WO2019235217A1 - Method for producing cured sealant - Google Patents

Method for producing cured sealant Download PDF

Info

Publication number
WO2019235217A1
WO2019235217A1 PCT/JP2019/020190 JP2019020190W WO2019235217A1 WO 2019235217 A1 WO2019235217 A1 WO 2019235217A1 JP 2019020190 W JP2019020190 W JP 2019020190W WO 2019235217 A1 WO2019235217 A1 WO 2019235217A1
Authority
WO
WIPO (PCT)
Prior art keywords
expandable
pressure
sensitive adhesive
layer
adhesive layer
Prior art date
Application number
PCT/JP2019/020190
Other languages
French (fr)
Japanese (ja)
Inventor
忠知 山田
真也 田久
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201980038938.3A priority Critical patent/CN112262459A/en
Priority to KR1020207035077A priority patent/KR20210018272A/en
Priority to JP2020523609A priority patent/JP7267272B2/en
Publication of WO2019235217A1 publication Critical patent/WO2019235217A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a method for producing a cured encapsulant.
  • the pressure-sensitive adhesive sheet is used not only for semi-permanently fixing members but also for temporarily fixing the target members when processing or inspecting building materials, interior materials, electronic parts, etc. There is a case.
  • Such a pressure-sensitive adhesive sheet for temporarily fixing is required to satisfy both adhesiveness at the time of use and peelability after use.
  • Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing at the time of cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a substrate. ing.
  • This heat-peelable pressure-sensitive adhesive sheet adjusts the maximum particle diameter of the heat-expandable microspheres with respect to the thickness of the heat-expandable pressure-sensitive adhesive layer, and calculates the centerline average roughness of the surface of the heat-expandable pressure-sensitive adhesive layer before heating. It is adjusted to 0.4 ⁇ m or less.
  • the heat-peelable pressure-sensitive adhesive sheet can sufficiently secure a bonding area with an adherend when an electronic component is cut, it can exhibit adhesiveness that can prevent adhesion failure such as chip jumping, Then, after use, there is a description that if the thermally expandable microspheres are expanded by heating, the contact area with the adherend can be reduced and can be easily peeled off.
  • FOWLP Fean out Wafer Level Package
  • FOWLP provides a rewiring layer on the surface of a semiconductor chip side of a hardened sealing body formed by sealing a plurality of semiconductor chips arranged at a predetermined interval with a sealing material, and soldering is performed via the rewiring layer.
  • FOWLP can be applied to an application where the number of terminals is larger than the area of the semiconductor chip because the terminals, which are solder balls, can be expanded to the outside of the semiconductor chip (Fan out).
  • FOWLP is a method in which a circuit surface of a semiconductor chip is placed on an adhesive sheet, and a sealing resin having fluidity heated to around 100 ° C. is filled around the semiconductor chip, heated, and sealed. Forming a layer composed of resin or laminating a sealing resin film on a semiconductor chip, heating and laminating, and removing the adhesive sheet and exposing the semiconductor chip side In general, it is manufactured through a step of forming a redistribution layer and solder balls on the surface of the substrate.
  • a heat-peelable adhesive in which a thermally expandable adhesive layer containing thermally expandable microspheres is provided on a substrate. It is also possible to use a sheet.
  • the heat-expandable pressure-sensitive adhesive layer of the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 1 contains heat-expandable microspheres, it has a sealing process, etc., compared to an adhesive layer that does not contain heat-expandable microspheres.
  • the decrease in adhesive strength during the processing and inspection is caused by the displacement of the semiconductor chip placed on the adhesive layer or the sealing resin invading at the bonding interface between the semiconductor chip and the adhesive sheet. This causes a problem such as resin adhering to the circuit surface.
  • the elastic modulus of the heat-expandable pressure-sensitive adhesive layer is generally adjusted to be low so that irregularities are easily formed on the surface during expansion of the heat-expandable microspheres. There is a concern that the semiconductor chip placed on the surface of the adhesive layer is likely to be displaced during the sealing process.
  • the above heat-peelable pressure-sensitive adhesive sheet when used, it is separated at the interface between the heat-expandable pressure-sensitive adhesive layer and the cured sealing material, and the above-mentioned double-sided pressure-sensitive adhesive sheet remains adhered to the support.
  • the double-sided PSA sheet is removed from the substrate, a part of the PSA layer of the PSA sheet may remain on the adherend. In such a case, it is necessary to perform a cleaning process of the support, which causes a reduction in productivity.
  • the device needs to be cleaned, which causes a decrease in productivity. That is, in the production of a cured encapsulated body, it is also required to suppress the contamination in the production environment, do not require a cleaning step, and improve productivity.
  • a sealing object when a sealing object is obtained by using a sealing material to obtain a cured sealing body, occurrence of positional deviation of the sealing object and adhesion of the sealing resin to the exposed surface of the sealing object It is an object of the present invention to provide a method for producing a cured encapsulant that can effectively suppress adverse effects and improve yield, and can suppress contamination in a production environment and improve productivity.
  • the present inventors include a base material provided with at least an inflatable base material layer containing inflatable particles and a non-inflatable base material layer. It has been found that the above-mentioned problems can be solved by using a pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer, which are non-intumescent pressure-sensitive adhesive layers, on both sides.
  • a substrate (Y) comprising at least an expandable substrate layer (Y1) containing expandable particles and a non-expandable substrate layer (Y2); On both surfaces of the base material (Y), the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2), which are non-intumescent pressure-sensitive adhesive layers, By the expansion of the expandable particles, unevenness can occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1), using a pressure-sensitive adhesive sheet, a method for producing a cured sealing body, A method for producing a cured encapsulant comprising the following steps (1) to (3).
  • Step (1) The process of sticking the adhesion surface of a 1st adhesive layer (X1) on a hard support body, and mounting a sealing target object on a part of adhesion surface of a 2nd adhesive layer (X2). .
  • Step (2) The sealing object and the adhesive surface of the second pressure-sensitive adhesive layer (X2) at least in the periphery of the sealing object are covered with a sealing material, and the sealing material is cured. And the process of obtaining the hardening sealing body formed by sealing the said sealing target object with the said sealing material.
  • Step (3) The expandable particles are expanded and the hard support and the first pressure-sensitive adhesive layer (X1) are stacked while the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2). Separating at the interface P.
  • the pressure-sensitive adhesive sheet has a first pressure-sensitive adhesive layer (X1) on the base material (Y) on the side of the expandable base material layer (Y1), and the base material (Y) has the non-expandable group.
  • the manufacturing method of the hardening sealing body as described in said [1] which has a said 2nd adhesive layer (X2) in the material layer (Y2) side.
  • the base material (Y) is a non-expandable base material provided on the expandable base material layer (Y1) and the first adhesive layer (X1) side of the expandable base material layer (Y1).
  • the storage elastic modulus E ′ of the non-expandable base layer (Y2-1) when the expandable particles expand is determined by the storage modulus of the non-expandable base layer (Y2-2) when the expandable particles expand.
  • the non-expandable base layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the expandable base layer (Y1), and the expandable base layer
  • the non-intumescent substrate layer (Y2) does not exist between the layer (Y1) and the first pressure-sensitive adhesive layer (X1),
  • the storage elastic modulus E ′ of the non-expandable base layer (Y2) when the expandable particles expand is the storage elastic modulus E of the expandable base layer (Y1) when the expandable particles expand.
  • the method for producing a cured sealed body of the present invention when obtaining a cured sealed body with a sealing material, the occurrence of positional deviation of the sealed object or the exposed surface of the sealed object. It is possible to effectively suppress adverse effects such as adhesion of the sealing resin to the substrate and improve the yield, and to suppress contamination in the manufacturing environment and improve productivity.
  • FIG. 6 is a schematic cross-sectional view in steps (1) to (3) of the method for manufacturing a semiconductor chip of the present invention.
  • the “treatment for expanding” for example, when the expandable particles are thermally expandable particles, a heat treatment for 3 minutes may be performed at the expansion start temperature (t) of the thermally expandable particles. .
  • the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
  • the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in the examples.
  • (meth) acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the lower limit value and upper limit value which were described in steps can be combined independently, respectively.
  • the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
  • the method for producing a cured encapsulant of the present invention comprises an expandable base material layer (Y1) and a non-expandable base material layer (Y2) containing expandable particles. It has at least a base material (Y) and a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2) that are non-expandable pressure-sensitive adhesive layers on both sides of the base material (Y).
  • This is a method for producing a cured encapsulant using an adhesive sheet, in which irregularities can occur on the adhesive surface of the first adhesive layer (X1) due to the expansion of the expandable particles.
  • the production method of the present invention includes the following steps (1) to (3).
  • -Process (1) The process of sticking the adhesion surface of a 1st adhesive layer (X1) on a hard support body, and mounting a sealing target object on a part of adhesion surface of a 2nd adhesive layer (X2). .
  • Step (2) The sealing object and the adhesive surface of the second pressure-sensitive adhesive layer (X2) at least in the periphery of the sealing object are covered with a sealing material, and the sealing material is cured. And the process of obtaining the hardening sealing body formed by sealing the said sealing target object with the said sealing material.
  • Step (3) The expandable particles are expanded and the hard support and the first pressure-sensitive adhesive layer (X1) are stacked while the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2). Separating at the interface P.
  • FIG. 1 is a schematic cross-sectional view of the pressure-sensitive adhesive sheet showing an example of the configuration of the pressure-sensitive adhesive sheet used in the production method of the present invention.
  • the pressure-sensitive adhesive sheet used in the production method of the present invention includes a base (Y) having at least an expandable base layer (Y1) and a non-expandable base layer (Y2) as shown in FIG.
  • the adhesive sheet 1a which has a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) which are non-expandable adhesive layers on both surfaces of a material (Y), respectively is mentioned.
  • the base material (Y) which the adhesive sheet 1a shown to Fig.1 (a) has has the structure which the expandable base material layer (Y1) and the non-expandable base material layer (Y2) laminated
  • the base material (Y) may have a configuration other than this.
  • the base material (Y) of the pressure-sensitive adhesive sheet 1b shown in FIG. 1 (b) the first non-thermally expandable base material layer (Y2-1) and the first non-expandable base material layer (Y2-1) and 2
  • a release material may be further laminated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2).
  • a structure in which a release material having a release treatment applied to both sides is laminated on one adhesive surface of the first adhesive layer (X1) and the second adhesive layer (X2) is wound in a roll shape. It is good.
  • These release materials are provided to protect the adhesive surfaces of the first adhesive layer (X1) and the second adhesive layer (X2), and are removed when the adhesive sheet is used.
  • the peeling force when peeling the release material laminated on the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are laminated.
  • the adhesive sheet 1a is divided along with the two release materials and peeled off by pulling both release materials outward. This may cause a negative effect.
  • the release material laminated on the first pressure-sensitive adhesive layer (X1) and the release material laminated on the second pressure-sensitive adhesive layer (X2) have different peeling forces from the pressure-sensitive adhesive layer attached to each other. It is preferable to use two types of designed release materials.
  • the pressure-sensitive adhesive sheet used in the production method of the present invention is adjusted so that irregularities can be generated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) by the expansion of the expandable particles.
  • a first pressure-sensitive adhesive layer (X1) that is a non-expandable pressure-sensitive adhesive layer is laminated on an expandable base material layer (Y1) containing expandable particles.
  • Y1 expandable base material layer
  • it has the structure which laminated
  • the adhesive surface of the first adhesive layer (X1) is affixed to a hard support.
  • the sealing object is placed on the adhesive surface of the second pressure-sensitive adhesive layer (X2).
  • step (2) the placed sealing object and Then, the second pressure-sensitive adhesive layer (X2) at the periphery of the object to be sealed is covered with a sealing material, and the sealing material is cured to form a cured sealing body.
  • step (3) when the expandable particles are expanded, the hard support and the first pressure-sensitive adhesive remain stacked on the second pressure-sensitive adhesive layer (X2). They are separated at the interface P with the agent layer (X1). That is, when separating from the hard support, the plurality of semiconductor chips are required to be held on the second pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet. Therefore, the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) is suppressed from forming irregularities so that the adhesive force sufficient to hold the cured sealing body can be maintained by the expansion of the expandable particles. It is preferable that the adjustment is performed.
  • the non-intumescent base material layer (Y2) is provided on the surface of the expandable base material layer (Y1) opposite to the first pressure-sensitive adhesive layer (X1).
  • the second pressure-sensitive adhesive layer (X2) is laminated on the surface of the non-expandable base material layer (Y2).
  • the non-expandable base layer (Y2) absorbs.
  • the formation of irregularities on the adhesive surface of the second pressure-sensitive adhesive layer (X2) laminated on the non-expandable base material layer (Y2) is suppressed, and the cured sealed body is laminated on the adhesive surface. can do.
  • the first non-expandable so that irregularities are formed on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1). It is preferable to adjust the storage elastic modulus E ′ of the base material layer (Y2-1) to be low. On the other hand, when the expandable particles expand, the second non-thermally expandable base material layer (Y2-2) is prevented from forming irregularities on the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2).
  • the storage elastic modulus E ′ is preferably adjusted to be high.
  • the storage elastic modulus E ′ of the first non-expandable base layer (Y2-1) when the expandable particles expand is equal to the second non-thermally expandable base layer (Y2) when the expandable particles expand.
  • -2) is preferably adjusted to be lower than the storage elastic modulus E ′.
  • a sealing object is placed on the pressure-sensitive adhesive surface of the expandable pressure-sensitive adhesive layer and cured.
  • the expansible adhesive layer which has mounted the sealing target object contains expansible particle
  • the expandable pressure-sensitive adhesive layer is a hard support.
  • a method of obtaining a cured sealing body by placing an object to be sealed on the non-intumescent pressure-sensitive adhesive layer is also conceivable.
  • the adhesive force of the expandable pressure-sensitive adhesive layer tends to be insufficient, and the sealing object is not sufficiently fixed to the hard support, the sealing object placed on the non-expandable pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive is applied to the surface of the hard support when the double-sided pressure-sensitive adhesive sheet is peeled from the hard support by expanding the expandable particles. A part of the layer may remain, and it is necessary to perform a cleaning process of the support, which causes a decrease in productivity.
  • the expandable pressure-sensitive adhesive layer after expansion of the expandable particles is very brittle.
  • the expandable pressure-sensitive adhesive layer is located in the outermost layer. Part of the agent layer is likely to fall off or the expandable pressure-sensitive adhesive layer is easily peeled off.
  • the dropped expandable pressure-sensitive adhesive layer adheres to various devices in the production environment and contaminates the device, the device needs to be cleaned, which causes a decrease in productivity.
  • the pressure-sensitive adhesive sheet used in the production method of the present invention has a base material (Y) including at least an inflatable base material layer (Y1) containing inflatable particles and a non-inflatable base material layer (Y2), and is inflated.
  • a base material including at least an inflatable base material layer (Y1) containing inflatable particles and a non-inflatable base material layer (Y2), and is inflated.
  • the adhesive particles expand, the adhesive surface of the first pressure-sensitive adhesive layer (X1) is adjusted so that irregularities are formed. Therefore, the freedom degree of selection of the adhesive composition which is a forming material of the 1st adhesive layer (X1) and the 2nd adhesive layer (X2) is also high.
  • the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive are not considered without considering the expandability of the expandable particles. It is possible to select the adhesive resin used for the agent layer (X2).
  • the first pressure-sensitive adhesive layer (X1) to be attached to the hard support is a non-expandable pressure-sensitive adhesive layer and does not need to contain expandable particles, and therefore can be sufficiently fixed to the hard support. In addition, it is possible to effectively suppress adverse effects such as misalignment of the sealing object and adhesion of the sealing resin to the exposed surface of the sealing object due to insufficient fixation between the sealing object and the hard support.
  • the expandable base material layer (Y1) containing the expanded particles after expansion is not located at least in the outermost layer, and the pressure-sensitive adhesive layer It has a certain degree of strength as compared with the case where it contains expansive particles. Therefore, dropping off of the expandable base material layer (Y1) after the expansion is difficult to occur.
  • the first pressure-sensitive adhesive layer (X1) located in the outermost layer is a non-expandable pressure-sensitive adhesive layer and does not need to contain expandable particles. Defects such as dropping of one adhesive layer (X1) are unlikely to occur. Therefore, in the manufacturing method of the present invention, since contamination within the manufacturing environment can be effectively suppressed, there is no need for a cleaning step accompanying the contamination, and excellent productivity can be exhibited.
  • the pressure-sensitive adhesive sheet used in one embodiment of the present invention has irregularities on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) attached to the hard support due to the expansion of the expandable particles, and the hard support and the first pressure-sensitive adhesive. At the interface P with the layer (X1), separation can be easily performed at a time with a slight force.
  • the peeling force (F 1 ) when the expandable particles are expanded and separated at the interface P is usually 0 to 2000 mN / 25 mm, preferably 0 to 1000 mN / It is 25 mm, more preferably 0 to 150 mN / 25 mm, still more preferably 0 to 100 mN / 25 mm, and still more preferably 0 to 50 mN / 25 mm.
  • the peel force (F 1) is in the case of 0 mN / 25 mm, even trying to measure the peel strength by the method described in Example, includes the case where the measurement impossible because peel strength is too small.
  • the first adhesive layer (X1) has a higher adhesive force.
  • the peeling force (F 0 ) when separating at the interface P before the expansion of the expandable particles is preferably 0.05 to 10.0 N / 25 mm.
  • the release force (F 0) can also be regarded as the adhesive strength of the first adhesive layer to the rigid support member (X1).
  • the ratio [(F 1 ) / (F 0 )] between the peel force (F 1 ) and the peel force (F 0 ) is preferably 0 to 0.9, more preferably Is 0 to 0.8, more preferably 0 to 0.5, and still more preferably 0 to 0.2.
  • the release force (F 1) is a value measured under the environment when the expandable particles are expanded.
  • the temperature condition for measuring the peel force (F 1 ) may be equal to or higher than the expansion start temperature (t) of the thermally expandable particles.
  • the temperature condition for measuring the peeling force (F 0 ) may be any temperature at which the expandable particles do not expand, and is basically room temperature (23 ° C.).
  • more specific measurement conditions and measurement methods for the peel force (F 1 ) and the peel force (F 0 ) are based on the methods described in the examples.
  • the adhesive strength of the second pressure-sensitive adhesive layer (X2) at room temperature (23 ° C.) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0. The range is from 0.2 to 8.0 N / 25 mm, more preferably from 0.4 to 6.0 N / 25 mm, and still more preferably from 0.5 to 4.0 N / 25 mm.
  • the adhesive strength of the second pressure-sensitive adhesive layer (X2) means a value measured by the method described in Examples.
  • each layer which comprises the adhesive sheet used by 1 aspect of this invention is demonstrated.
  • the base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention includes at least an expandable base material layer (Y1) containing inflatable particles and a non-expandable base material layer (Y2).
  • a base material (Y) like the adhesive sheet 1a shown to Fig.1 (a), an expandable base material layer (Y1) and a non-expandable base material layer (Y2) are each laminated
  • the first non-thermally expandable base layer (Y2-1) and the second non-expandable base layer (Y2-1) are formed on both sides of the expandable base layer (Y1).
  • a configuration in which a non-thermally expandable base material layer (Y2-2) is provided may be employed.
  • the base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention has a configuration in which an adhesive layer is provided between the inflatable base material layer (Y1) and the non-inflatable base material layer (Y2). May be.
  • An adhesive layer may be provided between the conductive base material layer (Y2-2).
  • the adhesive layer can be formed from a general adhesive or a pressure-sensitive adhesive composition that is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
  • the expansion of the expandable particles causes unevenness on the adhesive surface of the first pressure-sensitive adhesive layer (X1), while suppressing the formation of unevenness on the adhesive surface of the second pressure-sensitive adhesive layer (X2).
  • the base material (Y) is provided with at least an inflatable base material layer (Y1) and a non-expandable base material layer (Y2) on the outermost surface.
  • the base material (Y) formed by laminating is mentioned.
  • the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) are both non-adhesive layers.
  • the determination as to whether or not the layer is a non-adhesive layer is made if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mm ⁇ with respect to the surface of the target layer. Is judged as a “non-sticky layer”.
  • the probe tack values on the surfaces of the expandable base material layer (Y1) and the non-expandable base material layer (Y2) of the pressure-sensitive adhesive sheet (I) used in one embodiment of the present invention are each independently usually less than 50 mN / 5 mm ⁇ .
  • the specific measuring method of the probe tack value on the surface of a thermally expansible base material is based on the method as described in an Example.
  • the thickness of the substrate (Y) is preferably 15 to 2000 ⁇ m, more preferably 25 to 1500 ⁇ m, still more preferably 30 to 1000 ⁇ m, and still more preferably 40 to 500 ⁇ m. is there.
  • the thickness of the expandable substrate (Y1) before expansion of the expandable particles is preferably 10 to 1000 ⁇ m, more preferably 20 to 700 ⁇ m, still more preferably 25 to 500 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • the thickness of the non-expandable substrate (Y2) is preferably 10 to 1000 ⁇ m, more preferably 20 to 700 ⁇ m, still more preferably 25 to 500 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • a plurality of expandable substrates (Y1) or non-expandable substrates (Y2) exist via other layers as in the adhesive sheet 1b shown in FIG. 1 (b).
  • the thickness of said expansible base material (Y1) or a non-expandable base material (Y2) means the thickness per each layer.
  • the thickness ratio between the expandable base material layer (Y1) and the non-thermally expandable base material layer (Y2) before expansion of the expandable particles [(Y1) / ( Y2)] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
  • the thickness ratio [(Y1) / (X1)] is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and still more preferably 5.0 or more. Also, it is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and still more preferably 30 or less.
  • the ratio [(Y2) / (X2)] is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, and preferably 20 or less, more preferably 10 or less. More preferably, it is 5 or less.
  • the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) will be described.
  • the expandable substrate layer (Y1) constituting the substrate (Y) is a layer that contains expandable particles and can be expanded by a predetermined expansion treatment.
  • the content of the expandable particles in the expandable substrate layer (Y1) is preferably 1 to 40% by mass, more preferably 5%, based on the total mass (100% by mass) of the expandable substrate layer (Y1). It is ⁇ 35% by mass, more preferably 10 to 30% by mass, and still more preferably 15 to 25% by mass.
  • the surface of the expandable base material layer (Y1) is a surface formed by an oxidation method, a roughening method, or the like.
  • Treatment, easy adhesion treatment, or primer treatment may be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment.
  • the unevenness method include sand blast method and solvent treatment method. Etc.
  • the expandable particles contained in the expandable substrate layer (Y1) may be any particles that expand by performing a predetermined treatment, such as thermally expandable particles that expand by heating at a predetermined temperature or higher, Examples include UV-expandable particles that absorb a predetermined amount of ultraviolet rays to generate gas and expand inside the particles.
  • the volume expansion coefficient of the expandable particles is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably 2.5 to 60 times, and still more preferably 3 to 40 times.
  • the average particle diameter of the expandable particles before expansion at 23 ° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, and still more preferably 10 to 50 ⁇ m.
  • the average particle size of the expandable particles is the volume-median particle size (D 50 ) and is measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In the particle distribution of the expanded particles, it means a particle size corresponding to 50% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
  • the 90% particle diameter (D 90 ) of the expandable particles before expansion at 23 ° C. is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, still more preferably 25 to 90 ⁇ m, and still more preferably 30 to 80 ⁇ m. .
  • the 90% particle size (D 90 ) of the expandable particles is the particle distribution of the expandable particles measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In FIG. 5, the particle size corresponding to 90% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
  • the expandable particles are preferably thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C. That is, the expandable substrate layer (Y1) is preferably a thermally expandable substrate layer (Y1-1) containing thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
  • the conductive base material layer (Y1-1) more preferably satisfies the following requirement (1).
  • the storage elastic modulus E ′ (t) of the thermally expandable substrate layer (Y1-1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 ⁇ 10 7 Pa It is as follows. In the present specification, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) at a predetermined temperature means a value measured by the method described in the examples.
  • the requirement (1) can be said to be an index indicating the rigidity of the thermally expandable substrate layer (Y1-1) immediately before the thermally expandable particles expand. That is, when the thermally expandable particles expand, if the thermally expandable substrate layer (Y1-1) is flexible enough to satisfy the above requirement (1), the thermally expandable substrate layer (Y1 As a result, unevenness is likely to be formed on the surface of -1), and unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1). As a result, it is possible to easily separate them with a slight force at the interface P between the hard support and the first pressure-sensitive adhesive layer (X1).
  • the storage elastic modulus E ′ (t) defined by requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 9.0 ⁇ 10 6 Pa or less, more preferably 8.0. ⁇ 10 6 Pa or less, more preferably 6.0 ⁇ 10 6 Pa or less, and even more preferably 4.0 ⁇ 10 6 Pa or less.
  • the flow of the expanded heat-expandable particles is suppressed, the shape maintaining property of the unevenness generated on the surface of the heat-expandable base material layer (Y1-1) is improved, and the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is improved.
  • the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 1.0 ⁇ 10 3 Pa or more. Preferably it is 1.0 ⁇ 10 4 Pa or more, more preferably 1.0 ⁇ 10 5 Pa or more.
  • the thermally expandable base material layer (Y1-1) preferably satisfies the following requirement (2), and more preferably satisfies the requirement (2) together with the requirement (1).
  • the storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) at 23 ° C. is 1.0 ⁇ 10 6 Pa or more.
  • thermally expandable base material layer (Y1-1) that satisfies the above requirement (2), it is possible to prevent displacement when the sealing object is placed on the adhesive surface of the second adhesive layer (X2). In addition, excessive sinking of the sealing object into the second pressure-sensitive adhesive layer (X2) can also be prevented.
  • the storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) defined by the above requirement (2) is preferably 5.0 ⁇ 10 6 to 5.0 ⁇ 10 12 Pa. More preferably 1.0 ⁇ 10 7 to 1.0 ⁇ 10 12 Pa, still more preferably 5.0 ⁇ 10 7 to 1.0 ⁇ 10 11 Pa, and still more preferably 1.0 ⁇ 10 8 to 1. 0 ⁇ 10 10 Pa.
  • the heat-expandable particles contained in the heat-expandable base material layer (Y1-1) are preferably heat-expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
  • the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
  • Measurement method of expansion start temperature (t) of thermally expandable particles To an aluminum cup having a diameter of 6.0 mm (inner diameter: 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter of 5.6 mm, thickness of 0.2 mm) is added from above. 1 mm) is prepared.
  • the height of the sample is measured from the upper part of the aluminum lid to the sample with a force of 0.01 N applied by a pressurizer. Then, with a force of 0.01 N applied by the pressurizer, heating is performed from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and the amount of displacement of the pressurizer in the vertical direction is measured.
  • the displacement start temperature be the expansion start temperature (t).
  • the thermally expandable particles are microencapsulated foaming agents composed of an outer shell composed of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature.
  • a thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane.
  • the expandable substrate layer (Y1) is preferably formed from a resin composition (y) containing a resin and expandable particles.
  • the substrate additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
  • These base material additives may be used alone or in combination of two or more. When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to about 100 parts by mass of the resin. 10 parts by mass.
  • the expandable particles contained in the resin composition (y), which is a material for forming the expandable substrate layer (Y1), are as described above, and are preferably thermally expandable particles.
  • the content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and further preferably 10 to 10% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). It is 30% by mass, more preferably 15 to 25% by mass.
  • the resin contained in the resin composition (y) that is a material for forming the expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin. That is, even if the resin contained in the resin composition (y) is an adhesive resin, in the process of forming the expandable substrate layer (Y1) from the resin composition (y), the adhesive resin is a polymerizable compound. And the resulting resin becomes a non-adhesive resin, and the expandable base material layer (Y1) containing the resin may be non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000. Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). %, More preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y) is an acrylic urethane from the viewpoint of forming an expandable base layer (Y1) that easily forms irregularities on the surface when the expandable particles are expanded. It is preferable that 1 or more types chosen from a system resin and an olefin resin are included. Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
  • An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
  • urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further subjecting it to a chain extension reaction using a chain extender.
  • Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols. These polyols may be used independently and may use 2 or more types together.
  • the polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
  • ester diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxyl
  • alkylene type diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
  • alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol
  • ethylene glycol, propylene glycol And alkylene glycols such as diethylene glycol and dipropylene glycol
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
  • polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) examples include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. These polyvalent isocyanates may be used alone or in combination of two or more. These polyisocyanates may be a trimethylolpropane adduct-type modified product, a burette-type modified product reacted with water, or an isocyanurate-type modified product containing an isocyanurate ring.
  • the polyisocyanate used in one embodiment of the present invention is preferably diisocyanate, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
  • alicyclic diisocyanate examples include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane.
  • IPDI isophorone diisocyanate
  • Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends.
  • a urethane prepolymer is preferred.
  • an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the (meth) acrylic acid ester is preferably at least one selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
  • the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
  • the carbon number of the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
  • hydroxyalkyl (meth) acrylate the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce
  • vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate.
  • Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide). These may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound.
  • the amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35 by mass ratio. / 65 to 55/45.
  • olefin resin examples include a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like. Among these, ethylene and propylene are preferable.
  • olefinic resins for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); ethylene-vinyl acetate copolymer (EVA); ethylene-propylene- (5-ethylidene-2-norbornene), etc. Olefin terpolymers; and the like.
  • VLDPE ultra low density polyethylene
  • LDPE low density poly
  • the olefin resin may be a modified olefin resin further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
  • an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride.
  • unsaturated carboxylic acid or its anhydride include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride.
  • Glutaconic anhydride citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
  • unsaturated carboxylic acid or its anhydride may be used independently, and may use 2 or more types together.
  • an acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin as a main chain.
  • a polymer is mentioned.
  • the number of carbon atoms of the alkyl group contained in the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
  • said alkyl (meth) acrylate the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
  • Examples of the hydroxyl group-modified olefin resin obtained by modifying the olefin resin with a hydroxyl group include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
  • Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl.
  • Examples include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • the resin composition (y) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
  • resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate.
  • Polyester resin such as phthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resin; polymethylpentene; polysulfone; polyetheretherketone; polyethersulfone; Sulfides; Polyimide resins such as polyetherimide and polyimide; Polyamide resins; Acrylic resins; Fluorine resins and the like.
  • the resin composition (y) contains a resin other than the acrylic urethane resin and the olefin resin. A smaller ratio is preferable.
  • the content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by weight, more preferably 20 parts by weight with respect to 100 parts by weight of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by weight, still more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
  • solvent-free resin composition (y1) As an aspect of the resin composition (y), a solvent comprising an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-mentioned expandable particles, And a solvent-free resin composition (y1) that does not contain the above.
  • Mw mass average molecular weight
  • a solvent-free resin composition (y1) that does not contain the above.
  • the solventless resin composition (y1) no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
  • an inflatable substrate layer (Y1) that easily forms irregularities on the surface when the expandable particles expand is formed.
  • the type, shape, and blending amount (content) of the expandable particles blended in the solventless resin composition (y1) are the same as those of the resin composition (y) and are as described above.
  • the mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
  • oligomer As said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight is 50000 or less among resin contained in the above-mentioned resin composition (y), but the above-mentioned urethane prepolymer (UP Is preferred.
  • UP Is preferred As the oligomer, a modified olefin resin having an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably from 50 to the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
  • Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Alicyclic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
  • the blending ratio of the oligomer and the energy beam polymerizable monomer is preferably 20/80 to 90/10, more preferably 30/70 to 85/15, still more preferably 35/65. ⁇ 80/20.
  • the solventless resin composition (y1) further comprises a photopolymerization initiator.
  • the curing reaction can be sufficiently advanced even by irradiation with energy rays having relatively low energy.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like can be mentioned. These photoinitiators may be used independently and may use 2 or more types together.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer.
  • the amount is preferably 0.02 to 3 parts by mass.
  • Non-expandable base material layer (Y2) Examples of the material for forming the non-intumescent base material layer (Y2) constituting the base material (Y) include paper materials, resins, metals, and the like. Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfuric acid paper, glassine paper, and the like.
  • the resin examples include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resin such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Tsu Motokei resin, and the like.
  • the metal examples include aluminum, tin, chromium, and
  • These forming materials may be composed of one kind or in combination of two or more kinds.
  • a non-intumescent base material layer (Y2) using two or more kinds of forming materials in combination a paper film is laminated with a thermoplastic resin such as polyethylene, or a metal film is formed on the surface of a resin film or sheet containing a resin. And the like.
  • a method for forming the metal layer for example, a method of depositing the metal by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the metal is attached using a general adhesive. And the like.
  • the non-expandable base layer (Y2) contains a resin
  • the non-intumescent base material layer (Y2) contains a resin
  • it may contain the above-mentioned base material additive that can be contained in the resin composition (y) together with the resin.
  • the non-intumescent substrate layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the above-described inflatable substrate layer (Y1), and the inflatable substrate layer (Y1) ) And the first pressure-sensitive adhesive layer (X1), there is no non-expandable base layer (Y2), and the non-expandable base layer (Y2) when the expandable particles expand.
  • the storage elastic modulus E ′ is preferably larger than the storage elastic modulus E ′ of the expandable base material layer (Y1) when the expandable particles expand.
  • the expandable base material layer is expanded by the expansion of the expandable particles.
  • the unevenness generated on the surface of (Y1) is transmitted to the first pressure-sensitive adhesive layer (X1) without interposing the non-intumescent base material layer (Y2), and on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1).
  • unevenness is likely to occur.
  • the storage elastic modulus E ′ of the non-expandable base material layer (Y2) is larger than the storage elastic modulus E ′ of the expandable base material layer (Y1).
  • the surface of the expandable substrate layer (Y1) on the non-expandable substrate layer (Y2) side is prevented from being uneven, and as a result, the first of the expandable substrate layer (Y1). Unevenness is likely to occur on the surface on the pressure-sensitive adhesive layer (X1) side, and therefore unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1).
  • the storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles are expanded is as described above from the viewpoint of easily forming irregularities on the adhesive surface of the first adhesive layer (X1).
  • the pressure is 1.0 MPa or more.
  • the storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles expand is preferably 1.0 to 5.0 ⁇ 10 2 MPa, more preferably 1.0.
  • the storage elastic modulus of the non-expandable base material layer (Y2) at 23 ° C. E ′ (23) is preferably 5.0 ⁇ 10 1 to 5.0 ⁇ 10 4 MPa, more preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 4 MPa, and even more preferably 5.0 ⁇ 10. 2 to 5.0 ⁇ 10 3 MPa.
  • a non-expandable base material layer (Y2) is a non-expandable layer judged based on the above-mentioned method.
  • the volume change rate (%) of the non-expandable base material layer (Y2) calculated from the above formula is less than 5% by volume, preferably less than 2% by volume, more preferably less than 1% by volume. More preferably, it is less than 0.1 volume%, More preferably, it is less than 0.01 volume%.
  • a non-expandable base material layer (Y2) may contain a thermally expansible particle.
  • a resin contained in the non-expandable base material layer (Y2) it is possible to adjust the volume change rate to the above range even if thermally expandable particles are included.
  • the specific content of the heat-expandable particles is usually less than 3% by mass, preferably less than 1% by mass, and more preferably relative to the total mass (100% by mass) of the non-expandable base material layer (Y2). It is less than 0.1% by mass, more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
  • the pressure-sensitive adhesive sheet used in one embodiment of the present invention has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2), which are non-intumescent pressure-sensitive adhesive layers.
  • the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is affixed to a hard support, and a sealing object is placed on the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2). A cured encapsulant is formed.
  • first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are non-expandable pressure-sensitive adhesive layers, the position of the sealing target due to insufficient fixation between the sealing target and the hard support It is possible to effectively suppress adverse effects such as displacement and adhesion of the sealing resin to the exposed surface of the object to be sealed.
  • first pressure-sensitive adhesive layer (X1) is a non-intumescent pressure-sensitive adhesive layer, in addition to the above effects, in the cured sealed body with the pressure-sensitive adhesive sheet after separation from the cured support, The adhesive layer (X1) can be prevented from falling off and the like, which can contaminate various devices in the manufacturing environment.
  • the first pressure-sensitive adhesive layer (X1) has high adhesiveness with the hard support before expansion of the expandable particles contained in the expandable base material layer (Y1), and the sealing object is sufficient for the hard support.
  • the property which can be fixed to is required.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 ⁇ 10 8 Pa or less, more preferably 5.0 ⁇ 10 7 Pa or less. More preferably, it is 1.0 ⁇ 10 7 Pa or less.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 ⁇ 10 4 Pa or more, more preferably 5.0 ⁇ 10 4 Pa or more. More preferably, it is 1.0 ⁇ 10 5 Pa or more.
  • the second pressure-sensitive adhesive layer (X2) is required to have not only adhesion with the sealing object but also adhesion with a cured sealing body formed by sealing the sealing object with a sealing material.
  • the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) at 23 ° C. is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 8 Pa, more preferably 5 It is 0.0 ⁇ 10 4 to 5.0 ⁇ 10 7 Pa, more preferably 9.0 ⁇ 10 4 to 1.0 ⁇ 10 7 Pa.
  • the storage shear elastic modulus G '(23) of the 1st adhesive layer (X1) and the 2nd adhesive layer (X2) means the value measured by the method as described in an Example. .
  • the thickness of the first pressure-sensitive adhesive layer (X1) is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • the thickness of the second pressure-sensitive adhesive layer (X2) is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) can be formed from a pressure-sensitive adhesive composition (x) containing a pressure-sensitive adhesive resin.
  • adhesive composition (x) may contain additives for adhesives, such as a crosslinking agent, a tackifier, a polymeric compound, a polymerization initiator, as needed.
  • additives for adhesives such as a crosslinking agent, a tackifier, a polymeric compound, a polymerization initiator, as needed.
  • any polymer may be used as long as it has adhesiveness and has a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000, from the viewpoint of improving adhesive force. ⁇ 1 million.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used alone or in combination of two or more. Further, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
  • the adhesive resin used in one embodiment of the present invention may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
  • the adhesive force can be reduced by irradiating energy rays. Therefore, the obtained cured sealing body can be easily separated from the second pressure-sensitive adhesive layer (X2).
  • the polymerizable functional group include a (meth) acryloyl group and a vinyl group.
  • energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
  • the energy ray hardening-type adhesive composition containing the monomer or oligomer which has a polymerizable functional group may be sufficient.
  • These energy ray curable pressure-sensitive adhesive compositions preferably further contain a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with energy rays having relatively low energy.
  • a photoinitiator the same thing as what is mix
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 100 parts by mass of the energy ray-curable adhesive resin or 100 parts by mass of the monomer or oligomer having a polymerizable functional group.
  • the amount is 0.03 to 5 parts by mass, more preferably 0.05 to 2 parts by mass.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of developing an excellent adhesive force.
  • the first pressure-sensitive adhesive layer (X1) by forming the first pressure-sensitive adhesive layer (X1) from a pressure-sensitive adhesive composition containing an acrylic resin, it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer.
  • the content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50%, based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x). To 100% by mass, more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
  • the content of the adhesive resin is preferably 35 to 100% by mass, more preferably 50 to 100% by mass, still more preferably relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x). It is 60 to 98% by mass, more preferably 70 to 95% by mass.
  • the pressure-sensitive adhesive composition (x) when the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x) preferably further contains a crosslinking agent.
  • the said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge
  • crosslinking agent examples include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent. These crosslinking agents may be used independently and may use 2 or more types together. Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force and availability.
  • the content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
  • the mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
  • Examples of the tackifier are obtained by copolymerizing C5 fractions such as rosin resin, terpene resin, styrene resin, pentene, isoprene, piperine, 1,3-pentadiene generated by thermal decomposition of petroleum naphtha.
  • C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
  • the “softening point” of the tackifier means a value measured according to JIS K2531.
  • a tackifier may be used independently and may use together 2 or more types from which a softening point and a structure differ. And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifiers belongs to the said range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, based on the total amount (100% by mass) of the active ingredients of the adhesive composition (x). More preferably, it is 1 to 40% by mass, and still more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (x) contains an additive for pressure-sensitive adhesives used for general pressure-sensitive adhesives in addition to the above-mentioned additives, as long as the effects of the present invention are not impaired. You may do it.
  • an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, antistatic agents, and the like. Is mentioned.
  • These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
  • each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ⁇ 10 parts by mass.
  • the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are both non-expandable pressure-sensitive adhesive layers, but preferably do not substantially contain expandable particles.
  • substantially does not contain expandable particles means that the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) do not contain expandable particles for a specific purpose. It means that. Therefore, it does not exclude the aspect in which expandable particles are mixed as impurities in the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
  • a release material may be further laminated on the pressure-sensitive adhesive surfaces of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
  • a release material a release sheet that has been subjected to a double-sided release process, a release sheet that has been subjected to a single-sided release process, or the like is used, and examples include a release material coated on a release material.
  • Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and kraft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; and olefins such as polypropylene resin and polyethylene resin.
  • a plastic film such as a resin film;
  • release agent examples include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
  • the thickness of the release material is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 25 to 170 ⁇ m, and still more preferably 35 to 80 ⁇ m.
  • the production method of the present invention is a method for producing a cured encapsulant using the above-mentioned pressure-sensitive adhesive sheet, and includes the following steps (1) to (3).
  • -Process (1) The process of sticking the adhesion surface of a 1st adhesive layer (X1) on a hard support body, and mounting a sealing target object on a part of adhesion surface of a 2nd adhesive layer (X2).
  • Step (2) The sealing object and the adhesive surface of the second pressure-sensitive adhesive layer (X2) at least in the periphery of the sealing object are covered with a sealing material, and the sealing material is cured.
  • Step (3) The expandable particles are expanded and the hard support and the first pressure-sensitive adhesive layer (X1) are stacked while the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2). Separating at the interface P.
  • FIG. 2 is a schematic cross-sectional view in steps (1) to (3) of the method for producing a cured encapsulated body of the present invention.
  • steps (1) to (3) will be described with reference to FIG. 2 as appropriate.
  • Fig.2 (a) is a cross-sectional schematic diagram in process (1) at the time of using the adhesive sheet 1a shown to Fig.1 (a).
  • step (1) as shown in FIG. 2 (a), the adhesive surface of the first adhesive layer (X1) of the adhesive sheet 1a is affixed to the hard support 50, and the adhesive of the second adhesive layer (X2).
  • the sealing object 60 is placed on a part of the surface.
  • the number of sealing objects to be placed on a part of the adhesive surface of the second pressure-sensitive adhesive layer (X2) may be one or plural as shown in FIG. .
  • FIG. 2 although the aspect using the adhesive sheet 1a shown to Fig.1 (a) is shown, also when using the adhesive sheet which has another structure, a hard support body, an adhesive sheet, And the semiconductor chip are stacked or placed in this order, the adhesive surface of the first adhesive layer (X1) of the adhesive sheet is attached to the hard support, and the adhesive surface of the second adhesive layer (X2) is sealed. It is preferable to affix to the exposed surface of the object.
  • the step (1) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
  • the hard support is preferably affixed to the entire pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet. Therefore, the hard support is preferably plate-shaped. Moreover, it is preferable that the area of the surface of the hard support stuck with the 1st adhesive layer (X1) is more than the area of the adhesive surface of the 1st adhesive layer (X1), as shown in FIG.
  • Examples of the material constituting the hard support include, for example, metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, polyamideimides Examples thereof include resin materials such as resins; composite materials such as glass epoxy resins, and among these, SUS, glass, and silicon wafers are preferable.
  • Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
  • Examples of super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
  • the thickness of the hard support is preferably 20 ⁇ m or more and 50 mm or less, and more preferably 60 ⁇ m or more and 20 mm or less.
  • the semiconductor chip is sufficiently fixed to the hard support, and the occurrence of positional deviation of the sealing object or the sealing of the sealing object to the exposed surface in the step (2) From the viewpoint of effectively suppressing adverse effects such as resin adhesion, it is preferably 1.0 GPa or more, more preferably 5.0 GPa or more, still more preferably 10 GPa or more, and even more preferably 20 GPa or more.
  • the Young's modulus of the hard support is a value measured at room temperature (25 ° C.) in accordance with the static Young's modulus test method of JIS Z2280: 1993.
  • examples of the sealing object placed on a part of the adhesive surface of the second adhesive layer (X2) include, for example, a semiconductor chip, a semiconductor wafer, a compound semiconductor, a semiconductor package, an electronic component, a sapphire substrate, a display, Panel substrates and the like can be mentioned.
  • the sealing target object mounted may be comprised from the same kind, and may be comprised from 2 or more types of different things.
  • the exposed surface of these objects to be sealed refers to the surface that is in contact with the adhesive surface of the second pressure-sensitive adhesive layer (X2) and is not covered with the sealing material, and specifically corresponds to the circuit surface.
  • the sealing object since the sealing object is sufficiently fixed to the hard support, the sealing resin on the exposed surface of the sealing object is sealed during the sealing step of step (2). It is possible to effectively suppress harmful effects such as adhesion. For example, if the sealing resin adheres to the circuit surface, the circuit wiring is disconnected, which causes a decrease in yield. However, according to the manufacturing method of the present invention, such an adverse effect can be suppressed.
  • Examples of the method for placing the sealing object include a pick-and-place method using an apparatus such as a flip chip bonder and a die bonder, and a batch transfer method using a transfer device. Further, the layout, the number of arrangements, and the like of the objects to be sealed may be appropriately determined according to the target package form, the number of production, and the like.
  • the cured sealing body manufactured by the manufacturing method of the present invention is preferably used for FOWLP. Therefore, it is preferable that the sealing object is a semiconductor chip.
  • a conventionally known semiconductor chip can be used, and a semiconductor chip on which an integrated circuit composed of circuit elements such as a transistor, a resistor, and a capacitor is formed can be used.
  • a semiconductor chip used in one embodiment of the present invention is a semiconductor wafer in which a circuit is formed on one surface of a substrate formed of silicon, SiC (silicon carbide), gallium, arsenic, or the like by an etching method, a lift-off method, or the like. Can be obtained.
  • a stealth dicing method, a tip dicing method, or a method other than these methods may be used as a method of obtaining a semiconductor chip from a semiconductor wafer.
  • the exposed surface of the semiconductor chip placed on the adhesive surface of the second adhesive layer (X2) is preferably a circuit surface on which a circuit is formed.
  • the circuit surface of the semiconductor chip By placing the circuit surface of the semiconductor chip on the adhesive surface of the second pressure-sensitive adhesive layer (X2), the circuit surface of the semiconductor chip can be protected in the process of step (2).
  • the surface opposite to the circuit surface of the semiconductor chip (hereinafter also referred to as “back surface”) is the side that is covered with a sealing material in the next step, and normally, no circuit or electrode is formed. It is a flat surface.
  • the semiconductor chip is placed on a part of the adhesive surface of the second pressure-sensitive adhesive layer (X2), and the plurality of semiconductor chips are arranged in a state of being spaced apart at a certain interval. It is preferable that the plurality of semiconductor chips be mounted on the adhesive surface in a state of being arranged in a matrix of a plurality of rows and a plurality of columns with a certain interval. The interval between the semiconductor chips may be determined as appropriate according to the form of the target package.
  • Step (2) As shown in FIG. 2B, the sealing object 60 and the adhesive surface of the second adhesive layer (X2) at least in the peripheral part of the sealing object 60 are sealed.
  • the sealing material 70 is covered (hereinafter also referred to as “coating treatment”), the sealing material 70 is cured (hereinafter also referred to as “curing treatment”), and the sealing object 60 is sealed with the sealing material 70.
  • coating treatment hereinafter also referred to as “coating treatment”
  • curing treatment hereinafter also referred to as “curing treatment”
  • the sealing material is It is preferable to cover the gap between the objects to be sealed. Moreover, as shown in FIG.2 (b), you may coat
  • the sealing material has a function of protecting the object to be sealed and its accompanying elements from the external environment.
  • the sealing material used in the production method of the present invention is preferably a thermosetting sealing material containing a thermosetting resin from the viewpoint of handleability.
  • the sealing material may be a solid such as a granule, a pellet, or a film at room temperature, or may be a liquid in the form of a composition.
  • a sealing resin film that is a stopper is preferred.
  • the coating method it can select and apply suitably from the methods applied to the conventional sealing process according to the kind of sealing material.
  • Specific examples of the coating method include a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, and a compression molding method.
  • the coating treatment and the curing treatment in the step (2) are preferably performed in an environment where the expandable particles do not expand.
  • the step (2) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
  • the sealing material is hardened and the hardening sealing body formed by sealing a sealing target object with a sealing material is obtained.
  • the coating process and the thermosetting process may be performed separately. However, when the sealing material is heated in the coating process, the sealing material is thermoset as it is by the heating, and the coating process and the heat curing process are performed. You may implement a hardening process simultaneously.
  • Step (3) the expandable particles are expanded, and the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2), with the hard support and the first pressure-sensitive adhesive layer (X1). This is a process of separation at the interface P.
  • FIG. 2C shows a state where the expandable particles in the expandable base material layer (Y1) are expanded and separated at the interface P between the hard support 50 and the first pressure-sensitive adhesive layer (X1). .
  • the method for expanding the expandable particles is appropriately selected according to the type of the expandable particles.
  • heat treatment is performed at a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles to expand the heat-expandable particles.
  • the “temperature higher than the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is more preferable that the temperature is not less than “temperature (t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”.
  • the pressure-sensitive adhesive sheet having the expandable base material layer (Y1) containing the expandable particles By forming irregularities on the adhesive surface of (X1), it is adjusted so that it can be separated at the interface P between the hard support and the first adhesive layer (X1). Therefore, the contamination of the hard support, such that a part of the first pressure-sensitive adhesive layer (X1) remains on the surface of the hard support after the separation, can be eliminated, and the washing process of the hard support can be omitted. Can be improved.
  • this step when the expandable particles are expanded, it is preferable not to separate between the layers of the pressure-sensitive adhesive sheet. That is, as shown in FIG. 2 (c), it is preferable to remove all the layers of the pressure-sensitive adhesive sheet without remaining on the surface of the hard support 50 by the step (3).
  • the hard support after separating the pressure-sensitive adhesive sheet is generally subjected to the same process by attaching a new pressure-sensitive adhesive sheet again. At this time, if a part of the pressure-sensitive adhesive sheet remains on the surface of the hard support due to separation between the layers constituting the pressure-sensitive adhesive sheet, a step for removing this layer is required.
  • the first pressure-sensitive adhesive layer (X1) located in the outermost layer of the pressure-sensitive adhesive sheet is a non-intumescent pressure-sensitive adhesive layer. Defects such as the pressure-sensitive adhesive layer (X1) dropping off hardly occur. From this point of view, the problem of contamination in the manufacturing environment is suppressed, which is a factor that can improve productivity.
  • the resulting cured sealing body effectively suppresses adverse effects such as occurrence of displacement of the sealing object and adhesion of the sealing resin to the exposed surface of the sealing object. Has been. Therefore, according to the manufacturing method of this invention, the yield in manufacture of such a hardening sealing body can be improved.
  • the obtained cured encapsulant is thereafter subjected to a step of grinding the encapsulant of the cured encapsulant until the surface of the object to be sealed is exposed, a step of rewiring the circuit surface, an external electrode You may pass through the process of forming a pad and connecting an external electrode pad and an external terminal electrode. Further, after the external terminal electrode is connected to the cured sealing body, it can be separated into individual pieces to manufacture a semiconductor device.
  • the formed heat-expandable base material layer (Y1) was 5 mm long ⁇ 30 mm wide ⁇ 200 ⁇ m thick, and the sample from which the release material was removed was used as a test sample.
  • a dynamic viscoelasticity measuring apparatus TA Instruments, product name “DMAQ800”
  • a test start temperature 0 ° C.
  • a test end temperature 300 ° C.
  • a temperature increase rate of 3 ° C./min a frequency of 1 Hz
  • an amplitude of 20 ⁇ m Under the conditions, the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
  • ⁇ Storage shear modulus G ′ of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2)> A sample prepared by cutting the formed first pressure-sensitive adhesive layer (X1) and second pressure-sensitive adhesive layer (X2) into a circle having a diameter of 8 mm, removing the release material, and superposing them to obtain a thickness of 3 mm It was.
  • a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
  • ⁇ Probe tack value> A base material layer to be measured was cut into a square with a side of 10 mm, and then allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity) was used as a test sample. Using a tacking tester (manufactured by Nippon Special Instrument Co., Ltd., product name “NTS-4800”) in an environment of 23 ° C. and 50% RH (relative humidity), the probe tack value on the surface of the test sample was measured according to JIS. It measured based on Z0237: 1991.
  • a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is moved at a speed of 10 mm / sec. The force required to separate from the surface was measured, and the obtained value was used as the probe tack value of the test sample.
  • Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid 86.0 / 8.0 / 5.0 / 1.
  • first pressure-sensitive adhesive layer (X1) To 100 parts by mass of the solid content of the acrylic copolymer (i), which is an adhesive resin, 5.0 parts by mass of the isocyanate-based crosslinking agent (i) ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass. And the said adhesive composition is apply
  • the 1st adhesive layer (X1) which is an agent layer was formed.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 ⁇ 10 5 Pa.
  • Second pressure-sensitive adhesive layer (X2) To 100 parts by mass of the acrylic copolymer (ii), which is an adhesive resin, 0.8 parts by mass of the isocyanate-based crosslinking agent (i) ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass. And the said adhesive composition is apply
  • the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) at 23 ° C. was 9.0 ⁇ 10 4 Pa.
  • the adhesive force of the 2nd adhesive layer (X2) measured based on the said method was 1.0 N / 25mm. Since it was clear that the second pressure-sensitive adhesive layer (X2) and the first pressure-sensitive adhesive layer (X1) had a probe tack value of 50 mN / 5 mm ⁇ or more, measurement of the probe tack value was omitted.
  • the resin composition is formed on the surface of a 50 ⁇ m-thick polyethylene terephthalate (PET) film (product name “COSMO SHINE A4100”, probe tack value: 0 mN / 5 mm ⁇ , manufactured by Toyobo Co., Ltd.), which is a non-intumescent substrate.
  • PET polyethylene terephthalate
  • COSMO SHINE A4100 probe tack value: 0 mN / 5 mm ⁇ , manufactured by Toyobo Co., Ltd.
  • the product was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to form an expandable substrate layer (Y1) having a thickness of 50 ⁇ m.
  • the PET film corresponds to the non-expandable base material layer (Y2).
  • the resin composition is applied to the surface of the release agent layer of the light release film to form a coating film, and the coating film is formed into 100. Drying was performed at ° C for 120 seconds to similarly form an expandable substrate layer (Y1) having a thickness of 50 ⁇ m.
  • the storage elastic modulus and probe tack value in each temperature of an expansible base material layer (Y1) were measured. The measurement results were as follows. -Storage elastic modulus E '(23) at 23 ° C.
  • peel force (F 0) and (F 1) measured in accordance with the following methods.
  • peeling is performed at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet at a pulling speed of 300 mm / min according to JIS Z0237: 2000 by a 180 ° peeling method.
  • the peeling force measured at the time of the measurement was defined as “peeling force (F 0 )”.
  • peeling force (F 1 ) The heavy release film of the prepared pressure-sensitive adhesive sheet is removed, and the exposed first pressure-sensitive adhesive layer (X1) is attached to a silicon wafer, heated at 240 ° C. for 3 minutes, and in the thermally expandable base material layer (Y1). The thermally expandable particles were expanded. Thereafter, in the same manner as the measurement of the peeling force (F 0 ) described above, the peeling force measured when peeling was performed at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet under the above conditions. Was defined as “peeling force (F 1 )”.
  • the adhesive sheet (I) is completely separated from the silicon wafer when the adhesive sheet is fixed with the upper chuck of the universal tensile testing machine and cannot be fixed. The measurement was terminated, and the peeling force (F 1 ) at that time was set to “0 mN / 25 mm”.
  • Example 1 ⁇ Step (1)> The pressure-sensitive adhesive sheet produced in Production Example 2 was cut into a square size of 230 mm ⁇ 230 mm. Using a tape grinder for back grind (manufactured by Lintec Corporation, device name “RAD-3510F / 12”), the heavy release film of the cut adhesive sheet was peeled off, and the first adhesive layer (X1) exposed was exposed. The adhesive surface was attached to a hard support (material: silicon, thickness: 725 ⁇ m, Young's modulus: 30 GPa). Further, the light release film was also peeled off, and nine semiconductor chips (the size of each chip was 6.4 mm long ⁇ 6.4 horizontal) on the adhesive surface of the exposed second pressure-sensitive adhesive layer (X2). X A rectangular parallelepiped shape having a thickness of 200 ⁇ m (# 2000) was placed at a certain interval so that the circuit surface on which the circuit was formed was in contact with the adhesive surface.
  • a tape grinder for back grind manufactured by Lintec Corporation, device name “RAD-3510F /
  • Step (2)> The nine semiconductor chips and the adhesive surface of the second adhesive layer (X2) at least in the periphery of the semiconductor chip are covered with a thermosetting sealing resin film as a sealing material, and heated in a vacuum Using a pressure laminator (“7024HP5” manufactured by ROHM and HAAS), the sealing resin film was thermally cured to produce a cured sealing body formed by sealing the semiconductor chip with a sealing material.
  • the sealing conditions are as follows. -Preheating temperature: 100 ° C for both table and diaphragm ⁇ Vacuum drawing: 60 seconds ⁇ Dynamic press mode: 30 seconds ⁇ Static press mode: 10 seconds ⁇ Sealing temperature: 180 ° C. ⁇ 60 minutes Note that the semiconductor chip is not misaligned when covered with the above sealing resin film. Was not.
  • the surface of the hard support after the pressure-sensitive adhesive sheet is separated is not confirmed to remain in the first pressure-sensitive adhesive layer (X1), is not contaminated, and the surface of the hard support is newly cleaned. It is thought that there is no need to perform the process. Further, the semiconductor chip sealed in the obtained cured sealing body was not misaligned, and no sealing resin was observed on the circuit surface. Furthermore, about the cured sealing body with the pressure-sensitive adhesive sheet after being separated from the hard support, there is no adverse effect such as dropping of the first pressure-sensitive adhesive layer (X1) located in the outermost layer of the pressure-sensitive adhesive sheet. It can be said that the occurrence of contamination is suppressed.

