WO2020188506A1 - 自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体 - Google Patents

自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体 Download PDF

Info

Publication number
WO2020188506A1
WO2020188506A1 PCT/IB2020/052486 IB2020052486W WO2020188506A1 WO 2020188506 A1 WO2020188506 A1 WO 2020188506A1 IB 2020052486 W IB2020052486 W IB 2020052486W WO 2020188506 A1 WO2020188506 A1 WO 2020188506A1
Authority
WO
WIPO (PCT)
Prior art keywords
breeding
container
silkworm
silkworms
breeding container
Prior art date
Application number
PCT/IB2020/052486
Other languages
English (en)
French (fr)
Other versions
WO2020188506A9 (ja
Inventor
明 野中
八木 良樹
善太 梶浦
Original Assignee
紫紘株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 紫紘株式会社 filed Critical 紫紘株式会社
Priority to CN202080021944.0A priority Critical patent/CN113613491A/zh
Priority to JP2021506782A priority patent/JPWO2020188506A1/ja
Publication of WO2020188506A1 publication Critical patent/WO2020188506A1/ja
Priority to GB2105091.9A priority patent/GB2598438C/en
Publication of WO2020188506A9 publication Critical patent/WO2020188506A9/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/04Silkworms

Definitions

  • the present invention relates to an automatic sericulture system, an automatic sericulture method, a program and a storage medium.
  • a silkworm breeding container for breeding silkworms is known. Silkworms and food are stored in the silkworm breeding container. The silkworms in the silkworm breeding container grow by feeding on the food in the silkworm breeding container.
  • the silkworm breeding container When breeding silkworms, it is generally necessary to supply food such as mulberry leaves to the silkworm breeding container every day (excluding the sleep period of silkworms).
  • the larval stage of silkworms is about 25 days, and they molt four times during the larval stage. Then, at the 5th instar of the final age, the silkworm synthesizes silk protein in the body, spits a thread of about 1200 m, and makes a cocoon by the thread.
  • Patent Document 1 describes a sericulture method.
  • a sheet-shaped sericulture feed is laid on a flat pallet, and a net is arranged on the sheet-shaped sericulture feed. The net is used to grab the silkworm when it molts.
  • Patent Document 2 describes a method of breeding silkworms using artificial feed, which is performed by transloading breeding trays stacked in multiple stages and moving a breeding net for breeding silkworms on an arm portion. The method of raising silkworms is described to simplify the above. Further, according to Patent Document 1, when silkworms are bred in a sterile room, the work process can be simplified to reduce the invasion of various germs from the outside and the influence of fallen germs in the room. Are listed.
  • Patent Document 3 in order to save labor when breeding a large amount of silkworms, the breeding cages 10 housed in a plurality of breeding shelves are circulated and moved by a drive facility or automatically transported to a work port. A silkworm breeding device is described.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-129546
  • Patent Document 2 Japanese Patent No. 3657326
  • Patent Document 3 Japanese Patent Application Laid-Open No. 6134021
  • Patent Document 1 most of the silkworm breeding is done manually. Therefore, the cost required for raising silkworms is high. In addition, since most of the silkworm breeding is carried out manually, there is a relatively high risk of contamination of the silkworm breeding environment with various germs.
  • the arm can be used for transloading the breeding tray containing the artificial feed and moving the breeding net, but the feed supply and the installation of the sericulture device can be automated. It does not automate all silkworm raising processes.
  • the breeding cage 10 is circulated and moved by a drive facility or automatically transported to the work port, but the plastic bag is attached / detached and the breeding cage is replaced. Etc. cannot be automated, and not all silkworm raising processes are automated.
  • An object of the present invention is to provide an automatic silkworm sericulture system capable of breeding silkworms in an aseptic state and automating all processes of silkworm sericulture.
  • Egg supply means that automatically supplies eggs to group breeding containers
  • Feed supply means that automatically supplies feed to group breeding containers
  • a means of moving silkworms that automatically moves silkworms from a group breeding container to an individual breeding container
  • a cocoon removal method that automatically removes cocoons from individual breeding containers
  • a breeding container automatic storage means for automatically storing a group breeding container and / or an individual breeding container in a breeding shelf and automatically taking it out from the breeding shelf
  • a breeding container moving means for automatically moving a group breeding container and / or an individual breeding container between the above means. It is achieved by an automatic sericulture system characterized by being equipped with.
  • the automatic silkworm sericulture system it is possible to provide an automatic silkworm sericulture system that can breed silkworms in an aseptic state and can automate all processes of silkworm sericulture.
  • FIG. 1 is a diagram schematically showing a silkworm breeding system according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the silkworm breeding method in the first embodiment.
  • FIG. 3 is a diagram schematically showing a silkworm breeding system according to the second embodiment.
  • FIG. 4 is a schematic perspective view schematically showing the silkworm breeding system according to the second embodiment.
  • FIG. 5 is a diagram schematically showing an example of a food supply device.
  • FIG. 6 is a schematic perspective view schematically showing an example of the first breeding container.
  • FIG. 7 is a diagram schematically showing an example of a partition member moving device.
  • FIG. 8 is a flowchart showing an example of the first breeding process.
  • FIG. 9 is a diagram schematically showing an example of the first breeding step.
  • FIG. 1 is a diagram schematically showing a silkworm breeding system according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the silkworm breeding method in the first embodiment.
  • FIG. 10 is a schematic perspective view schematically showing an example of the first breeding container.
  • FIG. 11 is a schematic cross-sectional view schematically showing an example of an egg transfer device.
  • FIG. 12 is a schematic front view schematically showing an example of an egg transfer device.
  • FIG. 13 is a diagram schematically showing a silkworm breeding system according to the second embodiment.
  • FIG. 14 is a schematic perspective view schematically showing an example of the second breeding container.
  • FIG. 15 is a schematic perspective view schematically showing an example of the second breeding container.
  • FIG. 16 is a flowchart showing an example of the silkworm breeding method in the second embodiment.
  • FIG. 17 is a diagram schematically showing an example of a silkworm transfer device that can be adopted in the silkworm breeding system of the embodiment. It is a top view of the whole system.
  • FIG. It is a top view of the first container. It is a top view of the second container. It is a side view of FIG. It is a photograph of a group breeding container. It is a photograph of a partition member. It is a photograph when the partition member protrudes from the individual breeding container. It is a photograph when the cocoon is taken out from the individual breeding container. It is a photograph of a robot arm. (Dung collection container on the right side of the arm, cocoon collection container in front of the arm) It is a photograph of the camera. It is a photograph of the cocoon pickup means. It is a photograph of the breeding shelf. It is a photograph of the rail of the breeding container automatic storage means. It is a photograph of the breeding container automatic storage means.
  • FIG. 1 is a diagram schematically showing a silkworm breeding system 1A according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the silkworm breeding method in the first embodiment.
  • the silkworm breeding system 1A includes a silkworm transfer device 10 for transferring silkworms from a first breeding container C1 to a second breeding container C2, and a second breeding container transport device for transporting a second breeding container C2. 20 and.
  • the first breeding container C1 is preferably a group breeding container for group breeding a plurality of silkworms in the breeding room.
  • the first breeding container C1 for example, 10 or more and 1000 or less silkworms, 30 or more and 500 or less, or 50 or more and 300 or less silkworms are group-reared.
  • Area of the breeding area in one of the first rearing container C1 for example, 100 cm 2 or more 10000 cm 2 or less, 400 cm 2 or more 4900Cm 2 or less, is 900 cm 2 or more 2500 cm 2 or less.
  • the first breeding container C1 is, for example, a container whose upper surface is open.
  • the second breeding container C2 is preferably an individual breeding container for individually breeding one silkworm in each breeding room.
  • the second breeding container C2 includes a plurality of breeding chambers SP isolated from each other.
  • the second breeding container C2 includes the first breeding room SP1 and the second breeding room SP2, and the first breeding room SP1 and the second breeding room SP2 are isolated from each other.
  • the number of breeding room SPs included in the second breeding container C2 is, for example, 10 or more, 30 or more, or 50 or more.
  • Each breeding room SP may be defined by an independent tubular container, or may be defined by a partition wall arranged in a housing member (for example, in a container or in a frame).
  • the second breeding container C2 may be an aggregate of a plurality of tubular containers, or may have a plurality of partition walls arranged inside a housing member that defines an outer wall.
  • the silkworm transfer device 10 transfers the silkworm A from the first breeding container C1 to the second breeding container C2.
  • the silkworm transfer device 10 accommodates only one silkworm A in each breeding room SP (for example, only one silkworm is housed in the first breeding room SP1).
  • the silkworm A is transferred from the first breeding container C1 to the second breeding container C2 so that only one silkworm is accommodated in the second breeding room SP2).
  • the silkworm transfer device 10 includes, for example, a silkworm holding member 11 and a holding member moving device 12 for moving the silkworm holding member 11 from the first breeding container C1 to the second breeding container C2.
  • the silkworm transfer device 10 may include a camera 13 capable of photographing silkworms.
  • the silkworm holding member 11 is a member capable of holding a silkworm.
  • the silkworm holding member 11 may include a first grip portion 11a and a second grip portion 11b. In this case, the silkworm holding member 11 can grip one silkworm by reducing the distance between the first grip portion 11a and the second grip portion 11b.
  • the silkworm holding member 11 may include a vacuum suction portion 11c capable of sucking the skin of the silkworm.
  • the holding member moving device 12 is, for example, a device capable of three-dimensionally changing the position of the silkworm holding member 11.
  • the holding member moving device 12 is, for example, a robot arm.
  • the camera 13 images a plurality of silkworms A in the first breeding container C1 based on a control command from the control device 30.
  • the image data acquired by the camera 13 is transmitted to the control device 30 by wire or wirelessly.
  • the control device 30 determines the position and orientation of each silkworm among the plurality of silkworms based on the image data.
  • the control device 30 controls the holding member moving device 12 and the silkworm holding member 11 based on the determination result.
  • the silkworm holding member 11 controlled by the control device 30 holds one silkworm.
  • the control device 30 controls the holding member moving device 12 to move the silkworm holding member 11 toward the breeding room SP (for example, the first breeding room SP1) of the second breeding container C2.
  • the control device 30 controls the silkworm holding member 11 to release the holding of the silkworm by the silkworm holding member 11.
  • the silkworm is housed in the breeding room SP (for example, the first breeding room SP1) of the second breeding container C2.
  • the operation of transferring the silkworms in the first breeding container C1 to the breeding room SP in one of the second breeding containers C2 is repeatedly executed. For example, after one silkworm is housed in the first breeding room SP1, the camera 13 re-images a plurality of silkworms in the first breeding container C1 based on a control command from the control device 30. The image data acquired by the camera 13 is transmitted to the control device 30. The control device 30 determines the position and orientation of each silkworm among the plurality of silkworms based on the image data. The control device 30 controls the holding member moving device 12 and the silkworm holding member 11 based on the determination result. The silkworm holding member 11 controlled by the control device 30 holds one silkworm.
  • control device 30 controls the holding member moving device 12 to move the silkworm holding member 11 toward the breeding room SP (for example, the second breeding room SP2) of the second breeding container C2.
  • the control device 30 controls the silkworm holding member 11 to release the holding of the silkworm by the silkworm holding member 11.
  • the silkworm is housed in the breeding room SP (for example, the second breeding room SP2) of the second breeding container C2.
  • the second breeding container transport device 20 moves the second breeding container C2 from the silkworm transfer area AR to the second breeding container storage area AR2.
  • the silkworm transfer area AR is an area in which the silkworm A is transferred from the first breeding container C1 to the second breeding container C2.
  • the second breeding container storage area AR2 is an area in which the second breeding container C2 is stored.
  • the shelf T2 is arranged in the second breeding container storage area AR2, and the second breeding container C2 is stored in the shelf T2.
  • the shelf T2 is a fixed shelf installed in the second breeding container storage area AR2.
  • the second breeding container transport device 20 transports the second breeding container C2 between the silkworm transfer area AR and the second breeding container storage area AR2.
  • the second breeding container transport device 20 may transport the shelf T2 on which the second breeding container C2 is placed between the silkworm transfer area AR and the second breeding container storage area AR2.
  • the shelf T2 may be a moving shelf.
  • the silkworms in the second breeding container C2 feed on the food F and grow.
  • the second breeding container transport device 20 may include a conveyor such as a belt conveyor or a roller conveyor. Alternatively or additionally, the second breeding container transport device 20 may include a transport device (eg, a stacker crane) with a transfer device for transferring the second breeding container C2 to the shelf T2. ..
  • the second breeding container transport device 20 stores the second breeding container C2 in a predetermined storage position (storage in an empty state among a plurality of storage positions) in the second breeding container storage area AR2 based on a command from the control device 30. Position).
  • the second breeding container transport device 20 is driven by, for example, a motor.
  • the control device 30 controls the operation of the silkworm transfer device 10 and / or the second breeding container transport device 20.
  • the number of computers included in the control device 30 may be one or a plurality of computers. In other words, one computer may function as the control device 30, or a plurality of computers may function as the control device 30 by coordinating a plurality of computers.
  • the silkworm breeding system 1 in the first embodiment includes a silkworm transfer device 10 and a second breeding container transport device 20. Therefore, it is possible to automate the transfer of the silkworm from the first breeding container C1 to the second breeding container C2 and the movement of the second breeding container C2 to which the silkworm is transferred. As a result, the breeding of silkworms is streamlined. Further, since the transfer of the silkworm and the movement of the second breeding container C2 are not performed manually, germs are not substantially mixed in the silkworm breeding environment.
  • the silkworm breeding system 1A may include a first breeding container transport device 40 for transporting the first breeding container C1 from the first breeding container storage area AR1 to the silkworm transfer area AR.
  • the first breeding container transport device 40 is preferably a transport device different from the second breeding container transport device 20.
  • the first breeding container transport device 40 includes, for example, a conveyor such as a belt conveyor and a roller conveyor.
  • the first breeding container transport device 40 may include a transport device with a transfer device for transferring the first breeding container C1 to the shelf T1.
  • the first breeding container transport device 40 is driven by, for example, a motor.
  • the silkworm breeding system 1A includes the first breeding container transport device 40, the movement of the first breeding container C1 to the silkworm transfer area AR can be automated. As a result, the breeding of silkworms becomes more efficient. Further, since the first breeding container C1 is not moved manually, various germs are not substantially mixed in the silkworm breeding environment.
  • the shelf T1 is arranged in the first breeding container storage area AR1, and the first breeding container C1 is stored in the shelf T1.
  • the silkworms in the first breeding container C1 feed and grow.
  • the first breeding container storage area AR1 is arranged in the sterile atmosphere AT.
  • the second breeding container storage area AR2 is preferably arranged in a sterile atmosphere AT.
  • the silkworm transfer region AR is preferably arranged in a sterile atmosphere AT.
  • the sterile atmosphere AT means an atmosphere in a space substantially isolated from the outside, and is set so that the abundance of microorganisms is smaller than that in the outside.
  • the cleanliness in the sterile atmosphere AT is based on ISO standards (ISO1464-1: 2015), for example, cleanliness from Class 6 to Class 8, more preferably Cleanliness of Class 7 or less.
  • the cleanliness of Class 6 is the cleanliness equivalent to class 1000 of the US federal standard FED-STD 209E
  • the cleanliness of Class 7 is the cleanliness equivalent to class 10000 of the US federal standard FED-STD 209E.
  • the cleanliness is equivalent to class 100,000 of the US federal standard FED-STD 209E.
  • the first step ST1 a plurality of silkworms are bred in the first breeding container C1.
  • the first step ST1 is the first silkworm breeding step.
  • a plurality of silkworms A are group-reared in the first breeding container C1.
  • a plurality of silkworms in the first breeding container C1 are transferred to the second breeding container C2.
  • the transfer is performed using the silkworm transfer device 10.
  • the second step ST2 includes a first transport step of transporting the first breeding container C1 to the silkworm transfer area AR, a second transport step of transporting the second breeding container C2 to the silkworm transfer region AR, and a silkworm transfer device. 10 may be used to have a transfer step of transferring a plurality of silkworms A from the first breeding container C1 to the second breeding container C2.
  • the first transport step is executed using, for example, the first breeding container transport device 40.
  • the second transport step is performed using, for example, the second breeding container transport device 20.
