は、エネルギー線照射前は、加工対象物を十分に保持し得る優れた粘着力を有するが、エネルギー線照射後には、粘着力が低下する。したがって、加工品を粘着シート(II)から容易に分離しやすいものとできる。
Here, in one aspect of the present invention, the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive resin having a polymerizable functional group introduced in the side chain as a pressure-sensitive adhesive resin. The pressure-sensitive adhesive composition is preferably a formed layer and contains an energy ray-curable acrylic polymer (B) (hereinafter also referred to as “acrylic polymer (B)” or “component (B)”). More preferably, the layer is formed from.
The pressure-sensitive adhesive layer (X2) formed from the pressure-sensitive adhesive composition has excellent adhesive strength that can sufficiently hold the object to be processed before irradiation with energy rays, but the adhesive strength decreases after irradiation with energy rays. To do. Therefore, the processed product can be easily separated from the pressure-sensitive adhesive sheet (II).
 粘着剤組成物中の(B)成分の含有量は、粘着剤組成物の全量(100質量%)に対して、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、また、好ましくは99.9質量%以下、より好ましくは99.0質量%以下、更に好ましくは98.0質量%以下である。 The content of the component (B) in the pressure-sensitive adhesive composition is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass with respect to the total amount (100% by mass) of the pressure-sensitive adhesive composition. % Or more, preferably 99.9% by mass or less, more preferably 99.0% by mass or less, and still more preferably 98.0% by mass or less.
 粘着剤層(X2)の厚さは、良好な粘着力を有し、バンプ等を有する半導体ウエハ等のように、表面の凹凸差が大きい加工対象物に対する追従性の良好なものとする観点から、好ましくは1~100μm、より好ましくは1~75μm、更に好ましくは1~50μmである。 From the viewpoint that the thickness of the pressure-sensitive adhesive layer (X2) has a good adhesive force and has good followability to a workpiece to be processed such as a semiconductor wafer having bumps and the like having a large surface unevenness difference. The thickness is preferably 1 to 100 μm, more preferably 1 to 75 μm, and still more preferably 1 to 50 μm.
 また、粘着剤層(X2)を形成する材料である粘着剤組成物が、エネルギー線硬化性のアクリル系重合体(B)等のエネルギー線硬化型の粘着性樹脂を含む場合、更に架橋剤や光重合開始剤を含有することが好ましい。
 架橋剤としては、上述のアクリル系樹脂に配合されるものと同様のものが挙げられ、含有量の範囲も上述のとおりであるが、粘着剤層(X2)のゲル分率を高めて、加工品を分離した際に当該加工品に糊残りが生じるのを抑制する観点から、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~15質量部、更に好ましくは1.0~10質量部である。
 光重合開始剤としては、上述の無溶剤型樹脂組成物(y1)に配合されるものと同様のものが挙げられ、含有量の範囲も上述のとおりである。
 また、これら以外の他の添加剤を含有してもよい。
 以下、粘着剤組成物中に含まれるエネルギー線硬化性のアクリル系重合体(B)について説明する。
In the case where the pressure-sensitive adhesive composition, which is a material for forming the pressure-sensitive adhesive layer (X2), contains an energy ray-curable pressure-sensitive adhesive resin such as an energy ray-curable acrylic polymer (B), a crosslinking agent or It is preferable to contain a photopolymerization initiator.
Examples of the crosslinking agent include those similar to those blended in the above-mentioned acrylic resin, and the content range is also as described above, but the gel fraction of the pressure-sensitive adhesive layer (X2) is increased and processed. From the viewpoint of suppressing the generation of adhesive residue in the processed product when the product is separated, the amount is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group. 5 to 15 parts by mass, more preferably 1.0 to 10 parts by mass.
As a photoinitiator, the thing similar to what is mix | blended with the above-mentioned solvent-free resin composition (y1) is mentioned, The range of content is also as above-mentioned.
Moreover, you may contain other additives other than these.
Hereinafter, the energy ray-curable acrylic polymer (B) contained in the pressure-sensitive adhesive composition will be described.
((B)成分:エネルギー線硬化性のアクリル系重合体(B))
 本発明の一態様において用いられるエネルギー線硬化性のアクリル系重合体(B)は、非エネルギー線硬化性のアクリル系重合体の側鎖及び/又は主鎖に重合性官能基が導入されたアクリル系共重合体である。
 非エネルギー線硬化性のアクリル系重合体は、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を有するアクリル系重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を有するアクリル系重合体等が挙げられる。
 重合性官能基は、上述のとおりであるが、非エネルギー線硬化性のアクリル系重合体への導入の容易性の観点から、(メタ)アクリロイル基が好ましい。
((B) component: energy ray-curable acrylic polymer (B))
The energy ray-curable acrylic polymer (B) used in one embodiment of the present invention is an acrylic in which a polymerizable functional group is introduced into the side chain and / or main chain of the non-energy ray-curable acrylic polymer. Copolymer.
Non-energy ray curable acrylic polymers include, for example, acrylic polymers having structural units derived from alkyl (meth) acrylates having linear or branched alkyl groups, and (meth) acrylates having a cyclic structure. An acrylic polymer having a derived structural unit can be used.
Although the polymerizable functional group is as described above, a (meth) acryloyl group is preferable from the viewpoint of easy introduction into a non-energy ray curable acrylic polymer.
 (B)成分の質量平均分子量(Mw)は、好ましくは10万~150万、より好ましくは20万~120万、より好ましくは25万~100万、更に好ましくは30万~90万、より更に好ましくは35万~80万である。 The weight average molecular weight (Mw) of the component (B) is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,200,000, more preferably 250,000 to 1,000,000, still more preferably 300,000 to 900,000. Preferably, it is 350,000 to 800,000.
 (B)成分としては、エネルギー線の照射によって、粘着力が効果的に低下し得る粘着シートとする観点から、炭素数1~18のアルキル基を有するアルキル(メタ)アクリレート(b1’)(以下、「モノマー(b1’)」ともいう)に由来する構成単位(b1)及び官能基含有モノマー(b2’)(以下、「モノマー(b2’)」ともいう)に由来する構成単位(b2)を有するアクリル系共重合体(B0)と、重合性化合物(Xb)とを反応させて得られるエネルギー線硬化性のアクリル系共重合体(B1)を含むことが好ましく、エネルギー線硬化性のアクリル系共重合体(B1)であることがより好ましい。
 なお、アクリル系共重合体(B0)、(B1)の共重合の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれであってもよい。
As the component (B), an alkyl (meth) acrylate (b1 ′) having an alkyl group having 1 to 18 carbon atoms (b1 ′) (hereinafter referred to as “adhesive sheet”) whose adhesive strength can be effectively reduced by irradiation with energy rays A structural unit (b2) derived from a structural unit (b1) derived from a monomer (b1 ′) and a functional group-containing monomer (b2 ′) (hereinafter also referred to as “monomer (b2 ′)”). It preferably contains an energy ray curable acrylic copolymer (B1) obtained by reacting the acrylic copolymer (B0) having a polymerizable compound (Xb) with the acrylic copolymer (B1). More preferably, it is a copolymer (B1).
The form of copolymerization of the acrylic copolymers (B0) and (B1) is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer.
 アクリル系共重合体(B1)の含有量は、粘着剤組成物中に含まれる(B)成分の全量(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは100質量%である。 The content of the acrylic copolymer (B1) is preferably 70 to 100% by mass, more preferably 80 to 100%, based on the total amount (100% by mass) of the component (B) contained in the pressure-sensitive adhesive composition. % By mass, more preferably 90 to 100% by mass, and still more preferably 100% by mass.
 モノマー(b1’)が有するアルキル基の炭素数としては、好ましくは1~18、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~6である。
 モノマー(b1’)としては、上述のモノマー(a1’)として例示したものが挙げられるが、ブチル(メタ)アクリレート、又は2-エチルヘキシル(メタ)アクリレートが好ましく、ブチル(メタ)アクリレートがより好ましい。
The number of carbon atoms of the alkyl group contained in the monomer (b1 ′) is preferably 1 to 18, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 6.
Examples of the monomer (b1 ′) include those exemplified as the above-described monomer (a1 ′), but butyl (meth) acrylate or 2-ethylhexyl (meth) acrylate is preferable, and butyl (meth) acrylate is more preferable.
 アクリル系共重合体(B0)における、構成単位(b1)の含有量は、形成される粘着剤層の粘着力を向上させる観点から、アクリル系共重合体(B0)の全構成単位(100質量%)に対して、好ましくは50~99.5質量%、より好ましくは60~99質量%、更に好ましくは70~98質量%、より更に好ましくは80~96質量%である。 The content of the structural unit (b1) in the acrylic copolymer (B0) is the total structural unit (100 mass) of the acrylic copolymer (B0) from the viewpoint of improving the adhesive strength of the pressure-sensitive adhesive layer to be formed. %) Is preferably 50 to 99.5% by mass, more preferably 60 to 99% by mass, still more preferably 70 to 98% by mass, and still more preferably 80 to 96% by mass.
 モノマー(b2’)としては、上述のモノマー(a2’)として例示したものが挙げられるが、水酸基含有モノマー、カルボキシ基含有モノマー、及びエポキシ基含有モノマーから選ばれる1種以上が好ましく、水酸基含有モノマーがより好ましく、2-ヒドロキシエチル(メタ)アクリレートが更に好ましい。 Examples of the monomer (b2 ′) include those exemplified as the above-mentioned monomer (a2 ′), but one or more selected from a hydroxyl group-containing monomer, a carboxy group-containing monomer, and an epoxy group-containing monomer are preferable. Is more preferable, and 2-hydroxyethyl (meth) acrylate is still more preferable.
 アクリル系共重合体(B0)における、構成単位(b2)の含有量は、アクリル系共重合体(B0)の全構成単位(100質量%)に対して、好ましくは0.5~40質量%、より好ましくは1~30質量%、更に好ましくは2~25質量%、より更に好ましくは3~15質量%である。
 構成単位(b2)の含有量が0.5質量%以上であれば、重合性化合物(Xb)との反応点となる官能基を有する構成単位(b2)の含有量を十分に確保でき、エネルギー線の照射により、硬化性の高い粘着剤層(X2)を形成することができるため、粘着剤層(X2)から切削物及び/又は研削物を剥離する際に、切削物及び/又は研削物への粘着剤層(X2)の残渣の発生を防止しながら、剥離することができる。
 また、構成単位(b2)の含有量が40質量%以下であれば、粘着剤組成物の溶液を塗布し、粘着剤層(X2)を形成する際に、十分なポットライフを確保することができる。
 なお、重合性化合物(Xb)とは、アクリル系共重合体(B0)の構成単位(b2)中の官能基と結合可能な置換基(以下、「反応性官能基」ともいう)と重合性官能基とを有する化合物を意味している。
The content of the structural unit (b2) in the acrylic copolymer (B0) is preferably 0.5 to 40% by weight with respect to the total structural unit (100% by weight) of the acrylic copolymer (B0). More preferably, it is 1 to 30% by mass, still more preferably 2 to 25% by mass, and still more preferably 3 to 15% by mass.
If content of a structural unit (b2) is 0.5 mass% or more, content of the structural unit (b2) which has a functional group used as a reaction point with polymeric compound (Xb) can fully be ensured, and energy Since a highly curable pressure-sensitive adhesive layer (X2) can be formed by irradiation with a line, when the cut and / or ground material is peeled from the pressure-sensitive adhesive layer (X2), the cut and / or ground material It can peel, preventing generation | occurrence | production of the residue of the adhesive layer (X2) to.
Moreover, if content of a structural unit (b2) is 40 mass% or less, when apply | coating the solution of an adhesive composition and forming an adhesive layer (X2), ensuring sufficient pot life. it can.
The polymerizable compound (Xb) is a substituent that can be bonded to a functional group in the structural unit (b2) of the acrylic copolymer (B0) (hereinafter also referred to as “reactive functional group”) and polymerizable. A compound having a functional group is meant.
 アクリル系共重合体(B0)は、上記モノマー(b1’)及び(b2’)以外の他のモノマー(b3’)に由来する構成単位(b3)を有していてもよい。
 その他のモノマー(b3’)としては、上述のモノマー(a3’)として例示したものが挙げられる。
The acrylic copolymer (B0) may have a structural unit (b3) derived from a monomer (b3 ′) other than the monomers (b1 ′) and (b2 ′).
Examples of the other monomer (b3 ′) include those exemplified as the monomer (a3 ′) described above.
 アクリル系共重合体(B0)における、構成単位(b3)の含有量は、アクリル系共重合体(B0)の全構成単位(100質量%)に対して、好ましくは0~20質量%、より好ましくは0~10質量%、更に好ましくは0~5質量%、より更に好ましくは0~1質量%である。
 なお、上述のモノマー(b1’)~(b3’)は、単独で又は2種以上組み合わせて用いてもよい。
The content of the structural unit (b3) in the acrylic copolymer (B0) is preferably 0 to 20% by weight, based on the total structural units (100% by weight) of the acrylic copolymer (B0). The content is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and still more preferably 0 to 1% by mass.
The monomers (b1 ′) to (b3 ′) described above may be used alone or in combination of two or more.
 エネルギー線硬化性のアクリル系共重合体(B1)は、上述の構成単位(b1)及び(b2)を有するアクリル系共重合体(B0)と、重合性化合物(Xb)を反応させることにより得られる。
 重合性化合物(Xb)としては、上述の重合性化合物(Xa)として例示したものが挙げられるが、これらの中でも、反応性官能基を有するとともに、重合性官能基を1分子あたり1~5個有する化合物であることが好ましい。
 上記反応性置換基としては、例えば、イソシアネート基、カルボキシル基、エポキシ基等が挙げられ、イソシアネート基が好ましい。
 上記重合性官能基としては、上述のとおり、(メタ)アクリロイル基、ビニル基等が挙げられ、(メタ)アクリロイル基が好ましい。
 具体的な重合性化合物(Xb)としては、(メタ)アクリロイルオキシエチルイソシアネートが好ましい。
 なお、重合性化合物(Xb)は、単独で又は2種以上を組み合わせて用いてもよい。
The energy ray curable acrylic copolymer (B1) is obtained by reacting the acrylic copolymer (B0) having the structural units (b1) and (b2) with the polymerizable compound (Xb). It is done.
Examples of the polymerizable compound (Xb) include those exemplified as the above-described polymerizable compound (Xa). Among them, the polymerizable compound (Xb) has a reactive functional group and 1 to 5 polymerizable functional groups per molecule. It is preferable that it is a compound which has.
As said reactive substituent, an isocyanate group, a carboxyl group, an epoxy group etc. are mentioned, for example, An isocyanate group is preferable.
As said polymerizable functional group, (meth) acryloyl group, a vinyl group, etc. are mentioned as above-mentioned, (meth) acryloyl group is preferable.
As specific polymerizable compound (Xb), (meth) acryloyloxyethyl isocyanate is preferable.
In addition, you may use polymeric compound (Xb) individually or in combination of 2 or more types.
 アクリル系共重合体(B1)において、アクリル系共重合体(B0)が有する官能基数と重合性化合物(Xb)の配合量の関係について、エネルギー線照射前は適度な粘着力を有しつつも、エネルギー線照射後には、粘着力が効果的に低下し得る粘着シートを得る観点から、下記式(1)より算出されるαの値が、好ましくは0.5~50、より好ましくは1.0~40、更に好ましくは1.2~35、より更に好ましくは1.5~30である。
 なお、上記αの値は、アクリル系共重合体(B1)が有する重合性官能基数に相当するものである。
 式(1):α=〔P〕×〔Q〕×〔R〕/100
(式(1)中、〔P〕は、アクリル系共重合体(B0)の全構成単位100質量部に対する構成単位(b2)の含有量を示す。〔Q〕は、アクリル系共重合体(B0)が有する当該官能基含有モノマー由来の官能基100当量に対する、重合性化合物(Xb)の当量を示す。〔R〕は、重合性化合物(Xb)が有する重合性官能基数を示す。)
In the acrylic copolymer (B1), the relationship between the number of functional groups of the acrylic copolymer (B0) and the blending amount of the polymerizable compound (Xb) has an appropriate adhesive force before irradiation with energy rays. From the viewpoint of obtaining a pressure-sensitive adhesive sheet whose adhesive strength can be effectively reduced after energy beam irradiation, the value of α calculated from the following formula (1) is preferably 0.5 to 50, more preferably 1. It is 0 to 40, more preferably 1.2 to 35, and still more preferably 1.5 to 30.
The value α corresponds to the number of polymerizable functional groups that the acrylic copolymer (B1) has.
Formula (1): α = [P B ] × [Q B ] × [R B ] / 100
(In the formula (1), [P B ] represents the content of the structural unit (b2) with respect to 100 parts by mass of all the structural units of the acrylic copolymer (B0). [Q B ] represents the acrylic copolymer. for functional group 100 equivalents from the functional group-containing monomer polymer of (B0) has,. shows the equivalent weight of the polymerizable compound (Xb) [R B] shows the polymerizable functional groups of the polymerizable compound (Xb) has .)
<中間層(Z2)>
 本発明の一態様において、中間層(Z2)は、非エネルギー線硬化性のアクリル系重合体(C)及びエネルギー線硬化性のアクリル系重合体(D)を含む中間層形成用組成物(z2)から形成される。
 中間層(Z2)を設けることで、バンプを有する半導体ウエハ等のように表面凹凸が大きい加工対象物に対する追従性に優れた粘着シート(II)となる。したがって、当該粘着シート(II)を貼付した加工対象物に対して切削及び研削の少なくともいずれかの加工を行う際に、加工対象物の破損を抑えるとともに、切削屑、研削屑、切削水、及び研削水等が、加工対象物の粘着シート(II)との貼付面に浸入するのを防止することができる。
 なお、中間層(Z2)は、粘着性を有していてもよいし、粘着性を有していなくてもよい。
<Intermediate layer (Z2)>
In one embodiment of the present invention, the intermediate layer (Z2) is a composition for forming an intermediate layer (z2) comprising a non-energy ray curable acrylic polymer (C) and an energy ray curable acrylic polymer (D). ).
