WO2018181766A1 - Semiconductor device production method and double-sided adhesive sheet - Google Patents

Semiconductor device production method and double-sided adhesive sheet Download PDF

Info

Publication number
WO2018181766A1
WO2018181766A1 PCT/JP2018/013353 JP2018013353W WO2018181766A1 WO 2018181766 A1 WO2018181766 A1 WO 2018181766A1 JP 2018013353 W JP2018013353 W JP 2018013353W WO 2018181766 A1 WO2018181766 A1 WO 2018181766A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive adhesive
pressure
adhesive layer
semiconductor chip
double
Prior art date
Application number
PCT/JP2018/013353
Other languages
French (fr)
Japanese (ja)
Inventor
高志 阿久津
岡本 直也
中山 武人
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020197027798A priority Critical patent/KR102454056B1/en
Priority to JP2019510153A priority patent/JP6761115B2/en
Priority to CN201880022512.4A priority patent/CN110476241B/en
Publication of WO2018181766A1 publication Critical patent/WO2018181766A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a double-sided pressure-sensitive adhesive sheet.
  • CSP Chip Scale Package
  • WLP Wafer Level Package
  • PLP Pulel Level Package
  • WLP and PLP are classified into fan-in type and fan-out type.
  • fan-out type WLP hereinafter also referred to as “FOWLP”
  • PLP hereinafter also referred to as “FOPPL”
  • a semiconductor chip is covered with a sealing material so as to be an area larger than the chip size.
  • the rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing material.
  • FOWLP and FOPLP are, for example, a mounting step of mounting a plurality of semiconductor chips on an adhesive sheet for temporary fixing (hereinafter also referred to as “temporary fixing sheet”), and a sealing material imparted with fluidity.
  • Temporary fixing sheet an adhesive sheet for temporary fixing
  • the temporary fixing sheet used in the above-described process does not cause misalignment of the semiconductor chip between the covering process and the curing process (hereinafter also referred to as “sealing process”), and the semiconductor chip Adhesiveness that does not allow the sealing material to enter the adhesive interface between the sheet and the temporary fixing sheet is required, and after the sealing process, peelability that can be easily removed without adhesive residue is required. That is, the temporary fixing sheet used for the manufacture of FOWLP and FOPLP is required to satisfy both the adhesiveness during use and the peelability after use.
  • Patent Document 1 in the method for producing FOWLP, a sealing step is performed on a temporary fixing sheet having a base material made of a polyimide film and an adhesive layer made of a silicone-based adhesive provided on the surface of the base material.
  • a method of peeling while temporarily bending the temporary fixing sheet is disclosed.
  • the process of peeling the temporarily fixing sheet by hand or the like is complicated, and it is required that the temporarily fixing sheet can be peeled with a smaller external force from the viewpoint of improving productivity.
  • Patent Document 2 discloses a temporary fixing at the time of cutting an electronic component in which a thermally expandable adhesive layer containing thermally expandable microspheres is provided on at least one side of a substrate.
  • a heat-peelable pressure-sensitive adhesive sheet is disclosed.
  • FOWLP and FOPLP it is also conceivable to use the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 2.
  • JP2015-32646A Japanese Patent No. 3594853
  • the present invention has been made in view of the above-described problems, and can suppress the occurrence of misalignment of a semiconductor chip in a manufacturing process of a fan-out type package, has excellent productivity, and is a rewiring layer of a semiconductor device to be obtained. It aims at providing the manufacturing method of the semiconductor device which is excellent in the flatness of a formation surface, and the double-sided adhesive sheet used for this manufacturing method.
  • the present inventors have solved the above problem by using a double-sided pressure-sensitive adhesive sheet having a specific layer structure including a base material that includes expandable particles and is non-adhesive in the manufacturing process of a fan-out type package. Found to get. That is, the present invention relates to the following [1] to [10].
  • [1] A method of manufacturing a semiconductor device using a double-sided pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive layer, a non-adhesive base material containing expandable particles, and a second pressure-sensitive adhesive layer in this order.
  • a method for manufacturing a semiconductor device comprising the following steps (1) to (4).
  • Step (1) Step of attaching a hard support to the adhesive surface of the second pressure-sensitive adhesive layer
  • Step (2) Step of placing a semiconductor chip on a part of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer
  • Step (3) The semiconductor chip and the periphery of the semiconductor chip of the adhesive surface of the first pressure-sensitive adhesive layer are covered with a sealing material, the sealing material is cured, and the semiconductor chip is cured and sealed.
  • Step (5) Step of forming a rewiring layer on the cured encapsulant from which the double-sided pressure-sensitive adhesive sheet has been peeled
  • the expandable particles are thermally expandable particles
  • the step (4) is the double-sided step.
  • Method. [4] The method for manufacturing a semiconductor device according to the above [3], wherein the expansion start temperature (t) of the thermally expandable particles is 120 to 250 ° C.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer at 23 ° C. is 1.0 ⁇ 10 4 to 1.0 ⁇ 10 8 Pa.
  • the manufacturing method of the semiconductor device in any one. [8] The above [1] to [7], wherein the ratio of the thickness of the base material to the thickness of the first pressure-sensitive adhesive layer (base material / first pressure-sensitive adhesive layer) at 23 ° C. is 0.2 or more. A method for manufacturing a semiconductor device according to any one of the above. [9] The material according to any one of [1] to [8], wherein the base material has a thickness of 10 to 1000 ⁇ m and the first pressure-sensitive adhesive layer has a thickness of 1 to 60 ⁇ m at 23 ° C.
  • a method for manufacturing a semiconductor device [10] The method for manufacturing a semiconductor device according to any one of [1] to [9], wherein a probe tack value on the surface of the base material is less than 50 mN / 5 mm ⁇ . [11] A double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device according to any one of [1] to [10], comprising a first pressure-sensitive adhesive layer and expandable particles, and being non-tacky The double-sided adhesive sheet which has a base material and a 2nd adhesive layer in this order.
  • a semiconductor device manufacturing method that can suppress the occurrence of positional deviation of a semiconductor chip in a manufacturing process of a fan-out type package, is excellent in productivity, and is excellent in flatness of a rewiring layer forming surface of the obtained semiconductor device.
  • the double-sided adhesive sheet used for this manufacturing method can be provided.
  • FIG. 3 is a cross-sectional view illustrating an example of the manufacturing method according to the present embodiment following FIG. 2.
  • FIG. 4 is a cross-sectional view illustrating an example of the manufacturing method according to the present embodiment following FIG. 3.
  • the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
  • the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in the examples.
  • (meth) acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the lower limit value and upper limit value which were described in steps can be combined independently, respectively. For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
  • the method for manufacturing a semiconductor device uses a double-sided pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive layer, a non-adhesive base material containing expandable particles, and a second pressure-sensitive adhesive layer in this order.
  • a method of manufacturing a semiconductor device comprising the following steps (1) to (4).
  • Step (1) Step of attaching a hard support to the adhesive surface of the second pressure-sensitive adhesive layer
  • Step (2) Step of placing a semiconductor chip on a part of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer
  • Step (3) The semiconductor chip and the periphery of the semiconductor chip of the adhesive surface of the first pressure-sensitive adhesive layer are covered with a sealing material, the sealing material is cured, and the semiconductor chip is cured and sealed.
  • Step (4) Inflating the expandable particles and peeling the double-sided PSA sheet from the cured encapsulant
  • the double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device will be described, and then each manufacturing process including steps (1) to (4) will be described.
  • the double-sided pressure-sensitive adhesive sheet according to the present embodiment includes a first pressure-sensitive adhesive layer, a non-adhesive base material containing expandable particles (hereinafter also referred to as “expandable base material”), a second pressure-sensitive adhesive layer, are not particularly limited as long as they have the above in this order.
  • the shape of the double-sided pressure-sensitive adhesive sheet can take any shape such as a sheet shape, a tape shape, and a label shape.
  • FIG. 1A is a cross-sectional view of a double-sided pressure-sensitive adhesive sheet 10 according to this embodiment.
  • the double-sided pressure-sensitive adhesive sheet 10 according to this embodiment has a configuration in which the base material 11 is sandwiched between a first pressure-sensitive adhesive layer 121 and a second pressure-sensitive adhesive layer 122.
  • the double-sided pressure-sensitive adhesive sheet according to the present embodiment further includes a release material 131 on the pressure-sensitive adhesive surface 121a of the first pressure-sensitive adhesive layer 121, as in the double-sided pressure-sensitive adhesive sheet 10a shown in FIG.
  • a release material 132 may be further provided on the adhesive surface 122 a of the agent layer 122.
  • the peeling force from the first pressure-sensitive adhesive layer 121 of the release material 131 and the peeling force from the second pressure-sensitive adhesive layer 122 of the release material 132 are approximately the same.
  • a phenomenon occurs in which the first pressure-sensitive adhesive layer 121 and the second pressure-sensitive adhesive layer 122 are divided and peeled off along with the two release materials.
  • the release materials 131 and 132 are appropriately removed when the double-sided pressure-sensitive adhesive sheet 10a is used in the method for manufacturing a semiconductor device according to this embodiment.
  • the double-sided pressure-sensitive adhesive sheet in the double-sided pressure-sensitive adhesive sheet 10a shown in FIG. 1 (B), one side of the first pressure-sensitive adhesive layer 121 or the second pressure-sensitive adhesive layer 122 is peeled on both sides.
  • a double-sided pressure-sensitive adhesive sheet having a configuration in which materials are laminated in a roll shape may be used.
  • the double-sided pressure-sensitive adhesive sheet according to this embodiment has other layers between the expandable base material and the first pressure-sensitive adhesive layer and between the expandable base material and the second pressure-sensitive adhesive layer. There may be.
  • the double-sided pressure-sensitive adhesive sheet shown in FIGS. 11 and the second pressure-sensitive adhesive layer 122 preferably have a directly laminated structure.
  • the expandable substrate, the first pressure-sensitive adhesive layer, the second pressure-sensitive adhesive layer, and the release material used as necessary, which are provided in the double-sided pressure-sensitive adhesive sheet according to the present embodiment, will be described in order.
  • An expandable substrate is a substrate that includes expandable particles and is non-tacky.
  • the heat-expandable pressure-sensitive adhesive layer as the pressure-sensitive adhesive sheet described in Patent Document 2 contains a pressure-sensitive adhesive having a low elastic modulus and sufficiently contains expandable particles. Thickness is required. For this reason, the semiconductor chip is displaced between the mounting process and the sealing process of the semiconductor chip, or the semiconductor chip sinks to the adhesive sheet side, resulting in a problem that the rewiring layer forming surface cannot be flattened. obtain.
  • the double-sided pressure-sensitive adhesive sheet according to this embodiment includes the expandable particles in the non-adhesive resin having a high elastic modulus, the adjustment of the thickness of the first pressure-sensitive adhesive layer on which the semiconductor chip is placed, the adhesive strength, The degree of freedom in design, such as control of viscoelasticity, is improved. This can suppress the occurrence of misalignment of the semiconductor chip, suppress the semiconductor chip from sinking into the double-sided pressure-sensitive adhesive sheet, and form a rewiring layer forming surface with excellent flatness.
  • the semiconductor chip is placed on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer, so that the expandable base material and the rewiring layer forming surface may be in direct contact with each other. Absent. As a result, the residue derived from the expandable particles and a part of the greatly deformed adhesive layer adhere to the rewiring layer forming surface, or the uneven shape formed on the thermally expandable adhesive layer is transferred to the rewiring layer forming surface. As a result, the reduction in smoothness is suppressed, and a rewiring layer forming surface excellent in cleanliness and smoothness is obtained.
  • the thickness of the expandable substrate is preferably 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m, still more preferably 25 to 400 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • the thickness of an expansible base material means the value measured by the method as described in an Example.
  • the expandable base material which an adhesive sheet has is a non-adhesive base material.
  • whether or not the non-adhesive substrate is determined if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mm ⁇ with respect to the surface of the target substrate.
  • the said base material is judged as a "non-adhesive base material".
  • the probe tack value on the surface of the expandable substrate used in the present embodiment is usually less than 50 mN / 5 mm ⁇ , preferably less than 30 mN / 5 mm ⁇ , more preferably less than 10 mN / 5 mm ⁇ , and even more preferably 5 mN / It is less than 5 mm ⁇ .
  • the specific measuring method of the probe tack value on the surface of an expansible base material is based on the method as described in an Example.
  • the expansible base material which the adhesive sheet of this embodiment has contains resin and expansive particles, but may contain the additive for base materials in the range which does not impair the effect of this invention as needed.
  • an expansible base material can be formed from the resin composition (y) containing resin and expansive particle.
  • each component contained in the resin composition (y) which is a forming material of an expansible base material is demonstrated.
  • the resin contained in the resin composition (y) is not particularly limited as long as the expandable substrate is a non-adhesive resin, and may be a non-adhesive resin or an adhesive resin. . That is, even if the resin contained in the resin composition (y) is an adhesive resin, the adhesive resin undergoes a polymerization reaction with the polymerizable compound in the process of forming the expandable substrate from the resin composition (y). The obtained resin becomes a non-adhesive resin, and the expandable substrate containing the resin only needs to be non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000. Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). It is 70% by weight, more preferably 70 to 85% by weight.
  • the resin contained in the resin composition (y) preferably contains at least one selected from acrylic urethane resins and olefin resins. Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
  • urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
  • Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols. These polyols may be used independently and may use 2 or more types together.
  • the polyol used in this embodiment is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
  • ester type diols include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarbox
  • alkylene type diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
  • alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol
  • ethylene glycol, propylene glycol And alkylene glycols such as diethylene glycol and dipropylene glycol
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
  • polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) examples include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. These polyvalent isocyanates may be used alone or in combination of two or more. These polyisocyanates may be a trimethylolpropane adduct type modified product, a burette type modified product reacted with water, or an isocyanurate type modified product containing an isocyanurate ring.
  • diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6-triisocyanate.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6-triisocyanate One or more selected from diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate are more preferable.
  • alicyclic diisocyanate examples include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane.
  • IPDI isophorone diisocyanate
  • Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a linear urethane prepolymer having ethylenically unsaturated groups at both ends.
  • Polymers are preferred.
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the (meth) acrylic acid ester is preferably one or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
  • the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
  • the number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
  • hydroxyalkyl (meth) acrylate the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce
  • vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate.
  • Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide). These may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound.
  • the amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the acrylic urethane-based resin (U1) used in the present embodiment is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester and polymerizing them.
  • the polymerization is preferably performed by adding a radical initiator.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35/65 by mass ratio. ⁇ 55/45.
  • the olefin resin suitable as the resin contained in the resin composition (y) is a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like. Among these, ethylene and propylene are preferable.
  • olefinic resins for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); ethylene -Vinyl alcohol copolymer (EVOH); ethylene-propylene Olefinic terpolymers such as-(5-ethylid)
  • the olefin-based resin may be a modified olefin-based resin that is further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
  • an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride.
  • unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride.
  • Glutaconic anhydride citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
  • unsaturated carboxylic acid or its anhydride may be used independently, and may use 2 or more types together.
  • an acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin as a main chain.
  • a polymer is mentioned.
  • the number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
  • said alkyl (meth) acrylate the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
  • Examples of the hydroxyl group-modified olefin resin obtained by subjecting an olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
  • Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl.
  • Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • the resin composition (y) may contain a resin other than the acrylic urethane resin and the olefin resin as long as the effects of the present invention are not impaired.
  • Such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer Polycarbonate; Polyurethane not applicable to acrylic urethane resin; Polysulfone; Polyetheretherketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Fluorine resin etc. are mentioned.
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polystyrene acrylonitrile-butadiene-styren
  • the content of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by mass, still more preferably less than 5 parts by mass, and even more preferably less than 1 part by mass.
  • the expandable particles are not particularly limited as long as they can expand by an external stimulus to form irregularities in the first pressure-sensitive adhesive layer and can reduce the adhesive force with the adherend.
  • Examples of the expandable particles include thermally expandable particles that expand by heating, energy beam expandable particles that expand by irradiation with energy rays, and the like, from the viewpoint of versatility and handleability, they are thermally expandable particles. It is preferable.
  • the thermally expandable particles are preferably particles having an expansion start temperature (t) adjusted to 120 to 250 ° C.
  • the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
  • Measurement method of expansion start temperature (t) of thermally expandable particles To an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter 5.6 mm, thickness 0. 1 mm) is prepared.
  • the height of the sample is measured from the upper part of the aluminum lid while a force of 0.01 N is applied to the sample by a pressurizer. Then, in a state where a force of 0.01 N is applied by the pressurizer, heating is performed from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and the amount of displacement of the pressurizer in the vertical direction is measured.
  • the displacement start temperature be the expansion start temperature (t).
  • the thermally expandable particles are microencapsulated foaming agents composed of an outer shell composed of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature.
  • a thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane.
  • the volume expansion coefficient when heated to a temperature not lower than the thermal expansion start temperature (t) of the thermally expandable particles used in the present embodiment is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably. Is 2.5 to 60 times, more preferably 3 to 40 times.
  • the average particle diameter of the expandable particles before expansion at 23 ° C. used in this embodiment is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, and still more preferably 10 to 50 ⁇ m. .
  • the average particle diameter of the expandable particles before expansion is the volume-median particle diameter (D 50 ), and a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern) is used.
  • D 50 volume-median particle diameter
  • a laser diffraction particle size distribution measuring device for example, product name “Mastersizer 3000” manufactured by Malvern
  • the particle distribution of the expandable particles before expansion measured by use it means the particle diameter corresponding to 50% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
  • the 90% particle diameter (D 90 ) of the expandable particles before expansion at 23 ° C. used in this embodiment is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, still more preferably 25 to 90 ⁇ m, and still more preferably. Is 30 to 80 ⁇ m.
  • the 90% particle diameter (D 90 ) before expansion of the expandable particles is measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern), before expansion. Mean particle diameter corresponding to 90% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
  • the content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and further preferably 10 to 10% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). 30% by mass, and still more preferably 15 to 25% by mass.
  • the resin composition (y) used in the present embodiment may contain a base material additive contained in a base material of a general pressure-sensitive adhesive sheet as long as the effects of the present invention are not impaired.
  • base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, and colorants. These base material additives may be used alone or in combination of two or more.
  • the content of each base material additive is preferably 0.0001 to 20 parts by mass with respect to 100 parts by mass of the resin in the resin composition (y). More preferably, it is 0.001 to 10 parts by mass.
  • ⁇ Solvent-free resin composition (y1)> As one aspect of the resin composition (y) used in the present embodiment, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-mentioned expandable particles are blended And a solvent-free resin composition (y1) that does not contain a solvent. In the solventless resin composition (y1), no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer. An expandable base material can be obtained by irradiating an energy ray with respect to the coating film formed from the solventless resin composition (y1).
  • the type, shape, and blending amount (content) of the expandable particles blended in the solventless resin composition (y1) are as described above.
  • the mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
  • oligomer As said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight (Mw) is 50000 or less among resin contained in the above-mentioned resin composition (y). Polymer (UP) is preferred.
  • the modified olefin resin etc. which have an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably 50 with respect to the total amount (100% by mass) of the solventless resin composition (y1). It is ⁇ 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
  • Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Cycloaliphatic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
  • the content ratio of the oligomer to the energy beam polymerizable monomer is preferably 20/80 to 90 / in mass ratio. 10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
  • the solventless resin composition (y1) is preferably further blended with a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned. These photoinitiators may be used independently and may use 2 or more types together.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer.
  • the amount is preferably 0.02 to 3 parts by mass.
  • the storage elastic modulus E ′ (23) at 23 ° C. of the expandable substrate of the pressure-sensitive adhesive sheet of this embodiment is preferably 1.0 ⁇ 10 6 Pa or more, more preferably 5.0 ⁇ 10 6 to 5.0. ⁇ 10 12 Pa, more preferably 1.0 ⁇ 10 7 to 1.0 ⁇ 10 12 Pa, still more preferably 5.0 ⁇ 10 7 to 1.0 ⁇ 10 11 Pa, still more preferably 1.0 ⁇ 10 8 to 1.0 ⁇ 10 10 Pa.
  • the semiconductor chip is placed so that its circuit surface is covered with the adhesive surface of the adhesive layer.
  • a known device such as a flip chip bonder or a die bonder may be used.
  • a force is applied to push the semiconductor chip in the thickness direction of the adhesive sheet.
  • the storage elastic modulus E ′ of the expandable substrate at a predetermined temperature means a value measured by the method described in Examples.
  • the storage elastic modulus satisfy
  • the storage elastic modulus E '(100) of the said expandable base material in 100 degreeC is 2.0 * 10 ⁇ 5 > Pa or more.
  • the storage elastic modulus E ′ (100) of the expandable substrate is more preferably 4.0 ⁇ 10 5 Pa or more, still more preferably 6.0 ⁇ 10 5 Pa or more, and still more preferably 8.0. ⁇ 10 5 Pa or more, still more preferably 1.0 ⁇ 10 6 Pa or more.
  • the storage elastic modulus E ′ (100) of the expandable substrate is preferably 1.0 ⁇ 10 12 Pa or less, more preferably It is 1.0 ⁇ 10 11 Pa or less, more preferably 1.0 ⁇ 10 10 Pa or less, and still more preferably 1.0 ⁇ 10 9 Pa or less.
  • the expansible base material which the adhesive sheet of this embodiment has contains a thermally expansible particle as an expansible particle it is preferable that the storage elastic modulus satisfy
  • the storage elastic modulus E ′ (t) of the expandable substrate at the expansion start temperature (t) of the thermally expandable particles is 1.0 ⁇ 10 7 Pa or less.
  • the storage elastic modulus E ′ (t) of the expandable substrate is more preferably 9.0 ⁇ 10 6 Pa or less, still more preferably 8.0 ⁇ 10 6 Pa or less, and still more preferably 6.0. ⁇ 10 6 Pa or less, still more preferably 4.0 ⁇ 10 6 Pa or less. Further, from the viewpoint of suppressing the flow of the expanded thermally expandable particles, improving the shape maintaining property of the unevenness formed on the adhesive surface of the first pressure-sensitive adhesive layer, and further improving the peelability, storing the expandable base material
  • the elastic modulus E ′ (t) is preferably 1.0 ⁇ 10 3 Pa or more, more preferably 1.0 ⁇ 10 4 Pa or more, and further preferably 1.0 ⁇ 10 5 Pa or more.
  • the 1st adhesive layer which the adhesive sheet of this embodiment has should just contain adhesive resin, and it is for adhesives, such as a crosslinking agent, a tackifier, a polymeric compound, and a polymerization initiator as needed. An additive may be contained.
  • a 1st adhesive layer is a non-expandable adhesive layer from a viewpoint which prevents the semiconductor chip mounted from sinking in a 1st adhesive layer by the heating in a sealing process.
  • the pressure-sensitive adhesive force of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer before expansion of the expandable particles at 23 ° C. is preferably 0.1 to 10.0 N / 25 mm, more preferably 0. It is 2 to 8.0 N / 25 mm, more preferably 0.4 to 6.0 N / 25 mm, and still more preferably 0.5 to 4.0 N / 25 mm. If the adhesive force is 0.1 N / 25 mm or more, it can be sufficiently fixed to such an extent that the semiconductor chip can be prevented from being displaced in the sealing step. On the other hand, when the adhesive strength is 10.0 N / 25 mm or less, it can be easily peeled off with a slight external force when peeling off from the adherend. In addition, said adhesive force means the value measured by the method as described in an Example.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer at 23 ° C. is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 8 Pa, more preferably It is 5.0 ⁇ 10 4 to 5.0 ⁇ 10 7 Pa, more preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 7 Pa.
  • the storage shear modulus G ′ (23) of the pressure-sensitive adhesive layer to which the semiconductor chip is attached is preferably within the above range, and the semiconductor chip is more than the expandable substrate.
  • the storage shear modulus G ′ (23) of all the pressure-sensitive adhesive layers on the side to which the is attached is within the above range. If the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer is 1.0 ⁇ 10 4 Pa or more, it is possible to prevent the positional deviation of the semiconductor chip and to the first pressure-sensitive adhesive layer of the semiconductor chip. It is also possible to prevent the sinking. On the other hand, if the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer is 1.0 ⁇ 10 8 Pa or less, the surface of the first pressure-sensitive adhesive layer is caused by the expansion of the expandable particles in the expandable substrate. As a result, the surface can be easily peeled off with a slight force. In the present specification, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer means a value measured by the method described in Examples.
  • the thickness of the 1st adhesive layer which the adhesive sheet of this embodiment has is the surface of a 1st adhesive layer by the viewpoint of expressing the outstanding adhesive force, and the expansion
  • the ratio of the thickness of the expandable base material to the thickness of the first pressure-sensitive adhesive layer at 23 ° C. Is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and even more preferably 5.0 or more, from the viewpoint of flattening and preventing misalignment of the semiconductor chip. Also, from the viewpoint of forming a pressure-sensitive adhesive sheet that can be easily peeled off with a slight force when peeled, it is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and even more preferably 30 or less.
  • the thickness of a 1st adhesive layer means the value measured by the method as described in an Example.
  • the first pressure-sensitive adhesive layer can be formed from a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive resin.
  • a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive resin.
  • the resin alone is preferably a polymer having adhesiveness and a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin used in the present embodiment is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000, from the viewpoint of improving adhesive force. ⁇ 1 million.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used independently and may use 2 or more types together. In addition, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
  • the adhesive resin used in the present embodiment may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
  • the polymerizable functional group include a (meth) acryloyl group and a vinyl group.
  • energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
  • the content of the adhesive resin is preferably 30 to 99.99% by mass, more preferably 40 to 99.95% by mass, still more preferably based on the total amount (100% by mass) of the active ingredients of the adhesive composition. It is 50 to 99.90% by mass, more preferably 55 to 99.80% by mass, still more preferably 60 to 99.50% by mass.
  • “content of each component relative to the total amount of active ingredients of the pressure-sensitive adhesive composition” means “content of each component in the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition”. Is synonymous with.
  • the adhesive resin preferably contains an acrylic resin.
  • the content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50 to 100% by mass with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition. %, More preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
  • the acrylic resin that can be used as the adhesive resin has, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, or a cyclic structure. Examples thereof include a polymer containing a structural unit derived from (meth) acrylate.
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, still more preferably 500,000 to 1,100,000.
  • acrylic resin examples include a structural unit (a1) derived from an alkyl (meth) acrylate (a1 ′) (hereinafter also referred to as “monomer (a1 ′)”) and a functional group-containing monomer (a2 ′) (hereinafter referred to as “monomer”).
  • the acrylic copolymer (A1) having the structural unit (a2) derived from (a2 ′) ” is more preferable.
  • the number of carbon atoms of the alkyl group contained in the monomer (a1 ′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and still more preferably 4 to 8 from the viewpoint of improving adhesive properties. It is.
  • the alkyl group contained in the monomer (a1 ′) may be a linear alkyl group or a branched alkyl group.
  • Examples of the monomer (a1 ′) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( Examples include meth) acrylate and stearyl (meth) acrylate. These monomers (a1 ′) may be used alone or in combination of two or more. As the monomer (a1 ′), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
  • the content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass with respect to the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, and still more preferably 80 to 95.0% by mass.
  • a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer. These monomers (a2 ′) may be used alone or in combination of two or more. Among these, as the monomer (a2 ′), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable.
  • Examples of the hydroxyl group-containing monomer include the same ones as the above-mentioned hydroxyl group-containing compound.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof.
  • ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid
  • dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof.
  • the content of the structural unit (a2) is preferably 0.1 to 40% by weight, more preferably 0.5 to 35% by weight with respect to all the structural units (100% by weight) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, and still more preferably 3.0 to 25% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from another monomer (a3 ′) other than the monomers (a1 ′) and (a2 ′).