  • the second transfer step may be executed before the first transfer step, may be executed after the first transfer step, or may be executed at the same time as the first transfer step.
  • the second breeding container C2 includes a plurality of breeding room SPs for individual breeding.
  • the second step ST2 may include transferring a plurality of silkworms A bred in the first breeding container C1 to a plurality of breeding room SPs, respectively.
  • the silkworm transfer device 10 transfers a plurality of silkworms A group-reared in the first breeding container C1 to a plurality of breeding room SPs for individual breeding. Therefore, it is possible to smoothly switch from group breeding to individual breeding without mixing germs into the silkworm breeding environment.
  • the silkworm transfer step (that is, the silkworm transfer step of transferring silkworm A from the first breeding container C1 to the second breeding container C2) performed by the silkworm transfer device 10 is performed in the first breeding container C1. It may include transferring the silkworm to the food support PL (see FIG. 14) in the second breeding container C2.
  • the silkworm transfer step (that is, the silkworm transfer step of transferring silkworm A from the first breeding container C1 to the second breeding container C2) performed by the silkworm transfer device 10 is the first breeding container C1.
  • the silkworm inside is transferred to the food support PL (see FIG. 5) outside the second breeding container C2, and the feed support PL on which the silkworm A is supported is inserted into the second breeding container C2. It may include things.
  • the second breeding container C2 to which the plurality of silkworms A have been transferred is transported from the silkworm transfer area AR to the second breeding container storage area AR2.
  • the transfer is carried out using, for example, the second breeding container transfer device 20.
  • a plurality of silkworms A are bred in the second breeding container C2.
  • the third step ST3 is the second silkworm breeding step.
  • each of the plurality of silkworms A is individually bred in an independent breeding room SP.
  • the silkworm is transferred from the first breeding container C1 to the second breeding container C2 by the silkworm transfer device 10. Therefore, the transfer of silkworms from the first breeding container C1 to the second breeding container C2 can be automated. As a result, the breeding of silkworms is streamlined. Further, since the silkworms are transferred by the silkworm transfer device 10, germs are not substantially mixed in the silkworm breeding environment.
  • the day Small-aged silkworms can be efficiently group-bred in a small space, and large-day silkworms can be individually bred in a state where stress is suppressed. Therefore, in the first embodiment, it is possible to save space for breeding silkworms, improve the efficiency of breeding silkworms, and suppress stress on silkworms. Furthermore, when cocoons are formed on silkworms in a breeding room for individual breeding, the place where the cocoons are formed can be localized. In this case, the cocoon can be easily collected (for example, the cocoon can be collected by a robot).
  • FIG. 3 is a diagram schematically showing the silkworm breeding system 1B in the second embodiment (a schematic plan view schematically showing the inside of the container 2).
  • FIG. 4 is a schematic perspective view schematically showing the silkworm breeding system 1B in the second embodiment.
  • FIG. 5 is a diagram schematically showing an example of the food supply device 60.
  • FIG. 6 is a schematic perspective view schematically showing an example of the first breeding container C1.
  • FIG. 7 is a diagram schematically showing an example of the partition member moving device 70.
  • FIG. 8 is a flowchart showing an example of the first breeding process.
  • FIG. 3 is a diagram schematically showing the silkworm breeding system 1B in the second embodiment (a schematic plan view schematically showing the inside of the container 2).
  • FIG. 4 is a schematic perspective view schematically showing the silkworm breeding system 1B in the second embodiment.
  • FIG. 5 is a diagram schematically showing an example of the food supply device 60.
  • FIG. 6 is a schematic perspective view schematically showing an example of the first breeding container
  • FIG. 9 is a diagram schematically showing an example of the first breeding step.
  • FIG. 10 is a schematic perspective view schematically showing an example of the first breeding container C1.
  • FIG. 11 is a schematic cross-sectional view schematically showing an example of the egg transfer device 80.
  • FIG. 12 is a schematic front view schematically showing an example of the egg transfer device 80.
  • FIG. 13 is a diagram schematically showing the silkworm breeding system 1B in the second embodiment.
  • FIG. 14 is a schematic perspective view schematically showing an example of the second breeding container C2.
  • FIG. 15 is a schematic perspective view schematically showing an example of the second breeding container C2.
  • FIG. 16 is a flowchart showing an example of the silkworm breeding method in the second embodiment.
  • the silkworm breeding system 1B in the second embodiment includes a container 2 in which at least one of a plurality of devices constituting the silkworm breeding system 1B is arranged.
  • the points different from those in the first embodiment will be mainly described, and the repetitive description of the matters explained in the first embodiment will be omitted. Therefore, it goes without saying that the matters explained in the first embodiment can be applied to the second embodiment even if the explanation is not explicitly given in the second embodiment. This also applies to other embodiments.
  • the silkworm breeding system 1B includes, for example, at least one of a silkworm transfer device 10, a first breeding container transport device 40, a second breeding container transport device 20, and a control device 30. Since the silkworm transfer device 10, the first breeding container transport device 40, the second breeding container transport device 20, and the control device 30 have already been described in the first embodiment, the description of these components will be repeated. Is omitted.
  • the silkworm breeding system 1B includes two containers 2 (more specifically, a first container 2A and a second container 2B).
  • the number of containers 2 included in the silkworm breeding system 1B may be one or three or more.
  • the second breeding container transport device 20 is arranged in the container 2 (more specifically, the second container 2B).
  • the container 2 can define a substantially closed space (more specifically, a sterile atmosphere AT). Therefore, when the second breeding container transport device 20 is arranged in the container 2, germs are unlikely to be mixed in the transport path of the second breeding container C2.
  • the transport device When the transport device is installed in a closed space, the transport device is generally installed in a building that defines a closed space.
  • a transport device such as the second breeding container transport device 20 is arranged in the container 2.
  • the container 2 can define a substantially closed space even when it is arranged outdoors. Therefore, it is not necessary to construct a new building to arrange the transport device. Further, even when the container 2 is arranged in the existing building, the existing building is not required to have a high degree of airtightness because the container 2 defines a substantially closed space. Further, since the container 2 can be transported by a vehicle, a ship, or the like, the degree of freedom in arranging the container 2 is high. It is also easy to move a container once placed in a predetermined place to another place.
  • Container 2 is, for example, a portable container standardized by ISO 668 (for example, ISO 668: 1995, ISO 668: 2005, ISO 668: 2013, etc.).
  • the container 2 includes, for example, a 45-foot container (ISO668 "1EEE” container, "1EE” container, etc.), a 40-foot container (ISO668 "1AAA” container, "1AA” container, "1A” container, "1AX” container, etc.
  • the silkworm breeding system 1B has a first container 2A.
  • the first container 2A is, for example, an ISO container.
  • the length of the first container 2A is, for example, 45 feet, 40 feet, 30 feet, 20 feet, 10 feet, 6.5 feet, or 5 feet.
  • the first container 2A has a first breeding container storage area AR1.
  • the heat insulating material 91 is arranged along the inner surface Ws of the outer wall Wa of the first container 2A.
  • an air conditioner 92 for adjusting the temperature in the first container 2A is arranged.
  • the silkworm breeding environment in the first breeding container C1 is a suitable environment. It is possible to set to.
  • the air conditioner 92 may be an air conditioner whose temperature can be adjusted, or may be an air conditioner whose temperature and humidity can be adjusted.
  • the temperature of the first breeding container storage area AR1 is maintained by, for example, 20 degrees Celsius or more and 35 degrees Celsius or less, or 25 degrees Celsius or more and 30 degrees Celsius or less by the air conditioner 92.
  • the pressure inside the first container 2A is set to be higher than the pressure outside the first container 2A.
  • the pressure difference between the pressure inside the first container 2A and the pressure outside the first container 2A is, for example, 10 Pa (Pascal) or more, 100 Pa or more, 1000 Pa or more, 3000 Pa or more, or 5000 Pa or more.
  • the pressure in the first breeding container storage area AR1 is set to be higher than the pressure in the region outside the first breeding container storage area AR1 in the first container 2A. ..
  • the pressure difference between the two regions is, for example, 10 Pa (Pascal) or more, 100 Pa or more, and 1000 Pa or more. Since the pressure inside the first breeding container storage area AR1 is set to be higher than the pressure in the area outside the first breeding container storage area AR1, various germs are mixed into the first breeding container storage area AR1. Risk is reduced.
  • the air supply port 92a of the air conditioner 92 is arranged in the first breeding container storage area AR1. It may have been.
  • the air conditioner 92 includes a fan 921 that supplies air from outside the first container 2A into the first container 2A, a heat exchanger 922 that raises or lowers the temperature of the air, and a filter 923 that removes germs from the air.
  • a HEPA filter For example, a HEPA filter
  • the air conditioner 92 may include a circulation flow path for circulating the air in the first container 2A in the first container 2A, and a filter 924 (for example, a HEPA filter) arranged in the circulation flow path.
  • a filter 924 for example, a HEPA filter
  • the silkworm breeding system 1B has a second container 2B.
  • the second container 2B is, for example, an ISO container.
  • the length of the second container 2B is, for example, 45 feet, 40 feet, 30 feet, 20 feet, 10 feet, 6.5 feet, or 5 feet.
  • the second container 2B has a second breeding container storage area AR2.
  • the heat insulating material 91 is arranged along the inner surface Ws of the outer wall Wa of the second container 2B.
  • an air conditioner 92 for adjusting the temperature in the second container 2B is arranged in the second container 2B.
  • the air conditioner 92 arranged in the second container 2B is the same air conditioner as the air conditioner 92 arranged in the first container 2A.
  • the air conditioner 92 arranged in the second container 2B includes a fan 921, a heat exchanger 922, a filter (923, 924), and the like, similarly to the air conditioner 92 arranged in the first container 2A.
  • the temperature of the second breeding container storage area AR2 is maintained by, for example, 20 degrees Celsius or more and 35 degrees Celsius or less, or 25 degrees Celsius or more and 30 degrees Celsius or less by the air conditioner 92.
  • the pressure inside the second container 2B is set to be higher than the pressure outside the second container 2B.
  • the pressure difference between the pressure inside the second container 2B and the pressure outside the second container 2B is, for example, 10 Pa (Pascal) or more, 100 Pa or more, 1000 Pa or more, 3000 Pa or more, or 5000 Pa or more.
  • the pressure inside the second breeding container storage area AR2 is preferably set to be higher than the pressure in the area outside the second breeding container storage area AR2 in the second container 2B. ..
  • the pressure difference between the two regions is, for example, 10 Pa (Pascal) or more, 100 Pa or more, and 1000 Pa or more.
  • the air supply port 92a of the air conditioner 92 is arranged in the second breeding container storage area AR2. It may have been.
  • the silkworm breeding system 1B has a first container 2A having a first breeding container storage area AR1 and a second container 2B having a second breeding container storage area AR2. Further, the second container 2B is a container different from the first container 2A.
  • the silkworm breeding system 1B has a breeding environment for breeding relatively young silkworms (first container 2A) and a breeding environment for breeding relatively large silkworms (second container). It is possible to set the container 2B) independently. For example, for silkworms that are relatively young, it is possible to breed a large number of silkworms in a relatively small space by group breeding. On the other hand, for silkworms that are relatively old, it is possible to reduce the stress acting on the silkworms by raising them individually.
  • the size of the second container 2B having the second breeding container storage area AR2 may be larger than the size of the first container 2A having the first breeding container storage area AR1.
  • the number of the second container 2B having the second breeding container storage area AR2 is larger than the number of the first container 2A having the first breeding container storage area AR1.
  • Container 2 may be arranged. For example, one first container 2A and two or more second containers 2B may be connected. The number of the second container 2B connected to the first container 2A may be 3 or more, 5 or more, or 10 or more.
  • the silkworm breeding system 1B includes a container connecting portion 95 that connects the first container 2A and the second container 2B.
  • the presence of the container connecting portion 95 suppresses the invasion of germs into the first container 2A or the second container 2B. More specifically, when transporting the first breeding container C1, the second breeding container C2, etc. between the first container 2A and the second container 2B, the opening of the first container 2A or the second container 2B There is a risk of germs invading through the opening of the container.
  • the container connecting portion 95 more specifically, the opening of the first container 2A and the opening of the second container 2B.
  • the container connecting portion 95 may be made of a flexible member made of synthetic resin such as vinyl, may be made of a rigid member such as a metal plate, or may be made of a combination of the flexible member and the rigid member. It may have been done.
  • the first door DR1 is arranged in the opening of the first container 2A
  • the second door DR2 is arranged in the opening of the second container 2B.
  • the first door DR1 and / or the second door DR2 may be omitted.
  • the silkworm breeding system 1B includes a food supply device 60.
  • the food supply device 60 is a device that supplies food (silkworm food) to the first breeding container C1 or the second breeding container C2.
  • the silkworm breeding system 1B includes the feed supply device 60, the supply of food to the first breeding container C1 or the second breeding container C2 can be automated. In this case, when the feed is supplied, it is suppressed that various germs are mixed into the silkworm breeding environment.
  • the food supply device 60 is arranged in the first container 2A.
  • the food supply device 60 may be located in the second container 2B.
  • the feed supply device 60 may be arranged at an arbitrary place different from the container 2.
  • the food supply device 60 includes, for example, a food storage container 61, a nozzle member 62, a moving device 63, a food supply pipe 64, and a food supply pump 65.
  • the food storage container 61 is a container for temporarily storing silkworm food.
  • mulberry F1 (more specifically, mulberry leaf powder), okara F2, and water are put into the food storage container 61.
  • the mulberry F1 is charged from the mulberry container into the food storage container 61
  • the okara F2 is charged from the okara container into the food storage container 61.
  • the feeding may be done automatically by the mulberry feeding device and / or the okara feeding device, or may be done manually.
  • the water supply pipe 67 is connected to the food storage container 61. Then, the water supply to the food storage container 61 is automatically executed by using the water supply pipe 67.
  • the on-off valve 671 and the filter 672 are arranged in the water supply pipe 67.
  • the on-off valve 671 and the control device 30 are connected by wire or wirelessly so as to be able to transmit signals, and the on-off valve 671 is opened and closed based on a command from the control device 30.
  • the on-off valve 671 is in the open state, water is supplied to the food storage container 61, and when the on-off valve is in the closed state, water is not supplied to the food storage container 61.
  • the filter 672 removes foreign matter or germs from the water.
  • the mulberry, bean curd refuse, and water charged into the food storage container 61 are agitated in the food storage container 61.
  • the stirring is performed by the stirring device 611 driven by the motor M1.
  • the motor M1 and the control device 30 are connected by wire or wirelessly so as to be able to transmit signals, and the motor M1 is driven based on a command from the control device 30.
  • the stirrer 611 stirs the mixed feed containing mulberry, okara, and water.
  • the mixed feed containing mulberry, okara, and water (more specifically, kneaded feed) is supplied from the feed storage container 61 toward the nozzle member 62 by the feed supply pump 65.
  • the bait feed pump 65 may include a screw conveyor or a snake pump.
  • the bait supply pump 65 includes a motor M2 and a rotary shaft 651 driven by the motor M2.
  • the bait supply pump 65 may include a vane member 652 attached to the rotary shaft 651.
  • the rotary shaft 651 may be a non-linear rotary shaft (eg, a spiral rotary shaft). In this case, the blade member 652 may be omitted.
  • the motor M2 and the control device 30 are connected by wire or wirelessly so as to be able to transmit signals, and the motor M2 is driven based on a command from the control device 30.
  • the motor M2 is driven, the rotary shaft 651 rotates.
  • the rotary shaft 651 or the blade member 652 attached to the rotary shaft 651 pushes the bait (bait) from the upstream side of the bait supply pump 65 toward the downstream side of the bait supply pump 65.
  • the discharge port of the food storage container 61 and the upstream side of the food supply pump 65 are connected.
  • the bait (bait) discharged from the discharge port of the bait storage container 61 is supplied to the upstream side of the bait supply pump 65.
  • the bait discharged from the bait supply pump 65 is supplied to the nozzle member 62 via the bait supply pipe 64.
  • the food supply pipe 64 may be a rigid pipe, a flexible pipe, or a rigid pipe in part and a flexible pipe in another part.
  • the food supply pipe 64 is a pipe that connects the food storage container 61 and the nozzle member 62.