By providing the intermediate layer (Z2), the pressure-sensitive adhesive sheet (II) is excellent in followability with respect to an object to be processed having large surface irregularities such as a semiconductor wafer having bumps. Therefore, when at least one of cutting and grinding is performed on the workpiece to which the pressure-sensitive adhesive sheet (II) is attached, damage to the workpiece is suppressed, and cutting waste, grinding waste, cutting water, and Grinding water or the like can be prevented from entering the surface of the workpiece to be adhered to the adhesive sheet (II).
In addition, the intermediate | middle layer (Z2) may have adhesiveness and does not need to have adhesiveness.
 中間層(Z2)の厚さは、加工対象物の凹凸の程度、例えば加工対象物が半導体ウエハや半導体チップである場合には、当該半導体ウエハや半導体チップが有するバンプの高さにより適宜選択されるが、好ましくは10~800μm、より好ましくは15~600μm、更に好ましくは20~400μmである。
 中間層(Z2)の厚さが10μm以上であれば、凹凸差が大きい加工対象物に対する追従性を良好とすることができる。一方、中間層の厚さが800μm以下であれば、粘着シート(II)の変形を抑制しやすい。
The thickness of the intermediate layer (Z2) is appropriately selected depending on the degree of unevenness of the workpiece, for example, when the workpiece is a semiconductor wafer or semiconductor chip, the height of the bumps of the semiconductor wafer or semiconductor chip. However, it is preferably 10 to 800 μm, more preferably 15 to 600 μm, and still more preferably 20 to 400 μm.
If the thickness of the intermediate layer (Z2) is 10 μm or more, it is possible to improve the followability with respect to the workpiece having a large unevenness difference. On the other hand, if the thickness of the intermediate layer is 800 μm or less, the deformation of the pressure-sensitive adhesive sheet (II) can be easily suppressed.
 中間層(Z2)を形成する材料である中間層形成層組成物(z2)は、エネルギー線照射後における粘着シート(II)の中間層(Z2)と粘着剤層(X2)との密着性を良好なものとして、切削物及び/又は研削物を粘着シート(II)から剥離する際に、粘着剤層(X2)の破断や切削物及び/又は研削物表面への粘着剤層(X2)の残渣の発生を抑制する観点から、非エネルギー線硬化性のアクリル系重合体(C)(以下、「アクリル系重合体(C)」又は「(C)成分」ともいう)と、及び質量平均分子量が5万~25万のエネルギー線硬化性のアクリル系重合体(D)(以下、「アクリル系重合体(D)」又は「(D)成分」ともいう)とを含むことが好ましい。
 また、エネルギー線照射後における中間層(Z2)と粘着剤層(X2)との密着性をより向上し得る観点から、中間層形成用組成物(z2)中の(D)成分の含有量は、(C)成分100質量部に対して、好ましくは25質量部以上、より好ましくは30質量部以上、更に好ましくは37質量部以上、より更に好ましくは40質量部以上である。
 さらに、本発明の一態様において、粘着シート(II)の端部からの中間層(Z2)の一部の浸み出しを抑制する観点から、中間層形成用組成物(z2)中の(D)成分の含有量は、(C)成分100質量部に対して、好ましくは150質量部以下、より好ましくは140質量部以下、更に好ましくは130質量部以下である。
The intermediate layer forming layer composition (z2), which is a material for forming the intermediate layer (Z2), provides adhesion between the intermediate layer (Z2) and the adhesive layer (X2) of the adhesive sheet (II) after irradiation with energy rays. As a good thing, when the cut and / or ground material is peeled from the pressure-sensitive adhesive sheet (II), the pressure-sensitive adhesive layer (X2) is broken or the pressure-sensitive adhesive layer (X2) on the surface of the cut and / or ground material is removed. From the viewpoint of suppressing the generation of residues, a non-energy ray curable acrylic polymer (C) (hereinafter also referred to as “acrylic polymer (C)” or “(C) component”), and a mass average molecular weight Preferably contains 50,000 to 250,000 energy ray-curable acrylic polymer (D) (hereinafter also referred to as “acrylic polymer (D)” or “(D) component”).
Further, from the viewpoint of further improving the adhesion between the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) after irradiation with energy rays, the content of the component (D) in the intermediate layer forming composition (z2) is , (C) The amount is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 37 parts by mass or more, and still more preferably 40 parts by mass or more with respect to 100 parts by mass of the component (C).
Furthermore, in one aspect of the present invention, from the viewpoint of suppressing partial leaching of the intermediate layer (Z2) from the end of the pressure-sensitive adhesive sheet (II), (D in the intermediate layer forming composition (z2) The content of the component is preferably 150 parts by mass or less, more preferably 140 parts by mass or less, and still more preferably 130 parts by mass or less with respect to 100 parts by mass of the component (C).
 中間層形成用組成物(z2)中の(C)成分及び(D)成分の合計含有量は、中間層形成用組成物(z2)の全量(100質量%)に対して、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、また、好ましくは99.9質量%以下、より好ましくは99.0質量%以下、更に好ましくは98.0質量%以下である。 The total content of the component (C) and the component (D) in the intermediate layer forming composition (z2) is preferably 70% by mass with respect to the total amount (100% by mass) of the intermediate layer forming composition (z2). % Or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, preferably 99.9% by weight or less, more preferably 99.0% by weight or less, still more preferably 98.0% by weight. It is as follows.
 なお、中間層形成用組成物(z2)は、上記(C)成分、(D)成分の他に、更に光重合開始剤や架橋剤を含有することが好ましい。また、これら以外の他の添加剤を含有してもよい。
 架橋剤としては、上述のアクリル系樹脂に配合されるものと同様のものが挙げられ、含有量の範囲も上述のとおりである。
 光重合開始剤としては、上述の無溶剤型樹脂組成物(y1)に配合されるものと同様のものが挙げられ、含有量の範囲も上述のとおりである。
 また、これら以外の他の添加剤を含有してもよい。
 以下、中間層形成用組成物(z2)中に含まれる非エネルギー線硬化性のアクリル系重合体(C)及びエネルギー線硬化性のアクリル系重合体(D)について説明する。
In addition, it is preferable that the composition (z2) for intermediate | middle layer formation contains a photoinitiator and a crosslinking agent further in addition to the said (C) component and (D) component. Moreover, you may contain other additives other than these.
As a crosslinking agent, the thing similar to what is mix | blended with the above-mentioned acrylic resin is mentioned, The range of content is also as above-mentioned.
As a photoinitiator, the thing similar to what is mix | blended with the above-mentioned solvent-free resin composition (y1) is mentioned, The range of content is also as above-mentioned.
Moreover, you may contain other additives other than these.
Hereinafter, the non-energy ray curable acrylic polymer (C) and the energy ray curable acrylic polymer (D) contained in the intermediate layer forming composition (z2) will be described.
((C)成分:非エネルギー線硬化性のアクリル系重合体(C))
 非エネルギー線硬化性のアクリル系重合体(C)としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を有する重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を有する重合体等が挙げられる。
((C) component: non-energy ray curable acrylic polymer (C))
Examples of the non-energy ray curable acrylic polymer (C) include a polymer having a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, and a cyclic structure (meth). Examples thereof include a polymer having a structural unit derived from acrylate.
 (C)成分の質量平均分子量(Mw)は、好ましくは30万~150万、より好ましくは35万~130万、より好ましくは40万~120万、更に好ましくは40万~110万、より更に好ましくは45万~90万である。 The mass average molecular weight (Mw) of the component (C) is preferably 300,000 to 1,500,000, more preferably 350,000 to 1,300,000, more preferably 400,000 to 1,200,000, still more preferably 400,000 to 1,100,000, and even more It is preferably 450,000 to 900,000.
 (C)成分としては、(D)成分との相溶性の観点から、炭素数1~18のアルキル基を有するアルキル(メタ)アクリレート(c1’)(以下、「モノマー(c1’)」ともいう)に由来する構成単位(c1)及び官能基含有モノマー(c2’)(以下、「モノマー(c2’)」ともいう)に由来する構成単位(c2)を有するアクリル系共重合体(C1)を含むことが好ましく、アクリル系共重合体(C1)であることがより好ましい。
 なお、アクリル系共重合体(C1)の共重合の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれであってもよい。
As the component (C), from the viewpoint of compatibility with the component (D), an alkyl (meth) acrylate (c1 ′) having an alkyl group having 1 to 18 carbon atoms (hereinafter also referred to as “monomer (c1 ′)”). And an acrylic copolymer (C1) having a structural unit (c2) derived from a structural unit (c1) derived from a functional group-containing monomer (c2 ′) (hereinafter also referred to as “monomer (c2 ′)”). It is preferable to include, and it is more preferable that it is an acrylic copolymer (C1).
The form of copolymerization of the acrylic copolymer (C1) is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer.
 アクリル系共重合体(C1)の含有量は、中間層形成用組成物(z2)中に含まれる(C)成分の全量(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは100質量%である。 The content of the acrylic copolymer (C1) is preferably 70 to 100% by mass with respect to the total amount (100% by mass) of the component (C) contained in the intermediate layer forming composition (z2). The amount is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and still more preferably 100% by mass.
 モノマー(c1’)が有するアルキル基の炭素数としては、(D)成分との相溶性の観点から、より好ましくは4~12、更に好ましくは4~8、より更に好ましくは4~6である。 The number of carbon atoms of the alkyl group contained in the monomer (c1 ′) is more preferably 4 to 12, further preferably 4 to 8, and still more preferably 4 to 6, from the viewpoint of compatibility with the component (D). .
 モノマー(c1’)としては、上述したモノマー(a1’)と同様のものが挙げられる。
 これらの中でも、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートが好ましく、ブチル(メタ)アクリレートがより好ましい。
Examples of the monomer (c1 ′) include the same as the monomer (a1 ′) described above.
Among these, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable, and butyl (meth) acrylate is more preferable.
 アクリル系共重合体(C1)における、構成単位(c1)の含有量は、アクリル系共重合体(C1)の全構成単位(100質量%)に対して、好ましくは50~99.5質量%、より好ましくは60~99質量%、更に好ましくは70~95質量%、より更に好ましくは80~93質量%である。
 構成単位(c1)の含有量が50質量%以上であれば、凹凸差が大きい加工対象物に対する追従性が良好な粘着シートとすることができるため好ましい。
 また、構成単位(c1)の含有量が99.5質量%以下であれば、構成単位(c2)の含有量を十分に確保し、(D)成分との相溶性を良好とすることができるため好ましい。
The content of the structural unit (c1) in the acrylic copolymer (C1) is preferably 50 to 99.5 mass% with respect to the total structural units (100 mass%) of the acrylic copolymer (C1). More preferably, it is 60 to 99% by mass, still more preferably 70 to 95% by mass, and still more preferably 80 to 93% by mass.
If the content of the structural unit (c1) is 50% by mass or more, it is preferable because the pressure-sensitive adhesive sheet has a good followability with respect to a workpiece with a large unevenness difference.
Moreover, if content of a structural unit (c1) is 99.5 mass% or less, content of a structural unit (c2) can fully be ensured, and compatibility with (D) component can be made favorable. Therefore, it is preferable.
 また、アクリル系共重合体(C1)は、構成単位(c1)として、炭素数4以上(好ましくは4~12、より好ましくは4~8、更に好ましくは4~6)のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位(c11)を有することが好ましい。
 構成単位(c1)中の構成単位(c11)の含有比率は、アクリル系共重合体(C1)が有する構成単位(c1)の全量(100質量%)に対して、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、より更に好ましくは85質量%以上であり、また、好ましくは100質量%以下である。
The acrylic copolymer (C1) is an alkyl group having an alkyl group having 4 or more carbon atoms (preferably 4 to 12, more preferably 4 to 8, more preferably 4 to 6) as the structural unit (c1). It is preferable to have a structural unit (c11) derived from (meth) acrylate.
The content ratio of the structural unit (c11) in the structural unit (c1) is preferably 60% by weight or more with respect to the total amount (100% by weight) of the structural unit (c1) included in the acrylic copolymer (C1). More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, More preferably, it is 85 mass% or more, Preferably it is 100 mass% or less.
 モノマー(c2’)が有する官能基としては、上述したモノマー(a2’)が有する官能基と同様のものが挙げられる。
 具体的なモノマー(c2’)についても、上述したモノマー(a2’)と同様のものが挙げられる。
 これらの中でも、水酸基含有モノマー、カルボキシ基含有モノマー、及びエポキシ基含有モノマーから選ばれる1種以上が好ましく、カルボキシ基含有モノマーがより好ましい。
 水酸基含有モノマー、カルボキシ基含有モノマー、及びエポキシ基含有モノマーの具体例についても、上述したモノマー(a2’)と同様である。
As a functional group which a monomer (c2 ') has, the thing similar to the functional group which the monomer (a2') mentioned above has is mentioned.
Specific examples of the monomer (c2 ′) include those similar to the monomer (a2 ′) described above.
Among these, 1 or more types chosen from a hydroxyl group containing monomer, a carboxy group containing monomer, and an epoxy group containing monomer are preferable, and a carboxy group containing monomer is more preferable.
Specific examples of the hydroxyl group-containing monomer, the carboxy group-containing monomer, and the epoxy group-containing monomer are the same as those of the monomer (a2 ′) described above.
 アクリル系共重合体(C1)における、構成単位(c2)の含有量は、アクリル系共重合体(C1)の全構成単位(100質量%)に対して、好ましくは0.5~50質量%、より好ましくは1~40質量%、更に好ましくは5~30質量%、より更に好ましくは7~20質量%である。
 構成単位(c2)の含有量が0.5質量%以上であれば、(D)成分との相溶性を良好とすることができるため好ましい。
 また、構成単位(c2)の含有量が50質量%以下であれば、凹凸差が大きい被着体に対する追従性が良好な粘着シートとすることができるため好ましい。
The content of the structural unit (c2) in the acrylic copolymer (C1) is preferably 0.5 to 50% by weight with respect to all the structural units (100% by weight) of the acrylic copolymer (C1). More preferably, it is 1 to 40% by mass, still more preferably 5 to 30% by mass, and still more preferably 7 to 20% by mass.
If content of a structural unit (c2) is 0.5 mass% or more, since compatibility with (D) component can be made favorable, it is preferable.
Moreover, if content of a structural unit (c2) is 50 mass% or less, since it can be set as an adhesive sheet with the favorable followable | trackability with a large uneven | corrugated difference, it is preferable.
 アクリル系共重合体(C1)は、上記モノマー(c1’)及び(c2’)以外の他のモノマー(c3’)に由来する構成単位(c3)を有していてもよい。
 他のモノマー(c3’)としては、上述したモノマー(a3’)と同様のものが挙げられる。
The acrylic copolymer (C1) may have a structural unit (c3) derived from a monomer (c3 ′) other than the monomers (c1 ′) and (c2 ′).
Examples of the other monomer (c3 ′) include those similar to the monomer (a3 ′) described above.
 アクリル系共重合体(C1)における、構成単位(c3)の含有量は、アクリル系共重合体(C1)の全構成単位(100質量%)に対して、好ましくは0~30質量%、より好ましくは0~20質量%、更に好ましくは0~10質量%、より更に好ましくは0~5質量%である。
 なお、上述のモノマー(c1’)~(c3’)は、単独で又は2種以上組み合わせて用いてもよい。
The content of the structural unit (c3) in the acrylic copolymer (C1) is preferably 0 to 30% by mass, more preferably 0 to 30% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (C1). The content is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, and still more preferably 0 to 5% by mass.
The monomers (c1 ′) to (c3 ′) described above may be used alone or in combination of two or more.
((D)成分:エネルギー線硬化性のアクリル系重合体(D))
 エネルギー線硬化性のアクリル系重合体(D)としては、非エネルギー線硬化性のアクリル系重合体に対して、重合性官能基が導入されたアクリル系重合体である。
 なお、上記重合性官能基は、非エネルギー線硬化性のアクリル系重合体の主鎖及び/又は側鎖に導入される。
 中間層に(D)成分を含有することで、エネルギー線を照射した際、(D)成分と粘着剤層(X2)中の(B)成分とが反応して結合して、粘着シート(II)の中間層(Z2)と粘着剤層(X2)との密着性が向上すると考えられる。また、粘着剤層(X2)と中間層(Z2)が固くなって、糊残りを抑制することができると考えられる。そのため、粘着シート(II)からの切削物及び/又は研削物の剥離時に粘着剤層(X2)の残着を抑制することができる。
((D) component: energy ray-curable acrylic polymer (D))
The energy ray curable acrylic polymer (D) is an acrylic polymer in which a polymerizable functional group is introduced to a non-energy ray curable acrylic polymer.
The polymerizable functional group is introduced into the main chain and / or side chain of the non-energy ray curable acrylic polymer.
By containing the component (D) in the intermediate layer, when the energy ray is irradiated, the component (D) and the component (B) in the pressure-sensitive adhesive layer (X2) react and bind to each other to form a pressure-sensitive adhesive sheet (II It is considered that the adhesion between the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) is improved. Further, it is considered that the adhesive layer (X2) and the intermediate layer (Z2) are hardened and adhesive residue can be suppressed. Therefore, the adhesion of the pressure-sensitive adhesive layer (X2) can be suppressed when the cut and / or ground material is peeled from the pressure-sensitive adhesive sheet (II).