  • the content of the structural units (a1) and (a2) is preferably 70 with respect to the total structural units (100% by mass) of the acrylic copolymer (A1).
  • To 100% by mass more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and still more preferably 95 to 100% by mass.
  • Examples of the monomer (a3 ′) include olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene, and chloroprene; cyclohexyl (meth) acrylate, It has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate, etc.
  • olefins such as ethylene, propylene, and isobutylene
  • halogenated olefins such as vinyl chloride and vinylidene chloride
  • diene monomers such as butadiene, iso
  • the acrylic copolymer (A1) may be an energy ray curable acrylic copolymer having a polymerizable functional group introduced in the side chain.
  • the polymerizable functional group and the energy ray are as described above.
  • the polymerizable functional group includes an acrylic copolymer having the above structural units (a1) and (a2), and a substituent that can be bonded to the functional group of the structural unit (a2) of the acrylic copolymer. And a compound having a polymerizable functional group can be reacted. Examples of the compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate, and the like.
  • the adhesive composition contains an adhesive resin containing a functional group such as the above-mentioned acrylic copolymer (A1), it is preferable that the adhesive composition further contains a crosslinking agent.
  • the said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge
  • crosslinking agent examples include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent. These crosslinking agents may be used independently and may use 2 or more types together. Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force, and availability.
  • the content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
  • the mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
  • Examples of the tackifier are obtained by copolymerizing C5 fractions such as rosin resin, terpene resin, styrene resin, pentene, isoprene, piperine, 1,3-pentadiene generated by thermal decomposition of petroleum naphtha.
  • C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
  • the “softening point” of the tackifier means a value measured according to JIS K2531.
  • a tackifier may be used independently and may use 2 or more types from which a softening point, a structure, etc. differ. And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifier belongs to the said range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.05 to 55% by mass, and still more preferably relative to the total amount (100% by mass) of the active ingredients of the adhesive composition. It is 0.1 to 50% by mass, more preferably 0.5 to 45% by mass, still more preferably 1.0 to 40% by mass.
  • an adhesive composition contains an energy-beam curable adhesive resin as an adhesive resin
  • the adhesive layer formed from the adhesive composition can be irradiated with relatively low energy energy rays. It is possible to sufficiently advance the curing reaction and adjust the adhesive strength to a desired range.
  • a photoinitiator the same thing as what is mix
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 0.001 parts by mass with respect to 100 parts by mass of the energy ray curable adhesive resin. 05 to 2 parts by mass.
  • the pressure-sensitive adhesive composition which is a material for forming the first pressure-sensitive adhesive layer, is a pressure-sensitive adhesive used for general pressure-sensitive adhesives in addition to the additives described above, as long as the effects of the present invention are not impaired. May contain additives.
  • an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, and the like. These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
  • each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ⁇ 10 parts by mass.
  • the pressure-sensitive adhesive composition that is a material for forming the pressure-sensitive adhesive layer may contain expandable particles as long as the effects of the present invention are not impaired.
  • the first pressure-sensitive adhesive layer is preferably a non-expandable pressure-sensitive adhesive layer. Therefore, the pressure-sensitive adhesive composition, which is a material for forming the pressure-sensitive adhesive layer, is more preferable as the content of the expandable particles is as small as possible.
  • the content of the expandable particles is preferably less than 5% by mass, more preferably less than 1% by mass, and even more preferably less than 0.1% by mass with respect to the total amount (100% by mass) of the active ingredients of the pressure-sensitive adhesive composition. More preferably, it is less than 0.01% by mass, particularly preferably less than 0.001% by mass.
  • the 2nd adhesive layer which the adhesive sheet of this embodiment has should just contain adhesive resin, and for adhesives, such as a crosslinking agent, a tackifier, a polymerization compound, and a polymerization initiator, if needed.
  • An additive may be contained.
  • the preferable aspect of a composition and a form of a 2nd adhesive layer is the same as that of a 1st adhesive layer.
  • the composition of the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer may be the same or different.
  • the form of a 1st adhesive layer and a 2nd adhesive layer may be the same, or may differ.
  • the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 8 Pa from the viewpoint of improving the adhesion to the support and the like.
  • the pressure is preferably 3.0 ⁇ 10 4 to 5.0 ⁇ 10 7 Pa, more preferably 5.0 ⁇ 10 4 to 1.0 ⁇ 10 7 Pa.
  • the adhesive sheet of this embodiment may have a peeling material further on the adhesive surface of a 1st adhesive layer and / or a 2nd adhesive layer.
  • a release sheet that has been subjected to a double-sided release process, a release sheet that has been subjected to a single-sided release process, or the like is used.
  • Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and craft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin, polypropylene resin, and polyethylene resin. Examples thereof include plastic films such as olefin resin films.
  • release agent examples include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
  • the thickness of the release material is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 25 to 170 ⁇ m, and still more preferably 35 to 80 ⁇ m.
  • the method for producing the double-sided pressure-sensitive adhesive sheet according to this embodiment is not particularly limited, and examples thereof include a production method (a) having the following steps (1a) to (4a).
  • Step (1a) After applying a resin composition (y), which is a material for forming an expandable base material, on the release treatment surface of the release material to form a coating film, and then drying or UV curing the coating film The process which peels a peeling material from the expandable base material obtained.
  • Step (1b) A pressure-sensitive adhesive composition, which is a material for forming the first pressure-sensitive adhesive layer, is applied on the release-treated surface of the release material to form a coating film, the coating film is dried, and the first pressure-sensitive adhesive Forming a layer;
  • a pressure-sensitive adhesive composition which is a material for forming the second pressure-sensitive adhesive layer, is applied to form a coating film, the coating film is dried, 2 The process of forming an adhesive layer.
  • the resin composition (y) and the pressure-sensitive adhesive composition may be further mixed with a diluent solvent to form a solution.
  • a diluent solvent examples include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • drying or UV irradiation which forms an expansible base material from the coating film of the process (1a) of a manufacturing method (a) and the process (1b) of a manufacturing method (b) is the conditions which an expansible particle does not expand
  • the drying temperature is preferably less than the expansion start temperature (t) of the thermally expandable particles.
  • the method for manufacturing a semiconductor device according to the present embodiment is a method for manufacturing a semiconductor device using the double-sided pressure-sensitive adhesive sheet, and includes the following steps (1) to (4).
  • Step (3) The semiconductor chip and the periphery of the semiconductor chip of the adhesive surface of the first pressure-sensitive adhesive layer are covered with a sealing material, the sealing material is cured, and the semiconductor chip is cured and sealed.
  • FIG. 2A is a cross-sectional view illustrating a step (1) of attaching the hard support 20 to the adhesive surface 122a of the second pressure-sensitive adhesive layer 122 of the double-sided pressure-sensitive adhesive sheet 10.
  • FIG. 2A is a cross-sectional view illustrating a step (1) of attaching the hard support 20 to the adhesive surface 122a of the second pressure-sensitive adhesive layer 122 of the double-sided pressure-sensitive adhesive sheet 10.
  • the peeling material 132 is peeled beforehand.
  • the hard support 20 is affixed to the pressure-sensitive adhesive surface 122a of the second pressure-sensitive adhesive layer 122, and is used for the purpose of obtaining a cured sealing body having excellent flatness in the steps (2) and (3). It is. From the viewpoint of achieving the above object, the hard support 20 is preferably attached to the entire surface of the adhesive surface 122 (a) as shown in FIG. 2 (A). Therefore, the hard support 20 is preferably plate-shaped, and the area of the surface to be attached to the adhesive surface 122a is preferably equal to or larger than the area of the adhesive surface 122a.
  • the material of the hard support 20 may be appropriately determined in consideration of mechanical strength, heat resistance, and the like.
  • a metal material such as SUS
  • a non-metallic inorganic material such as glass or silicon wear
  • composite materials such as glass epoxy resins are exemplified, and among these, SUS, glass, silicon wafer and the like are preferable.
  • the thickness of the hard support 20 may be appropriately determined in consideration of mechanical strength, handleability, etc., and is, for example, 100 ⁇ m to 50 mm.
  • FIG. 2B shows a cross-sectional view for explaining the step (2) of placing the semiconductor chip CP on a part of the adhesive surface 121a of the first adhesive layer 121.
  • the peeling material 131 is peeled beforehand.
  • a conventionally known semiconductor chip CP can be used.
  • the semiconductor chip CP is formed with an integrated circuit composed of circuit elements such as transistors, resistors, and capacitors on the circuit surface W1.
  • the semiconductor chip CP is placed so that the circuit surface W1 is covered with the adhesive surface 121a.
  • a known device such as a flip chip bonder or a die bonder can be used for mounting the semiconductor chip CP. The layout, the number of arrangement, etc.
  • the manufacturing method of the semiconductor device according to the present embodiment covers the semiconductor chip CP with a sealing material in an area larger than the chip size, such as FOWLP, FOPLP, etc., and only the circuit surface W1 of the semiconductor chip CP
  • the present invention is suitably applied to a package for forming a rewiring layer even in the surface region of the sealing material. Therefore, the semiconductor chip CP is placed on a part of the adhesive surface 121a of the first adhesive layer 121, and the adhesive surface 121a is in a state where the plurality of semiconductor chips CP are aligned with a certain interval.
  • the plurality of semiconductor chips CP are more preferably placed on the adhesive surface 121a in a state of being arranged in a matrix of a plurality of rows and a plurality of columns with a certain interval.
  • the interval between the semiconductor chips CP may be appropriately determined according to the target package form and the like.
  • the peripheral portion 30 of the semiconductor chip CP is formed on the adhesive surface 121a of the first adhesive layer 121.
  • the peripheral portion 30 of the semiconductor chip CP is an adhesive surface 121a of the first adhesive layer 121 corresponding to a gap between adjacent semiconductor chips CP among the plurality of semiconductor chips CP.
  • FIG. 3 A cross-sectional view illustrating a step (3) of obtaining a cured sealing body 50 obtained by curing the stopper 40 and sealing the semiconductor chip CP with the cured sealing material 41 is shown.
  • the step of covering the semiconductor chip CP and the peripheral portion 30 of the semiconductor chip CP in the adhesive surface 121a of the first adhesive layer 121 with the sealing material 40 may be referred to as a “covering step”.
  • the process of curing the sealing material 40 to obtain the cured sealing body 50 in which the semiconductor chip CP is sealed with the cured sealing material 41 may be referred to as a “curing process”.
  • the semiconductor chip CP and the peripheral portion 30 of the semiconductor chip CP among the adhesive surface 121a of the first adhesive layer 121 are sealed with the sealing material 40.
  • the sealing material 40 fills the gaps between the plurality of semiconductor chips CP while covering the entire exposed surface of the semiconductor chip CP.
  • the sealing material 40 has a function of protecting the semiconductor chip CP and its accompanying elements from the external environment. There is no restriction
  • the sealing material 40 has curability from the viewpoint of mechanical strength, heat resistance, insulation, and the like, and examples thereof include a thermosetting resin composition and an energy ray curable resin composition. Hereinafter, in this embodiment, the sealing material 40 is demonstrated as what is a thermosetting resin composition.
  • thermosetting resin contained in the thermosetting resin composition that is the sealing material 40 examples include an epoxy resin, a phenol resin, and a cyanate resin. However, mechanical strength, heat resistance, insulation, and moldability From the viewpoint of the above, an epoxy resin is preferable.
  • the thermosetting resin composition if necessary, a phenol resin curing agent, a curing agent such as an amine curing agent, a curing accelerator, an inorganic filler such as silica, You may contain additives, such as an elastomer.
  • the sealing material 40 may be solid or liquid at room temperature.
  • the form of the sealing material 40 which is solid at room temperature is not specifically limited, For example, a granular form, a sheet form, etc. may be sufficient.
  • any method can be appropriately selected and applied from methods conventionally used in the semiconductor sealing process.
  • a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, a compression molding mold method and the like can be applied.
  • the sealing material 40 is heated during coating to impart fluidity.
  • the sealing material 40 is cured to obtain a cured sealing body 50 in which the semiconductor chip CP is sealed with the cured sealing material 41.
  • the double-sided pressure-sensitive adhesive sheet 10 used in the present embodiment contains expandable particles that expand due to heat, energy rays, etc., and in the step (4) described later, the expandable particles. Is expanded to reduce the adhesive force between the adhesive surface 121a and the cured sealing body 50, and the double-sided adhesive sheet 10 is peeled off from the cured sealing body 50. Therefore, in the coating step and the curing step, it is preferable that the sealing material 40 is coated and cured by appropriately selecting conditions under which the expandable particles do not expand.
  • the heating conditions (heating temperature and heating time) in the coating step and the curing step are double-sided pressure-sensitive adhesive sheets resulting from the expansion of the heat-expandable particles.
  • the heating condition in which the increase rate of the thickness of 10 is 10% or less is preferable, the heating condition in which the increase rate is 5% or less is more preferable, and the heating condition in which the increase rate is 0% (that is, thermally expandable particles More preferred is a heating condition in which does not expand.
  • the rate of increase in the thickness of the double-sided pressure-sensitive adhesive sheet 10 is, for example, the thickness of the double-sided pressure-sensitive adhesive sheet 10 before and after heating under a predetermined condition according to JIS K6783, Z1702, and Z1709. Measured using a product name “PG-02” manufactured by Teclock, and can be calculated based on the following formula.
  • Thickness increase rate (%) (Thickness after heating ⁇ Thickness before heating) ⁇ 100 / Thickness before heating
  • the coating process and the curing process may be performed separately.
  • the sealing material 40 may be cured as it is by the heating. That is, in that case, the covering step and the curing step may be performed simultaneously.
  • thermosetting resin composition is used as the sealing material 40 and heat-expandable particles are used as the expandable particles.
  • the sealing material 40 is an energy ray curable resin composition
  • the expandable particle is an energy ray expandable particle.
  • the increasing rate of the thickness of the double-sided pressure-sensitive adhesive sheet 10 in the coating step and the curing step satisfies the above-described range.
  • thermosetting resin composition is heated in the coating step
  • the heating time is, for example, 5 seconds to 60 minutes, preferably 10 seconds to 45 minutes, and more preferably 15 seconds to 30 minutes.
  • specific examples of the temperature at which the sealing material 40 is cured vary depending on the type of the sealing material 40 used, the type of the expandable particles, and the like, but are, for example, 80 to 240 ° C. ° C is preferred, and 100 to 170 ° C is more preferred.
  • the heating time is, for example, 10 to 180 minutes, preferably 20 to 150 minutes, and more preferably 30 to 120 minutes.
  • the covering step and the curing step using a sheet-like sealing material (hereinafter also referred to as “sheet-like sealing material”).
  • sheet-like sealing material a sheet-like sealing material
  • the semiconductor chip CP and the peripheral portion 30 are covered with the sealing material 40 by placing the sheet-shaped sealing material so as to cover the semiconductor chip CP and the peripheral portion 30 thereof.
  • Preferred embodiments of the reduced pressure, heating and pressure bonding conditions are as described above.
  • the laminated sealing material 40 is heated and cured.
  • the sheet-like sealing material may be a laminated sheet supported by a resin sheet such as polyethylene terephthalate.
  • the resin sheet may be peeled off from the sealing material after placing the laminated sheet so that the sheet-shaped sealing material covers the semiconductor chip CP and the peripheral portion 30 thereof.
  • a cured sealing body 50 in which a plurality of semiconductor chips CP separated by a predetermined distance are embedded in the curing sealing material 41 is obtained.
  • FIG. 2E shows a cross-sectional view for explaining the step (4) in which the expandable particles are expanded to peel the double-sided pressure-sensitive adhesive sheet 10 from the cured sealing body 50.
  • the expandable particles are expanded by heat, energy rays, or the like according to the type thereof, thereby forming irregularities on the adhesive surface 121a of the first adhesive layer 121, thereby forming the adhesive surface 121a and The adhesive force with the cured sealing body 50 is reduced, and the double-sided pressure-sensitive adhesive sheet 10 is peeled off.
  • the hard support 20 is affixed to the adhesive surface 122a of the second adhesive layer 122, unevenness is formed on the adhesive surface 122a side of the second adhesive layer 122. Is suppressed, whereby unevenness can be efficiently formed on the adhesive surface 121a side of the first pressure-sensitive adhesive layer 121, and excellent peelability can be obtained. What is necessary is just to select suitably as a method of expanding an expandable particle according to the kind of expandable particle.
  • the expandable particles are thermally expandable particles, they may be heated to a temperature equal to or higher than the expansion start temperature (t).
  • the “temperature higher than the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is more preferable that it is not less than “t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”. Specifically, depending on the type of the thermally expandable particles, for example, it may be heated and expanded in the range of 120 to 250 ° C.
  • the double-sided pressure-sensitive adhesive sheet 10 is peeled from the cured sealing body 50. Since the double-sided pressure-sensitive adhesive sheet 10 according to the present embodiment has excellent peelability, it can be peeled with an external force smaller than that of a conventional temporary fixing sheet.
  • the method to peel is not specifically limited, For example, the method of peeling from the hardening sealing body 50 using the debonder from the double-sided adhesive sheet 10 is mentioned.
  • the thickness of the cured sealing body 50 is reduced as necessary.
  • a grinding step may be included.
  • the manufacturing method which concerns on this embodiment includes the process (5) which forms a rewiring layer in the hardening sealing body 50 which peeled the double-sided adhesive sheet 10.
  • FIG. FIG. 3A shows a cross-sectional view of the cured sealing body 50 after the double-sided pressure-sensitive adhesive sheet 10 is peeled off.
  • rewirings connected to the circuit W2 of the plurality of exposed semiconductor chips CP are formed on the circuit surface W1 and on the surface 50a of the cured sealing body 50 corresponding to the outside of the region of the semiconductor chip CP. .
  • FIG. 3B is a cross-sectional view illustrating a process of forming the first insulating layer 61 on the circuit surface W1 of the semiconductor chip CP and the surface 50a of the cured sealing body 50.
  • a first insulating layer 61 containing an insulating resin is formed on the circuit surface W1 and the surface 50a so as to expose the circuit W2 of the semiconductor chip CP or the internal terminal electrode W3 of the circuit W2.
  • the insulating resin include polyimide resin, polybenzoxazole resin, and silicone resin.
  • the material of the internal terminal electrode W3 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals.
  • FIG. 3C is a cross-sectional view illustrating a process of forming the rewiring 70 that is electrically connected to the semiconductor chip CP sealed in the cured sealing body 50.
  • the rewiring 70 is formed following the formation of the first insulating layer 61.
  • the material of the rewiring 70 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals.
  • the rewiring 70 can be formed by a known method such as a subtractive method or a semi-additive method.
  • FIG. 4A is a cross-sectional view illustrating a process of forming the second insulating layer 62 that covers the rewiring 70.
  • the rewiring 70 has external electrode pads 70A for external terminal electrodes.
  • the second insulating layer 62 is provided with an opening or the like to expose the external electrode pad 70A for the external terminal electrode.
  • the external electrode pads 70A are inside and outside the region of the semiconductor chip CP of the cured sealing body 50 (a region corresponding to the circuit surface W1) and outside the region (a region corresponding to the surface 50a on the cured sealing body 50). It is exposed to.
  • the rewiring 70 is formed on the surface 50a of the cured sealing body 50 so that the external electrode pads 70A are arranged in an array. In the present embodiment, since the external electrode pad 70A is exposed outside the region of the semiconductor chip CP of the cured sealing body 50, FOWLP or FOPLP can be obtained.
  • FIG. 4B is a cross-sectional view illustrating a process of connecting the external terminal electrode 80 to the external electrode pad 70A.
  • An external terminal electrode 80 such as a solder ball is placed on the external electrode pad 70A exposed from the second insulating layer 62, and the external terminal electrode 80 and the external electrode pad 70A are electrically connected by solder bonding or the like.
  • the material of the solder ball is not particularly limited, and examples thereof include lead-containing solder and lead-free solder.
  • FIG. 4C is a cross-sectional view illustrating a process of separating the cured sealing body 50 to which the external terminal electrode 80 is connected.
  • the cured sealing body 50 is singulated for each semiconductor chip CP.
  • the method for dividing the cured sealing body 50 into individual pieces is not particularly limited, and can be performed by a cutting means such as a dicing saw.
  • the semiconductor device 100 in units of the semiconductor chip CP is manufactured.
  • the semiconductor device 100 in which the external terminal electrode 80 is connected to the external electrode pad 70A fanned out outside the region of the semiconductor chip CP is manufactured as FOWLP, FOPLP, or the like.
  • the particle distribution of the thermally expandable particles before expansion at 23 ° C. was measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern).
  • the particle diameters corresponding to 50% and 90% of the cumulative volume frequency calculated from the smaller particle diameter of the particle distribution are expressed as “average particle diameter (D 50 ) of thermally expandable particles” and “thermally expandable particles”, respectively.
  • ⁇ Storage elastic modulus E 'of expandable substrate> When the measurement target was a non-adhesive expandable base material, the expandable base material was 5 mm long ⁇ 30 mm wide ⁇ 200 ⁇ m thick, and the test piece was prepared by removing the release material. Using a dynamic viscoelasticity measuring apparatus (product name “DMAQ800” manufactured by TA Instruments Inc.), the test start temperature is 0 ° C., the test end temperature is 300 ° C., the heating rate is 3 ° C./min, the frequency is 1 Hz, and the amplitude is 20 ⁇ m. Under the conditions, the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
  • DMAQ800 dynamic viscoelasticity measuring apparatus
  • a viscoelasticity measuring device manufactured by Anton Paar, device name “MCR300”
  • a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
  • a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is tested at a speed of 10 mm / second. The force required to move away from the surface was measured. And the measured value was made into the probe tack value of the test sample.
  • Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) 80.0 / 20.0 (mass ratio), A solution containing an acrylic copolymer having a mass average molecular weight (Mw) of 600,000. Diluting solvent: ethyl acetate, solid content concentration: 40% by mass.
  • Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid 86.0 / 8.0 / 5.0 / 1.
  • first adhesive layer (X-1) The isocyanate-based crosslinking agent (i) 5.0 parts by mass (solid content ratio) is blended with 100 parts by mass of the solid content of the acrylic copolymer (i), which is an adhesive resin, and diluted with toluene.
  • the composition (x-1) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by stirring uniformly. Then, on the surface of the release agent layer of the above heavy release film, the prepared composition (x-1) was applied to form a coating film, and the coating film was dried at 100 ° C. for 60 seconds to have a thickness of 10 ⁇ m.
  • the first pressure-sensitive adhesive layer (X-1) was formed.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X-1) at 23 ° C. was 2.5 ⁇ 10 5 Pa.
  • Second adhesive layer (X-2) The isocyanate-based crosslinking agent (i) 0.8 parts by mass (solid content ratio) is blended with 100 parts by mass of the acrylic copolymer (ii), which is an adhesive resin, and diluted with toluene, The composition (x-2) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by stirring uniformly. Then, on the surface of the release agent layer of the light release film, the prepared composition (x-2) was applied to form a coating film, and the coating film was dried at 100 ° C. for 60 seconds to have a thickness of 10 ⁇ m. The second pressure-sensitive adhesive layer (X-2) was formed. The storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X-2) at 23 ° C. was 9.0 ⁇ 10 4 Pa.
  • the product name “Irgacure 184”) 2.0 parts by mass (solid content ratio) and 0.2 parts by mass (solid content ratio) phthalocyanine pigment as an additive were blended to prepare an energy ray curable composition. . And the said heat-expandable particle
  • the isocyanate-based crosslinking agent (i) is 6.3 parts by mass with respect to 100 parts by mass of the solid content of the acrylic urethane resin solution obtained in (2) above. (Solid content ratio), 1.4 parts by weight (solid content ratio) of dioctyltin bis (2-ethylhexanoate) as a catalyst, and the above-mentioned thermally expandable particles (i) were mixed, diluted with toluene, and uniformly By stirring, a composition (y-2) having a solid content concentration (active ingredient concentration) of 30% by mass was prepared.
  • the content of the heat-expandable particles (i) relative to the total amount (100% by mass) of active ingredients in the obtained composition (y-2) was 20% by mass. Then, on the surface of the release agent layer of the light release film, the prepared composition (y-2) was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to have a thickness of 50 ⁇ m.
  • the expandable substrate (Y-2) was formed.
  • the prepared composition (y-3) was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to have a thickness of 50 ⁇ m.
  • An expandable pressure-sensitive adhesive layer (Y-3) was formed.
  • the expandable substrates (Y-1) to (Y-2) formed in Production Examples 3 to 4 and the expandable pressure-sensitive adhesive layer (Y-3) formed in Production Example 5 were used.
  • Example 1 The surfaces of the first pressure-sensitive adhesive layer (X-1) formed in Production Example 1 and the expandable base material (Y-1) formed in Production Example 3 were bonded together to expand the expandable base material (Y-1). The light release film on the side was removed, and the second pressure-sensitive adhesive layer (X-2) formed in Production Example 2 was bonded onto the surface of the exposed expandable substrate (Y-1). Thus, a pressure-sensitive adhesive sheet in which a light release film / second pressure-sensitive adhesive layer (X-2) / expandable base material (Y-1) / first pressure-sensitive adhesive layer (X-1) / heavy release film was laminated in this order. (1) was produced.
  • Example 2 A light release film / second pressure-sensitive adhesive layer (in the same manner as in Example 1 except that the expandable substrate (Y-1) was replaced with the expandable substrate (Y-2) formed in Production Example 4.
  • a pressure-sensitive adhesive sheet (2) was prepared by laminating X-2) / expandable substrate (Y-2) / first pressure-sensitive adhesive layer (X-1) / heavy release film in this order.
  • Comparative Example 1 The surfaces of the second pressure-sensitive adhesive layer (X-2) formed in Production Example 2 and the expandable pressure-sensitive adhesive layer (Y-3) formed in Production Example 5 were bonded together. Then, the light release film on the expandable pressure-sensitive adhesive layer (Y-3) side is removed, and the first pressure-sensitive adhesive layer formed in Production Example 1 on the surface of the exposed expandable pressure-sensitive adhesive layer (Y-3) (X-1) was bonded. Thus, a light release film / second pressure-sensitive adhesive layer (X-2) / expandable pressure-sensitive adhesive layer (Y-3) / first pressure-sensitive adhesive layer (X-1) / heavy release film was laminated in this order. A sheet (3) was produced.
  • the adhesive surface of (X-1) and the semiconductor chip were covered with a sealing material, and the sealing material was cured to produce a cured sealing body.
  • the sealing conditions are as follows. -Preheating temperature: 100 ° C for both table and diaphragm ⁇ Vacuum drawing: 60 seconds ⁇ Dynamic press mode: 30 seconds ⁇ Static press mode: 10 seconds ⁇ Sealing temperature: 180 ° C. (temperature lower than 208 ° C. which is the expansion start temperature of thermally expandable particles) ⁇ Sealing time: 60 minutes
  • the pressure-sensitive adhesive sheets (1) to (4) are heated for 3 minutes at 240 ° C., which is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles.
  • the stop body was separated, the semiconductor chip on the surface of the separated cured sealing body (rewiring layer forming surface) was observed visually and with a microscope, and the presence or absence of misalignment of the semiconductor chip was confirmed and evaluated according to the following criteria: .
  • A A semiconductor chip in which a positional deviation of 25 ⁇ m or more from before sealing was not confirmed.
  • F A semiconductor chip in which a positional deviation of 25 ⁇ m or more occurred before sealing was confirmed.
  • test sample was affixed to the plate and allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity). Further, the light release film on the expandable pressure-sensitive adhesive layer (Y-3) side of the pressure-sensitive adhesive sheet (4) is removed, and the pressure-sensitive adhesive sheet (1) is applied to the pressure-sensitive adhesive surface of the expandable pressure-sensitive adhesive layer (Y-3). ) To (3), a test sample was prepared. Then, using the above test sample, in an environment of 23 ° C. and 50% RH (relative humidity), in accordance with JIS Z0237: 2000, by a 180 ° peeling method at a pulling speed of 300 mm / min at 23 ° C. The adhesive strength was measured.
  • the above test sample is heated on a hot plate at 240 ° C., which is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles, for 3 minutes to obtain a standard environment (23 ° C., 50% RH (relative humidity)).
  • the adhesive strength after heating at a temperature equal to or higher than the expansion start temperature was also measured at a pulling rate of 300 mm / min by a 180 ° peeling method based on JIS Z0237: 2000.
  • the semiconductor chip is highly effective in suppressing the sinking of the semiconductor chip during heating during the sealing process.
  • the surface of the semiconductor chip after the sealing step was also flat.
  • the pressure-sensitive adhesive sheets (1) and (2) have good pressure-sensitive adhesive strength before heating, but the pressure-sensitive adhesive strength is reduced to such an extent that they cannot be measured after heating at or above the expansion start temperature. In some cases, the results proved that they were easily peelable with a slight force.
  • the pressure-sensitive adhesive sheet (3) of Comparative Example 1 and the pressure-sensitive adhesive sheet (4) of Comparative Example 2 have an expandable pressure-sensitive adhesive layer instead of an expandable base material.
  • the semiconductor chip was displaced, and a step was observed on the surface (rewiring layer forming surface) on the semiconductor chip side after the sealing process. Therefore, for example, it is considered that it is not suitable for use in a sealing process when manufacturing FOWLP and FOPLP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided are: a semiconductor device production method that includes steps (1)-(4) indicated below and that is a method for producing a semiconductor device using a double-sided adhesive sheet comprising, in this order, a first adhesive layer, a non-adhesive substrate containing expandable particles, and a second adhesive layer; and a double-sided adhesive sheet used in the production method. Step (1) is a step in which a rigid support body is attached to the adhesive surface of the second adhesive layer. Step (2) is a step in which a semiconductor chip is placed on part of the adhesive surface of the first adhesive layer. Step (3) is a step in which the semiconductor chip and the adhesive surface of the first adhesive layer on the periphery of the semiconductor chip are covered with a sealing material, the sealing material is cured, and a cured sealing body in which the semiconductor chip is sealed by the cured sealing material is obtained. Step (4) is a step in which the expandable particles are made to expand and the double-sided adhesive sheet is peeled from the cured sealing body. This production method makes it possible to minimize the occurrence of positional displacement of a semiconductor chip in a production process for a fan-out package, has excellent productivity, and yields a semiconductor device having excellent flatness in a rewiring layer formation surface thereof.