Abstract

This method for producing a cured sealant by using an adhesive sheet having: a base material (Y) equipped with a non-expandable base material layer (Y2) and an expandable base material layer (Y1) that contains expandable particles; and a first adhesive layer (X1) and a second adhesive layer (X2). The method comprises steps (1)-(3). Step (1): A step for attaching the adhesive surface of the first adhesive layer (X1) to a hard support body, and placing an object to be sealed on a portion of the adhesive surface of the second adhesive layer (X2). Step (2): A step for covering the object to be sealed and the adhesive surface of the second adhesive layer (X2) with a sealant, and then letting said sealant to cure so as to obtain a cured sealant. Step (3): A step for causing the expandable particles to expand so as to separate the hard support body and the first adhesive layer (X1) from each other at an interface P therebetween.

Description

硬化封止体の製造方法Method for producing cured sealing body
 本発明は、硬化封止体の製造方法に関する。 The present invention relates to a method for producing a cured encapsulant.
 粘着シートは、部材を半永久的に固定する用途だけでなく、建材、内装材、電子部品等を加工もしくは検査を行う際に、対象となる部材を仮固定するための仮固定用途に使用される場合がある。
 このような仮固定用途の粘着シートには、使用時の接着性と、使用後の剥離性との両立が要求される。
The pressure-sensitive adhesive sheet is used not only for semi-permanently fixing members but also for temporarily fixing the target members when processing or inspecting building materials, interior materials, electronic parts, etc. There is a case.
Such a pressure-sensitive adhesive sheet for temporarily fixing is required to satisfy both adhesiveness at the time of use and peelability after use.
 例えば、特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用の加熱剥離型粘着シートが開示されている。
 この加熱剥離型粘着シートは、熱膨張性粘着層の厚さに対して、熱膨張性微小球の最大粒子径を調整し、加熱前の熱膨張性粘着層の表面の中心線平均粗さを0.4μm以下に調整している。
 特許文献1には、当該加熱剥離型粘着シートは、電子部品切断時には、被着体との貼付面積を十分に確保できるため、チップ飛び等の接着不具合を防止し得る接着性を発揮でき、一方で、使用後には、加熱して熱膨張性微小球を膨張させれば、被着体との接触面積を減少させ、容易に剥離することができる旨の記載がある。
For example, Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing at the time of cutting an electronic component, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a substrate. ing.
This heat-peelable pressure-sensitive adhesive sheet adjusts the maximum particle diameter of the heat-expandable microspheres with respect to the thickness of the heat-expandable pressure-sensitive adhesive layer, and calculates the centerline average roughness of the surface of the heat-expandable pressure-sensitive adhesive layer before heating. It is adjusted to 0.4 μm or less.
In Patent Document 1, since the heat-peelable pressure-sensitive adhesive sheet can sufficiently secure a bonding area with an adherend when an electronic component is cut, it can exhibit adhesiveness that can prevent adhesion failure such as chip jumping, Then, after use, there is a description that if the thermally expandable microspheres are expanded by heating, the contact area with the adherend can be reduced and can be easily peeled off.
特許第3594853号公報Japanese Patent No. 3594853
 近年、電子機器の小型化、薄型化、及び高密度化が進んでおり、電子機器に搭載される半導体装置にも、小型化、薄型化、及び高密度化が求められている。このような要求に対応し得る半導体パッケージ技術として、FOWLP(Fan out Wafer Level Package)が注目されている。
 FOWLPは、所定の間隔で配置した複数の半導体チップを封止材で封止してなる硬化封止体の半導体チップ側の表面上に、再配線層を設け、再配線層を介して、はんだボールと半導体チップとを電気的に接続した半導体パッケージである。
 FOWLPは、半導体チップの外側まではんだボールである端子を広げること(Fan out)ができるため、半導体チップの面積と比べて端子数が多い用途にも適用することができる。
In recent years, electronic devices have been reduced in size, thickness, and density, and semiconductor devices mounted on electronic devices are also required to be reduced in size, thickness, and density. FOWLP (Fan out Wafer Level Package) has attracted attention as a semiconductor package technology that can meet such demands.
FOWLP provides a rewiring layer on the surface of a semiconductor chip side of a hardened sealing body formed by sealing a plurality of semiconductor chips arranged at a predetermined interval with a sealing material, and soldering is performed via the rewiring layer. A semiconductor package in which a ball and a semiconductor chip are electrically connected.
FOWLP can be applied to an application where the number of terminals is larger than the area of the semiconductor chip because the terminals, which are solder balls, can be expanded to the outside of the semiconductor chip (Fan out).
 ところで、FOWLPは、半導体チップの回路面を粘着シート上に載置し、100℃前後まで加熱した流動性を有する状態の封止樹脂を、半導体チップの周辺に充填し、加熱して、封止樹脂から構成された層を形成する、もしくは、封止用樹脂フィルムを半導体チップ上に積層して、加熱して、ラミネートするといった封止工程と、粘着シートを除去し、表出した半導体チップ側の表面に再配電層及びはんだボールを形成する工程とを経て製造されることが一般的である。
 上記のFOWLPの製造方法の封止工程において、例えば、特許文献1に記載されたような、基材上に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた加熱剥離型粘着シートを用いることも考えられる。
By the way, FOWLP is a method in which a circuit surface of a semiconductor chip is placed on an adhesive sheet, and a sealing resin having fluidity heated to around 100 ° C. is filled around the semiconductor chip, heated, and sealed. Forming a layer composed of resin or laminating a sealing resin film on a semiconductor chip, heating and laminating, and removing the adhesive sheet and exposing the semiconductor chip side In general, it is manufactured through a step of forming a redistribution layer and solder balls on the surface of the substrate.
In the sealing step of the above FOWLP manufacturing method, for example, as described in Patent Document 1, a heat-peelable adhesive in which a thermally expandable adhesive layer containing thermally expandable microspheres is provided on a substrate. It is also possible to use a sheet.
 しかしながら、特許文献1に記載の加熱剥離型粘着シートが有する熱膨張性粘着層は、熱膨張性微小球を含有するため、熱膨張性微小球を含有しない粘着層に比べて、封止工程等の加工や検査を行う際の粘着力の低下が懸念される。
 例えば、封止工程の際の粘着力の低下は、粘着剤層上に載置している半導体チップの位置ずれや、半導体チップと粘着シートとの接着界面において封止樹脂が侵入し、半導体チップの回路面に樹脂が付着する等の弊害が生じる要因となる。
 特に、熱膨張性微小球の膨張時に、表面に凹凸が形成され易くなるように、熱膨張性粘着層の弾性率は低く調整していることが一般的であるが、弾性率が低い熱膨張性粘着剤層の表面上に載置した半導体チップは、封止工程の際に、位置ずれが生じ易いという懸念がある。
However, since the heat-expandable pressure-sensitive adhesive layer of the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 1 contains heat-expandable microspheres, it has a sealing process, etc., compared to an adhesive layer that does not contain heat-expandable microspheres. There is a concern about the decrease in adhesive strength during the processing and inspection.
For example, the decrease in the adhesive strength during the sealing process is caused by the displacement of the semiconductor chip placed on the adhesive layer or the sealing resin invading at the bonding interface between the semiconductor chip and the adhesive sheet. This causes a problem such as resin adhering to the circuit surface.
In particular, the elastic modulus of the heat-expandable pressure-sensitive adhesive layer is generally adjusted to be low so that irregularities are easily formed on the surface during expansion of the heat-expandable microspheres. There is a concern that the semiconductor chip placed on the surface of the adhesive layer is likely to be displaced during the sealing process.
 半導体チップの位置ずれの発生や、半導体チップの回路面への封止樹脂の付着は、半導体装置の製造における歩留まりの低下の要因となる。このような問題は、半導体チップ以外の封止対象物にも生じ得ることである。
 そのため、硬化封止体を得る際に生じ得る、半導体チップ等の封止対象物の位置ずれの発生や、半導体チップの回路面等の封止対象物の露出表面のへの封止樹脂の付着といった弊害を抑制し得る、硬化封止体を製造する方法が求められている。
The occurrence of misalignment of the semiconductor chip and the adhesion of the sealing resin to the circuit surface of the semiconductor chip cause a decrease in yield in the manufacture of the semiconductor device. Such a problem may occur also in an object to be sealed other than a semiconductor chip.
Therefore, occurrence of misalignment of a sealing object such as a semiconductor chip that may occur when obtaining a cured sealing body, and adhesion of sealing resin to an exposed surface of the sealing object such as a circuit surface of a semiconductor chip Thus, there is a demand for a method for producing a cured encapsulant that can suppress such harmful effects.
 また、FOWLPの製造において、基材の両面に粘着剤層を有する両面粘着シートを介して、支持体と半導体チップと固定することが一般的である。例えば、特許文献1に記載された加熱剥離型粘着シートにおいて、基材の両面に、熱膨張性粘着層及び粘着剤層を設けた両面粘着シートとして、熱膨張性粘着層側には半導体チップを載置し、粘着剤層側は支持体と貼付して、封止工程等の各種加工が通常行われる。
 しかしながら、上記の加熱剥離型粘着シートを用いた場合、熱膨張性粘着層と硬化封止物との界面で分離され、支持体には上記の両面粘着シートが貼付したままとなるが、支持体から両面粘着シートを除去する際に、被着体に粘着シートの粘着剤層の一部が残存してしまう場合がある。このような場合、支持体の洗浄工程を要する必要があり、生産性の低下の要因となる。
Further, in the manufacture of FOWLP, it is common to fix the support and the semiconductor chip via a double-sided PSA sheet having adhesive layers on both sides of the substrate. For example, in the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 1, as a double-sided pressure-sensitive adhesive sheet in which a heat-expandable pressure-sensitive adhesive layer and a pressure-sensitive adhesive layer are provided on both surfaces of a substrate, a semiconductor chip is provided on the heat-expandable pressure-sensitive adhesive layer side. It is mounted, and the adhesive layer side is attached to a support, and various processes such as a sealing process are usually performed.
However, when the above heat-peelable pressure-sensitive adhesive sheet is used, it is separated at the interface between the heat-expandable pressure-sensitive adhesive layer and the cured sealing material, and the above-mentioned double-sided pressure-sensitive adhesive sheet remains adhered to the support. When the double-sided PSA sheet is removed from the substrate, a part of the PSA layer of the PSA sheet may remain on the adherend. In such a case, it is necessary to perform a cleaning process of the support, which causes a reduction in productivity.
 一方で、上記の両面粘着シートを用いる際に、熱膨張性粘着層を支持体と貼付する方法も考えられ、封止工程後に、支持体から両面粘着シートを除去する際の剥離性は改善されるものと思われる。
 しかしながら、熱膨張性微小球の膨張した後の熱膨張性粘着層は、非常に脆くなっている。
 そのため、支持体から剥離後の両面粘着シート付きの硬化封止体は、この熱膨張性粘着層が最外層に位置するため、運搬する際や、次工程で加工を施す際に、熱膨張性粘着層の一部が脱落が生じたり、熱膨張性粘着層の剥がれが生じ易い。脱落した熱膨張性粘着層が、製造環境内の各種機器等に付着して、機器を汚染してしまった場合には、機器の洗浄が必要となるため、生産性の低下の要因となる。
 つまり、硬化封止体の製造において、製造環境内での汚染を抑制して、洗浄工程を要せず、生産性を向上させることも求められている。
On the other hand, when using the above double-sided pressure-sensitive adhesive sheet, a method of sticking the thermally expandable pressure-sensitive adhesive layer to the support is also conceivable, and the peelability when removing the double-sided pressure-sensitive adhesive sheet from the support after the sealing step is improved. It seems to be.
However, the heat-expandable adhesive layer after the heat-expandable microspheres are expanded is very brittle.
Therefore, the cured sealing body with the double-sided pressure-sensitive adhesive sheet after peeling from the support is thermally expandable when transported or processed in the next process because this thermally expandable pressure-sensitive adhesive layer is located in the outermost layer. Part of the pressure-sensitive adhesive layer is easily dropped off or the heat-expandable pressure-sensitive adhesive layer is easily peeled off. If the dropped heat-expandable adhesive layer adheres to various devices in the production environment and contaminates the device, the device needs to be cleaned, which causes a decrease in productivity.
That is, in the production of a cured encapsulated body, it is also required to suppress the contamination in the production environment, do not require a cleaning step, and improve productivity.
 本発明は、封止対象物を封止材を用いて硬化封止体を得る際に、封止対象物の位置ずれの発生や、封止対象物の露出表面への封止樹脂の付着といった弊害を効果的に抑制して、歩留まりを向上させ得ると共に、製造環境内での汚染を抑制して、生産性も向上させ得る、硬化封止体の製造方法を提供することを目的とする。 In the present invention, when a sealing object is obtained by using a sealing material to obtain a cured sealing body, occurrence of positional deviation of the sealing object and adhesion of the sealing resin to the exposed surface of the sealing object It is an object of the present invention to provide a method for producing a cured encapsulant that can effectively suppress adverse effects and improve yield, and can suppress contamination in a production environment and improve productivity.
 本発明者らは、封止対象物を封止材を用いて硬化封止体を製造する過程において、膨張性粒子を含む膨張性基材層と非膨張性基材層とを少なくとも備える基材の両面に、それぞれ、非膨張性粘着剤層である、第1粘着剤層及び第2粘着剤層を有する粘着シートを用いることで、上記課題を解決し得ることを見い出した。 In the process of producing a cured sealing body using a sealing material as a sealing object, the present inventors include a base material provided with at least an inflatable base material layer containing inflatable particles and a non-inflatable base material layer. It has been found that the above-mentioned problems can be solved by using a pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer, which are non-intumescent pressure-sensitive adhesive layers, on both sides.
 すなわち、本発明は、下記[1]~[10]に関する。
[1]膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、
 基材(Y)の両面に、それぞれ、非膨張性粘着剤層である、第1粘着剤層(X1)及び第2粘着剤層(X2)とを有し、
 前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得る、粘着シートを用いて、硬化封止体を製造する方法であって、
 下記工程(1)~(3)を有する、硬化封止体の製造方法。
・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面の一部に、封止対象物を載置する工程。
・工程(2):前記封止対象物と、当該封止対象物の少なくとも周辺部の第2粘着剤層(X2)の粘着表面とを封止材で被覆し、当該封止材を硬化させて、前記封止対象物を前記封止材で封止してなる硬化封止体を得る工程。
・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上に前記硬化封止体を積層したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
[2]前記粘着シートが、前記基材(Y)の前記膨張性基材層(Y1)側に第1粘着剤層(X1)を有し、該基材(Y)の前記非膨張性基材層(Y2)側に前記第2粘着剤層(X2)を有する、上記[1]に記載の硬化封止体の製造方法。
[3]前記基材(Y)が、前記膨張性基材層(Y1)と、前記膨張性基材層(Y1)の前記第1粘着層(X1)側に設けられた非膨張性基材層(Y2-1)と、前記膨張性基材層(Y1)の前記第2粘着層(X2)側に設けられた非膨張性基材層(Y2-2)とを有しており、
 前記膨張性粒子が膨張する際における非膨張性基材層(Y2-1)の貯蔵弾性率E’が、前記膨張性粒子が膨張する際における非膨張性基材層(Y2-2)の貯蔵弾性率E’よりも低い、上記[1]又は[2]に記載の硬化封止体の製造方法。
[4]前記非膨張性基材層(Y2)は、前記膨張性基材層(Y1)よりも前記第1粘着剤層(X1)から離れた位置に存在しており、前記膨張性基材層(Y1)と前記第1粘着剤層(X1)との間には前記非膨張性基材層(Y2)は存在しておらず、
 前記膨張性粒子が膨張する際における前記非膨張性基材層(Y2)の貯蔵弾性率E’は、前記膨張性粒子が膨張する際における前記膨張性基材層(Y1)の貯蔵弾性率E’よりも大きい、上記[1]又は[2]に記載の硬化封止体の製造方法。
[5]工程(3)において、前記膨張性粒子を膨張させた際、前記粘着シートを構成する各層の層間では分離しない、上記[1]~[4]のいずれかに記載の硬化封止体の製造方法。
[6]前記膨張性粒子が、膨張開始温度(t)が60~270℃の熱膨張性粒子である、上記[1]~[5]のいずれかに記載の硬化封止体の製造方法。
[7]前記熱膨張性粒子の膨張を、熱膨張性粒子の「膨張開始温度(t)+10℃」~「膨張開始温度(t)+60℃」間で加熱処理により行う、上記[6]記載の硬化封止体の製造方法。
[8]前記膨張性基材層(Y1)が前記熱膨張性粒子を含む熱膨張性基材層(Y1-1)であり、23℃における熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)が、1.0×10Pa以上である上記[6]又は[7]に記載の硬化封止体の製造方法。
[9]前記非膨張性基材層(Y2)の体積変化率(%)が2体積%未満である上記[1]~[8]のいずれかに記載の硬化封止体の製造方法。
[10]前記封止対象物が、半導体チップである、上記[1]~[9]のいずれかに記載の硬化封止体の製造方法。
That is, the present invention relates to the following [1] to [10].
[1] A substrate (Y) comprising at least an expandable substrate layer (Y1) containing expandable particles and a non-expandable substrate layer (Y2);
On both surfaces of the base material (Y), the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2), which are non-intumescent pressure-sensitive adhesive layers,
By the expansion of the expandable particles, unevenness can occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1), using a pressure-sensitive adhesive sheet, a method for producing a cured sealing body,
A method for producing a cured encapsulant comprising the following steps (1) to (3).
-Process (1): The process of sticking the adhesion surface of a 1st adhesive layer (X1) on a hard support body, and mounting a sealing target object on a part of adhesion surface of a 2nd adhesive layer (X2). .
Step (2): The sealing object and the adhesive surface of the second pressure-sensitive adhesive layer (X2) at least in the periphery of the sealing object are covered with a sealing material, and the sealing material is cured. And the process of obtaining the hardening sealing body formed by sealing the said sealing target object with the said sealing material.
Step (3): The expandable particles are expanded and the hard support and the first pressure-sensitive adhesive layer (X1) are stacked while the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2). Separating at the interface P.
[2] The pressure-sensitive adhesive sheet has a first pressure-sensitive adhesive layer (X1) on the base material (Y) on the side of the expandable base material layer (Y1), and the base material (Y) has the non-expandable group. The manufacturing method of the hardening sealing body as described in said [1] which has a said 2nd adhesive layer (X2) in the material layer (Y2) side.
[3] The base material (Y) is a non-expandable base material provided on the expandable base material layer (Y1) and the first adhesive layer (X1) side of the expandable base material layer (Y1). A layer (Y2-1) and a non-intumescent substrate layer (Y2-2) provided on the second adhesive layer (X2) side of the expandable substrate layer (Y1),
The storage elastic modulus E ′ of the non-expandable base layer (Y2-1) when the expandable particles expand is determined by the storage modulus of the non-expandable base layer (Y2-2) when the expandable particles expand. The manufacturing method of the hardening sealing body as described in said [1] or [2] lower than elastic modulus E '.
[4] The non-expandable base layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the expandable base layer (Y1), and the expandable base layer The non-intumescent substrate layer (Y2) does not exist between the layer (Y1) and the first pressure-sensitive adhesive layer (X1),
The storage elastic modulus E ′ of the non-expandable base layer (Y2) when the expandable particles expand is the storage elastic modulus E of the expandable base layer (Y1) when the expandable particles expand. The manufacturing method of the hardening sealing body as described in said [1] or [2] larger than '.
[5] The cured encapsulant according to any one of the above [1] to [4], wherein when the expandable particles are expanded in step (3), they are not separated between the layers constituting the pressure-sensitive adhesive sheet. Manufacturing method.
[6] The method for producing a cured encapsulant according to any one of [1] to [5] above, wherein the expandable particles are thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
[7] The expansion according to [6], wherein the expansion of the thermally expandable particles is performed by a heat treatment between “expansion start temperature (t) + 10 ° C.” to “expansion start temperature (t) + 60 ° C.” Manufacturing method of the cured sealing body.
[8] Storage of the thermally expandable substrate layer (Y1-1) at 23 ° C., wherein the expandable substrate layer (Y1) is a thermally expandable substrate layer (Y1-1) containing the thermally expandable particles. The method for producing a cured sealed body according to the above [6] or [7], wherein the elastic modulus E ′ (23) is 1.0 × 10 6 Pa or more.
[9] The method for producing a cured encapsulant according to any one of the above [1] to [8], wherein the volume change rate (%) of the non-expandable base material layer (Y2) is less than 2% by volume.
[10] The method for producing a cured encapsulant according to any one of [1] to [9], wherein the object to be encapsulated is a semiconductor chip.
 本発明の硬化封止体の製造方法によれば、封止対象物を封止材によって硬化封止体を得る際に、封止対象物の位置ずれの発生や、封止対象物の露出表面への封止樹脂の付着といった弊害を効果的に抑制して、歩留まりを向上させ得ると共に、製造環境内での汚染を抑制して、生産性も向上させ得る。 According to the method for producing a cured sealed body of the present invention, when obtaining a cured sealed body with a sealing material, the occurrence of positional deviation of the sealed object or the exposed surface of the sealed object. It is possible to effectively suppress adverse effects such as adhesion of the sealing resin to the substrate and improve the yield, and to suppress contamination in the manufacturing environment and improve productivity.
本発明の半導体チップの製造方法で用いる粘着シートの構成の一例を示す、当該粘着シートの断面模式図である。It is a cross-sectional schematic diagram of the said adhesive sheet which shows an example of a structure of the adhesive sheet used with the manufacturing method of the semiconductor chip of this invention. 本発明の半導体チップの製造方法の工程(1)~(3)における断面模式図である。FIG. 6 is a schematic cross-sectional view in steps (1) to (3) of the method for manufacturing a semiconductor chip of the present invention.
 本明細書において、対象となる層が「膨張性層」又は「非膨張性層」のどちらであるかの判断は、膨張させるための処理を3分間行った後、当該処理の前後での下記式から算出される体積変化率に基づき判断する。
・体積変化率(%)={(処理後の前記層の体積-処理前の前記層の体積)/処理前の前記層の体積}×100
 つまり、体積抵抗率が5体積%以上であれば、当該層は「膨張性層」であると判断し、当該体積変化率が5体積%未満であれば、当該層は「非膨張性層」であると判断する。
 なお、「膨張させるための処理」としては、例えば、膨張性粒子が熱膨張性粒子である場合には、当該熱膨張性粒子の膨張開始温度(t)で3分間の加熱処理を行えばよい。
In the present specification, the determination as to whether the target layer is an “expandable layer” or “non-expandable layer” is as follows: Judgment is made based on the volume change rate calculated from the equation.
Volume change rate (%) = {(volume of the layer after treatment−volume of the layer before treatment) / volume of the layer before treatment} × 100
That is, if the volume resistivity is 5% by volume or more, it is determined that the layer is an “expandable layer”, and if the volume change rate is less than 5% by volume, the layer is a “non-expandable layer”. It is judged that.
As the “treatment for expanding”, for example, when the expandable particles are thermally expandable particles, a heat treatment for 3 minutes may be performed at the expansion start temperature (t) of the thermally expandable particles. .
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、希釈溶媒を除いた成分を指す。
 また、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
In the present specification, the “active ingredient” refers to a component excluding a diluent solvent among components contained in a target composition.
The mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, specifically a value measured based on the method described in the examples.
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 また、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
In the present specification, for example, “(meth) acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
Moreover, about the preferable numerical range (for example, range, such as content), the lower limit value and upper limit value which were described in steps can be combined independently, respectively. For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
〔本発明の硬化封止体の製造方法〕
 本発明の硬化封止体の製造方法(以下、単に「本発明の製造方法」ともいう)は、膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、基材(Y)の両面に、それぞれ、非膨張性粘着剤層である、第1粘着剤層(X1)及び第2粘着剤層(X2)とを有し、前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得る、粘着シートを用いて、硬化封止体を製造する方法である。
 そして、本発明の製造方法は、下記工程(1)~(3)を有する。
・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面の一部に、封止対象物を載置する工程。
・工程(2):前記封止対象物と、当該封止対象物の少なくとも周辺部の第2粘着剤層(X2)の粘着表面とを封止材で被覆し、当該封止材を硬化させて、前記封止対象物を前記封止材で封止してなる硬化封止体を得る工程。
・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上に前記硬化封止体を積層したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
[Method for producing cured sealing body of the present invention]
The method for producing a cured encapsulant of the present invention (hereinafter also simply referred to as “the production method of the present invention”) comprises an expandable base material layer (Y1) and a non-expandable base material layer (Y2) containing expandable particles. It has at least a base material (Y) and a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2) that are non-expandable pressure-sensitive adhesive layers on both sides of the base material (Y). This is a method for producing a cured encapsulant using an adhesive sheet, in which irregularities can occur on the adhesive surface of the first adhesive layer (X1) due to the expansion of the expandable particles.
The production method of the present invention includes the following steps (1) to (3).
-Process (1): The process of sticking the adhesion surface of a 1st adhesive layer (X1) on a hard support body, and mounting a sealing target object on a part of adhesion surface of a 2nd adhesive layer (X2). .
Step (2): The sealing object and the adhesive surface of the second pressure-sensitive adhesive layer (X2) at least in the periphery of the sealing object are covered with a sealing material, and the sealing material is cured. And the process of obtaining the hardening sealing body formed by sealing the said sealing target object with the said sealing material.
Step (3): The expandable particles are expanded and the hard support and the first pressure-sensitive adhesive layer (X1) are stacked while the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2). Separating at the interface P.
〔本発明の製造方法で用いる粘着シートの構成〕
 図1は、本発明の製造方法で用いる粘着シートの構成の一例を示す、当該粘着シートの断面模式図である。
 本発明の製造方法で用いる粘着シートは、図1(a)に示すような、膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、基材(Y)の両面に、それぞれ、非膨張性粘着剤層である、第1粘着剤層(X1)及び第2粘着剤層(X2)とを有する粘着シート1aが挙げられる。
[Configuration of pressure-sensitive adhesive sheet used in the production method of the present invention]
FIG. 1 is a schematic cross-sectional view of the pressure-sensitive adhesive sheet showing an example of the configuration of the pressure-sensitive adhesive sheet used in the production method of the present invention.
The pressure-sensitive adhesive sheet used in the production method of the present invention includes a base (Y) having at least an expandable base layer (Y1) and a non-expandable base layer (Y2) as shown in FIG. The adhesive sheet 1a which has a 1st adhesive layer (X1) and a 2nd adhesive layer (X2) which are non-expandable adhesive layers on both surfaces of a material (Y), respectively is mentioned.
 図1(a)に示す粘着シート1aが有する基材(Y)は、膨張性基材層(Y1)と非膨張性基材層(Y2)とが直接積層した構成を有するものであるが、基材(Y)は、これ以外の構成であってもよい。
 例えば、図1(b)に示す粘着シート1bが有する基材(Y)のように、膨張性基材層(Y1)の両面に第1非熱膨張性基材層(Y2-1)及び第2非熱膨張性基材層(Y2-2)を設けた構成であってもよい。
Although the base material (Y) which the adhesive sheet 1a shown to Fig.1 (a) has has the structure which the expandable base material layer (Y1) and the non-expandable base material layer (Y2) laminated | stacked directly, The base material (Y) may have a configuration other than this.
For example, like the base material (Y) of the pressure-sensitive adhesive sheet 1b shown in FIG. 1 (b), the first non-thermally expandable base material layer (Y2-1) and the first non-expandable base material layer (Y2-1) and 2 A configuration in which a non-thermally expandable base material layer (Y2-2) is provided may be employed.
 なお、本発明の一態様で用いる粘着シートにおいて、第1粘着剤層(X1)の粘着表面及び第2粘着剤層(X2)の粘着表面には、さらに剥離材を積層した構成としてもよい。
 当該構成において、第1粘着剤層(X1)及び第2粘着剤層(X2)の一方の粘着表面に、両面に剥離処理が施された剥離材が積層したものを、ロール状に巻いた構成としてもよい。
 これらの剥離材は、第1粘着剤層(X1)及び第2粘着剤層(X2)の粘着表面を保護するために設けられたものであり、粘着シートの使用時には除去されるものである。
In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, a release material may be further laminated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2).
In the structure, a structure in which a release material having a release treatment applied to both sides is laminated on one adhesive surface of the first adhesive layer (X1) and the second adhesive layer (X2) is wound in a roll shape. It is good.
These release materials are provided to protect the adhesive surfaces of the first adhesive layer (X1) and the second adhesive layer (X2), and are removed when the adhesive sheet is used.
 また、例えば、図1(a)に示す粘着シート1aにおいて、第1粘着剤層(X1)上に積層した剥離材を剥がす際の剥離力と、第2粘着剤層(X2)上に積層した剥離材を剥がす際の剥離力とが同程度である場合、双方の剥離材を外側へ引っ張って剥がそうとすることで、粘着シート1aが、2つの剥離材に伴って分断されて引き剥がされるという弊害が生じることがある。
 そのため、第1粘着剤層(X1)上に積層する剥離材と、第2粘着剤層(X2)上に積層する剥離材とは、互いに貼付される粘着剤層からの剥離力が異なるように設計された2種の剥離材を用いることが好ましい。
Also, for example, in the pressure-sensitive adhesive sheet 1a shown in FIG. 1A, the peeling force when peeling the release material laminated on the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are laminated. When the peeling force at the time of peeling off the release material is about the same, the adhesive sheet 1a is divided along with the two release materials and peeled off by pulling both release materials outward. This may cause a negative effect.
For this reason, the release material laminated on the first pressure-sensitive adhesive layer (X1) and the release material laminated on the second pressure-sensitive adhesive layer (X2) have different peeling forces from the pressure-sensitive adhesive layer attached to each other. It is preferable to use two types of designed release materials.
 ところで、本発明の製造方法で用いる粘着シートは、前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得るように調整されている。
 例えば、図1(a)に示す粘着シート1aでは、膨張性粒子を含有する膨張性基材層(Y1)上に、非膨張性粘着剤層である第1粘着剤層(X1)を積層し、また、非膨張性基材層(Y2)上に、非膨張性粘着剤層である第2粘着剤層(X2)を積層した構成を有している。
 粘着シート1aにおいて、膨張性基材層(Y1)中の膨張性粒子が膨張すると、膨張性基材層(Y1)の表面に凹凸が生じて、当該表面と接触している第1粘着剤層(X1)が、その凹凸によって押し上げられ、結果として、第1粘着剤層(X1)の粘着表面にも凹凸が生じ得る。
 本発明の製造方法において、上述の工程(1)のとおり、第1粘着剤層(X1)の粘着表面は、硬質支持体に貼付される。
 そして、上述の工程(3)において、膨張性粒子を膨張させた際、第1粘着剤層(X1)の粘着表面に凹凸が生じ、硬質支持体との接触面積が減少するため、硬質支持体と第1粘着剤層(X1)との界面Pでわずかな力で一括して容易に分離することができる。
 また、膨張性粒子を膨張させた際、膨張性基材層(Y1)と非膨張性基材層(Y2)との界面においても、わずかな力で一括して容易に分離可能となるように調整してもよい。
By the way, the pressure-sensitive adhesive sheet used in the production method of the present invention is adjusted so that irregularities can be generated on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) by the expansion of the expandable particles.
For example, in the pressure-sensitive adhesive sheet 1a shown in FIG. 1A, a first pressure-sensitive adhesive layer (X1) that is a non-expandable pressure-sensitive adhesive layer is laminated on an expandable base material layer (Y1) containing expandable particles. Moreover, it has the structure which laminated | stacked the 2nd adhesive layer (X2) which is a non-expandable adhesive layer on the non-expandable base material layer (Y2).
In the pressure-sensitive adhesive sheet 1a, when the expandable particles in the expandable base material layer (Y1) expand, the surface of the expandable base material layer (Y1) is uneven, and the first pressure-sensitive adhesive layer is in contact with the surface. (X1) is pushed up by the irregularities, and as a result, irregularities may also occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1).
In the production method of the present invention, as described in the above step (1), the adhesive surface of the first adhesive layer (X1) is affixed to a hard support.
And in said process (3), when an expandable particle is expanded, since an unevenness | corrugation arises in the adhesive surface of a 1st adhesive layer (X1) and a contact area with a hard support body decreases, a hard support body And the first pressure-sensitive adhesive layer (X1) can be easily separated together with a slight force at the interface P.
Further, when the expandable particles are expanded, they can be easily separated by a small force at the interface between the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2). You may adjust.
 一方で、上述の工程(1)のとおり、第2粘着剤層(X2)の粘着表面には、封止対象物が載置され、工程(2)において、載置された封止対象物と、封止対象物の周辺部の第2粘着剤層(X2)とを封止材で被覆し、当該封止材を硬化させて、硬化封止体が形成される。そして、上述の工程(3)で規定のとおり、膨張性粒子を膨張させた際には、第2粘着剤層(X2)上に硬化封止体を積層したまま、硬質支持体と第1粘着剤層(X1)との界面Pで分離される。
 つまり、硬質支持体から分離する際に、複数の半導体チップは、粘着シートの第2粘着剤層(X2)上に保持されていることを要する。
 そのために、第2粘着剤層(X2)の粘着表面は、前記膨張性粒子の膨張によっても、硬化封止体を保持し得るほどの粘着力を維持できるように、凹凸の形成が抑制されるように調整されていることが好ましい。
On the other hand, as described above, the sealing object is placed on the adhesive surface of the second pressure-sensitive adhesive layer (X2). In step (2), the placed sealing object and Then, the second pressure-sensitive adhesive layer (X2) at the periphery of the object to be sealed is covered with a sealing material, and the sealing material is cured to form a cured sealing body. And as stipulated in the above-mentioned step (3), when the expandable particles are expanded, the hard support and the first pressure-sensitive adhesive remain stacked on the second pressure-sensitive adhesive layer (X2). They are separated at the interface P with the agent layer (X1).