 非エネルギー線硬化性のアクリル系重合体としては、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を有するアクリル系重合体や、環状構造を有する(メタ)アクリレートに由来する構成単位を有するアクリル系重合体等が挙げられる。 Examples of non-energy ray curable acrylic polymers include acrylic polymers having structural units derived from alkyl (meth) acrylates having linear or branched alkyl groups, and (meth) acrylates having a cyclic structure. An acrylic polymer having a derived structural unit can be used.
 重合性官能基は、エネルギー線重合性の炭素-炭素二重結合を含む基であればよく、例えば、(メタ)アクリロイル基、ビニル基等が挙げられるが、エネルギー線重合基の導入が容易であるとの観点から、(メタ)アクリロイル基が好ましい。
 なお、当該エネルギー線重合性基は、アルキレン基、アルキレンオキシ基、ポリアルキレンオキシ基等を介して、非エネルギー線硬化性のアクリル系重合体の主鎖又は側鎖と結合されていてもよい。
The polymerizable functional group may be any group containing an energy beam polymerizable carbon-carbon double bond, and examples thereof include a (meth) acryloyl group and a vinyl group. From the viewpoint of being present, a (meth) acryloyl group is preferred.
The energy beam polymerizable group may be bonded to the main chain or side chain of the non-energy beam curable acrylic polymer via an alkylene group, an alkyleneoxy group, a polyalkyleneoxy group, or the like.
 (D)成分の質量平均分子量(Mw)は、好ましくは5万~25万であり、より好ましくは6万~22万、更に好ましくは7万~20万、より更に好ましくは8万~18万、更になお好ましくは8.5万~15万である。
 (D)成分のMwが5万未満であると、得られる粘着シートの経時安定性が劣りやすい。つまり、当該粘着シートを長期間保管した際、(D)成分の一部が粘着剤層内へ移行し、当該粘着シートの粘着力が不安定になると共に、エネルギー線照射後に、粘着剤層(X2)が過度に硬化しやすい。その結果、当該粘着シートは、長期間保管後に使用した場合、もしくは加工対象物貼付した状態で長期間放置した場合、エネルギー線照射後における中間層(Z2)と粘着剤層(X2)との密着性が不十分となるために、当該粘着シートを剥離する際に粘着剤層(X2)の破断や切削物及び/又は研削物に粘着剤層(X2)の残渣が付着する場合がある。
 一方、(D)成分のMwが25万を超えると、エネルギー線照射後における中間層(Z2)と粘着剤層(X2)との密着性が劣りやすく、切削物・検索物を粘着シート(II)から剥離する際に、粘着剤層(X2)の破断や切削物及び/又は研削物に粘着剤層(X2)の残渣が付着する場合がある。
The weight average molecular weight (Mw) of the component (D) is preferably 50,000 to 250,000, more preferably 60,000 to 220,000, still more preferably 70,000 to 200,000, still more preferably 80,000 to 180,000. More preferably, it is 850,000 to 150,000.
When the Mw of the component (D) is less than 50,000, the stability of the obtained pressure-sensitive adhesive sheet tends to be poor. That is, when the pressure-sensitive adhesive sheet is stored for a long time, a part of the component (D) moves into the pressure-sensitive adhesive layer, the pressure-sensitive adhesive force of the pressure-sensitive adhesive sheet becomes unstable, and the pressure-sensitive adhesive layer ( X2) tends to harden excessively. As a result, when the pressure-sensitive adhesive sheet is used after long-term storage, or when left for a long time with the object to be processed attached, the adhesion between the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) after irradiation with energy rays Since the property becomes insufficient, when the pressure-sensitive adhesive sheet is peeled off, the pressure-sensitive adhesive layer (X2) may be broken or the residue of the pressure-sensitive adhesive layer (X2) may adhere to the cut and / or ground material.
On the other hand, when the Mw of the component (D) exceeds 250,000, the adhesion between the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) after irradiation with energy rays tends to be inferior, and the cut or searched material is removed from the pressure-sensitive adhesive sheet (II ), The adhesive layer (X2) may break or the residue of the adhesive layer (X2) may adhere to the cut product and / or the ground product.
 (D)成分としては、経時安定性に優れた粘着シートとする観点、並びに、形成される中間層(Z2)と粘着剤層(X2)とのエネルギー線照射後における密着性を向上させた粘着シートとする観点から、炭素数1~18のアルキル基を有するアルキル(メタ)アクリレート(d1’)(以下、「モノマー(d1’)」ともいう)に由来する構成単位(d1)及び官能基含有モノマー(d2’)(以下、「モノマー(d2’)」ともいう)に由来する構成単位(d2)を有するアクリル系共重合体(D0)と、重合性化合物(Xd)とを反応させて得られるエネルギー線硬化性のアクリル系共重合体(D1)を含むことが好ましく、エネルギー線硬化性のアクリル系共重合体(D1)であることがより好ましい。
 なお、アクリル系共重合体(D0)、(D1)の共重合の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれであってもよい。
As component (D), a pressure-sensitive adhesive sheet having excellent temporal stability, and a pressure-sensitive adhesive with improved adhesion after irradiation with energy rays between the formed intermediate layer (Z2) and pressure-sensitive adhesive layer (X2) From the viewpoint of forming a sheet, it contains a structural unit (d1) derived from an alkyl (meth) acrylate (d1 ′) having an alkyl group having 1 to 18 carbon atoms (hereinafter also referred to as “monomer (d1 ′)”) and a functional group. Obtained by reacting an acrylic copolymer (D0) having a structural unit (d2) derived from a monomer (d2 ′) (hereinafter also referred to as “monomer (d2 ′)”) and a polymerizable compound (Xd). It is preferable that the energy beam-curable acrylic copolymer (D1) is included, and more preferable is the energy beam-curable acrylic copolymer (D1).
The form of copolymerization of the acrylic copolymers (D0) and (D1) is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer.
 アクリル系共重合体(D1)の含有量は、中間層形成用組成物(z2)中に含まれる(D)成分の全量(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは100質量%である。 The content of the acrylic copolymer (D1) is preferably 70 to 100% by mass with respect to the total amount (100% by mass) of the component (D) contained in the intermediate layer forming composition (z2). The amount is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and still more preferably 100% by mass.
 モノマー(d1’)が有するアルキル基の炭素数としては、より好ましくは4~12、更に好ましくは4~8、より更に好ましくは4~6である。
 モノマー(d1’)としては、上述のモノマー(a1’)として例示したものが挙げられる。
 これらの中でも、ブチル(メタ)アクリレート又は2-エチルヘキシル(メタ)アクリレートが好ましく、ブチル(メタ)アクリレートがより好ましい。
The number of carbon atoms of the alkyl group contained in the monomer (d1 ′) is more preferably 4 to 12, still more preferably 4 to 8, and still more preferably 4 to 6.
As the monomer (d1 ′), those exemplified as the aforementioned monomer (a1 ′) can be mentioned.
Among these, butyl (meth) acrylate or 2-ethylhexyl (meth) acrylate is preferable, and butyl (meth) acrylate is more preferable.
 アクリル系共重合体(D0)における、構成単位(d1)の含有量は、アクリル系共重合体(D0)の全構成単位(100質量%)に対して、好ましくは50~99質量%、より好ましくは55~95質量%、更に好ましくは60~90質量%、より更に好ましくは65~85質量%である。
 構成単位(d1)の含有量が50質量%以上であれば、形成される中間層(Z2)の形状を十分に維持することができるため好ましい。
 また、構成単位(d1)の含有量が99質量%以下であれば、重合性化合物(Xd)との反応点となる官能基を有する構成単位(d2)の含有量を十分に確保でき、形成される中間層(Z2)と粘着剤層(X2)とのエネルギー線照射後の密着性を向上させることができるため好ましい。
The content of the structural unit (d1) in the acrylic copolymer (D0) is preferably 50 to 99% by weight, based on the total structural unit (100% by weight) of the acrylic copolymer (D0). The amount is preferably 55 to 95% by mass, more preferably 60 to 90% by mass, and still more preferably 65 to 85% by mass.
A content of the structural unit (d1) of 50% by mass or more is preferable because the shape of the intermediate layer (Z2) to be formed can be sufficiently maintained.
Moreover, if content of a structural unit (d1) is 99 mass% or less, content of the structural unit (d2) which has a functional group used as a reaction point with polymeric compound (Xd) can fully be ensured, and formation The intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) to be adhered can be improved since the adhesion after irradiation with energy rays can be improved.
 モノマー(d2’)としては、上述のモノマー(a2’)として例示したものが挙げられるが、水酸基含有モノマー、カルボキシ基含有モノマー、及びエポキシ基含有モノマーから選ばれる1種以上が好ましく、水酸基含有モノマーがより好ましく、ヒドロキシアクリル(メタ)アクリレートが更に好ましく、2-ヒドロキシエチル(メタ)アクリレートがより更に好ましい。 Examples of the monomer (d2 ′) include those exemplified as the above-mentioned monomer (a2 ′), but one or more selected from a hydroxyl group-containing monomer, a carboxy group-containing monomer, and an epoxy group-containing monomer are preferable. Is more preferable, hydroxyacryl (meth) acrylate is more preferable, and 2-hydroxyethyl (meth) acrylate is still more preferable.
 アクリル系共重合体(D0)における、構成単位(d2)の含有量は、アクリル系共重合体(D0)の全構成単位(100質量%)に対して、好ましくは1~50質量%、より好ましくは5~45質量%、更に好ましくは10~40質量%、より更に好ましくは15~35量%である。
 構成単位(d2)の含有量が1質量%以上であれば、形成される中間層(Z2)と粘着剤層(X2)とのエネルギー線照射後の密着性を向上させるために十分な重合性化合物(Xd)との反応点を確保できるため好ましい。
 また、構成単位(d2)の含有量が50質量%以下であれば、形成される中間層(Z2)の形状を十分に維持することができるため好ましい。
The content of the structural unit (d2) in the acrylic copolymer (D0) is preferably 1 to 50% by weight, based on the total structural unit (100% by weight) of the acrylic copolymer (D0). The amount is preferably 5 to 45% by mass, more preferably 10 to 40% by mass, and still more preferably 15 to 35% by mass.
If the content of the structural unit (d2) is 1% by mass or more, sufficient polymerizability to improve the adhesion between the intermediate layer (Z2) to be formed and the pressure-sensitive adhesive layer (X2) after irradiation with energy rays. It is preferable because a reaction point with the compound (Xd) can be secured.
Moreover, if content of a structural unit (d2) is 50 mass% or less, since the shape of the intermediate | middle layer (Z2) formed can fully be maintained, it is preferable.
 アクリル系共重合体(D0)は、上記モノマー(d1’)及び(d2’)以外の他のモノマー(d3’)に由来する構成単位(b3)を有していてもよい。
 他のモノマー(d3’)としては、上述のモノマー(a3’)として例示したものが挙げられる。
The acrylic copolymer (D0) may have a structural unit (b3) derived from another monomer (d3 ′) other than the monomers (d1 ′) and (d2 ′).
Examples of the other monomer (d3 ′) include those exemplified as the monomer (a3 ′) described above.
 アクリル系共重合体(D0)における、構成単位(d3)の含有量は、アクリル系共重合体(D0)の全構成単位(100質量%)に対して、好ましくは0~30質量%、より好ましくは0~20質量%、更に好ましくは0~10質量%、より更に好ましくは0~5質量%である。
 なお、上述のモノマー(d1’)~(d3’)は、単独で又は2種以上組み合わせて用いてもよい。
The content of the structural unit (d3) in the acrylic copolymer (D0) is preferably 0 to 30% by weight, based on the total structural unit (100% by weight) of the acrylic copolymer (D0). The content is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, and still more preferably 0 to 5% by mass.
The monomers (d1 ′) to (d3 ′) described above may be used alone or in combination of two or more.
 エネルギー線硬化性のアクリル系共重合体(D1)は、このアクリル系共重合体(D0)の構成単位(d2)中の官能基と、重合性化合物(Xd)とが反応し、重合性化合物(Xd)が有する重合性官能基が、アクリル系共重合体(D0)の主鎖及び側鎖の少なくとも一方に導入されたものである。 The energy ray-curable acrylic copolymer (D1) is obtained by reacting the functional group in the structural unit (d2) of the acrylic copolymer (D0) with the polymerizable compound (Xd). The polymerizable functional group possessed by (Xd) is introduced into at least one of the main chain and the side chain of the acrylic copolymer (D0).
 重合性化合物(Xd)は、重合性官能基を有する化合物であって、反応性官能基を有する化合物であれば、特に制限されない。
 なお、重合性化合物(Xd)の中でも、上記反応性置換基を有すると共に、重合性官能基を1分子あたり1~5個有する化合物であることが好ましい。
 上記反応性置換基としては、例えば、イソシアネート基、カルボキシル基、エポキシ基等が挙げられ、イソシアネート基が好ましい。
 上記重合性官能基としては、上述のとおり、(メタ)アクリロイル基、ビニル基等が挙げられ、(メタ)アクリロイル基が好ましい。
The polymerizable compound (Xd) is a compound having a polymerizable functional group and is not particularly limited as long as it is a compound having a reactive functional group.
Among the polymerizable compounds (Xd), a compound having the above-described reactive substituent and having 1 to 5 polymerizable functional groups per molecule is preferable.
As said reactive substituent, an isocyanate group, a carboxyl group, an epoxy group etc. are mentioned, for example, An isocyanate group is preferable.
As said polymerizable functional group, (meth) acryloyl group, a vinyl group, etc. are mentioned as above-mentioned, (meth) acryloyl group is preferable.
 具体的な重合性化合物(Xd)としては、上述した重合性化合物(Xb)と同様の化合物が挙げられる。
 重合性化合物(Xd)は、単独で又は2種以上を組み合わせて用いてもよい。
 これらの中でも、上記反応性置換基として好適なイソシアネート基を有しており、且つアクリル系共重合体(D0)とエネルギー線重合性基との距離が適当となる化合物であるとの観点から、(メタ)アクリロイルオキシエチルイソシアネートが好ましい。
Specific examples of the polymerizable compound (Xd) include the same compounds as the polymerizable compound (Xb) described above.
The polymerizable compound (Xd) may be used alone or in combination of two or more.
Among these, from the viewpoint of having a suitable isocyanate group as the reactive substituent and a compound in which the distance between the acrylic copolymer (D0) and the energy ray polymerizable group is appropriate, (Meth) acryloyloxyethyl isocyanate is preferred.
 アクリル系共重合体(D1)において、アクリル系共重合体(D0)が有する官能基数と重合性化合物(Xd)の配合量の関係について、形成される中間層(Z2)と粘着剤層(X2)とのエネルギー線照射後の密着性を向上させる観点から、下記式(2)より算出されるβの値が、好ましくは1~50、より好ましくは2~40、更に好ましくは3~35、より更に好ましくは5~30である。
 なお、上記βの値は、アクリル系共重合体(D1)が有するエネルギー線重合性基数に相当するものである。
 式(2):β=〔P〕×〔Q〕×〔R〕/100
(式(2)中、〔P〕は、アクリル系共重合体(D0)の全構成単位100質量部に対する構成単位(d2)の含有量を示す。〔Q〕は、アクリル系共重合体(D0)が有する当該官能基含有モノマー由来の官能基100当量に対する、重合性化合物(Xd)の当量を示す。〔R〕は、重合性化合物(Xd)が有する重合性官能基数を示す。)
In the acrylic copolymer (D1), the intermediate layer (Z2) and the pressure-sensitive adhesive layer (X2) are formed with respect to the relationship between the number of functional groups of the acrylic copolymer (D0) and the blending amount of the polymerizable compound (Xd). From the viewpoint of improving the adhesiveness after irradiation with energy rays, the value of β calculated from the following formula (2) is preferably 1 to 50, more preferably 2 to 40, still more preferably 3 to 35, More preferably, it is 5-30.
In addition, the value of β corresponds to the number of energy ray polymerizable groups possessed by the acrylic copolymer (D1).
Formula (2): β = [P d ] × [Q d ] × [R d ] / 100
(In the formula (2), [P d ] represents the content of the structural unit (d2) with respect to 100 parts by mass of all the structural units of the acrylic copolymer (D0). [Q d ] represents the acrylic copolymer. Indicates the equivalent of the polymerizable compound (Xd) to 100 equivalents of the functional group derived from the functional group-containing monomer of the union (D0), [R d ] indicates the number of polymerizable functional groups of the polymerizable compound (Xd). .)
(中間層形成用組成物中に含まれる他の添加剤)
 中間層形成用組成物(z2)には、本発明の効果を損なわない範囲において、他の添加剤を含有してもよい。
 他の添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、充填剤、防錆剤、顔料、染料、粘着付与剤等が挙げられる。
 これらの添加剤を含有する場合、それぞれの添加剤の含有量は、(A)成分100質量部に対して、好ましくは0.01~6質量部、より好ましくは0.01~2質量部である。
(Other additives contained in the intermediate layer forming composition)
The intermediate layer forming composition (z2) may contain other additives as long as the effects of the present invention are not impaired.
Examples of other additives include antioxidants, softeners (plasticizers), fillers, rust inhibitors, pigments, dyes, tackifiers, and the like.
When these additives are contained, the content of each additive is preferably 0.01 to 6 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of component (A). is there.
<剥離材>
 本発明の一態様の粘着性積層体は、加工対象物と貼付する粘着剤層(X1)及び(X2)の表面に、さらに剥離材を積層してもよい。
 剥離材としては、両面剥離処理をされた剥離シートや、片面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
<Release material>
In the adhesive laminate of one embodiment of the present invention, a release material may be further laminated on the surfaces of the pressure-sensitive adhesive layers (X1) and (X2) to be attached to the workpiece.
As the release material, a release sheet that has been subjected to a double-sided release process, a release sheet that has been subjected to a single-sided release process, or the like is used. Examples include a release material coated on a release material substrate.