  • the food supply pump 65 described above is arranged in the middle of the food supply pipe 64.
  • an on-off valve 641 is arranged in the food supply pipe 64.
  • the on-off valve 641 and the control device 30 are connected by wire or wirelessly so as to be able to transmit signals, and the on-off valve 641 is opened and closed based on a command from the control device 30.
  • the on-off valve 641 is in the open state, the bait is supplied to the nozzle member 62-1, and when the on-off valve 641 is in the closed state, the bait is not supplied to the nozzle member 62-1.
  • the food supply pipe 64 includes a main pipe 64 m and a first branch pipe 64d.
  • the on-off valve 641 described above is arranged in the first branch pipe 64d, and the first branch pipe 64d is connected to the nozzle member 62-1 described above.
  • the food supply pipe 64 may include a second branch pipe 64e.
  • an on-off valve 643 is arranged in the second branch pipe 64e, and the second branch pipe 64e is connected to the second nozzle member 62-2.
  • the on-off valve 643 and the control device 30 are connected by wire or wirelessly so as to be able to transmit signals, and the on-off valve 643 is opened and closed based on a command from the control device 30.
  • the main pipe 64m and the first branch pipe 64d are connected via the branch portion D1. Further, in the example shown in FIG. 5, the main pipe 64m and the second branch pipe 64e are connected via the branch portion D2.
  • the food supply pipe 64 includes a return pipe 64r.
  • the food supply pipe 64 includes the return pipe 64r, the surplus food that is not supplied to the nozzle member 62 among the foods flowing through the main pipe 64m is returned to the food storage container 61 via the return pipe 64r.
  • the portion of the food supply pipe 64 between the branch portion D1 and the food storage container 61 constitutes the return pipe 64r.
  • An on-off valve 645 may be arranged in the return pipe 64r.
  • the nozzle member 62 (nozzle member 62-1 or second nozzle member 62-2) includes an opening 62h for discharging food.
  • the nozzle member 62-1 includes a plurality of nozzles including a first nozzle 621 and a second nozzle 622.
  • the opening area (or diameter) of the discharge portion (first opening) of the first nozzle 621 is smaller than the opening area (or diameter) of the discharge portion (second opening) of the second nozzle 622.
  • the opening area (or diameter) of the discharge portion (second opening) of the second nozzle 622 is smaller than the opening area (or diameter) of the discharge portion (third opening) of the third nozzle 623.
  • the nozzle member 62-1 includes, for example, a switching valve 620 that operates according to a command from the control device 30.
  • the switching valve 620 selectively feeds one of a plurality of nozzles (621, 622, 623). More specifically, when the switching valve 620 operates so that the food supply pipe 64 and the first nozzle 621 communicate with each other based on the command from the control device 30, the food is discharged from the opening of the first nozzle 621. .. Further, when the switching valve 620 operates so that the food supply pipe 64 and the second nozzle 622 communicate with each other based on the command from the control device 30, the food is discharged from the opening of the second nozzle 622.
  • the bait discharged from the second nozzle 622 is thicker than the bait discharged from the first nozzle 621. Further, when the switching valve 620 operates so that the food supply pipe 64 and the third nozzle 623 communicate with each other based on the command from the control device 30, the food is discharged from the opening of the third nozzle 623. The bait discharged from the third nozzle 623 is thicker than the bait discharged from the second nozzle 622.
  • the second nozzle member 62-2 includes one nozzle.
  • the bait discharged from the nozzle of the second nozzle member 62-2 is larger than the bait discharged from the nozzle of the nozzle member 62-1 (for example, the first nozzle 621, the second nozzle 622, or the third nozzle 623). thick.
  • the thickness of the bait discharged from the nozzle of the second nozzle member 62-2 may be about the same as the thickness of the bait discharged from the third nozzle 623.
  • the moving device 63 is a device that moves the nozzle member 62 relative to the bait support portion PL.
  • the moving device 63 is a nozzle moving device that moves the nozzle member 62.
  • the moving device 63 may be a device that moves the bait support PL.
  • the mobile device 63 and the control device 30 are connected by wire or wirelessly so as to be able to transmit signals, and the mobile device 63 operates based on a command from the control device 30.
  • the moving device 63 changes the position of the nozzle member 62 three-dimensionally based on a command from the control device 30.
  • the moving device 63 includes a robot arm 630.
  • the moving device 63 moves the nozzle member 62-1 relative to the bait support portion PL.
  • the food support unit PL is, for example, a food support unit arranged in the first breeding container C1.
  • the bait support portion PL is preferably composed of a mesh-like member (in other words, a net-like member). In this case, silkworm droppings fall below the bait support PL through each opening of the mesh-like member. Therefore, in the region above the food support portion PL, the silkworm breeding environment is unlikely to deteriorate.
  • the moving device 63 moves the second nozzle member 62-2 relative to the bait support portion PL.
  • the food support unit PL is, for example, a food support unit to be arranged in the second breeding container C2.
  • the bait support portion PL is preferably composed of a mesh-like member (in other words, a net-like member). In this case, silkworm droppings fall below the bait support PL through each opening of the mesh-like member. Therefore, in the region above the food support portion PL, the silkworm breeding environment is unlikely to deteriorate.
  • Partition member P In the example shown in FIG. 5, the partition member P is arranged inside the first breeding container C1. As shown in FIG. 6, the partition member P (more specifically, the first partition member P1) fills the space in the first breeding container C1 with the first region R1 where the silkworms are grown and the invasion of the silkworms. Is a member that partitions the second region R2 (that is, a region where silkworms cannot enter).
  • the positions of the partition member P are the first position (see the upper diagram of FIG. 6) that partitions the first region R1 and the second region R2, and the second position (see FIG. 6) in which the partition state by the partition member is released. The position can be changed to (see the figure below).
  • the first position is, for example, the position of the partition member P when the partition member P is arranged in the first breeding container C1.
  • the second position is, for example, the position of the partitioning member P when the partitioning member P is removed from the first breeding container C1.
  • the silkworm breeding system 1B includes a partition member moving device 70 for moving the partition member P arranged in the first breeding container C1.
  • the partition member moving device 70 moves, for example, the partition member P from the first position inside the first breeding container C1 to the second position outside the first breeding container C1.
  • the partition member moving device 70 includes a partition member holding portion 71 and a holding portion moving device 72.
  • the partition member holding portion 71 is a portion capable of holding the partition member P.
  • the partition member holding portion 71 may include a first grip portion 71a and a second grip portion 71b. In this case, the partition member holding portion 71 can grip the partition member P by reducing the distance between the first grip portion 71a and the second grip portion 71b.
  • the partition member holding portion 71 may include a hook portion 71c (see FIG. 5 if necessary) capable of suspending the partition member P.
  • the holding unit moving device 72 includes, for example, a robot arm.
  • the robot arm of the holding portion moving device 72 may be the robot arm 630 of the moving device 63-1 shown in FIG. 5, or may be a robot arm different from the robot arm 630 of the moving device 63-1. Good.
  • the shape and structure of the partition member moving device 70 are not particularly limited as long as the partition member P can be moved.
  • the partition member moving device 70 and the control device 30 are connected by wire or wirelessly so as to be able to transmit signals, and the partition member moving device 70 operates based on a command from the control device 30. More specifically, the partition member holding portion 71 of the partition member moving device 70 holds the partition member P based on a command from the control device 30. After that, the holding unit moving device 72 of the partition member moving device 70 moves the partition member holding unit 71 in the direction from the first position to the second position based on the command from the control device 30. In this way, the partition member P is removed from the first breeding container C1.
  • first breeding step ST1 An example of a first breeding step (first step ST1 described above) in which a plurality of silkworms A are bred in the first breeding container C1 will be described in more detail with reference to FIGS. 8 and 9.
  • step ST201 a plurality of silkworms are bred in the first region R1 on one side of the first partition member P1 arranged in the first breeding container C1.
  • Step ST201 is executed, for example, in the first breeding container C1 arranged in the first breeding container storage area AR1.
  • a plurality of first breeding containers C1 are housed in the first breeding container storage area AR1.
  • the number of the first breeding container C1 housed in the first breeding container storage area AR1 is, for example, 10 or more, 50 or more, or 100 or more.
  • step ST201 the bait F and a plurality of silkworms A are arranged in the first region R1. Further, in step ST201, the bait F and the silkworm A are not arranged in the second region R2.
  • the silkworm food F is supplied in advance to the first region R1 of the first breeding container C1.
  • the supply of food to the first region R1 is performed, for example, via the nozzle member 62-1 of the food supply device 60 (more specifically, the first nozzle 621 described above) (see FIG. 9A). .).
  • the thickness (in other words, the diameter) of the bait supplied to the first region R1 is, for example, 3 mm or less, or 2 mm or less.
  • the plurality of silkworms A in the first region R1 grow by feeding on the food F in the first region R1.
  • the bait support portion PL is a mesh-like member (in other words, a net-like member)
  • the silkworm feces M falls below the bait support portion PL. Therefore, the silkworm breeding environment on the feed support PL does not deteriorate.
  • step ST202 the bait F is supplied to the second region R2 on the other side of the first partition member P1.
  • Step ST202 is performed after, for example, the first breeding container C1 is transported from the first breeding container storage area AR1 toward the food supply device 60.
  • the supply of the bait F to the second region R2 is performed, for example, via the nozzle member 62-1 of the bait supply device 60 (more specifically, the second nozzle 622 described above) (FIG. 9 (c). reference.).
  • the silkworm A since the silkworm A does not exist in the second region R2, the silkworm A does not interfere with the supply of the food F to the second region R2.
  • the thickness of the bait F supplied from the second nozzle 622 is preferably thicker than the thickness of the bait F supplied from the first nozzle 621.
  • the thickness (in other words, the diameter) of the bait F supplied from the second nozzle 622 is, for example, 6 mm or less, or 5 mm or less.
  • step ST203 the state (partitioned state) in which the first region R1 and the second region R2 are partitioned by the first partition member P1 is released (see FIG. 9D).
  • the release is executed, for example, by the partition member moving device 70 moving the first partition member P1.
  • the release is executed by the partition member moving device 70 removing the first partition member P1 from the first breeding container C1.
  • the partition member moving device 70 includes a hook portion 71c that can be engaged with the engaging portion Pa of the partition member P.
  • the partition member moving device 70 may include a grip portion capable of gripping the partition member P.
  • the first region R1 and the second region R2 are united, so that the region where a plurality of silkworms A are bred becomes large. Therefore, a more appropriate breeding environment is provided for the plurality of silkworms grown in the first region R1. Also,
  • the first breeding container C1 is transported to the first breeding container storage area AR1.
  • the first breeding container C1 is supplied with fresh food F in step ST202. Therefore, the plurality of silkworms A eat fresh food and grow further.
  • a second partition member P2 is arranged in the first breeding container C1 in addition to the first partition member P1.
  • the second partition member P2 partitions a new first region Rn1 (enlarged first region) and a new second region Rn2 after the first partition member P1 is removed from the first breeding container C1. It is a member (see FIG. 9D).
  • Step ST204 is performed after, for example, the first breeding container C1 is transported from the first breeding container storage area AR1 toward the food supply device 60.
  • the supply of food to the new second region Rn2 is performed, for example, via the nozzle member 62-1 of the food supply device 60 (more specifically, the third nozzle 623 described above) (FIG. 9 (e)). See.).
  • the thickness of the bait F supplied from the third nozzle 623 is preferably thicker than the thickness of the bait F supplied from the second nozzle 622.
  • the thickness (in other words, the diameter) of the bait F supplied from the third nozzle 623 is, for example, 7 mm or less.
  • step ST205 the state (partitioned state) in which the new first region Rn1 and the new second region Rn2 are partitioned by the second partition member P2 is released (see FIG. 9 (f)).
  • the release is executed, for example, by the partition member moving device 70 moving the second partition member P2.
  • the release is executed by the partition member moving device 70 removing the second partition member P2 from the first breeding container C1.
  • the first breeding container C1 is a tray (in other words, a relatively shallow container with an open upper part). Since the upper part of the first breeding container C1 is open, the partition member P can be easily removed from the first breeding container C1.
  • the number of partition members P arranged in the first breeding container C1 is two.
  • the number of partition members P arranged in the first breeding container C1 may be one or three or more.
  • the partition member P has an L-shape in a plan view.
  • the shape of the partition member P is not limited to the example shown in FIG.
  • the partition member P may have a square frame shape in a plan view.
  • Egg transfer device 80 An example of the egg transfer device 80 for transferring silkworm eggs to the first breeding container C1 (for example, a tray) will be described with reference to FIGS. 11 and 12.
  • the egg transfer device 80 transfers the silkworm egg E from the container C3 containing the plurality of silkworm eggs E to the first breeding container C1.
  • the operation of transferring the silkworm egg E to the first breeding container C1 is automated.
  • the breeding of silkworms is streamlined.
  • the silkworm egg E is automatically performed by the egg transfer device 80, germs are not substantially mixed in the silkworm breeding environment.
  • the egg transfer device 80 is arranged, for example, in the container 2 (more specifically, in the first container 2A). When the egg transfer device 80 is arranged in the container 2, contamination of the silkworm breeding environment with various germs is more effectively suppressed.
  • the egg transfer device 80 is a suction tube moving device 86 that moves the suction tube 81 that sucks the silkworm egg E in the liquid and the suction tube 81 relative to the first breeding container C1. And include.
  • the dead silkworm egg E1 is more likely to float than the live silkworm egg E2. Therefore, by sucking the silkworm eggs in the liquid (more specifically, the silkworm eggs submerged in the liquid), it is possible to select and pick up the living silkworm eggs E2.
  • the liquid in the container C3 is, for example, a disinfectant.
  • the silkworm egg E is sterilized by immersing the silkworm egg E in the disinfectant solution in the container C3. In this case, when the silkworm egg E is transferred to the first breeding container C1, the risk of contamination by various germs in the first breeding container C1 is reduced.
  • the tip portion of the container C3 has a tapered shape that tapers toward the tip. Since the tip of the container C3 has a tapered shape, a plurality of silkworm eggs E tend to gather near the bottom of the container C3. Therefore, the tip of the suction tube 81 can be arranged in the vicinity of the silkworm egg E simply by inserting the suction tube 81 into the vicinity of the bottom of the container C3 (in other words, the deepest part of the container C3).
  • the suction pipe 81 is connected to the vacuum pump 84 via the pipe 82. Further, an on-off valve 83 is arranged in the pipe 82. When the on-off valve 83 is opened while the tip of the suction tube 81 is located in the liquid in the container C3, the suction tube 81 sucks one silkworm egg E. Alternatively, a suction force may be generated in the suction tube 81 by moving the piston relative to the cylinder. In this case, the vacuum pump 84 may be omitted.
  • the suction tube moving device 86 moves the suction tube 81 in the direction from the container C3 to the first breeding container C1.
  • the suction tube 81 releases the silkworm egg E.
  • the release may be performed by sending air to the suction pipe 81 or by opening the suction pipe 81 to the atmosphere.
  • the partition member P is arranged in the first breeding container C1.
  • the egg transfer device 80 transfers the silkworm egg E only to the region (first region R1) on one side of the partition member P.
  • the egg transfer device 80 does not transfer the silkworm egg E to the region (second region R2) on the other side of the partition member P.
  • the egg transfer device 80 may transfer the silkworm egg E to an arbitrary position in the first breeding container C1.
  • the transfer of the silkworm egg E by the egg transfer device 80 may be performed after the bait F is placed in the first breeding container C1 (more specifically, the first region R1), or the first breeding container. It may be executed before the bait F is placed in C1 (more specifically, the first region R1).
  • the suction pipe moving device 86 can move the suction pipe 81 along the vertical direction (in other words, the Z direction). Further, in the example shown in FIG. 11, the suction pipe moving device 86 can move the suction pipe 81 along the first horizontal direction (in other words, the X direction).
  • the egg transfer device 80 may include a plurality of suction tubes 81.
  • the egg transfer device 80 can move the plurality of silkworm eggs to the first breeding container C1 at the same time.
  • the egg transfer device 80 includes six suction tubes 81.
  • the egg transfer device 80 may include one, two, three, four, five, or seven or more suction tubes 81.