Description

半導体装置の製造方法及び両面粘着シートSemiconductor device manufacturing method and double-sided pressure-sensitive adhesive sheet
 本発明は半導体装置の製造方法及び両面粘着シートに関する。 The present invention relates to a semiconductor device manufacturing method and a double-sided pressure-sensitive adhesive sheet.
 近年、電子機器の小型化、軽量化及び高機能化が進んでおり、これに伴って、電子機器に搭載される半導体装置にも、小型化、薄型化及び高密度化が求められている。
 半導体チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、CSP(Chip Scale Package)と称されることもある。CSPとしては、ウエハサイズでパッケージ最終工程まで処理して完成させるWLP(Wafer Level Package)、ウエハサイズよりも大きいパネルサイズでパッケージ最終工程まで処理して完成させるPLP(Panel Level Package)等が挙げられる。
In recent years, electronic devices have been reduced in size, weight, and functionality, and accordingly, semiconductor devices mounted on electronic devices are also required to be reduced in size, thickness, and density.
A semiconductor chip may be mounted in a package close to its size. Such a package may be referred to as a CSP (Chip Scale Package). Examples of CSPs include WLP (Wafer Level Package) that is processed up to the final package process with a wafer size, and PLP (Panel Level Package) that is processed up to the final package process with a panel size larger than the wafer size. .
 WLP及びPLPは、ファンイン(Fan-In)型とファンアウト(Fan-Out)型に分類される。ファンアウト型のWLP(以下、「FOWLP」ともいう)及びPLP(以下、「FOPLP」ともいう)においては、半導体チップを、チップサイズよりも大きな領域となるように封止材で覆って半導体チップの封止体を形成し、再配線層及び外部電極を、半導体チップの回路面だけでなく封止材の表面領域においても形成する。 WLP and PLP are classified into fan-in type and fan-out type. In fan-out type WLP (hereinafter also referred to as “FOWLP”) and PLP (hereinafter also referred to as “FOPPL”), a semiconductor chip is covered with a sealing material so as to be an area larger than the chip size. The rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing material.
 ところで、FOWLP及びFOPLPは、例えば、複数の半導体チップを仮固定用の粘着シート(以下、「仮固定用シート」ともいう)上に載置する載置工程と、流動性を付与した封止材で被覆する被覆工程と、該封止材を熱硬化させる硬化工程と、前記封止体から仮固定用シートを剥離する剥離工程と、表出した半導体チップ側の表面に再配線層を形成する再配線層形成工程とを経て製造される。
 上記の工程において用いられる仮固定用シートには、前記被覆工程及び硬化工程(以下、これらを「封止工程」ともいう)の間には、半導体チップの位置ズレが発生せず、かつ半導体チップと仮固定用シートとの接着界面に封止材が進入しない程度の接着性が求められ、封止工程後には、糊残り無く容易に除去し得る剥離性が求められる。すなわち、FOWLP及びFOPLPの製造に使用される仮固定用シートは、使用時の接着性と、使用後の剥離性との両立が要求される。
By the way, FOWLP and FOPLP are, for example, a mounting step of mounting a plurality of semiconductor chips on an adhesive sheet for temporary fixing (hereinafter also referred to as “temporary fixing sheet”), and a sealing material imparted with fluidity. Forming a rewiring layer on the surface of the exposed semiconductor chip side, a covering step for covering with, a curing step for thermosetting the sealing material, a peeling step for peeling the temporary fixing sheet from the sealing body It is manufactured through a rewiring layer forming step.
The temporary fixing sheet used in the above-described process does not cause misalignment of the semiconductor chip between the covering process and the curing process (hereinafter also referred to as “sealing process”), and the semiconductor chip Adhesiveness that does not allow the sealing material to enter the adhesive interface between the sheet and the temporary fixing sheet is required, and after the sealing process, peelability that can be easily removed without adhesive residue is required. That is, the temporary fixing sheet used for the manufacture of FOWLP and FOPLP is required to satisfy both the adhesiveness during use and the peelability after use.
 例えば、特許文献1には、FOWLPの製造方法において、ポリイミドフィルムからなる基材と該基材の表面に備えられたシリコーン系粘着剤からなる粘着層とを有する仮固定用シート上で封止工程を行った後、該仮固定用シートを手で屈曲させながら剥離する方法が開示されている。しかし、仮固定用シートを手等によって剥離する工程は煩雑であり、生産性向上の観点から、より小さな外力で仮固定用シートを剥離できることが要求されている。 For example, in Patent Document 1, in the method for producing FOWLP, a sealing step is performed on a temporary fixing sheet having a base material made of a polyimide film and an adhesive layer made of a silicone-based adhesive provided on the surface of the base material. After performing the above, a method of peeling while temporarily bending the temporary fixing sheet is disclosed. However, the process of peeling the temporarily fixing sheet by hand or the like is complicated, and it is required that the temporarily fixing sheet can be peeled with a smaller external force from the viewpoint of improving productivity.
 剥離性に優れる仮固定用シートとして、例えば、特許文献2には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用加熱剥離型粘着シートが開示されている。FOWLP及びFOPLPの製造において、特許文献2に記載の加熱剥離型粘着シートを用いることも考えられる。 As a temporary fixing sheet having excellent peelability, for example, Patent Document 2 discloses a temporary fixing at the time of cutting an electronic component in which a thermally expandable adhesive layer containing thermally expandable microspheres is provided on at least one side of a substrate. A heat-peelable pressure-sensitive adhesive sheet is disclosed. In the production of FOWLP and FOPLP, it is also conceivable to use the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 2.
特開2015-32646号公報JP2015-32646A 特許第3594853号公報Japanese Patent No. 3594853
 しかしながら、本発明者らの検討によれば、特許文献2に記載の加熱剥離型粘着シートをFOWLP及びFOPLPの製造における仮固定用シートとして用いた場合、熱膨張性粘着層の弾性率の低さに起因して、前記載置工程及び封止工程中に、載置している半導体チップが粘着シート側に沈み込んだり、半導体チップの位置ズレが発生してしまうことが分かった。これにより、封止工程後に粘着シートを除去した後の半導体チップ側の表面(以下、「再配線層形成面」ともいう)には、半導体チップの表面と封止材表面との間で段差が発生してしまうため、平坦性に劣ったり、半導体チップの位置精度が低下してしまう結果となる。このような再配線層形成面の平坦性の低下及び半導体チップの位置精度の低下は、再配線精度の低下に繋がるため、抑制されることが望ましい。
 また、粘着シートを除去する際に、加熱をして熱膨張性粘着層を膨張させても、半導体チップが粘着シート側に沈み込んでしまっていることにより、ある程度の大きさの外力無しでは剥離が困難となることも考えられる。
However, according to the study by the present inventors, when the heat-peelable adhesive sheet described in Patent Document 2 is used as a temporary fixing sheet in the production of FOWLP and FOPLP, the elastic modulus of the thermally expandable adhesive layer is low. Due to the above, it has been found that during the placing step and the sealing step, the placed semiconductor chip sinks to the pressure-sensitive adhesive sheet side or the semiconductor chip is displaced. As a result, there is a step between the surface of the semiconductor chip and the surface of the sealing material on the surface on the semiconductor chip side after removing the adhesive sheet after the sealing step (hereinafter also referred to as “rewiring layer forming surface”). As a result, the flatness is inferior and the position accuracy of the semiconductor chip is lowered. Such a decrease in flatness of the rewiring layer forming surface and a decrease in the position accuracy of the semiconductor chip lead to a decrease in rewiring accuracy, and therefore it is desirable to be suppressed.
In addition, when removing the adhesive sheet, even if the heat-expandable adhesive layer is expanded by heating, the semiconductor chip sinks to the adhesive sheet side, so that it can be peeled off without a certain amount of external force. It may be difficult.
 本発明は、上記問題点に鑑みてなされたものであって、ファンアウト型のパッケージの製造工程における半導体チップの位置ズレの発生を抑制でき、生産性に優れ、得られる半導体装置の再配線層形成面の平坦性に優れる半導体装置の製造方法、及び該製造方法に用いられる両面粘着シートを提供することを目的とする。 The present invention has been made in view of the above-described problems, and can suppress the occurrence of misalignment of a semiconductor chip in a manufacturing process of a fan-out type package, has excellent productivity, and is a rewiring layer of a semiconductor device to be obtained. It aims at providing the manufacturing method of the semiconductor device which is excellent in the flatness of a formation surface, and the double-sided adhesive sheet used for this manufacturing method.
 本発明者らは、ファンアウト型のパッケージの製造工程において、膨張性粒子を含み、非粘着性である基材を含む特定の層構成を有する両面粘着シートを用いることで、上記課題を解決し得ることを見出した。
 すなわち、本発明は、下記[1]~[10]に関する。
[1]第1粘着剤層と、膨張性粒子を含み、非粘着性である基材と、第2粘着剤層と、をこの順に有する両面粘着シートを用いて半導体装置を製造する方法であって、
 下記工程(1)~(4)を有する、半導体装置の製造方法。
 工程(1):第2粘着剤層の粘着表面に、硬質支持体を貼付する工程
 工程(2):第1粘着剤層の粘着表面の一部に、半導体チップを載置する工程
 工程(3):前記半導体チップと、第1粘着剤層の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程
 工程(4):前記膨張性粒子を膨張させて、前記両面粘着シートを前記硬化封止体から剥離する工程
[2]さらに、下記工程(5)を有する、上記[1]に記載の半導体装置の製造方法。
 工程(5):前記両面粘着シートを剥離した硬化封止体に、再配線層を形成する工程
[3]前記膨張性粒子が、熱膨張性粒子であり、前記工程(4)が、前記両面粘着シートを加熱することにより、前記熱膨張性粒子を膨張させて、前記両面粘着シートを前記硬化封止体から剥離する工程である、上記[1]又は[2]に記載の半導体装置の製造方法。
[4]前記熱膨張性粒子の膨張開始温度(t)が、120~250℃である、上記[3]に記載の半導体装置の製造方法。
[5]前記基材が、下記要件(1)~(2)を満たす、上記[4]に記載の半導体装置の製造方法。
・要件(1):100℃における、前記基材の貯蔵弾性率E’(100)が、2.0×10Pa以上である。
・要件(2):前記熱膨張性粒子の膨張開始温度(t)における、前記基材の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
[6]前記膨張性粒子の23℃における膨張前の平均粒子径が、3~100μmである、[1]~[5]のいずれかに記載の粘着シート。
[7]23℃における、第1粘着材層の貯蔵せん断弾性率G’(23)が、1.0×10~1.0×10Paである、上記[1]~[6]のいずれかに記載の半導体装置の製造方法。
[8]23℃における、前記基材の厚さと、第1粘着剤層の厚さとの比(基材/第1粘着剤層)が0.2以上である、上記[1]~[7]のいずれかに記載の半導体装置の製造方法。
[9]23℃における、前記基材の厚さが10~1000μmであり、前記第1粘着剤層の厚さが1~60μmである、上記[1]~[8]のいずれかに記載の半導体装置の製造方法。
[10]前記基材の表面におけるプローブタック値が、50mN/5mmφ未満である、上記[1]~[9]のいずれかに記載の半導体装置の製造方法。
[11]上記[1]~[10]のいずれかに記載の半導体装置の製造方法に用いられる両面粘着シートであって、第1粘着剤層と、膨張性粒子を含み、非粘着性である基材と、第2粘着剤層と、をこの順に有する両面粘着シート。
The present inventors have solved the above problem by using a double-sided pressure-sensitive adhesive sheet having a specific layer structure including a base material that includes expandable particles and is non-adhesive in the manufacturing process of a fan-out type package. Found to get.
That is, the present invention relates to the following [1] to [10].
[1] A method of manufacturing a semiconductor device using a double-sided pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive layer, a non-adhesive base material containing expandable particles, and a second pressure-sensitive adhesive layer in this order. And
A method for manufacturing a semiconductor device, comprising the following steps (1) to (4).
Step (1): Step of attaching a hard support to the adhesive surface of the second pressure-sensitive adhesive layer Step (2): Step of placing a semiconductor chip on a part of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer Step (3) ): The semiconductor chip and the periphery of the semiconductor chip of the adhesive surface of the first pressure-sensitive adhesive layer are covered with a sealing material, the sealing material is cured, and the semiconductor chip is cured and sealed. Step of obtaining a cured sealing body sealed with a material Step (4): Step of expanding the expandable particles and peeling the double-sided pressure-sensitive adhesive sheet from the cured sealing body [2] 5) The method for manufacturing a semiconductor device according to [1] above.
Step (5): Step of forming a rewiring layer on the cured encapsulant from which the double-sided pressure-sensitive adhesive sheet has been peeled [3] The expandable particles are thermally expandable particles, and the step (4) is the double-sided step. Manufacturing the semiconductor device according to the above [1] or [2], which is a step of heating the pressure-sensitive adhesive sheet to expand the thermally expandable particles and peeling the double-sided pressure-sensitive adhesive sheet from the cured sealing body. Method.
[4] The method for manufacturing a semiconductor device according to the above [3], wherein the expansion start temperature (t) of the thermally expandable particles is 120 to 250 ° C.
[5] The method for manufacturing a semiconductor device according to [4], wherein the base material satisfies the following requirements (1) to (2).
-Requirement (1): The storage elastic modulus E '(100) of the said base material in 100 degreeC is 2.0 * 10 < 5 > Pa or more.
Requirement (2): The storage elastic modulus E ′ (t) of the substrate at the expansion start temperature (t) of the thermally expandable particles is 1.0 × 10 7 Pa or less.
[6] The pressure-sensitive adhesive sheet according to any one of [1] to [5], wherein the expandable particles have an average particle diameter before expansion at 23 ° C. of 3 to 100 μm.
[7] The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer at 23 ° C. is 1.0 × 10 4 to 1.0 × 10 8 Pa. The manufacturing method of the semiconductor device in any one.
[8] The above [1] to [7], wherein the ratio of the thickness of the base material to the thickness of the first pressure-sensitive adhesive layer (base material / first pressure-sensitive adhesive layer) at 23 ° C. is 0.2 or more. A method for manufacturing a semiconductor device according to any one of the above.
[9] The material according to any one of [1] to [8], wherein the base material has a thickness of 10 to 1000 μm and the first pressure-sensitive adhesive layer has a thickness of 1 to 60 μm at 23 ° C. A method for manufacturing a semiconductor device.
[10] The method for manufacturing a semiconductor device according to any one of [1] to [9], wherein a probe tack value on the surface of the base material is less than 50 mN / 5 mmφ.
[11] A double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device according to any one of [1] to [10], comprising a first pressure-sensitive adhesive layer and expandable particles, and being non-tacky The double-sided adhesive sheet which has a base material and a 2nd adhesive layer in this order.
 本発明によると、ファンアウト型のパッケージの製造工程における半導体チップの位置ズレの発生を抑制でき、生産性に優れ、得られる半導体装置の再配線層形成面の平坦性に優れる半導体装置の製造方法、及び該製造方法に用いられる両面粘着シートを提供することができる。 According to the present invention, a semiconductor device manufacturing method that can suppress the occurrence of positional deviation of a semiconductor chip in a manufacturing process of a fan-out type package, is excellent in productivity, and is excellent in flatness of a rewiring layer forming surface of the obtained semiconductor device. And the double-sided adhesive sheet used for this manufacturing method can be provided.
本実施形態に係る両面粘着シートの構成の一例を示す、両面粘着シートの断面図である。It is sectional drawing of a double-sided adhesive sheet which shows an example of a structure of the double-sided adhesive sheet which concerns on this embodiment. 本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment. 図2に続いて本実施形態に係る製造方法の一例を説明する、断面図である。FIG. 3 is a cross-sectional view illustrating an example of the manufacturing method according to the present embodiment following FIG. 2. 図3に続いて本実施形態に係る製造方法の一例を説明する、断面図である。FIG. 4 is a cross-sectional view illustrating an example of the manufacturing method according to the present embodiment following FIG. 3.
 本発明において、「有効成分」とは、対象となる組成物に含まれる成分のうち、希釈溶媒を除いた成分を指す。
 また、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
In the present invention, the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
The mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in the examples.
 本発明において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 また、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
In the present invention, for example, “(meth) acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
Moreover, about the preferable numerical range (for example, range of content etc.), the lower limit value and upper limit value which were described in steps can be combined independently, respectively. For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
[半導体装置の製造方法]
 本実施形態に係る半導体装置の製造方法は、第1粘着剤層と、膨張性粒子を含み、非粘着性である基材と、第2粘着剤層と、をこの順に有する両面粘着シートを用いて半導体装置を製造する方法であって、下記工程(1)~(4)を有する、半導体装置の製造方法である。
 工程(1):第2粘着剤層の粘着表面に、硬質支持体を貼付する工程
 工程(2):第1粘着剤層の粘着表面の一部に、半導体チップを載置する工程
 工程(3):前記半導体チップと、第1粘着剤層の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程
 工程(4):前記膨張性粒子を膨張させて、前記両面粘着シートを前記硬化封止体から剥離する工程
 以下、初めに本実施形態に係る半導体装置の製造方法に用いられる両面粘着シートについて説明し、その後、工程(1)~(4)を含む各製造工程について説明する。
[Method for Manufacturing Semiconductor Device]
The method for manufacturing a semiconductor device according to the present embodiment uses a double-sided pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive layer, a non-adhesive base material containing expandable particles, and a second pressure-sensitive adhesive layer in this order. A method of manufacturing a semiconductor device, comprising the following steps (1) to (4).
Step (1): Step of attaching a hard support to the adhesive surface of the second pressure-sensitive adhesive layer Step (2): Step of placing a semiconductor chip on a part of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer Step (3) ): The semiconductor chip and the periphery of the semiconductor chip of the adhesive surface of the first pressure-sensitive adhesive layer are covered with a sealing material, the sealing material is cured, and the semiconductor chip is cured and sealed. Step of obtaining a cured encapsulant sealed with a material Step (4): Inflating the expandable particles and peeling the double-sided PSA sheet from the cured encapsulant The double-sided pressure-sensitive adhesive sheet used in the method for manufacturing a semiconductor device will be described, and then each manufacturing process including steps (1) to (4) will be described.
<両面粘着シート>
 本実施形態に係る両面粘着シートは、第1粘着剤層と、膨張性粒子を含み、非粘着性である基材(以下、「膨張性基材」ともいう)と、第2粘着剤層と、をこの順に有するものであれば、特に限定されない。
 両面粘着シートの形状は、シート状、テープ状、ラベル状等、あらゆる形状を取り得る。
<Double-sided adhesive sheet>
The double-sided pressure-sensitive adhesive sheet according to the present embodiment includes a first pressure-sensitive adhesive layer, a non-adhesive base material containing expandable particles (hereinafter also referred to as “expandable base material”), a second pressure-sensitive adhesive layer, Are not particularly limited as long as they have the above in this order.
The shape of the double-sided pressure-sensitive adhesive sheet can take any shape such as a sheet shape, a tape shape, and a label shape.
(両面粘着シートの構成)
 図1(A)は、本実施形態に係る両面粘着シート10の断面図である。
 図1(A)に示すように、本実施形態に係る両面粘着シート10は、基材11が第1粘着剤層121及び第2粘着剤層122で挟持された構成を有する。
 なお、本実施形態に係る両面粘着シートは、図1(B)に示す両面粘着シート10aのように、第1粘着剤層121の粘着表面121a上にさらに剥離材131を有し、第2粘着剤層122の粘着表面122a上にさらに剥離材132を有していてもよい。
 なお、図1(B)に示す両面粘着シート10aにおいては、剥離材131の第1粘着剤層121からの剥離力と、剥離材132の第2粘着剤層122からの剥離力とが同程度である場合、両方の剥離材を外側へ引っ張って剥がそうとすると、第1粘着剤層121及び第2粘着剤層122が2つの剥離材に伴って分断されて引き剥がされるという現象が生じることがある。このような現象を抑制する観点から、2つの剥離材131及び132は、互いに貼付される粘着剤層からの剥離力が異なるように設計された2種の剥離材を用いることが好ましい。剥離材131及び132は、両面粘着シート10aを本実施形態に係る半導体装置の製造方法に用いる際に、適宜剥離除去されるものである。
 その他の両面粘着シートとしては、図1(B)に示す両面粘着シート10aにおいて、第1粘着剤層121又は第2粘着剤層122の一方の粘着表面に、両面に剥離処理が施された剥離材を積層したものを、ロール状に巻いた構成を有する両面粘着シートであってもよい。
 ここで、本実施形態に係る両面粘着シートは、膨張性基材と第1粘着剤層との間、及び膨張性基材と第2粘着剤層との間に、他の層を有する構成であってもよい。
 ただし、わずかな力で容易に剥離可能な両面粘着シートとする観点から、図1(A)及び(B)に示す両面粘着シートのように、基材11と第1粘着剤層121、基材11と第2粘着剤層122とが、直接積層した構成を有するものであることが好ましい。
(Configuration of double-sided PSA sheet)
FIG. 1A is a cross-sectional view of a double-sided pressure-sensitive adhesive sheet 10 according to this embodiment.
As shown in FIG. 1A, the double-sided pressure-sensitive adhesive sheet 10 according to this embodiment has a configuration in which the base material 11 is sandwiched between a first pressure-sensitive adhesive layer 121 and a second pressure-sensitive adhesive layer 122.
In addition, the double-sided pressure-sensitive adhesive sheet according to the present embodiment further includes a release material 131 on the pressure-sensitive adhesive surface 121a of the first pressure-sensitive adhesive layer 121, as in the double-sided pressure-sensitive adhesive sheet 10a shown in FIG. A release material 132 may be further provided on the adhesive surface 122 a of the agent layer 122.
In the double-sided pressure-sensitive adhesive sheet 10a shown in FIG. 1B, the peeling force from the first pressure-sensitive adhesive layer 121 of the release material 131 and the peeling force from the second pressure-sensitive adhesive layer 122 of the release material 132 are approximately the same. In such a case, if both the release materials are pulled outward to be peeled off, a phenomenon occurs in which the first pressure-sensitive adhesive layer 121 and the second pressure-sensitive adhesive layer 122 are divided and peeled off along with the two release materials. There is. From the viewpoint of suppressing such a phenomenon, it is preferable to use two types of release materials designed so that the two release materials 131 and 132 have different release forces from the adhesive layer attached to each other. The release materials 131 and 132 are appropriately removed when the double-sided pressure-sensitive adhesive sheet 10a is used in the method for manufacturing a semiconductor device according to this embodiment.
As the other double-sided pressure-sensitive adhesive sheet, in the double-sided pressure-sensitive adhesive sheet 10a shown in FIG. 1 (B), one side of the first pressure-sensitive adhesive layer 121 or the second pressure-sensitive adhesive layer 122 is peeled on both sides. A double-sided pressure-sensitive adhesive sheet having a configuration in which materials are laminated in a roll shape may be used.
Here, the double-sided pressure-sensitive adhesive sheet according to this embodiment has other layers between the expandable base material and the first pressure-sensitive adhesive layer and between the expandable base material and the second pressure-sensitive adhesive layer. There may be.
However, from the viewpoint of making a double-sided pressure-sensitive adhesive sheet that can be easily peeled off with a slight force, as in the double-sided pressure-sensitive adhesive sheet shown in FIGS. 11 and the second pressure-sensitive adhesive layer 122 preferably have a directly laminated structure.
 以下、本実施形態に係る両面粘着シートが備える、膨張性基材、第1粘着剤層、第2粘着剤層、及び必要に応じて使用される剥離材について、順に説明する。 Hereinafter, the expandable substrate, the first pressure-sensitive adhesive layer, the second pressure-sensitive adhesive layer, and the release material used as necessary, which are provided in the double-sided pressure-sensitive adhesive sheet according to the present embodiment, will be described in order.
(膨張性基材)
 膨張性基材は、膨張性粒子を含み、非粘着性である基材である。
 一般的に、特許文献2に記載の粘着シートが有するような熱膨張性粘着剤層は、弾性率が低い粘着剤を主成分とする上に、膨張性粒子を十分に含ませるため、ある程度の厚さが必要となる。そのため、半導体チップの載置工程及び封止工程の間に半導体チップの位置ズレが発生したり、半導体チップが粘着シート側に沈み込んでしまい、再配線層形成面を平坦にできないという弊害が生じ得る。
 一方、本実施形態に係る両面粘着シートは、膨張性粒子は、弾性率が高い非粘着性樹脂に含まれるため、半導体チップを載置する第1粘着剤層の厚さの調整、粘着力、粘弾性率等の制御等、設計の自由度が向上する。これによって半導体チップの位置ズレの発生を抑制できると共に、半導体チップが両面粘着シートに沈み込むことを抑制し、平坦性に優れる再配線層形成面を形成することができる。
 さらに、本実施形態に係る両面粘着シートを用いる場合、半導体チップは、第1粘着剤層の粘着表面に載置されるため、膨張性基材と再配線層形成面とが直に接することがない。これによって、膨張性粒子に由来する残渣及び大きく変形した粘着剤層の一部が再配線層形成面に付着したり、熱膨張性粘着層に形成された凹凸形状が再配線層形成面に転写されてしまい平滑性が低下することが抑制され、清浄性及び平滑性に優れた再配線層形成面が得られる。
(Expandable substrate)
An expandable substrate is a substrate that includes expandable particles and is non-tacky.
In general, the heat-expandable pressure-sensitive adhesive layer as the pressure-sensitive adhesive sheet described in Patent Document 2 contains a pressure-sensitive adhesive having a low elastic modulus and sufficiently contains expandable particles. Thickness is required. For this reason, the semiconductor chip is displaced between the mounting process and the sealing process of the semiconductor chip, or the semiconductor chip sinks to the adhesive sheet side, resulting in a problem that the rewiring layer forming surface cannot be flattened. obtain.
On the other hand, since the double-sided pressure-sensitive adhesive sheet according to this embodiment includes the expandable particles in the non-adhesive resin having a high elastic modulus, the adjustment of the thickness of the first pressure-sensitive adhesive layer on which the semiconductor chip is placed, the adhesive strength, The degree of freedom in design, such as control of viscoelasticity, is improved. This can suppress the occurrence of misalignment of the semiconductor chip, suppress the semiconductor chip from sinking into the double-sided pressure-sensitive adhesive sheet, and form a rewiring layer forming surface with excellent flatness.
Furthermore, when using the double-sided pressure-sensitive adhesive sheet according to the present embodiment, the semiconductor chip is placed on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer, so that the expandable base material and the rewiring layer forming surface may be in direct contact with each other. Absent. As a result, the residue derived from the expandable particles and a part of the greatly deformed adhesive layer adhere to the rewiring layer forming surface, or the uneven shape formed on the thermally expandable adhesive layer is transferred to the rewiring layer forming surface. As a result, the reduction in smoothness is suppressed, and a rewiring layer forming surface excellent in cleanliness and smoothness is obtained.
 膨張性基材の厚さは、好ましくは10~1000μm、より好ましくは20~500μm、更に好ましくは25~400μm、より更に好ましくは30~300μmである。
 なお、本明細書において、膨張性基材の厚さは、実施例に記載の方法により測定された値を意味する。
The thickness of the expandable substrate is preferably 10 to 1000 μm, more preferably 20 to 500 μm, still more preferably 25 to 400 μm, and still more preferably 30 to 300 μm.
In addition, in this specification, the thickness of an expansible base material means the value measured by the method as described in an Example.
 粘着シートが有する膨張性基材は、非粘着性の基材である。
 本発明において、非粘着性の基材か否かの判断は、対象となる基材の表面に対して、JIS Z0237:1991に準拠して測定したプローブタック値が50mN/5mmφ未満であれば、当該基材を「非粘着性の基材」と判断する。
 ここで、本実施形態で用いる膨張性基材の表面におけるプローブタック値は、通常は50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、膨張性基材の表面におけるプローブタック値の具体的な測定方法は、実施例に記載の方法による。
The expandable base material which an adhesive sheet has is a non-adhesive base material.
In the present invention, whether or not the non-adhesive substrate is determined if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mmφ with respect to the surface of the target substrate. The said base material is judged as a "non-adhesive base material".
Here, the probe tack value on the surface of the expandable substrate used in the present embodiment is usually less than 50 mN / 5 mmφ, preferably less than 30 mN / 5 mmφ, more preferably less than 10 mN / 5 mmφ, and even more preferably 5 mN / It is less than 5 mmφ.
In addition, in this specification, the specific measuring method of the probe tack value on the surface of an expansible base material is based on the method as described in an Example.
 本実施形態の粘着シートが有する膨張性基材は、樹脂及び膨張性粒子を含むものであるが、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 また、膨張性基材は、樹脂及び膨張性粒子を含む樹脂組成物(y)から形成することができる。
 以下、膨張性基材の形成材料である樹脂組成物(y)に含まれる各成分について説明する。
The expansible base material which the adhesive sheet of this embodiment has contains resin and expansive particles, but may contain the additive for base materials in the range which does not impair the effect of this invention as needed. .
Moreover, an expansible base material can be formed from the resin composition (y) containing resin and expansive particle.
Hereinafter, each component contained in the resin composition (y) which is a forming material of an expansible base material is demonstrated.
<樹脂>
 樹脂組成物(y)に含まれる樹脂としては、膨張性基材が非粘着性となる樹脂であれば特に限定されず、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y)から膨張性基材を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含む膨張性基材が非粘着性となればよい。
<Resin>
The resin contained in the resin composition (y) is not particularly limited as long as the expandable substrate is a non-adhesive resin, and may be a non-adhesive resin or an adhesive resin. .
That is, even if the resin contained in the resin composition (y) is an adhesive resin, the adhesive resin undergoes a polymerization reaction with the polymerizable compound in the process of forming the expandable substrate from the resin composition (y). The obtained resin becomes a non-adhesive resin, and the expandable substrate containing the resin only needs to be non-adhesive.
 樹脂組成物(y)に含まれる前記樹脂の質量平均分子量(Mw)としては、好ましくは1000~100万、より好ましくは1000~70万、更に好ましくは1000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
The mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000.
Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
 前記樹脂の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). It is 70% by weight, more preferably 70 to 85% by weight.