 剥離材用基材としては、例えば、上質紙、グラシン紙、クラフト紙等の紙類;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等のプラスチックフィルム;等が挙げられる。 Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and kraft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; and olefins such as polypropylene resin and polyethylene resin. A plastic film such as a resin film;
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。 Examples of the release agent include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
 剥離材の厚さは、特に制限ないが、好ましくは10~200μm、より好ましくは25~170μm、更に好ましくは35~80μmである。 The thickness of the release material is not particularly limited, but is preferably 10 to 200 μm, more preferably 25 to 170 μm, and still more preferably 35 to 80 μm.
<粘着シート(II)の物性>
 本発明の一態様において、工程(4)における切削、研削をより行い易くする観点から、粘着シート(II)は、下記要件(α)~(γ)の1以上を満たすことが好ましく、下記要件(α)~(γ)のいずれか二つを満たすことがより好ましく、要件(α)~(γ)の全てを満たすことが更に好ましい。
・要件(α):基材(Y2)のヤング率が1.0MPa以上である。
・要件(β):基材(Y2)の厚さが5μm以上である。
・要件(γ):粘着剤層(X2)の貯蔵弾性率G’(23℃)が0.10MPa以上である。
 なお、工程(4)における切削、研削をさらに行い易くする観点から、要件(α)で規定される基材(Y2)のヤング率は1.0~1000MPaであることが好ましく、1.5~800MPaであることがより好ましく、2.0~500MPaであることが更に好ましい。
 また、工程(4)における切削、研削をさらに行い易くする観点から、要件(β)で規定される基材(Y2)の厚さは5~250μmであることが好ましく、10~230μmであることがより好ましく、20~210μmであることが更に好ましい。
 さらに、工程(4)における切削、研削をさらに行い易くする観点から、要件(γ)で規定される粘着剤層(X2)の貯蔵弾性率G’(23℃)は0.10~1MPaであることが好ましく、0.12~0.9MPaであることがより好ましく、0.14~0.8MPaであることが更に好ましい。
<Physical properties of adhesive sheet (II)>
In one embodiment of the present invention, from the viewpoint of facilitating cutting and grinding in the step (4), the pressure-sensitive adhesive sheet (II) preferably satisfies one or more of the following requirements (α) to (γ). It is more preferable to satisfy any two of (α) to (γ), and it is further preferable to satisfy all of the requirements (α) to (γ).
-Requirement ((alpha)): Young's modulus of a base material (Y2) is 1.0 Mpa or more.
-Requirement ((beta)): The thickness of a base material (Y2) is 5 micrometers or more.
Requirement (γ): The storage elastic modulus G ′ (23 ° C.) of the pressure-sensitive adhesive layer (X2) is 0.10 MPa or more.
From the viewpoint of facilitating the cutting and grinding in the step (4), the Young's modulus of the base material (Y2) defined by the requirement (α) is preferably 1.0 to 1000 MPa, preferably 1.5 to 800 MPa is more preferable, and 2.0 to 500 MPa is still more preferable.
Further, from the viewpoint of facilitating cutting and grinding in the step (4), the thickness of the base material (Y2) defined by the requirement (β) is preferably 5 to 250 μm, and preferably 10 to 230 μm. Is more preferably 20 to 210 μm.
Furthermore, from the viewpoint of facilitating cutting and grinding in the step (4), the storage elastic modulus G ′ (23 ° C.) of the pressure-sensitive adhesive layer (X2) defined by the requirement (γ) is 0.10 to 1 MPa. It is preferably 0.12 to 0.9 MPa, more preferably 0.14 to 0.8 MPa.
[加工品の製造方法の各工程]
 次に、本発明の加工品の製造方法の各工程について詳細に説明する。
 本発明の加工品の製造方法は、基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に熱膨張開始温度(t)の熱膨張性粒子を含む熱膨張性の粘着シート(I)、並びに、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)を備え、粘着シート(I)と粘着シート(II)の基材(Y2)とが直接積層してなる粘着性積層体を用いて、切削及び研削の少なくともいずれかの加工が施された加工品を製造する方法であって、
 下記工程(1)~(3)をこの順で有し、
・工程(1):前記粘着性積層体の粘着剤層(X1)の表面を支持体に貼付するとともに、前記粘着性積層体の粘着剤層(X2)の表面に加工対象物を貼付する工程
・工程(2):前記加工対象物に一以上の加工を施す工程
・工程(3):前記熱膨張性粒子の熱膨張開始温度(t)以上での加熱によって、前記加工対象物を前記粘着性積層体の粘着剤層(X2)の表面に貼付した状態を維持しながら、前記粘着性積層体を粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pで分離する工程
 さらに、下記工程(4)を有し、
・工程(4):前記加工対象物の粘着剤層(X2)との貼付面とは反対側の表面に対して切削及び研削の少なくともいずれかの処理を実施する工程
 前記工程(4)は、下記(X)及び(Y)の少なくともいずれかにおいて実施される。
(X):前記一以上の加工として前記工程(2)において実施される
(Y):前記工程(3)の後において実施される
[Each step of the manufacturing method for processed products]
Next, each process of the manufacturing method of the processed product of this invention is demonstrated in detail.
The method for producing a processed product according to the present invention includes a base material (Y1) and a pressure-sensitive adhesive layer (X1), and one of the layers includes a heat-expandable pressure-sensitive adhesive containing heat-expandable particles having a thermal expansion start temperature (t). A sheet (I) and a pressure-sensitive adhesive sheet (II) having a base material (Y2) and a pressure-sensitive adhesive layer (X2) are provided, and the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated. A method for producing a processed product that has been subjected to at least one of cutting and grinding using an adhesive laminate formed by:
It has the following steps (1) to (3) in this order,
Step (1): A step of sticking the surface of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate to a support and sticking a workpiece to the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive laminate. Step (2): Step of performing one or more processings on the workpiece. Step (3): Heating the thermal expandable particles at a thermal expansion start temperature (t) or higher, thereby sticking the workpiece to the adhesive. The pressure-sensitive adhesive laminate is separated at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) while maintaining the state of being stuck on the surface of the pressure-sensitive adhesive layer (X2). The following step (4)
Step (4): a step of performing at least one of cutting and grinding on the surface opposite to the surface of the workpiece to be adhered to the adhesive layer (X2). It is carried out in at least one of the following (X) and (Y).
(X): Implemented in the step (2) as the one or more processes (Y): Implemented after the step (3)
 本発明の製造方法では、上述の粘着性積層体を用いる。具体的には、粘着性積層体の粘着シート(I)の粘着剤層(X1)の表面を支持体に貼付するとともに、粘着性積層体の粘着シート(II)の粘着剤層(X2)の表面に加工対象物を貼付して用いる。したがって、加工対象物を支持体に固定した状態で所定の加工を実施することができる。しかも、当該所定の加工を実施した後は、当該所定の加工を施した加工対象物が貼付されている粘着シート(II)を、わずかな力で粘着シート(I)から一括して容易に分離することができる。つまり、当該所定の加工を施した加工対象物が貼付されている粘着シート(II)を支持体から容易に分離することができる。したがって、当該所定の加工を施した加工対象物を新たな粘着シートに貼付することなく、次工程に供することができる。
 以下、本発明の製造方法の各工程について、図4及び図5を適宜参照しながら説明する。
In the production method of the present invention, the above-mentioned adhesive laminate is used. Specifically, the surface of the adhesive layer (X1) of the adhesive sheet (I) of the adhesive laminate is affixed to the support, and the adhesive layer (X2) of the adhesive sheet (II) of the adhesive laminate is An object to be processed is attached to the surface for use. Therefore, a predetermined process can be performed in a state where the object to be processed is fixed to the support. Moreover, after the predetermined processing is performed, the adhesive sheet (II) to which the processing object subjected to the predetermined processing is pasted can be easily separated from the adhesive sheet (I) in a lump with a slight force. can do. That is, the pressure-sensitive adhesive sheet (II) to which the processing object subjected to the predetermined processing is attached can be easily separated from the support. Therefore, it can use for the following process, without sticking the processing target object which performed the said predetermined process to a new adhesive sheet.
Hereafter, each process of the manufacturing method of this invention is demonstrated, referring FIG.4 and FIG.5 suitably.
<工程(1)>
 図4(a)及び図5(a)は、粘着性積層体を介して、支持体に加工対象物を貼付した状態を示す、断面模式図である。
 工程(1)では、図4(a)及び図5(a)に示すように、上記第一態様の粘着性積層体1aを介して、支持体50に加工対象物60、70を貼付し、前記支持体、前記粘着性積層体、及び前記加工対象物をこの順で積層する。
 なお、図4及び図5においては、図1(a)に示す粘着性積層体1aを用いた例を示しているが、他の構成を有する本発明の粘着性積層体を用いる場合においても、同様に、前記支持体、前記粘着性積層体、及び前記加工対象物をこの順で積層する。
<Step (1)>
FIG. 4A and FIG. 5A are schematic cross-sectional views showing a state where a processing object is attached to a support via an adhesive laminate.
In step (1), as shown in FIGS. 4 (a) and 5 (a), the workpieces 60 and 70 are affixed to the support 50 via the adhesive laminate 1a of the first aspect, The support, the adhesive laminate, and the workpiece are laminated in this order.
In addition, in FIG.4 and FIG.5, although the example using the adhesive laminated body 1a shown to Fig.1 (a) is shown, also when using the adhesive laminated body of this invention which has another structure, Similarly, the support, the adhesive laminate, and the workpiece are laminated in this order.
 図4(a)及び図5(a)に示すように、工程(1)において、前記粘着性積層体が有する粘着シート(II)の粘着剤層(X2)に加工対象物60、70を貼付し、前記粘着性積層体が有する粘着シート(I)の粘着剤層(X1)と支持体50とを貼付する。 As shown to Fig.4 (a) and FIG.5 (a), in process (1), the processing objects 60 and 70 are affixed on the adhesive layer (X2) of the adhesive sheet (II) which the said adhesive laminated body has. And the adhesive layer (X1) of the adhesive sheet (I) which the said adhesive laminated body has and the support body 50 are stuck.
 なお、粘着性積層体に貼付される加工対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。
 また、加工対象物は、表面に切り込み溝が形成された半導体ウエハ等であってもよく、当該切り込み溝の形成面側を粘着シート(II)の粘着剤層(X2)と貼り合せてもよい。また、加工対象物は、レーザー光照射により内部に予め改質領域が形成された半導体ウエハ等であってもよい。これらの場合、工程(4)において研削を行うことで、切り込み溝又は改質領域が分割起点となり、加工対象物を分割することができる。
 すなわち、加工対象物が、表面に切り込み溝が形成された半導体ウエハである場合、本発明の一態様の製造方法は、工程(1)が下記工程(1-C)であり、前記工程(4)が下記工程(4-C)である。
・工程(1-C):前記粘着性積層体の粘着剤層(X1)の表面を支持体に貼付するとともに、前記粘着性積層体の粘着剤層(X2)の表面に前記半導体ウエハの切り込み溝を有する面を貼付する工程
・工程(4-C):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
 また、加工対象物が、分割起点となる改質領域を有する半導体ウエハである場合、本発明の一態様の製造方法は、工程(4)が下記工程(4-A)である。
・工程(4-A):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
In addition, as a processing target object stuck on an adhesive laminated body, a semiconductor chip, a semiconductor wafer, a compound semiconductor, a semiconductor package, an electronic component, a sapphire substrate, a display, a substrate for panels, etc. are mentioned, for example.
Further, the object to be processed may be a semiconductor wafer or the like having a cut groove formed on the surface, and the surface on which the cut groove is formed may be bonded to the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II). . Further, the object to be processed may be a semiconductor wafer or the like in which a modified region is previously formed inside by laser beam irradiation. In these cases, by performing grinding in the step (4), the cut groove or the modified region serves as a division starting point, and the workpiece can be divided.
That is, when the workpiece is a semiconductor wafer having a cut groove formed on the surface, in the manufacturing method of one embodiment of the present invention, the step (1) is the following step (1-C), and the step (4) ) Is the following step (4-C).
Step (1-C): The surface of the adhesive layer (X1) of the adhesive laminate is affixed to a support, and the semiconductor wafer is cut into the surface of the adhesive layer (X2) of the adhesive laminate Step / step (4-C) for attaching a surface having a groove: a step of grinding the surface of the semiconductor wafer opposite to the adhesive layer (X2) to be attached. In the case of a semiconductor wafer having a modified region serving as a division starting point, in the manufacturing method of one embodiment of the present invention, step (4) is the following step (4-A).
Step (4-A): A step of grinding the surface of the semiconductor wafer opposite to the surface to which the adhesive layer (X2) is attached.
 前記支持体は、工程(2)において加工対象物を固定し、加工の精度を高めるために用いられる。
 前記支持体は、粘着性積層体の粘着剤層(X1)の粘着表面の全面に貼付されることが好ましい。
 したがって、支持体は、板状であることが好ましい。また、図4及び図5に示すように、粘着剤層(X1)の粘着表面122aと貼付される側の支持体50の表面の面積は、粘着剤層(X1)の粘着表面122aの面積以上であることが好ましい。
The support is used for fixing the object to be processed in step (2) and increasing the processing accuracy.
It is preferable that the said support body is affixed on the whole adhesive surface of the adhesive layer (X1) of an adhesive laminated body.
Therefore, the support is preferably plate-shaped. Moreover, as shown in FIG.4 and FIG.5, the area of the surface of the support body 50 by which the adhesive surface 122a of the adhesive layer (X1) is stuck is more than the area of the adhesive surface 122a of an adhesive layer (X1). It is preferable that
 前記支持体を構成する材質としては、加工対象物の種類や、工程(2)で施される加工に応じて、機械強度や耐熱性等の要求される特性を考慮の上、適宜選択される。
 具体的な支持体を構成する材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、及びシリコンウエハ等が好ましい。
 なお、エンジニアリングプラスチックとしては、ナイロン、ポリカーボネート(PC)、及びポリエチレンテレフタレート(PET)等が挙げられる。
 スーパーエンジニアリングプラスチックとしては、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、及びポリエーテルエーテルケトン(PEEK)等が挙げられる。
The material constituting the support is appropriately selected in consideration of required properties such as mechanical strength and heat resistance according to the type of the object to be processed and the processing performed in step (2). .
Specific materials constituting the support include, for example, metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, Examples thereof include resin materials such as polyamideimide resin; composite materials such as glass epoxy resin, and among these, SUS, glass, silicon wafer and the like are preferable.
Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
Examples of super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
 支持体の厚さは、要求される特性等を考慮して適宜選択されるが、好ましくは20μm以上50mm以下であり、より好ましくは60μm以上20mm以下である。 The thickness of the support is appropriately selected in consideration of required characteristics and the like, but is preferably 20 μm or more and 50 mm or less, more preferably 60 μm or more and 20 mm or less.
 工程(1)における温度条件としては、熱膨張性粒子の膨張開始温度(t)未満であればよい。 The temperature condition in the step (1) may be less than the expansion start temperature (t) of the thermally expandable particles.
<工程(2)>
 工程(2)では、工程(1)で本発明の粘着性積層体の粘着剤層(X2)に貼付した前記加工対象物に対して、一以上の加工を施す。
 工程(2)で施す加工処理としては、例えば、加工対象物に対する樹脂を用いた封止処理、加工対象物に分割起点となる改質領域を形成する処理、回路形成処理、エッチング処理、めっき処理、スパッタリング処理、蒸着処理、保護膜形成処理、別途用意した粘着シートを用いたラミネート処理等が挙げられる。
 また、工程(2)で施す加工処理は、加工対象物に対する切削及び研削の少なくともいずれかの加工処理であってもよい。
 すなわち、工程(2)で施す加工処理は、加工対象物を切削する工程及び研削する工程の少なくともいずれかの工程を含む加工であってもよいし、加工対象物を切削する工程及び研削する工程を含まない加工であってもよい。
 工程(2)における温度条件も、工程(1)と同様、熱膨張性粒子の膨張開始温度(t)未満であればよい。
 以下、工程(2)として、加工対象物に分割起点となる改質領域を形成する処理(工程(2-A))を行う場合、加工対象物に対する樹脂を用いた封止処理(工程(2-B))を行う場合を例に挙げて説明する。
<Step (2)>
At a process (2), one or more processes are performed with respect to the said process target object stuck on the adhesive layer (X2) of the adhesive laminated body of this invention at the process (1).
Examples of the processing performed in the step (2) include, for example, a sealing process using a resin for the processing target, a process for forming a modified region serving as a division starting point on the processing target, a circuit forming process, an etching process, and a plating process. , Sputtering treatment, vapor deposition treatment, protective film formation treatment, laminating treatment using a separately prepared adhesive sheet, and the like.
Further, the processing applied in the step (2) may be at least one of cutting and grinding for the workpiece.
That is, the processing performed in the step (2) may be processing including at least one of the step of cutting the workpiece and the step of grinding, or the step of cutting the workpiece and the step of grinding Processing that does not include
Similarly to the step (1), the temperature condition in the step (2) may be less than the expansion start temperature (t) of the thermally expandable particles.
Hereinafter, when performing the process (step (2-A)) for forming a modified region serving as a division starting point on the processing object as the process (2), the sealing process using the resin for the processing object (process (2) -B)) will be described as an example.