  • the suction tube moving device 86 can move the suction tube 81 along the second horizontal direction (in other words, the Y direction perpendicular to the X and Z directions). .. In the example described in FIGS. 11 and 12, the suction tube moving device 86 can move the suction tube 81 three-dimensionally. Alternatively, the suction tube moving device 86 may be able to move the suction tube 81 two-dimensionally (for example, the suction tube moving device 86 may only move the suction tube along a plane parallel to the XZ plane. 81 may be movable.).
  • the silkworm breeding system 1 may include a transport device 41 for transporting the first breeding container C1 between the egg transfer device 80 and the first breeding container storage area AR1.
  • the transport device 41 is a transport device different from the first breeding container transport device 40.
  • the transport device 41 can transport the first breeding container C1 along, for example, the vertical direction (in other words, the Z direction) and the first horizontal direction (for example, the X direction).
  • the transfer device 41 includes, for example, a conveyor or a transfer device with a transfer device for transferring the first breeding container C1 to the shelf T1.
  • the silkworm breeding system 1 may be provided with a monitoring personal computer 101.
  • the monitoring personal computer 101 monitors the status of each device (10, 20, 30, 40, 41, 60, 70, 80, 92). When an abnormality exists in each device (10, 20, 30, 40, 41, 60, 70, 80, 92), the monitoring personal computer 101 identifies the information for identifying the abnormal device and the type of the abnormality. Notify the operator of the information.
  • the control device 30 controls each device (10, 20, 30, 40, 41, 60, 70, 80, 92) has been described.
  • the monitoring personal computer 101 and the control device 30 may cooperate to control each device (10, 20, 30, 40, 41, 60, 70, 80, 92).
  • the silkworm breeding system 1 may include a cocoon collecting device 103.
  • the cocoon collecting device 103 is a device that collects cocoons from the second breeding container C2 (for example, a robot that collects cocoons from the second breeding container C2).
  • the silkworm breeding system 1 may include a cleaning device 105 for cleaning the first breeding container C1 and / or the second breeding container C2.
  • the cleaning device 105 for example, blows air onto the first breeding container C1 (or the second breeding container C2) to remove feces or residual food from the first breeding container C1 (or the second breeding container C2).
  • the feces taken out from the first breeding container C1 (or the second breeding container C2) may be collected for use as feed for other livestock or as a component of a medicine.
  • silkworms are bred in a sterile environment, silkworm droppings are also maintained sterile. Therefore, the silkworm droppings are suitable as feed for other livestock or as a component of medicine.
  • the cleaning device 105 is an air cleaning device using air.
  • the cleaning device 105 sprays water or a disinfectant solution on the first breeding container C1 (or the second breeding container C2) to spray the first breeding container C1 (or the second breeding container C2). It may be a device for removing feces or residual food from C2).
  • the first breeding container C1 washed by the washing device 105 is reused for breeding silkworms in the first breeding container storage area AR1. Further, the second breeding container C2 washed by the washing device 105 is reused for breeding silkworms in the second breeding container storage area AR2.
  • the monitoring personal computer 101, the cocoon collecting device 103, and the cleaning device 105 are arranged in the first container 2A.
  • at least one of the monitoring personal computer 101, the cocoon collecting device 103, and the cleaning device 105 may be arranged in the second container 2B.
  • at least one of the monitoring personal computer 101, the cocoon collecting device 103, and the cleaning device 105 may be arranged outside the container 2.
  • the first step ST1 a plurality of silkworms are bred in the first breeding container C1.
  • the first step ST1 is the first silkworm breeding step.
  • step ST101 the silkworm food F is supplied to the first breeding container C1 (more specifically, the first region R1).
  • Step ST101 is performed, for example, using the food supply device 60 described above. More specifically, while the first nozzle 621 moves relative to the first breeding container C1 (more specifically, the first region R1), the first nozzle 621 moves relative to the first breeding container C1 (more specifically, the first breeding container C1 (more specifically). Specifically, the bait F is discharged into the first region R1).
  • a plurality of silkworm eggs E are transferred to the first breeding container C1.
  • Step ST102 is performed, for example, using the egg transfer device 80 described above. More specifically, the transfer device 41 conveys the first breeding container C1 toward the egg transfer device 80, and then the egg transfer device 80 transfers a plurality of eggs from the container C3 to the first breeding container C1.
  • the number of silkworm eggs E arranged in one first breeding container C1 is, for example, 10 or more and 1000 or less, 30 or more and 500 or less, or 50 or more and 300 or less. It is preferable that the first breeding container C1 is sterilized in advance with a disinfectant solution or the like before the plurality of silkworm eggs E are transferred.
  • the sterilized silkworm egg E is transferred to the sterilized first breeding container C1, and the first breeding container C1 is placed in the sterile atmosphere AT to be bred in the first breeding container C1. The sterilization of silkworms is maintained.
  • Step ST102 may be executed before step ST101 or after step ST101. After executing steps ST101 and ST102, the first breeding container C1 is transported to the first breeding container storage area AR1 by the transport device 41.
  • step ST201 a plurality of silkworms A are bred in the first breeding container C1 (more specifically, in the first region R1).
  • the first breeding period in which the silkworms are bred in the first region R1 defined by the first partition member P1 is several days (for example, 5). Days).
  • the first breeding container C1 is transported from the first breeding container storage area AR1 toward the food supply device 60.
  • the transfer is performed using, for example, a transfer device 41 or the like.
  • step ST202 the silkworm feed F is supplied to the first breeding container C1 (more specifically, the second region R2).
  • Step ST202 is performed, for example, using the food supply device 60 described above. More specifically, while the second nozzle 622 moves relative to the first breeding container C1 (more specifically, the second region R2), the second nozzle 622 moves relative to the first breeding container C1 (more specifically, more. Specifically, the bait F is discharged into the second region R2).
  • step ST203 the first partition member P1 is moved from the first position (partition position) to the second position (non-partition position).
  • Step ST203 is executed, for example, by using the partition member moving device 70 described above.
  • step ST203 the first breeding container C1 is transported to the first breeding container storage area AR1 by the transport device 41 or the like.
  • the second breeding period in which the silkworms are bred within the new first region Rn1 defined by the second partition member P2 is several days (for example, after the second feeding). 5 days).
  • the first breeding container C1 is transported from the first breeding container storage area AR1 toward the food supply device 60.
  • the transfer is performed using, for example, a transfer device 41 or the like.
  • step ST204 the silkworm feed F is supplied to the first breeding container C1 (more specifically, the new second region Rn2).
  • Step ST204 is performed, for example, using the food supply device 60 described above. More specifically, the third nozzle 623 moves relative to the first breeding container C1 (more specifically, the second region Rn2), while the third nozzle 623 moves relative to the first breeding container C1 (more specifically). Specifically, the bait F is discharged into the second region Rn2).
  • step ST205 the second partition member P2 is moved from the first position (partition position) to the second position (non-partition position).
  • Step ST205 is executed, for example, by using the partition member moving device 70 described above.
  • step ST205 the first breeding container C1 is transported to the first breeding container storage area AR1 by the transport device 41 or the like.
  • the third breeding period in which the silkworms are bred in the first breeding container C1 is several days (for example, 5 days).
  • the feed F is supplied to one first breeding container C1 three times in total every few days.
  • the number of times the food is supplied to one first breeding container C1 may be once, twice, or four times or more.
  • the silkworm A can grow by eating a fresh feed.
  • the food F when the food F is supplied to the first breeding container C1 only once, the food F may be deteriorated due to drying or the like.
  • the total period in which silkworms are bred in the first breeding container C1 (for example, the total of the first breeding period, the second breeding period, and the third breeding period) is a dozen days (for example, 15 days). is there. In this case, in the first breeding container C1, the silkworm grows from an egg to a fourth instar larva.
  • a plurality of silkworms for example, a plurality of 4th instar larvae
  • the transfer is performed using the silkworm transfer device 10.
  • the first breeding container C1 and the second breeding container C2 are transported to the silkworm transfer area AR.
  • the first breeding container C1 is transported from the first breeding container storage area AR1 to the silkworm transfer area AR.
  • the transfer of the first breeding container C1 to the silkworm transfer area AR may be performed by using a plurality of transfer devices including the first breeding container transfer device 40.
  • the first breeding container storage area AR1 is in the first container 2A
  • the silkworm transfer area AR is in the second container 2B. Therefore, the first breeding container C1 is transported from the first container 2A to the second container 2B.
  • the transportation of the first breeding container C1 from the first container 2A to the second container 2B is performed through the container connecting portion 95.
  • the second breeding container C2 is transported from the second breeding container storage area AR2 to the silkworm transfer area AR.
  • the transfer of the second breeding container C2 to the silkworm transfer area AR may be performed by using a plurality of transfer devices including the second breeding container transfer device 20.
  • the second breeding container transport device 20 is arranged in the second breeding container storage area AR2.
  • the second breeding container storage area AR2 is in the second container 2B, and the food supply device 60 is in the first container 2A.
  • the second breeding container C2 in order to supply the food F to the second breeding container C2, the second breeding container C2 is transported from the second breeding container storage area AR2 in the second container 2B to the food supply device 60 in the first container 2A. Will be done.
  • the transport is performed using, for example, a plurality of transport devices including the second breeding container transport device 20 and the first breeding container transport device 40.
  • the silkworm transfer area AR is in the second container 2B. Therefore, after the feed F is supplied to the breeding room SP of the second breeding container C2, the second breeding container C2 is placed in the first container 2A to the second container 2B (more specifically, in the second container 2B). It is transported to the silkworm transfer area AR).
  • the silkworm transfer device 10 transfers the silkworm A from the first breeding container C1 to the breeding room of the second breeding container C2.
  • the number of silkworms A transferred to each breeding room of the second breeding container C2 is preferably one. By raising silkworm A individually, the stress of silkworm A is reduced.
  • a plurality of opening OPs are formed in the first end Ca of the second breeding container C2.
  • Each of the plurality of opening OPs corresponds to the entrances of the plurality of breeding room SPs.
  • the silkworm transfer device 10 transfers the silkworm A to each breeding room SP through the opening OP.
  • the opening OP is formed on the side of the second breeding container C2.
  • the plurality of opening OPs are covered with the lid member CL (see FIG. 1 if necessary). It is preferable that the lid member CL is formed with ventilation holes.
  • the lid member CL is a member that changes a state between a first state in which a plurality of opening OPs are opened and a second state in which a plurality of opening OPs are closed by the lid member CL.
  • the first state means that the silkworm can be inserted into the breeding room SP through the opening OP
  • the second state means that the silkworm cannot escape from the breeding room SP through the opening OP.
  • each breeding room SP is, for example, an elongated shape. More specifically, the depth of the breeding room SP is more than twice the height of the breeding room SP, and the depth of the breeding room SP is more than twice the width of the breeding room.
  • the space for individually raising a plurality of silkworms can be relatively small.
  • the length of each breeding room SP in the depth direction is, for example. , 20 cm or more, 30 cm or more, or 40 cm or more.
  • the longitudinal direction of the breeding room SP is preferably substantially parallel to the horizontal plane (in other words, the angle formed between the longitudinal direction of the breeding room SP and the horizontal plane is preferably 20 degrees or less). Further, it is preferable that the above-mentioned opening OP is formed at the longitudinal end of the breeding room SP.
  • the second breeding container C2 includes a plurality of breeding chambers SP.
  • the number of breeding room SPs included in the second breeding container C2 is, for example, 10 or more and 1000 or less, 30 or more and 500 or less, or 50 or more and 300 or less.
  • a feed support portion PL for supporting the feed F is arranged in each breeding room SP.
  • the bait support portion PL is composed of, for example, a mesh-like member (in other words, a net-like member). In this case, silkworm droppings fall below the bait support PL through each opening of the mesh-like member. Therefore, in the region above the food support portion PL, the silkworm breeding environment is unlikely to deteriorate.
  • the food support portion PL is provided from the first end Ca (in other words, the first end in the longitudinal direction of the second breeding container C2) to the second end Cb (in other words, the second) of the second breeding container C2. It is preferable that it extends along the direction toward the second end in the longitudinal direction of the breeding container C2). Further, it is preferable that the bait F arranged on the bait support portion PL extends along the direction from the first end Ca to the second end Cb of the second breeding container C2.
  • each of the breeding chambers SP is formed by an independent tubular container CY, and an aggregate of the tubular container CY constitutes at least a part of the second breeding container C2. ..
  • the second breeding container C2 may be formed by surrounding the plurality of tubular containers CY with the housing member H.
  • the tubular container CY provides a first aseptic atmosphere
  • the housing member H accommodating the plurality of tubular container CYs provides a second aseptic atmosphere to accommodate the second breeding container C2.
  • the rearing container storage area AR2 (or container 2 such as the second container 2B) provides a third sterile atmosphere. Therefore, the aseptic state in the breeding room SP is more reliably maintained. Further, by setting the degree of sterility stepwise, it is possible to realize the sterility state in the breeding room SP efficiently and at low cost.
  • each of the breeding chambers SP may be defined by a partition wall J arranged in the housing member H.
  • the partition wall J provides the first aseptic atmosphere
  • the housing member H accommodating the partition wall J provides the second aseptic atmosphere
  • the second breeding container storage accommodating the second breeding container C2.
  • Region AR2 (or container 2 such as second container 2B) provides a third sterile atmosphere. Therefore, the aseptic state in the breeding room SP is more reliably maintained. Further, by setting the degree of sterility stepwise, it is possible to realize the sterility state in the breeding room SP efficiently and at low cost.
  • the cross-sectional shape of the breeding chamber SP on the plane perpendicular to the longitudinal direction of the breeding chamber is a quadrangular shape.
  • the cross-sectional shape of the breeding room SP in a plane perpendicular to the longitudinal direction of the breeding room may be hexagonal, octagonal, or other polygonal.
  • the cross-sectional shape of the breeding room SP on the plane perpendicular to the longitudinal direction of the breeding room may be circular.
  • the second breeding container C2 is transferred from the silkworm transfer area AR to the second breeding container storage area. It is transported to AR2. The transport is carried out using the second breeding container transport device 20 or the like. Further, after the plurality of silkworms are transferred from the first breeding container C1 to the second breeding container C2, the first breeding container C1 is transported to the cleaning device 105. The first breeding container C1 is washed by the washing device 105 and then reused for group breeding of silkworms.
  • a plurality of silkworms are bred in the second breeding container C2.
  • each of the plurality of silkworms A is individually bred in an independent breeding room SP.
  • each silkworm grows from the 4th instar larva to the 5th instar larva, and then the 5th instar larva makes a cocoon.
  • the air conditioner 92 supplies dry air to the first end Ca or the second end Cb of the second breeding container C2 before the fifth instar larva makes a cocoon. Since the 5th instar larva prefers dry air, by supplying dry air to the 1st end Ca or the 2nd end Cb of the 2nd breeding container C2, the 5th instar larva is made into the 1st end Ca or the 2nd end Ca. Gather at the end Cb. In this case, it becomes easy to take out the cocoon from the first end Ca or the second end Cb (for example, the cocoon recovery device 103, more specifically, the robot has the first end Ca or the second end. It becomes easy to take out the cocoon from Cb.)
  • the second breeding container C2 is transported from the second breeding container storage area AR2 toward the cocoon recovery device 103.
  • the transport is carried out using, for example, a transport device such as the second breeding container transport device 20.
  • the second breeding container storage area AR2 is in the second container 2B, and the cocoon collecting device 103 is in the first container 2A. Therefore, the second breeding container C2 is transported from the second container 2B to the first container 2A. In the example described in FIG. 13, the transfer of the second breeding container C2 in the first container 2A is performed by using the first breeding container transport device 40. After the cocoons are taken out from the second breeding container C2, the second breeding container C2 is transported to the cleaning device 105. The second breeding container C2 is washed by the washing device 105 and then reused for individual breeding of silkworms.
  • the breeding of silkworms having a relatively small age and the breeding of silkworms having a relatively large age are divided into different spaces, so that the space is relatively small.
  • Silkworms can be bred efficiently.
  • At least one operation (preferably,) of supplying the feed F to the container C1 or the second breeding container C2, cleaning the first breeding container C1 or the second breeding container C2, and collecting the cocoon from the second breeding container C2. All actions) are performed automatically mechanically. Therefore, the silkworm breeding efficiency is improved, and germs are less likely to be mixed into the silkworm breeding environment.