 樹脂組成物(y)に含まれる前記樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含むことが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
The resin contained in the resin composition (y) preferably contains at least one selected from acrylic urethane resins and olefin resins.
Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
〔アクリルウレタン系樹脂(U1)〕
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
[Acrylic urethane resin (U1)]
Examples of the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
The urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、単独で用いてもよく、2種以上を併用してもよい。
 本実施形態で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols.
These polyols may be used independently and may use 2 or more types together.
The polyol used in this embodiment is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of ester type diols include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Hydrophthalic acid, Examples thereof include condensation polymers of one or more selected from dicarboxylic acids such as hexahydroisophthalic acid, hexahydroterephthalic acid, and methylhexahydrophthalic acid, and anhydrides thereof.
Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, Polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol and polyneo Examples thereof include pentyl terephthalate diol.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 Examples of the alkylene type diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Examples of the polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
These polyvalent isocyanates may be used alone or in combination of two or more.
These polyisocyanates may be a trimethylolpropane adduct type modified product, a burette type modified product reacted with water, or an isocyanurate type modified product containing an isocyanurate ring.
 これらの中でも、本実施形態で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。 Among these, as the polyvalent isocyanate used in the present embodiment, diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6-triisocyanate. One or more selected from diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate are more preferable.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Examples of the alicyclic diisocyanate include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane. Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
 本実施形態において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
In the present embodiment, the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a linear urethane prepolymer having ethylenically unsaturated groups at both ends. Polymers are preferred.
As a method for introducing an ethylenically unsaturated group into both ends of the linear urethane prepolymer, an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
As a vinyl compound used as the side chain of acrylic urethane resin (U1), at least (meth) acrylic acid ester is included.
The (meth) acrylic acid ester is preferably one or more selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。 When alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are used in combination, the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
 アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。 The number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。 Moreover, as hydroxyalkyl (meth) acrylate, the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce | transduce an ethylenically unsaturated group into the both ends of the above-mentioned linear urethane prepolymer is mentioned.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは単独で用いてもよく、2種以上を併用してもよい。
Examples of vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, α-methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide).
These may be used alone or in combination of two or more.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound. The amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
 本実施形態で用いるアクリルウレタン系樹脂(U1)は、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを混合し、両者を重合することで得られる。
 当該重合においては、さらにラジカル開始剤を加えて行うことが好ましい。
The acrylic urethane-based resin (U1) used in the present embodiment is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester and polymerizing them.
The polymerization is preferably performed by adding a radical initiator.
 本実施形態で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in the present embodiment, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35/65 by mass ratio. ~ 55/45.
〔オレフィン系樹脂〕
 樹脂組成物(y)に含まれる樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
[Olefin resin]
The olefin resin suitable as the resin contained in the resin composition (y) is a polymer having at least a structural unit derived from an olefin monomer.
The olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like.
Among these, ethylene and propylene are preferable.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチル-1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレン-ビニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefinic resins, for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); ethylene -Vinyl alcohol copolymer (EVOH); ethylene-propylene Olefinic terpolymers such as-(5-ethylidene-2-norbornene); and the like.
 本実施形態において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 In the present embodiment, the olefin-based resin may be a modified olefin-based resin that is further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、単独で用いてもよく、2種以上を併用してもよい。
For example, as an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification, a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride. Is mentioned.
Examples of the unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride. , Glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
In addition, unsaturated carboxylic acid or its anhydride may be used independently, and may use 2 or more types together.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
As an acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification, a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin as a main chain. A polymer is mentioned.
The number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
As said alkyl (meth) acrylate, the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by subjecting an olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl. Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
〔アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂〕
 本実施形態において、樹脂組成物(y)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合としては、樹脂組成物(y)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、更に好ましくは5質量部未満、より更に好ましくは1質量部未満である。
[Resin other than acrylic urethane resin and olefin resin]
In the present embodiment, the resin composition (y) may contain a resin other than the acrylic urethane resin and the olefin resin as long as the effects of the present invention are not impaired.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer Polycarbonate; Polyurethane not applicable to acrylic urethane resin; Polysulfone; Polyetheretherketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Fluorine resin etc. are mentioned.
The content of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by mass, still more preferably less than 5 parts by mass, and even more preferably less than 1 part by mass.
<膨張性粒子>
 膨張性粒子は、外部刺激によって、それ自体が膨張することで第1粘着剤層に凹凸を形成し、被着体との接着力を低下させることができるものであれば特に限定されない。
 膨張性粒子としては、例えば、加熱によって膨張する熱膨張性粒子、エネルギー線の照射によって膨張するエネルギー線膨張性粒子等が挙げられるが、汎用性及び取り扱い性の観点から、熱膨張性粒子であることが好ましい。
<Expandable particles>
The expandable particles are not particularly limited as long as they can expand by an external stimulus to form irregularities in the first pressure-sensitive adhesive layer and can reduce the adhesive force with the adherend.
Examples of the expandable particles include thermally expandable particles that expand by heating, energy beam expandable particles that expand by irradiation with energy rays, and the like, from the viewpoint of versatility and handleability, they are thermally expandable particles. It is preferable.
 熱膨張性粒子としては、膨張開始温度(t)が120~250℃に調整された粒子であることが好ましい。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
[熱膨張性粒子の膨張開始温度(t)の測定法]
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
The thermally expandable particles are preferably particles having an expansion start temperature (t) adjusted to 120 to 250 ° C.
In the present specification, the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
[Measurement method of expansion start temperature (t) of thermally expandable particles]
To an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter 5.6 mm, thickness 0. 1 mm) is prepared.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured from the upper part of the aluminum lid while a force of 0.01 N is applied to the sample by a pressurizer. Then, in a state where a force of 0.01 N is applied by the pressurizer, heating is performed from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and the amount of displacement of the pressurizer in the vertical direction is measured. Let the displacement start temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
The thermally expandable particles are microencapsulated foaming agents composed of an outer shell composed of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature. Preferably there is.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソブタン、イソペンタン、イソヘキサン、イソヘプタン、イソオクタン、イソノナン、イソデカン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ネオペンタン、ドデカン、イソドデカン、シクロトリデカン、ヘキシルシクロヘキサン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、シクロトリデカン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等が挙げられる。
 これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane. , Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane, isotetradecane, isopentadecane, iso Hexadecane, 2,2,4,4,6,8,8-heptamethylnonane, isoheptadecane, isooctadecane, isonanodecane, , 6,10,14-tetramethylpentadecane, cyclotridecane, heptylcyclohexane, n-octylcyclohexane, cyclopentadecane, nonylcyclohexane, decylcyclohexane, pentadecylcyclohexane, hexadecylcyclohexane, heptadecylcyclohexane, octadecylcyclohexane, etc. .
These encapsulated components may be used alone or in combination of two or more.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of inclusion component.
 本実施形態で用いる熱膨張性粒子の熱膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~100倍、より好ましくは2~80倍、更に好ましくは2.5~60倍、より更に好ましくは3~40倍である。 The volume expansion coefficient when heated to a temperature not lower than the thermal expansion start temperature (t) of the thermally expandable particles used in the present embodiment is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably. Is 2.5 to 60 times, more preferably 3 to 40 times.
 本実施形態で用いる、23℃における膨張前の膨張性粒子の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の膨張性粒子の粒子分布において、膨張前の膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
The average particle diameter of the expandable particles before expansion at 23 ° C. used in this embodiment is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, and still more preferably 10 to 50 μm. .
The average particle diameter of the expandable particles before expansion is the volume-median particle diameter (D 50 ), and a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern) is used. In the particle distribution of the expandable particles before expansion measured by use, it means the particle diameter corresponding to 50% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
 本実施形態で用いる、23℃における膨張前の膨張性粒子の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは20~100μm、更に好ましくは25~90μm、より更に好ましくは30~80μmである。
 なお、膨張性粒子の膨張前の90%粒子径(D90)とは、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の膨張性粒子の粒子分布において、膨張前の膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒径を意味する。
The 90% particle diameter (D 90 ) of the expandable particles before expansion at 23 ° C. used in this embodiment is preferably 10 to 150 μm, more preferably 20 to 100 μm, still more preferably 25 to 90 μm, and still more preferably. Is 30 to 80 μm.
The 90% particle diameter (D 90 ) before expansion of the expandable particles is measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern), before expansion. Mean particle diameter corresponding to 90% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
 膨張性粒子の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。 The content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and further preferably 10 to 10% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). 30% by mass, and still more preferably 15 to 25% by mass.
<基材用添加剤>
 本実施形態で用いる樹脂組成物(y)は、本発明の効果を損なわない範囲で、一般的な粘着シートが有する基材に含まれる基材用添加剤を含有してもよい。
 そのような基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、樹脂組成物(y)中の前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
<Substrate additive>
The resin composition (y) used in the present embodiment may contain a base material additive contained in a base material of a general pressure-sensitive adhesive sheet as long as the effects of the present invention are not impaired.
Examples of such base material additives include ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, and colorants.
These base material additives may be used alone or in combination of two or more.
In the case of containing these base material additives, the content of each base material additive is preferably 0.0001 to 20 parts by mass with respect to 100 parts by mass of the resin in the resin composition (y). More preferably, it is 0.001 to 10 parts by mass.
<無溶剤型樹脂組成物(y1)>
 本実施形態で用いる樹脂組成物(y)の一態様として、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y1)が挙げられる。
 無溶剤型樹脂組成物(y1)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y1)から形成した塗膜に対して、エネルギー線を照射することで、膨張性基材を得ることができる。
<Solvent-free resin composition (y1)>
As one aspect of the resin composition (y) used in the present embodiment, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-mentioned expandable particles are blended And a solvent-free resin composition (y1) that does not contain a solvent.
In the solventless resin composition (y1), no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
An expandable base material can be obtained by irradiating an energy ray with respect to the coating film formed from the solventless resin composition (y1).
 無溶剤型樹脂組成物(y1)に配合される膨張性粒子の種類、形状、配合量(含有量)については、上述のとおりである。 The type, shape, and blending amount (content) of the expandable particles blended in the solventless resin composition (y1) are as described above.
 無溶剤型樹脂組成物(y1)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50000以下であるが、好ましくは1000~50000、より好ましくは2000~40000、更に好ましくは3000~35000、より更に好ましくは4000~30000である。 The mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
 また、前記オリゴマーとしては、上述の樹脂組成物(y)に含まれる樹脂のうち、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂等も使用し得る。
Moreover, as said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight (Mw) is 50000 or less among resin contained in the above-mentioned resin composition (y). Polymer (UP) is preferred.
In addition, as the said oligomer, the modified olefin resin etc. which have an ethylenically unsaturated group can also be used.
 無溶剤型樹脂組成物(y1)中における、前記オリゴマー及び前記エネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y1)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably 50 with respect to the total amount (100% by mass) of the solventless resin composition (y1). It is ˜99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、単独で用いてもよく、2種以上を併用してもよい。
Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Cycloaliphatic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam.
These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
 無溶剤型樹脂組成物(y1)中における、前記オリゴマーと前記エネルギー線重合性モノマーとの含有量比(前記オリゴマー/エネルギー線重合性モノマー)は、質量比で、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 In the solvent-free resin composition (y1), the content ratio of the oligomer to the energy beam polymerizable monomer (the oligomer / energy beam polymerizable monomer) is preferably 20/80 to 90 / in mass ratio. 10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
 本実施形態において、無溶剤型樹脂組成物(y1)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
In the present embodiment, the solventless resin composition (y1) is preferably further blended with a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with a relatively low energy beam.
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned.
These photoinitiators may be used independently and may use 2 or more types together.
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。 The blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. The amount is preferably 0.02 to 3 parts by mass.
<基材の貯蔵弾性率>
 本実施形態の粘着シートが有する膨張性基材の23℃における貯蔵弾性率E’(23)は、好ましくは1.0×10Pa以上、より好ましくは5.0×10~5.0×1012Pa、更に好ましくは1.0×10~1.0×1012Pa、より更に好ましくは5.0×10~1.0×1011Pa、更になお好ましくは1.0×10~1.0×1010Paである。貯蔵弾性率E’(23)が上記範囲内である膨張性基材を用いることで、半導体チップの位置ズレを防止することができると共に、半導体チップの第1粘着剤層への沈み込みを防止することもできる。
 例えば、半導体チップは、その回路面が、粘着剤層の粘着表面で覆われるように載置される。半導体チップの載置には、フリップチップボンダー、ダイボンダー等の公知の装置が用いられることがある。上記手順のうち、フリップチップボンダー又はダイボンダーを用いて、半導体チップを粘着シートの粘着剤層上に載置する際に、半導体チップを粘着シートの厚み方向に押し込む力が加わるため、半導体チップが粘着剤層の厚み方向側に過度に沈み込む恐れがある。また、フリップチップボンダー又はダイボンダーを用いて、半導体チップを粘着シート上に載置する際に、半導体チップを粘着シートの水平方向に移動させる力も加わるため、半導体チップが粘着剤層の水平方向に位置ズレする恐れもある。しかし、上記貯蔵弾性率E’(23)を満たす膨張性基材を用いることで、これらの問題を解決することもできる。
 なお、本明細書において、所定の温度における膨張性基材の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
<Storage elastic modulus of substrate>
The storage elastic modulus E ′ (23) at 23 ° C. of the expandable substrate of the pressure-sensitive adhesive sheet of this embodiment is preferably 1.0 × 10 6 Pa or more, more preferably 5.0 × 10 6 to 5.0. × 10 12 Pa, more preferably 1.0 × 10 7 to 1.0 × 10 12 Pa, still more preferably 5.0 × 10 7 to 1.0 × 10 11 Pa, still more preferably 1.0 × 10 8 to 1.0 × 10 10 Pa. By using an expansible base material having a storage elastic modulus E ′ (23) within the above range, the semiconductor chip can be prevented from being displaced and the semiconductor chip can be prevented from sinking into the first adhesive layer. You can also
For example, the semiconductor chip is placed so that its circuit surface is covered with the adhesive surface of the adhesive layer. For mounting the semiconductor chip, a known device such as a flip chip bonder or a die bonder may be used. Among the above procedures, when a semiconductor chip is placed on the adhesive layer of the adhesive sheet using a flip chip bonder or a die bonder, a force is applied to push the semiconductor chip in the thickness direction of the adhesive sheet. There is a risk of sinking excessively in the thickness direction side of the agent layer. In addition, when a semiconductor chip is placed on the adhesive sheet using a flip chip bonder or a die bonder, a force for moving the semiconductor chip in the horizontal direction of the adhesive sheet is also applied, so the semiconductor chip is positioned in the horizontal direction of the adhesive layer. There is also a risk of deviation. However, these problems can also be solved by using an expandable base material that satisfies the storage elastic modulus E ′ (23).
In the present specification, the storage elastic modulus E ′ of the expandable substrate at a predetermined temperature means a value measured by the method described in Examples.
 さらに、本実施形態の粘着シートが有する膨張性基材は、その貯蔵弾性率が以下の要件(1)を満たすことが好ましい。
・要件(1):100℃における、前記膨張性基材の貯蔵弾性率E’(100)が、2.0×10Pa以上である。
 要件(1)を満たす膨張性基材を有することで、FOWLP及びFOPLPの製造過程における封止工程の温度環境においても、膨張性粒子の流動を程よく抑制し得るため、膨張性基材上に設けた第1粘着剤層の粘着表面が変形し難くなる。その結果、半導体チップの位置ズレを防止することができると共に、半導体チップの第1粘着剤層への沈み込みを防止することもできる。
Furthermore, as for the expansible base material which the adhesive sheet of this embodiment has, it is preferable that the storage elastic modulus satisfy | fills the following requirements (1).
-Requirement (1): The storage elastic modulus E '(100) of the said expandable base material in 100 degreeC is 2.0 * 10 < 5 > Pa or more.
By providing an expandable base material that satisfies the requirement (1), the flow of the expandable particles can be moderately suppressed even in the temperature environment of the sealing process in the manufacturing process of FOWLP and FOPLP. Further, the adhesive surface of the first pressure-sensitive adhesive layer is difficult to deform. As a result, it is possible to prevent misalignment of the semiconductor chip and to prevent the semiconductor chip from sinking into the first adhesive layer.
 上記観点から、膨張性基材の貯蔵弾性率E’(100)は、より好ましくは4.0×10Pa以上、更に好ましくは6.0×10Pa以上、より更に好ましくは8.0×10Pa以上、更になお好ましくは1.0×10Pa以上である。
 また、封止工程において、半導体チップの位置ズレを効果的に抑制する観点から、膨張性基材の貯蔵弾性率E’(100)は、好ましくは1.0×1012Pa以下、より好ましくは1.0×1011Pa以下、更に好ましくは1.0×1010Pa以下、より更に好ましくは1.0×10Pa以下である。
From the above viewpoint, the storage elastic modulus E ′ (100) of the expandable substrate is more preferably 4.0 × 10 5 Pa or more, still more preferably 6.0 × 10 5 Pa or more, and still more preferably 8.0. × 10 5 Pa or more, still more preferably 1.0 × 10 6 Pa or more.
Further, in the sealing step, from the viewpoint of effectively suppressing the positional deviation of the semiconductor chip, the storage elastic modulus E ′ (100) of the expandable substrate is preferably 1.0 × 10 12 Pa or less, more preferably It is 1.0 × 10 11 Pa or less, more preferably 1.0 × 10 10 Pa or less, and still more preferably 1.0 × 10 9 Pa or less.
 また、本実施形態の粘着シートが有する膨張性基材が膨張性粒子として熱膨張性粒子を含有する場合、その貯蔵弾性率が以下の要件(2)を満たすことが好ましい。
・要件(2):前記熱膨張性粒子の膨張開始温度(t)における、前記膨張性基材の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
 要件(2)を満たす膨張性基材を有することで、熱膨張性粒子を膨張させる温度において、膨張性基材が熱膨張性粒子の体積膨張に追随して変形し易くなり、第1粘着剤層の粘着表面に凹凸を形成し易くなる。これによって、小さい外力によって対象物から剥離することができる。
Moreover, when the expansible base material which the adhesive sheet of this embodiment has contains a thermally expansible particle as an expansible particle, it is preferable that the storage elastic modulus satisfy | fills the following requirements (2).
Requirement (2): The storage elastic modulus E ′ (t) of the expandable substrate at the expansion start temperature (t) of the thermally expandable particles is 1.0 × 10 7 Pa or less.
By having the expandable base material satisfying the requirement (2), the expandable base material easily deforms following the volume expansion of the heat-expandable particles at a temperature at which the heat-expandable particles are expanded. It becomes easy to form unevenness on the adhesive surface of the layer. Thereby, it can peel from a target object with small external force.
 上記観点から、膨張性基材の貯蔵弾性率E’(t)は、より好ましくは9.0×10Pa以下、更に好ましくは8.0×10Pa以下、より更に好ましくは6.0×10Pa以下、更になお好ましくは4.0×10Pa以下である。
 また、膨張した熱膨張性粒子の流動を抑制し、第1粘着剤層の粘着表面に形成される凹凸の形状維持性を向上させ、剥離性をより向上させる観点から、膨張性基材の貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
From the above viewpoint, the storage elastic modulus E ′ (t) of the expandable substrate is more preferably 9.0 × 10 6 Pa or less, still more preferably 8.0 × 10 6 Pa or less, and still more preferably 6.0. × 10 6 Pa or less, still more preferably 4.0 × 10 6 Pa or less.
Further, from the viewpoint of suppressing the flow of the expanded thermally expandable particles, improving the shape maintaining property of the unevenness formed on the adhesive surface of the first pressure-sensitive adhesive layer, and further improving the peelability, storing the expandable base material The elastic modulus E ′ (t) is preferably 1.0 × 10 3 Pa or more, more preferably 1.0 × 10 4 Pa or more, and further preferably 1.0 × 10 5 Pa or more.
(第1粘着剤層)
 本実施形態の粘着シートが有する第1粘着剤層は、粘着性樹脂を含むものであればよく、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 なお、封止工程での加熱によって、載置した半導体チップが第1粘着剤層に沈む込むことを防止する観点から、第1粘着剤層は、非膨張性粘着剤層であることが好ましい。
(First adhesive layer)
The 1st adhesive layer which the adhesive sheet of this embodiment has should just contain adhesive resin, and it is for adhesives, such as a crosslinking agent, a tackifier, a polymeric compound, and a polymerization initiator as needed. An additive may be contained.
In addition, it is preferable that a 1st adhesive layer is a non-expandable adhesive layer from a viewpoint which prevents the semiconductor chip mounted from sinking in a 1st adhesive layer by the heating in a sealing process.
 本実施形態の粘着シートにおいて、23℃における、膨張性粒子が膨張する前の第1粘着剤層の粘着表面の粘着力は、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、更に好ましくは0.4~6.0N/25mm、より更に好ましくは0.5~4.0N/25mmである。
 当該粘着力が0.1N/25mm以上であれば、封止工程における半導体チップの位置ズレを防止し得る程度に、十分に固定することができる。
 一方、当該粘着力が10.0N/25mm以下であれば、被着体から剥離する際に、わずかな外力で容易に剥離することができる。
 なお、上記の粘着力は、実施例に記載の方法により測定された値を意味する。
In the pressure-sensitive adhesive sheet of this embodiment, the pressure-sensitive adhesive force of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer before expansion of the expandable particles at 23 ° C. is preferably 0.1 to 10.0 N / 25 mm, more preferably 0. It is 2 to 8.0 N / 25 mm, more preferably 0.4 to 6.0 N / 25 mm, and still more preferably 0.5 to 4.0 N / 25 mm.
If the adhesive force is 0.1 N / 25 mm or more, it can be sufficiently fixed to such an extent that the semiconductor chip can be prevented from being displaced in the sealing step.
On the other hand, when the adhesive strength is 10.0 N / 25 mm or less, it can be easily peeled off with a slight external force when peeling off from the adherend.
In addition, said adhesive force means the value measured by the method as described in an Example.
 本実施形態の粘着シートにおいて、23℃における、第1粘着剤層の貯蔵せん断弾性率G’(23)としては、好ましくは1.0×10~1.0×10Pa、より好ましくは5.0×10~5.0×10Pa、更に好ましくは1.0×10~1.0×10Paである。
 複数の粘着剤層を有する粘着シートである場合、半導体チップが貼付される粘着剤層の貯蔵せん断弾性率G’(23)が上記範囲内であることが好ましく、膨張性基材よりも半導体チップが貼付される側の総ての粘着剤層の貯蔵せん断弾性率G’(23)が上記範囲内であることが好ましい。
 第1粘着剤層の貯蔵せん断弾性率G’(23)が1.0×10Pa以上であれば、半導体チップの位置ズレを防止することができると共に、半導体チップの第1粘着剤層への沈み込みを防止することもできる。
 一方、第1粘着剤層の貯蔵せん断弾性率G’(23)が1.0×10Pa以下であれば、膨張性基材中の膨張性粒子の膨張により、第1粘着剤層の表面に凹凸が形成され易く、その結果、わずかな力で容易に剥離することができる。
 なお、本明細書において、第1粘着剤層の貯蔵せん断弾性率G’(23)は、実施例に記載の方法により測定された値を意味する。
In the pressure-sensitive adhesive sheet of this embodiment, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer at 23 ° C. is preferably 1.0 × 10 4 to 1.0 × 10 8 Pa, more preferably It is 5.0 × 10 4 to 5.0 × 10 7 Pa, more preferably 1.0 × 10 5 to 1.0 × 10 7 Pa.
In the case of the pressure-sensitive adhesive sheet having a plurality of pressure-sensitive adhesive layers, the storage shear modulus G ′ (23) of the pressure-sensitive adhesive layer to which the semiconductor chip is attached is preferably within the above range, and the semiconductor chip is more than the expandable substrate. It is preferable that the storage shear modulus G ′ (23) of all the pressure-sensitive adhesive layers on the side to which the is attached is within the above range.
If the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer is 1.0 × 10 4 Pa or more, it is possible to prevent the positional deviation of the semiconductor chip and to the first pressure-sensitive adhesive layer of the semiconductor chip. It is also possible to prevent the sinking.
On the other hand, if the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer is 1.0 × 10 8 Pa or less, the surface of the first pressure-sensitive adhesive layer is caused by the expansion of the expandable particles in the expandable substrate. As a result, the surface can be easily peeled off with a slight force.
In the present specification, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer means a value measured by the method described in Examples.
 本実施形態の粘着シートが有する第1粘着剤層の厚さは、優れた粘着力を発現させる観点、及び、膨張性基材中の膨張性粒子の膨張により、第1粘着剤層の表面に凹凸を形成し易くする観点から、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the 1st adhesive layer which the adhesive sheet of this embodiment has is the surface of a 1st adhesive layer by the viewpoint of expressing the outstanding adhesive force, and the expansion | swelling of the expansive particle in an expansible base material. From the viewpoint of facilitating the formation of irregularities, the thickness is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably 5 to 30 μm.