(工程(2-A))
 工程(2-A)は、加工対象物が半導体ウエハであり、当該半導体ウエハに、分割起点となる改質領域を形成する工程である。
 具体的には、図4(b)に示すように、半導体ウエハの粘着シート(II)との貼付面とは反対側の面をレーザー光入射面とし、レーザー光の集光点が半導体ウエハの内部になるようにレーザー光を照射することにより多光子吸収等による改質領域71を形成する。改質領域71は、工程(4)において研削を行うことで半導体ウエハの分割起点として機能する。
 なお、図4に示す製造例では、工程(3)の後に工程(4)を実施するようにしているが、工程(2-A)の後に、工程(2)における一以上の加工の一つとして工程(4)の研削を実施するようにしてもよい。この場合、個片化された半導体ウエハを粘着シート(II)から分離することなく、個片化された半導体ウエハを粘着シート(II)に貼付したままの状態で次工程に供することができる。
 すなわち、本発明の一態様の製造方法は、加工対象物が半導体ウエハであり、工程(2)における一以上の加工が、下記工程(2-A)を含み、
・工程(2-A):前記半導体ウエハに、分割起点となる改質領域を形成する工程
 工程(4)が、下記工程(4-A)であり、
・工程(4-A):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
 工程(4-A)は、下記(X-A)又は(Y-A)において実施される。
(X-A):一以上の加工として工程(2―A)の後に実施される
(Y-A):工程(3)の後に実施される
(Process (2-A))
Step (2-A) is a step in which the object to be processed is a semiconductor wafer, and a modified region serving as a division starting point is formed on the semiconductor wafer.
Specifically, as shown in FIG. 4B, the surface opposite to the surface of the semiconductor wafer attached to the adhesive sheet (II) is the laser light incident surface, and the condensing point of the laser light is the semiconductor wafer. By irradiating laser light so as to be inside, a modified region 71 by multiphoton absorption or the like is formed. The modified region 71 functions as a starting point for dividing the semiconductor wafer by grinding in the step (4).
In the manufacturing example shown in FIG. 4, step (4) is performed after step (3), but one of one or more processes in step (2) is performed after step (2-A). As described above, the grinding in the step (4) may be performed. In this case, the separated semiconductor wafer can be subjected to the next process while being attached to the adhesive sheet (II) without separating the separated semiconductor wafer from the adhesive sheet (II).
That is, in the manufacturing method of one embodiment of the present invention, the workpiece is a semiconductor wafer, and the one or more processes in the step (2) include the following step (2-A):
Step (2-A): A step of forming a modified region serving as a division starting point on the semiconductor wafer. Step (4) is the following step (4-A):
Step (4-A): A step of grinding the surface of the semiconductor wafer opposite to the surface to which the adhesive layer (X2) is attached Step (4-A) is the following (XA) Or (YA).
(XA): Implemented after step (2-A) as one or more processes (YA): Implemented after step (3)
(工程(2-B))
 工程(2-B)は、加工対象物が半導体チップであり、当該半導体チップと、粘着剤層(X2)の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程である。
(Process (2-B))
In the step (2-B), the object to be processed is a semiconductor chip, and the semiconductor chip and a peripheral portion of the semiconductor chip in the adhesive surface of the adhesive layer (X2) are covered with a sealing material, This is a step of curing the encapsulant to obtain a cured encapsulant in which the semiconductor chip is encapsulated with a cured encapsulant.
 図5に示すように、本発明の製造方法が工程(2-B)を有する場合、工程(1)では、加工対象物として半導体チップ60が用いられる。
 半導体チップ60は、従来公知のものを使用することができ、その回路面には、トランジスタ、抵抗、コンデンサー等の回路素子から構成される集積回路が形成されている。
 そして、半導体チップ60の回路面が、粘着シート(II)の粘着剤層(X2)の粘着表面で覆われるように載置されることが好ましい。半導体チップの載置には、フリップチップボンダー、ダイボンダー等の公知の装置を用いることができる。
 半導体チップ60の配置のレイアウト、配置数等は、目的とするパッケージの形態、生産数等に応じて適宜決定すればよい。
As shown in FIG. 5, when the manufacturing method of the present invention includes the step (2-B), in the step (1), the semiconductor chip 60 is used as a processing object.
A conventionally known semiconductor chip 60 can be used, and an integrated circuit composed of circuit elements such as transistors, resistors, and capacitors is formed on the circuit surface.
And it is preferable to mount so that the circuit surface of the semiconductor chip 60 may be covered with the adhesive surface of the adhesive layer (X2) of adhesive sheet (II). For mounting the semiconductor chip, a known device such as a flip chip bonder or a die bonder can be used.
The layout, number of arrangements, etc. of the semiconductor chip 60 may be appropriately determined according to the target package form, the number of production, etc.
 ここで、本発明の一態様の製造方法としては、FOWLP、FOPLP等のように、半導体チップ60をチップサイズよりも大きな領域で封止材により覆い、半導体チップ60の回路面だけではなく、封止材の表面領域においても再配線層を形成するパッケージに適用されることが好ましい。
 そのため、半導体チップ60は、粘着剤層(X2)の粘着表面の一部に載置されるものであり、複数の半導体チップ60が、一定の間隔を空けて整列された状態で、当該粘着表面に載置されることが好ましく、複数の半導体チップ60が、一定の間隔を空けて、複数行かつ複数列のマトリックス状に整列された状態で当該粘着表面に載置されることがより好ましい。
 半導体チップ60同士の間隔は、目的とするパッケージの形態等に応じて適宜決定すればよい。
Here, as a manufacturing method of one embodiment of the present invention, the semiconductor chip 60 is covered with a sealing material in a region larger than the chip size, such as FOWLP and FOPLP, and not only the circuit surface of the semiconductor chip 60 but also the sealing. It is preferable to be applied to a package for forming a rewiring layer also in the surface region of the stopper.
Therefore, the semiconductor chip 60 is placed on a part of the adhesive surface of the adhesive layer (X2), and the plurality of semiconductor chips 60 are arranged in a state of being spaced apart at a certain interval. It is preferable that the plurality of semiconductor chips 60 be mounted on the adhesive surface in a state of being arranged in a matrix of a plurality of rows and a plurality of columns with a certain interval.
The interval between the semiconductor chips 60 may be appropriately determined according to the target package form and the like.
 そして、工程(2-B)では、前記半導体チップ60と、当該半導体チップ60の少なくとも周辺部の粘着剤層(X1)の粘着表面と、を封止材で被覆し(以下、「被覆工程」ともいう)、当該封止材を硬化させて、前記半導体チップ60が硬化封止材に封止されてなる硬化封止体61を得る(以下、「硬化工程」ともいう)。
 半導体チップ60が、粘着剤層(X2)の粘着表面の一部に載置されることにより、粘着剤層(X2)の粘着表面のうち、半導体チップ60の周辺部が形成される。
 つまり、半導体チップ60の周辺部とは、複数の半導体チップ60のうち、隣接する半導体チップ60同士の間隙に相当する粘着剤層(X2)の粘着表面を指す。
In the step (2-B), the semiconductor chip 60 and the adhesive surface of the adhesive layer (X1) at least in the peripheral portion of the semiconductor chip 60 are covered with a sealing material (hereinafter referred to as “coating step”). Also, the sealing material is cured to obtain a cured sealing body 61 in which the semiconductor chip 60 is sealed with the cured sealing material (hereinafter also referred to as a “curing step”).
The semiconductor chip 60 is placed on a part of the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X2), so that the peripheral portion of the semiconductor chip 60 is formed on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X2).
That is, the peripheral portion of the semiconductor chip 60 refers to the adhesive surface of the adhesive layer (X2) corresponding to the gap between the adjacent semiconductor chips 60 among the plurality of semiconductor chips 60.
 工程(2-B)の被覆工程においては、まず、半導体チップ60と、粘着剤層(X2)の粘着表面のうち、半導体チップ60の周辺部と、を封止材で被覆する。封止材は、半導体チップCPの表出している面全体を覆いつつ、複数の半導体チップCP同士の間隙にも充填される。 In the covering step (2-B), first, the semiconductor chip 60 and the peripheral portion of the semiconductor chip 60 on the adhesive surface of the adhesive layer (X2) are covered with a sealing material. The sealing material fills the gaps between the plurality of semiconductor chips CP while covering the entire exposed surface of the semiconductor chip CP.
 封止材は、半導体チップCP及びそれに付随する要素を外部環境から保護する機能を有するものである。
 封止材としては、半導体封止材料として使用されているものの中から、任意のものを適宜選択して用いることができる、例えば、熱硬化性樹脂を含む封止材や、エネルギー線硬化性樹脂を含む封止材等が挙げられる。
 また、封止材は、室温で、顆粒状、シート状等の固形であっても、組成物の形態となった液状であってもよいが、作業性の観点から、シート状の封止材が好ましい。
The sealing material has a function of protecting the semiconductor chip CP and its accompanying elements from the external environment.
As the sealing material, any material used as a semiconductor sealing material can be appropriately selected and used. For example, a sealing material containing a thermosetting resin or an energy ray curable resin can be used. And the like.
Further, the sealing material may be a solid such as a granule or a sheet at room temperature, or a liquid in the form of a composition. From the viewpoint of workability, the sealing material is in the form of a sheet. Is preferred.
 封止材を用いて、半導体チップ60及びその周辺部を被覆する方法としては、従来、半導体封止工程に適用されている方法の中から、封止材の種類に応じて適宜選択して適用することができ、例えば、ロールラミネート法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、トランスファーモールディング法、圧縮成形モールド法等を適用することができる。 As a method of covering the semiconductor chip 60 and its peripheral part using the sealing material, it is appropriately selected and applied according to the type of the sealing material from methods conventionally used in the semiconductor sealing process. For example, a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, a compression molding mold method, or the like can be applied.
 そして、被覆工程を行った後、封止材を硬化させて、半導体チップ60が硬化封止材に封止されてなる硬化封止体61を得ることができる。
 なお、工程(2-B)の被覆工程及び硬化工程は、熱膨張性粒子の膨張開始温度(t)未満の温度条件で行われることが好ましい。
 また、被覆工程と硬化工程とは、別々に実施してもよいが、被覆工程において封止材を加熱する場合には、当該加熱によって、そのまま封止材を硬化させ、被覆工程と硬化工程とを同時に実施してもよい。
 なお、図5に示す製造例では、工程(3)の後に工程(4)を実施するようにしているが、工程(2-B)の後に、工程(2)における一以上の加工の一つとして工程(4)を実施するようにしてもよい。この場合、硬化封止体を粘着シート(II)から分離することなく、硬化封止体を粘着シート(II)に貼付したままの状態で次工程に供することができる。
 すなわち、本発明の一態様の製造方法は、加工対象物が半導体チップであり、工程(2)における一以上の加工が、下記工程(2-B)を含み、
・工程(2-B):前記半導体チップと、粘着剤層(X2)の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程
 工程(4)は、下記(X-B)及び(Y-B)の少なくともいずれかにおいて実施される。
(X-B):前記一以上の加工として前記工程(2―B)の後に実施される
(Y-B):前記工程(3)の後に実施される
And after performing a coating | coated process, the sealing material can be hardened and the hardening sealing body 61 by which the semiconductor chip 60 is sealed with the hardening sealing material can be obtained.
The covering step and the curing step in step (2-B) are preferably performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles.
In addition, the coating step and the curing step may be performed separately. However, when the sealing material is heated in the coating step, the sealing material is cured as it is by the heating, and the coating step and the curing step are performed. May be performed simultaneously.
In the manufacturing example shown in FIG. 5, step (4) is performed after step (3), but one of one or more processes in step (2) is performed after step (2-B). As described above, step (4) may be performed. In this case, the cured encapsulant can be subjected to the next step without being separated from the adhesive sheet (II) while being adhered to the adhesive sheet (II).
That is, in the manufacturing method of one embodiment of the present invention, the object to be processed is a semiconductor chip, and the one or more processes in the step (2) include the following step (2-B):
Step (2-B): covering the semiconductor chip and the periphery of the semiconductor chip among the adhesive surfaces of the adhesive layer (X2) with a sealing material, and curing the sealing material; Step (4) of obtaining a cured sealing body in which the semiconductor chip is sealed with a curing sealing material is performed in at least one of the following (XB) and (YB).
(XB): Implemented after the step (2-B) as the one or more processes (YB): Implemented after the step (3)
<工程(3)>
 工程(3)では、膨張開始温度(t)以上の温度での加熱処理(分離用加熱処理)によって、前記粘着性積層体の粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pで分離する。
 図4(c)及び図5(c)は、分離用加熱処理によって、界面Pで分離した状態を示す断面模式図である。
 図4(c)及び図5(c)では、分離用加熱処理によって、所定の加工を施した加工対象物が粘着シート(II)上に積層した状態で分離した状態を示している。
<Step (3)>
In the step (3), the adhesive sheet (I) of the adhesive laminate and the base material (Y2) of the adhesive sheet (II) by heat treatment (separation heat treatment) at a temperature equal to or higher than the expansion start temperature (t). At the interface P.
FIG. 4C and FIG. 5C are schematic cross-sectional views showing a state separated at the interface P by the heat treatment for separation.
4 (c) and 5 (c) show a state in which the object to be processed that has been subjected to the predetermined processing is separated in a state of being stacked on the pressure-sensitive adhesive sheet (II) by the heat treatment for separation.
 工程(3)における、分離用加熱処理の際の「膨張開始温度(t)以上の温度」としては、「膨張開始温度(t)+10℃」以上「膨張開始温度(t)+60℃」以下であることが好ましく、「膨張開始温度(t)+15℃」以上「膨張開始温度(t)+40℃」以下であることがより好ましい。 In the step (3), the “temperature higher than the expansion start temperature (t)” in the separation heat treatment is “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is preferable that it is “expansion start temperature (t) + 15 ° C.” or more and “expansion start temperature (t) + 40 ° C.” or less.
 このようにして、工程(2)において所定の加工が施された加工対象物が積層(貼付)した状態で、粘着シート(II)を粘着シート(I)から分離して支持体から分離することができるため、分離後の加工対象物を粘着シートに貼付する作業を省略して、次工程に供することができる。 In this manner, the pressure-sensitive adhesive sheet (II) is separated from the pressure-sensitive adhesive sheet (I) and separated from the support in a state where the processing objects subjected to the predetermined processing in the step (2) are laminated (attached). Therefore, it is possible to omit the work of attaching the processed object after separation to the adhesive sheet and use it for the next step.
<工程(4)>
 工程(4)では、加工対象物の粘着剤層(X2)との貼付面とは反対側の表面に対して切削及び研削の少なくともいずれかの加工を施す。
 例えば、当該加工対象物に対して、切削が施されることで、当該加工対象物を所望の大きさに分割することができる。また、研削が施されることで、当該加工対象物を所望の厚みに調整することができる。なお、切削と研削の双方の加工を行い、加工対象物の分割と厚みの調整を行うこともできる。
<Process (4)>
In the step (4), at least one of cutting and grinding is performed on the surface of the object to be processed which is opposite to the surface to be adhered to the adhesive layer (X2).
For example, the workpiece can be divided into a desired size by cutting the workpiece. Moreover, the said workpiece can be adjusted to desired thickness by performing grinding. It is also possible to perform both cutting and grinding, and to divide the workpiece and adjust the thickness.
 また、例えば、図4(d)に示すように、分割起点となる改質領域がレーザー光照射により形成された半導体ウエハの、粘着シート(II)との貼付面とは反対側の面を研削することにより、半導体ウエハを薄くして割断されやすい状態とした後、研削砥石等の加工圧力で改質領域71を分割起点として間隙72を生じさせることで、半導体ウエハを所定の大きさに個片化し、半導体チップとすることができる。 Also, for example, as shown in FIG. 4 (d), the surface of the semiconductor wafer in which the modified region serving as the division starting point is formed by laser light irradiation is opposite to the surface to which the adhesive sheet (II) is attached. Thus, after the semiconductor wafer is made thin and easy to be cleaved, a gap 72 is generated with the modified region 71 as a division starting point by a processing pressure of a grinding wheel or the like, so that the semiconductor wafer has a predetermined size. It can be separated into a semiconductor chip.
 また、図5(d)に示すように、硬化封止体61を切削することにより、硬化封止体61を半導体チップCP単位で個片化した硬化封止体の個片化物61aを得ることができる。硬化封止体61を個片化させるための切削方法は、特に限定されず、例えばダイシングソー等の切断手段等が挙げられる。
 また、図示省略しているが、半導体チップの回路表面を露出させる目的で硬化封止体61を研削するようにしてもよい。
Moreover, as shown in FIG.5 (d), by cutting the cured sealing body 61, the cured sealing body 61a obtained by separating the cured sealing body 61 into individual semiconductor chip CP units is obtained. Can do. The cutting method for dividing the cured sealing body 61 into individual pieces is not particularly limited, and examples thereof include cutting means such as a dicing saw.
Although not shown, the cured sealing body 61 may be ground for the purpose of exposing the circuit surface of the semiconductor chip.
 なお、工程(1)~(4)の間、工程(1)の前、工程(4)の後に、さらに他の工程を有していてもよい。例えば、再配線形成工程等を有していてもよい。 In addition, you may have another process between process (1)-(4), before process (1), and after process (4). For example, a rewiring forming process may be included.
 また、工程(4)は、上記のとおり、工程(2)における一以上の加工の一つとして実施するようにしてもよいし、あるいは、工程(3)の後に実施するようにしてもよい。さらには、工程(4)は、工程(2)における一以上の加工の一つとして実施すると共に、工程(3)の後に実施するようにしてもよい。
 例えば、工程(2)における一以上の加工の一つとして、加工対象物の粘着剤層(X2)との貼付面とは反対側の表面に対して研削を行い、工程(3)の後に切削を行うことも可能である。
 また、工程(2)における一以上の加工の一つとして、加工対象物の粘着剤層(X2)との貼付面とは反対側の表面の一方向(例えば加工対象物のXY平面のうちのX軸方向)にのみ切削を行って加工対象物を短冊状に分割し、工程(3)の後に別方向(例えば加工対象物のXY平面のうちのY軸方向)にのみ切削を行って短冊状に分割された加工対象物をさらに細かく(例えば正方形状に)分割するようにしてもよい。
Further, as described above, step (4) may be performed as one of one or more processes in step (2), or may be performed after step (3). Furthermore, the step (4) may be performed as one of the one or more processes in the step (2) and may be performed after the step (3).