  • the cocoons collected by the cocoon collecting device 103 may be taken out through the door DR (see FIG. 4 if necessary) of the container 2 (more specifically, the first container 2A). .. Further, the replenishment of the bait F and / or the silkworm egg E may be performed through the door DR of the container 2 (more specifically, the first container 2A).
  • the door DR is preferably a double door from the viewpoint of preventing the invasion of various germs into the container 2.
  • silkworm transfer device 10 An example of the silkworm transfer device 10 that can be adopted in the silkworm breeding system 1 in the embodiment will be described with reference to FIG.
  • the silkworm transfer device 10 has a holding member moving device 12 (more specifically, an arm portion) and a grip portion 110.
  • the holding member moving device 12 is, for example, a robot arm including one or more joints.
  • the grip portion 110 has, for example, a plurality of grip pieces 111 including a first grip piece 111a and a second grip piece 111b.
  • the number of gripping pieces 111 included in the gripping portion 110 may be two or three or more.
  • the contact portion 112 of the grip piece 111 that comes into contact with the silkworm is preferably made of an elastically deformable member (elastic member).
  • the contact portion 112 is formed of, for example, silicone rubber. By forming the contact portion 112 with an elastic material (for example, silicone rubber), it becomes possible to suitably grip a silkworm whose shape changes and moves.
  • the grip piece 111 may be, for example, a grip piece having an internal space IS surrounded by an elastic material. In this case, the grip piece 111 can be driven by supplying a fluid such as air to the internal space IS. In the example described in FIG. 17, each grip piece 111 includes a fluid supply path PH that supplies fluid to the internal space IS.
  • the present invention is not limited to each of the above embodiments, and it is clear that each embodiment can be appropriately modified or modified within the scope of the technical idea of the present invention.
  • the various techniques used in each embodiment or modification can be applied to other embodiments or modifications as long as there is no technical contradiction. Further, any additional configuration in each embodiment or modification can be omitted as appropriate.
  • each component included in the second embodiment can also be adopted in the first embodiment.
  • a plurality of silkworms are bred using a plurality of containers (2A, 2B)
  • a plurality of silkworms may be bred using one container 2.
  • a plurality of silkworms may be bred in a sterile environment set independently of the container.
  • the silkworm transfer device 10 and the second breeding container transport device 20 are arranged in the second container 2B.
  • the silkworm transfer device 10 or the second breeding container transport device 20 may be arranged in the first container 2A.
  • the silkworm transfer device 10 or the second breeding container transport device 20 may be placed in a sterile environment unrelated to the container.
  • the first breeding container transport device 40, the feed supply device 60, the partition member moving device 70, and the egg transfer device 80 are arranged in the first container 2A. It was.
  • the first breeding container transport device 40, the food supply device 60, the partition member moving device 70, or the egg transfer device 80 may be arranged in the second container 2B.
  • the first breeding container transport device 40, the feed supply device 60, the partition member moving device 70, or the egg transfer device 80 may be arranged in a sterile environment unrelated to the container.
  • the silkworm transferred from the first breeding container C1 to the second breeding container C2 is a silkworm of a fourth instar larva
  • the silkworm transferred from the first breeding container C1 to the second breeding container C2 may be, for example, a silkworm of a fifth instar larva.
  • the silkworm of the 5th instar larva more specifically, the silkworm immediately before making the cocoon
  • the placement of food in the second breeding container C2 is omitted. May be good. In this case, it is not necessary to transport the second breeding container C2 toward the feed supply device 60.
  • the “food support portion PL” is read as the “support portion” in the above description of the embodiment.
  • a "support portion” is a support portion capable of supporting silkworms.
  • an OP through which silkworms can pass is arranged at the first end Ca (first end face) of the second breeding container C2.
  • an opening through which silkworms can pass may be arranged in the second end Cb (second end face) of the second breeding container C2.
  • Silkworms may be moved from a group breeding container to an individual breeding container at any stage of eggs, juvenile silkworms, 1st to 5th instars, and mature silkworms.
  • the individual breeding container is made of SUS and the manufacturing cost is high, so we want to increase the frequency of use as much as possible.
  • the silkworms may be reared in a group breeding container until the silkworms are matured on the 25th day, and the mature silkworms ready to start spitting may be moved to an individual breeding container.
  • whether you are ready to start spitting can be determined visually or by peeing with a large amount of feces, changing body color from white to yellowish and transparent, lifting your head, etc. It can be automatically detected by recognizing the image from the camera.
  • the characteristics of becoming a 5th instar mature silkworm are that it continues to eat for 10 days, and then pee, a large amount of feces, and a change from white to yellow (transparent). Begins to spit thread 25 days after hatching. Start making cocoons on the 28th day and take out the cocoons in about 3 days. Since the number of days is a guide, the time can be specified, but the time to take out the cocoon may be adjusted by sensing. Sensing may be performed once an hour. When the cocoon is completed, the silkworms do not move in the cocoon, so it is possible to detect that the cocoon is completed by shining light on the cocoon and looking at it with a sensor. Further, as the camera, in addition to the color camera and the monochrome camera, an X-ray camera, an infrared camera and the like can be used.
  • mulberry leaves When mulberry leaves are used as dry powder, they weigh one-third of the raw leaves. The fineness of the powder is, for example, about 80 ⁇ m to 100 ⁇ m.
  • the water content of mulberry leaves is 60% low in winter and 70% low in summer. Dry with a heat pump type dryer for about 6 hours until 70% to 60% of this water content becomes about 30%. Further, it takes about 3 days to dry up to 3% of water content. Therefore, when drying from 30% to 3% of water content, if the mixture is stirred and dried while irradiating microwaves in a vacuum, it can be dried in a short time of, for example, about 20 minutes. Shape a bavarois-shaped semi-cylindrical block from dry powder.
  • the shape is not limited to the kamaboko type, and the size and shape are also arbitrary.
  • a predetermined amount of food blocks of a predetermined size can be arranged at a desired position in the breeding case.
  • the softness is generally from mayonnaise to udon, depending on the ingredients and ratio.
  • the prepared bait is fed from the hopper, it is squeezed out by a pump, and the bait of a semi-cylindrical glock of a desired thickness can be provided in a predetermined place in the breeding container.
  • the thickness and compounding ratio can be changed according to the growth of silkworms.
  • the composition of food and the adjustment of block size and thickness are also automated.
  • the dried mulberry leaf powder is sterilized by the above-mentioned manufacturing method.
  • Dried okara from defatted soy sauce and tofu production which is an auxiliary feed, is edible and sterilized.
  • the supplementary feed contains amino acids and proteins.
  • water sterilized water, sterile water is used
  • these three are mixed to form a soft, bavarois-like block of food.
  • the mixing ratio of the feed is, for example, mulberry powder 10%, supplementary feed 20%, and water content 70%.
  • mulberry leaves are dried at high temperature, nutrients are lost, so it is desirable to add auxiliary additives.
  • auxiliary additives are added to the mulberry leaves.
  • the mulberry leaves are dried at low temperature, the nutritional components are not easily lost, so that an auxiliary additive may not be necessary.
  • the temperature at which mulberry leaves are dried is about 80 ° C in an oven (oven for treating silkworms in cocoons), about 50-60 ° C in a heat pump method, and drying in a vacuum with microwaves.
  • the temperature is about 40 ° C., and drying and pulverization may be performed as in freeze-drying.
  • Feed is automatically supplied to the group breeding container by the feed supply means.
  • the thickness and mixing ratio of feed can be adjusted according to the growth of silkworms.
  • the position where the feed is supplied is changed according to the growth of the silkworm. For example, at the time of replenishing the feed on the 5th day, the feed having a predetermined mixing ratio and size (thickness) is supplied to the position adjacent to the position where the egg and the first feed are supplied. Further, when the feed is replenished on the 10th day, the feed having a predetermined mixing ratio and size (thickness) is supplied to a position further adjacent to the position of the feed arranged on the 5th day.
  • the feed having a predetermined compounding ratio and size (thickness) is supplied to a position further adjacent to the position of the feed arranged on the 10th day.
  • FIG. 18 is a plan view of the entire system, which includes a first container 202 and a second container 203.
  • 19 is a plan view of the first container
  • FIG. 20 is a plan view of the second container
  • FIG. 21 is a side view of FIG. 20.
  • the first container is a space for processing
  • the second container is a space for growing silkworms. Processing such as feeding silkworm eggs, feeding food, and transloading silkworms into a group breeding container is all automatically performed in the first container. Since the first container is fully automatic except for maintenance such as replenishment of food and eggs, it can be unmanned and sterilized. No workers enter the second container except for maintenance, and the silkworm breeding environment is always unmanned and can be sterilized. It is also a feature of this embodiment that sterilization is easy because workers do not enter due to automation.
  • the first container 202 includes a robot arm 210, an egg or feed supply position 211, a silkworm pick-up position (rotary table) 212, a silkworm movement to an individual breeding container, or a cocoon removal position (elevable) 213 from the individual breeding container. Etc. are provided. Eggs or feed are supplied to the breeding container at the egg or feed supply position 211. At the silkworm pick-up position, a rotary table for rotating the breeding container is provided to pick up the silkworm from the group breeding container. The picked up silkworms are moved to the individual breeding container transported to the moving position 213 of the silkworms to the individual breeding container. Further, at the cocoon removal position 213 from the individual breeding container, the cocoon made by the silkworm is taken out in the individual breeding container.
  • FIG. 22 is a photograph when the robot arm 210 is in a position different from the original position.
  • the upper center is the egg or feed supply position 211, and the group breeding container is transported in front of the center.
  • a position (movable) 213 for moving the silkworm to the individual breeding container or taking out the cocoon from the individual breeding container is provided.
  • the second container 203 includes a breeding container automatic storage means 215, a breeding shelf 216, and the like.
  • the breeding container automatic storage means 215 automatically transports the breeding container, thereby realizing unmanned operation.
  • the breeding container automatic storage means 215 is movable in the length direction in the second container, and can access all the breeding shelves 216 in the second container and automatically manage the breeding shelves.
  • the first container and the second container are connected by a connecting conveyor 214, and the breeding container can be transported between the first container and the second container in an unmanned and aseptic state.
  • the robot arm 210 can be used as a picking robot for picking up silkworms.
  • silkworms can be picked up gently and softly by a suction cup or hand using soft robotics technology.
  • silkworms of about 3 cm in age are sucked up with a vacuum suction cup at the tip of the robot arm.
  • the silkworm may be gripped by a soft air-driven hand.
  • a soft material made of adhesive silicone is desired as the material of the hand. Further, for example, it is effective to hold it with a soft air-driven hand and suck it up with a vacuum suction cup.
  • the robot arm 210 is used as a cocoon pickup hand, it is desirable to drive the pickup hand with air and grip the cocoon softly, for example.
  • the hand that picks up the silkworm and the hand that picks up the cocoon can be automatically exchanged.
  • the silkworm can be picked by the picking robot while rotating the group breeding container.
  • the position of the silkworm is determined by two-dimensional image recognition by a monocular camera.
  • the position of the cocoon is determined by two-dimensional image recognition by the monocular camera, and the cocoon is taken out by the cocoon picking hand.
  • One camera at the silkworm pick position and another camera at the cocoon pick position it is also possible to perform three-dimensional image recognition using a two-axis camera (stereo camera).
  • the individual breeding container can be raised and lowered by the lifter. The movement of the silkworm to the individual breeding container and the removal of the cocoon from the individual breeding container are performed at the same position 213.
  • FIG. 27 is a photograph of the detection camera.
  • the detection camera is provided above the picking robot, for example, one camera at the silkworm pick position and another camera at the cocoon pick position. Lighting means for illuminating the shooting range is provided in the vicinity of the camera. By recognizing the image obtained by this detection camera, the silkworm or cocoon to be picked up is detected.
  • Osban solution registered trademark
  • Ozone water may be used.
  • silkworm eggs can also be sterilized.
  • the automatic sericulture system of the present embodiment can be realized by accommodating it in two containers.
  • the first container is a work space
  • the second container is a breeding room
  • the two are connected by a conveyor connecting them.
  • these containers about 20,000 silkworms can be bred, and if the scale is further expanded, it is possible to raise silkworms in units of 1 million.
  • Work in the first container includes sorting eggs, preparing group breeding containers, preparing individual breeding containers, adding food, picking up silkworms, moving from group breeding containers to individual breeding containers, etc.
  • a plurality of picking robots can be used.
  • a plurality of picking robots can be arranged around a circular conveyor (inner circumference side or outer circumference side) such as a circumference, and only mature silkworms can be picked up by image recognition by a camera. Is.
  • the parallel processing shortens the time required for pickup work.
  • the second container is provided with a plurality of breeding shelves for storing individual breeding containers and group breeding containers.
  • 29 to 31 show a breeding shelf and a breeding container automatic storage means arranged in the second container.
  • FIG. 29 is a photograph of the breeding rack.
  • FIG. 30 is a photograph of the rail of the breeding container automatic storage means.
  • FIG. 31 is a photograph of the breeding container automatic storage means.
  • the breeding container automatic storage means is provided with an elevating means and a means for storing or removing the breeding container on the breeding shelf.
  • the food, eggs, breeding container, first and second containers, etc. are all sterile, that is, completely sterile.
  • the humidity inside the container is set to 70%, which prevents the food from drying out.
  • the water content of the bait is 70%, and the humidity conditions in the container mentioned above match this.
  • the room temperature is preferably 20 to 25 ° C, which is preferred by silkworms.
  • Aseptic condition It is possible to maintain the health of silkworms because the barrels come out and the food is not easily damaged.
  • the outside of the egg is disinfected to ensure sterility.
  • eggs are put into a V-grooved disinfectant tank, and only those that have sunk to the bottom are taken out.
  • Aseptic feed is supplied, and the breeding environment is sterilized or sterile. For example, it is a clean room using an air purifier using a HEPA filter, and it is possible to remove 1 micron size dust.
  • [Breeding method] Feed regularly, for example, every 5 days. Eggs and food are put into the breeding container, fed on the 5th day, fed 5 days later, and then fed 5 days later, and after a total of 15 days, the movement before molting from the 3rd to the 4th instar For a period of no time, transfer silkworms about 3 cm in size to a tube for individual breeding with a picking robot (for example, a vacuum sucker), and feed the tube with food, for example, about 20 g. On the 25th day, the threads are spit out in the individual breeding container to start making cocoons, and 3 days later, on the 28th day in total, the cocoons are taken out with a picking hand.
  • a picking robot for example, a vacuum sucker
  • Egg supply means, feed supply means, silkworm movement means, cocoon removal means, breeding container automatic storage means, and breeding container movement means are all automated, and it is easy to sterilize without human intervention, and silkworm stress can be reduced. Can be reduced.
  • traditional sericulture it was very difficult to arrange the timing of putting in the glare and the time of sericulture.
  • the time to remove the cocoons can be determined by the number of days or by sensing.
  • group breeding can temporarily stock a group breeding container near the pickup position so that the pick-up work time can be adjusted. It is advisable to provide a container stocker.
  • IoT technology it is possible to monitor the growth status of silkworms and optimize the work period according to the growth. For example, a camera monitors the condition of silkworms or cocoons. For example, monitor every hour.
  • the individual breeding containers are provided with breeding spaces in a matrix, for example, in 5 rows x 10 rows.
  • One breeding space is divided into two rooms by a partition member.
  • To remove the cocoons push out the partition members one by one on the workbench to half the length direction. For example, there are 5 rows and 10 rows in the vertical direction, a partition in the center of the tube, and the bottom is raised by a net.
  • the circumference of the central partition is an elastic member, for example, a sponge, and if the partition is moved halfway, the feces inside can be scraped out. As soon as the cocoons are removed, the primary cleaning is completed.
  • Detachable lids translucent
  • the group breeding container is a substantially square bottomed container, and a water supply means for preventing drying is provided in the center. See the approximately square container at the bottom center of FIG.
  • the water supply means may be a sponge or the like soaked with water. Alternatively, water can be directly placed in a container as a means of supplying water.
  • a removable lid (translucent) is provided on the upper surface of the group breeding container.
  • FIG. 23 is a photograph of the partition member.
  • the partition member 240 is inserted into the breeding space of the individual breeding container.
  • the partition member 240 has a partition portion 241 and a flat surface portion 243.