 本実施形態の粘着シートにおいて、23℃における、膨張性基材の厚さと、第1粘着剤層の厚さとの比(膨張性基材/第1粘着剤層)としては、再配線層形成面を平坦にすると共に、半導体チップの位置ズレを防止する観点から、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは1.0以上、より更に好ましくは5.0以上であり、また、剥離する際に、わずかな力で容易に剥離し得る粘着シートとする観点から、好ましくは1000以下、より好ましくは200以下、更に好ましくは60以下、より更に好ましくは30以下である。
 第1粘着剤層の厚さは、実施例に記載の方法により測定された値を意味する。
In the pressure-sensitive adhesive sheet of this embodiment, the ratio of the thickness of the expandable base material to the thickness of the first pressure-sensitive adhesive layer at 23 ° C. (expandable base material / first pressure-sensitive adhesive layer) Is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and even more preferably 5.0 or more, from the viewpoint of flattening and preventing misalignment of the semiconductor chip. Also, from the viewpoint of forming a pressure-sensitive adhesive sheet that can be easily peeled off with a slight force when peeled, it is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and even more preferably 30 or less.
The thickness of a 1st adhesive layer means the value measured by the method as described in an Example.
 第1粘着剤層は、粘着性樹脂を含む粘着剤組成物から形成することができる。
 以下、第1粘着剤層の形成材料である粘着剤組成物に含まれる各成分について説明する。
The first pressure-sensitive adhesive layer can be formed from a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive resin.
Hereinafter, each component contained in the pressure-sensitive adhesive composition, which is a material for forming the first pressure-sensitive adhesive layer, will be described.
<粘着性樹脂>
 本実施形態で用いる粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であることが好ましい。
 本実施形態で用いる粘着性樹脂の質量平均分子量(Mw)としては、粘着力の向上の観点から、より好ましくは1万~200万、更に好ましくは2万~150万、より更に好ましくは3万~100万である。
<Adhesive resin>
As the adhesive resin used in the present embodiment, the resin alone is preferably a polymer having adhesiveness and a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin used in the present embodiment is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000, from the viewpoint of improving adhesive force. ~ 1 million.
 粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Examples of the adhesive resin include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins.
These adhesive resins may be used independently and may use 2 or more types together.
In addition, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
 本実施形態で用いる粘着性樹脂は、上記の粘着性樹脂の側鎖に重合性官能基を導入した、エネルギー線硬化型の粘着性樹脂であってもよい。
 当該重合性官能基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 また、エネルギー線としては、紫外線、電子線等が挙げられるが、紫外線が好ましい。
The adhesive resin used in the present embodiment may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
Examples of the polymerizable functional group include a (meth) acryloyl group and a vinyl group.
Examples of energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
 粘着性樹脂の含有量は、粘着剤組成物の有効成分の全量(100質量%)に対して、好ましくは30~99.99質量%、より好ましくは40~99.95質量%、更に好ましくは50~99.90質量%、より更に好ましくは55~99.80質量%、更になお好ましくは60~99.50質量%である。
 なお、本明細書の以下の記載において、「粘着剤組成物の有効成分の全量に対する各成分の含有量」は、「当該粘着剤組成物から形成される粘着剤層中の各成分の含有量」と同義である。
The content of the adhesive resin is preferably 30 to 99.99% by mass, more preferably 40 to 99.95% by mass, still more preferably based on the total amount (100% by mass) of the active ingredients of the adhesive composition. It is 50 to 99.90% by mass, more preferably 55 to 99.80% by mass, still more preferably 60 to 99.50% by mass.
In the following description of the present specification, “content of each component relative to the total amount of active ingredients of the pressure-sensitive adhesive composition” means “content of each component in the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition”. Is synonymous with.
 本実施形態において、優れた粘着力を発現させる観点、及び、加熱処理による膨張性基材中の膨張性粒子の膨張により、形成される粘着剤層の表面に凹凸を形成し易くする観点から、粘着性樹脂が、アクリル系樹脂を含むことが好ましい。
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。
In the present embodiment, from the viewpoint of developing excellent adhesive force, and from the viewpoint of easily forming irregularities on the surface of the pressure-sensitive adhesive layer formed by the expansion of the expandable particles in the expandable substrate by heat treatment, The adhesive resin preferably contains an acrylic resin.
The content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50 to 100% by mass with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition. %, More preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
〔アクリル系樹脂〕
 本実施形態において、粘着性樹脂として使用し得る、アクリル系樹脂としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含む重合体等が挙げられる。
[Acrylic resin]
In the present embodiment, the acrylic resin that can be used as the adhesive resin has, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, or a cyclic structure. Examples thereof include a polymer containing a structural unit derived from (meth) acrylate.
 アクリル系樹脂の質量平均分子量(Mw)は、好ましくは10万~150万、より好ましくは20万~130万、更に好ましくは35万~120万、より更に好ましくは50万~110万である。 The mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, still more preferably 500,000 to 1,100,000.
 アクリル系樹脂としては、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。 Examples of the acrylic resin include a structural unit (a1) derived from an alkyl (meth) acrylate (a1 ′) (hereinafter also referred to as “monomer (a1 ′)”) and a functional group-containing monomer (a2 ′) (hereinafter referred to as “monomer”). The acrylic copolymer (A1) having the structural unit (a2) derived from (a2 ′) ”is more preferable.
 モノマー(a1’)が有するアルキル基の炭素数としては、粘着特性の向上の観点から、好ましくは1~24、より好ましくは1~12、更に好ましくは2~10、より更に好ましくは4~8である。
 なお、モノマー(a1’)が有するアルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
The number of carbon atoms of the alkyl group contained in the monomer (a1 ′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and still more preferably 4 to 8 from the viewpoint of improving adhesive properties. It is.
The alkyl group contained in the monomer (a1 ′) may be a linear alkyl group or a branched alkyl group.
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
 これらのモノマー(a1’)は、単独で用いてもよく、2種以上を併用してもよい。
 モノマー(a1’)としては、ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートが好ましい。
Examples of the monomer (a1 ′) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( Examples include meth) acrylate and stearyl (meth) acrylate.
These monomers (a1 ′) may be used alone or in combination of two or more.
As the monomer (a1 ′), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、更に好ましくは70~97.0質量%、より更に好ましくは80~95.0質量%である。 The content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass with respect to the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, and still more preferably 80 to 95.0% by mass.
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 これらのモノマー(a2’)は、単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、モノマー(a2’)としては、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましい。
As a functional group which a monomer (a2 ') has, a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. are mentioned, for example.
That is, examples of the monomer (a2 ′) include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
These monomers (a2 ′) may be used alone or in combination of two or more.
Among these, as the monomer (a2 ′), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable.
 水酸基含有モノマーとしては、例えば、上述の水酸基含有化合物と同じものが挙げられる。 Examples of the hydroxyl group-containing monomer include the same ones as the above-mentioned hydroxyl group-containing compound.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-(アクリロイルオキシ)エチルサクシネート、2-カルボキシエチル(メタ)アクリレート等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof. 2- (acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate, and the like.
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~40質量%、より好ましくは0.5~35質量%、更に好ましくは1.0~30質量%、より更に好ましくは3.0~25質量%である。 The content of the structural unit (a2) is preferably 0.1 to 40% by weight, more preferably 0.5 to 35% by weight with respect to all the structural units (100% by weight) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, and still more preferably 3.0 to 25% by mass.
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来の構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
The acrylic copolymer (A1) may further have a structural unit (a3) derived from another monomer (a3 ′) other than the monomers (a1 ′) and (a2 ′).
In the acrylic copolymer (A1), the content of the structural units (a1) and (a2) is preferably 70 with respect to the total structural units (100% by mass) of the acrylic copolymer (A1). To 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and still more preferably 95 to 100% by mass.
 モノマー(a3’)としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー類;シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート等の環状構造を有する(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリロイルモルホリン、N-ビニルピロリドン等が挙げられる。 Examples of the monomer (a3 ′) include olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene, and chloroprene; cyclohexyl (meth) acrylate, It has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate, etc. (Meth) acrylate; styrene, α-methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloyl Ruhorin, N- vinylpyrrolidone and the like.
 また、アクリル系共重合体(A1)は、側鎖に重合性官能基を導入した、エネルギー線硬化型のアクリル系共重合体としてもよい。
 当該重合性官能基及び当該エネルギー線としては、上述のとおりである。
 なお、重合性官能基は、上述の構成単位(a1)及び(a2)を有するアクリル系共重合体と、当該アクリル系共重合体の構成単位(a2)が有する官能基と結合可能な置換基と重合性官能基とを有する化合物とを反応させることで導入することができる。
 前記化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられる。
The acrylic copolymer (A1) may be an energy ray curable acrylic copolymer having a polymerizable functional group introduced in the side chain.
The polymerizable functional group and the energy ray are as described above.
The polymerizable functional group includes an acrylic copolymer having the above structural units (a1) and (a2), and a substituent that can be bonded to the functional group of the structural unit (a2) of the acrylic copolymer. And a compound having a polymerizable functional group can be reacted.
Examples of the compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate, and the like.
<架橋剤>
 本実施形態において、粘着剤組成物は、上述のアクリル系共重合体(A1)のような官能基を含有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
<Crosslinking agent>
In this embodiment, when the adhesive composition contains an adhesive resin containing a functional group such as the above-mentioned acrylic copolymer (A1), it is preferable that the adhesive composition further contains a crosslinking agent.
The said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge | crosslinks adhesive resins by using the said functional group as a crosslinking origin.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
Examples of the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent.
These crosslinking agents may be used independently and may use 2 or more types together.
Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force, and availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
<粘着付与剤>
 本実施形態において、粘着剤組成物は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~10000、より好ましくは500~8000、更に好ましくは800~5000である。
<Tackifier>
In the present embodiment, the pressure-sensitive adhesive composition may further contain a tackifier from the viewpoint of further improving the adhesive strength.
In the present specification, the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
The mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 Examples of the tackifier are obtained by copolymerizing C5 fractions such as rosin resin, terpene resin, styrene resin, pentene, isoprene, piperine, 1,3-pentadiene generated by thermal decomposition of petroleum naphtha. And C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。
 そして、2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
In the present specification, the “softening point” of the tackifier means a value measured according to JIS K2531.
A tackifier may be used independently and may use 2 or more types from which a softening point, a structure, etc. differ.
And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifier belongs to the said range.
 粘着付与剤の含有量は、粘着剤組成物の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.05~55質量%、更に好ましくは0.1~50質量%、より更に好ましくは0.5~45質量%、更になお好ましくは1.0~40質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.05 to 55% by mass, and still more preferably relative to the total amount (100% by mass) of the active ingredients of the adhesive composition. It is 0.1 to 50% by mass, more preferably 0.5 to 45% by mass, still more preferably 1.0 to 40% by mass.
<光重合開始剤>
 本実施形態において、粘着剤組成物が、粘着性樹脂として、エネルギー線硬化型の粘着性樹脂を含む場合、さらに光重合開始剤を含有することが好ましい。
 エネルギー線硬化型の粘着性樹脂及び光重合開始剤を含有する粘着剤組成物とすることで、当該粘着剤組成物から形成される粘着剤層は比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させ、粘着力を所望の範囲に調整することが可能となる。
 なお、光重合開始剤としては、上述の無溶剤型樹脂組成物(y1)に配合されるものと同じものが挙げられる。
<Photopolymerization initiator>
In this embodiment, when an adhesive composition contains an energy-beam curable adhesive resin as an adhesive resin, it is preferable to contain a photoinitiator further.
By making an adhesive composition containing an energy ray curable adhesive resin and a photopolymerization initiator, the adhesive layer formed from the adhesive composition can be irradiated with relatively low energy energy rays. It is possible to sufficiently advance the curing reaction and adjust the adhesive strength to a desired range.
In addition, as a photoinitiator, the same thing as what is mix | blended with the above-mentioned solventless type resin composition (y1) is mentioned.
 光重合開始剤の含有量は、エネルギー線硬化型の粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。 The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 0.001 parts by mass with respect to 100 parts by mass of the energy ray curable adhesive resin. 05 to 2 parts by mass.
<粘着剤用添加剤>
 本実施形態において、第1粘着剤層の形成材料である粘着剤組成物は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
<Adhesive additive>
In this embodiment, the pressure-sensitive adhesive composition, which is a material for forming the first pressure-sensitive adhesive layer, is a pressure-sensitive adhesive used for general pressure-sensitive adhesives in addition to the additives described above, as long as the effects of the present invention are not impaired. May contain additives.
Examples of such an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, and the like.
These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。 When these pressure-sensitive adhesive additives are contained, the content of each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ~ 10 parts by mass.
 粘着剤層の形成材料である粘着剤組成物は、本発明の効果を損なわない範囲で、膨張性粒子を含有してもよい。
 ただし、上述のとおり、第1粘着剤層は、非膨張性粘着剤層であることが好ましい。そのため、当該粘着剤層の形成材料である粘着剤組成物は、膨張性粒子の含有量が極力少ないほど好ましい。
 膨張性粒子の含有量は、粘着剤組成物の有効成分の全量(100質量%)に対して、好ましくは5質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、特に好ましくは0.001質量%未満である。
The pressure-sensitive adhesive composition that is a material for forming the pressure-sensitive adhesive layer may contain expandable particles as long as the effects of the present invention are not impaired.
However, as described above, the first pressure-sensitive adhesive layer is preferably a non-expandable pressure-sensitive adhesive layer. Therefore, the pressure-sensitive adhesive composition, which is a material for forming the pressure-sensitive adhesive layer, is more preferable as the content of the expandable particles is as small as possible.
The content of the expandable particles is preferably less than 5% by mass, more preferably less than 1% by mass, and even more preferably less than 0.1% by mass with respect to the total amount (100% by mass) of the active ingredients of the pressure-sensitive adhesive composition. More preferably, it is less than 0.01% by mass, particularly preferably less than 0.001% by mass.
(第2粘着剤層)
 本実施形態の粘着シートが有する第2粘着剤層は、粘着性樹脂を含むものであればよく、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 第2粘着剤層の組成及び形態の好ましい態様は、第1粘着材層と同様である。但し、第1粘着剤層と第2粘着剤層の組成は、同一であっても異なっていてもよい。また、第1粘着剤層と第2粘着剤層の形態は、同一であっても異なっていてもよい。
 第2粘着剤層の貯蔵せん断弾性率G’(23)としては、支持体等との密着性を良好とする観点から、好ましくは1.0×10~1.0×10Pa、より好ましくは3.0×10~5.0×10Pa、更に好ましくは5.0×10~1.0×10Paである。
(Second adhesive layer)
The 2nd adhesive layer which the adhesive sheet of this embodiment has should just contain adhesive resin, and for adhesives, such as a crosslinking agent, a tackifier, a polymerization compound, and a polymerization initiator, if needed. An additive may be contained.
The preferable aspect of a composition and a form of a 2nd adhesive layer is the same as that of a 1st adhesive layer. However, the composition of the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer may be the same or different. Moreover, the form of a 1st adhesive layer and a 2nd adhesive layer may be the same, or may differ.
The storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer is preferably 1.0 × 10 4 to 1.0 × 10 8 Pa from the viewpoint of improving the adhesion to the support and the like. The pressure is preferably 3.0 × 10 4 to 5.0 × 10 7 Pa, more preferably 5.0 × 10 4 to 1.0 × 10 7 Pa.
(剥離材)
 図1(B)の粘着シート10aのように、本実施形態の粘着シートは、第1粘着剤層及び/又は第2粘着剤層の粘着表面に、さらに剥離材を有していてもよい。
 剥離材としては、両面剥離処理をされた剥離シート、片面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
(Peeling material)
Like the adhesive sheet 10a of FIG.1 (B), the adhesive sheet of this embodiment may have a peeling material further on the adhesive surface of a 1st adhesive layer and / or a 2nd adhesive layer.
As the release material, a release sheet that has been subjected to a double-sided release process, a release sheet that has been subjected to a single-sided release process, or the like is used.
 剥離材用の基材としては、例えば、上質紙、グラシン紙、クラフト紙等の紙類;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等のプラスチックフィルム;等が挙げられる。 Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and craft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin, polypropylene resin, and polyethylene resin. Examples thereof include plastic films such as olefin resin films.
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。 Examples of the release agent include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
 剥離材の厚さは、特に制限ないが、好ましくは10~200μm、より好ましくは25~170μm、更に好ましくは35~80μmである。 The thickness of the release material is not particularly limited, but is preferably 10 to 200 μm, more preferably 25 to 170 μm, and still more preferably 35 to 80 μm.
〔粘着シートの製造方法〕
 本実施形態に係る両面粘着シートの製造方法としては、特に制限はなく、例えば、下記工程(1a)~(4a)を有する製造方法(a)が挙げられる。
・工程(1a):剥離材の剥離処理面上に、膨張性基材の形成材料である樹脂組成物(y)を塗布して塗膜を形成し、当該塗膜を乾燥又はUV硬化した後、得られた膨張性基材から剥離材を剥離する工程。
・工程(2a):工程(1a)とは別の剥離材の剥離処理面上に、第1粘着剤層の形成材料である粘着剤組成物を塗布して塗膜を形成し、当該塗膜を乾燥し、第1粘着剤層を形成する工程。
・工程(3a):工程(1a)及び(2a)とは別の剥離材の剥離処理面上に、第2粘着剤層の形成材料である粘着剤組成物を塗布して塗膜を形成し、当該塗膜を乾燥し、第2粘着剤層を形成する工程。
・工程(4a):工程(1a)で形成した膨張性基材の一方の表面に、第1粘着剤層を貼付し、他方の表面に第2粘着剤層を貼付する工程。
[Method for producing adhesive sheet]
The method for producing the double-sided pressure-sensitive adhesive sheet according to this embodiment is not particularly limited, and examples thereof include a production method (a) having the following steps (1a) to (4a).
Step (1a): After applying a resin composition (y), which is a material for forming an expandable base material, on the release treatment surface of the release material to form a coating film, and then drying or UV curing the coating film The process which peels a peeling material from the expandable base material obtained.
Step (2a): A coating film is formed by applying a pressure-sensitive adhesive composition, which is a material for forming the first pressure-sensitive adhesive layer, onto a release treatment surface of a release material different from the step (1a). The process of drying and forming a 1st adhesive layer.
Step (3a): A pressure-sensitive adhesive composition, which is a material for forming the second pressure-sensitive adhesive layer, is applied onto a release treatment surface of a release material different from those in steps (1a) and (2a) to form a coating film. The process of drying the said coating film and forming a 2nd adhesive layer.
Step (4a): A step of sticking the first pressure-sensitive adhesive layer on one surface of the expandable substrate formed in step (1a) and sticking the second pressure-sensitive adhesive layer on the other surface.
 本実施形態に係る両面粘着シートの別の製造方法としては、下記工程(1b)~(3b)を有する製造方法(b)が挙げられる。
・工程(1b):剥離材の剥離処理面上に、第1粘着剤層の形成材料である粘着剤組成物を塗布して塗膜を形成し、当該塗膜を乾燥し、第1粘着剤層を形成する工程。
・工程(2b):形成した第1粘着剤層の表面上に、膨張性基材の形成材料である樹脂組成物(y)を塗布して塗膜を形成し、当該塗膜を乾燥又はUV硬化し、膨張性基材を形成する工程。
・工程(3b):形成した前記膨張性基材の表面上に、第2粘着剤層の形成材料である粘着剤組成物を塗布して塗膜を形成し、当該塗膜を乾燥し、第2粘着剤層を形成する工程。
As another production method of the double-sided pressure-sensitive adhesive sheet according to this embodiment, a production method (b) having the following steps (1b) to (3b) can be mentioned.
Step (1b): A pressure-sensitive adhesive composition, which is a material for forming the first pressure-sensitive adhesive layer, is applied on the release-treated surface of the release material to form a coating film, the coating film is dried, and the first pressure-sensitive adhesive Forming a layer;
-Process (2b): On the surface of the formed 1st adhesive layer, the resin composition (y) which is a forming material of an expansible base material is apply | coated, a coating film is formed, and the said coating film is dried or UV A step of curing to form an expandable substrate.
-Step (3b): On the surface of the formed expandable substrate, a pressure-sensitive adhesive composition, which is a material for forming the second pressure-sensitive adhesive layer, is applied to form a coating film, the coating film is dried, 2 The process of forming an adhesive layer.
 上記製造方法(a)及び(b)において、樹脂組成物(y)及び粘着剤組成物は、さらに希釈溶媒を配合し、溶液の形態としてもよい。
 塗布方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
In the production methods (a) and (b), the resin composition (y) and the pressure-sensitive adhesive composition may be further mixed with a diluent solvent to form a solution.
Examples of the coating method include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
 なお、製造方法(a)の工程(1a)、及び製造方法(b)の工程(1b)の塗膜から膨張性基材を形成する乾燥又はUV照射は、膨張性粒子が膨張しない条件を適宜選択して実施することが好ましい。例えば、熱膨張性粒子を含有する樹脂組成物(y)を乾燥して膨張性基材を形成する場合は、乾燥温度は熱膨張性粒子の膨張開始温度(t)未満で行うことが好ましい。 In addition, drying or UV irradiation which forms an expansible base material from the coating film of the process (1a) of a manufacturing method (a) and the process (1b) of a manufacturing method (b) is the conditions which an expansible particle does not expand | swell suitably. It is preferable to carry out by selecting. For example, when the expandable substrate is formed by drying the resin composition (y) containing thermally expandable particles, the drying temperature is preferably less than the expansion start temperature (t) of the thermally expandable particles.
<本実施形態に係る半導体装置の各製造工程>
 次に、本実施形態に係る半導体装置の製造方法の各工程について説明をする。
 本実施形態に係る半導体装置の製造方法は、前記両面粘着シートを用いて半導体装置を製造する方法であって、下記工程(1)~(4)を有するものである。
 工程(1):第2粘着剤層の粘着表面に、硬質支持体を貼付する工程
 工程(2):第1粘着剤層の粘着表面の一部に、半導体チップを載置する工程
 工程(3):前記半導体チップと、第1粘着剤層の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程
 工程(4):前記膨張性粒子を膨張させて、前記両面粘着シートを前記硬化封止体から剥離する工程
 以下、図面を参照しながら本実施形態に係る半導体装置の製造方法の各工程を説明する。
<Each Manufacturing Process of Semiconductor Device According to this Embodiment>
Next, each step of the semiconductor device manufacturing method according to the present embodiment will be described.
The method for manufacturing a semiconductor device according to the present embodiment is a method for manufacturing a semiconductor device using the double-sided pressure-sensitive adhesive sheet, and includes the following steps (1) to (4).
Step (1): Step of attaching a hard support to the adhesive surface of the second pressure-sensitive adhesive layer Step (2): Step of placing a semiconductor chip on a part of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer Step (3) ): The semiconductor chip and the periphery of the semiconductor chip of the adhesive surface of the first pressure-sensitive adhesive layer are covered with a sealing material, the sealing material is cured, and the semiconductor chip is cured and sealed. Step of obtaining a cured sealed body sealed with a material Step (4): Step of expanding the expandable particles and peeling the double-sided pressure-sensitive adhesive sheet from the cured sealed body Each process of the manufacturing method of the semiconductor device concerning an embodiment is explained.
(工程(1))
 図2(A)には、両面粘着シート10の第2粘着剤層122の粘着表面122aに、硬質支持体20を貼付する工程(1)を説明する断面図が示されている。
 なお、両面粘着シート10が剥離材132を有する場合は、予め剥離材132を剥離する。
(Process (1))
2A is a cross-sectional view illustrating a step (1) of attaching the hard support 20 to the adhesive surface 122a of the second pressure-sensitive adhesive layer 122 of the double-sided pressure-sensitive adhesive sheet 10. FIG.
In addition, when the double-sided adhesive sheet 10 has the peeling material 132, the peeling material 132 is peeled beforehand.
 硬質支持体20は、第2粘着剤層122の粘着表面122aに貼付されるものであり、工程(2)及び(3)において平坦性に優れた硬化封止体を得る目的で使用されるものである。
 硬質支持体20は、前記目的を果たす観点から、図2(A)に示すように、粘着表面122(a)の全面に貼付されることが好ましい。したがって、硬質支持体20は、板状であることが好ましく、粘着表面122aと貼付される側の表面の面積は、粘着表面122aの面積以上であることが好ましい。
 硬質支持体20の材質は、機械的強度、耐熱性等を考慮して適宜決定すればよく、例えば、SUS等の金属材料;ガラス、シリコンウエア等の非金属無機材料;ポリイミド、ポリアミドイミド等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、シリコンウエハ等が好ましい。
 硬質支持体20の厚さは、機械的強度、取り扱い性等を考慮して適宜決定すればよく、例えば、100μm~50mmである。
The hard support 20 is affixed to the pressure-sensitive adhesive surface 122a of the second pressure-sensitive adhesive layer 122, and is used for the purpose of obtaining a cured sealing body having excellent flatness in the steps (2) and (3). It is.
From the viewpoint of achieving the above object, the hard support 20 is preferably attached to the entire surface of the adhesive surface 122 (a) as shown in FIG. 2 (A). Therefore, the hard support 20 is preferably plate-shaped, and the area of the surface to be attached to the adhesive surface 122a is preferably equal to or larger than the area of the adhesive surface 122a.
The material of the hard support 20 may be appropriately determined in consideration of mechanical strength, heat resistance, and the like. For example, a metal material such as SUS; a non-metallic inorganic material such as glass or silicon wear; a polyimide, a polyamideimide, or the like Resin materials; composite materials such as glass epoxy resins are exemplified, and among these, SUS, glass, silicon wafer and the like are preferable.
The thickness of the hard support 20 may be appropriately determined in consideration of mechanical strength, handleability, etc., and is, for example, 100 μm to 50 mm.
(工程(2))
 図2(B)には、第1粘着剤層121の粘着表面121aの一部に、半導体チップCPを載置する工程(2)を説明する断面図が示されている。
 なお、両面粘着シート10が剥離材131を有する場合は、予め剥離材131を剥離する。
 半導体チップCPは、従来公知のものを使用することができる。半導体チップCPは、その回路面W1に、トランジスタ、抵抗、コンデンサー等の回路素子から構成される集積回路が形成されている。
 半導体チップCPは、例えば、その回路面W1が、粘着表面121aで覆われるように載置される。半導体チップCPの載置には、フリップチップボンダー、ダイボンダー等の公知の装置を用いることができる。
 半導体チップCPの配置のレイアウト、配置数等は、目的とするパッケージの形態、生産数等に応じて適宜決定すればよい。
 ここで、本実施形態に係る半導体装置の製造方法は、FOWLP、FOPLP等のように、半導体チップCPをチップサイズよりも大きな領域で封止材で覆って、半導体チップCPの回路面W1だけではなく、封止材の表面領域においても再配線層を形成するパッケージに好適に適用されるものである。そのため、半導体チップCPは、第1粘着剤層121の粘着表面121aの一部に載置されるものであり、複数の半導体チップCPが、一定の間隔を空けて整列された状態で粘着表面121aに載置されることが好ましく、複数の半導体チップCPが、一定の間隔を空けて、複数行かつ複数列のマトリックス状に整列された状態で粘着表面121aに載置されることがより好ましい。半導体チップCP同士の間隔は、目的とするパッケージの形態等に応じて適宜決定すればよい。
 半導体チップCPが、第1粘着剤層121の粘着表面121aの一部に載置されることにより、第1粘着剤層121の粘着表面121aのうち、半導体チップCPの周辺部30が形成される。図2(B)において、半導体チップCPの周辺部30とは、複数の半導体チップCPのうち、隣接する半導体チップCP同士の間隙に相当する第1粘着剤層121の粘着表面121aである。
(Process (2))
FIG. 2B shows a cross-sectional view for explaining the step (2) of placing the semiconductor chip CP on a part of the adhesive surface 121a of the first adhesive layer 121.