For example, as one of the one or more processes in the step (2), grinding is performed on the surface of the object to be processed which is opposite to the sticking surface to the adhesive layer (X2), and the cutting is performed after the process (3). It is also possible to perform.
Moreover, as one of the one or more processes in the step (2), one direction of the surface opposite to the surface to be adhered to the pressure-sensitive adhesive layer (X2) of the object to be processed (for example, of the XY plane of the object to be processed) The workpiece is cut into strips by cutting only in the X-axis direction, and the strip is cut only in another direction (for example, the Y-axis direction in the XY plane of the workpiece) after step (3). You may make it divide | segment further finely (for example, square shape) the process target object divided | segmented into the shape.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の製造例及び実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples. In addition, the physical-property value in the following manufacture examples and Examples is a value measured by the following method.
<質量平均分子量(Mw)>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<Mass average molecular weight (Mw)>
Using a gel permeation chromatograph (product name “HLC-8020” manufactured by Tosoh Corporation), measurement was performed under the following conditions, and values measured in terms of standard polystyrene were used.
(Measurement condition)
Column: “TSK guard column HXL-L”, “TSK gel G2500HXL”, “TSK gel G2000HXL”, and “TSK gel G1000HXL” (both manufactured by Tosoh Corporation) Column temperature: 40 ° C.
・ Developing solvent: Tetrahydrofuran ・ Flow rate: 1.0 mL / min
<各層の厚さの測定>
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
<Measurement of thickness of each layer>
It was measured using a constant pressure thickness measuring instrument (model number: “PG-02J”, standard: conforming to JIS K6783, Z1702, Z1709) manufactured by Teclock Co., Ltd.
<熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)>
 レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定した。
 そして、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)」とした。
<Average particle diameter (D 50 ) of thermally expandable particles, 90% particle diameter (D 90 )>
The particle distribution of the thermally expandable particles before expansion at 23 ° C. was measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern).
The particle diameters corresponding to 50% and 90% of the cumulative volume frequency calculated from the smaller particle diameter of the particle distribution are expressed as “average particle diameter (D 50 ) of thermally expandable particles” and “thermally expandable particles”, respectively. 90% particle diameter (D 90 ) ”.
<熱膨張性基材層(Y1-1)の貯蔵弾性率E’>
 形成した熱膨張性基材層(Y1-1)を、縦5mm×横30mm×厚さ200μmの大きさとし、剥離材を除去したものを試験サンプルとした。
 動的粘弾性測定装置(TAインスツルメント社製,製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、所定の温度における、当該試験サンプルの貯蔵弾性率E’を測定した。
<Storage Elastic Modulus E ′ of Thermally Expandable Substrate Layer (Y1-1)>
The formed heat-expandable base material layer (Y1-1) was 5 mm long × 30 mm wide × 200 μm thick, and the test piece was prepared by removing the release material.
Using a dynamic viscoelasticity measuring apparatus (TA Instruments, product name “DMAQ800”), a test start temperature of 0 ° C., a test end temperature of 300 ° C., a temperature increase rate of 3 ° C./min, a frequency of 1 Hz, and an amplitude of 20 μm Under the conditions, the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
<第1粘着剤層(X11)及び第2粘着剤層(X12)並びに粘着剤層(X2)の貯蔵せん断弾性率G’>
 形成した第1粘着剤層(X11)及び第2粘着剤層(X12)並びに粘着剤層(X2)を、直径8mmの円形に切断したものを、剥離材を除去し、重ね合わせて、厚さ3mmとしたものを試験サンプルとした。
 粘弾性測定装置(Anton Paar社製、装置名「MCR300」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hzの条件で、ねじりせん断法によって、所定の温度における、試験サンプルの貯蔵せん断弾性率G’を測定した。
<Storage shear modulus G ′ of the first pressure-sensitive adhesive layer (X11), the second pressure-sensitive adhesive layer (X12), and the pressure-sensitive adhesive layer (X2)>
The formed first pressure-sensitive adhesive layer (X11), second pressure-sensitive adhesive layer (X12) and pressure-sensitive adhesive layer (X2) were cut into a circle having a diameter of 8 mm, the release material was removed, and the thickness was superimposed. The test sample was 3 mm.
Using a viscoelasticity measuring device (manufactured by Anton Paar, device name “MCR300”), a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz Was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
<プローブタック値>
 測定対象となる基材を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとした。
 23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製,製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定した。
 具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とした。
<Probe tack value>
A substrate to be measured was cut into a square with a side of 10 mm, and then allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity) as a test sample.
Using a tacking tester (manufactured by NIPPON SPECIAL INSTRUMENTS CO., LTD., Product name “NTS-4800”) in an environment of 23 ° C. and 50% RH (relative humidity), the probe tack value on the surface of the test sample is measured according to JIS. It measured based on Z0237: 1991.
Specifically, a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is moved at a speed of 10 mm / sec. The force required to separate from the surface was measured, and the value obtained was used as the probe tack value of the test sample.
<分離用加熱処理前の粘着剤層の粘着力の測定>
 剥離フィルム上に形成した粘着剤層の粘着表面上に、厚さ50μmのPETフィルム(東洋紡株式会社製、製品名「コスモシャインA4100」)を積層し、基材付き粘着シートとした。
 そして、剥離フィルムを除去し、表出した粘着剤層の粘着表面を、被着体であるステンレス鋼板(SUS304 360番研磨)に貼付し、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、23℃における粘着力を測定した。
<Measurement of adhesive strength of adhesive layer before heat treatment for separation>
On the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer formed on the release film, a 50 μm-thick PET film (manufactured by Toyobo Co., Ltd., product name “Cosmo Shine A4100”) was laminated to obtain a pressure-sensitive adhesive sheet with a substrate.
Then, the release film is removed, and the adhesive surface of the exposed adhesive layer is attached to a stainless steel plate (SUS304 360 polishing) as an adherend, and the environment is 23 ° C. and 50% RH (relative humidity). After standing for 24 hours, under the same environment, the adhesive strength at 23 ° C. was measured at a pulling speed of 300 mm / min by the 180 ° peeling method based on JIS Z0237: 2000.
 以下の実施例での各層の形成で使用した粘着性樹脂、添加剤、熱膨張性粒子、及び剥離材の詳細は以下のとおりである。 Details of the adhesive resin, additives, thermally expandable particles, and release material used in the formation of each layer in the following examples are as follows.
<粘着性樹脂>
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
・アクリル系共重合体(ii):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)/アクリル酸=86.0/8.0/5.0/1.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
<Adhesive resin>
Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) = 80.0 / 20.0 (mass ratio), An acrylic copolymer having a Mw of 600,000.
Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid = 86.0 / 8.0 / 5.0 / 1. An acrylic copolymer having an Mw of 600,000 having a structural unit derived from a raw material monomer consisting of 0 (mass ratio).
<添加剤>
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
・光重合開始剤(i):BASF社製、製品名「イルガキュア184」、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン。
<Additives>
Isocyanate crosslinking agent (i): manufactured by Tosoh Corporation, product name “Coronate L”, solid content concentration: 75 mass%.
Photopolymerization initiator (i): manufactured by BASF, product name “Irgacure 184”, 1-hydroxy-cyclohexyl-phenyl-ketone.
<熱膨張性粒子>
・熱膨張性粒子(i):日本フィライト株式会社、製品名「Expancel 031DU40」、膨張開始温度(t)=90℃、平均粒子径(D50)=22μm、90%粒子径(D90)=30μm。
<Thermal expandable particles>
Thermally expandable particles (i): Nippon Philite Co., Ltd., product name “Expancel 031DU40”, expansion start temperature (t) = 90 ° C., average particle size (D 50 ) = 22 μm, 90% particle size (D 90 ) = 30 μm.
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
<Release material>
Heavy release film: manufactured by Lintec Corporation, product name “SP-PET382150”, a polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
Light release film: manufactured by Lintec Co., Ltd., product name “SP-PET381031”, a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
[実施例1]
 図2(b)に示す粘着性積層体1dにおいて、粘着シート(I)の第2粘着剤層(X12)及び粘着シート(II)の粘着剤層(X2)上に、さらに剥離材を積層した構成を有し、粘着シート(II)の基材(Y2)と粘着剤層(X2)との間に中間層(Z2)を設けた粘着性積層体を、以下の手順にて作製した。
[Example 1]
In the adhesive laminate 1d shown in FIG. 2B, a release material was further laminated on the second adhesive layer (X12) of the adhesive sheet (I) and the adhesive layer (X2) of the adhesive sheet (II). A pressure-sensitive adhesive laminate having a configuration and having an intermediate layer (Z2) provided between the base material (Y2) and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) was produced by the following procedure.
[1]粘着シート(I)の作製
(1-1)第1粘着剤層(X11)の形成
 粘着性樹脂である、上記アクリル系共重合体(i)の固形分100質量部に、上記イソシアネート系架橋剤(i)5.0質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記重剥離フィルムの剥離剤層の表面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの非熱膨張性粘着剤層である第1粘着剤層(X11)を形成した。
 なお、23℃における、第1粘着剤層(X11)の貯蔵せん断弾性率G’(23)は、2.5×10Paであった。
 また、上記方法に基づき測定した、第1粘着剤層(X11)の粘着力は、0.3N/25mmであった。
[1] Preparation of pressure-sensitive adhesive sheet (I) (1-1) Formation of first pressure-sensitive adhesive layer (X11) The above-mentioned isocyanate is added to 100 parts by mass of the solid content of the acrylic copolymer (i), which is a pressure-sensitive adhesive resin. System adhesive (i) 5.0 parts by mass (solid content ratio) was blended, diluted with toluene, and stirred uniformly to prepare a PSA composition having a solid content concentration (active ingredient concentration) of 25% by mass. .
And the said adhesive composition is apply | coated to the surface of the release agent layer of the said heavy release film, a coating film is formed, the said coating film is dried for 60 second at 100 degreeC, and the non-thermal expansion property of thickness 5 micrometers The 1st adhesive layer (X11) which is an adhesive layer was formed.
The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X11) at 23 ° C. was 2.5 × 10 5 Pa.
Moreover, the adhesive force of the 1st adhesive layer (X11) measured based on the said method was 0.3 N / 25mm.
(1-2)第2粘着剤層(X12)の形成
 粘着性樹脂である、上記アクリル系共重合体(ii)の固形分100質量部に、上記イソシアネート系架橋剤(i)0.8質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記軽剥離フィルムの剥離剤層の表面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ10μmの第2粘着剤層(X12)を形成した。
 なお、23℃における、第2粘着剤層(X12)の貯蔵せん断弾性率G’(23)は、9.0×10Paであった。
 また、上記方法に基づき測定した、第2粘着剤層(X12)の粘着力は、1.0N/25mmであった。
(1-2) Formation of Second Adhesive Layer (X12) 100 parts by mass of the acrylic copolymer (ii), which is an adhesive resin, is added to the isocyanate crosslinking agent (i) 0.8 mass. Parts (solid content ratio) were mixed, diluted with toluene, and stirred uniformly to prepare a PSA composition having a solid content concentration (active ingredient concentration) of 25% by mass.
And the said adhesive composition is apply | coated to the surface of the release agent layer of the said light release film, a coating film is formed, the said coating film is dried at 100 degreeC for 60 second, and 10 micrometers in thickness 2nd adhesive. Layer (X12) was formed.
The storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X12) at 23 ° C. was 9.0 × 10 4 Pa.
Moreover, the adhesive force of the 2nd adhesive layer (X12) measured based on the said method was 1.0 N / 25mm.
(1-3)基材(Y1)の作製
(1-3-1)組成物(y1-1)の調製
 エステル型ジオールと、イソホロンジイソシアネート(IPDI)を反応させて得られた末端イソシアネートウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させて、質量平均分子量(Mw)5000の2官能のアクリルウレタン系オリゴマーを得た。
 そして、上記で合成したアクリルウレタン系オリゴマー40質量%(固形分比)に、エネルギー線重合性モノマーとして、イソボルニルアクリレート(IBXA)40質量%(固形分比)、及びフェニルヒドロキシプロピルアクリレート(HPPA)20質量%(固形分比)を配合し、アクリルウレタン系オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、さらに光重合開始剤(i)を2.0質量部(固形分比)、及び、添加剤として、フタロシアニン系顔料0.2質量部(固形分比)を配合し、エネルギー線硬化性組成物を調製した。
 そして、当該エネルギー線硬化性組成物に、上記熱膨張性粒子(i)を配合し、溶媒を含有しない、無溶剤型の組成物(y1-1)を調製した。
 なお、組成物(y1-1)の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%であった。
(1-3) Preparation of Substrate (Y1) (1-3-1) Preparation of Composition (y1-1) Terminal isocyanate urethane prepolymer obtained by reacting ester-type diol with isophorone diisocyanate (IPDI) Then, 2-hydroxyethyl acrylate was reacted to obtain a bifunctional acrylic urethane-based oligomer having a mass average molecular weight (Mw) of 5000.
Then, 40% by mass (solid content ratio) of the acrylic urethane-based oligomer synthesized as described above, 40% by mass (solid content ratio) of isobornyl acrylate (IBXA), and phenylhydroxypropyl acrylate (HPPA) as an energy ray polymerizable monomer ) 20% by mass (solid content ratio), and 2.0 parts by mass (solid) of photopolymerization initiator (i) with respect to the total amount (100 parts by mass) of the acrylurethane oligomer and the energy ray polymerizable monomer. (Fraction ratio) and 0.2 parts by mass (solid content ratio) of a phthalocyanine pigment as an additive were blended to prepare an energy ray-curable composition.
And the said heat-expandable particle | grains (i) were mix | blended with the said energy-beam curable composition, and the solventless composition (y1-1) which does not contain a solvent was prepared.
The content of thermally expandable particles (i) relative to the total amount (100% by mass) of the composition (y1-1) was 20% by mass.
(1-3-2)基材(Y1)の作製
 非熱膨張性基材である、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、製品名「コスモシャインA4300」、プローブタック値:0mN/5mmφ)の表面上に、調製した組成物(y1-1)を塗布して塗膜を形成した。
 そして、紫外線照射装置(アイグラフィクス社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィクス社製、製品名「H04-L41」)を用いて、照度160mW/cm、光量500mJ/cmの条件で紫外線照射し、当該塗膜を硬化させ、厚さ50μmの熱膨張性基材(Y-1)を形成した。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
 また、上記の非熱膨張性基材であるPETフィルムは、非熱膨張性基材層(Y1-2)に相当する。
 なお、熱膨張性基材層(Y1-1)の物性値を測定するサンプルとして、上記軽剥離フィルムの剥離剤層の表面に、当該樹脂組成物を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの熱膨張性基材層(Y1-1)を同様に形成した。
 そして、上述の測定方法に基づき、熱膨張性基材層(Y1-1)の各温度における貯蔵弾性率及びプローブタック値を測定した。当該測定結果は、以下のとおりであった。
・23℃における貯蔵弾性率E’(23)=5.0×10Pa
・100℃における貯蔵弾性率E’(100)=4.0×10Pa
・208℃における貯蔵弾性率E’(208)=4.0×10Pa
・プローブタック値=2mN/5mmφ
(1-3-2) Production of Substrate (Y1) Polyethylene terephthalate (PET) film having a thickness of 50 μm, which is a non-thermally expandable substrate (product name “Cosmo Shine A4300”, probe tack value, manufactured by Toyobo Co., Ltd.) : 0 mN / 5 mmφ), the prepared composition (y1-1) was applied to form a coating film.
Then, using an ultraviolet irradiation device (product name “ECS-401GX” manufactured by Eye Graphics Co., Ltd.) and a high-pressure mercury lamp (product name “H04-L41” manufactured by Eye Graphics Co., Ltd.), an illuminance of 160 mW / cm 2 and a light amount of 500 mJ / The coating film was cured by irradiating with ultraviolet rays under conditions of cm 2 to form a thermally expandable substrate (Y-1) having a thickness of 50 μm. The above illuminance and light intensity during ultraviolet irradiation are values measured using an illuminance / light meter (product name “UV Power Pack II” manufactured by EIT).
Further, the PET film as the non-thermally expandable substrate corresponds to the non-thermally expandable substrate layer (Y1-2).
As a sample for measuring the physical property value of the thermally expandable substrate layer (Y1-1), the resin composition is applied to the surface of the release agent layer of the light release film to form a coating film, The membrane was dried at 100 ° C. for 120 seconds to similarly form a 50 μm thick thermally expandable substrate layer (Y1-1).
Based on the measurement method described above, the storage elastic modulus and probe tack value at each temperature of the thermally expandable substrate layer (Y1-1) were measured. The measurement results were as follows.
-Storage elastic modulus E '(23) at 23 ° C. = 5.0 × 10 8 Pa
Storage elastic modulus at 100 ° C. E ′ (100) = 4.0 × 10 6 Pa
-Storage elastic modulus E '(208) at 208 ° C = 4.0 x 10 5 Pa
・ Probe tack value = 2mN / 5mmφ
(1-4)各層の積層
 上記(1-3)で作製した基材(Y1)の非熱膨張性基材層(Y1-2)と、上記(1-2)で形成した第2粘着剤層(X12)とを貼り合わせると共に、熱膨張性基材層(Y1-1)と、上記(1-2)で形成した第2粘着剤層(X12)とを貼り合せた。
 そして、軽剥離フィルム/第2粘着剤層(X12)/非熱膨張性基材層(Y1-2)/熱膨張性基材層(Y1-1)/第1粘着剤層(X11)/重剥離フィルムをこの順で積層してなる、粘着シート(I)を作製した。
(1-4) Lamination of each layer Non-thermally expandable base material layer (Y1-2) of base material (Y1) prepared in (1-3) above and second pressure-sensitive adhesive formed in (1-2) above The layer (X12) was bonded together, and the thermally expandable base material layer (Y1-1) and the second pressure-sensitive adhesive layer (X12) formed in the above (1-2) were bonded together.