  • the partition 41 divides the breeding space into two spaces.
  • the flat surface portion 243 serves as a floor for breeding silkworms or cocoons.
  • the flat surface portion 243 is provided with a plurality of holes, and silkworm droppings fall from the holes and collect between the bottom of the breeding space and the lower part of the flat surface portion 243.
  • An elastic member 242 made of, for example, a sponge is provided around the partition portion 241.
  • the elastic member 242 corresponds to the shape and size of the inner wall of the breeding space.
  • Convex portions 246, which are convex toward the upper surface, are provided at both ends of the flat surface portion 243.
  • FIG. 24 is a diagram showing a case where the partition member 240 is pushed out from the breeding space by the partition member moving means 220 by a distance of half the length of the partition member 240.
  • the elastic member 242 is in sliding contact with the inner wall of the breeding space, so that the feces in the storage space and the residue other than the feces can be separated and taken out.
  • FIG. 25 is a photograph of the cocoons taken out from the individual breeding containers. Since FIG. 25 is a reference photograph different from the actual installation position, it is different from the actual arrangement relationship.
  • the position where the cocoon is taken out is the position where the partition member 240 is pushed out by half from the breeding space, and the partition member accommodating portion is in contact with the individual breeding container, and the protruding side partition member 240 is fitted into the partition member accommodating portion. Has been done. In this state, the feces are scraped out by the elastic member 242 and collected by the feces collection container. On the other hand, leftover food, molted skin, and the like, which are residues other than feces, remain on the flat surface portion 243, so that the feces and the residue other than feces can be separated and taken out.
  • the cocoon picking arm shown in FIG. 26 can be used for taking out the cocoon.
  • the claw portion provided on the partition member moving means 220 is adapted to engage with the convex portion 246. Since the individual breeding container is placed on the lifter, its height can be adjusted. The individual breeding container has, for example, a total of 50 breeding spaces in 5 rows and 10 rows. There are 10 breeding spaces in each stage, and the partition member 240 inserted in the 10 storage spaces in each stage can be moved at the same time by the 10 arms of the partition member moving means 220. Engagement and disengagement of the claw portion and the convex portion 246 provided on the partition member moving means 220 are performed by adjusting the height of the lifter.
  • the partition member 240 can be pushed out from the breeding space by half from both sides of the 212 from the opposite side, and the partition member 240 can be pushed out from the breeding space from the opposite side as well.
  • one silkworm is placed in the upper silkworm chamber 300 by using, for example, a conical device (funnel 310) such as a funnel. If one silkworm does not fit in each box 301, for example, if two silkworms fit in one box, or if an empty box occurs, a pick robot is used to put silkworms in each box. Move the silkworms so that they fit one by one.
  • a conical device such as a funnel
  • cocoons can be removed in about 3 days, it is possible to produce cocoons 120 times a year. It takes less days to put in the incubator.
  • FIG. 33 shows a modified example of the funnel 310A.
  • a first shutter 311 is provided above the extraction port of the funnel 301A, a second shutter 312 is provided below the extraction port, and a shutter chamber 313 is provided between the first shutter and the second shutter.
  • the first shutter 311 is opened and, for example, one silkworm moves to the first shutter chamber
  • the first shutter 311 is closed immediately, so that one silkworm moves to the shutter chamber 313.
  • the second shutter 312 is opened, one silkworm is extracted from the funnel 310 into one box 301 from the shutter chamber.
  • one silkworm can be accommodated in each box 301.
  • the silkworms can be moved to the shutter chamber one by one, and the silkworms can be reliably extracted from the funnel one by one.
  • Example 2 In FIG. 34, an individual moving box 330 partitioned into a plurality of boxes 331 is placed on the group breeding container 320.
  • the inner dimensions of the group breeding container 320 substantially match the outer dimensions of the individual moving box 330. Since silkworms have a habit of climbing upward and a habit of keeping a distance from other silkworms, one silkworm enters each box of the box member by itself.
  • a corrugated individual moving square 333 provided with a plurality of wavy partition members, that is, a plurality of wavy squares 333 is used. Since it is easier to manufacture the corrugated individual moving box 333 of FIG. 35 by laminating partition members than to manufacturing a rectangular box member like the individual moving box 330 of FIG. 34, the apparatus is inexpensive. Become.
  • the partition member is not limited to a corrugated shape, and may be, for example, a continuous rectangle.
  • a wire mesh type individual moving box 336 obtained by bending and molding a wire mesh 335 (FIG. 36A) into a continuous corrugated shape is used for silkworms.
  • Ripe silkworms have a habit of making cocoons in three-dimensional places. Utilizing this silkworm habit, the silkworm recognizes the three-dimensional space between the wire meshes formed in the wire mesh type individual moving box 336 as a three-dimensional shape, and creates a cocoon in this space.
  • FIG. 37A is a diagram in which a small silkworm that has just hatched from an egg is bred in the first partition 321.
  • the bait 325 is dispersedly arranged in the first partition 321. By gathering the silkworms on the dispersed food, the silkworms can be distributed and bred as a result.
  • FIG. 37B is an explanatory diagram in the case where the first partition 321 is removed and the silkworm is bred in the second partition 322 when the silkworm becomes large.
  • the food is evenly dispersed in the second partition, and the silkworms gather in the food. As a result, the silkworms can be dispersed and bred in the second partition 322.
  • Example 3 When the animals are bred in the group breeding container 320, in addition to the silkworms, silkworm feces and residues such as food residue are accumulated in the group breeding container 320. I want to take out only the ripe silkworms in order to grow up, but if I try to take out the ripe silkworms as they are from the container, the residue will inevitably come out together. Therefore, by using a vacuum suction nozzle with an output such that the silkworms can be stopped in the group breeding container 320 by themselves, it is possible to suck only the residue in the group breeding container 320 and take out only the mature silkworms at once. ..
  • the silkworms can be collectively put into the funnel 310 of the embodiment of FIG. 32. Furthermore, since silkworms have the property of keeping a distance from other silkworms without using a funnel 310, simply sprinkling the mature silkworms on the upper cocoon chamber container 300 causes the silkworms to enter each cocoon 301 one by one. , You can make silkworms there.
  • the silkworms are individually moved by wire mesh in FIG. 36B, and the silkworms are woven with bamboo. By sprinkling silkworms on members, silkworms can enter each box or individual space one by one, and cocoons can be made there.
  • the automatic sericulture system, the automatic sericulture method, the program and the storage medium of the embodiment of the present invention have been described above, but these embodiments are the automatic sericulture system, the automatic sericulture method, for embodying the technical idea of the present invention.
  • the present invention is illustrated for the purpose of explaining the program and the storage medium, and is not intended to limit the present invention to this embodiment.
  • the present invention can be equally applied to a combination of each embodiment, each embodiment or a modified example, and various modifications.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Housing For Livestock And Birds (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

無菌状態で蚕を飼育可能であると共に、養蚕の全ての工程を自動化できる自動養蚕システムを提供する。 本発明の一態様の自動養蚕システムは、集団飼育容器に卵を自動で供給する卵供給手段、集団飼育容器に飼料を自動で供給する飼料供給手段、集団飼育容器から個別飼育容器に蚕を自動で移動させる蚕移動手段、個別飼育容器から繭を自動で取り出す繭取出手段、集団飼育容器及び/又は個別飼育容器を飼育棚に自動で収納すると共に、飼育棚から自動で取り出す飼育容器自動収納手段、及び、前記各手段の間で集団飼育容器及び/又は個別飼育容器を自動で移動させる飼育容器移動手段、を備えることを特徴とする。

Description

自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体