In addition, when the double-sided adhesive sheet 10 has the peeling material 131, the peeling material 131 is peeled beforehand.
A conventionally known semiconductor chip CP can be used. The semiconductor chip CP is formed with an integrated circuit composed of circuit elements such as transistors, resistors, and capacitors on the circuit surface W1.
For example, the semiconductor chip CP is placed so that the circuit surface W1 is covered with the adhesive surface 121a. For mounting the semiconductor chip CP, a known device such as a flip chip bonder or a die bonder can be used.
The layout, the number of arrangement, etc. of the semiconductor chip CP may be determined as appropriate according to the target package form, the number of production, etc.
Here, the manufacturing method of the semiconductor device according to the present embodiment covers the semiconductor chip CP with a sealing material in an area larger than the chip size, such as FOWLP, FOPLP, etc., and only the circuit surface W1 of the semiconductor chip CP In addition, the present invention is suitably applied to a package for forming a rewiring layer even in the surface region of the sealing material. Therefore, the semiconductor chip CP is placed on a part of the adhesive surface 121a of the first adhesive layer 121, and the adhesive surface 121a is in a state where the plurality of semiconductor chips CP are aligned with a certain interval. Preferably, the plurality of semiconductor chips CP are more preferably placed on the adhesive surface 121a in a state of being arranged in a matrix of a plurality of rows and a plurality of columns with a certain interval. The interval between the semiconductor chips CP may be appropriately determined according to the target package form and the like.
By placing the semiconductor chip CP on a part of the adhesive surface 121a of the first adhesive layer 121, the peripheral portion 30 of the semiconductor chip CP is formed on the adhesive surface 121a of the first adhesive layer 121. . In FIG. 2B, the peripheral portion 30 of the semiconductor chip CP is an adhesive surface 121a of the first adhesive layer 121 corresponding to a gap between adjacent semiconductor chips CP among the plurality of semiconductor chips CP.
(工程(3))
 図2(C)及び(D)には、半導体チップCPと、第1粘着剤層121の粘着表面121aのうち、半導体チップCPの周辺部30と、を封止材40で被覆し、該封止材40を硬化させて、半導体チップCPが硬化封止材41に封止されてなる硬化封止体50を得る工程(3)を説明する断面図が示されている。
 なお、以下、半導体チップCPと、第1粘着剤層121の粘着表面121aのうち、半導体チップCPの周辺部30と、を封止材40で被覆する工程を「被覆工程」と称する場合があり、該封止材40を硬化させて、半導体チップCPが硬化封止材41に封止されてなる硬化封止体50を得る工程を「硬化工程」と称する場合がある。
(Process (3))
2C and 2D, the semiconductor chip CP and the peripheral portion 30 of the semiconductor chip CP in the adhesive surface 121a of the first adhesive layer 121 are covered with the sealing material 40, and the sealing is performed. A cross-sectional view illustrating a step (3) of obtaining a cured sealing body 50 obtained by curing the stopper 40 and sealing the semiconductor chip CP with the cured sealing material 41 is shown.
Hereinafter, the step of covering the semiconductor chip CP and the peripheral portion 30 of the semiconductor chip CP in the adhesive surface 121a of the first adhesive layer 121 with the sealing material 40 may be referred to as a “covering step”. The process of curing the sealing material 40 to obtain the cured sealing body 50 in which the semiconductor chip CP is sealed with the cured sealing material 41 may be referred to as a “curing process”.
 図2(C)に示すように、被覆工程においては、まず、半導体チップCPと、第1粘着剤層121の粘着表面121aのうち、半導体チップCPの周辺部30と、を封止材40で被覆する。封止材40は、半導体チップCPの表出している面全体を覆いつつ、複数の半導体チップCP同士の間隙にも充填されている。 As shown in FIG. 2C, in the covering step, first, the semiconductor chip CP and the peripheral portion 30 of the semiconductor chip CP among the adhesive surface 121a of the first adhesive layer 121 are sealed with the sealing material 40. Cover. The sealing material 40 fills the gaps between the plurality of semiconductor chips CP while covering the entire exposed surface of the semiconductor chip CP.
 封止材40は、半導体チップCP及びそれに付随する要素を外部環境から保護する機能を有するものである。
 封止材40としては特に制限はなく、従来、半導体封止材料として使用されているものの中から、任意のものを適宜選択して用いることができる。
 封止材40は、機械的強度、耐熱性、絶縁性等の観点から、硬化性を有するものであり、例えば、熱硬化性樹脂組成物、エネルギー線硬化性樹脂組成物等が挙げられる。
 以下、本実施形態においては、封止材40を熱硬化性樹脂組成物であるものとして説明をする。
The sealing material 40 has a function of protecting the semiconductor chip CP and its accompanying elements from the external environment.
There is no restriction | limiting in particular as the sealing material 40, From what was conventionally used as a semiconductor sealing material, arbitrary things can be selected suitably and can be used.
The sealing material 40 has curability from the viewpoint of mechanical strength, heat resistance, insulation, and the like, and examples thereof include a thermosetting resin composition and an energy ray curable resin composition.
Hereinafter, in this embodiment, the sealing material 40 is demonstrated as what is a thermosetting resin composition.
 封止材40である熱硬化性樹脂組成物が含有する熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シアネート樹脂等が挙げられるが、機械的強度、耐熱性、絶縁性、成形性等の観点から、エポキシ樹脂が好ましい。
 前記熱硬化性樹脂組成物は、前記熱硬化性樹脂の他にも、必要に応じて、フェノール樹脂系硬化剤、アミン系硬化剤等の硬化剤、硬化促進剤、シリカ等の無機充填材、エラストマー等の添加剤を含有していてもよい。
 封止材40は、室温で固形であっても、液状であってもよい。また、室温で固形である封止材40の形態は、特に限定されず、例えば、顆粒状、シート状等であってもよい。
Examples of the thermosetting resin contained in the thermosetting resin composition that is the sealing material 40 include an epoxy resin, a phenol resin, and a cyanate resin. However, mechanical strength, heat resistance, insulation, and moldability From the viewpoint of the above, an epoxy resin is preferable.
In addition to the thermosetting resin, the thermosetting resin composition, if necessary, a phenol resin curing agent, a curing agent such as an amine curing agent, a curing accelerator, an inorganic filler such as silica, You may contain additives, such as an elastomer.
The sealing material 40 may be solid or liquid at room temperature. Moreover, the form of the sealing material 40 which is solid at room temperature is not specifically limited, For example, a granular form, a sheet form, etc. may be sufficient.
 封止材40により、半導体チップCP及びその周辺部30を被覆する方法としては、従来、半導体封止工程に適用されている方法の中から、任意の方法を適宜選択して適用することができ、例えば、ロールラミネート法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、トランスファーモールディング法、圧縮成形モールド法等を適用することができる。
 これらの方法においては、通常、封止材40の充填性を高めるために、被覆時に封止材40を加熱して流動性を付与する。
As a method of covering the semiconductor chip CP and the peripheral portion 30 with the sealing material 40, any method can be appropriately selected and applied from methods conventionally used in the semiconductor sealing process. For example, a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, a compression molding mold method and the like can be applied.
In these methods, normally, in order to improve the filling property of the sealing material 40, the sealing material 40 is heated during coating to impart fluidity.
 図2(D)に示すように、被覆工程を行った後、封止材40を硬化させて、半導体チップCPが硬化封止材41に封止されてなる硬化封止体50を得る。
 ここで、上記したように、本実施形態に用いられる両面粘着シート10は、熱、エネルギー線等により膨張する膨張性粒子を含有するものであり、後述する工程(4)において、該膨張性粒子を膨張させることで粘着表面121aと硬化封止体50との粘着力を低下させ、両面粘着シート10は硬化封止体50から剥離される。したがって、被覆工程及び硬化工程においては、膨張性粒子が膨張しない条件を適宜選択して、封止材40を被覆及び硬化させることが好ましい。
 例えば、両面粘着シート10に含まれる膨張性粒子が熱膨張性粒子である場合、被覆工程及び硬化工程における加熱条件(加熱温度及び加熱時間)は、熱膨張性粒子の膨張に起因する両面粘着シート10の厚さの増加率が10%以下である加熱条件が好ましく、前記増加率が5%以下である加熱条件がより好ましく、前記増加率が0%である加熱条件(すなわち、熱膨張性粒子が膨張しない加熱条件)がさらに好ましい。なお、両面粘着シート10の厚さの増加率は、例えば、所定条件での加熱前後の両面粘着シート10の厚さを、JIS K6783、Z1702、Z1709に準じて、定圧厚さ測定器(株式会社テクロック製、製品名「PG-02」)を用いて測定し、下記式に基づいて計算することができる。
 厚さの増加率(%)=(加熱後の厚さ-加熱前の厚さ)×100/加熱前の厚さ
 なお、被覆工程と硬化工程は別々に実施してもよいが、被覆工程において封止材40を加熱する場合、当該加熱によって、そのまま封止材40を硬化させてもよい。つまり、その場合、被覆工程と硬化工程とを同時に実施してもよい。
As shown in FIG. 2D, after performing the covering step, the sealing material 40 is cured to obtain a cured sealing body 50 in which the semiconductor chip CP is sealed with the cured sealing material 41.
Here, as described above, the double-sided pressure-sensitive adhesive sheet 10 used in the present embodiment contains expandable particles that expand due to heat, energy rays, etc., and in the step (4) described later, the expandable particles. Is expanded to reduce the adhesive force between the adhesive surface 121a and the cured sealing body 50, and the double-sided adhesive sheet 10 is peeled off from the cured sealing body 50. Therefore, in the coating step and the curing step, it is preferable that the sealing material 40 is coated and cured by appropriately selecting conditions under which the expandable particles do not expand.
For example, when the expandable particles contained in the double-sided pressure-sensitive adhesive sheet 10 are heat-expandable particles, the heating conditions (heating temperature and heating time) in the coating step and the curing step are double-sided pressure-sensitive adhesive sheets resulting from the expansion of the heat-expandable particles. The heating condition in which the increase rate of the thickness of 10 is 10% or less is preferable, the heating condition in which the increase rate is 5% or less is more preferable, and the heating condition in which the increase rate is 0% (that is, thermally expandable particles More preferred is a heating condition in which does not expand. The rate of increase in the thickness of the double-sided pressure-sensitive adhesive sheet 10 is, for example, the thickness of the double-sided pressure-sensitive adhesive sheet 10 before and after heating under a predetermined condition according to JIS K6783, Z1702, and Z1709. Measured using a product name “PG-02” manufactured by Teclock, and can be calculated based on the following formula.
Thickness increase rate (%) = (Thickness after heating−Thickness before heating) × 100 / Thickness before heating Note that the coating process and the curing process may be performed separately. When the sealing material 40 is heated, the sealing material 40 may be cured as it is by the heating. That is, in that case, the covering step and the curing step may be performed simultaneously.
 なお、本実施形態においては、封止材40として熱硬化性樹脂組成物を用い、膨張性粒子として熱膨張性粒子を用いる態様を説明しているが、例えば、封止材40がエネルギー線硬化性樹脂組成物であり、膨張性粒子が熱膨張性粒子である態様、封止材40がエネルギー線硬化性樹脂組成物であり、膨張性粒子がエネルギー線膨張性粒子である態様であってもよく、これらの態様においても、被覆工程及び硬化工程における両面粘着シート10の厚さの増加率が前記した範囲を満たすことが好ましい。 In the present embodiment, a mode is described in which a thermosetting resin composition is used as the sealing material 40 and heat-expandable particles are used as the expandable particles. Even if the expandable particle is a thermally expandable particle, the sealing material 40 is an energy ray curable resin composition, and the expandable particle is an energy ray expandable particle. Well, also in these aspects, it is preferable that the increasing rate of the thickness of the double-sided pressure-sensitive adhesive sheet 10 in the coating step and the curing step satisfies the above-described range.
 前記被覆工程において熱硬化性樹脂組成物を加熱する温度の具体例は、使用する封止材40の種類、膨張性粒子の種類等によっても異なるが、例えば、30~180℃であり、50~170℃が好ましく、70~150℃がより好ましい。また、加熱時間は、例えば、5秒~60分間であり、10秒~45分間が好ましく、15秒~30分間がより好ましい。
 前記硬化工程において、封止材40を硬化させる温度の具体例は、使用する封止材40の種類、膨張性粒子の種類等によっても異なるが、例えば、80~240℃であり、90~200℃が好ましく、100~170℃がより好ましい。また、加熱時間は、例えば、10~180分間であり、20~150分間が好ましく、30~120分間がより好ましい。
Specific examples of the temperature at which the thermosetting resin composition is heated in the coating step vary depending on the type of the sealing material 40 used, the type of expandable particles, and the like, but are, for example, 30 to 180 ° C. 170 ° C. is preferable, and 70 to 150 ° C. is more preferable. The heating time is, for example, 5 seconds to 60 minutes, preferably 10 seconds to 45 minutes, and more preferably 15 seconds to 30 minutes.
In the curing step, specific examples of the temperature at which the sealing material 40 is cured vary depending on the type of the sealing material 40 used, the type of the expandable particles, and the like, but are, for example, 80 to 240 ° C. ° C is preferred, and 100 to 170 ° C is more preferred. The heating time is, for example, 10 to 180 minutes, preferably 20 to 150 minutes, and more preferably 30 to 120 minutes.
 本実施形態においては、シート状の封止材(以下、「シート状封止材」ともいう)を用いて被覆工程及び硬化工程を実施することが好ましい。
 シート状封止材を用いる方法では、シート状封止材を半導体チップCP及びその周辺部30を覆うように載置することで、半導体チップCP及びその周辺部30を封止材40によって被覆する。その際、半導体チップCP同士の間隙に、封止材40が充填されない部分が生じないように、真空ラミネート法等によって、適宜減圧しながら、加熱及び圧着させることが好ましい。減圧、加熱及び圧着条件の好ましい態様は上記の通りである。その後、ラミネートした封止材40を加熱して硬化させる。硬化させる温度の好ましい態様は上記の通りである。
 シート状封止材は、ポリエチレンテレフタレート等の樹脂シートに支持された積層シートであってもよい。この場合、シート状封止材が半導体チップCP及びその周辺部30を覆うように積層シートを載置した後、樹脂シートを封止材から剥離してもよい。
In the present embodiment, it is preferable to perform the covering step and the curing step using a sheet-like sealing material (hereinafter also referred to as “sheet-like sealing material”).
In the method using the sheet-shaped sealing material, the semiconductor chip CP and the peripheral portion 30 are covered with the sealing material 40 by placing the sheet-shaped sealing material so as to cover the semiconductor chip CP and the peripheral portion 30 thereof. . At that time, it is preferable to heat and pressure-bond while appropriately reducing the pressure by a vacuum laminating method or the like so that a portion not filled with the sealing material 40 does not occur in the gap between the semiconductor chips CP. Preferred embodiments of the reduced pressure, heating and pressure bonding conditions are as described above. Thereafter, the laminated sealing material 40 is heated and cured. A preferred embodiment of the curing temperature is as described above.
The sheet-like sealing material may be a laminated sheet supported by a resin sheet such as polyethylene terephthalate. In this case, the resin sheet may be peeled off from the sealing material after placing the laminated sheet so that the sheet-shaped sealing material covers the semiconductor chip CP and the peripheral portion 30 thereof.
 工程(3)により、所定距離ずつ離間した複数の半導体チップCPが硬化封止材41に埋め込まれた硬化封止体50が得られる。 By the step (3), a cured sealing body 50 in which a plurality of semiconductor chips CP separated by a predetermined distance are embedded in the curing sealing material 41 is obtained.
(工程(4))
 図2(E)には、膨張性粒子を膨張させて、両面粘着シート10を硬化封止体50から剥離する工程(4)を説明する断面図が示されている。
 具体的には、膨張性粒子を、その種類に応じて、熱、エネルギー線等によって膨張させることにより、第1粘着剤層121の粘着表面121aに凹凸を形成し、これにより、粘着表面121aと硬化封止体50との粘着力を低下させ、両面粘着シート10を剥離するものである。
 その際、本実施形態に係る製造方法によると、第2粘着剤層122の粘着表面122aには、硬質支持体20が貼付されているため、第2粘着剤層122の粘着表面122a側に凹凸が形成されることを抑制し、これにより第1粘着剤層121の粘着表面121a側に効率的に凹凸を形成することができ、優れた剥離性が得られる。
 膨張性粒子を、膨張させる方法としては、膨張性粒子の種類に応じて適宜選択すればよい。
 膨張性粒子が熱膨張性粒子である場合は、膨張開始温度(t)以上の温度に加熱すればよい。ここで、「膨張開始温度(t)以上の温度」としては、「膨張開始温度(t)+10℃」以上「膨張開始温度(t)+60℃」以下であることが好ましく、「膨張開始温度(t)+15℃」以上「膨張開始温度(t)+40℃」以下であることがより好ましい。具体的には、その熱膨張性粒子の種類に応じて、例えば、120~250℃の範囲に加熱して膨張させればよい。
(Process (4))
FIG. 2E shows a cross-sectional view for explaining the step (4) in which the expandable particles are expanded to peel the double-sided pressure-sensitive adhesive sheet 10 from the cured sealing body 50.
Specifically, the expandable particles are expanded by heat, energy rays, or the like according to the type thereof, thereby forming irregularities on the adhesive surface 121a of the first adhesive layer 121, thereby forming the adhesive surface 121a and The adhesive force with the cured sealing body 50 is reduced, and the double-sided pressure-sensitive adhesive sheet 10 is peeled off.
At that time, according to the manufacturing method according to the present embodiment, since the hard support 20 is affixed to the adhesive surface 122a of the second adhesive layer 122, unevenness is formed on the adhesive surface 122a side of the second adhesive layer 122. Is suppressed, whereby unevenness can be efficiently formed on the adhesive surface 121a side of the first pressure-sensitive adhesive layer 121, and excellent peelability can be obtained.
What is necessary is just to select suitably as a method of expanding an expandable particle according to the kind of expandable particle.
When the expandable particles are thermally expandable particles, they may be heated to a temperature equal to or higher than the expansion start temperature (t). Here, the “temperature higher than the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is more preferable that it is not less than “t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”. Specifically, depending on the type of the thermally expandable particles, for example, it may be heated and expanded in the range of 120 to 250 ° C.
 膨張性粒子を膨張させた後、両面粘着シート10を硬化封止体50から剥離する。本実施形態に係る両面粘着シート10は優れた剥離性を有しているため、従来の仮固定用シートよりも小さい外力で剥離することができる。剥離する方法は特に限定されないが、例えば、両面粘着シート10からデボンダーを用いて硬化封止体50から剥離する方法が挙げられる。 After the expandable particles are expanded, the double-sided pressure-sensitive adhesive sheet 10 is peeled from the cured sealing body 50. Since the double-sided pressure-sensitive adhesive sheet 10 according to the present embodiment has excellent peelability, it can be peeled with an external force smaller than that of a conventional temporary fixing sheet. Although the method to peel is not specifically limited, For example, the method of peeling from the hardening sealing body 50 using the debonder from the double-sided adhesive sheet 10 is mentioned.
 本実施形態に係る製造方法は、工程(4)において、硬化封止体50から、両面粘着シート10を剥離する前又は剥離した後に、必要に応じて、硬化封止体50の厚さを薄くするために、研削する工程を含んでいてもよい。 In the manufacturing method according to the present embodiment, in the step (4), before or after the double-sided pressure-sensitive adhesive sheet 10 is peeled from the cured sealing body 50, the thickness of the cured sealing body 50 is reduced as necessary. In order to do so, a grinding step may be included.
(工程(5))
 本実施形態に係る製造方法は、両面粘着シート10を剥離した硬化封止体50に再配線層を形成する工程(5)を含むことが好ましい。
 図3(A)には、両面粘着シート10を剥離した後の硬化封止体50の断面図が示されている。
 本工程においては、露出した複数の半導体チップCPの回路W2と接続する再配線を、回路面W1の上及び半導体チップCPの領域外に相当する硬化封止体50の面50aの上に形成する。
(Process (5))
It is preferable that the manufacturing method which concerns on this embodiment includes the process (5) which forms a rewiring layer in the hardening sealing body 50 which peeled the double-sided adhesive sheet 10. FIG.
FIG. 3A shows a cross-sectional view of the cured sealing body 50 after the double-sided pressure-sensitive adhesive sheet 10 is peeled off.
In this step, rewirings connected to the circuit W2 of the plurality of exposed semiconductor chips CP are formed on the circuit surface W1 and on the surface 50a of the cured sealing body 50 corresponding to the outside of the region of the semiconductor chip CP. .
 図3(B)には、半導体チップCPの回路面W1及び硬化封止体50の面50aに第1絶縁層61を形成する工程を説明する断面図が示されている。
 絶縁性樹脂を含む第1絶縁層61を、回路面W1及び面50aの上に、半導体チップCPの回路W2又は回路W2の内部端子電極W3を露出させるように形成する。絶縁性樹脂としては、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、シリコーン樹脂等が挙げられる。内部端子電極W3の材質は、導電性材料であれば限定されず、金、銀、銅、アルミニウム等の金属、これらの金属を含む合金等が挙げられる。
FIG. 3B is a cross-sectional view illustrating a process of forming the first insulating layer 61 on the circuit surface W1 of the semiconductor chip CP and the surface 50a of the cured sealing body 50.
A first insulating layer 61 containing an insulating resin is formed on the circuit surface W1 and the surface 50a so as to expose the circuit W2 of the semiconductor chip CP or the internal terminal electrode W3 of the circuit W2. Examples of the insulating resin include polyimide resin, polybenzoxazole resin, and silicone resin. The material of the internal terminal electrode W3 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals.
 図3(C)には、硬化封止体50に封止された半導体チップCPと電気的に接続する再配線70を形成する工程を説明する断面図が示されている。
 本実施形態では、第1絶縁層61の形成に続いて再配線70を形成する。再配線70の材質は、導電性材料であれば限定されず、金、銀、銅、アルミニウム等の金属、これらの金属を含む合金等が挙げられる。再配線70は、サブトラクティブ法、セミアディティブ法等の公知の方法により形成できる。
FIG. 3C is a cross-sectional view illustrating a process of forming the rewiring 70 that is electrically connected to the semiconductor chip CP sealed in the cured sealing body 50.
In the present embodiment, the rewiring 70 is formed following the formation of the first insulating layer 61. The material of the rewiring 70 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals. The rewiring 70 can be formed by a known method such as a subtractive method or a semi-additive method.
 図4(A)には、再配線70を覆う第2絶縁層62を形成する工程を説明する断面図が示されている。
 再配線70は、外部端子電極用の外部電極パッド70Aを有する。第2絶縁層62には開口等を設けて、外部端子電極用の外部電極パッド70Aを露出させる。本実施形態では、外部電極パッド70Aは、硬化封止体50の半導体チップCPの領域(回路面W1に対応する領域)内及び領域外(硬化封止体50上の面50aに対応する領域)に露出させている。また、再配線70は、外部電極パッド70Aがアレイ状に配置されるように、硬化封止体50の面50aに形成されている。本実施形態では、硬化封止体50の半導体チップCPの領域外に外部電極パッド70Aを露出させる構造を有するので、FOWLP又はFOPLPを得ることができる。
FIG. 4A is a cross-sectional view illustrating a process of forming the second insulating layer 62 that covers the rewiring 70.
The rewiring 70 has external electrode pads 70A for external terminal electrodes. The second insulating layer 62 is provided with an opening or the like to expose the external electrode pad 70A for the external terminal electrode. In the present embodiment, the external electrode pads 70A are inside and outside the region of the semiconductor chip CP of the cured sealing body 50 (a region corresponding to the circuit surface W1) and outside the region (a region corresponding to the surface 50a on the cured sealing body 50). It is exposed to. The rewiring 70 is formed on the surface 50a of the cured sealing body 50 so that the external electrode pads 70A are arranged in an array. In the present embodiment, since the external electrode pad 70A is exposed outside the region of the semiconductor chip CP of the cured sealing body 50, FOWLP or FOPLP can be obtained.
(外部端子電極との接続工程)
 図4(B)には、外部電極パッド70Aに外部端子電極80を接続させる工程を説明する断面図が示されている。
 第2絶縁層62から露出する外部電極パッド70Aに、はんだボール等の外部端子電極80を載置し、はんだ接合などにより、外部端子電極80と外部電極パッド70Aとを電気的に接続させる。はんだボールの材質は、特に限定されず、含鉛はんだ、無鉛はんだ等が挙げられる。
(Connection process with external terminal electrode)
FIG. 4B is a cross-sectional view illustrating a process of connecting the external terminal electrode 80 to the external electrode pad 70A.
An external terminal electrode 80 such as a solder ball is placed on the external electrode pad 70A exposed from the second insulating layer 62, and the external terminal electrode 80 and the external electrode pad 70A are electrically connected by solder bonding or the like. The material of the solder ball is not particularly limited, and examples thereof include lead-containing solder and lead-free solder.
(ダイシング工程)
 図4(C)には、外部端子電極80が接続された硬化封止体50を個片化させる工程を説明する断面図が示されている。
 本工程では、硬化封止体50を半導体チップCP単位で個片化する。硬化封止体50を個片化させる方法は、特に限定されず、ダイシングソー等の切断手段等によって実施することができる。
 硬化封止体50を個片化することで、半導体チップCP単位の半導体装置100が製造される。上述のように半導体チップCPの領域外にファンアウトさせた外部電極パッド70Aに外部端子電極80を接続させた半導体装置100は、FOWLP、FOPLP等として製造される。
(Dicing process)
FIG. 4C is a cross-sectional view illustrating a process of separating the cured sealing body 50 to which the external terminal electrode 80 is connected.
In this step, the cured sealing body 50 is singulated for each semiconductor chip CP. The method for dividing the cured sealing body 50 into individual pieces is not particularly limited, and can be performed by a cutting means such as a dicing saw.
By separating the cured sealing body 50 into pieces, the semiconductor device 100 in units of the semiconductor chip CP is manufactured. As described above, the semiconductor device 100 in which the external terminal electrode 80 is connected to the external electrode pad 70A fanned out outside the region of the semiconductor chip CP is manufactured as FOWLP, FOPLP, or the like.
(実装工程)
 本実施形態では、個片化された半導体装置100を、プリント配線基板等に実装する工程を含むことも好ましい。
(Mounting process)
In the present embodiment, it is also preferable to include a step of mounting the singulated semiconductor device 100 on a printed wiring board or the like.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の製造例及び実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples. In addition, the physical-property value in the following manufacture examples and Examples is a value measured by the following method.
<質量平均分子量(Mw)>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<Mass average molecular weight (Mw)>
Using a gel permeation chromatograph (product name “HLC-8020” manufactured by Tosoh Corporation), measurement was performed under the following conditions, and values measured in terms of standard polystyrene were used.
(Measurement condition)
Column: “TSK guard column HXL-L”, “TSK gel G2500HXL”, “TSK gel G2000HXL”, and “TSK gel G1000HXL” (both manufactured by Tosoh Corporation) Column temperature: 40 ° C.
・ Developing solvent: Tetrahydrofuran ・ Flow rate: 1.0 mL / min
<各層の厚さの測定>
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
<Measurement of thickness of each layer>
It was measured using a constant pressure thickness measuring instrument (model number: “PG-02J”, standard: conforming to JIS K6783, Z1702, Z1709) manufactured by Teclock Co., Ltd.
<熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)>
 レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定した。
 そして、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)とした。
<Average particle diameter (D 50 ) of thermally expandable particles, 90% particle diameter (D 90 )>
The particle distribution of the thermally expandable particles before expansion at 23 ° C. was measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern).
The particle diameters corresponding to 50% and 90% of the cumulative volume frequency calculated from the smaller particle diameter of the particle distribution are expressed as “average particle diameter (D 50 ) of thermally expandable particles” and “thermally expandable particles”, respectively. 90% particle diameter (D 90 ).
<膨張性基材の貯蔵弾性率E’>
 測定対象が非粘着性の膨張性基材である場合、当該膨張性基材を縦5mm×横30mm×厚さ200μmの大きさとし、剥離材を除去したものを試験サンプルとした。
 動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、所定の温度における、当該試験サンプルの貯蔵弾性率E’を測定した。
<Storage elastic modulus E 'of expandable substrate>
When the measurement target was a non-adhesive expandable base material, the expandable base material was 5 mm long × 30 mm wide × 200 μm thick, and the test piece was prepared by removing the release material.
Using a dynamic viscoelasticity measuring apparatus (product name “DMAQ800” manufactured by TA Instruments Inc.), the test start temperature is 0 ° C., the test end temperature is 300 ° C., the heating rate is 3 ° C./min, the frequency is 1 Hz, and the amplitude is 20 μm. Under the conditions, the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
<粘着剤層の貯蔵せん断弾性率G’、膨張性粘着剤層の貯蔵弾性率E’>
 測定対象が粘着性を有する膨張性粘着剤層及び粘着剤層である場合、当該膨張性粘着剤層及び粘着剤層を直径8mm×厚さ3mmとし、剥離材を除去したものを試験サンプルとした。
 粘弾性測定装置(Anton Paar社製、装置名「MCR300」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hzの条件で、ねじりせん断法によって、所定の温度における、試験サンプルの貯蔵せん断弾性率G’を測定した。
 そして、貯蔵弾性率E’の値は、測定した貯蔵せん断弾性率G’の値を基に、近似式「E’=3G’」から算出した。
<Storage shear modulus G ′ of the pressure-sensitive adhesive layer, storage elastic modulus E ′ of the expandable pressure-sensitive adhesive layer>
When the measurement target is an expandable pressure-sensitive adhesive layer and a pressure-sensitive adhesive layer having adhesiveness, the expandable pressure-sensitive adhesive layer and the pressure-sensitive adhesive layer have a diameter of 8 mm × thickness of 3 mm, and a test sample is obtained by removing the release material. .
Using a viscoelasticity measuring device (manufactured by Anton Paar, device name “MCR300”), a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz Was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
The value of the storage elastic modulus E ′ was calculated from the approximate expression “E ′ = 3G ′” based on the measured value of the storage shear elastic modulus G ′.
<プローブタック値>
 測定対象となる膨張性基材又は膨張性粘着剤層を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置し、軽剥離フィルムを除去したものを試験サンプルとした。