That is, when separating from the hard support, the plurality of semiconductor chips are required to be held on the second pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet.
Therefore, the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2) is suppressed from forming irregularities so that the adhesive force sufficient to hold the cured sealing body can be maintained by the expansion of the expandable particles. It is preferable that the adjustment is performed.
 例えば、図1(a)に示す粘着シート1aにおいては、膨張性基材層(Y1)の第1粘着剤層(X1)とは反対の表面には、非膨張性基材層(Y2)を備えており、この非膨張性基材層(Y2)の表面上に第2粘着剤層(X2)が積層した構成としている。
 粘着シート1aにおいて、膨張性粒子が膨張した際に、非膨張性基材層(Y2)が存在するため、膨張性粒子が膨張することによる膨張性基材層(Y1)側からの応力は、非膨張性基材層(Y2)が吸収する。その結果、非膨張性基材層(Y2)上に積層した第2粘着剤層(X2)の粘着表面の凹凸の形成は抑制され、当該粘着表面上に硬化封止体を積層した状態で保持することができる。
For example, in the pressure-sensitive adhesive sheet 1a shown in FIG. 1 (a), the non-intumescent base material layer (Y2) is provided on the surface of the expandable base material layer (Y1) opposite to the first pressure-sensitive adhesive layer (X1). The second pressure-sensitive adhesive layer (X2) is laminated on the surface of the non-expandable base material layer (Y2).
In the pressure-sensitive adhesive sheet 1a, when the expandable particles are expanded, the non-expandable base layer (Y2) is present. Therefore, the stress from the expandable base layer (Y1) side due to expansion of the expandable particles is A non-expandable base material layer (Y2) absorbs. As a result, the formation of irregularities on the adhesive surface of the second pressure-sensitive adhesive layer (X2) laminated on the non-expandable base material layer (Y2) is suppressed, and the cured sealed body is laminated on the adhesive surface. can do.
 なお、図1(b)に示す粘着シート1bにおいては、膨張性粒子が膨張した際に、第1粘着剤層(X1)の粘着表面には凹凸が形成されるように、第1非膨張性基材層(Y2-1)の貯蔵弾性率E’を低く調整することが好ましい。
 一方で、膨張性粒子が膨張した際に、第2粘着剤層(X2)の粘着表面には凹凸の形成が抑制されるように、第2非熱膨張性基材層(Y2-2)の貯蔵弾性率E’は高く調整することが好ましい。
 すなわち、膨張性粒子が膨張する際における第1非膨張性基材層(Y2-1)の貯蔵弾性率E’を、膨張性粒子が膨張する際における第2非熱膨張性基材層(Y2-2)の貯蔵弾性率E’より低く調整することが好ましい。
In the pressure-sensitive adhesive sheet 1b shown in FIG. 1B, when the expandable particles expand, the first non-expandable so that irregularities are formed on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1). It is preferable to adjust the storage elastic modulus E ′ of the base material layer (Y2-1) to be low.
On the other hand, when the expandable particles expand, the second non-thermally expandable base material layer (Y2-2) is prevented from forming irregularities on the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2). The storage elastic modulus E ′ is preferably adjusted to be high.
That is, the storage elastic modulus E ′ of the first non-expandable base layer (Y2-1) when the expandable particles expand is equal to the second non-thermally expandable base layer (Y2) when the expandable particles expand. -2) is preferably adjusted to be lower than the storage elastic modulus E ′.
 ところで、特許文献1に記載されたような、膨張性粒子を含む膨張性粘着剤層を有する粘着シートを用いて、当該膨張性粘着剤層の粘着表面に封止対象物を載置して硬化封止体を得ようとした場合、封止対象物を載置している膨張性粘着剤層は、膨張性粒子を含有しているため、粘着力が不十分となり易い。
 そのため、工程(2)における封止工程の際に、封止対象物の位置ずれや、封止対象物と膨張性粘着剤層との接着界面に封止材の封止樹脂が侵入し、封止対象物の露出表面(例えば、半導体チップの回路面等)に封止樹脂が付着するという弊害が生じ得る。
By the way, using a pressure-sensitive adhesive sheet having an expandable pressure-sensitive adhesive layer containing expandable particles as described in Patent Document 1, a sealing object is placed on the pressure-sensitive adhesive surface of the expandable pressure-sensitive adhesive layer and cured. When it is going to obtain a sealing body, since the expansible adhesive layer which has mounted the sealing target object contains expansible particle | grains, adhesive force tends to become inadequate.
Therefore, during the sealing step in the step (2), the sealing resin of the sealing material enters the bonding interface between the positional deviation of the sealing target and the sealing target and the expandable pressure-sensitive adhesive layer. There may be an adverse effect that the sealing resin adheres to the exposed surface of the object to be stopped (for example, the circuit surface of the semiconductor chip).
 また、基材の一方の表面上に膨張性粘着剤層を有し、他方の表面上に非膨張性粘着剤層を有する両面粘着シートを用いて、当該膨張性粘着剤層は、硬質支持体と貼付し、当該非膨張性粘着剤層上には、封止対象物を載置して、硬化封止体を得る方法も考えられる。
 しかしながら、膨張性粘着剤層の粘着力は不十分となり易く、封止対象物が硬質支持体に十分に固定されていないため、非膨張性粘着剤層上に載置されている封止対象物も、封止材で被覆する際に動き易い。そのため、封止工程の際に、封止対象物の位置ずれや、封止対象物の露出表面への封止樹脂の付着といった弊害は生じ易い。
Also, using a double-sided pressure-sensitive adhesive sheet having an expandable pressure-sensitive adhesive layer on one surface of a substrate and a non-expandable pressure-sensitive adhesive layer on the other surface, the expandable pressure-sensitive adhesive layer is a hard support. A method of obtaining a cured sealing body by placing an object to be sealed on the non-intumescent pressure-sensitive adhesive layer is also conceivable.
However, since the adhesive force of the expandable pressure-sensitive adhesive layer tends to be insufficient, and the sealing object is not sufficiently fixed to the hard support, the sealing object placed on the non-expandable pressure-sensitive adhesive layer However, it is easy to move when covered with a sealing material. Therefore, in the sealing process, adverse effects such as displacement of the sealing object and adhesion of the sealing resin to the exposed surface of the sealing object are likely to occur.
 また、粘着性樹脂を選択して、膨張性粘着剤層を高粘着力とすることで、上記の弊害を回避することも考えられる。
 しかしながら、膨張性粘着剤層を高粘着力とした際に、膨張性粘着剤層に含まれる粘着性樹脂の種類によっては、膨張性粒子の膨張が不十分となり、膨張性粒子を膨張させる処理を行っても、一括して容易に剥離することが難しくなる場合がある。
 つまり、高粘着力とした膨張性粘着剤層に封止対象物を載置した場合、形成した硬化封止体を、当該膨張性粘着剤層から剥離し難くなる場合があり、剥離したとしても、硬化封止体に膨張性粘着剤層の一部が残存するといった弊害が生じ得る。
It is also conceivable to avoid the above-mentioned adverse effects by selecting an adhesive resin and making the expandable adhesive layer have a high adhesive force.
However, when the expandable pressure-sensitive adhesive layer has a high adhesive force, depending on the type of pressure-sensitive resin contained in the expandable pressure-sensitive adhesive layer, the expansion of the expandable particles becomes insufficient, and a treatment for expanding the expandable particles is performed. Even if it goes, it may become difficult to peel easily at once.
That is, when a sealing object is placed on an expandable pressure-sensitive adhesive layer having a high adhesive strength, the formed cured sealing body may be difficult to peel from the expandable pressure-sensitive adhesive layer. In addition, there may be a problem that a part of the expandable pressure-sensitive adhesive layer remains in the cured sealing body.
 また、高粘着力とした膨張性粘着剤層を硬質支持体に貼付した場合、膨張性粒子を膨張させて硬質支持体から当該両面粘着シートを剥離する際に、硬質支持体の表面に粘着剤層の一部が残存することがあり、支持体の洗浄工程を要する必要があり、生産性の低下の要因ともなる。 In addition, when an expandable pressure-sensitive adhesive layer having a high adhesive strength is applied to a hard support, the pressure-sensitive adhesive is applied to the surface of the hard support when the double-sided pressure-sensitive adhesive sheet is peeled from the hard support by expanding the expandable particles. A part of the layer may remain, and it is necessary to perform a cleaning process of the support, which causes a decrease in productivity.
 加えて、膨張性粒子の膨張後の膨張性粘着剤層は、非常に脆くなっている。硬質支持体から両面粘着シート付きの硬化封止体において、膨張性粘着剤層は、最外層に位置するが、運搬する際や、次工程で加工を施す際に、最外層にある膨張性粘着剤層の一部が脱落が生じたり、膨張性粘着剤層の剥がれが生じ易い。
 脱落した膨張性粘着剤層が、製造環境内の各種機器等に付着して、機器を汚染してしまった場合には、機器の洗浄が必要となるため、生産性の低下の要因となる。
In addition, the expandable pressure-sensitive adhesive layer after expansion of the expandable particles is very brittle. In a cured sealing body with a double-sided PSA sheet from a hard support, the expandable pressure-sensitive adhesive layer is located in the outermost layer. Part of the agent layer is likely to fall off or the expandable pressure-sensitive adhesive layer is easily peeled off.
When the dropped expandable pressure-sensitive adhesive layer adheres to various devices in the production environment and contaminates the device, the device needs to be cleaned, which causes a decrease in productivity.
 一方で、本発明の製造方法で用いる粘着シートは、膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)を有し、膨張性粒子が膨張した際には、第1粘着剤層(X1)の粘着表面には凹凸が形成されるように調整されている。
 そのため、第1粘着剤層(X1)及び第2粘着剤層(X2)の形成材料である粘着剤組成物の選択の自由度も高い。
 つまり、上述のような使用する粘着性樹脂の制限が課される膨張性粘着剤層とは異なり、膨張性粒子の膨張性を考慮せずに、第1粘着剤層(X1)及び第2粘着剤層(X2)に用いる粘着性樹脂を選択することが可能である。
 また、硬質支持体と貼付する第1粘着剤層(X1)には、非膨張性粘着剤層であり、膨張性粒子を含む必要がないため、硬質支持体に十分に固定することができるため、封止対象物と硬質支持体との固定不足による、封止対象物の位置ずれや、封止対象物の露出表面への封止樹脂の付着といった弊害を効果的に抑制し得る。
On the other hand, the pressure-sensitive adhesive sheet used in the production method of the present invention has a base material (Y) including at least an inflatable base material layer (Y1) containing inflatable particles and a non-inflatable base material layer (Y2), and is inflated. When the adhesive particles expand, the adhesive surface of the first pressure-sensitive adhesive layer (X1) is adjusted so that irregularities are formed.
Therefore, the freedom degree of selection of the adhesive composition which is a forming material of the 1st adhesive layer (X1) and the 2nd adhesive layer (X2) is also high.
That is, unlike the expandable pressure-sensitive adhesive layer in which the restriction of the pressure-sensitive adhesive resin to be used as described above is imposed, the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive are not considered without considering the expandability of the expandable particles. It is possible to select the adhesive resin used for the agent layer (X2).
In addition, the first pressure-sensitive adhesive layer (X1) to be attached to the hard support is a non-expandable pressure-sensitive adhesive layer and does not need to contain expandable particles, and therefore can be sufficiently fixed to the hard support. In addition, it is possible to effectively suppress adverse effects such as misalignment of the sealing object and adhesion of the sealing resin to the exposed surface of the sealing object due to insufficient fixation between the sealing object and the hard support.
 さらに、硬質支持体と貼付した粘着シートとを分離する際には、一括して容易に分離することができると共に、分離後の硬質支持体の汚染を効果的に抑制し得る。 Furthermore, when separating the hard support and the attached adhesive sheet, they can be easily separated together, and contamination of the hard support after separation can be effectively suppressed.
 加えて、分離後の粘着シート付きの硬化封止体において、膨張後の膨張性粒子を含有する膨張性基材層(Y1)は、少なくとも最外層に位置しておらず、また、粘着剤層に膨張性粒子を含有した場合に比べて、ある程度の強度を有している。そのため、膨張後の膨張性基材層(Y1)の脱落等は生じ難い。
 さらに、分離後の粘着シート付きの硬化封止体において、最外層に位置する第1粘着剤層(X1)は、非膨張性粘着剤層であり、膨張性粒子を含む必要がないため、第1粘着剤層(X1)の脱落等の弊害は生じ難い。
 よって、本発明の製造方法においては、製造環境内での汚染を効果的に抑制し得るため、汚染に伴う洗浄工程を要する必要が無く、優れた生産性を発現し得る。
In addition, in the cured sealed body with the pressure-sensitive adhesive sheet after separation, the expandable base material layer (Y1) containing the expanded particles after expansion is not located at least in the outermost layer, and the pressure-sensitive adhesive layer It has a certain degree of strength as compared with the case where it contains expansive particles. Therefore, dropping off of the expandable base material layer (Y1) after the expansion is difficult to occur.
Furthermore, in the cured sealed body with the pressure-sensitive adhesive sheet after separation, the first pressure-sensitive adhesive layer (X1) located in the outermost layer is a non-expandable pressure-sensitive adhesive layer and does not need to contain expandable particles. Defects such as dropping of one adhesive layer (X1) are unlikely to occur.
Therefore, in the manufacturing method of the present invention, since contamination within the manufacturing environment can be effectively suppressed, there is no need for a cleaning step accompanying the contamination, and excellent productivity can be exhibited.
〔粘着シートの各種物性〕
 本発明の一態様で用いる粘着シートは、膨張性粒子の膨張によって、硬質支持体と貼付している第1粘着剤層(X1)の粘着表面に凹凸が生じ、硬質支持体と第1粘着剤層(X1)との界面Pで、わずかな力で一括して容易に分離可能となる。
 ここで、本発明の一態様で用いる粘着シートにおいて、膨張性粒子を膨張させ、界面Pで分離する際の剥離力(F)としては、通常0~2000mN/25mm、好ましくは0~1000mN/25mm、より好ましくは0~150mN/25mm、更に好ましくは0~100mN/25mm、より更に好ましくは0~50mN/25mmである。
 なお、当該剥離力(F)が0mN/25mmである場合には、実施例に記載の方法で剥離力を測定しようとしても、剥離力が小さ過ぎるために測定不可となる場合も含まれる。
[Various physical properties of adhesive sheet]
The pressure-sensitive adhesive sheet used in one embodiment of the present invention has irregularities on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) attached to the hard support due to the expansion of the expandable particles, and the hard support and the first pressure-sensitive adhesive. At the interface P with the layer (X1), separation can be easily performed at a time with a slight force.
Here, in the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the peeling force (F 1 ) when the expandable particles are expanded and separated at the interface P is usually 0 to 2000 mN / 25 mm, preferably 0 to 1000 mN / It is 25 mm, more preferably 0 to 150 mN / 25 mm, still more preferably 0 to 100 mN / 25 mm, and still more preferably 0 to 50 mN / 25 mm.
Note that the peel force (F 1) is in the case of 0 mN / 25 mm, even trying to measure the peel strength by the method described in Example, includes the case where the measurement impossible because peel strength is too small.
 一方で、膨張性粒子の膨張前においては、封止対象物を封止材によって硬化封止体を得る際に、封止対象物の位置ずれの発生や、封止対象物の露出表面への封止樹脂の付着といった弊害を効果的に抑制して、歩留まりを向上させる観点から、第1粘着剤層(X1)の粘着力は高いほど好ましい。
 上記観点から、本発明の一態様で用いる粘着シートにおいて、膨張性粒子の膨張前における、界面Pで分離する際の剥離力(F)としては、好ましくは0.05~10.0N/25mm、より好ましくは0.1~8.0N/25mm、更に好ましくは0.15~6.0N/25mm、より更に好ましくは0.2~4.0N/25mmである。
 なお、上記剥離力(F)は、硬質支持体に対する第1粘着剤層(X1)の粘着力とみなすこともできる。
On the other hand, before the expansion of the expandable particles, when obtaining a cured sealed body of the sealing object with a sealing material, occurrence of positional deviation of the sealing object or the exposed surface of the sealing object From the viewpoint of effectively suppressing adverse effects such as adhesion of the sealing resin and improving the yield, it is preferable that the first adhesive layer (X1) has a higher adhesive force.
From the above viewpoint, in the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the peeling force (F 0 ) when separating at the interface P before the expansion of the expandable particles is preferably 0.05 to 10.0 N / 25 mm. More preferably, it is 0.1 to 8.0 N / 25 mm, still more preferably 0.15 to 6.0 N / 25 mm, and still more preferably 0.2 to 4.0 N / 25 mm.
Incidentally, the release force (F 0) can also be regarded as the adhesive strength of the first adhesive layer to the rigid support member (X1).
 本発明の一態様で用いる粘着シートにおいて、剥離力(F)と剥離力(F)との比〔(F)/(F)〕は、好ましくは0~0.9、より好ましくは0~0.8、更に好ましくは0~0.5、より更に好ましくは0~0.2である。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the ratio [(F 1 ) / (F 0 )] between the peel force (F 1 ) and the peel force (F 0 ) is preferably 0 to 0.9, more preferably Is 0 to 0.8, more preferably 0 to 0.5, and still more preferably 0 to 0.2.
 なお、剥離力(F)は、膨張性粒子が膨張する際の環境下で測定した値である。例えば、膨張性粒子が熱膨張性粒子である場合、剥離力(F)を測定する際の温度条件としては、当該熱膨張性粒子の膨張開始温度(t)以上であればよい。
 一方で、剥離力(F)を測定する際の温度条件としては、膨張性粒子が膨張しない温度であればよく、基本的には、室温(23℃)である。
 ただし、剥離力(F)及び剥離力(F)のより具体的な測定条件及び測定方法は、実施例に記載の方法に基づく。
The release force (F 1) is a value measured under the environment when the expandable particles are expanded. For example, when the expandable particles are thermally expandable particles, the temperature condition for measuring the peel force (F 1 ) may be equal to or higher than the expansion start temperature (t) of the thermally expandable particles.
On the other hand, the temperature condition for measuring the peeling force (F 0 ) may be any temperature at which the expandable particles do not expand, and is basically room temperature (23 ° C.).
However, more specific measurement conditions and measurement methods for the peel force (F 1 ) and the peel force (F 0 ) are based on the methods described in the examples.
 また、本発明の一態様で用いる粘着シートにおいて、室温(23℃)における、第2粘着剤層(X2)の粘着力としては、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、更に好ましくは0.4~6.0N/25mm、より更に好ましくは0.5~4.0N/25mmである。
 本明細書において、第2粘着剤層(X2)の粘着力は、実施例に記載の方法により測定された値を意味する。
 以下、本発明の一態様で用いる粘着シートを構成する各層について説明する。
In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the adhesive strength of the second pressure-sensitive adhesive layer (X2) at room temperature (23 ° C.) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0. The range is from 0.2 to 8.0 N / 25 mm, more preferably from 0.4 to 6.0 N / 25 mm, and still more preferably from 0.5 to 4.0 N / 25 mm.
In the present specification, the adhesive strength of the second pressure-sensitive adhesive layer (X2) means a value measured by the method described in Examples.
Hereinafter, each layer which comprises the adhesive sheet used by 1 aspect of this invention is demonstrated.
<基材(Y)>
 本発明の一態様で用いる粘着シートが有する基材(Y)は、膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える。
 また、基材(Y)としては、図1(a)に示す粘着シート1aのように、膨張性基材層(Y1)及び非膨張性基材層(Y2)をそれぞれ一つずつ積層してなるものであってもよく、図1(b)に示す粘着シート1bのように、膨張性基材層(Y1)の両面に第1非熱膨張性基材層(Y2-1)及び第2非熱膨張性基材層(Y2-2)を設けた構成であってもよい。
<Base material (Y)>
The base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention includes at least an expandable base material layer (Y1) containing inflatable particles and a non-expandable base material layer (Y2).
Moreover, as a base material (Y), like the adhesive sheet 1a shown to Fig.1 (a), an expandable base material layer (Y1) and a non-expandable base material layer (Y2) are each laminated | stacked one by one. As in the pressure-sensitive adhesive sheet 1b shown in FIG. 1B, the first non-thermally expandable base layer (Y2-1) and the second non-expandable base layer (Y2-1) are formed on both sides of the expandable base layer (Y1). A configuration in which a non-thermally expandable base material layer (Y2-2) is provided may be employed.
 また、本発明の一態様で用いる粘着シートが有する基材(Y)は、膨張性基材層(Y1)と非膨張性基材層(Y2)との間に接着層を設けた構成であってもよい。
 例えば、図1(b)に示す粘着シート1bの構成の場合は、膨張性基材層(Y1)と、第1非熱膨張性基材層(Y2-1)及び/又は第2非熱膨張性基材層(Y2-2)との間に接着層を設けてもよい。
 接着層を設けることで、膨張性基材層(Y1)と非膨張性基材層(Y2)との層間密着性を良好とすることができる。
 接着層は、一般的な接着剤や、第1粘着剤層(X1)及び第2粘着剤層(X2)の形成材料である粘着剤組成物から形成することができる。
In addition, the base material (Y) included in the pressure-sensitive adhesive sheet used in one embodiment of the present invention has a configuration in which an adhesive layer is provided between the inflatable base material layer (Y1) and the non-inflatable base material layer (Y2). May be.
For example, in the case of the configuration of the pressure-sensitive adhesive sheet 1b shown in FIG. 1B, the expandable substrate layer (Y1), the first non-thermally expandable substrate layer (Y2-1), and / or the second non-thermally expandable layer An adhesive layer may be provided between the conductive base material layer (Y2-2).
By providing the adhesive layer, the interlayer adhesion between the expandable base material layer (Y1) and the non-expandable base material layer (Y2) can be improved.
The adhesive layer can be formed from a general adhesive or a pressure-sensitive adhesive composition that is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
 本発明の一態様において、膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸を生じさせる一方、第2粘着剤層(X2)の粘着表面には凹凸の形成が抑制されるような粘着シートとする観点から、基材(Y)としては、膨張性基材層(Y1)と非膨張性基材層(Y2)とを少なくとも最表面に備えるものであることが好ましい。
 当該態様としては、図1(a)に示す粘着シート1aが有する基材(Y)や、膨張性基材層(Y1)、接着層、及び非膨張性基材層(Y2)をこの順で積層してなる基材(Y)等が挙げられる。
In one embodiment of the present invention, the expansion of the expandable particles causes unevenness on the adhesive surface of the first pressure-sensitive adhesive layer (X1), while suppressing the formation of unevenness on the adhesive surface of the second pressure-sensitive adhesive layer (X2). From the viewpoint of forming a pressure-sensitive adhesive sheet, it is preferable that the base material (Y) is provided with at least an inflatable base material layer (Y1) and a non-expandable base material layer (Y2) on the outermost surface. .
As the said aspect, the base material (Y) which the adhesive sheet 1a shown to Fig.1 (a) has, an expandable base material layer (Y1), an adhesive layer, and a non-expandable base material layer (Y2) in this order. The base material (Y) formed by laminating is mentioned.
 なお、基材(Y)を構成する膨張性基材層(Y1)及び非膨張性基材層(Y2)は、いずれも非粘着性の層である。
 本発明において、非粘着性の層か否かの判断は、対象となる層の表面に対して、JIS Z0237:1991に準拠して測定したプローブタック値が50mN/5mmφ未満であれば、当該層を「非粘着性の層」と判断する。
 本発明の一態様で用いる粘着シート(I)が有する膨張性基材層(Y1)及び非膨張性基材層(Y2)の表面におけるプローブタック値は、それぞれ独立に、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、熱膨張性基材の表面におけるプローブタック値の具体的な測定方法は、実施例に記載の方法による。
The expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) are both non-adhesive layers.
In the present invention, the determination as to whether or not the layer is a non-adhesive layer is made if the probe tack value measured in accordance with JIS Z0237: 1991 is less than 50 mN / 5 mmφ with respect to the surface of the target layer. Is judged as a “non-sticky layer”.
The probe tack values on the surfaces of the expandable base material layer (Y1) and the non-expandable base material layer (Y2) of the pressure-sensitive adhesive sheet (I) used in one embodiment of the present invention are each independently usually less than 50 mN / 5 mmφ. However, it is preferably less than 30 mN / 5 mmφ, more preferably less than 10 mN / 5 mmφ, and even more preferably less than 5 mN / 5 mmφ.
In addition, in this specification, the specific measuring method of the probe tack value on the surface of a thermally expansible base material is based on the method as described in an Example.
 本発明の一態様で用いる粘着シートにおいて、基材(Y)の厚さとしては、好ましくは15~2000μm、より好ましくは25~1500μm、更に好ましくは30~1000μm、より更に好ましくは40~500μmである。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the thickness of the substrate (Y) is preferably 15 to 2000 μm, more preferably 25 to 1500 μm, still more preferably 30 to 1000 μm, and still more preferably 40 to 500 μm. is there.
 膨張性粒子の膨張前における、膨張性基材(Y1)の厚さは、好ましくは10~1000μm、より好ましくは20~700μm、更に好ましくは25~500μm、より更に好ましくは30~300μmである。
 非膨張性基材(Y2)の厚さは、好ましくは10~1000μm、より好ましくは20~700μm、更に好ましくは25~500μm、より更に好ましくは30~300μmである。
 なお、本明細書において、例えば、図1(b)に示す粘着シート1bのように、膨張性基材(Y1)又は非膨張性基材(Y2)が、他の層を介して、複数存在する場合には、上記の膨張性基材(Y1)又は非膨張性基材(Y2)の厚さは、それぞれの一層あたりの厚さを意味する。
The thickness of the expandable substrate (Y1) before expansion of the expandable particles is preferably 10 to 1000 μm, more preferably 20 to 700 μm, still more preferably 25 to 500 μm, and still more preferably 30 to 300 μm.
The thickness of the non-expandable substrate (Y2) is preferably 10 to 1000 μm, more preferably 20 to 700 μm, still more preferably 25 to 500 μm, and still more preferably 30 to 300 μm.
In the present specification, for example, a plurality of expandable substrates (Y1) or non-expandable substrates (Y2) exist via other layers as in the adhesive sheet 1b shown in FIG. 1 (b). When doing, the thickness of said expansible base material (Y1) or a non-expandable base material (Y2) means the thickness per each layer.
 本発明の一態様で用いる粘着シートにおいて、膨張性粒子の膨張前での、膨張性基材層(Y1)と非熱膨張性基材層(Y2)との厚さ比〔(Y1)/(Y2)〕としては、好ましくは0.02~200、より好ましくは0.03~150、更に好ましくは0.05~100である。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the thickness ratio between the expandable base material layer (Y1) and the non-thermally expandable base material layer (Y2) before expansion of the expandable particles [(Y1) / ( Y2)] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
 本発明の一態様で用いる粘着シートにおいて、膨張性粒子の膨張前での膨張性基材層(Y1)と、当該膨張性基材層(Y1)と直接積層する第1粘着剤層(X1)との厚さ比〔(Y1)/(X1)〕としては、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは1.0以上、より更に好ましくは5.0以上であり、また、好ましくは1000以下、より好ましくは200以下、更に好ましくは60以下、より更に好ましくは30以下である。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the expandable base material layer (Y1) before expansion of the expandable particles, and the first pressure-sensitive adhesive layer (X1) directly laminated with the expandable base material layer (Y1) The thickness ratio [(Y1) / (X1)] is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and still more preferably 5.0 or more. Also, it is preferably 1000 or less, more preferably 200 or less, still more preferably 60 or less, and still more preferably 30 or less.
 また、本発明の一態様で用いる粘着シートにおいて、非膨張性基材層(Y2)と、当該非膨張性基材層(Y2)と直接積層する第2粘着剤層(X2)との厚さ比〔(Y2)/(X2)〕としては、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.3以上であり、また、好ましくは20以下、より好ましくは10以下、更に好ましくは5以下である。 In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, the thickness of the non-expandable base material layer (Y2) and the second pressure-sensitive adhesive layer (X2) directly laminated with the non-expandable base material layer (Y2). The ratio [(Y2) / (X2)] is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, and preferably 20 or less, more preferably 10 or less. More preferably, it is 5 or less.
 以下、基材(Y)を構成する、膨張性基材層(Y1)及び非膨張性基材層(Y2)について説明する。 Hereinafter, the expandable substrate layer (Y1) and the non-expandable substrate layer (Y2) constituting the substrate (Y) will be described.
<膨張性基材層(Y1)>
 基材(Y)を構成する膨張性基材層(Y1)は、膨張性粒子を含有し、所定の膨張処理によって、膨張し得る層である。
 膨張性基材層(Y1)中の膨張性粒子の含有量は、膨張性基材層(Y1)の全質量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。
<Expandable base material layer (Y1)>
The expandable substrate layer (Y1) constituting the substrate (Y) is a layer that contains expandable particles and can be expanded by a predetermined expansion treatment.
The content of the expandable particles in the expandable substrate layer (Y1) is preferably 1 to 40% by mass, more preferably 5%, based on the total mass (100% by mass) of the expandable substrate layer (Y1). It is ˜35% by mass, more preferably 10 to 30% by mass, and still more preferably 15 to 25% by mass.
 なお、膨張性基材層(Y1)と積層する他の層との層間密着性を向上させる観点から、膨張性基材層(Y1)の表面に対して、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、及び紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
In addition, from the viewpoint of improving interlayer adhesion between the expandable base material layer (Y1) and other layers to be laminated, the surface of the expandable base material layer (Y1) is a surface formed by an oxidation method, a roughening method, or the like. Treatment, easy adhesion treatment, or primer treatment may be performed.
Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, and ultraviolet irradiation treatment. Examples of the unevenness method include sand blast method and solvent treatment method. Etc.
 膨張性基材層(Y1)に含まれる膨張性粒子としては、所定の処理を行うことで、膨張する粒子であればよく、例えば、所定の温度以上の加熱によって膨張する熱膨張性粒子や、所定量の紫外線を吸収することで、粒子内部にガスが発生して膨張するUV膨張性粒子等が挙げられる。 The expandable particles contained in the expandable substrate layer (Y1) may be any particles that expand by performing a predetermined treatment, such as thermally expandable particles that expand by heating at a predetermined temperature or higher, Examples include UV-expandable particles that absorb a predetermined amount of ultraviolet rays to generate gas and expand inside the particles.
 膨張性粒子の体積最大膨張率は、好ましくは1.5~100倍、より好ましくは2~80倍、更に好ましくは2.5~60倍、より更に好ましくは3~40倍である。 The volume expansion coefficient of the expandable particles is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably 2.5 to 60 times, and still more preferably 3 to 40 times.
 23℃における膨張前の膨張性粒子の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、膨張性粒子の平均粒子径とは、体積中位粒径(D50)であり、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した膨張性粒子の粒子分布において、膨張性粒子の粒径の小さい方から計算した累積体積頻度が50%に相当する粒径を意味する。
The average particle diameter of the expandable particles before expansion at 23 ° C. is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, and still more preferably 10 to 50 μm.
The average particle size of the expandable particles is the volume-median particle size (D 50 ) and is measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In the particle distribution of the expanded particles, it means a particle size corresponding to 50% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
 23℃における膨張前の膨張性粒子の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは20~100μm、更に好ましくは25~90μm、より更に好ましくは30~80μmである。
 なお、膨張性粒子の90%粒子径(D90)とは、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した膨張性粒子の粒子分布において、膨張性粒子の粒径の小さい方から計算した累積体積頻度が90%に相当する粒径を意味する。
The 90% particle diameter (D 90 ) of the expandable particles before expansion at 23 ° C. is preferably 10 to 150 μm, more preferably 20 to 100 μm, still more preferably 25 to 90 μm, and still more preferably 30 to 80 μm. .
The 90% particle size (D 90 ) of the expandable particles is the particle distribution of the expandable particles measured using a laser diffraction particle size distribution measuring device (for example, product name “Mastersizer 3000” manufactured by Malvern). In FIG. 5, the particle size corresponding to 90% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles.
 本発明の一態様において、膨張性粒子としては、膨張開始温度(t)が60~270℃の熱膨張性粒子であることが好ましい。
 つまり、膨張性基材層(Y1)としては、膨張開始温度(t)が60~270℃の熱膨張性粒子を含む熱膨張性基材層(Y1-1)であることが好ましく、熱膨張性基材層(Y1-1)は、下記要件(1)を満たすことがより好ましい。
・要件(1):前記熱膨張性粒子の膨張開始温度(t)における、前記熱膨張性基材層(Y1-1)の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
 なお、本明細書において、所定の温度における熱膨張性基材層(Y1-1)の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
In one embodiment of the present invention, the expandable particles are preferably thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
That is, the expandable substrate layer (Y1) is preferably a thermally expandable substrate layer (Y1-1) containing thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C. The conductive base material layer (Y1-1) more preferably satisfies the following requirement (1).
Requirement (1): The storage elastic modulus E ′ (t) of the thermally expandable substrate layer (Y1-1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 × 10 7 Pa It is as follows.
In the present specification, the storage elastic modulus E ′ of the thermally expandable base material layer (Y1-1) at a predetermined temperature means a value measured by the method described in the examples.
 上記要件(1)は、熱膨張性粒子が膨張する直前の熱膨張性基材層(Y1-1)の剛性を示す指標といえる。
 つまり、熱膨張性粒子が膨張する際、上記要件(1)を満たす程度に、熱膨張性基材層(Y1-1)が柔軟性を有していれば、熱膨張性基材層(Y1-1)の表面に凹凸が形成され易くなり、第1粘着剤層(X1)の粘着表面にも凹凸が生じ易くなる。その結果、硬質支持体と第1粘着剤層(X1)との界面Pでわずかな力で一括して容易に分離可能とすることができる。
The requirement (1) can be said to be an index indicating the rigidity of the thermally expandable substrate layer (Y1-1) immediately before the thermally expandable particles expand.
That is, when the thermally expandable particles expand, if the thermally expandable substrate layer (Y1-1) is flexible enough to satisfy the above requirement (1), the thermally expandable substrate layer (Y1 As a result, unevenness is likely to be formed on the surface of -1), and unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1). As a result, it is possible to easily separate them with a slight force at the interface P between the hard support and the first pressure-sensitive adhesive layer (X1).
 熱膨張性基材層(Y1-1)の要件(1)で規定する貯蔵弾性率E’(t)は、上記観点から、好ましくは9.0×10Pa以下、より好ましくは8.0×10Pa以下、更に好ましくは6.0×10Pa以下、より更に好ましくは4.0×10Pa以下である。
 また、膨張した熱膨張性粒子の流動を抑制し、熱膨張性基材層(Y1-1)の表面に生じる凹凸の形状維持性を向上させ、第1粘着剤層(X1)の粘着表面にも凹凸を生じ易くする観点から、熱膨張性基材層(Y1-1)の要件(1)で規定する貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