 本発明は、自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体に関する。
 蚕を飼育するための蚕飼育容器が知られている。蚕飼育容器内には、蚕および餌が収容される。蚕飼育容器内の蚕は、蚕飼育容器内の餌を食べて成長する。
 蚕を飼育する場合、一般的には、桑の葉等の餌を、毎日(蚕の眠期を除く)、蚕飼育容器に供給する必要がある。蚕の幼虫期は約25日であり、幼虫期に4回脱皮する。そして、蚕は、最終齢の5齢期に、体内で絹蛋白を合成して、約1200mの糸を吐き、当該糸によって繭を作る。
 関連する技術として、特許文献1には、養蚕方法が記載されている。特許文献1に記載の養蚕方法では、平板状のパレットにシート状の養蚕用飼料が敷かれ、その上にネットが配設される。ネットは、蚕が脱皮をするときに掴まるために利用される。
 従来から養蚕の省力化の試みが紹介されている。特許文献2には、人工飼料を用いた蚕の飼育方法であって、複数段に重なられた飼育トレイの積み替えや、蚕を飼育する飼育ネットの移動をアーム部にて行うことにより、作業を簡略する蚕の飼育方法が記載されている。また、特許文献1には無菌室での飼育での蚕の飼育を行う場合には、作業工程を簡略することで、外部からの雑菌の侵入や室内での落下菌の影響を少なくすることが記載されている。
 特許文献3には、大量の蚕を飼育する際に省力化を図るため、複数段の飼育棚に収容された飼育ケージ10を駆動設備によって循環移動させたり、作業口まで自動で搬送させたりする蚕の飼育装置が記載されている。
  【特許文献1】特開2004-129546号公報
  【特許文献2】特許第3657326号公報
  【特許文献3】特許第6134021号公報
 しかしながら、特許文献1では、蚕の飼育の大部分は、人手によって行われている。このため、蚕の飼育に要するコストが高い。また、蚕の飼育の大部分が人手によって行われることにより、蚕の飼育環境に雑菌が混入するリスクが相対的に高い。
 また、特許文献2に記載の蚕の飼育方法では、人工飼料を入れた飼育トレイの積み替えや飼育ネットの移動にアームを用いることができるが、飼料の供給や状族装置の設置等は自動化できておらず、養蚕の全ての工程を自動化するものではない。
 そして、特許文献3に記載の蚕の飼育装置においては、飼育ケージ10を駆動設備によって循環移動させたり、作業口まで自動で搬送させたりするものであるが、ビニール袋の着脱、飼育ケージの交換等は自動化できておらず、養蚕の全ての工程を自動化するものではない。
 本発明の目的は、無菌状態で蚕を飼育可能であると共に、養蚕の全ての工程を自動化できる自動養蚕システムを提供することにある。
 上記した本発明の目的は、
 集団飼育容器に卵を自動で供給する卵供給手段、
 集団飼育容器に飼料を自動で供給する飼料供給手段、
 集団飼育容器から個別飼育容器に蚕を自動で移動させる蚕移動手段、
 個別飼育容器から繭を自動で取り出す繭取出手段、
 集団飼育容器及び/又は個別飼育容器を飼育棚に自動で収納すると共に、飼育棚から自動で取り出す飼育容器自動収納手段、及び、
 前記各手段の間で集団飼育容器及び/又は個別飼育容器を自動で移動させる飼育容器移動手段、
を備えることを特徴とする自動養蚕システムによって達成される。
 本発明に係る自動養蚕システムによれば、無菌状態で蚕を飼育可能であると共に、養蚕の全ての工程を自動化できる自動養蚕システムを提供することができる。
図1は、第1の実施形態における蚕飼育システムを模式的に示す図である。
図2は、第1の実施形態における蚕飼育方法の一例を示すフローチャートである。
図3は、第2の実施形態における蚕飼育システムを模式的に示す図である。
図4は、第2の実施形態における蚕飼育システムを模式的に示す概略斜視図である。
図5は、餌供給装置の一例を模式的に示す図である。
図6は、第1飼育容器の一例を模式的に示す概略斜視図である。
図7は、仕切り部材移動装置の一例を模式的に示す図である。
図8は、第1飼育工程の一例を示すフローチャートである。
図9は、第1飼育工程の一例を模式的に示す図である。
図10は、第1飼育容器の一例を模式的に示す概略斜視図である。
図11は、卵移載装置の一例を模式的に示す概略断面図である。
図12は、卵移載装置の一例を模式的に示す概略正面図である。
図13は、第2の実施形態における蚕飼育システムを模式的に示す図である。
図14は、第2飼育容器の一例を模式的に示す概略斜視図である。
図15は、第2飼育容器の一例を模式的に示す概略斜視図である。
図16は、第2の実施形態における蚕飼育方法の一例を示すフローチャートである。
図17は、実施形態における蚕飼育システムにおいて採用可能な蚕移載装置の一例を模式的に示す図である。
システム全体の平面図である。
第1コンテナの平面図である。
第2コンテナの平面図である。
図20の側面図である。
集団飼育容器の写真である。
仕切部材の写真である。
個別飼育容器から仕切部材が突出している場合の写真である。
個別飼育容器から繭を取り出す際の写真である。
ロボットアームの写真である。(アーム右側に糞回収容器、アーム手前に繭回収容器)
カメラの写真である。
繭ピックアップ手段の写真である。
飼育棚の写真である。
飼育容器自動収納手段のレールの写真である。
飼育容器自動収納手段の写真である。
漏斗移動方式の説明図である。
シャッター付き漏斗の説明図である。
升目移動方式の説明図である。
波型升目の説明図である。
網型升目の説明図である。
蚕分散方式の説明図である。
 以下、図面を参照して本発明の実施形態に係る自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体について説明する。但し、以下に示す実施形態は本発明の技術思想を具体化するための自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体を例示するものであって、本発明をこれらに特定するものではなく、特許請求の範囲に含まれるその他の実施形態のものにも等しく適用し得るものである。なお、以下の説明において、同じ機能を有する部材、部位については、同一の符号が付され、同一の符号が付されている部材、部位について、繰り返しの説明は省略される。
[第1の実施形態]
 図1および図2を参照して、第1の実施形態における蚕飼育システム1Aおよび蚕飼育方法について説明する。図1は、第1の実施形態における蚕飼育システム1Aを模式的に示す図である。図2は、第1の実施形態における蚕飼育方法の一例を示すフローチャートである。
 第1の実施形態における蚕飼育システム1Aは、第1飼育容器C1から第2飼育容器C2に蚕を移載する蚕移載装置10と、第2飼育容器C2を搬送する第2飼育容器搬送装置20とを具備する。
 第1飼育容器C1の内部では、複数の蚕Aが集団飼育されることが好ましい。換言すれば、第1飼育容器C1は、飼育室内で複数の蚕を集団飼育するための集団飼育用容器であることが好ましい。第1飼育容器C1内では、例えば、10個以上1000個以下、30個以上500個以下、あるいは、50個以上300個以下の蚕が集団飼育される。1個の第1飼育容器C1における飼育領域の面積(平面視における面積)は、例えば、100cm以上10000cm以下、400cm以上4900cm以下、900cm以上2500cm以下である。第1飼育容器C1は、例えば、上方が開放された容器である。
 第2飼育容器C2の内部では、複数の蚕Aが個別飼育されることが好ましい。換言すれば、第2飼育容器C2は、各飼育室内で1個の蚕を個別飼育するための個別飼育用容器であることが好ましい。図1に記載の例では、第2飼育容器C2は、互いに隔離された複数の飼育室SPを含む。図1に記載の例では、第2飼育容器C2は、第1飼育室SP1および第2飼育室SP2を含み、第1飼育室SP1と第2飼育室SP2とは、互いに隔離されている。第2飼育容器C2が備える飼育室SPの数は、例えば、10個以上、30個以上、あるいは、50個以上である。
 各飼育室SPは、独立した筒状容器によって規定されていてもよいし、ハウジング部材内(例えば、容器内または枠内)に配置された仕切壁によって規定されていてもよい。換言すれば、第2飼育容器C2は、複数の筒状容器の集合体であってもよいし、外壁を規定するハウジング部材の内側に複数の仕切壁が配置されたものであってもよい。
 蚕移載装置10は、第1飼育容器C1から第2飼育容器C2に蚕Aを移載する。
 図1に記載の例では、蚕移載装置10は、各飼育室SPに1個のみの蚕Aが収容されるように(例えば、第1飼育室SP1に1個のみの蚕が収容され、第2飼育室SP2に1個のみの蚕が収容されるように)、第1飼育容器C1から第2飼育容器C2に蚕Aを移載する。
 蚕移載装置10は、例えば、蚕保持部材11と、蚕保持部材11を第1飼育容器C1から第2飼育容器C2に向けて移動させる保持部材移動装置12とを備える。蚕移載装置10は、蚕を撮像可能なカメラ13を備えていてもよい。
 蚕保持部材11は、蚕を保持することが可能な部材である。蚕保持部材11は、第1把持部11aと第2把持部11bとを備えていてもよい。この場合、第1把持部11aと第2把持部11bとの間の間隔を小さくすることにより、蚕保持部材11は、1個の蚕を把持することが可能である。代替的に、あるいは、付加的に、蚕保持部材11は、蚕の表皮を吸着可能な真空吸着部11cを備えていてもよい。
 保持部材移動装置12は、例えば、蚕保持部材11の位置を三次元的に変更可能な装置である。保持部材移動装置12は、例えば、ロボットアームである。
 カメラ13は、制御装置30からの制御指令に基づいて、第1飼育容器C1内の複数の蚕Aを撮像する。カメラ13によって取得された画像データは、有線または無線によって、制御装置30に送信される。制御装置30は、画像データに基づいて、複数の蚕のうちの各々の蚕の位置および姿勢を判定する。制御装置30は、判定結果に基づいて、保持部材移動装置12および蚕保持部材11を制御する。制御装置30によって制御された蚕保持部材11は、一個の蚕を保持する。その後、制御装置30は、保持部材移動装置12を制御して、蚕保持部材11を第2飼育容器C2のうちの1つの飼育室SP(例えば、第1飼育室SP1)に向けて移動させる。制御装置30は、蚕保持部材11を制御して、蚕保持部材11による蚕の保持を解除する。その結果、蚕は、第2飼育容器C2のうちの1つの飼育室SP(例えば、第1飼育室SP1)に収容される。
 第1飼育容器C1内の蚕を、第2飼育容器C2のうちの1つの飼育室SPに移載する動作は繰り返し実行される。例えば、第1飼育室SP1に、1つの蚕が収容された後、カメラ13は、制御装置30からの制御指令に基づいて、第1飼育容器C1内の複数の蚕を、再度撮像する。カメラ13によって取得された画像データは、制御装置30に送信される。制御装置30は、画像データに基づいて、複数の蚕のうちの各々の蚕の位置および姿勢を判定する。制御装置30は、判定結果に基づいて、保持部材移動装置12および蚕保持部材11を制御する。制御装置30によって制御された蚕保持部材11は、一個の蚕を保持する。その後、制御装置30は、保持部材移動装置12を制御して、蚕保持部材11を第2飼育容器C2のうちの1つの飼育室SP(例えば、第2飼育室SP2)に向けて移動させる。制御装置30は、蚕保持部材11を制御して、蚕保持部材11による蚕の保持を解除する。その結果、蚕は、第2飼育容器C2のうちの1つの飼育室SP(例えば、第2飼育室SP2)に収容される。
 第2飼育容器搬送装置20は、蚕移載領域ARから第2飼育容器保管領域AR2に、第2飼育容器C2を移動させる。蚕移載領域ARは、第1飼育容器C1から第2飼育容器C2への蚕Aの移載が行われる領域である。他方、第2飼育容器保管領域AR2は、第2飼育容器C2が保管される領域である。図1に記載の例では、第2飼育容器保管領域AR2に棚T2が配置されており、当該棚T2に、第2飼育容器C2が保管されている。
 図1に記載の例では、棚T2は、第2飼育容器保管領域AR2に設置された固定棚である。また、第2飼育容器搬送装置20は、第2飼育容器C2を、蚕移載領域ARと第2飼育容器保管領域AR2との間で搬送する。代替的に、第2飼育容器搬送装置20は、第2飼育容器C2が載置された棚T2を、蚕移載領域ARと第2飼育容器保管領域AR2との間で搬送してもよい。換言すれば、棚T2は、移動棚であってもよい。
 第2飼育容器C2が、第2飼育容器保管領域AR2にあるとき、第2飼育容器C2内の蚕は、餌Fを食べて成長する。
 第2飼育容器搬送装置20は、ベルトコンベヤ、ローラコンベヤ等のコンベヤを含んでいてもよい。代替的に、あるいは、付加的に、第2飼育容器搬送装置20は、棚T2に第2飼育容器C2を移載する移載装置付きの搬送装置(例えば、スタッカークレーン)を含んでいてもよい。第2飼育容器搬送装置20は、制御装置30からの指令に基づいて、第2飼育容器C2を、第2飼育容器保管領域AR2中の所定の保管位置(複数の保管位置のうち空き状態の保管位置)に搬送する。第2飼育容器搬送装置20は、例えば、モータによって駆動される。
 制御装置30は、蚕移載装置10、および/または、第2飼育容器搬送装置20の動作を制御する。制御装置30が有するコンピュータの数は、1台であってもよいし、複数台であってもよい。換言すれば、1台のコンピュータが制御装置30として機能してもよいし、複数台のコンピュータが連携することにより複数のコンピュータが制御装置30として機能してもよい。
 第1の実施形態における蚕飼育システム1は、蚕移載装置10、および、第2飼育容器搬送装置20を含む。よって、第1飼育容器C1から第2飼育容器C2への蚕の移載と、蚕が移載された第2飼育容器C2の移動とを、自動化することができる。その結果、蚕の飼育が効率化される。また、蚕の移載と、第2飼育容器C2の移動とが、手作業で行われないことにより、実質的に、蚕の飼育環境に雑菌が混入することがない。

 第1の実施形態において、蚕飼育システム1Aは、第1飼育容器保管領域AR1から蚕移載領域ARに、第1飼育容器C1を搬送する第1飼育容器搬送装置40を備えていてもよい。第1飼育容器搬送装置40は、第2飼育容器搬送装置20とは別の搬送装置であることが好ましい。第1飼育容器搬送装置40は、例えば、ベルトコンベヤ、ローラコンベヤ等のコンベヤを含む。第1飼育容器搬送装置40は、棚T1に第1飼育容器C1を移載する移載装置付きの搬送装置を含んでいてもよい。第1飼育容器搬送装置40は、例えば、モータによって駆動される。
 蚕飼育システム1Aが第1飼育容器搬送装置40を備える場合、蚕移載領域ARへの第1飼育容器C1の移動を自動化することができる。その結果、蚕の飼育が更に効率化される。また、第1飼育容器C1の移動が、手作業で行われないことにより、実質的に、蚕の飼育環境に雑菌が混入することがない。
 図1に記載の例では、第1飼育容器保管領域AR1に棚T1が配置されており、当該棚T1に、第1飼育容器C1が保管されている。第1飼育容器C1が、第1飼育容器保管領域AR1にあるとき、第1飼育容器C1内の蚕は、餌を食べて成長する。
 第1の実施形態において、第1飼育容器保管領域AR1は、無菌雰囲気AT内に配置されていることが好ましい。また、第2飼育容器保管領域AR2は、無菌雰囲気AT内に配置されていることが好ましい。同様に、蚕移載領域ARは、無菌雰囲気AT内に配置されていることが好ましい。なお、本明細書において、無菌雰囲気ATとは、外部と実質的に隔離された空間内の雰囲気であって、微生物の存在量が外部より少なくなるように設定された雰囲気を意味する。無菌雰囲気ATにおける清浄度は、ISO基準(ISO14644-1:2015)で、例えば、Class6からClass8までの清浄度、より好ましくは、Class7以下の清浄度である。なお、Class6の清浄度は、米国連邦規格FED-STD 209Eのクラス1000相当の清浄度であり、Class7の清浄度は、米国連邦規格FED-STD 209Eのクラス10000相当の清浄度であり、Class8の清浄度は、米国連邦規格FED-STD 209Eのクラス100000相当の清浄度である。
(蚕飼育方法)
 続いて、第1の実施形態における蚕飼育方法の一例について説明する。
 第1ステップST1において、第1飼育容器C1内で、複数の蚕が飼育される。第1ステップST1は、第1蚕飼育工程である。第1蚕飼育工程では、例えば、複数の蚕Aが、第1飼育容器C1内で集団飼育される。
 第2ステップST2において、第1飼育容器C1内の複数の蚕が、第2飼育容器C2に移載される。当該移載は、蚕移載装置10を用いて実行される。
 第2ステップST2は、第1飼育容器C1を蚕移載領域ARに搬送する第1搬送工程と、第2飼育容器C2を蚕移載領域ARに搬送する第2搬送工程と、蚕移載装置10を用いて、複数の蚕Aを、第1飼育容器C1から第2飼育容器C2に移載する移載工程とを有していてもよい。
 第1搬送工程は、例えば、第1飼育容器搬送装置40を用いて実行される。第2搬送工程は、例えば、第2飼育容器搬送装置20を用いて実行される。第2搬送工程は、第1搬送工程よりも前に実行されてもよいし、第1搬送工程より後に実行されてもよいし、第1搬送工程と同時に実行されてもよい。
 図1に記載の例では、第2飼育容器C2は、個別飼育用の複数の飼育室SPを含む。この場合、第2ステップST2(蚕移載工程)は、第1飼育容器C1内で飼育された複数の蚕Aを、複数の飼育室SPに、それぞれ移載することを含んでいてもよい。図1に記載の例では、蚕移載装置10が、第1飼育容器C1内で集団飼育された複数の蚕Aを、個別飼育用の複数の飼育室SPに、それぞれ移載する。このため、蚕の飼育環境に雑菌を混入させることなく、集団飼育から個別飼育への切り替えを、円滑に実行することが可能である。なお、蚕移載装置10によって実行される蚕移載工程(すなわち、第1飼育容器C1から第2飼育容器C2に蚕Aを移載する蚕移載工程)は、第1飼育容器C1内の蚕を、第2飼育容器C2内の餌支持部PL(図14を参照。)に移載することを含んでいてもよい。代替的に、蚕移載装置10によって実行される蚕移載工程(すなわち、第1飼育容器C1から第2飼育容器C2に蚕Aを移載する蚕移載工程)は、第1飼育容器C1内の蚕を、第2飼育容器C2外の餌支持部PL(図5を参照。)に移載することと、蚕Aが支持された餌支持部PLを第2飼育容器C2内に挿入することとを含んでいてもよい。
 第2ステップST2の実行後、複数の蚕Aが移載された第2飼育容器C2は、蚕移載領域ARから第2飼育容器保管領域AR2に搬送される。当該搬送は、例えば、第2飼育容器搬送装置20を用いて実行される。
 第3ステップST3において、第2飼育容器C2内で、複数の蚕Aが飼育される。第3ステップST3は、第2蚕飼育工程である。第2蚕飼育工程では、例えば、複数の蚕Aの各々が、独立した飼育室SP内で個別飼育される。
 第1の実施形態における蚕飼育方法では、第1飼育容器C1から第2飼育容器C2への蚕の移載が、蚕移載装置10によって行われる。よって、第1飼育容器C1から第2飼育容器C2への蚕の移載を自動化することができる。その結果、蚕の飼育が効率化される。また、蚕の移載が蚕移載装置10によって行われるため、実質的に、蚕の飼育環境に雑菌が混入しない。
 また、第1の実施形態において、第1飼育容器C1内で、複数の蚕Aが集団飼育され、第2飼育容器C2内で、複数の蚕Aの各々が個別飼育される場合には、日齢の小さな蚕を小スペースで効率的に集団飼育することができ、かつ、日齢の大きな蚕をストレスが抑制された状態で個別飼育することができる。よって、第1の実施形態では、蚕の飼育の省スペース化と、蚕の飼育の効率化と、蚕のストレス抑制とを両立することができる。さらに、個別飼育用の飼育室内で、蚕に繭を形成させる場合、繭が形成される場所を局在化することができる。この場合、繭の回収(例えば、ロボットによる繭の回収)が容易となる。
[第2の実施形態]