 23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、軽剥離フィルムを除去して表出した、前記試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定した。
 具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで、試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定した。そして、その測定した値を、その試験サンプルのプローブタック値とした。
<Probe tack value>
After the expansive base material or expansive pressure-sensitive adhesive layer to be measured was cut into a square with a side of 10 mm, it was left to stand in an environment of 23 ° C. and 50% RH (relative humidity) for 24 hours to remove the light release film. This was used as a test sample.
Under the environment of 23 ° C. and 50% RH (relative humidity), using a tacking tester (manufactured by Nippon Special Instrument Co., Ltd., product name “NTS-4800”), the light release film was removed and exposed. The probe tack value on the surface of the test sample was measured according to JIS Z0237: 1991.
Specifically, a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is tested at a speed of 10 mm / second. The force required to move away from the surface was measured. And the measured value was made into the probe tack value of the test sample.
 以下の製造例で使用した粘着性樹脂、添加剤、熱膨張性粒子、及び剥離材の詳細は以下のとおりである。
<粘着性樹脂>
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、質量平均分子量(Mw)60万のアクリル系共重合体を含む溶液。希釈溶媒:酢酸エチル、固形分濃度:40質量%。
・アクリル系共重合体(ii):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)/アクリル酸=86.0/8.0/5.0/1.0(質量比)からなる原料モノマーに由来の構成単位を有する、質量平均分子量(Mw)60万のアクリル系共重合体を含む溶液。希釈溶媒:酢酸エチル、固形分濃度:40質量%。
<添加剤>
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
・光重合開始剤(i):BASF社製、製品名「イルガキュア184」、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン。
<熱膨張性粒子>
・熱膨張性粒子(i):株式会社クレハ製、製品名「S2640」、膨張開始温度(t)=208℃、平均粒子径(D50)=24μm、90%粒子径(D90)=49μm。
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
The details of the adhesive resin, additives, thermally expandable particles, and release material used in the following production examples are as follows.
<Adhesive resin>
Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) = 80.0 / 20.0 (mass ratio), A solution containing an acrylic copolymer having a mass average molecular weight (Mw) of 600,000. Diluting solvent: ethyl acetate, solid content concentration: 40% by mass.
Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid = 86.0 / 8.0 / 5.0 / 1. A solution containing an acrylic copolymer having a mass average molecular weight (Mw) of 600,000 having a structural unit derived from a raw material monomer consisting of 0 (mass ratio). Diluting solvent: ethyl acetate, solid content concentration: 40% by mass.
<Additives>
Isocyanate crosslinking agent (i): manufactured by Tosoh Corporation, product name “Coronate L”, solid content concentration: 75 mass%.
Photopolymerization initiator (i): manufactured by BASF, product name “Irgacure 184”, 1-hydroxy-cyclohexyl-phenyl-ketone.
<Thermal expandable particles>
Thermally expandable particles (i): manufactured by Kureha Co., Ltd., product name “S2640”, expansion start temperature (t) = 208 ° C., average particle size (D 50 ) = 24 μm, 90% particle size (D 90 ) = 49 μm .
<Release material>
Heavy release film: manufactured by Lintec Corporation, product name “SP-PET382150”, a polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
Light release film: manufactured by Lintec Co., Ltd., product name “SP-PET381031”, a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
製造例1(第1粘着剤層(X-1)の形成)
 粘着性樹脂である、上記アクリル系共重合体(i)の固形分100質量部に、上記イソシアネート系架橋剤(i)5.0質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の組成物(x-1)を調製した。
 そして、上記重剥離フィルムの剥離剤層の表面上に、調製した組成物(x-1)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ10μmの第1粘着剤層(X-1)を形成した。
 なお、23℃における、第1粘着剤層(X-1)の貯蔵せん断弾性率G’(23)は、2.5×10Paであった。
Production Example 1 (Formation of first adhesive layer (X-1))
The isocyanate-based crosslinking agent (i) 5.0 parts by mass (solid content ratio) is blended with 100 parts by mass of the solid content of the acrylic copolymer (i), which is an adhesive resin, and diluted with toluene. The composition (x-1) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by stirring uniformly.
Then, on the surface of the release agent layer of the above heavy release film, the prepared composition (x-1) was applied to form a coating film, and the coating film was dried at 100 ° C. for 60 seconds to have a thickness of 10 μm. The first pressure-sensitive adhesive layer (X-1) was formed.
The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X-1) at 23 ° C. was 2.5 × 10 5 Pa.
製造例2(第2粘着剤層(X-2)の形成)
 粘着性樹脂である、上記アクリル系共重合体(ii)の固形分100質量部に、上記イソシアネート系架橋剤(i)0.8質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の組成物(x-2)を調製した。
 そして、上記軽剥離フィルムの剥離剤層の表面上に、調製した組成物(x-2)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ10μmの第2粘着剤層(X-2)を形成した。
 なお、23℃における、第2粘着剤層(X-2)の貯蔵せん断弾性率G’(23)は、9.0×10Paであった。
Production Example 2 (Formation of second adhesive layer (X-2))
The isocyanate-based crosslinking agent (i) 0.8 parts by mass (solid content ratio) is blended with 100 parts by mass of the acrylic copolymer (ii), which is an adhesive resin, and diluted with toluene, The composition (x-2) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by stirring uniformly.
Then, on the surface of the release agent layer of the light release film, the prepared composition (x-2) was applied to form a coating film, and the coating film was dried at 100 ° C. for 60 seconds to have a thickness of 10 μm. The second pressure-sensitive adhesive layer (X-2) was formed.
The storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X-2) at 23 ° C. was 9.0 × 10 4 Pa.
製造例3(膨張性基材(Y-1)の形成)
(1)組成物(y-1)の調製
 エステル型ジオールと、イソホロンジイソシアネート(IPDI)を反応させて得られた末端イソシアネートウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させて、質量平均分子量(Mw)5000の2官能のアクリルウレタン系オリゴマーを得た。
 そして、上記で合成したアクリルウレタン系オリゴマー40質量%(固形分比)に、エネルギー線重合性モノマーとして、イソボルニルアクリレート(IBXA)40質量%(固形分比)、及びフェニルヒドロキシプロピルアクリレート(HPPA)20質量%(固形分比)を配合し、アクリルウレタン系オリゴマー及びエネルギー線重合性モノマーの全量100質量部に対して、さらに光重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製、製品名「イルガキュア184」)2.0質量部(固形分比)、及び、添加剤として、フタロシアニン系顔料0.2質量部(固形分比)を配合し、エネルギー線硬化性組成物を調製した。
 そして、当該エネルギー線硬化性組成物に、上記熱膨張性粒子(i)を配合し、溶媒を含有しない、無溶剤型の組成物(y-1)を調製した。
 なお、組成物(y-1)の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%であった。
Production Example 3 (Formation of expandable substrate (Y-1))
(1) Preparation of Composition (y-1) A terminal isocyanate urethane prepolymer obtained by reacting an ester-type diol with isophorone diisocyanate (IPDI) was reacted with 2-hydroxyethyl acrylate to obtain a mass average molecular weight ( Mw) 5000 bifunctional acrylic urethane oligomer was obtained.
Then, 40% by mass (solid content ratio) of the acrylic urethane-based oligomer synthesized as described above, 40% by mass (solid content ratio) of isobornyl acrylate (IBXA), and phenylhydroxypropyl acrylate (HPPA) as an energy ray polymerizable monomer ) 20% by mass (solid content ratio), and 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Corporation) as a photopolymerization initiator with respect to 100 parts by mass of the total amount of the acrylic urethane oligomer and the energy ray polymerizable monomer. The product name “Irgacure 184”) 2.0 parts by mass (solid content ratio) and 0.2 parts by mass (solid content ratio) phthalocyanine pigment as an additive were blended to prepare an energy ray curable composition. .
And the said heat-expandable particle | grains (i) were mix | blended with the said energy-beam curable composition, and the solvent-free composition (y-1) which does not contain a solvent was prepared.
The content of thermally expandable particles (i) relative to the total amount (100% by mass) of the composition (y-1) was 20% by mass.
(2)膨張性基材(Y-1)の形成
 上記軽剥離フィルムの剥離剤層の表面上に、調製した組成物(y-1)を塗布して塗膜を形成した。
 そして、紫外線照射装置(アイグラフィクス社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィクス社製、製品名「H04-L41」)を用いて、照度160mW/cm、光量500mJ/cmの条件で紫外線を照射し、当該塗膜を硬化させ、厚さ50μmの膨張性基材(Y-1)を形成した。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
(2) Formation of expandable substrate (Y-1) The prepared composition (y-1) was applied on the surface of the release agent layer of the light release film to form a coating film.
Then, using an ultraviolet irradiation device (product name “ECS-401GX” manufactured by Eye Graphics Co., Ltd.) and a high-pressure mercury lamp (product name “H04-L41” manufactured by Eye Graphics Co., Ltd.), an illuminance of 160 mW / cm 2 and a light amount of 500 mJ / The coating film was cured by irradiating with ultraviolet rays under the conditions of cm 2 to form an expandable substrate (Y-1) having a thickness of 50 μm. The above illuminance and light intensity during ultraviolet irradiation are values measured using an illuminance / light meter (product name “UV Power Pack II” manufactured by EIT).
製造例4(膨張性基材(Y-2)の形成)
(1)ウレタンプレポリマーの合成
 窒素雰囲気下の反応容器内に、質量平均分子量(Mw)1,000のカーボネート型ジオール100質量部(固形分比)に対して、イソホロンジイソシアネート(IPDI)を、カーボネート型ジオールの水酸基とイソホロンジイソシアネートのイソシアネート基との当量比が1/1となるように配合し、さらにトルエン160質量部を加え、窒素雰囲気下にて、撹拌しながら、イソシアネート基濃度が理論量に到達するまで、80℃で6時間以上反応させた。
 次いで、2-ヒドロキシエチルメタクリレート(2-HEMA)1.44質量部(固形分比)をトルエン30質量部に希釈した溶液を添加して、両末端のイソシアネート基が消滅するまで、更に80℃で6時間反応させ、質量平均分子量(Mw)2.9万のウレタンプレポリマーを得た。
Production Example 4 (Formation of expandable substrate (Y-2))
(1) Synthesis of Urethane Prepolymer In a reaction vessel under a nitrogen atmosphere, isophorone diisocyanate (IPDI) is added to carbonate with respect to 100 parts by mass (solid content ratio) of carbonate type diol having a mass average molecular weight (Mw) of 1,000. The equivalent ratio of the hydroxyl group of the type diol and the isocyanate group of isophorone diisocyanate is 1/1, and further 160 parts by mass of toluene is added, and the isocyanate group concentration is brought to the theoretical amount while stirring in a nitrogen atmosphere. The reaction was allowed to proceed for 6 hours or more at 80 ° C. until it reached.
Subsequently, a solution obtained by diluting 1.44 parts by mass (solid content ratio) of 2-hydroxyethyl methacrylate (2-HEMA) in 30 parts by mass of toluene is added, and further at 80 ° C. until the isocyanate groups at both ends disappear. The mixture was reacted for 6 hours to obtain a urethane prepolymer having a mass average molecular weight (Mw) of 29,000.
(2)アクリルウレタン系樹脂の合成
 窒素雰囲気下の反応容器内に、上記(1)で得たウレタンプレポリマー100質量部(固形分比)、メチルメタクリレート(MMA)117質量部(固形分比)、2-ヒドロキシエチルメタクリレート(2-HEMA)5.1質量部(固形分比)、1-チオグリセロール1.1質量部(固形分比)、及びトルエン50質量部を加え、撹拌しながら、105℃まで昇温した。
 そして、反応容器内に、さらにラジカル開始剤(株式会社日本ファインケム製、製品名「ABN-E」)2.2質量部(固形分比)をトルエン210質量部で希釈した溶液を、105℃に維持したまま4時間かけて滴下した。
 滴下終了後、105℃で6時間反応させ、質量平均分子量(Mw)10.5万のアクリルウレタン系樹脂の溶液を得た。
(2) Synthesis of acrylic urethane-based resin In a reaction vessel under nitrogen atmosphere, 100 parts by mass (solid content ratio) of urethane prepolymer obtained in (1) above and 117 parts by mass (solid content ratio) of methyl methacrylate (MMA) 2-hydroxyethyl methacrylate (2-HEMA) 5.1 parts by mass (solid content ratio), 1-thioglycerol 1.1 parts by mass (solid content ratio), and toluene 50 parts by mass, The temperature was raised to ° C.
Further, a solution obtained by further diluting 2.2 parts by mass (solid content ratio) of radical initiator (manufactured by Nippon Finechem Co., Ltd., product name “ABN-E”) with 210 parts by mass of toluene in a reaction vessel was heated to 105 ° C. It was dripped over 4 hours, maintaining.
After completion of dropping, the reaction was carried out at 105 ° C. for 6 hours to obtain an acrylic urethane resin solution having a mass average molecular weight (Mw) of 105,000.
(3)膨張性基材(Y-2)の形成
 上記(2)で得たアクリルウレタン系樹脂の溶液の固形分100質量部に対して、上記イソシアネート系架橋剤(i)6.3質量部(固形分比)、触媒としてジオクチルスズビス(2-エチルヘキサノエート)1.4質量部(固形分比)、及び上記熱膨張性粒子(i)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の組成物(y-2)を調製した。
 なお、得られた組成物(y-2)中の有効成分の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%であった。
 そして、上記軽剥離フィルムの剥離剤層の表面上に、調製した組成物(y-2)を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの膨張性基材(Y-2)を形成した。
(3) Formation of expandable substrate (Y-2) The isocyanate-based crosslinking agent (i) is 6.3 parts by mass with respect to 100 parts by mass of the solid content of the acrylic urethane resin solution obtained in (2) above. (Solid content ratio), 1.4 parts by weight (solid content ratio) of dioctyltin bis (2-ethylhexanoate) as a catalyst, and the above-mentioned thermally expandable particles (i) were mixed, diluted with toluene, and uniformly By stirring, a composition (y-2) having a solid content concentration (active ingredient concentration) of 30% by mass was prepared.
The content of the heat-expandable particles (i) relative to the total amount (100% by mass) of active ingredients in the obtained composition (y-2) was 20% by mass.
Then, on the surface of the release agent layer of the light release film, the prepared composition (y-2) was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to have a thickness of 50 μm. The expandable substrate (Y-2) was formed.
製造例5(膨張性粘着剤層(Y-3)の形成)
 粘着性樹脂である、上記アクリル系共重合体(ii)の固形分100質量部に、上記イソシアネート系架橋剤(i)6.3質量部(固形分比)、及び、上記熱膨張性粒子(i)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の組成物(y-3)を調製した。
 なお、得られた組成物(y-3)中の有効成分の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%であった。
 そして、上記軽剥離フィルムの剥離剤層の表面上に、調製した組成物(y-3)を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの膨張性粘着剤層(Y-3)を形成した。
Production Example 5 (Formation of expandable adhesive layer (Y-3))
To 100 parts by mass of the solid content of the acrylic copolymer (ii), which is an adhesive resin, 6.3 parts by mass (solid content ratio) of the isocyanate-based crosslinking agent (i) and the thermally expandable particles ( i) was mixed, diluted with toluene, and stirred uniformly to prepare a composition (y-3) having a solid content concentration (active ingredient concentration) of 30% by mass.
The content of thermally expandable particles (i) relative to the total amount (100% by mass) of active ingredients in the obtained composition (y-3) was 20% by mass.
Then, on the surface of the release agent layer of the light release film, the prepared composition (y-3) was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to have a thickness of 50 μm. An expandable pressure-sensitive adhesive layer (Y-3) was formed.
 製造例3~4で形成した膨張性基材(Y-1)~(Y-2)及び、製造例5で形成した膨張性粘着剤層(Y-3)について、上述の方法に基づき、23℃、100℃、及び使用した熱膨張性粒子の膨張開始温度である208℃での貯蔵弾性率E’及びプローブタック値をそれぞれ測定した。これらの結果を表1に示す。 Based on the above-described method, the expandable substrates (Y-1) to (Y-2) formed in Production Examples 3 to 4 and the expandable pressure-sensitive adhesive layer (Y-3) formed in Production Example 5 were used. The storage elastic modulus E ′ and probe tack value at 208 ° C., which is the expansion start temperature of the thermally expandable particles used, were measured. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1
 製造例1で形成した第1粘着剤層(X-1)と、製造例3で形成した膨張性基材(Y-1)との表面同士を貼り合わせ、膨張性基材(Y-1)側の軽剥離フィルムを除去し、表出した膨張性基材(Y-1)の表面上に、製造例2で形成した第2粘着剤層(X-2)を貼り合わせた。
 これにより、軽剥離フィルム/第2粘着剤層(X-2)/膨張性基材(Y-1)/第1粘着剤層(X-1)/重剥離フィルムをこの順で積層した粘着シート(1)を作製した。
Example 1
The surfaces of the first pressure-sensitive adhesive layer (X-1) formed in Production Example 1 and the expandable base material (Y-1) formed in Production Example 3 were bonded together to expand the expandable base material (Y-1). The light release film on the side was removed, and the second pressure-sensitive adhesive layer (X-2) formed in Production Example 2 was bonded onto the surface of the exposed expandable substrate (Y-1).
Thus, a pressure-sensitive adhesive sheet in which a light release film / second pressure-sensitive adhesive layer (X-2) / expandable base material (Y-1) / first pressure-sensitive adhesive layer (X-1) / heavy release film was laminated in this order. (1) was produced.
実施例2
 膨張性基材(Y-1)を、製造例4で形成した膨張性基材(Y-2)に置き換えた以外は、実施例1と同様にして、軽剥離フィルム/第2粘着剤層(X-2)/膨張性基材(Y-2)/第1粘着剤層(X-1)/重剥離フィルムをこの順で積層した粘着シート(2)を作製した。
Example 2
A light release film / second pressure-sensitive adhesive layer (in the same manner as in Example 1 except that the expandable substrate (Y-1) was replaced with the expandable substrate (Y-2) formed in Production Example 4. A pressure-sensitive adhesive sheet (2) was prepared by laminating X-2) / expandable substrate (Y-2) / first pressure-sensitive adhesive layer (X-1) / heavy release film in this order.
比較例1
 製造例2で形成した第2粘着剤層(X-2)と、製造例5で形成した膨張性粘着剤層(Y-3)との表面同士を貼り合わせた。そして、膨張性粘着剤層(Y-3)側の軽剥離フィルムを除去し、表出した膨張性粘着剤層(Y-3)の表面上に、製造例1で形成した第1粘着剤層(X-1)を貼り合わせた。
 これにより、軽剥離フィルム/第2粘着剤層(X-2)/膨張性粘着剤層(Y-3)/第1粘着剤層(X-1)/重剥離フィルムをこの順で積層した粘着シート(3)を作製した。
Comparative Example 1
The surfaces of the second pressure-sensitive adhesive layer (X-2) formed in Production Example 2 and the expandable pressure-sensitive adhesive layer (Y-3) formed in Production Example 5 were bonded together. Then, the light release film on the expandable pressure-sensitive adhesive layer (Y-3) side is removed, and the first pressure-sensitive adhesive layer formed in Production Example 1 on the surface of the exposed expandable pressure-sensitive adhesive layer (Y-3) (X-1) was bonded.
Thus, a light release film / second pressure-sensitive adhesive layer (X-2) / expandable pressure-sensitive adhesive layer (Y-3) / first pressure-sensitive adhesive layer (X-1) / heavy release film was laminated in this order. A sheet (3) was produced.
比較例2
 製造例2で形成した第2粘着剤層(X-2)と、製造例5で形成した膨張性粘着剤層(Y-3)の表面同士を貼り合わせ、軽剥離フィルム/第2粘着剤層(X-2)/膨張性粘着剤層(Y-3)/軽剥離フィルムをこの順で積層した粘着シート(4)を作製した。
Comparative Example 2
The surfaces of the second pressure-sensitive adhesive layer (X-2) formed in Production Example 2 and the expandable pressure-sensitive adhesive layer (Y-3) formed in Production Example 5 are bonded together to form a light release film / second pressure-sensitive adhesive layer A pressure-sensitive adhesive sheet (4) was prepared by laminating (X-2) / expandable pressure-sensitive adhesive layer (Y-3) / light release film in this order.
 また、作製した粘着シート(1)~(4)について、以下の測定を行った。これらの結果を表2に示す。 Further, the following measurements were performed on the produced adhesive sheets (1) to (4). These results are shown in Table 2.
<封止工程時の半導体チップの位置ズレ評価>
 作製した粘着シート(1)~(3)が有する第2粘着剤層(X-2)側の軽剥離フィルムを除去し、表出した第2粘着剤層(X-2)の粘着表面に硬質支持体であるSUS板(厚さ1mm、サイズ:200mmφ)を貼付した。
 そして、粘着シート(1)~(3)の重剥離フィルムを除去し、表出した第1粘着剤層(X-1)の粘着表面上に、半導体チップ(チップサイズ6.4mm×6.4mm、チップ厚み200μm(♯2000))を9個、当該粘着表面と半導体チップの回路面とが接するように、必要な間隔であけて、載置した。また、粘着シート(4)の膨張性粘着剤層(Y-3)側の軽剥離フィルムを除去し、表出した膨張性粘着剤層(Y-3)の粘着表面上に、粘着シート(1)~(3)の場合と同様、半導体チップを載置した。
 その後、封止用樹脂フィルム(封止材)を、粘着表面及び半導体チップの上に積層し、真空加熱加圧ラミネーター(ROHM and HAAS社製の「7024HP5」)を用いて、第1粘着剤層(X-1)の粘着表面及び半導体チップを封止材で被覆すると共に、封止材を硬化させて硬化封止体を作製した。なお、封止条件は、下記の通りである。
・予熱温度:テーブル及びダイアフラムとも100℃
・真空引き:60秒間
・ダイナミックプレスモード:30秒間
・スタティックプレスモード:10秒間
・封止温度:180℃(熱膨張性粒子の膨張開始温度である208℃よりも低い温度)
・封止時間:60分間
<Position deviation evaluation of semiconductor chip during sealing process>
The light release film on the second pressure-sensitive adhesive layer (X-2) side of the produced pressure-sensitive adhesive sheets (1) to (3) is removed, and the pressure-sensitive adhesive surface of the exposed second pressure-sensitive adhesive layer (X-2) is hard A SUS plate (thickness 1 mm, size: 200 mmφ) as a support was attached.
Then, the heavy release film of the pressure-sensitive adhesive sheets (1) to (3) is removed, and a semiconductor chip (chip size 6.4 mm × 6.4 mm) is formed on the pressure-sensitive adhesive surface of the exposed first pressure-sensitive adhesive layer (X-1). Nine chips having a thickness of 200 μm (# 2000) were placed at necessary intervals so that the adhesive surface and the circuit surface of the semiconductor chip were in contact with each other. Further, the light release film on the side of the expandable pressure-sensitive adhesive layer (Y-3) of the pressure-sensitive adhesive sheet (4) is removed, and the pressure-sensitive adhesive sheet (1) is formed on the pressure-sensitive adhesive surface of the expandable pressure-sensitive adhesive layer (Y-3). ) To (3), a semiconductor chip was placed.
Thereafter, a sealing resin film (sealing material) is laminated on the adhesive surface and the semiconductor chip, and a first pressure-sensitive adhesive layer using a vacuum heating and pressure laminator (“7024HP5” manufactured by ROHM and HAAS). The adhesive surface of (X-1) and the semiconductor chip were covered with a sealing material, and the sealing material was cured to produce a cured sealing body. The sealing conditions are as follows.
-Preheating temperature: 100 ° C for both table and diaphragm
・ Vacuum drawing: 60 seconds ・ Dynamic press mode: 30 seconds ・ Static press mode: 10 seconds ・ Sealing temperature: 180 ° C. (temperature lower than 208 ° C. which is the expansion start temperature of thermally expandable particles)
・ Sealing time: 60 minutes
 封止後、粘着シート(1)~(4)を熱膨張性粒子の膨張開始温度(208℃)以上となる240℃で3分間加熱して粘着シート(1)~(4)から当該硬化封止体を分離し、分離した硬化封止体の表面(再配線層形成面)の半導体チップを目視及び顕微鏡にて観察し、半導体チップの位置ズレの有無を確認し、以下の基準で評価した。
・A:封止前より25μm以上の位置ズレが生じた半導体チップは確認されなかった。
・F:封止前より25μm以上の位置ズレが生じた半導体チップが確認された。
After sealing, the pressure-sensitive adhesive sheets (1) to (4) are heated for 3 minutes at 240 ° C., which is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles. The stop body was separated, the semiconductor chip on the surface of the separated cured sealing body (rewiring layer forming surface) was observed visually and with a microscope, and the presence or absence of misalignment of the semiconductor chip was confirmed and evaluated according to the following criteria: .
A: A semiconductor chip in which a positional deviation of 25 μm or more from before sealing was not confirmed.
F: A semiconductor chip in which a positional deviation of 25 μm or more occurred before sealing was confirmed.
<封止工程後の半導体チップ側の表面の平坦性の評価>
 粘着シート(1)~(4)を用いて、上述の「封止工程時の半導体チップの位置ズレ評価」と同様の手順で、硬化封止体を作製し、粘着シートから分離した。
 作製した硬化封止体のそれぞれの半導体チップ側の表面(再配線層形成面)を、接触式表面粗さ計(ミツトヨ社製「SV3000」)を用いて段差を測定し、以下の基準により評価した。
・A:2μm以上の段差が生じている箇所は確認されなかった。
・F:2μm以上の段差が生じている箇所が確認された。
<Evaluation of flatness of the surface on the semiconductor chip side after the sealing step>
Using the pressure-sensitive adhesive sheets (1) to (4), a cured encapsulant was prepared and separated from the pressure-sensitive adhesive sheet in the same procedure as the above-described “evaluation of positional deviation of the semiconductor chip during the sealing step”.
The step (rewiring layer forming surface) on each semiconductor chip side of the prepared cured sealing body was measured using a contact type surface roughness meter (“SV3000” manufactured by Mitutoyo Corporation) and evaluated according to the following criteria. did.
-A: The location where the level | step difference of 2 micrometers or more has arisen was not confirmed.
-F: The location where the level difference of 2 micrometers or more has arisen was confirmed.
<加熱前後での粘着シートの粘着力の測定>
 作製した粘着シート(1)~(3)が有する第2粘着剤層(X-2)側の軽剥離フィルムを除去し、表出した第2粘着剤層(X-2)の粘着表面上に、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、製品名「コスモシャインA4100」)を積層し、基材付き粘着シートとした。
 そして、粘着シート(1)~(3)の重剥離フィルムも除去し、表出した第1粘着剤層(X-1)の粘着表面を、被着体であるステンレス鋼板(SUS304 360番研磨)に貼付し、23℃、50%RH(相対湿度)の環境下で、24時間静置したものを試験サンプルとした。また、粘着シート(4)の膨張性粘着剤層(Y-3)側の軽剥離フィルムを除去し、表出した膨張性粘着剤層(Y-3)の粘着表面に対し、粘着シート(1)~(3)と同様の手順で試験サンプルを準備した。
 そして、上記の試験サンプルを用いて、23℃、50%RH(相対湿度)の環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、23℃における粘着力を測定した。
 また、上記の試験サンプルを、ホットプレート上にて、熱膨張性粒子の膨張開始温度(208℃)以上となる240℃で3分間加熱し、標準環境(23℃、50%RH(相対湿度))にて60分間静置した後、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、膨張開始温度以上での加熱後の粘着力も測定した。
 なお、被着体であるステンレス鋼板に貼付することができないほどに粘着力の測定が困難である場合には、「測定不能」とし、その粘着力は0(N/25mm)であるとした。
<Measurement of adhesive strength of adhesive sheet before and after heating>
The light release film on the second pressure-sensitive adhesive layer (X-2) side of the produced pressure-sensitive adhesive sheets (1) to (3) is removed, and the second pressure-sensitive adhesive layer (X-2) is exposed on the pressure-sensitive adhesive surface. A 50 μm thick polyethylene terephthalate (PET) film (manufactured by Toyobo Co., Ltd., product name “Cosmo Shine A4100”) was laminated to form an adhesive sheet with a substrate.
Then, the heavy release film of the pressure-sensitive adhesive sheets (1) to (3) is also removed, and the pressure-sensitive adhesive surface of the exposed first pressure-sensitive adhesive layer (X-1) is coated with a stainless steel plate (SUS304 360 polishing). The test sample was affixed to the plate and allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity). Further, the light release film on the expandable pressure-sensitive adhesive layer (Y-3) side of the pressure-sensitive adhesive sheet (4) is removed, and the pressure-sensitive adhesive sheet (1) is applied to the pressure-sensitive adhesive surface of the expandable pressure-sensitive adhesive layer (Y-3). ) To (3), a test sample was prepared.
Then, using the above test sample, in an environment of 23 ° C. and 50% RH (relative humidity), in accordance with JIS Z0237: 2000, by a 180 ° peeling method at a pulling speed of 300 mm / min at 23 ° C. The adhesive strength was measured.
In addition, the above test sample is heated on a hot plate at 240 ° C., which is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles, for 3 minutes to obtain a standard environment (23 ° C., 50% RH (relative humidity)). ), And the adhesive strength after heating at a temperature equal to or higher than the expansion start temperature was also measured at a pulling rate of 300 mm / min by a 180 ° peeling method based on JIS Z0237: 2000.
In addition, when measurement of adhesive force was so difficult that it could not be affixed to the stainless steel plate which is a to-be-adhered body, it was set as "impossible to measure" and the adhesive force was set to 0 (N / 25mm).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例1及び2の粘着シート(1)及び(2)を用いた製造方法によると、封止工程時の加熱時において、半導体チップの沈み込みの抑制効果が高いため、半導体チップの位置ズレも見られず、封止工程後の半導体チップ側の表面(再配線層形成面)も平坦であった。
 また、粘着シート(1)及び(2)は、加熱前は良好な粘着力を有するものの、膨張開始温度以上での加熱後は測定不能となる程度まで粘着力が低下していることから、剥離時には、わずかな力で容易に剥離可能であることが裏付けられる結果となった。
From Table 2, according to the manufacturing method using the adhesive sheets (1) and (2) of Examples 1 and 2, the semiconductor chip is highly effective in suppressing the sinking of the semiconductor chip during heating during the sealing process. The surface of the semiconductor chip after the sealing step (rewiring layer forming surface) was also flat.
In addition, the pressure-sensitive adhesive sheets (1) and (2) have good pressure-sensitive adhesive strength before heating, but the pressure-sensitive adhesive strength is reduced to such an extent that they cannot be measured after heating at or above the expansion start temperature. In some cases, the results proved that they were easily peelable with a slight force.
 一方、比較例1の粘着シート(3)及び比較例2の粘着シート(4)は、膨張性基材ではなく、膨張性粘着剤層を有するため、封止工程時の加熱時において、半導体チップの沈み込みが生じてしまい、半導体チップの位置ズレが見られ、また、封止工程後の半導体チップ側の表面(再配線層形成面)に段差が見られた。そのため、例えば、FOWLP及びFOPLPを製造する際の封止工程での使用には適さないと考えられる。 On the other hand, the pressure-sensitive adhesive sheet (3) of Comparative Example 1 and the pressure-sensitive adhesive sheet (4) of Comparative Example 2 have an expandable pressure-sensitive adhesive layer instead of an expandable base material. The semiconductor chip was displaced, and a step was observed on the surface (rewiring layer forming surface) on the semiconductor chip side after the sealing process. Therefore, for example, it is considered that it is not suitable for use in a sealing process when manufacturing FOWLP and FOPLP.
 10 両面粘着シート
 11 基材
 121 第1粘着剤層
 121a 粘着表面
 122 第2粘着剤層
 122a 粘着表面
 131、132 剥離材
 20 硬質支持体
 30 第1粘着剤層の粘着表面のうち、半導体チップの周辺部
 40 封止材
 41 硬化封止材
 50 硬化封止体
 50a 面
 61 第1絶縁層
 62 第2絶縁層
 70 再配線
 70A 外部電極パッド
 80 外部端子電極
 100 半導体装置
 CP 半導体チップ
 W1 回路面
 W2 回路
 W3 内部端子電極
 