From the above viewpoint, the storage elastic modulus E ′ (t) defined by requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 9.0 × 10 6 Pa or less, more preferably 8.0. × 10 6 Pa or less, more preferably 6.0 × 10 6 Pa or less, and even more preferably 4.0 × 10 6 Pa or less.
In addition, the flow of the expanded heat-expandable particles is suppressed, the shape maintaining property of the unevenness generated on the surface of the heat-expandable base material layer (Y1-1) is improved, and the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is improved. From the viewpoint of facilitating the formation of irregularities, the storage elastic modulus E ′ (t) defined by the requirement (1) of the thermally expandable base material layer (Y1-1) is preferably 1.0 × 10 3 Pa or more. Preferably it is 1.0 × 10 4 Pa or more, more preferably 1.0 × 10 5 Pa or more.
 また、熱膨張性基材層(Y1-1)は、下記要件(2)を満たすことも好ましく、上述の要件(1)と共に、当該要件(2)も満たすことがより好ましい。
・要件(2):23℃における、熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)が、1.0×10Pa以上である。
The thermally expandable base material layer (Y1-1) preferably satisfies the following requirement (2), and more preferably satisfies the requirement (2) together with the requirement (1).
Requirement (2): The storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) at 23 ° C. is 1.0 × 10 6 Pa or more.
 上記要件(2)を満たす熱膨張性基材層(Y1-1)とすることで、封止対象物を第2粘着剤層(X2)の粘着表面に載置する際の位置ずれを防止することができ、また、封止対象物の第2粘着剤層(X2)への過度な沈み込みを防止することもできる。 By using the thermally expandable base material layer (Y1-1) that satisfies the above requirement (2), it is possible to prevent displacement when the sealing object is placed on the adhesive surface of the second adhesive layer (X2). In addition, excessive sinking of the sealing object into the second pressure-sensitive adhesive layer (X2) can also be prevented.
 上記観点から、上記要件(2)で規定する熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×1012Pa、より好ましくは1.0×10~1.0×1012Pa、更に好ましくは5.0×10~1.0×1011Pa、より更に好ましくは1.0×10~1.0×1010Paである。 From the above viewpoint, the storage elastic modulus E ′ (23) of the thermally expandable base material layer (Y1-1) defined by the above requirement (2) is preferably 5.0 × 10 6 to 5.0 × 10 12 Pa. More preferably 1.0 × 10 7 to 1.0 × 10 12 Pa, still more preferably 5.0 × 10 7 to 1.0 × 10 11 Pa, and still more preferably 1.0 × 10 8 to 1. 0 × 10 10 Pa.
 熱膨張性基材層(Y1-1)中に含まれる熱膨張性粒子としては、膨張開始温度(t)が60~270℃の熱膨張性粒子であることが好ましい。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
[熱膨張性粒子の膨張開始温度(t)の測定法]
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
The heat-expandable particles contained in the heat-expandable base material layer (Y1-1) are preferably heat-expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
In the present specification, the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
[Measurement method of expansion start temperature (t) of thermally expandable particles]
To an aluminum cup having a diameter of 6.0 mm (inner diameter: 5.65 mm) and a depth of 4.8 mm, 0.5 mg of thermally expandable particles to be measured is added, and an aluminum lid (diameter of 5.6 mm, thickness of 0.2 mm) is added from above. 1 mm) is prepared.
Using a dynamic viscoelasticity measuring device, the height of the sample is measured from the upper part of the aluminum lid to the sample with a force of 0.01 N applied by a pressurizer. Then, with a force of 0.01 N applied by the pressurizer, heating is performed from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and the amount of displacement of the pressurizer in the vertical direction is measured. Let the displacement start temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
The thermally expandable particles are microencapsulated foaming agents composed of an outer shell composed of a thermoplastic resin and an encapsulated component encapsulated in the outer shell and vaporized when heated to a predetermined temperature. Preferably there is.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソブタン、イソペンタン、イソヘキサン、イソヘプタン、イソオクタン、イソノナン、イソデカン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ネオペンタン、ドデカン、イソドデカン、シクロトリデカン、ヘキシルシクロヘキサン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、シクロトリデカン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等が挙げられる。
 これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of the inclusion component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane. , Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane, isotetradecane, isopentadecane, iso Hexadecane, 2,2,4,4,6,8,8-heptamethylnonane, isoheptadecane, isooctadecane, isonanodecane, , 6,10,14-tetramethylpentadecane, cyclotridecane, heptylcyclohexane, n-octylcyclohexane, cyclopentadecane, nonylcyclohexane, decylcyclohexane, pentadecylcyclohexane, hexadecylcyclohexane, heptadecylcyclohexane, octadecylcyclohexane, etc. .
These encapsulated components may be used alone or in combination of two or more.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of the inclusion component.
 膨張性基材層(Y1)は、樹脂及び膨張性粒子を含む樹脂組成物(y)から形成することが好ましい。
 なお、樹脂組成物(y)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
The expandable substrate layer (Y1) is preferably formed from a resin composition (y) containing a resin and expandable particles.
In addition, you may contain the additive for base materials in the resin composition (y) in the range which does not impair the effect of this invention as needed.
Examples of the substrate additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant.
These base material additives may be used alone or in combination of two or more.
When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to about 100 parts by mass of the resin. 10 parts by mass.
 膨張性基材層(Y1)の形成材料である樹脂組成物(y)に含まれる膨張性粒子については、上述のとおりであり、熱膨張性粒子であることが好ましい。
 膨張性粒子の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。
The expandable particles contained in the resin composition (y), which is a material for forming the expandable substrate layer (Y1), are as described above, and are preferably thermally expandable particles.
The content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and further preferably 10 to 10% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). It is 30% by mass, more preferably 15 to 25% by mass.
 膨張性基材層(Y1)の形成材料である樹脂組成物(y)に含まれる樹脂としては、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y)から膨張性基材層(Y1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含む膨張性基材層(Y1)が非粘着性となればよい。
The resin contained in the resin composition (y) that is a material for forming the expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin.
That is, even if the resin contained in the resin composition (y) is an adhesive resin, in the process of forming the expandable substrate layer (Y1) from the resin composition (y), the adhesive resin is a polymerizable compound. And the resulting resin becomes a non-adhesive resin, and the expandable base material layer (Y1) containing the resin may be non-adhesive.
 樹脂組成物(y)に含まれる前記樹脂の質量平均分子量(Mw)としては、好ましくは1000~100万、より好ましくは1000~70万、更に好ましくは1000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
The mass average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000.
Further, when the resin is a copolymer having two or more kinds of structural units, the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer It may be.
 樹脂の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and still more preferably 65 to 90% by mass with respect to the total amount (100% by mass) of the active ingredients of the resin composition (y). %, More preferably 70 to 85% by mass.
 本発明の一態様において、膨張性粒子の膨張時に、表面に凹凸が形成し易い膨張性基材層(Y1)とする観点から、樹脂組成物(y)に含まれる前記樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含むことが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
In one aspect of the present invention, the resin contained in the resin composition (y) is an acrylic urethane from the viewpoint of forming an expandable base layer (Y1) that easily forms irregularities on the surface when the expandable particles are expanded. It is preferable that 1 or more types chosen from a system resin and an olefin resin are included.
Moreover, as said acrylic urethane type resin, the following resin (U1) is preferable.
An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
[アクリルウレタン系樹脂(U1)]
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
[Acrylic urethane resin (U1)]
Examples of the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
The urethane prepolymer (UP) is preferably obtained by further subjecting it to a chain extension reaction using a chain extender.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of the polyol used as a raw material for the urethane prepolymer (UP) include alkylene type polyols, ether type polyols, ester type polyols, ester amide type polyols, ester / ether type polyols, and carbonate type polyols.
These polyols may be used independently and may use 2 or more types together.
The polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, and a carbonate diol, and even more preferably an ester diol and a carbonate diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4'-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of the ester diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, het acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Hydrophthalic acid, Examples thereof include condensation polymers of one or more selected from dicarboxylic acids such as hexahydroisophthalic acid, hexahydroterephthalic acid, and methylhexahydrophthalic acid, and anhydrides thereof.
Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, Polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol and polyneo Examples include pentyl terephthalate diol.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 Examples of the alkylene type diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol; and the like.
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol, and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Examples of the polyvalent isocyanate used as a raw material for the urethane prepolymer (UP) include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
These polyvalent isocyanates may be used alone or in combination of two or more.
These polyisocyanates may be a trimethylolpropane adduct-type modified product, a burette-type modified product reacted with water, or an isocyanurate-type modified product containing an isocyanurate ring.
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。 Among these, the polyisocyanate used in one embodiment of the present invention is preferably diisocyanate, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 More preferred is at least one selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Examples of the alicyclic diisocyanate include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane. Examples include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferred.
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
In one embodiment of the present invention, the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends. A urethane prepolymer is preferred.
As a method for introducing an ethylenically unsaturated group into both ends of the linear urethane prepolymer, an NCO group at the end of the linear urethane prepolymer obtained by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting with.
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
As a vinyl compound used as the side chain of acrylic urethane type resin (U1), at least (meth) acrylic acid ester is included.
The (meth) acrylic acid ester is preferably at least one selected from alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates, and more preferably used in combination with alkyl (meth) acrylates and hydroxyalkyl (meth) acrylates.
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。 When alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are used in combination, the proportion of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。 The carbon number of the alkyl group of the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。 Moreover, as hydroxyalkyl (meth) acrylate, the same thing as the hydroxyalkyl (meth) acrylate used in order to introduce | transduce an ethylenically unsaturated group into the both ends of the above-mentioned linear urethane prepolymer is mentioned.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは単独で用いてもよく、2種以上を併用してもよい。
Examples of vinyl compounds other than (meth) acrylic acid esters include aromatic hydrocarbon vinyl compounds such as styrene, α-methylstyrene, and vinyl toluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. Polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, and meta (acrylamide).
These may be used alone or in combination of two or more.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound. The amount is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in one embodiment of the present invention, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and still more preferably 35 by mass ratio. / 65 to 55/45.
[オレフィン系樹脂]
 樹脂組成物(y)に含まれる樹脂として好適なオレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体が挙げられる。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
[Olefin resin]
Examples of the olefin resin suitable as the resin contained in the resin composition (y) include a polymer having at least a structural unit derived from an olefin monomer.
The olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, and specifically includes ethylene, propylene, butylene, isobutylene, 1-hexene and the like.
Among these, ethylene and propylene are preferable.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);エチレン-酢酸ビニル共重合体(EVA);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefinic resins, for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), linear low density polyethylene, etc .; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); ethylene-vinyl acetate copolymer (EVA); ethylene-propylene- (5-ethylidene-2-norbornene), etc. Olefin terpolymers; and the like.
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 In one embodiment of the present invention, the olefin resin may be a modified olefin resin further modified by one or more selected from acid modification, hydroxyl group modification, and acrylic modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、単独で用いてもよく、2種以上を併用してもよい。
For example, as an acid-modified olefin resin obtained by subjecting an olefin resin to acid modification, a modified polymer obtained by graft polymerization of the above-mentioned unmodified olefin resin with an unsaturated carboxylic acid or its anhydride. Is mentioned.
Examples of the unsaturated carboxylic acid or its anhydride include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride. , Glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, and the like.
In addition, unsaturated carboxylic acid or its anhydride may be used independently, and may use 2 or more types together.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
As an acrylic modified olefin resin obtained by subjecting an olefin resin to acrylic modification, a modification obtained by graft polymerization of an alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin as a main chain. A polymer is mentioned.
The number of carbon atoms of the alkyl group contained in the alkyl (meth) acrylate is preferably 1-20, more preferably 1-16, and still more preferably 1-12.
As said alkyl (meth) acrylate, the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by modifying the olefin resin with a hydroxyl group include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as the main chain.
Examples of the hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl. Examples include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
(アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂)
 本発明の一態様において、樹脂組成物(y)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
(Resin other than acrylic urethane resin and olefin resin)
In one embodiment of the present invention, the resin composition (y) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate. Polyester resin such as phthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; polyurethane not applicable to acrylic urethane resin; polymethylpentene; polysulfone; polyetheretherketone; polyethersulfone; Sulfides; Polyimide resins such as polyetherimide and polyimide; Polyamide resins; Acrylic resins; Fluorine resins and the like.
 ただし、膨張性粒子の膨張時に、表面に凹凸が形成し易い膨張性基材層(Y1)とする観点から、樹脂組成物(y)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合としては、樹脂組成物(y)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、更に好ましくは5質量部未満、より更に好ましくは1質量部未満である。
However, from the viewpoint of making the expandable base material layer (Y1) that easily forms irregularities on the surface when the expandable particles are expanded, the resin composition (y) contains a resin other than the acrylic urethane resin and the olefin resin. A smaller ratio is preferable.
The content ratio of the resin other than the acrylic urethane-based resin and the olefin-based resin is preferably less than 30 parts by weight, more preferably 20 parts by weight with respect to 100 parts by weight of the total amount of the resin contained in the resin composition (y). Less than, more preferably less than 10 parts by weight, still more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
[無溶剤型樹脂組成物(y1)]
 樹脂組成物(y)の一態様として、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y1)が挙げられる。
 無溶剤型樹脂組成物(y1)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y1)から形成した塗膜に対して、エネルギー線を照射することで、膨張性粒子の膨張時に、表面に凹凸が形成し易い膨張性基材層(Y1)を形成し易く、特に、上記要件(1)及び(2)を満たす熱膨張性基材層(Y1-1)を形成し易い。
[Solvent-free resin composition (y1)]
As an aspect of the resin composition (y), a solvent comprising an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50000 or less, an energy ray polymerizable monomer, and the above-mentioned expandable particles, And a solvent-free resin composition (y1) that does not contain the above.
In the solventless resin composition (y1), no solvent is blended, but the energy beam polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
By irradiating the coating film formed from the solventless resin composition (y1) with energy rays, an inflatable substrate layer (Y1) that easily forms irregularities on the surface when the expandable particles expand is formed. In particular, it is easy to form the heat-expandable base material layer (Y1-1) that satisfies the above requirements (1) and (2).
 なお、無溶剤型樹脂組成物(y1)に配合される、膨張性粒子の種類や形状、配合量(含有量)については、樹脂組成物(y)と同じであり、上述のとおりである。 In addition, the type, shape, and blending amount (content) of the expandable particles blended in the solventless resin composition (y1) are the same as those of the resin composition (y) and are as described above.
 無溶剤型樹脂組成物(y1)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50000以下であるが、好ましくは1000~50000、より好ましくは2000~40000、更に好ましくは3000~35000、より更に好ましくは4000~30000である。 The mass average molecular weight (Mw) of the oligomer contained in the solventless resin composition (y1) is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, and still more preferably 3000 to 35000. More preferably, it is 4000-30000.
 また、前記オリゴマーとしては、上述の樹脂組成物(y)に含まれる樹脂のうち、質量平均分子量が50000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
Moreover, as said oligomer, what is necessary is just to have an ethylenically unsaturated group whose mass mean molecular weight is 50000 or less among resin contained in the above-mentioned resin composition (y), but the above-mentioned urethane prepolymer (UP Is preferred.
As the oligomer, a modified olefin resin having an ethylenically unsaturated group can also be used.
 無溶剤型樹脂組成物(y1)中における、前記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y1)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy beam polymerizable monomer in the solventless resin composition (y1) is preferably from 50 to the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、単独で用いてもよく、2種以上を併用してもよい。
Examples of the energy ray polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Alicyclic polymerizable compounds such as (meth) acrylate and tricyclodecane acrylate; Aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; Tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- And heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam.
These energy beam polymerizable monomers may be used independently and may use 2 or more types together.
 前記オリゴマーとエネルギー線重合性モノマーの配合比(前記オリゴマー/エネルギー線重合性モノマー)は、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 The blending ratio of the oligomer and the energy beam polymerizable monomer (the oligomer / energy beam polymerizable monomer) is preferably 20/80 to 90/10, more preferably 30/70 to 85/15, still more preferably 35/65. ~ 80/20.
 本発明の一態様において、無溶剤型樹脂組成物(y1)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
In one embodiment of the present invention, it is preferable that the solventless resin composition (y1) further comprises a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with energy rays having relatively low energy.
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzyl phenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol. Nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like can be mentioned.
These photoinitiators may be used independently and may use 2 or more types together.
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。 The blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. The amount is preferably 0.02 to 3 parts by mass.
<非膨張性基材層(Y2)>
 基材(Y)を構成する非膨張性基材層(Y2)の形成材料としては、例えば、紙材、樹脂、金属等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
<Non-expandable base material layer (Y2)>
Examples of the material for forming the non-intumescent base material layer (Y2) constituting the base material (Y) include paper materials, resins, metals, and the like.
Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfuric acid paper, glassine paper, and the like.
Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resin such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyethersulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Tsu Motokei resin, and the like.
Examples of the metal include aluminum, tin, chromium, and titanium.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非膨張性基材層(Y2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたものや、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one kind or in combination of two or more kinds.
As a non-intumescent base material layer (Y2) using two or more kinds of forming materials in combination, a paper film is laminated with a thermoplastic resin such as polyethylene, or a metal film is formed on the surface of a resin film or sheet containing a resin. And the like.
As a method for forming the metal layer, for example, a method of depositing the metal by a PVD method such as vacuum deposition, sputtering, or ion plating, or a metal foil made of the metal is attached using a general adhesive. And the like.
 なお、非膨張性基材層(Y2)と積層する他の層との層間密着性を向上させる観点から、非膨張性基材層(Y2)が樹脂を含む場合、非膨張性基材層(Y2)の表面に対しても、上述の膨張性基材層(Y1)と同様に、酸化法や凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。 From the viewpoint of improving interlayer adhesion between the non-expandable base layer (Y2) and other layers to be laminated, when the non-expandable base layer (Y2) contains a resin, the non-expandable base layer ( Similarly to the expandable base material layer (Y1) described above, the surface of Y2) may be subjected to a surface treatment such as an oxidation method or an unevenness method, an easy adhesion treatment, or a primer treatment.
 また、非膨張性基材層(Y2)が樹脂を含む場合、当該樹脂と共に、樹脂組成物(y)にも含有し得る、上述の基材用添加剤を含有してもよい。 Moreover, when the non-intumescent base material layer (Y2) contains a resin, it may contain the above-mentioned base material additive that can be contained in the resin composition (y) together with the resin.
 非膨張性基材層(Y2)は、上述の膨張性基材層(Y1)よりも上述の第1粘着剤層(X1)から離れた位置に存在しており、膨張性基材層(Y1)と第1粘着剤層(X1)との間には非膨張性基材層(Y2)は存在しておらず、前記膨張性粒子が膨張する際における前記非膨張性基材層(Y2)の貯蔵弾性率E’は、前記膨張性粒子が膨張する際における前記膨張性基材層(Y1)の貯蔵弾性率E’よりも大きいことが好ましい。このように、膨張性基材層(Y1)と第1粘着剤層(X1)との間に非膨張性基材層(Y2)が存在しないため、膨張性粒子の膨張によって膨張性基材層(Y1)の表面に生じる凹凸が、非膨張性基材層(Y2)を介在させることなく第1粘着剤層(X1)に伝わることになり、第1粘着剤層(X1)の粘着表面にも凹凸が生じ易くなる。また、膨張性粒子が膨張する際において、非膨張性基材層(Y2)の貯蔵弾性率E’は膨張性基材層(Y1)の貯蔵弾性率E’よりも大きいため、膨張性粒子の膨張時に、膨張性基材層(Y1)のうち非膨張性基材層(Y2)側の表面に凹凸が生じることが抑制され、その結果、膨張性基材層(Y1)のうち、第1粘着剤層(X1)側の表面に凹凸が生じ易くなり、したがって、第1粘着剤層(X1)の粘着表面にも凹凸が生じ易くなる。
 前述の膨張性粒子が膨張する際における、非膨張性基材層(Y2)の貯蔵弾性率E’は、上記のとおり第1粘着剤層(X1)の粘着表面に凹凸が生じ易くする観点から、好ましくは1.0MPa以上であり、また、貼付作業及び剥離作業の容易性の観点、第2粘着剤層(X2)の粘着表面にも凹凸を生じさせる観点、又はロール形体でのハンドリングのし易さの観点から、好ましくは1.0×10MPa以下である。当該観点から、膨張性粒子が膨張する際における、非膨張性基材層(Y2)の貯蔵弾性率E’は、好ましくは1.0~5.0×10MPa、より好ましくは1.0×10~1.0×10MPa、さらに好ましくは5.0×10~1.0×10MPaである。
 また、上記の観点及び半導体ウエハを第2粘着剤層(X2)の粘着表面に貼付する際の位置ずれを防止する観点から、23℃における、非膨張性基材層(Y2)の貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×10MPa、より好ましくは1.0×10~1.0×10MPa、さらに好ましくは5.0×10~5.0×10MPaである。 非膨張性基材層(Y2)は、上述の方法に基づき判断される、非膨張性層である。
 そのため、上述の式から算出される非膨張性基材層(Y2)の体積変化率(%)としては、5体積%未満であるが、好ましくは2体積%未満、より好ましくは1体積%未満、更に好ましくは0.1体積%未満、より更に好ましくは0.01体積%未満である。
The non-intumescent substrate layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the above-described inflatable substrate layer (Y1), and the inflatable substrate layer (Y1) ) And the first pressure-sensitive adhesive layer (X1), there is no non-expandable base layer (Y2), and the non-expandable base layer (Y2) when the expandable particles expand. The storage elastic modulus E ′ is preferably larger than the storage elastic modulus E ′ of the expandable base material layer (Y1) when the expandable particles expand. Thus, since there is no non-expandable base material layer (Y2) between the expandable base material layer (Y1) and the first pressure-sensitive adhesive layer (X1), the expandable base material layer is expanded by the expansion of the expandable particles. The unevenness generated on the surface of (Y1) is transmitted to the first pressure-sensitive adhesive layer (X1) without interposing the non-intumescent base material layer (Y2), and on the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1). Also, unevenness is likely to occur. Further, when the expandable particles expand, the storage elastic modulus E ′ of the non-expandable base material layer (Y2) is larger than the storage elastic modulus E ′ of the expandable base material layer (Y1). During expansion, the surface of the expandable substrate layer (Y1) on the non-expandable substrate layer (Y2) side is prevented from being uneven, and as a result, the first of the expandable substrate layer (Y1). Unevenness is likely to occur on the surface on the pressure-sensitive adhesive layer (X1) side, and therefore unevenness is also likely to occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1).
The storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles are expanded is as described above from the viewpoint of easily forming irregularities on the adhesive surface of the first adhesive layer (X1). Preferably, the pressure is 1.0 MPa or more. Also, from the viewpoint of ease of pasting and peeling operations, from the viewpoint of causing irregularities on the adhesive surface of the second pressure-sensitive adhesive layer (X2), or handling in a roll shape. From the viewpoint of easiness, it is preferably 1.0 × 10 3 MPa or less. From this viewpoint, the storage elastic modulus E ′ of the non-expandable base material layer (Y2) when the expandable particles expand is preferably 1.0 to 5.0 × 10 2 MPa, more preferably 1.0. × 10 1 to 1.0 × 10 2 MPa, more preferably 5.0 × 10 1 to 1.0 × 10 3 MPa.
In addition, from the viewpoints described above and from the viewpoint of preventing misalignment when the semiconductor wafer is attached to the adhesive surface of the second adhesive layer (X2), the storage elastic modulus of the non-expandable base material layer (Y2) at 23 ° C. E ′ (23) is preferably 5.0 × 10 1 to 5.0 × 10 4 MPa, more preferably 1.0 × 10 2 to 1.0 × 10 4 MPa, and even more preferably 5.0 × 10. 2 to 5.0 × 10 3 MPa. A non-expandable base material layer (Y2) is a non-expandable layer judged based on the above-mentioned method.
Therefore, the volume change rate (%) of the non-expandable base material layer (Y2) calculated from the above formula is less than 5% by volume, preferably less than 2% by volume, more preferably less than 1% by volume. More preferably, it is less than 0.1 volume%, More preferably, it is less than 0.01 volume%.
 また、非膨張性基材層(Y2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよい。例えば、非膨張性基材層(Y2)に含まれる樹脂を選択することで、熱膨張性粒子が含まれていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非膨張性基材層(Y2)中の熱膨張性粒子の含有量は、少ないほど好ましい。
 具体的な熱膨張性粒子の含有量としては、非膨張性基材層(Y2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
Moreover, as long as the volume change rate is the said range, a non-expandable base material layer (Y2) may contain a thermally expansible particle. For example, by selecting a resin contained in the non-expandable base material layer (Y2), it is possible to adjust the volume change rate to the above range even if thermally expandable particles are included.
However, the smaller the content of the heat-expandable particles in the non-expandable base material layer (Y2), the better.
The specific content of the heat-expandable particles is usually less than 3% by mass, preferably less than 1% by mass, and more preferably relative to the total mass (100% by mass) of the non-expandable base material layer (Y2). It is less than 0.1% by mass, more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
<第1粘着剤層(X1)、第2粘着剤層(X2)>
 本発明の一態様で用いる粘着シートは、非膨張性粘着剤層である、第1粘着剤層(X1)及び第2粘着剤層(X2)を有する。
 本発明の製造方法においては、第1粘着剤層(X1)の粘着表面は、硬質支持体と貼付され、第2粘着剤層(X2)の粘着表面には、封止対象物が載置され、硬化封止体が形成される。
<First pressure-sensitive adhesive layer (X1), second pressure-sensitive adhesive layer (X2)>
The pressure-sensitive adhesive sheet used in one embodiment of the present invention has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2), which are non-intumescent pressure-sensitive adhesive layers.
In the production method of the present invention, the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is affixed to a hard support, and a sealing object is placed on the pressure-sensitive adhesive surface of the second pressure-sensitive adhesive layer (X2). A cured encapsulant is formed.
 第1粘着剤層(X1)及び第2粘着剤層(X2)が、非膨張性粘着剤層であることで、封止対象物と硬質支持体との固定不足による、封止対象物の位置ずれや、封止対象物の露出表面への封止樹脂の付着といった弊害を効果的に抑制し得る。
 加えて、第1粘着剤層(X1)が、非膨張性粘着剤層であることで、上記の効果に加えて、硬化支持体から分離後の粘着シート付きの硬化封止体において、第1粘着剤層(X1)が脱落等してしまい、製造環境内の各種機器等を汚染するような弊害を抑制し得る。
Since the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are non-expandable pressure-sensitive adhesive layers, the position of the sealing target due to insufficient fixation between the sealing target and the hard support It is possible to effectively suppress adverse effects such as displacement and adhesion of the sealing resin to the exposed surface of the object to be sealed.
In addition, since the first pressure-sensitive adhesive layer (X1) is a non-intumescent pressure-sensitive adhesive layer, in addition to the above effects, in the cured sealed body with the pressure-sensitive adhesive sheet after separation from the cured support, The adhesive layer (X1) can be prevented from falling off and the like, which can contaminate various devices in the manufacturing environment.