The light release film / second adhesive layer (X12) / non-thermally expandable substrate layer (Y1-2) / thermally expandable substrate layer (Y1-1) / first adhesive layer (X11) / heavy A pressure-sensitive adhesive sheet (I) formed by laminating release films in this order was produced.
[2]粘着シート(II)の作製
(2-1)粘着剤層(X2)の形成
 粘着性樹脂である、上記アクリル系共重合体(ii)の固形分100質量部に、上記イソシアネート系架橋剤(i)8質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記重剥離フィルムの剥離剤層の表面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ20μmの粘着剤層(X2)を形成した。
 また、上記方法に基づき測定した、粘着剤層(X2)の粘着力は、0.5N/25mmであった。
[2] Preparation of pressure-sensitive adhesive sheet (II) (2-1) Formation of pressure-sensitive adhesive layer (X2) 100 parts by mass of the acrylic copolymer (ii), which is a pressure-sensitive adhesive, was added to the isocyanate-based cross-linkage. 8 parts by mass (solid content ratio) of the agent (i) was mixed, diluted with toluene, and stirred uniformly to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass.
And the said adhesive composition is apply | coated to the surface of the release agent layer of the said heavy release film, a coating film is formed, the said coating film is dried at 100 degreeC for 60 second, and a 20-micrometer-thick adhesive layer ( X2) was formed.
Moreover, the adhesive force of the adhesive layer (X2) measured based on the said method was 0.5 N / 25mm.
(2-2)基材(Y2)
 基材(Y2)は、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、製品名「コスモシャインA4300」、プローブタック値:0mN/5mmφ)とした。
(2-2) Base material (Y2)
The substrate (Y2) was a polyethylene terephthalate (PET) film having a thickness of 50 μm (manufactured by Toyobo Co., Ltd., product name “Cosmo Shine A4300”, probe tack value: 0 mN / 5 mmφ).
(2-3)中間層(Z2)
(1)中間層形成用組成物の調製
 非エネルギー線硬化性アクリル系共重合体C1を100質量部、エネルギー線硬化性アクリル系共重合体D1を68質量部、トリレンジイソシアネート系架橋剤(商品名:BHS 8515、トーヨーケム社製)を2.8質量部、及び上記の光重合開始剤(i)を2.7質量部添加し、酢酸エチルで希釈して、固形分濃度(有効成分濃度)35質量%の中間層形成用組成物の溶液を調製した。
(2-3) Intermediate layer (Z2)
(1) Preparation of intermediate layer forming composition 100 parts by mass of non-energy ray curable acrylic copolymer C1, 68 parts by mass of energy ray curable acrylic copolymer D1, tolylene diisocyanate crosslinking agent (product) Name: BHS 8515, manufactured by Toyochem Co., Ltd. (2.8 parts by mass) and 2.7 parts by mass of the above photopolymerization initiator (i) were added and diluted with ethyl acetate to obtain a solid content concentration (active ingredient concentration). A 35% by mass solution of the intermediate layer forming composition was prepared.
(2)非エネルギー線硬化性アクリル系共重合体C1の調製
 ブチルアクリレート(BA)90質量部、及びアクリル酸(AAc)10質量部を、酢酸エチル溶媒中に添加し、重合開始剤として、アゾビスイソブチロニトリル(AIBN)を1.0質量部添加して、溶液重合を進行させて、非エネルギー線硬化性のアクリル系共重合体C1(Mw:50万)を得た。
(2) Preparation of non-energy ray-curable acrylic copolymer C1 90 parts by mass of butyl acrylate (BA) and 10 parts by mass of acrylic acid (AAc) are added to an ethyl acetate solvent, and azo is used as a polymerization initiator. 1.0 part by mass of bisisobutyronitrile (AIBN) was added and the solution polymerization proceeded to obtain a non-energy ray curable acrylic copolymer C1 (Mw: 500,000).
(3)エネルギー線硬化性アクリル系共重合体D1の調製
 ブチルアクリレート(BA)62質量部、メチルメタクリレート(MMA)10質量部、及び2-ヒドロキシエチルアクリレート(HEA)28質量部を、酢酸エチル溶媒中に添加し、重合開始剤として、アゾビスイソブチロニトリル(AIBN)を1.0質量部添加して、溶液重合を進行させ、一定時間経過後、アクリル系共重合体(BA/MMA/HEA=62/10/28(質量%))を得た。
 続いて、当該アクリル系共重合体に対し、添加したHEA中の全水酸基数100当量に対するイソシアネート基数が80当量となる量のメタクリロイルオキシエチルイソシアネートを添加して反応させ、側鎖にエネルギー線重合性基を有する、エネルギー線硬化性アクリル系共重合体D1(Mw:10万)を得た。エネルギー線硬化性アクリル系共重合体D1における、上記式(2)から算出されるβの値は22.4である。
(3) Preparation of energy ray-curable acrylic copolymer D1 62 parts by mass of butyl acrylate (BA), 10 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (HEA) were mixed with an ethyl acetate solvent. As a polymerization initiator, 1.0 part by mass of azobisisobutyronitrile (AIBN) is added to allow solution polymerization to proceed. After a certain period of time, an acrylic copolymer (BA / MMA / HEA = 62/10/28 (mass%)) was obtained.
Subsequently, methacryloyloxyethyl isocyanate is added to the acrylic copolymer in an amount such that the number of isocyanate groups is 80 equivalents relative to the total number of hydroxyl groups in the added HEA of 100 equivalents. An energy ray-curable acrylic copolymer D1 (Mw: 100,000) having a group was obtained. In the energy ray curable acrylic copolymer D1, the value of β calculated from the above formula (2) is 22.4.
(4)中間層(Z2)の作製
 剥離シート(リンテック社製、商品名「SP-PET381031」、シリコーン剥離処理を行ったポリエチレンテレフタレートフィルム、厚さ:38μm)の剥離処理がされた面上に、上記のとおり調製した中間層形成用組成物の溶液を、乾燥後の厚さが45μmとなるように塗布し塗布膜を形成した。次いで、当該塗布膜を100℃で2分間乾燥させて、中間層(Z2)を形成し、中間層付き剥離シートを作製した。
 なお、当該中間層付き剥離シートについては、同じものを2枚作製し、2枚の中間層付き剥離シートの中間層同士を貼り合わせて、厚さ90μmの中間層(Z2)が2枚の剥離シートで狭持された積層シートを得た。
(4) Production of the intermediate layer (Z2) On the surface on which the release sheet (trade name “SP-PET381031”, manufactured by Lintec Corporation, polyethylene terephthalate film subjected to silicone release treatment, thickness: 38 μm) was subjected to the release treatment, The solution of the intermediate layer forming composition prepared as described above was applied so that the thickness after drying was 45 μm to form a coating film. Subsequently, the said coating film was dried at 100 degreeC for 2 minute (s), the intermediate | middle layer (Z2) was formed, and the peeling sheet with an intermediate | middle layer was produced.
In addition, about the said peeling sheet with an intermediate | middle layer, two same things are produced, the intermediate | middle layers of two peeling sheets with an intermediate | middle layer are bonded together, and the intermediate | middle layer (Z2) of 90 micrometers in thickness peels two sheets. A laminated sheet sandwiched between the sheets was obtained.
(2-4)各層の積層
 厚さ90μmの中間層(Z2)が2枚の剥離シートで狭持された積層シートの一方の剥離シートを除去し、表出した中間層(Z2)の面上に、基材(Y2)を積層した。
 また、他方の剥離シートも除去し、表出した中間層(Z2)の面上に、上記(2-1)で形成した粘着剤層(X2)を貼り合わせ、基材(Y2)/中間層(Z2)/粘着剤層(X2)/重剥離フィルムをこの順で積層してなる、粘着シート(II)を作製した。
(2-4) Lamination of each layer On the surface of the exposed intermediate layer (Z2) by removing one release sheet of the laminate sheet in which the intermediate layer (Z2) having a thickness of 90 μm is held between two release sheets A substrate (Y2) was laminated to the substrate.
Further, the other release sheet is also removed, and the pressure-sensitive adhesive layer (X2) formed in the above (2-1) is bonded to the surface of the exposed intermediate layer (Z2), and the base material (Y2) / intermediate layer is bonded. A pressure-sensitive adhesive sheet (II) was prepared by laminating (Z2) / pressure-sensitive adhesive layer (X2) / heavy release film in this order.
[3]粘着性積層体の作製
 上記[1]で作製した粘着シート(I)の重剥離フィルムを除去し、表出した第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)とを貼り合せ、粘着性積層体を得た。
[3] Production of adhesive laminate The first adhesive layer (X11) exposed from the adhesive sheet (I) produced in [1] above, and the base material of the adhesive sheet (II) (Y2) was bonded to obtain an adhesive laminate.
 当該粘着性積層体について、加熱処理前及び加熱処理後の、粘着シート(I)の第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)との界面Pで分離する際の剥離力(F)、(F)を下記方法に基づき測定した。
 その結果、剥離力(F)=0.5N/25mm、剥離力(F)=0mN/25mmとなり、剥離力(F)と剥離力(F)との比〔(F)/(F)〕は0であった。
About the said adhesive laminated body, it isolate | separates in the interface P of the 1st adhesive layer (X11) of adhesive sheet (I) and the base material (Y2) of adhesive sheet (II) before heat processing and after heat processing. The peeling force (F 0 ) and (F 1 ) at the time were measured based on the following method.
As a result, the peel force (F 0 ) = 0.5 N / 25 mm and the peel force (F 1 ) = 0 mN / 25 mm, and the ratio of the peel force (F 1 ) to the peel force (F 0 ) [(F 1 ) / (F 0 )] was 0.
<剥離力(F)の測定>
 作製した粘着性積層体を23℃、50%RH(相対湿度)の環境下で、24時間静置した後、粘着性積層体の粘着シート(II)が有する重剥離フィルムを除去し、表出した粘着剤層(X2)をステンレス板(SUS304、360番研磨)に貼付した。
 次いで、粘着性積層体が貼付されたステンレス板の端部を、万能引張試験機(オリエンテック社製,製品名「テンシロン UTM-4-100」)の下部チャックへ固定した。
 また、粘着性積層体の粘着シート(I)の第1粘着剤層(X11)と粘着シート(II)の基材(Y2)との界面Pで剥離するように、万能引張試験機の上部チャックで粘着性積層体の粘着シート(I)を固定した。
 そして、上記と同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引張速度300mm/分で、界面Pで剥離した際に測定された剥離力を「剥離力(F)」とした。
<Measurement of peeling force (F 0 )>
The prepared adhesive laminate was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), and then the heavy release film of the adhesive sheet (II) of the adhesive laminate was removed and exposed. The pressure-sensitive adhesive layer (X2) was pasted on a stainless steel plate (SUS304, No. 360 polishing).
Next, the end of the stainless steel plate to which the adhesive laminate was affixed was fixed to the lower chuck of a universal tensile tester (product name “Tensilon UTM-4-100” manufactured by Orientec Co., Ltd.).
The upper chuck of the universal tensile testing machine is peeled off at the interface P between the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II). The adhesive sheet (I) of the adhesive laminate was fixed.
Then, in the same environment as described above, the peeling force measured when peeling at the interface P at a pulling speed of 300 mm / min by the 180 ° peeling method based on JIS Z0237: 2000 is referred to as “peeling force (F 0 )”. "
<剥離力(F)の測定>
 作製した粘着性積層体の粘着シート(II)が有する重剥離フィルムを除去し、表出した粘着剤層(X2)をステンレス板(SUS304、360番研磨)に貼付した。
 そして、ステンレス鋼板及び粘着性積層体を、240℃で3分間加熱し、粘着性積層体の熱膨張性基材層(Y1-2)中の熱膨張性粒子を膨張させた。
 その後は、上述の剥離力(F)の測定と同様にし、上記条件にて、粘着シート(I)の第1粘着剤層(X11)と粘着シート(II)の基材(Y2)との界面Pで剥離した際に測定された剥離力を「剥離力(F)」とした。
 なお、剥離力(F)の測定において、万能引張試験機の上部チャックで、粘着性積層体の粘着シート(I)を固定しようとした際、界面Pで粘着シート(I)が完全に分離してしまい、固定ができない場合には、測定を終了し、その際の剥離力(F)は「0mN/25mm」とした。
<Measurement of peel force (F 1 )>
The heavy release film which the adhesive sheet (II) of the produced adhesive laminated body has was removed, and the exposed adhesive layer (X2) was affixed on the stainless steel plate (SUS304, No. 360 polishing).
Then, the stainless steel plate and the adhesive laminate were heated at 240 ° C. for 3 minutes to expand the thermally expandable particles in the thermally expandable substrate layer (Y1-2) of the adhesive laminate.
Thereafter, in the same manner as in the measurement of the peeling force (F 0 ), the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are subjected to the above-described conditions. The peeling force measured when peeling at the interface P was defined as “peeling force (F 1 )”.
In the measurement of peel force (F 1 ), when the adhesive sheet (I) of the adhesive laminate was fixed with the upper chuck of the universal tensile testing machine, the adhesive sheet (I) was completely separated at the interface P. Therefore, when the fixing was not possible, the measurement was terminated, and the peeling force (F 1 ) at that time was set to “0 mN / 25 mm”.
[実施例2]
 以下の手順により、加工対象物が貼付された状態の粘着シート(II)を作製した。
(1)半導体ウエハの固定
 実施例1で作製した粘着性積層体が有する軽剥離フィルムを除去し、表出した粘着シート(I)の第2粘着剤層(X12)の粘着表面を支持体(ガラス)と貼付した。
 そして、パターンが形成された回路面を有する半導体ウエハの回路面側の表面と粘着シート(II)の粘着剤層(X2)とを貼り合せ、実施例1で作製した粘着性積層体を介して支持体に半導体ウエハを固定した。
[Example 2]
The pressure-sensitive adhesive sheet (II) in a state where the object to be processed was affixed was produced by the following procedure.
(1) Fixing of semiconductor wafer The light release film of the pressure-sensitive adhesive laminate produced in Example 1 was removed, and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive sheet (I) exposed was a support ( Glass).
And the surface by the side of the circuit surface of the semiconductor wafer which has the circuit surface in which the pattern was formed, and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) are bonded to each other through the pressure-sensitive adhesive laminate produced in Example 1. A semiconductor wafer was fixed to the support.
(2)改質領域の形成
 ステルスレーザー照射装置(東京精密社製、装置名「ML300PlusWH」)を用いて、半導体ウエハの回路形成面とは反対側の面からステルスレーザー照射を行って、半導体ウエハ内部に分割起点となる改質領域を形成した。
(2) Formation of modified region Using a stealth laser irradiation device (manufactured by Tokyo Seimitsu Co., Ltd., device name “ML300PlusWH”), the semiconductor wafer is irradiated with stealth laser from the surface opposite to the circuit formation surface. A modified region serving as a starting point for division was formed inside.
(3)界面Pでの分離
 上記(2)の後、粘着性積層体を熱膨張性粒子の膨張開始温度(90℃)以上となる120℃で3分間の加熱処理を行った。そして、粘着シート(I)の第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)との界面Pにて、一括して容易に分離することができた。
 そして、分離後に、内部に改質領域が形成された半導体ウエハが貼付された状態の粘着シート(II)を得た。
(3) Separation at the interface P After the above (2), the adhesive laminate was subjected to a heat treatment at 120 ° C. for 3 minutes, which is higher than the expansion start temperature (90 ° C.) of the thermally expandable particles. And it was able to be easily separated collectively at the interface P between the first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II).
Then, after separation, an adhesive sheet (II) was obtained in which a semiconductor wafer having a modified region formed therein was affixed.