DESCRIPTION OF SYMBOLS 10 Double-sided adhesive sheet 11 Base material 121 1st adhesive layer 121a Adhesive surface 122 2nd adhesive layer 122a Adhesive surface 131,132 Release material 20 Hard support 30 Out of the adhesive surface of a 1st adhesive layer, the periphery of a semiconductor chip Part 40 Encapsulant 41 Cured encapsulant 50 Cured encapsulant 50a Surface 61 First insulating layer 62 Second insulating layer 70 Rewiring 70A External electrode pad 80 External terminal electrode 100 Semiconductor device CP Semiconductor chip W1 Circuit surface W2 Circuit W3 Internal terminal electrode

Claims (11)

  1.  第1粘着剤層と、膨張性粒子を含み、非粘着性である基材と、第2粘着剤層と、をこの順に有する両面粘着シートを用いて半導体装置を製造する方法であって、
     下記工程(1)~(4)を有する、半導体装置の製造方法。
     工程(1):第2粘着剤層の粘着表面に、硬質支持体を貼付する工程
     工程(2):第1粘着剤層の粘着表面の一部に、半導体チップを載置する工程
     工程(3):前記半導体チップと、第1粘着剤層の粘着表面のうち、前記半導体チップの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程
     工程(4):前記膨張性粒子を膨張させて、前記両面粘着シートを前記硬化封止体から剥離する工程
    A method of manufacturing a semiconductor device using a double-sided pressure-sensitive adhesive sheet comprising a first pressure-sensitive adhesive layer, a non-adhesive base material containing expandable particles, and a second pressure-sensitive adhesive layer in this order,
    A method for manufacturing a semiconductor device, comprising the following steps (1) to (4).
    Step (1): Step of attaching a hard support to the adhesive surface of the second pressure-sensitive adhesive layer Step (2): Step of placing a semiconductor chip on a part of the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer Step (3) ): The semiconductor chip and the periphery of the semiconductor chip of the adhesive surface of the first pressure-sensitive adhesive layer are covered with a sealing material, the sealing material is cured, and the semiconductor chip is cured and sealed. Step of obtaining a cured encapsulant sealed with a material Step (4): Inflating the expandable particles to peel the double-sided PSA sheet from the cured encapsulant
  2.  さらに、下記工程(5)を有する、請求項1に記載の半導体装置の製造方法。
     工程(5):前記両面粘着シートを剥離した硬化封止体に、再配線層を形成する工程
    Furthermore, the manufacturing method of the semiconductor device of Claim 1 which has the following process (5).
    Process (5): The process of forming a rewiring layer in the hardening sealing body which peeled the said double-sided adhesive sheet
  3.  前記膨張性粒子が、熱膨張性粒子であり、前記工程(4)が、前記両面粘着シートを加熱することにより、前記熱膨張性粒子を膨張させて、前記両面粘着シートを前記硬化封止体から剥離する工程である、請求項1又は2に記載の半導体装置の製造方法。 The expandable particles are thermally expandable particles, and in the step (4), the double-sided pressure-sensitive adhesive sheet is expanded by heating the double-sided pressure-sensitive adhesive sheet, thereby expanding the double-sided pressure-sensitive adhesive sheet. The method for manufacturing a semiconductor device according to claim 1, wherein the method is a step of peeling from the semiconductor device.
  4.  前記熱膨張性粒子の膨張開始温度(t)が、120~250℃である、請求項3に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 3, wherein an expansion start temperature (t) of the thermally expandable particles is 120 to 250 ° C.
  5.  前記基材が、下記要件(1)~(2)を満たす、請求項4に記載の半導体装置の製造方法。
    ・要件(1):100℃における、前記基材の貯蔵弾性率E’(100)が、2.0×10Pa以上である。
    ・要件(2):前記熱膨張性粒子の膨張開始温度(t)における、前記基材の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
    The method of manufacturing a semiconductor device according to claim 4, wherein the base material satisfies the following requirements (1) to (2).
    -Requirement (1): The storage elastic modulus E '(100) of the said base material in 100 degreeC is 2.0 * 10 < 5 > Pa or more.
    Requirement (2): The storage elastic modulus E ′ (t) of the substrate at the expansion start temperature (t) of the thermally expandable particles is 1.0 × 10 7 Pa or less.
  6.  前記膨張性粒子の23℃における膨張前の平均粒子径が、3~100μmである、請求項1~5のいずれか1項に記載の粘着シート。 The pressure-sensitive adhesive sheet according to any one of claims 1 to 5, wherein the expandable particles have an average particle diameter before expansion at 23 ° C of 3 to 100 µm.
  7.  23℃における、第1粘着材層の貯蔵せん断弾性率G’(23)が、1.0×10~1.0×10Paである、請求項1~6のいずれか1項に記載の半導体装置の製造方法。 The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer at 23 ° C. is 1.0 × 10 4 to 1.0 × 10 8 Pa. Semiconductor device manufacturing method.
  8.  23℃における、前記基材の厚さと、第1粘着剤層の厚さとの比(基材/第1粘着剤層)が0.2以上である、請求項1~7のいずれか1項に記載の半導体装置の製造方法。 The ratio of the thickness of the base material to the thickness of the first pressure-sensitive adhesive layer (base material / first pressure-sensitive adhesive layer) at 23 ° C is 0.2 or more, according to any one of claims 1 to 7. The manufacturing method of the semiconductor device of description.
  9.  23℃における、前記基材の厚さが10~1000μmであり、前記第1粘着剤層の厚さが1~60μmである、請求項1~8のいずれか1項に記載の半導体装置の製造方法。 9. The manufacturing of a semiconductor device according to claim 1, wherein the base material has a thickness of 10 to 1000 μm and the first pressure-sensitive adhesive layer has a thickness of 1 to 60 μm at 23 ° C. Method.
  10.  前記基材の表面におけるプローブタック値が、50mN/5mmφ未満である、請求項1~9のいずれか1項に記載の半導体装置の製造方法。 10. The method of manufacturing a semiconductor device according to claim 1, wherein a probe tack value on the surface of the base material is less than 50 mN / 5 mmφ.
  11.  請求項1~10のいずれか1項に記載の半導体装置の製造方法に用いられる両面粘着シートであって、第1粘着剤層と、膨張性粒子を含み、非粘着性である基材と、第2粘着剤層と、をこの順に有する両面粘着シート。
     
    A double-sided pressure-sensitive adhesive sheet used in the method for producing a semiconductor device according to any one of claims 1 to 10, comprising a first pressure-sensitive adhesive layer, a base material that includes expandable particles and is non-tacky, The double-sided adhesive sheet which has a 2nd adhesive layer in this order.
PCT/JP2018/013353 2017-03-31 2018-03-29 Semiconductor device production method and double-sided adhesive sheet WO2018181766A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197027798A KR102454056B1 (en) 2017-03-31 2018-03-29 Semiconductor device manufacturing method and double-sided adhesive sheet
JP2019510153A JP6761115B2 (en) 2017-03-31 2018-03-29 Manufacturing method of semiconductor devices and double-sided adhesive sheet
CN201880022512.4A CN110476241B (en) 2017-03-31 2018-03-29 Method for manufacturing semiconductor device and double-sided adhesive sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073238 2017-03-31
JP2017-073238 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181766A1 true WO2018181766A1 (en) 2018-10-04

Family

ID=63678149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013353 WO2018181766A1 (en) 2017-03-31 2018-03-29 Semiconductor device production method and double-sided adhesive sheet

Country Status (5)

Country Link
JP (1) JP6761115B2 (en)
KR (1) KR102454056B1 (en)
CN (1) CN110476241B (en)
TW (1) TWI760469B (en)
WO (1) WO2018181766A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217955A1 (en) * 2019-04-26 2020-10-29 三井化学東セロ株式会社 Adhesive film and method for manufacturing electronic device
KR20210129172A (en) * 2019-03-14 2021-10-27 미쓰이 가가쿠 토세로 가부시키가이샤 Method of manufacturing an electronic device
WO2022202216A1 (en) * 2021-03-23 2022-09-29 リンテック株式会社 Wiring sheet for three-dimensional molding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196755A1 (en) * 2019-03-28 2020-10-01 リンテック株式会社 Adhesive sheet, production method for adhesive sheet, and production method for semiconductor device
CN115397938A (en) * 2020-03-31 2022-11-25 琳得科株式会社 Double-sided adhesive sheet and method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248240A (en) * 1999-03-01 2000-09-12 Nitto Denko Corp Heat-releasable adhesive sheet
US20160005628A1 (en) * 2014-07-01 2016-01-07 Freescal Semiconductor, Inc. Wafer level packaging method and integrated electronic package

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594853B2 (en) 1981-02-23 1984-02-01 株式会社日立製作所 semiconductor equipment
JP4540150B2 (en) * 1998-09-30 2010-09-08 日東電工株式会社 Thermally peelable adhesive sheet
JP3853247B2 (en) * 2002-04-16 2006-12-06 日東電工株式会社 Heat-peelable pressure-sensitive adhesive sheet for electronic parts, method for processing electronic parts, and electronic parts
JP5144634B2 (en) * 2009-12-22 2013-02-13 日東電工株式会社 Heat-resistant adhesive sheet for substrate-less semiconductor package manufacturing, and substrate-less semiconductor package manufacturing method using the adhesive sheet
DE102012219877A1 (en) * 2012-08-24 2014-02-27 Tesa Se Pressure-sensitive adhesive, in particular for encapsulating an electronic device
KR102203019B1 (en) * 2013-03-15 2021-01-14 닛토덴코 가부시키가이샤 Adhesive sheet
US9813737B2 (en) 2013-09-19 2017-11-07 Blackberry Limited Transposing a block of transform coefficients, based upon an intra-prediction mode
CN107075323A (en) * 2014-11-13 2017-08-18 Dic株式会社 Double-sided adhesive tape, article and separation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248240A (en) * 1999-03-01 2000-09-12 Nitto Denko Corp Heat-releasable adhesive sheet
US20160005628A1 (en) * 2014-07-01 2016-01-07 Freescal Semiconductor, Inc. Wafer level packaging method and integrated electronic package

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210129172A (en) * 2019-03-14 2021-10-27 미쓰이 가가쿠 토세로 가부시키가이샤 Method of manufacturing an electronic device
KR102619307B1 (en) 2019-03-14 2024-01-03 미쓰이 가가쿠 토세로 가부시키가이샤 Methods of manufacturing electronic devices
WO2020217955A1 (en) * 2019-04-26 2020-10-29 三井化学東セロ株式会社 Adhesive film and method for manufacturing electronic device
JPWO2020217955A1 (en) * 2019-04-26 2020-10-29
JP7217344B2 (en) 2019-04-26 2023-02-02 三井化学東セロ株式会社 Self-adhesive film and electronic device manufacturing method
WO2022202216A1 (en) * 2021-03-23 2022-09-29 リンテック株式会社 Wiring sheet for three-dimensional molding

Also Published As

Publication number Publication date
TWI760469B (en) 2022-04-11
JP6761115B2 (en) 2020-09-23
JPWO2018181766A1 (en) 2020-02-06
KR102454056B1 (en) 2022-10-14
CN110476241A (en) 2019-11-19
KR20190132385A (en) 2019-11-27
CN110476241B (en) 2023-05-09
TW201839868A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018181766A1 (en) Semiconductor device production method and double-sided adhesive sheet
JP7185638B2 (en) Semiconductor device manufacturing method
JP6764526B2 (en) Adhesive sheet
JP6764524B2 (en) Adhesive sheet
JP6792700B2 (en) Method of heat peeling of processing inspection object
WO2019189530A1 (en) Adhesive laminate, method for using adhesive laminate, and method for producing cured sealed body provided with cured resin film
WO2018181767A1 (en) Semiconductor device production method and adhesive sheet
CN112203840B (en) Adhesive laminate, method for using adhesive laminate, and method for manufacturing semiconductor device
JP7340457B2 (en) Adhesive laminate, method for producing workpiece with resin film, and method for producing cured sealant with cured resin film
JP7267272B2 (en) Method for manufacturing cured encapsulant
JP7185637B2 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510153

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027798

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777081

Country of ref document: EP

Kind code of ref document: A1