 第1粘着剤層(X1)は、膨張性基材層(Y1)中に含まれる膨張性粒子の膨張前においては、硬質支持体と密着性が高く、封止対象物を硬質支持体に十分に固定し得る性質が求められる。
 当該観点から、23℃における、第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以下、より好ましくは5.0×10Pa以下、更に好ましくは1.0×10Pa以下である。
The first pressure-sensitive adhesive layer (X1) has high adhesiveness with the hard support before expansion of the expandable particles contained in the expandable base material layer (Y1), and the sealing object is sufficient for the hard support. The property which can be fixed to is required.
From this viewpoint, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 × 10 8 Pa or less, more preferably 5.0 × 10 7 Pa or less. More preferably, it is 1.0 × 10 7 Pa or less.
 その一方で、膨張性基材層(Y1)中の膨張性粒子の膨張時には、膨張性基材層(Y1)の表面に生じた凹凸を、第1粘着剤層(X1)の粘着表面にも形成し得る程の剛性も要求される。
 当該観点から、23℃における、第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以上、より好ましくは5.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
On the other hand, when the expandable particles in the expandable base material layer (Y1) expand, the unevenness generated on the surface of the expandable base material layer (Y1) is also applied to the adhesive surface of the first pressure-sensitive adhesive layer (X1). Rigidity that can be formed is also required.
From this viewpoint, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. is preferably 1.0 × 10 4 Pa or more, more preferably 5.0 × 10 4 Pa or more. More preferably, it is 1.0 × 10 5 Pa or more.
 また、第2粘着剤層(X2)は、封止対象物との密着性だけでなく、当該封止対象物を封止材で封止してなる硬化封止体との密着性も要求される。また、当該封止対象物が第2粘着剤層(X2)へ過度に沈み込むといった現象も抑制する必要がある。
 これらの観点から、23℃における、第2粘着剤層(X2)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10~1.0×10Pa、より好ましくは5.0×10~5.0×10Pa、更に好ましくは9.0×10~1.0×10Paである。
 なお、本明細書において、第1粘着剤層(X1)及び第2粘着剤層(X2)の貯蔵せん断弾性率G’(23)は、実施例に記載の方法により測定された値を意味する。
In addition, the second pressure-sensitive adhesive layer (X2) is required to have not only adhesion with the sealing object but also adhesion with a cured sealing body formed by sealing the sealing object with a sealing material. The Moreover, it is necessary to suppress the phenomenon that the sealing target object excessively sinks into the second pressure-sensitive adhesive layer (X2).
From these viewpoints, the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) at 23 ° C. is preferably 1.0 × 10 4 to 1.0 × 10 8 Pa, more preferably 5 It is 0.0 × 10 4 to 5.0 × 10 7 Pa, more preferably 9.0 × 10 4 to 1.0 × 10 7 Pa.
In addition, in this specification, the storage shear elastic modulus G '(23) of the 1st adhesive layer (X1) and the 2nd adhesive layer (X2) means the value measured by the method as described in an Example. .
 第1粘着剤層(X1)の厚さは、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the first pressure-sensitive adhesive layer (X1) is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably 5 to 30 μm.
 第2粘着剤層(X2)の厚さは、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the second pressure-sensitive adhesive layer (X2) is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably 5 to 30 μm.
 第1粘着剤層(X1)及び第2粘着剤層(X2)は、粘着性樹脂を含む粘着剤組成物(x)から形成することができる。
 また、粘着剤組成物(x)は、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 以下、粘着剤組成物(x)に含まれる各成分について説明する。
The first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) can be formed from a pressure-sensitive adhesive composition (x) containing a pressure-sensitive adhesive resin.
Moreover, adhesive composition (x) may contain additives for adhesives, such as a crosslinking agent, a tackifier, a polymeric compound, a polymerization initiator, as needed.
Hereinafter, each component contained in the pressure-sensitive adhesive composition (x) will be described.
(粘着性樹脂)
 本発明の一態様で用いる粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であればよい。
 本発明の一態様で用いる粘着性樹脂の質量平均分子量(Mw)としては、粘着力の向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(Adhesive resin)
As the adhesive resin used in one embodiment of the present invention, any polymer may be used as long as it has adhesiveness and has a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and still more preferably 30,000, from the viewpoint of improving adhesive force. ~ 1 million.
 具体的な粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Specific examples of the adhesive resin include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins.
These adhesive resins may be used alone or in combination of two or more.
Further, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and a block copolymer, a random copolymer, and a graft copolymer are not limited. Any of polymers may be used.
 本発明の一態様で用いる粘着性樹脂は、上記の粘着性樹脂の側鎖に重合性官能基を導入した、エネルギー線硬化型の粘着性樹脂であってもよい。
 例えば、第2粘着剤層(X2)をエネルギー線硬化型の粘着性樹脂を含むエネルギー線硬化型粘着剤組成物から形成することで、エネルギー線を照射することで粘着力を低下させることができるため、得られた硬化封止体を第2粘着剤層(X2)から容易に分離することができる。
 当該重合性官能基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 また、エネルギー線としては、紫外線や電子線が挙げられるが、紫外線が好ましい。
 なお、エネルギー線を照射して粘着力を低下し得る粘着剤層の形成材料としては、重合性官能基を有するモノマー又はオリゴマーを含有するエネルギー線硬化型粘着剤組成物であってもよい。
The adhesive resin used in one embodiment of the present invention may be an energy ray curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
For example, by forming the second pressure-sensitive adhesive layer (X2) from an energy ray-curable pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive resin, the adhesive force can be reduced by irradiating energy rays. Therefore, the obtained cured sealing body can be easily separated from the second pressure-sensitive adhesive layer (X2).
Examples of the polymerizable functional group include a (meth) acryloyl group and a vinyl group.
Examples of energy rays include ultraviolet rays and electron beams, but ultraviolet rays are preferred.
In addition, as a forming material of the adhesive layer which can irradiate an energy ray and can reduce adhesive force, the energy ray hardening-type adhesive composition containing the monomer or oligomer which has a polymerizable functional group may be sufficient.
 これらのエネルギー線硬化型粘着剤組成物には、さらに光重合開始剤を含有することが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
 光重合開始剤としては、上述の無溶剤型樹脂組成物(y1)に配合されるものと同じものが挙げられる。
 光重合開始剤の含有量は、エネルギー線硬化型の粘着性樹脂100質量部もしくは重合性官能基を有するモノマー又はオリゴマー100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。
These energy ray curable pressure-sensitive adhesive compositions preferably further contain a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with energy rays having relatively low energy.
As a photoinitiator, the same thing as what is mix | blended with the above-mentioned solvent-free resin composition (y1) is mentioned.
The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 100 parts by mass of the energy ray-curable adhesive resin or 100 parts by mass of the monomer or oligomer having a polymerizable functional group. The amount is 0.03 to 5 parts by mass, more preferably 0.05 to 2 parts by mass.
 本発明の一態様において、優れた粘着力を発現させる観点から、粘着性樹脂が、アクリル系樹脂を含むことが好ましい。特に、第1粘着剤層(X1)が、アクリル系樹脂を含む粘着剤組成物から形成することで、第1粘着剤層の表面に凹凸を形成させ易くすることができる。 In one embodiment of the present invention, the adhesive resin preferably contains an acrylic resin from the viewpoint of developing an excellent adhesive force. In particular, by forming the first pressure-sensitive adhesive layer (X1) from a pressure-sensitive adhesive composition containing an acrylic resin, it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer.
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物(x)に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。 The content of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50%, based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x). To 100% by mass, more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
 粘着性樹脂の含有量としては、粘着剤組成物(x)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~98質量%、より更に好ましくは70~95質量%である。 The content of the adhesive resin is preferably 35 to 100% by mass, more preferably 50 to 100% by mass, still more preferably relative to the total amount (100% by mass) of the active ingredients of the adhesive composition (x). It is 60 to 98% by mass, more preferably 70 to 95% by mass.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x)が官能基を有する粘着性樹脂を含有する場合、粘着剤組成物(x)は、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(Crosslinking agent)
In one aspect of the present invention, when the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x) preferably further contains a crosslinking agent.
The said crosslinking agent reacts with the adhesive resin which has a functional group, and bridge | crosslinks adhesive resins by using the said functional group as a crosslinking origin.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
Examples of the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent.
These crosslinking agents may be used independently and may use 2 or more types together.
Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoints of increasing cohesive force and improving adhesive force and availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the crosslinking agent is appropriately adjusted depending on the number of functional groups that the adhesive resin has, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group, The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~10000、より好ましくは500~8000、更に好ましくは800~5000である。
(Tackifier)
In one embodiment of the present invention, the pressure-sensitive adhesive composition (x) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
In the present specification, the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000. It is distinguished from a functional resin.
The mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 Examples of the tackifier are obtained by copolymerizing C5 fractions such as rosin resin, terpene resin, styrene resin, pentene, isoprene, piperine, 1,3-pentadiene generated by thermal decomposition of petroleum naphtha. And C9 petroleum resin obtained by copolymerizing C9 fractions such as indene generated by thermal decomposition of petroleum naphtha and vinyltoluene, and hydrogenated resins obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、単独で用いてもよく、軟化点や構造が異なる2種以上を併用してもよい。
 そして、2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and still more preferably 70 to 150 ° C.
In the present specification, the “softening point” of the tackifier means a value measured according to JIS K2531.
A tackifier may be used independently and may use together 2 or more types from which a softening point and a structure differ.
And when using 2 or more types of several tackifier, it is preferable that the weighted average of the softening point of these several tackifiers belongs to the said range.
 粘着付与剤の含有量は、粘着剤組成物(x)の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%、より更に好ましくは2~30質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, based on the total amount (100% by mass) of the active ingredients of the adhesive composition (x). More preferably, it is 1 to 40% by mass, and still more preferably 2 to 30% by mass.
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(x)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤、帯電防止剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
(Adhesive additive)
In one embodiment of the present invention, the pressure-sensitive adhesive composition (x) contains an additive for pressure-sensitive adhesives used for general pressure-sensitive adhesives in addition to the above-mentioned additives, as long as the effects of the present invention are not impaired. You may do it.
Examples of such an adhesive additive include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, antistatic agents, and the like. Is mentioned.
These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。 When these pressure-sensitive adhesive additives are contained, the content of each pressure-sensitive adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 100 parts by mass of the adhesive resin. ~ 10 parts by mass.
 なお、第1粘着剤層(X1)及び第2粘着剤層(X2)は、いずれも非膨張性粘着剤層であるが、膨張性粒子を実質的に含有しないことが好ましい。
 ここで、「膨張性粒子を実質的に含有しない」とは、第1粘着剤層(X1)及び第2粘着剤層(X2)中に、特定の意図によって膨張性粒子を含有することはない、ということを意味する。そのため、第1粘着剤層(X1)及び第2粘着剤層(X2)中に、膨張性粒子が不純物として混入する態様までを除外するものではない。
 具体的には、膨張性粒子の含有量としては、第1粘着剤層(X1)及び第2粘着剤層(X2)の形成材料である粘着剤組成物(x)の有効成分の全量(100質量%)、もしくは、第1粘着剤層(X1)及び第2粘着剤層(X2)の全質量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
The first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are both non-expandable pressure-sensitive adhesive layers, but preferably do not substantially contain expandable particles.
Here, “substantially does not contain expandable particles” means that the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) do not contain expandable particles for a specific purpose. It means that. Therefore, it does not exclude the aspect in which expandable particles are mixed as impurities in the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
Specifically, as the content of the expandable particles, the total amount of active ingredients (100) of the pressure-sensitive adhesive composition (x) which is a material for forming the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2). % By mass) or the total mass (100% by mass) of the first adhesive layer (X1) and the second adhesive layer (X2), preferably less than 1% by mass, more preferably 0.1% by mass. Less than, more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
<剥離材>
 本発明の一態様で用いる粘着シートは、第1粘着剤層(X1)及び第2粘着剤層(X2)の粘着表面に、さらに剥離材を積層してもよい。
 剥離材としては、両面剥離処理をされた剥離シートや、片面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
<Release material>
In the pressure-sensitive adhesive sheet used in one embodiment of the present invention, a release material may be further laminated on the pressure-sensitive adhesive surfaces of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2).
As the release material, a release sheet that has been subjected to a double-sided release process, a release sheet that has been subjected to a single-sided release process, or the like is used, and examples include a release material coated on a release material.
 剥離材用基材としては、例えば、上質紙、グラシン紙、クラフト紙等の紙類;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等のプラスチックフィルム;等が挙げられる。 Examples of the base material for the release material include papers such as high-quality paper, glassine paper, and kraft paper; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin; and olefins such as polypropylene resin and polyethylene resin. A plastic film such as a resin film;
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。 Examples of the release agent include silicone-based resins, olefin-based resins, isoprene-based resins, rubber-based elastomers such as butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
 剥離材の厚さは、特に制限ないが、好ましくは10~200μm、より好ましくは25~170μm、更に好ましくは35~80μmである。 The thickness of the release material is not particularly limited, but is preferably 10 to 200 μm, more preferably 25 to 170 μm, and still more preferably 35 to 80 μm.
〔本発明の硬化封止体の製造方法の各工程〕
 本発明の製造方法は、上述の粘着シートを用いた、硬化封止体を製造する方法であって、下記工程(1)~(3)を有する。
・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面の一部に、封止対象物を載置する工程。
・工程(2):前記封止対象物と、当該封止対象物の少なくとも周辺部の第2粘着剤層(X2)の粘着表面とを封止材で被覆し、当該封止材を硬化させて、前記封止対象物を前記封止材で封止してなる硬化封止体を得る工程。
・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上に前記硬化封止体を積層したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
[Each process of the manufacturing method of the hardening sealing body of the present invention]
The production method of the present invention is a method for producing a cured encapsulant using the above-mentioned pressure-sensitive adhesive sheet, and includes the following steps (1) to (3).
-Process (1): The process of sticking the adhesion surface of a 1st adhesive layer (X1) on a hard support body, and mounting a sealing target object on a part of adhesion surface of a 2nd adhesive layer (X2). .
Step (2): The sealing object and the adhesive surface of the second pressure-sensitive adhesive layer (X2) at least in the periphery of the sealing object are covered with a sealing material, and the sealing material is cured. And the process of obtaining the hardening sealing body formed by sealing the said sealing target object with the said sealing material.
Step (3): The expandable particles are expanded and the hard support and the first pressure-sensitive adhesive layer (X1) are stacked while the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2). Separating at the interface P.
 図2は、本発明の硬化封止体の製造方法の工程(1)~(3)における断面模式図である。
 以下、図2を適宜参照しながら、工程(1)~(3)について説明する。
FIG. 2 is a schematic cross-sectional view in steps (1) to (3) of the method for producing a cured encapsulated body of the present invention.
Hereinafter, steps (1) to (3) will be described with reference to FIG. 2 as appropriate.
<工程(1)>
 図2(a)は、図1(a)に示す粘着シート1aを用いた場合における、工程(1)における断面模式図である。
 工程(1)では、図2(a)に示すように、粘着シート1aの第1粘着剤層(X1)の粘着表面を硬質支持体50に貼付し、第2粘着剤層(X2)の粘着表面の一部に、封止対象物60を載置する工程である。
 本工程において、第2粘着剤層(X2)の粘着表面の一部に、封止対象物60の露出表面61が接触するように載置することが好ましい。
 また、第2粘着剤層(X2)の粘着表面の一部に載置する封止対象物は、1つのみであってもよく、図2(a)に示すように複数であってもよい。複数の封止対象物を載置する場合には、隣り合う封止対象物の間隔が、一定となるように載置することが好ましい。
<Step (1)>
Fig.2 (a) is a cross-sectional schematic diagram in process (1) at the time of using the adhesive sheet 1a shown to Fig.1 (a).
In step (1), as shown in FIG. 2 (a), the adhesive surface of the first adhesive layer (X1) of the adhesive sheet 1a is affixed to the hard support 50, and the adhesive of the second adhesive layer (X2). In this step, the sealing object 60 is placed on a part of the surface.
In this step, it is preferable to place the exposed surface 61 of the sealing object 60 in contact with a part of the adhesive surface of the second pressure-sensitive adhesive layer (X2).
Further, the number of sealing objects to be placed on a part of the adhesive surface of the second pressure-sensitive adhesive layer (X2) may be one or plural as shown in FIG. . When mounting a plurality of objects to be sealed, it is preferable to place the objects so that the interval between adjacent objects to be sealed is constant.
 なお、図2においては、図1(a)に示す粘着シート1aを用いた態様を示しているが、他の構成を有する粘着シートを用いる場合においても、同様に、硬質支持体、粘着シート、及び半導体チップをこの順で積層又は載置し、粘着シートの第1粘着剤層(X1)の粘着表面は硬質支持体と貼付し、第2粘着剤層(X2)の粘着表面は、封止対象物の露出表面と貼付されることが好ましい。 In addition, in FIG. 2, although the aspect using the adhesive sheet 1a shown to Fig.1 (a) is shown, also when using the adhesive sheet which has another structure, a hard support body, an adhesive sheet, And the semiconductor chip are stacked or placed in this order, the adhesive surface of the first adhesive layer (X1) of the adhesive sheet is attached to the hard support, and the adhesive surface of the second adhesive layer (X2) is sealed. It is preferable to affix to the exposed surface of the object.
 なお、工程(1)は、膨張性粒子が膨張しない環境下で行うことが好ましい。
 例えば、膨張性粒子として、熱膨張性粒子を用いる場合には、工程(1)は、当該熱膨張性粒子の膨張開始温度(t)未満となる温度条件下で行われればよく、具体的には、0~80℃の環境下(膨張開始温度(t)が60~80℃である場合には、膨張開始温度(t)未満の環境下)で行われることが好ましい。
In addition, it is preferable to perform a process (1) in the environment where an expandable particle does not expand | swell.
For example, when thermally expandable particles are used as the expandable particles, the step (1) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
 硬質支持体は、粘着シートの第1粘着剤層(X1)の粘着表面の全面に貼付されることが好ましい。そのため、硬質支持体は、板状であることが好ましい。
 また、第1粘着剤層(X1)と貼付される硬質支持体の表面の面積は、図2に示すように、第1粘着剤層(X1)の粘着表面の面積以上であることが好ましい。
The hard support is preferably affixed to the entire pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet. Therefore, the hard support is preferably plate-shaped.
Moreover, it is preferable that the area of the surface of the hard support stuck with the 1st adhesive layer (X1) is more than the area of the adhesive surface of the 1st adhesive layer (X1), as shown in FIG.
 硬質支持体を構成する材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、及びシリコンウエハが好ましい。
 なお、エンジニアリングプラスチックとしては、ナイロン、ポリカーボネート(PC)、及びポリエチレンテレフタレート(PET)等が挙げられる。
 スーパーエンジニアリングプラスチックとしては、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、及びポリエーテルエーテルケトン(PEEK)等が挙げられる。
Examples of the material constituting the hard support include, for example, metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resins, ABS resins, acrylic resins, engineering plastics, super engineering plastics, polyimide resins, polyamideimides Examples thereof include resin materials such as resins; composite materials such as glass epoxy resins, and among these, SUS, glass, and silicon wafers are preferable.
Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
Examples of super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
 硬質支持体の厚さは、好ましくは20μm以上50mm以下であり、より好ましくは60μm以上20mm以下である。 The thickness of the hard support is preferably 20 μm or more and 50 mm or less, and more preferably 60 μm or more and 20 mm or less.
 硬質支持体のヤング率としては、半導体チップを硬質支持体に十分に固定して、工程(2)における、封止対象物の位置ずれの発生や、封止対象物の露出表面への封止樹脂の付着といった弊害を効果的に抑制する観点から、好ましくは1.0GPa以上、より好ましくは5.0GPa以上、更に好ましくは10GPa以上、より更に好ましくは20GPa以上である。
 なお、本明細書において、硬質支持体のヤング率は、JIS Z2280:1993の静的ヤング率試験方法に準拠し、室温(25℃)にて測定した値である。
As the Young's modulus of the hard support, the semiconductor chip is sufficiently fixed to the hard support, and the occurrence of positional deviation of the sealing object or the sealing of the sealing object to the exposed surface in the step (2) From the viewpoint of effectively suppressing adverse effects such as resin adhesion, it is preferably 1.0 GPa or more, more preferably 5.0 GPa or more, still more preferably 10 GPa or more, and even more preferably 20 GPa or more.
In the present specification, the Young's modulus of the hard support is a value measured at room temperature (25 ° C.) in accordance with the static Young's modulus test method of JIS Z2280: 1993.
 一方、第2粘着剤層(X2)の粘着表面の一部に載置される封止対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。
 なお、載置される封止対象物は、同種のものから構成されていてもよく、2種以上の異種のものから構成されていてもよい。
On the other hand, examples of the sealing object placed on a part of the adhesive surface of the second adhesive layer (X2) include, for example, a semiconductor chip, a semiconductor wafer, a compound semiconductor, a semiconductor package, an electronic component, a sapphire substrate, a display, Panel substrates and the like can be mentioned.
In addition, the sealing target object mounted may be comprised from the same kind, and may be comprised from 2 or more types of different things.
 これらの封止対象物の露出表面とは、第2粘着剤層(X2)の粘着表面と接し、封止材によって被覆されない表面を指すが、具体的には、回路面が該当する。
 本発明の製造方法においては、封止対象物が硬質支持体に十分に固定されているため、工程(2)の封止工程の際に、封止対象物の露出表面への封止樹脂の付着といった弊害を効果的に抑制し得る。例えば、回路面に封止樹脂が付着すると、回路の配線が断線してしまい、歩留まりの低下の要因となるが、本発明の製造方法によれば、このような弊害を抑制し得る。
The exposed surface of these objects to be sealed refers to the surface that is in contact with the adhesive surface of the second pressure-sensitive adhesive layer (X2) and is not covered with the sealing material, and specifically corresponds to the circuit surface.
In the manufacturing method of the present invention, since the sealing object is sufficiently fixed to the hard support, the sealing resin on the exposed surface of the sealing object is sealed during the sealing step of step (2). It is possible to effectively suppress harmful effects such as adhesion. For example, if the sealing resin adheres to the circuit surface, the circuit wiring is disconnected, which causes a decrease in yield. However, according to the manufacturing method of the present invention, such an adverse effect can be suppressed.
 封止対象物の載置の方法としては、フリップチップボンダー、ダイボンダー等の装置を用いたピックアンドプレイス方法や、転写装置を用いた一括転写方法とが挙げられる。
 また、封止対象物の配置のレイアウト、配置数等は、目的とするパッケージの形態、生産数等に応じて適宜決定すればよい。
Examples of the method for placing the sealing object include a pick-and-place method using an apparatus such as a flip chip bonder and a die bonder, and a batch transfer method using a transfer device.
Further, the layout, the number of arrangements, and the like of the objects to be sealed may be appropriately determined according to the target package form, the number of production, and the like.
 本発明の製造方法により製造される硬化封止体は、FOWLPに用いられることが好ましい。そのため、封止対象物が、半導体チップであることが好ましい。
 半導体チップは、従来公知のものを使用することができ、その回路面には、トランジスタ、抵抗、コンデンサー等の回路素子から構成される集積回路が形成されたものを使用することができる。
 本発明の一態様で用いる半導体チップは、シリコン、SiC(シリコンカーバイド)、ガリウム、砒素等から構成された基板の一方の表面に、エッチング法、リフトオフ法等によって回路を形成された半導体ウエハをダイシングして得ることができる。
 なお、半導体ウエハから半導体チップを得る方法としては、ステルスダイシング法であってもよく、先ダイシング法であってもよく、これら以外の方法であってもよい。
The cured sealing body manufactured by the manufacturing method of the present invention is preferably used for FOWLP. Therefore, it is preferable that the sealing object is a semiconductor chip.
A conventionally known semiconductor chip can be used, and a semiconductor chip on which an integrated circuit composed of circuit elements such as a transistor, a resistor, and a capacitor is formed can be used.
A semiconductor chip used in one embodiment of the present invention is a semiconductor wafer in which a circuit is formed on one surface of a substrate formed of silicon, SiC (silicon carbide), gallium, arsenic, or the like by an etching method, a lift-off method, or the like. Can be obtained.
In addition, as a method of obtaining a semiconductor chip from a semiconductor wafer, a stealth dicing method, a tip dicing method, or a method other than these methods may be used.
 第2粘着剤層(X2)の粘着表面に載置される半導体チップの露出表面は、回路が形成された回路面であることが好ましい。
 第2粘着剤層(X2)の粘着表面に、半導体チップの回路面を載置することで、工程(2)の処理過程で、半導体チップの回路面を保護することができる。
 一方、半導体チップの当該回路面とは反対側の面(以下「裏面」ともいう)は、次工程で封止材で被覆される側であり、通常は、回路や電極等は形成されていない平坦面である。
The exposed surface of the semiconductor chip placed on the adhesive surface of the second adhesive layer (X2) is preferably a circuit surface on which a circuit is formed.
By placing the circuit surface of the semiconductor chip on the adhesive surface of the second pressure-sensitive adhesive layer (X2), the circuit surface of the semiconductor chip can be protected in the process of step (2).
On the other hand, the surface opposite to the circuit surface of the semiconductor chip (hereinafter also referred to as “back surface”) is the side that is covered with a sealing material in the next step, and normally, no circuit or electrode is formed. It is a flat surface.
 ここで、FOWLP、FOPLP等のように、半導体チップをチップサイズよりも大きな領域を封止材で覆って、半導体チップの回路面だけではなく、封止材の表面領域においても再配線層を形成するパッケージに適用されることが好ましい。
 そのため、半導体チップは、第2粘着剤層(X2)の粘着表面の一部に載置されるものであり、複数の半導体チップが、一定の間隔を空けて整列された状態で、当該粘着表面に載置されることが好ましく、複数の半導体チップが、一定の間隔を空けて、複数行且つ複数列のマトリックス状に整列された状態で当該粘着表面に載置されることがより好ましい。
 半導体チップ同士の間隔は、目的とするパッケージの形態等に応じて適宜決定すればよい。
Here, as in FOWLP, FOPLP, etc., a region larger than the chip size is covered with a sealing material, and a rewiring layer is formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing material. It is preferable to be applied to a package.
Therefore, the semiconductor chip is placed on a part of the adhesive surface of the second pressure-sensitive adhesive layer (X2), and the plurality of semiconductor chips are arranged in a state of being spaced apart at a certain interval. It is preferable that the plurality of semiconductor chips be mounted on the adhesive surface in a state of being arranged in a matrix of a plurality of rows and a plurality of columns with a certain interval.
The interval between the semiconductor chips may be determined as appropriate according to the form of the target package.
<工程(2)>
 工程(2)は、図2(b)に示すように、前記封止対象物60と、当該封止対象物60の少なくとも周辺部の第2粘着剤層(X2)の粘着表面とを封止材70で被覆し(以下、「被覆処理」ともいう)、当該封止材70を硬化させて(以下、「硬化処理」ともいう)、前記封止対象物60を前記封止材70で封止してなる硬化封止体80を得る工程である。
<Step (2)>
In step (2), as shown in FIG. 2B, the sealing object 60 and the adhesive surface of the second adhesive layer (X2) at least in the peripheral part of the sealing object 60 are sealed. The sealing material 70 is covered (hereinafter also referred to as “coating treatment”), the sealing material 70 is cured (hereinafter also referred to as “curing treatment”), and the sealing object 60 is sealed with the sealing material 70. This is a step of obtaining a cured sealing body 80 that is stopped.
 工程(2)の被覆処理においては、封止対象物の表出している面全体を封止材で覆いつつ、複数の封止対象物が載置されている場合には、当該封止材は、封止対象物同士の間隙にも充填されるように被覆することが好ましい。
 また、図2(b)に示すように、封止対象物60及び第2粘着剤層(X2)の粘着表面をすべて覆うように封止材70で被覆してもよい。
In the covering process of the step (2), when a plurality of sealing objects are placed while covering the entire exposed surface of the sealing object with the sealing material, the sealing material is It is preferable to cover the gap between the objects to be sealed.
Moreover, as shown in FIG.2 (b), you may coat | cover with the sealing material 70 so that all the adhesion surfaces of the sealing target object 60 and the 2nd adhesive layer (X2) may be covered.
 封止材は、封止対象物及びそれに付随する要素を外部環境から保護する機能を有するものである。
 本発明の製造方法で用いる封止材としては、取扱性の観点から、熱硬化性樹脂を含む、熱硬化性封止材であることが好ましい。
 封止材は、室温で、顆粒状、ペレット状、フィルム状等の固形であってもよく、組成物の形態となった液状であってもよいが、作業性の観点から、フィルム状の封止材である封止樹脂フィルムが好ましい。
The sealing material has a function of protecting the object to be sealed and its accompanying elements from the external environment.
The sealing material used in the production method of the present invention is preferably a thermosetting sealing material containing a thermosetting resin from the viewpoint of handleability.
The sealing material may be a solid such as a granule, a pellet, or a film at room temperature, or may be a liquid in the form of a composition. A sealing resin film that is a stopper is preferred.
 被覆方法としては、従来の封止工程に適用されている方法の中から、封止材の種類に応じて適宜選択して適用することができる。
 具体的な被覆方法としては、例えば、ロールラミネート法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、トランスファーモールディング法、圧縮成形モールド法等が挙げられる。
As a coating method, it can select and apply suitably from the methods applied to the conventional sealing process according to the kind of sealing material.
Specific examples of the coating method include a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, and a compression molding method.
 工程(2)の被覆処理及び硬化処理は、膨張性粒子が膨張しない環境下で行うことが好ましい。
 例えば、膨張性粒子として、熱膨張性粒子を用いる場合には、工程(2)は、当該熱膨張性粒子の膨張開始温度(t)未満となる温度条件下で行われればよく、具体的には、0~80℃の環境下(膨張開始温度(t)が60~80℃である場合には、膨張開始温度(t)未満の環境下)で行われることが好ましい。
The coating treatment and the curing treatment in the step (2) are preferably performed in an environment where the expandable particles do not expand.
For example, when thermally expandable particles are used as the expandable particles, the step (2) may be performed under a temperature condition that is lower than the expansion start temperature (t) of the thermally expandable particles. Is preferably performed in an environment of 0 to 80 ° C. (when the expansion start temperature (t) is 60 to 80 ° C., in an environment lower than the expansion start temperature (t)).
 そして、被覆処理を行った後、封止材を硬化させて、封止対象物を封止材で封止してなる硬化封止体が得られる。
 また、被覆工程と熱硬化工程とは、別々に実施してもよいが、被覆工程において封止材を加熱する場合には、当該加熱によって、そのまま封止材を熱硬化させ、被覆工程と熱硬化工程とを同時に実施してもよい。
And after performing a coating process, the sealing material is hardened and the hardening sealing body formed by sealing a sealing target object with a sealing material is obtained.
In addition, the coating process and the thermosetting process may be performed separately. However, when the sealing material is heated in the coating process, the sealing material is thermoset as it is by the heating, and the coating process and the heat curing process are performed. You may implement a hardening process simultaneously.
<工程(3)>