1a、1b、1c、1d、2  粘着性積層体
(I)  粘着シート
 (X1)  粘着剤層
  (X11)  第1粘着剤層
  (X12)  第2粘着剤層
 (Y1)  基材
   (Y1-1)  熱膨張性基材層
   (Y1-2)  非熱膨張性基材層
(II)  粘着シート
 (X2)  粘着剤層
 (Z2)  中間層
 (Y2)  基材
50  支持体
60、70  加工対象物
61  硬化封止体
61a 硬化封止体の個片化物
71  改質領域
72  間隙
 
1a, 1b, 1c, 1d, 2 Adhesive laminate (I) Adhesive sheet (X1) Adhesive layer (X11) First adhesive layer (X12) Second adhesive layer (Y1) Base material (Y1-1) Thermally expandable substrate layer (Y1-2) Non-thermally expandable substrate layer (II) Adhesive sheet (X2) Adhesive layer (Z2) Intermediate layer (Y2) Substrate 50 Supports 60, 70 Workpiece 61 Curing Sealed body 61a Separated product 71 of cured sealed body Modified region 72 Gap

Claims (17)

  1.  基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に熱膨張開始温度(t)の熱膨張性粒子を含む熱膨張性の粘着シート(I)、並びに、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)を備え、粘着シート(I)と粘着シート(II)の基材(Y2)とが直接積層してなる粘着性積層体を用いて、切削及び研削の少なくともいずれかの加工が施された加工品を製造する方法であって、
     下記工程(1)~(3)をこの順で有し、
    ・工程(1):前記粘着性積層体の粘着剤層(X1)の表面を支持体に貼付するとともに、前記粘着性積層体の粘着剤層(X2)の表面に加工対象物を貼付する工程
    ・工程(2):前記加工対象物に一以上の加工を施す工程
    ・工程(3):前記熱膨張性粒子の熱膨張開始温度(t)以上での加熱によって、前記加工対象物を前記粘着性積層体の粘着剤層(X2)の表面に貼付した状態を維持しながら、前記粘着性積層体を粘着シート(I)と粘着シート(II)の基材(Y2)との界面Pで分離する工程
     さらに、下記工程(4)を有し、
    ・工程(4):前記加工対象物の粘着剤層(X2)との貼付面とは反対側の表面に対して切削及び研削の少なくともいずれかの加工を施す工程
     前記工程(4)は、下記(X)及び(Y)の少なくともいずれかにおいて実施される、加工品の製造方法。
    (X):前記一以上の加工として前記工程(2)において実施される
    (Y):前記工程(3)の後において実施される
    A heat-expandable pressure-sensitive adhesive sheet (I) having a base material (Y1) and a pressure-sensitive adhesive layer (X1), and containing heat-expandable particles having a thermal expansion start temperature (t) in any layer, and a base material ( A pressure-sensitive adhesive laminate comprising a pressure-sensitive adhesive sheet (II) having Y2) and a pressure-sensitive adhesive layer (X2), wherein the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated. , A method for producing a processed product subjected to at least one of cutting and grinding,
    It has the following steps (1) to (3) in this order,
    Step (1): A step of sticking the surface of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive laminate to a support and sticking a workpiece to the surface of the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive laminate. Step (2): Step of performing one or more processings on the workpiece. Step (3): Heating the thermal expandable particles at a thermal expansion start temperature (t) or higher, thereby sticking the workpiece to the adhesive. The pressure-sensitive adhesive laminate is separated at the interface P between the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) while maintaining the state of being stuck on the surface of the pressure-sensitive adhesive layer (X2). The following step (4)
    -Process (4): The process of performing the process of at least one of cutting and grinding with respect to the surface on the opposite side to the sticking surface with the adhesive layer (X2) of the said process target object The said process (4) is the following. (X) The manufacturing method of the processed goods implemented in at least any one of (Y).
    (X): Implemented in the step (2) as the one or more processes (Y): Implemented after the step (3)
  2.  前記熱膨張性粒子の熱膨張開始温度(t)が60~270℃である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the thermal expansion start temperature (t) of the thermally expandable particles is 60 to 270 ° C.
  3.  粘着シート(I)が有する基材(Y1)が、前記熱膨張性粒子を含む熱膨張性基材層(Y1-1)を有する、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the substrate (Y1) of the pressure-sensitive adhesive sheet (I) has a thermally expandable substrate layer (Y1-1) containing the thermally expandable particles.
  4.  粘着シート(I)が有する基材(Y1)が、熱膨張性基材層(Y1-1)と非熱膨張性基材層(Y1-2)とを有する、請求項3に記載の製造方法。 The production method according to claim 3, wherein the substrate (Y1) of the pressure-sensitive adhesive sheet (I) has a thermally expandable substrate layer (Y1-1) and a non-thermally expandable substrate layer (Y1-2). .
  5.  粘着シート(I)が有する基材(Y1)の熱膨張性基材層(Y1-1)と、粘着シート(II)の基材(Y2)とが直接積層してなる、請求項3又は4に記載の製造方法。 The heat-expandable base material layer (Y1-1) of the base material (Y1) included in the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated. The manufacturing method as described in.
  6.  粘着シート(I)が、第1粘着剤層(X11)及び第2粘着剤層(X12)により基材(Y1)が挟持された構成を有し、
     粘着シート(I)の第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)とが直接積層した構成を有し、
     粘着シート(I)の第2粘着剤層(X12)の表面は、前記支持体に貼付される面である、請求項3~5のいずれか一項に記載の製造方法。
    The pressure-sensitive adhesive sheet (I) has a configuration in which the substrate (Y1) is sandwiched between the first pressure-sensitive adhesive layer (X11) and the second pressure-sensitive adhesive layer (X12),
    The first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated,
    The production method according to any one of claims 3 to 5, wherein the surface of the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive sheet (I) is a surface to be attached to the support.
  7.  第1粘着剤層(X11)が、前記熱膨張性粒子を含む熱膨張性粘着剤層であり、
     第2粘着剤層(X12)が、非熱膨張性粘着剤層であり、
     粘着シート(I)の第1粘着剤層(X11)と、粘着シート(II)の基材(Y2)とが直接積層した構成を有する、
     粘着シート(I)の第2粘着剤層(X12)の表面は、前記支持体に貼付される面である、請求項1又は2に記載の製造方法。
    The first pressure-sensitive adhesive layer (X11) is a heat-expandable pressure-sensitive adhesive layer containing the heat-expandable particles,
    The second pressure-sensitive adhesive layer (X12) is a non-thermally expandable pressure-sensitive adhesive layer,
    The first pressure-sensitive adhesive layer (X11) of the pressure-sensitive adhesive sheet (I) and the base material (Y2) of the pressure-sensitive adhesive sheet (II) are directly laminated,
    The manufacturing method according to claim 1 or 2, wherein the surface of the second pressure-sensitive adhesive layer (X12) of the pressure-sensitive adhesive sheet (I) is a surface to be affixed to the support.
  8.  基材(Y1)の第1粘着剤層(X11)が積層した側の表面が、易接着処理が施された表面である、請求項6又は7に記載の製造方法。 The manufacturing method according to claim 6 or 7, wherein the surface of the substrate (Y1) on which the first pressure-sensitive adhesive layer (X11) is laminated is a surface subjected to an easy adhesion treatment.
  9.  基材(Y2)の粘着シート(I)が積層した側の表面が、剥離処理が施された表面である、請求項1~8のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the surface of the substrate (Y2) on which the pressure-sensitive adhesive sheet (I) is laminated is a surface subjected to a peeling treatment.
  10.  粘着シート(II)が、基材(Y2)と粘着剤層(X2)との間に、中間層(Z2)を有する、請求項1~9のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the pressure-sensitive adhesive sheet (II) has an intermediate layer (Z2) between the substrate (Y2) and the pressure-sensitive adhesive layer (X2).
  11.  粘着シート(II)の粘着剤層(X2)が、エネルギー線硬化型の粘着剤層である、請求項1~10のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (II) is an energy ray-curable pressure-sensitive adhesive layer.
  12.  粘着シート(II)が、下記要件(α)~(γ)の1以上を満たす、請求項1~11のいずれか一項に記載の製造方法。
    ・要件(α):基材(Y2)のヤング率が1.0MPa以上である。
    ・要件(β):基材(Y2)の厚さが5μm以上である。
    ・要件(γ):粘着剤層(X2)の貯蔵弾性率G’(23℃)が0.1MPa以上である。
    The production method according to any one of claims 1 to 11, wherein the pressure-sensitive adhesive sheet (II) satisfies one or more of the following requirements (α) to (γ).
    -Requirement ((alpha)): Young's modulus of a base material (Y2) is 1.0 Mpa or more.
    -Requirement ((beta)): The thickness of a base material (Y2) is 5 micrometers or more.
    Requirement (γ): The storage elastic modulus G ′ (23 ° C.) of the pressure-sensitive adhesive layer (X2) is 0.1 MPa or more.
  13.  前記加工対象物が半導体ウエハであり、
     前記工程(2)における前記一以上の加工が、下記工程(2-A)を含み、
    ・工程(2-A):前記半導体ウエハに、分割起点となる改質領域を形成する工程
     前記工程(4)が、下記工程(4-A)であり、
    ・工程(4-A):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
     前記工程(4-A)は、下記(X-A)又は(Y-A)において実施される、請求項1~12のいずれか一項に記載の製造方法。
    (X-A):前記一以上の加工として前記工程(2―A)の後に実施される
    (Y-A):前記工程(3)の後に実施される
    The workpiece is a semiconductor wafer;
    The one or more processes in the step (2) include the following step (2-A):
    Step (2-A): a step of forming a modified region serving as a division starting point on the semiconductor wafer. The step (4) is the following step (4-A):
    Step (4-A): A step of grinding the surface of the semiconductor wafer opposite to the surface to be adhered to the adhesive layer (X2). The step (4-A) includes the following (XA ) Or (YA) is carried out according to any one of claims 1 to 12.
    (XA): Implemented after the step (2-A) as the one or more processes (YA): Implemented after the step (3)
  14.  前記加工対象物が半導体チップであり、
     前記工程(2)における前記一以上の加工が、下記工程(2-B)を含み、
    ・工程(2-B):前記半導体チップと、粘着剤層(X2)の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程
     前記工程(4)は、下記(X-B)及び(Y-B)の少なくともいずれかにおいて実施される、請求項1~12のいずれか一項に記載の製造方法。
    (X-B):前記一以上の加工として前記工程(2―B)の後に実施される
    (Y-B):前記工程(3)の後に実施される
    The workpiece is a semiconductor chip;
    The one or more processes in the step (2) include the following step (2-B):
    Step (2-B): covering the semiconductor chip and the periphery of the semiconductor chip among the adhesive surfaces of the adhesive layer (X2) with a sealing material, and curing the sealing material; A step of obtaining a cured encapsulant in which the semiconductor chip is encapsulated in a cured encapsulant. The step (4) is performed in at least one of the following (XB) and (YB): Item 13. The production method according to any one of Items 1 to 12.
    (XB): Implemented after the step (2-B) as the one or more processes (YB): Implemented after the step (3)
  15.  前記加工対象物が分割起点となる改質領域を有する半導体ウエハであり、
     前記工程(4)が下記工程(4-A)である、請求項1~12のいずれか一項に記載の製造方法。
    ・工程(4-A):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
    The processing object is a semiconductor wafer having a modified region that becomes a division starting point,
    The production method according to any one of claims 1 to 12, wherein the step (4) is the following step (4-A).
    Step (4-A): A step of grinding the surface of the semiconductor wafer opposite to the surface to which the adhesive layer (X2) is attached.
  16.  前記加工対象物が分割起点となる切り込み溝を有する半導体ウエハであり、
     前記工程(1)が下記工程(1-C)であり、前記工程(4)が下記工程(4-C)である、請求項1~12のいずれか一項に記載の製造方法。
    ・工程(1-C):前記粘着性積層体の粘着剤層(X1)の表面を支持体に貼付するとともに、前記粘着性積層体の粘着剤層(X2)の表面に前記半導体ウエハの切り込み溝を有する面を貼付する工程
    ・工程(4-C):前記半導体ウエハの粘着剤層(X2)との貼付面とは反対側の表面に対して研削を実施する工程
    The processing object is a semiconductor wafer having a cut groove serving as a division starting point,
    The production method according to any one of claims 1 to 12, wherein the step (1) is the following step (1-C) and the step (4) is the following step (4-C).
    Step (1-C): The surface of the adhesive layer (X1) of the adhesive laminate is affixed to a support, and the semiconductor wafer is cut into the surface of the adhesive layer (X2) of the adhesive laminate Step / step (4-C) for sticking the surface having the groove: Step for grinding the surface of the semiconductor wafer opposite to the sticking surface to the adhesive layer (X2)
  17.  基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に熱膨張性粒子を含む熱膨張性の粘着シート(I)、並びに、基材(Y2)及び粘着剤層(X2)を有する粘着シート(II)を備え、粘着シート(I)と粘着シート(II)の基材(Y2)とが直接積層してなる、切削及び研削の少なくともいずれかの加工が施された加工品を製造するための、粘着性積層体。 A heat-expandable pressure-sensitive adhesive sheet (I) having a base material (Y1) and a pressure-sensitive adhesive layer (X1) and containing heat-expandable particles in any layer, and a base material (Y2) and a pressure-sensitive adhesive layer (X2) ) Having a pressure-sensitive adhesive sheet (II) and a substrate (Y2) of the pressure-sensitive adhesive sheet (I) and the pressure-sensitive adhesive sheet (II) directly laminated, and subjected to at least one of cutting and grinding An adhesive laminate for manufacturing products.
PCT/JP2019/008260 2018-03-20 2019-03-04 Method for producing processed article and adhesive layered body WO2019181447A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207023470A KR20200133209A (en) 2018-03-20 2019-03-04 Processed product manufacturing method and adhesive laminate
JP2020508132A JP7273792B2 (en) 2018-03-20 2019-03-04 Processed product manufacturing method and adhesive laminate
CN201980018435.XA CN111837219A (en) 2018-03-20 2019-03-04 Method for producing processed product and adhesive laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052922 2018-03-20
JP2018052922 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181447A1 true WO2019181447A1 (en) 2019-09-26

Family

ID=67986176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008260 WO2019181447A1 (en) 2018-03-20 2019-03-04 Method for producing processed article and adhesive layered body

Country Status (5)

Country Link
JP (1) JP7273792B2 (en)
KR (1) KR20200133209A (en)
CN (1) CN111837219A (en)
TW (1) TWI797272B (en)
WO (1) WO2019181447A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
WO2021193910A1 (en) * 2020-03-27 2021-09-30 リンテック株式会社 Semiconductor device manufacturing sheet
WO2022196752A1 (en) * 2021-03-17 2022-09-22 リンテック株式会社 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP7530347B2 (en) 2019-03-15 2024-08-07 リンテック株式会社 Adhesive sheet and method for manufacturing semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079322A (en) * 2011-10-04 2013-05-02 Nitto Denko Corp Thermally foaming repeelable adhesive tape or sheet, and peeling method
JP2015034265A (en) * 2013-08-09 2015-02-19 日東電工株式会社 Easy-dismantlement type double-sided adhesive sheet, and adhesion method thereof
WO2016076131A1 (en) * 2014-11-13 2016-05-19 Dic株式会社 Double-sided adhesive tape, article, and separation method
JP2017088782A (en) * 2015-11-13 2017-05-25 日東電工株式会社 Laminate and joined body, recovery method for combination and manufacturing method of semiconductor device
WO2017150676A1 (en) * 2016-03-03 2017-09-08 リンテック株式会社 Adhesive tape for semiconductor processing and method for producing semiconductor device
JP2018032777A (en) * 2016-08-25 2018-03-01 株式会社ディスコ Method for manufacturing package device chip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594853A (en) 1982-07-01 1984-01-11 Mitsubishi Electric Corp Space heating and hot water supply system utilizing solar heater
EP1151853A4 (en) * 1999-11-22 2003-11-05 Sumitomo Chemical Co Easily delaminatable laminate and resin composition for use therein
JP4219605B2 (en) * 2002-03-12 2009-02-04 リンテック株式会社 Adhesive sheet for semiconductor wafer processing and method of using the same
JP4592270B2 (en) * 2003-10-06 2010-12-01 日東電工株式会社 Method for peeling semiconductor wafer from support and apparatus using the same
JP2010209158A (en) * 2009-03-06 2010-09-24 Nitto Denko Corp Pressure-sensitive adhesive sheet and processing method of semiconductor wafer using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079322A (en) * 2011-10-04 2013-05-02 Nitto Denko Corp Thermally foaming repeelable adhesive tape or sheet, and peeling method
JP2015034265A (en) * 2013-08-09 2015-02-19 日東電工株式会社 Easy-dismantlement type double-sided adhesive sheet, and adhesion method thereof
WO2016076131A1 (en) * 2014-11-13 2016-05-19 Dic株式会社 Double-sided adhesive tape, article, and separation method
JP2017088782A (en) * 2015-11-13 2017-05-25 日東電工株式会社 Laminate and joined body, recovery method for combination and manufacturing method of semiconductor device
WO2017150676A1 (en) * 2016-03-03 2017-09-08 リンテック株式会社 Adhesive tape for semiconductor processing and method for producing semiconductor device
JP2018032777A (en) * 2016-08-25 2018-03-01 株式会社ディスコ Method for manufacturing package device chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7530347B2 (en) 2019-03-15 2024-08-07 リンテック株式会社 Adhesive sheet and method for manufacturing semiconductor device
WO2021117695A1 (en) * 2019-12-11 2021-06-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device
WO2021193910A1 (en) * 2020-03-27 2021-09-30 リンテック株式会社 Semiconductor device manufacturing sheet
WO2022196752A1 (en) * 2021-03-17 2022-09-22 リンテック株式会社 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus

Also Published As

Publication number Publication date
TWI797272B (en) 2023-04-01
CN111837219A (en) 2020-10-27
TW201940347A (en) 2019-10-16
JPWO2019181447A1 (en) 2021-04-08
JP7273792B2 (en) 2023-05-15
KR20200133209A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019181447A1 (en) Method for producing processed article and adhesive layered body
WO2021117695A1 (en) Adhesive sheet and method for producing semiconductor device
WO2019216262A1 (en) Method of manufacturing semiconductor chip
WO2021200789A1 (en) Double-sided adhesive sheet, and method for manufacturing semiconductor device
JP7340457B2 (en) Adhesive laminate, method for producing workpiece with resin film, and method for producing cured sealant with cured resin film
JP7340515B2 (en) Adhesive laminate, method for using adhesive laminate, and method for producing cured sealant with cured resin film
WO2018181765A1 (en) Adhesive sheet
WO2018181770A1 (en) Adhesive sheet
WO2018181766A1 (en) Semiconductor device production method and double-sided adhesive sheet
JPWO2019098102A1 (en) Manufacturing method of semiconductor devices
JP7530347B2 (en) Adhesive sheet and method for manufacturing semiconductor device
JP6792700B2 (en) Method of heat peeling of processing inspection object
JP7405618B2 (en) Adhesive laminate, method for using adhesive laminate, and method for manufacturing semiconductor device
JP7490417B2 (en) Adhesive sheet
JP7267272B2 (en) Method for manufacturing cured encapsulant
WO2022054889A1 (en) Adhesive sheet and method for producing semiconductor device
JP2024107808A (en) Adhesive sheet and method for manufacturing semiconductor device
JPWO2019098101A1 (en) Manufacturing method of semiconductor devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771444

Country of ref document: EP

Kind code of ref document: A1