 工程(3)は、前記膨張性粒子を膨張させて、第2粘着剤層(X2)上に前記硬化封止体を積層したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程である。
 図2(c)は、膨張性基材層(Y1)中の膨張性粒子を膨張させて、硬質支持体50と第1粘着剤層(X1)との界面Pで分離した状態を示している。
<Step (3)>
In the step (3), the expandable particles are expanded, and the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2), with the hard support and the first pressure-sensitive adhesive layer (X1). This is a process of separation at the interface P.
FIG. 2C shows a state where the expandable particles in the expandable base material layer (Y1) are expanded and separated at the interface P between the hard support 50 and the first pressure-sensitive adhesive layer (X1). .
 本工程において、膨張性粒子を膨張させる方法としては、膨張性粒子の種類に応じて適宜選択される。
 例えば、膨張性粒子として、熱膨張性粒子を用いている場合は、当該熱膨張性粒子の膨張開始温度(t)以上の温度での加熱処理を行い、当該熱膨張性粒子を膨張させる。
 この際、上記の「膨張開始温度(t)以上の温度」としては、「膨張開始温度(t)+10℃」以上「膨張開始温度(t)+60℃」以下であることが好ましく、「膨張開始温度(t)+15℃」以上「膨張開始温度(t)+40℃」以下であることがより好ましい。
In this step, the method for expanding the expandable particles is appropriately selected according to the type of the expandable particles.
For example, when heat-expandable particles are used as the expandable particles, heat treatment is performed at a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles to expand the heat-expandable particles.
At this time, the “temperature higher than the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or higher and “expansion start temperature (t) + 60 ° C.” or lower. It is more preferable that the temperature is not less than “temperature (t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”.
 本発明の製造方法においては、膨張性粒子を含む膨張性基材層(Y1)を有する粘着シートを用いて、当該膨張性粒子の膨張によって、硬質支持体と貼付している第1粘着剤層(X1)の粘着表面に凹凸を形成することで、硬質支持体と第1粘着剤層(X1)との界面Pで分離できるように調整している。
 そのため、分離後に硬質支持体の表面に第1粘着剤層(X1)の一部が残存するような、硬質支持体の汚染を抑制して、硬質支持体の洗浄工程を省略可能とし、生産性を向上させ得る。
In the production method of the present invention, the first pressure-sensitive adhesive layer adhered to the hard support by the expansion of the expandable particles using the pressure-sensitive adhesive sheet having the expandable base material layer (Y1) containing the expandable particles. By forming irregularities on the adhesive surface of (X1), it is adjusted so that it can be separated at the interface P between the hard support and the first adhesive layer (X1).
Therefore, the contamination of the hard support, such that a part of the first pressure-sensitive adhesive layer (X1) remains on the surface of the hard support after the separation, can be eliminated, and the washing process of the hard support can be omitted. Can be improved.
 また、本工程において、膨張性粒子を膨張させた際、前記粘着シートを構成する各層の層間では分離しないことが好ましい。
 つまり、図2(c)に示すように、工程(3)によって、硬質支持体50の表面には、粘着シートの一部の層が残存せずに、すべて除去されることが好ましい。
 通常、粘着シートを分離した後の硬質支持体は、再度、新たな粘着シートを貼付して、同様の工程が施されることが一般的である。この際、粘着シートを構成する各層の層間で分離して、硬質支持体の表面に、粘着シートの一部の層が残存してしまうと、この層を除去するための工程が必要となる。
Further, in this step, when the expandable particles are expanded, it is preferable not to separate between the layers of the pressure-sensitive adhesive sheet.
That is, as shown in FIG. 2 (c), it is preferable to remove all the layers of the pressure-sensitive adhesive sheet without remaining on the surface of the hard support 50 by the step (3).
Usually, the hard support after separating the pressure-sensitive adhesive sheet is generally subjected to the same process by attaching a new pressure-sensitive adhesive sheet again. At this time, if a part of the pressure-sensitive adhesive sheet remains on the surface of the hard support due to separation between the layers constituting the pressure-sensitive adhesive sheet, a step for removing this layer is required.
 一方で、本工程において、膨張性粒子を膨張させた際、前記粘着シートを構成する各層の層間では分離しないことで、上記の問題は生じず、硬化封止体の製造の生産性をより向上させることができる。
 加えて、上述のとおり、分離後の粘着シート付きの硬化封止体において、粘着シートの最外層に位置する第1粘着剤層(X1)は、非膨張性粘着剤層であるため、第1粘着剤層(X1)が脱落する等の弊害は生じ難い。その点からも、製造環境内での汚染の問題は抑制されており、生産性をより向上し得る要因となる。
On the other hand, in this step, when the expandable particles are expanded, the above problems are not caused by not separating between the layers constituting the pressure-sensitive adhesive sheet, and the productivity of manufacturing the cured sealed body is further improved. Can be made.
In addition, as described above, in the cured sealed body with the pressure-sensitive adhesive sheet after separation, the first pressure-sensitive adhesive layer (X1) located in the outermost layer of the pressure-sensitive adhesive sheet is a non-intumescent pressure-sensitive adhesive layer. Defects such as the pressure-sensitive adhesive layer (X1) dropping off hardly occur. From this point of view, the problem of contamination in the manufacturing environment is suppressed, which is a factor that can improve productivity.
 また、粘着シートを除去した後、得られた硬化封止体は、封止対象物の位置ずれの発生や、封止対象物の露出表面への封止樹脂の付着といった弊害が効果的に抑制されている。
 そのため、本発明製造方法によれば、このような硬化封止体の製造における歩留まりを向上させ得る。
In addition, after removing the adhesive sheet, the resulting cured sealing body effectively suppresses adverse effects such as occurrence of displacement of the sealing object and adhesion of the sealing resin to the exposed surface of the sealing object. Has been.
Therefore, according to the manufacturing method of this invention, the yield in manufacture of such a hardening sealing body can be improved.
 なお、得られた硬化封止体は、この後、硬化封止体の封止材を封止対象物の表面が露出するまで研削する工程、回路面に対して再配線を行う工程、外部電極パッドを形成し、外部電極パッドと外部端子電極とを接続させる工程等を経てもよい。
 さらに、硬化封止体に外部端子電極が接続された後、個片化させ、半導体装置を製造することもできる。
The obtained cured encapsulant is thereafter subjected to a step of grinding the encapsulant of the cured encapsulant until the surface of the object to be sealed is exposed, a step of rewiring the circuit surface, an external electrode You may pass through the process of forming a pad and connecting an external electrode pad and an external terminal electrode.
Further, after the external terminal electrode is connected to the cured sealing body, it can be separated into individual pieces to manufacture a semiconductor device.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の製造例及び実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples. In addition, the physical-property value in the following manufacture examples and Examples is a value measured by the following method.
<質量平均分子量(Mw)>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<Mass average molecular weight (Mw)>
Using a gel permeation chromatograph (product name “HLC-8020” manufactured by Tosoh Corporation), the measurement was performed under the following conditions, and the value measured in terms of standard polystyrene was used.
(Measurement condition)
Column: "TSK guard column HXL-L", "TSK gel G2500HXL", "TSK gel G2000HXL", and "TSK gel G1000HXL" (both manufactured by Tosoh Corporation) Column temperature: 40 ° C
・ Developing solvent: Tetrahydrofuran ・ Flow rate: 1.0 mL / min
<膨張性粒子の平均粒子径、90%粒子径(D90)の測定>
 レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、対象となる膨張性粒子の粒子分布を測定した。
 そして、当該粒子分布から、膨張性粒子の粒径の小さい方から計算した累積体積頻度が50%に相当する粒径を「平均粒子径」とし、累積体積頻度が90%に相当する粒径を「90%粒子径(D90)」とした。
<Measurement of average particle diameter of expandable particles, 90% particle diameter (D 90 )>
The particle distribution of the target expandable particles was measured using a laser diffraction particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern).
Then, from the particle distribution, the particle size corresponding to 50% of the cumulative volume frequency calculated from the smaller particle size of the expandable particles is defined as “average particle size”, and the particle size corresponding to 90% of the cumulative volume frequency. “90% particle size (D 90 )”.
<各層の厚さの測定>
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
<Measurement of thickness of each layer>
It was measured using a constant pressure thickness measuring instrument (model number: “PG-02J”, standard: JIS K6783, Z1702, Z1709 compliant) manufactured by Teclock Co., Ltd.
<熱膨張性基材層(Y1)の貯蔵弾性率E’>
 形成した熱膨張性基材層(Y1)を、縦5mm×横30mm×厚さ200μmの大きさとし、剥離材を除去したものを試験サンプルとした。
 動的粘弾性測定装置(TAインスツルメント社製,製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、所定の温度における、当該試験サンプルの貯蔵弾性率E’を測定した。
<Storage elastic modulus E ′ of thermally expandable base material layer (Y1)>
The formed heat-expandable base material layer (Y1) was 5 mm long × 30 mm wide × 200 μm thick, and the sample from which the release material was removed was used as a test sample.
Using a dynamic viscoelasticity measuring apparatus (TA Instruments, product name “DMAQ800”), a test start temperature of 0 ° C., a test end temperature of 300 ° C., a temperature increase rate of 3 ° C./min, a frequency of 1 Hz, and an amplitude of 20 μm Under the conditions, the storage elastic modulus E ′ of the test sample at a predetermined temperature was measured.
<第1粘着剤層(X1)及び第2粘着剤層(X2)の貯蔵せん断弾性率G’>
 形成した第1粘着剤層(X1)及び第2粘着剤層(X2)を、直径8mmの円形に切断したものを、剥離材を除去し、重ね合わせて、厚さ3mmとしたものを試験サンプルとした。
 粘弾性測定装置(Anton Paar社製、装置名「MCR300」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hzの条件で、ねじりせん断法によって、所定の温度における、試験サンプルの貯蔵せん断弾性率G’を測定した。
<Storage shear modulus G ′ of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2)>
A sample prepared by cutting the formed first pressure-sensitive adhesive layer (X1) and second pressure-sensitive adhesive layer (X2) into a circle having a diameter of 8 mm, removing the release material, and superposing them to obtain a thickness of 3 mm It was.
Using a viscoelasticity measuring device (manufactured by Anton Paar, device name “MCR300”), a torsional shear method under conditions of a test start temperature of 0 ° C., a test end temperature of 300 ° C., a heating rate of 3 ° C./min, and a frequency of 1 Hz Was used to measure the storage shear modulus G ′ of the test sample at a given temperature.
<プローブタック値>
 測定対象となる基材層を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとした。
 23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製,製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定した。
 具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とした。
<Probe tack value>
A base material layer to be measured was cut into a square with a side of 10 mm, and then allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity) was used as a test sample.
Using a tacking tester (manufactured by Nippon Special Instrument Co., Ltd., product name “NTS-4800”) in an environment of 23 ° C. and 50% RH (relative humidity), the probe tack value on the surface of the test sample was measured according to JIS. It measured based on Z0237: 1991.
Specifically, a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample at a contact load of 0.98 N / cm 2 for 1 second, and then the probe is moved at a speed of 10 mm / sec. The force required to separate from the surface was measured, and the obtained value was used as the probe tack value of the test sample.
<第2粘着剤層(X2)の粘着力の測定>
 剥離フィルム上に形成した第2粘着剤層(X2)の粘着表面上に、厚さ50μmのPETフィルム(東洋紡株式会社製、製品名「コスモシャインA4100」)を積層し、基材付き粘着シートとした。
 そして、剥離フィルムを除去し、表出した第2粘着剤層(X2)の粘着表面を、被着体であるステンレス鋼板(SUS304 360番研磨)に貼付し、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、23℃における粘着力を測定した。
<Measurement of adhesive strength of second adhesive layer (X2)>
On the adhesive surface of the second adhesive layer (X2) formed on the release film, a 50 μm thick PET film (product name “Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.) is laminated, did.
Then, the release film was removed, and the exposed adhesive surface of the second adhesive layer (X2) was attached to a stainless steel plate (SUS304 360 polishing) as an adherend, and 23 ° C., 50% RH (relative humidity). ) Under the same environment, the adhesive strength at 23 ° C. was measured at a pulling rate of 300 mm / min by the 180 ° peeling method in accordance with JIS Z0237: 2000.
<硬質支持体のヤング率>
 JIS Z2280:1993の静的ヤング率試験方法に準拠し、室温(25℃)にて測定した。
<Young's modulus of hard support>
The measurement was performed at room temperature (25 ° C.) in accordance with the static Young's modulus test method of JIS Z2280: 1993.
製造例1(アクリルウレタン系樹脂の合成)
(1)ウレタンプレポリマーの合成)
 窒素雰囲気下の反応容器内に、質量平均分子量1,000のポリカーボネートジオール100質量部(固形分比)に対して、イソホロンジイソシアネートを、ポリカーボネートジオールの水酸基とイソホロンジイソシアネートのイソシアネート基との当量比が1/1となるように配合し、さらにトルエン160質量部を加え、窒素雰囲気下にて、撹拌しながら、イソシアネート基濃度が理論量に到達するまで、80℃で6時間以上反応させた。
 次いで、2-ヒドロキシエチルメタクリレート(2-HEMA)1.44質量部(固形分比)をトルエン30質量部に希釈した溶液を添加して、両末端のイソシアネート基が消滅するまで、更に80℃で6時間反応させ、質量平均分子量2.9万のウレタンプレポリマーを得た。
Production Example 1 (Synthesis of acrylic urethane resin)
(1) Synthesis of urethane prepolymer)
In a reaction vessel under a nitrogen atmosphere, with respect to 100 parts by mass (solid content ratio) of polycarbonate diol having a weight average molecular weight of 1,000, isophorone diisocyanate has an equivalent ratio of hydroxyl group of polycarbonate diol and isocyanate group of isophorone diisocyanate of 1. / 1, 160 parts by mass of toluene was further added, and the mixture was allowed to react at 80 ° C. for 6 hours or more while stirring under a nitrogen atmosphere until the isocyanate group concentration reached the theoretical amount.
Subsequently, a solution obtained by diluting 1.44 parts by mass (solid content ratio) of 2-hydroxyethyl methacrylate (2-HEMA) in 30 parts by mass of toluene is added, and further at 80 ° C. until the isocyanate groups at both ends disappear. The reaction was performed for 6 hours to obtain a urethane prepolymer having a mass average molecular weight of 29,000.
(2)アクリルウレタン系樹脂の合成
 窒素雰囲気下の反応容器内に、製造例1で得たウレタンプレポリマー100質量部(固形分比)、メチルメタクリレート(MMA)117質量部(固形分比)、2-ヒドロキシエチルメタクリレート(2-HEMA)5.1質量部(固形分比)、1-チオグリセロール1.1質量部(固形分比)、及びトルエン50質量部を加え、撹拌しながら、105℃まで昇温した。
 そして、反応容器内に、さらにラジカル開始剤(株式会社日本ファインケム製、製品名「ABN-E」)2.2質量部(固形分比)をトルエン210質量部で希釈した溶液を、105℃に維持したまま4時間かけて滴下した。
 滴下終了後、105℃で6時間反応させ、質量平均分子量10.5万のアクリルウレタン系樹脂の溶液を得た。
(2) Synthesis of acrylic urethane-based resin In a reaction vessel under a nitrogen atmosphere, 100 parts by mass of urethane prepolymer obtained in Production Example 1 (solid content ratio), 117 parts by mass of methyl methacrylate (MMA) (solid content ratio), 2-hydroxyethyl methacrylate (2-HEMA) 5.1 parts by mass (solid content ratio), 1-thioglycerol 1.1 parts by mass (solid content ratio) and toluene 50 parts by mass were added and stirred at 105 ° C. The temperature was raised to.
Further, a solution obtained by further diluting 2.2 parts by mass (solid content ratio) of radical initiator (manufactured by Nippon Finechem Co., Ltd., product name “ABN-E”) with 210 parts by mass of toluene in a reaction vessel was heated to 105 ° C. It was dripped over 4 hours, maintaining.
After completion of the dropping, the reaction was carried out at 105 ° C. for 6 hours to obtain a solution of an acrylic urethane resin having a mass average molecular weight of 105,000.
製造例2(粘着シートの作製)
 以下の粘着シートの作製の際に、各層の形成で使用した粘着性樹脂、添加剤、熱膨張性粒子、基材及び剥離材の詳細は以下のとおりである。
<粘着性樹脂>
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
・アクリル系共重合体(ii):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)/アクリル酸=86.0/8.0/5.0/1.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
<添加剤>
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
<熱膨張性粒子>
・熱膨張性粒子(i):株式会社クレハ製、製品名「S2640」、膨張開始温度(t)=208℃、23℃における膨張前の平均粒子径(D50)=24μm、23℃における膨張前の90%粒子径(D90)=49μm。
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
Production Example 2 (Preparation of adhesive sheet)
Details of the adhesive resin, additives, thermally expandable particles, base material, and release material used in the formation of each layer during the production of the following adhesive sheet are as follows.
<Adhesive resin>
Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) = 80.0 / 20.0 (mass ratio), An acrylic copolymer having a Mw of 600,000.
Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid = 86.0 / 8.0 / 5.0 / 1. An acrylic copolymer having an Mw of 600,000 having a structural unit derived from a raw material monomer consisting of 0 (mass ratio).
<Additives>
Isocyanate crosslinking agent (i): manufactured by Tosoh Corporation, product name “Coronate L”, solid content concentration: 75 mass%.
<Thermal expandable particles>
Thermally expandable particles (i): manufactured by Kureha Corporation, product name “S2640”, expansion start temperature (t) = 208 ° C., average particle diameter before expansion at 23 ° C. (D 50 ) = 24 μm, expansion at 23 ° C. Previous 90% particle size (D 90 ) = 49 μm.
<Release material>
Heavy release film: manufactured by Lintec Corporation, product name “SP-PET382150”, a polyethylene terephthalate (PET) film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
Light release film: manufactured by Lintec Co., Ltd., product name “SP-PET381031”, a PET film provided with a release agent layer formed from a silicone release agent on one side, thickness: 38 μm.
(1)第1粘着剤層(X1)の形成
 粘着性樹脂である、上記アクリル系共重合体(i)の固形分100質量部に、上記イソシアネート系架橋剤(i)5.0質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記重剥離フィルムの剥離剤層の表面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの非膨張性粘着剤層である第1粘着剤層(X1)を形成した。
 なお、23℃における、第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、2.5×10Paであった。
(1) Formation of first pressure-sensitive adhesive layer (X1) To 100 parts by mass of the solid content of the acrylic copolymer (i), which is an adhesive resin, 5.0 parts by mass of the isocyanate-based crosslinking agent (i) ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass.
And the said adhesive composition is apply | coated to the surface of the release agent layer of the said heavy release film, a coating film is formed, the said coating film is dried at 100 degreeC for 60 second, and a non-expandable adhesive of thickness 5 micrometers. The 1st adhesive layer (X1) which is an agent layer was formed.
The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 × 10 5 Pa.
(2)第2粘着剤層(X2)の形成
 粘着性樹脂である、上記アクリル系共重合体(ii)の固形分100質量部に、上記イソシアネート系架橋剤(i)0.8質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記軽剥離フィルムの剥離剤層の表面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ10μmの第2粘着剤層(X2)を形成した。
 なお、23℃における、第2粘着剤層(X2)の貯蔵せん断弾性率G’(23)は、9.0×10Paであった。
 また、上記方法に基づき測定した、第2粘着剤層(X2)の粘着力は、1.0N/25mmであった。
 なお、第2粘着剤層(X2)及び前記第1粘着剤層(X1)は、プローブタック値が50mN/5mmφ以上であることが明らかであったため、プローブタック値の測定を省略した。
(2) Formation of second pressure-sensitive adhesive layer (X2) To 100 parts by mass of the acrylic copolymer (ii), which is an adhesive resin, 0.8 parts by mass of the isocyanate-based crosslinking agent (i) ( (Solid content ratio) was mixed, diluted with toluene, and stirred uniformly to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass.
And the said adhesive composition is apply | coated to the surface of the release agent layer of the said light release film, a coating film is formed, the said coating film is dried at 100 degreeC for 60 second, and 10 micrometers in thickness 2nd adhesive. Layer (X2) was formed.
The storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) at 23 ° C. was 9.0 × 10 4 Pa.
Moreover, the adhesive force of the 2nd adhesive layer (X2) measured based on the said method was 1.0 N / 25mm.
Since it was clear that the second pressure-sensitive adhesive layer (X2) and the first pressure-sensitive adhesive layer (X1) had a probe tack value of 50 mN / 5 mmφ or more, measurement of the probe tack value was omitted.
(3)基材(Y)の作製
 製造例1で得たアクリルウレタン系樹脂の固形分100質量部に、上記イソシアネート系架橋剤(i)6.3質量部(固形分比)、触媒として、ジオクチルスズビス(2-エチルヘキサノエート)1.4質量部(固形分比)、及び上記熱膨張性粒子(i)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の樹脂組成物を調製した。
 なお、得られた樹脂組成物中の有効成分の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%であった。
 そして、非膨張性基材である、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、製品名「コスモシャインA4100」、プローブタック値:0mN/5mmφ)の表面上に、当該樹脂組成物を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの膨張性基材層(Y1)を形成した。
 ここで、上記PETフィルムは、非膨張性基材層(Y2)に相当する。
(3) Production of substrate (Y) To 100 parts by mass of the solid content of the acrylurethane resin obtained in Production Example 1, 6.3 parts by mass (solid content ratio) of the isocyanate-based crosslinking agent (i), as a catalyst, Dioctyltin bis (2-ethylhexanoate) 1.4 parts by mass (solid content ratio) and the above-mentioned thermally expandable particles (i) are blended, diluted with toluene, stirred uniformly, and solid content concentration ( A resin composition having an active ingredient concentration of 30% by mass was prepared.
In addition, content of the thermally expansible particle (i) with respect to the whole quantity (100 mass%) of the active ingredient in the obtained resin composition was 20 mass%.
Then, the resin composition is formed on the surface of a 50 μm-thick polyethylene terephthalate (PET) film (product name “COSMO SHINE A4100”, probe tack value: 0 mN / 5 mmφ, manufactured by Toyobo Co., Ltd.), which is a non-intumescent substrate. The product was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to form an expandable substrate layer (Y1) having a thickness of 50 μm.
Here, the PET film corresponds to the non-expandable base material layer (Y2).
 なお、膨張性基材層(Y1)の物性値を測定するサンプルとして、上記軽剥離フィルムの剥離剤層の表面に、当該樹脂組成物を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの膨張性基材層(Y1)を同様に形成した。
 そして、上述の測定方法に基づき、膨張性基材層(Y1)の各温度における貯蔵弾性率及びプローブタック値を測定した。当該測定結果は、以下のとおりであった。
・23℃における貯蔵弾性率E’(23)=2.0×10Pa
・208℃における貯蔵弾性率E’(208)=5.0×10Pa
・プローブタック値=0mN/5mmφ
 また、上記PETフィルム、すなわち、非膨張性基材層(Y2)の各温度における貯蔵弾性率及びプローブタック値を測定した。当該測定結果は、以下のとおりであった。
・23℃における貯蔵弾性率E’(23)=1.0×10MPa
・208℃における貯蔵弾性率E’(208)=0.8×10MPa
・プローブタック値=0mN/5mmφ
In addition, as a sample for measuring the physical property value of the expandable base material layer (Y1), the resin composition is applied to the surface of the release agent layer of the light release film to form a coating film, and the coating film is formed into 100. Drying was performed at ° C for 120 seconds to similarly form an expandable substrate layer (Y1) having a thickness of 50 µm.
And based on the above-mentioned measuring method, the storage elastic modulus and probe tack value in each temperature of an expansible base material layer (Y1) were measured. The measurement results were as follows.
-Storage elastic modulus E '(23) at 23 ° C. = 2.0 × 10 8 Pa
-Storage elastic modulus E '(208) at 208 ° C = 5.0 x 10 5 Pa
・ Probe tack value = 0mN / 5mmφ
Moreover, the storage elastic modulus and probe tack value at each temperature of the PET film, that is, the non-expandable base material layer (Y2) were measured. The measurement results were as follows.
-Storage elastic modulus E '(23) at 23 ° C. = 1.0 × 10 3 MPa
-Storage elastic modulus E '(208) at 208 ° C = 0.8 x 10 2 MPa
・ Probe tack value = 0mN / 5mmφ
(4)各層の積層
 上記(1-3)で作製した基材(Y1)の非膨張性基材層(Y2)と、上記(2)で形成した第2粘着剤層(X2)とを貼り合わせると共に、熱膨張性基材層(Y1)と、上記(1)で形成した第1粘着剤層(X1)とを貼り合せた。
 そして、重剥離フィルム/第1粘着剤層(X1)/膨張性基材層(Y1)/非膨張性基材層(Y2)/第2粘着剤層(X2)/軽剥離フィルムをこの順で積層してなる、粘着シートを作製した。
(4) Lamination of each layer The non-intumescent base material layer (Y2) of the base material (Y1) prepared in (1-3) above and the second pressure-sensitive adhesive layer (X2) formed in (2) above are attached. At the same time, the thermally expandable base material layer (Y1) and the first pressure-sensitive adhesive layer (X1) formed in the above (1) were bonded together.
And the heavy release film / first pressure-sensitive adhesive layer (X1) / expandable base material layer (Y1) / non-expandable base material layer (Y2) / second pressure-sensitive adhesive layer (X2) / light release film in this order A pressure-sensitive adhesive sheet was prepared by laminating.
 なお、作製した粘着シートについて、上述の方法に基づき、剥離力(F)及び(F)を以下の方法に準拠して測定した。
 その結果、剥離力(F)=0.23N/25mm、剥離力(F)=0mN/25mmとなり、剥離力(F)と剥離力(F)との比〔(F)/(F)〕は0であった。
As for the pressure-sensitive adhesive sheets prepared on the basis of the above-described method, peel force (F 0) and (F 1) measured in accordance with the following methods.
As a result, the peel force (F 0 ) = 0.23 N / 25 mm and the peel force (F 1 ) = 0 mN / 25 mm, and the ratio between the peel force (F 1 ) and the peel force (F 0 ) [(F 1 ) / (F 0 )] was 0.
<剥離力(F)の測定>
 作製した粘着シートを23℃、50%RH(相対湿度)の環境下で、24時間静置した後、当該粘着シートが有する重剥離フィルムを除去し、表出した第1粘着剤層(X1)を、シリコンウエハに貼付した。
 次いで、粘着シートが貼付されたシリコンウエハの端部を、万能引張試験機(オリエンテック社製,製品名「テンシロン UTM-4-100」)の下部チャックへ固定し、上部チャックで粘着シートを固定した。
 そして、上記と同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引張速度300mm/分で、シリコンウエハと粘着シートの第1粘着剤層(X1)との界面Pで剥離した際に測定された剥離力を「剥離力(F)」とした。
<Measurement of peeling force (F 0 )>
The prepared pressure-sensitive adhesive sheet was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), then the heavy release film of the pressure-sensitive adhesive sheet was removed, and the first pressure-sensitive adhesive layer (X1) exposed Was affixed to a silicon wafer.
Next, the end of the silicon wafer with the adhesive sheet attached is fixed to the lower chuck of the universal tensile testing machine (Orientec, product name “Tensilon UTM-4-100”), and the adhesive sheet is fixed with the upper chuck. did.
Then, in the same environment as above, peeling is performed at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet at a pulling speed of 300 mm / min according to JIS Z0237: 2000 by a 180 ° peeling method. The peeling force measured at the time of the measurement was defined as “peeling force (F 0 )”.
<剥離力(F)の測定>
 作製した粘着シートが有する重剥離フィルムを除去し、表出した第1粘着剤層(X1)をシリコンウエハに貼付し、240℃で3分間加熱し、熱膨張性基材層(Y1)中の熱膨張性粒子を膨張させた。
 その後は、上述の剥離力(F)の測定と同様にし、上記条件にて、シリコンウエハと粘着シートの第1粘着剤層(X1)との界面Pで剥離した際に測定された剥離力を「剥離力(F)」とした。
 なお、剥離力(F)の測定において、万能引張試験機の上部チャックで、粘着シートを固定しようとした際、シリコンウエハから粘着シート(I)が完全に分離してしまい、固定ができない場合には、測定を終了し、その際の剥離力(F)は「0mN/25mm」とした。
<Measurement of peel force (F 1 )>
The heavy release film of the prepared pressure-sensitive adhesive sheet is removed, and the exposed first pressure-sensitive adhesive layer (X1) is attached to a silicon wafer, heated at 240 ° C. for 3 minutes, and in the thermally expandable base material layer (Y1). The thermally expandable particles were expanded.
Thereafter, in the same manner as the measurement of the peeling force (F 0 ) described above, the peeling force measured when peeling was performed at the interface P between the silicon wafer and the first pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet under the above conditions. Was defined as “peeling force (F 1 )”.
When measuring the peel force (F 1 ), the adhesive sheet (I) is completely separated from the silicon wafer when the adhesive sheet is fixed with the upper chuck of the universal tensile testing machine and cannot be fixed. The measurement was terminated, and the peeling force (F 1 ) at that time was set to “0 mN / 25 mm”.
実施例1
<工程(1)>
 製造例2で作製した粘着シートを230mm×230mmの正方形の大きさに裁断した。
 バックグラインド用テープラミネーター(リンテック社製、装置名「RAD-3510F/12」)を用いて、裁断後の粘着シートの重剥離フィルムを剥離して、表出した第1粘着剤層(X1)の粘着表面を、硬質支持体(材質:シリコン、厚さ:725μm、ヤング率:30GPa)に貼付した。そして、さらに軽剥離フィルムも剥離して、表出した第2粘着剤層(X2)の粘着表面に、9個の半導体チップ(それぞれのチップの大きさは、縦6.4mm×横6.4×厚さ200μm(#2000)の直方体の形状)を、回路が形成された回路面が粘着表面に接触するように、一定の間隔を空けて載置した。
Example 1
<Step (1)>
The pressure-sensitive adhesive sheet produced in Production Example 2 was cut into a square size of 230 mm × 230 mm.
Using a tape grinder for back grind (manufactured by Lintec Corporation, device name “RAD-3510F / 12”), the heavy release film of the cut adhesive sheet was peeled off, and the first adhesive layer (X1) exposed was exposed. The adhesive surface was attached to a hard support (material: silicon, thickness: 725 μm, Young's modulus: 30 GPa). Further, the light release film was also peeled off, and nine semiconductor chips (the size of each chip was 6.4 mm long × 6.4 horizontal) on the adhesive surface of the exposed second pressure-sensitive adhesive layer (X2). X A rectangular parallelepiped shape having a thickness of 200 μm (# 2000) was placed at a certain interval so that the circuit surface on which the circuit was formed was in contact with the adhesive surface.
<工程(2)>
 9個の前記半導体チップと、当該半導体チップの少なくとも周辺部の第2粘着剤層(X2)の粘着表面とを、封止材である、熱硬化性の封止樹脂フィルムによって被覆し、真空加熱加圧ラミネーター(ROHM and HAAS社製の「7024HP5」)を用いて、封止樹脂フィルムを熱硬化させて、半導体チップを封止材で封止してなる硬化封止体を作製した。
 封止条件は、下記のとおりである。
・予熱温度:テーブル及びダイアフラム共に100℃
・真空引き:60秒間
・ダイナミックプレスモード:30秒間
・スタティックプレスモード:10秒間
・封止温度:180℃×60分間
 なお、上の封止樹脂フィルムでの被覆時に、半導体チップの位置ずれは確認されなかった。
<Step (2)>
The nine semiconductor chips and the adhesive surface of the second adhesive layer (X2) at least in the periphery of the semiconductor chip are covered with a thermosetting sealing resin film as a sealing material, and heated in a vacuum Using a pressure laminator (“7024HP5” manufactured by ROHM and HAAS), the sealing resin film was thermally cured to produce a cured sealing body formed by sealing the semiconductor chip with a sealing material.
The sealing conditions are as follows.
-Preheating temperature: 100 ° C for both table and diaphragm
・ Vacuum drawing: 60 seconds ・ Dynamic press mode: 30 seconds ・ Static press mode: 10 seconds ・ Sealing temperature: 180 ° C. × 60 minutes Note that the semiconductor chip is not misaligned when covered with the above sealing resin film. Was not.
<工程(3)>
 硬質支持体、粘着シート、及び硬化封止体を含む系内の温度を、熱膨張性粒子(i)の膨張開始温度(208℃)以上となる240℃とし、同温度で3分間の加熱処理を行った。
 加熱処理後、硬質支持体と第1粘着剤層(X1)との界面で一括して容易に分離することができた。この際、第2粘着剤層(X2)上の前記硬化封止体は積層したままであり、粘着シートを構成する各層の層間での分離は生じなかった。
 そのため、粘着シートを分離した後の硬質支持体の表面は、第1粘着剤層(X1)の残存は確認されず、汚染は見られず、硬質支持体の表面に対しては、新たに洗浄工程を行う必要がないと考えられる。
 また、得られた硬化封止体に封止された半導体チップについて、位置ずれは生じておらず、回路面には封止樹脂の付着は見られなかった。
 さらに、硬質支持体から分離後の粘着シート付き硬化封止体について、粘着シートの最外層に位置する第1粘着剤層(X1)が脱落する等の弊害は見られず、製造環境内での汚染の発生は抑制されているといえる。
<Step (3)>
The temperature in the system including the hard support, the pressure-sensitive adhesive sheet, and the cured sealing body is set to 240 ° C. that is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles (i), and the heat treatment is performed at the same temperature for 3 minutes. Went.
After the heat treatment, it could be easily separated at the interface between the hard support and the first pressure-sensitive adhesive layer (X1). At this time, the cured sealing body on the second pressure-sensitive adhesive layer (X2) remained laminated, and separation between the layers constituting the pressure-sensitive adhesive sheet did not occur.
Therefore, the surface of the hard support after the pressure-sensitive adhesive sheet is separated is not confirmed to remain in the first pressure-sensitive adhesive layer (X1), is not contaminated, and the surface of the hard support is newly cleaned. It is thought that there is no need to perform the process.
Further, the semiconductor chip sealed in the obtained cured sealing body was not misaligned, and no sealing resin was observed on the circuit surface.
Furthermore, about the cured sealing body with the pressure-sensitive adhesive sheet after being separated from the hard support, there is no adverse effect such as dropping of the first pressure-sensitive adhesive layer (X1) located in the outermost layer of the pressure-sensitive adhesive sheet. It can be said that the occurrence of contamination is suppressed.
1a、1b  粘着シート
(X1)  第1粘着剤層
(X2)  第2粘着剤層
(Y)  基材
 (Y1)  膨張性基材層
 (Y2)  非膨張性基材層
 (Y2-1)  第1非膨張性基材層
 (Y2-2)  第2非膨張性基材層
50  硬質支持体
60  封止対象物
61  露出表面
70  封止材
80  硬化封止体
1a, 1b Pressure-sensitive adhesive sheet (X1) First pressure-sensitive adhesive layer (X2) Second pressure-sensitive adhesive layer (Y) Base material (Y1) Expandable base material layer (Y2) Non-expandable base material layer (Y2-1) First Non-intumescent substrate layer (Y2-2) Second non-intumescent substrate layer 50 Hard support 60 Sealed object 61 Exposed surface 70 Sealant 80 Cured encapsulant

Claims (10)

  1.  膨張性粒子を含む膨張性基材層(Y1)及び非膨張性基材層(Y2)を少なくとも備える基材(Y)と、
     基材(Y)の両面に、それぞれ、非膨張性粘着剤層である、第1粘着剤層(X1)及び第2粘着剤層(X2)とを有し、
     前記膨張性粒子の膨張によって、第1粘着剤層(X1)の粘着表面に凹凸が生じ得る、粘着シートを用いて、硬化封止体を製造する方法であって、
     下記工程(1)~(3)を有する、硬化封止体の製造方法。
    ・工程(1):第1粘着剤層(X1)の粘着表面を硬質支持体に貼付し、第2粘着剤層(X2)の粘着表面の一部に、封止対象物を載置する工程。
    ・工程(2):前記封止対象物と、当該封止対象物の少なくとも周辺部の第2粘着剤層(X2)の粘着表面とを封止材で被覆し、当該封止材を硬化させて、前記封止対象物を前記封止材で封止してなる硬化封止体を得る工程。
    ・工程(3):前記膨張性粒子を膨張させて、第2粘着剤層(X2)上に前記硬化封止体を積層したまま、前記硬質支持体と第1粘着剤層(X1)との界面Pで分離する工程。
    A substrate (Y) comprising at least an expandable substrate layer (Y1) containing expandable particles and a non-expandable substrate layer (Y2);
    On both surfaces of the base material (Y), the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2), which are non-intumescent pressure-sensitive adhesive layers,
    By the expansion of the expandable particles, unevenness can occur on the adhesive surface of the first pressure-sensitive adhesive layer (X1), using a pressure-sensitive adhesive sheet, a method for producing a cured sealing body,
    A method for producing a cured encapsulant comprising the following steps (1) to (3).
    -Process (1): The process of sticking the adhesion surface of a 1st adhesive layer (X1) on a hard support body, and mounting a sealing target object on a part of adhesion surface of a 2nd adhesive layer (X2). .
    Step (2): The sealing object and the adhesive surface of the second pressure-sensitive adhesive layer (X2) at least in the periphery of the sealing object are covered with a sealing material, and the sealing material is cured. And the process of obtaining the hardening sealing body formed by sealing the said sealing target object with the said sealing material.
    Step (3): The expandable particles are expanded and the hard support and the first pressure-sensitive adhesive layer (X1) are stacked while the cured sealing body is laminated on the second pressure-sensitive adhesive layer (X2). Separating at the interface P.
  2.  前記粘着シートが、前記基材(Y)の前記膨張性基材層(Y1)側に第1粘着剤層(X1)を有し、該基材(Y)の前記非膨張性基材層(Y2)側に前記第2粘着剤層(X2)を有する、請求項1に記載の硬化封止体の製造方法。 The pressure-sensitive adhesive sheet has a first pressure-sensitive adhesive layer (X1) on the expandable substrate layer (Y1) side of the substrate (Y), and the non-expandable substrate layer ( The manufacturing method of the hardening sealing body of Claim 1 which has the said 2nd adhesive layer (X2) in the Y2) side.
  3.  前記基材(Y)が、前記膨張性基材層(Y1)と、前記膨張性基材層(Y1)の前記第1粘着層(X1)側に設けられた非膨張性基材層(Y2-1)と、前記膨張性基材層(Y1)の前記第2粘着層(X2)側に設けられた非膨張性基材層(Y2-2)とを有しており、
     前記膨張性粒子が膨張する際における非膨張性基材層(Y2-1)の貯蔵弾性率E’が、前記膨張性粒子が膨張する際における非膨張性基材層(Y2-2)の貯蔵弾性率E’よりも低い、請求項1に記載の硬化封止体の製造方法。
    The base material (Y) is a non-expandable base material layer (Y2) provided on the expandable base material layer (Y1) and the first adhesive layer (X1) side of the expandable base material layer (Y1). -1) and a non-intumescent substrate layer (Y2-2) provided on the second adhesive layer (X2) side of the expandable substrate layer (Y1),
    The storage elastic modulus E ′ of the non-expandable base layer (Y2-1) when the expandable particles expand is determined by the storage modulus of the non-expandable base layer (Y2-2) when the expandable particles expand. The manufacturing method of the hardening sealing body of Claim 1 lower than elastic modulus E '.
  4.  前記非膨張性基材層(Y2)は、前記膨張性基材層(Y1)よりも前記第1粘着剤層(X1)から離れた位置に存在しており、前記膨張性基材層(Y1)と前記第1粘着剤層(X1)との間には前記非膨張性基材層(Y2)は存在しておらず、
     前記膨張性粒子が膨張する際における前記非膨張性基材層(Y2)の貯蔵弾性率E’は、前記膨張性粒子が膨張する際における前記膨張性基材層(Y1)の貯蔵弾性率E’よりも大きい、請求項1又は2に記載の硬化封止体の製造方法。
    The non-expandable base layer (Y2) is present at a position farther from the first pressure-sensitive adhesive layer (X1) than the expandable base layer (Y1), and the inflatable base layer (Y1) ) And the first pressure-sensitive adhesive layer (X1), the non-expandable base material layer (Y2) does not exist,
    The storage elastic modulus E ′ of the non-expandable base layer (Y2) when the expandable particles expand is the storage elastic modulus E of the expandable base layer (Y1) when the expandable particles expand. The manufacturing method of the hardening sealing body of Claim 1 or 2 larger than '.
  5.  工程(3)において、前記膨張性粒子を膨張させた際、前記粘着シートを構成する各層の層間では分離しない、請求項1~4のいずれか一項に記載の硬化封止体の製造方法。 The method for producing a cured encapsulant according to any one of claims 1 to 4, wherein in the step (3), when the expandable particles are expanded, they are not separated between the layers constituting the pressure-sensitive adhesive sheet.
  6.  前記膨張性粒子が、膨張開始温度(t)が60~270℃の熱膨張性粒子である、請求項1~5のいずれか一項に記載の硬化封止体の製造方法。 The method for producing a cured encapsulant according to any one of claims 1 to 5, wherein the expandable particles are thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C.
  7.  前記熱膨張性粒子の膨張を、熱膨張性粒子の「膨張開始温度(t)+10℃」~「膨張開始温度(t)+60℃」間で加熱処理により行う、請求項6記載の硬化封止体の製造方法。 The cured sealing according to claim 6, wherein the expansion of the thermally expandable particles is performed by a heat treatment between “expansion start temperature (t) + 10 ° C.” to “expansion start temperature (t) + 60 ° C.” of the thermally expandable particles. Body manufacturing method.
  8.  前記膨張性基材層(Y1)が前記熱膨張性粒子を含む熱膨張性基材層(Y1-1)であり、23℃における熱膨張性基材層(Y1-1)の貯蔵弾性率E’(23)が、1.0×10Pa以上である請求項6又は7に記載の硬化封止体の製造方法。 The expandable substrate layer (Y1) is a thermally expandable substrate layer (Y1-1) containing the thermally expandable particles, and the storage elastic modulus E of the thermally expandable substrate layer (Y1-1) at 23 ° C. '(23) is 1.0 × 10 6 Pa or more. The method for producing a cured encapsulant according to claim 6 or 7.
  9.  前記非膨張性基材層(Y2)の体積変化率(%)が2体積%未満である請求項1~8のいずれか一項に記載の硬化封止体の製造方法。 The method for producing a cured encapsulant according to any one of claims 1 to 8, wherein a volume change rate (%) of the non-expandable base material layer (Y2) is less than 2% by volume.
  10.  前記封止対象物が、半導体チップである、請求項1~9のいずれか一項に記載の硬化封止体の製造方法。 The method for producing a cured encapsulant according to any one of claims 1 to 9, wherein the object to be encapsulated is a semiconductor chip.
PCT/JP2019/020190 2018-06-08 2019-05-22 Method for producing cured sealant WO2019235217A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980038938.3A CN112262459A (en) 2018-06-08 2019-05-22 Method for manufacturing cured sealing body
KR1020207035077A KR20210018272A (en) 2018-06-08 2019-05-22 Manufacturing method of hardened encapsulant
JP2020523609A JP7267272B2 (en) 2018-06-08 2019-05-22 Method for manufacturing cured encapsulant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018110617 2018-06-08
JP2018-110617 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019235217A1 true WO2019235217A1 (en) 2019-12-12

Family

ID=68770888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020190 WO2019235217A1 (en) 2018-06-08 2019-05-22 Method for producing cured sealant

Country Status (5)

Country Link
JP (1) JP7267272B2 (en)
KR (1) KR20210018272A (en)
CN (1) CN112262459A (en)
TW (1) TWI816796B (en)
WO (1) WO2019235217A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054889A1 (en) * 2020-09-14 2022-03-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064329A (en) * 2001-08-30 2003-03-05 Nitto Denko Corp Heat-releasable adhesive sheet of energy-ray curing type, method for manufacturing cut piece using the same and the cut piece
WO2013011850A1 (en) * 2011-07-15 2013-01-24 日東電工株式会社 Method for manufacturing electronic component and adhesive sheet used in method for manufacturing electronic component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594853A (en) 1982-07-01 1984-01-11 Mitsubishi Electric Corp Space heating and hot water supply system utilizing solar heater
JP2005101628A (en) * 2004-10-25 2005-04-14 Nitto Denko Corp Electronic component, processing method thereof, and heat releasing type adhesive sheet therefor
EP2832812A1 (en) * 2013-07-29 2015-02-04 Nitto Shinko Corporation Sealant
JP6320239B2 (en) * 2013-09-24 2018-05-09 日東電工株式会社 Semiconductor chip sealing thermosetting resin sheet and semiconductor package manufacturing method
JP2017002190A (en) * 2015-06-10 2017-01-05 リンテック株式会社 Thermal peeling adhesive sheet
WO2018003312A1 (en) * 2016-06-30 2018-01-04 リンテック株式会社 Semiconductor processing sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064329A (en) * 2001-08-30 2003-03-05 Nitto Denko Corp Heat-releasable adhesive sheet of energy-ray curing type, method for manufacturing cut piece using the same and the cut piece
WO2013011850A1 (en) * 2011-07-15 2013-01-24 日東電工株式会社 Method for manufacturing electronic component and adhesive sheet used in method for manufacturing electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054889A1 (en) * 2020-09-14 2022-03-17 リンテック株式会社 Adhesive sheet and method for producing semiconductor device

Also Published As

Publication number Publication date
CN112262459A (en) 2021-01-22
JP7267272B2 (en) 2023-05-01
KR20210018272A (en) 2021-02-17
JPWO2019235217A1 (en) 2021-07-08
TW202000822A (en) 2020-01-01
TWI816796B (en) 2023-10-01

Similar Documents

Publication Publication Date Title
TWI808170B (en) Manufacturing method of semiconductor wafer
CN110461974B (en) Adhesive sheet
KR20200086656A (en) Method for manufacturing semiconductor device
KR102526158B1 (en) Heating and peeling method of processing inspection object
CN110476241B (en) Method for manufacturing semiconductor device and double-sided adhesive sheet
CN114829529A (en) Adhesive sheet and method for manufacturing semiconductor device
CN113613893B (en) Pressure-sensitive adhesive sheet and method for manufacturing semiconductor device
JP7273792B2 (en) Processed product manufacturing method and adhesive laminate
CN110494524B (en) Adhesive sheet
WO2018181767A1 (en) Semiconductor device production method and adhesive sheet
JPWO2019131408A1 (en) A method for manufacturing an adhesive laminate, a processed object with a resin film, and a method for manufacturing a cured seal with a cured resin film.
CN112203840B (en) Adhesive laminate, method for using adhesive laminate, and method for manufacturing semiconductor device
WO2019235217A1 (en) Method for producing cured sealant
JP7185637B2 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814556

Country of ref document: EP

Kind code of ref document: A1