 図3乃至図16を参照して、第2の実施形態における蚕飼育システム1B、および、蚕飼育方法について説明する。図3は、第2の実施形態における蚕飼育システム1Bを模式的に示す図(コンテナ2の内部の様子を模式的に示す概略平面図)である。図4は、第2の実施形態における蚕飼育システム1Bを模式的に示す概略斜視図である。図5は、餌供給装置60の一例を模式的に示す図である。図6は、第1飼育容器C1の一例を模式的に示す概略斜視図である。図7は、仕切り部材移動装置70の一例を模式的に示す図である。図8は、第1飼育工程の一例を示すフローチャートである。図9は、第1飼育工程の一例を模式的に示す図である。図10は、第1飼育容器C1の一例を模式的に示す概略斜視図である。図11は、卵移載装置80の一例を模式的に示す概略断面図である。図12は、卵移載装置80の一例を模式的に示す概略正面図である。図13は、第2の実施形態における蚕飼育システム1Bを模式的に示す図である。図14は、第2飼育容器C2の一例を模式的に示す概略斜視図である。図15は、第2飼育容器C2の一例を模式的に示す概略斜視図である。図16は、第2の実施形態における蚕飼育方法の一例を示すフローチャートである。
 第2の実施形態における蚕飼育システム1Bは、蚕飼育システム1Bを構成する複数の装置のうちの少なくとも一つが配置されるコンテナ2を含む。第2の実施形態では、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。したがって、第2の実施形態において、明示的に説明をしなかったとしても、第1の実施形態において説明済み事項を第2の実施形態に適用できることは、言うまでもない。このことは、他の実施形態においても同様である。
 蚕飼育システム1Bは、例えば、蚕移載装置10、第1飼育容器搬送装置40、第2飼育容器搬送装置20、制御装置30のうちの少なくとも1つを備える。蚕移載装置10、第1飼育容器搬送装置40、第2飼育容器搬送装置20、制御装置30については、第1の実施形態において説明済みであるため、これらの構成要素についての繰り返しとなる説明は省略する。
 図3に記載の例では、蚕飼育システム1Bは、2個のコンテナ2(より具体的には、第1コンテナ2A、第2コンテナ2B)を備える。しかし、蚕飼育システム1Bが備えるコンテナ2の個数は、1個、または、3個以上であってもよい。
 図3に記載の例では、コンテナ2(より具体的には、第2コンテナ2B)内に、第2飼育容器搬送装置20が配置されている。コンテナ2は、実質的な閉空間(より具体的には、無菌雰囲気AT)を規定することが可能である。このため、コンテナ2内に、第2飼育容器搬送装置20が配置されている場合、第2飼育容器C2の搬送経路に、雑菌が混入しにくい。
 搬送装置を閉空間内に設置する場合、搬送装置は、閉空間を規定する建物内に設置されるのが一般的である。これに対し、第2の実施形態では、コンテナ2内に、第2飼育容器搬送装置20等の搬送装置が配置される。コンテナ2は、屋外に配置された場合でも、実質的な閉空間を規定することが可能である。このため、搬送装置を配置するために新たに建物を建設する必要がない。また、コンテナ2を、既存の建物内に配置する場合であっても、コンテナ2が実質的な閉空間を規定するため、当該既存の建物に高い密閉度が要求されない。また、コンテナ2は、車両、船舶等によって運搬可能であるため、コンテナ2の配置の自由度は高い。また、1度所定の場所に配置されたコンテナを、別の場所に移動させることも容易である。
 コンテナ2は、例えば、ISO668(例えば、ISO668:1995、ISO668:2005、ISO668:2013等)によって規格化された可搬式コンテナである。コンテナ2は、例えば、45フィートコンテナ(ISO668の「1EEE」コンテナ、「1EE」コンテナ等)、40フィートコンテナ(ISO668の「1AAA」コンテナ、「1AA」コンテナ、「1A」コンテナ、「1AX」コンテナ等)、30フィートコンテナ(ISO668の「1BBB」コンテナ、「1BB」コンテナ、「1B」コンテナ、「1BX」コンテナ等)、20フィートコンテナ(ISO668の「1CC」コンテナ、「1C」コンテナ、「1CX」コンテナ等)、10フィートコンテナ(ISO668の「1D」コンテナ、「1DX」コンテナ等)、6.5フィートコンテナ(ISO668の「1E」コンテナ等)、5フィートコンテナ(ISO668の「1F」コンテナ等)である。以下、本明細書において、ISO668によって規格化された可搬式コンテナのことを「ISOコンテナ」と呼ぶ。
(第1コンテナ2A)
 図1に記載の例では、蚕飼育システム1Bは、第1コンテナ2Aを有する。第1コンテナ2Aは、例えば、ISOコンテナである。第1コンテナ2Aの長さは、例えば、45フィート、40フィート、30フィート、20フィート、10フィート、6.5フィート、または、5フィートである。
 図1に記載の例では、第1コンテナ2Aは、第1飼育容器保管領域AR1を有する。図1に記載の例では、第1コンテナ2Aの外壁Waの内面Wsに沿って、断熱材91が配置されている。また、第1コンテナ2Aには、第1コンテナ2A内の温度を調整する空調装置92が配置されている。
 蚕飼育システム1Bが、第1飼育容器保管領域AR1を有する第1コンテナ2Aと、断熱材91と、空調装置92とを備える場合には、第1飼育容器C1内の蚕飼育環境を好適な環境に設定することが可能である。空調装置92は、温度を調整可能な空調装置であっても良く、温度および湿度を調整可能な空調装置であってもよい。空調装置92によって、第1飼育容器保管領域AR1の温度は、例えば、摂氏20度以上摂氏35度以下、あるいは、摂氏25度以上摂氏30度以下に維持される。
 空調装置92が作動すると、第1コンテナ2A内の圧力は、第1コンテナ2A外の圧力よりも高くなるように設定されている。第1コンテナ2A内の圧力と、第1コンテナ2A外の圧力との圧力差は、例えば、10Pa(パスカル)以上、100Pa以上、1000Pa以上、3000Pa以上、あるいは、5000Pa以上である。第1コンテナ2A内の圧力が、第1コンテナ2A外の圧力よりも高くなるように設定されていることにより、第1コンテナ2A内に雑菌が混入するリスクが低減される。
 空調装置92が作動すると、第1飼育容器保管領域AR1内の圧力は、第1コンテナ2A内における第1飼育容器保管領域AR1外の領域の圧力よりも高くなるように設定されていることが好ましい。両領域間の圧力差は、例えば、10Pa(パスカル)以上、100Pa以上、1000Pa以上である。第1飼育容器保管領域AR1内の圧力が、第1飼育容器保管領域AR1外の領域の圧力よりも高くなるように設定されていることにより、第1飼育容器保管領域AR1内に雑菌が混入するリスクが低減される。第1飼育容器保管領域AR1内の圧力を、第1飼育容器保管領域AR1外の領域の圧力よりも高くするために、空調装置92の空気供給口92aが、第1飼育容器保管領域AR1に配置されていてもよい。
 空調装置92は、第1コンテナ2A外から第1コンテナ2A内に空気を供給するファン921と、当該空気の温度を上昇または下降させる熱交換器922と、当該空気から雑菌を除去するフィルタ923(例えば、HEPAフィルタ)とを備える。
 空調装置92は、第1コンテナ2A内の空気を第1コンテナ2A内で循環させる循環流路と、循環流路に配置されたフィルタ924(例えば、HEPAフィルタ)とを備えていてもよい。空調装置92が循環流路と、フィルタ924とを備える場合には、第1コンテナ2A内に侵入した雑菌が、フィルタ924によって除去される。
(第2コンテナ2B)
 図3に記載の例では、蚕飼育システム1Bは、第2コンテナ2Bを有する。第2コンテナ2Bは、例えば、ISOコンテナである。第2コンテナ2Bの長さは、例えば、45フィート、40フィート、30フィート、20フィート、10フィート、6.5フィート、または、5フィートである。
 図3に記載の例では、第2コンテナ2Bは、第2飼育容器保管領域AR2を有する。図3に記載の例では、第2コンテナ2Bの外壁Waの内面Wsに沿って、断熱材91が配置されている。また、第2コンテナ2Bには、第2コンテナ2B内の温度を調整する空調装置92が配置されている。第2コンテナ2Bに配置される空調装置92は、第1コンテナ2Aに配置される空調装置92と同様の空調装置である。第2コンテナ2Bに配置される空調装置92は、第1コンテナ2Aに配置される空調装置92と同様に、ファン921、熱交換器922、フィルタ(923、924)等を備える。空調装置92によって、第2飼育容器保管領域AR2の温度は、例えば、摂氏20度以上摂氏35度以下、あるいは、摂氏25度以上摂氏30度以下に維持される。
 空調装置92が作動すると、第2コンテナ2B内の圧力は、第2コンテナ2B外の圧力よりも高くなるように設定されている。第2コンテナ2B内の圧力と、第2コンテナ2B外の圧力との圧力差は、例えば、10Pa(パスカル)以上、100Pa以上、1000Pa以上、3000Pa以上、あるいは、5000Pa以上である。
 空調装置92が作動すると、第2飼育容器保管領域AR2内の圧力は、第2コンテナ2B内における第2飼育容器保管領域AR2外の領域の圧力よりも高くなるように設定されていることが好ましい。両領域間の圧力差は、例えば、10Pa(パスカル)以上、100Pa以上、1000Pa以上である。第2飼育容器保管領域AR2内の圧力を、第2飼育容器保管領域AR2外の領域の圧力よりも高くするために、空調装置92の空気供給口92aが、第2飼育容器保管領域AR2に配置されていてもよい。
 図3に記載の例では、蚕飼育システム1Bは、第1飼育容器保管領域AR1を有する第1コンテナ2Aと、第2飼育容器保管領域AR2を有する第2コンテナ2Bとを有する。また、第2コンテナ2Bは、第1コンテナ2Aとは別のコンテナである。この場合、蚕飼育システム1Bは、相対的に日齢の小さな蚕を飼育するための飼育環境(第1コンテナ2A)と、相対的に日齢の大きな蚕を飼育するための飼育環境(第2コンテナ2B)とを独立して設定することが可能となる。例えば、相対的に日齢の小さな蚕については、集団飼育をすることによって、比較的小さなスペースで、大量の蚕を飼育することが可能である。他方、相対的に日齢の大きな蚕については、個別飼育をすることによって、蚕に作用するストレスの低減を図ることが可能である。
 なお、相対的に日齢の大きな蚕については、相対的に大きな飼育スペースが必要となる。このため、第2飼育容器保管領域AR2を有する第2コンテナ2Bのサイズは、第1飼育容器保管領域AR1を有する第1コンテナ2Aのサイズよりも大きなサイズであってもよい。代替的に、あるいは、付加的に、第2飼育容器保管領域AR2を有する第2コンテナ2Bの個数が、第1飼育容器保管領域AR1を有する第1コンテナ2Aの個数よりも多くなるように、複数のコンテナ2が配置されてもよい。例えば、1つの第1コンテナ2Aと、2つ以上の第2コンテナ2Bとが連結されてもよい。第1コンテナ2Aに連結される第2コンテナ2Bの数は、3個以上、5個以上、あるいは、10個以上であってもよい。
(コンテナ連結部95)
 図3に記載の例では、蚕飼育システム1Bは、第1コンテナ2Aと第2コンテナ2Bとを連結するコンテナ連結部95を備える。コンテナ連結部95の存在により、第1コンテナ2Aまたは第2コンテナ2Bへの雑菌の侵入が抑制される。より具体的には、第1コンテナ2Aと第2コンテナ2Bとの間で、第1飼育容器C1、第2飼育容器C2等を搬送する際に、第1コンテナ2Aの開口部または第2コンテナ2Bの開口部から雑菌が侵入するおそれがある。図3に記載の例では、第1コンテナ2Aと第2コンテナ2Bとがコンテナ連結部95によって連結されているため(より具体的には、第1コンテナ2Aの開口部および第2コンテナ2Bの開口部がコンテナ連結部95によって覆われているため)、これらの開口部から雑菌が侵入するリスクが低減される。コンテナ連結部95は、ビニル等の合成樹脂製の可撓性部材によって構成されていてもよく、金属板等の剛性部材によって構成されていてもよく、可撓性部材と剛性部材の組み合わせによって構成されていてもよい。
 図3に記載の例では、第1コンテナ2Aの開口部に、第1扉DR1が配置され、第2コンテナ2Bの開口部に、第2扉DR2が配置されている。しかし、第1扉DR1および/または第2扉DR2は、省略されても構わない。
(餌供給装置60)
 図3に記載の例では、蚕飼育システム1Bは、餌供給装置60を備える。餌供給装置60は、第1飼育容器C1または第2飼育容器C2に餌(蚕の餌)を供給する装置である。蚕飼育システム1Bが、餌供給装置60を備える場合、第1飼育容器C1または第2飼育容器C2への餌の供給を自動化することができる。この場合、餌の供給に際して、蚕の飼育環境に雑菌が混入することが抑制される。
 図3に記載の例では、餌供給装置60は、第1コンテナ2A内に配置されている。代替的に、あるいは、付加的に、餌供給装置60は、第2コンテナ2B内に配置されていてもよい。餌供給装置60がコンテナ2内に配置される場合、餌の供給に際して、蚕の飼育環境に雑菌が混入することがより一層効果的に抑制される。ただし、蚕飼育システム1Bが、上述のコンテナ2を有さない場合には、餌供給装置60は、コンテナ2とは異なる任意の場所に配置されていてもよい。
 図5を参照して、餌供給装置60の一例について説明する。餌供給装置60は、例えば、餌貯留容器61と、ノズル部材62と、移動装置63と、餌供給管64と、餌供給ポンプ65とを備える。
 餌貯留容器61は、蚕の餌を一時的に収容するための容器である。餌貯留容器61には、例えば、桑F1(より具体的には、桑の葉の粉末)と、おからF2と、水とが投入される。図5に記載の例では、桑F1は、桑容器から餌貯留容器61に投入され、おからF2は、おから容器から餌貯留容器61に投入される。当該投入は、桑供給装置および/またはおから供給装置によって自動的に行われてもよいし、手作業によって行われてもよい。
 図5に記載の例では、水供給管67が、餌貯留容器61に接続されている。そして、餌貯留容器61への水の供給は、水供給管67を用いて自動的に実行される。図5に記載の例では、水供給管67に、開閉弁671、および、フィルタ672が配置されている。開閉弁671と制御装置30とは、有線または無線によって、信号伝達可能に接続されており、開閉弁671は、制御装置30からの指令に基づいて開閉される。開閉弁671が開状態のときには、水が餌貯留容器61に供給され、開閉弁が閉状態のときには、水は餌貯留容器61に供給されない。フィルタ672は、水から異物または雑菌を除去する。
 図5に記載の例では、餌貯留容器61に投入された、桑、おから、および、水が、餌貯留容器61内で攪拌される。当該攪拌は、モータM1によって駆動される攪拌装置611によって行われる。モータM1と制御装置30とは、有線または無線によって、信号伝達可能に接続されており、モータM1は、制御装置30からの指令に基づいて駆動される。モータM1が駆動すると、攪拌装置611は、桑、おから、および、水を含む混合飼料を攪拌する。
 桑、おから、および、水を含む混合飼料(より具体的には、練餌)は、餌供給ポンプ65によって、餌貯留容器61からノズル部材62に向けて供給される。図5に記載の例では、餌供給ポンプ65は、スクリューコンベヤまたはスネークポンプを含んでいてもよい。図5に記載の例では、餌供給ポンプ65は、モータM2、および、モータM2によって駆動される回転シャフト651を含む。餌供給ポンプ65は、回転シャフト651に取り付けられた羽根部材652を含んでいてもよい。代替的に、あるいは、付加的に、回転シャフト651は、非直線状の回転シャフト(例えば、螺旋形状の回転シャフト)であってもよい。この場合、羽根部材652は、省略されても構わない。
 モータM2と制御装置30とは、有線または無線によって、信号伝達可能に接続されており、モータM2は、制御装置30からの指令に基づいて駆動される。モータM2が駆動すると、回転シャフト651が回転する。その結果、回転シャフト651、または、回転シャフト651に取り付けられた羽根部材652が、餌供給ポンプ65の上流側から餌供給ポンプ65の下流側に向けて、餌(練餌)を押し出す。なお、図5に記載の例では、餌貯留容器61の排出口と、餌供給ポンプ65の上流側とが接続されている。そして、餌貯留容器61の排出口から排出された餌(練餌)が、餌供給ポンプ65の上流側に供給される。また、図5に記載の例では、餌供給ポンプ65から排出された餌が、餌供給管64を介して、ノズル部材62に供給される。
 餌供給管64は、剛体管であってもよいし、可撓管であってもよいし、一部が剛体管で他の一部が可撓管であってもよい。
 図5に記載の例では、餌供給管64は、餌貯留容器61とノズル部材62とを連結する管である。上述の餌供給ポンプ65は、餌供給管64の途中に配置されている。
 図5に記載の例では、餌供給管64には、開閉弁641が配置されている。開閉弁641と制御装置30とは、有線または無線によって、信号伝達可能に接続されており、開閉弁641は、制御装置30からの指令に基づいて開閉される。開閉弁641が開状態のときには、餌がノズル部材62-1に供給され、開閉弁641が閉状態のときには、餌はノズル部材62-1に供給されない。
 図5に記載の例では、餌供給管64は、メイン管64mと、第1分岐管64dとを含む。第1分岐管64dには、上述の開閉弁641が配置され、第1分岐管64dは、上述のノズル部材62-1に接続されている。
 餌供給管64は、第2分岐管64eを含んでいてもよい。図5に記載の例では、第2分岐管64eには、開閉弁643が配置され、第2分岐管64eは、第2ノズル部材62-2に接続されている。開閉弁643と制御装置30とは、有線または無線によって、信号伝達可能に接続されており、開閉弁643は、制御装置30からの指令に基づいて開閉される。
 図5に記載の例では、メイン管64mと、第1分岐管64dとが、分岐部D1を介して接続されている。また、図5に記載の例では、メイン管64mと、第2分岐管64eとが、分岐部D2を介して接続されている。
 図5に記載の例では、餌供給管64は、戻り管64rを備える。餌供給管64が戻り管64rを備える場合には、メイン管64mを流れる餌のうち、ノズル部材62に供給されない余剰餌は、戻り管64rを介して、餌貯留容器61に戻される。図5に記載の例では、餌供給管64のうちの分岐部D1と餌貯留容器61との間の部分が、戻り管64rを構成している。戻り管64rには、開閉弁645が配置されていてもよい。
 ノズル部材62(ノズル部材62-1または第2ノズル部材62-2)は、餌を吐出する開口62hを備える。図5に記載の例では、ノズル部材62-1は、第1ノズル621と、第2ノズル622とを含む複数のノズルを備える。第1ノズル621の吐出部(第1開口)の開口面積(あるいは、直径)は、第2ノズル622の吐出部(第2開口)の開口面積(あるいは、直径)よりも小さい。また、第2ノズル622の吐出部(第2開口)の開口面積(あるいは、直径)は、第3ノズル623の吐出部(第3開口)の開口面積(あるいは、直径)よりも小さい。ノズル部材62-1は、例えば、制御装置30からの指令によって作動する切替弁620を備える。切替弁620は、複数のノズル(621、622、623)のうちの一つに選択的に餌を供給する。より具体的には、制御装置30からの指令に基づいて、餌供給管64と第1ノズル621とが連通するように切替弁620が作動すると、第1ノズル621の開口から餌が吐出される。また、制御装置30からの指令に基づいて、餌供給管64と第2ノズル622とが連通するように切替弁620が作動すると、第2ノズル622の開口から餌が吐出される。第2ノズル622から吐出される餌は、第1ノズル621から吐出される餌よりも太い。また、制御装置30からの指令に基づいて、餌供給管64と第3ノズル623とが連通するように切替弁620が作動すると、第3ノズル623の開口から餌が吐出される。第3ノズル623から吐出される餌は、第2ノズル622から吐出される餌よりも太い。
 図5に記載の例では、第2ノズル部材62-2は、一つのノズルを含む。第2ノズル部材62-2のノズルから吐出される餌は、ノズル部材62-1のノズル(例えば、第1ノズル621、第2ノズル622、または、第3ノズル623)から吐出される餌よりも太い。代替的に、第2ノズル部材62-2のノズルから吐出される餌の太さは、第3ノズル623から吐出される餌の太さと同程度であってもよい。
 移動装置63は、ノズル部材62を、餌支持部PLに対して相対移動させる装置である。図5に記載の例では、移動装置63は、ノズル部材62を移動させるノズル移動装置である。代替的に、移動装置63は、餌支持部PLを移動させる装置であってもよい。
 移動装置63と制御装置30とは、有線または無線によって、信号伝達可能に接続されており、移動装置63は、制御装置30からの指令に基づいて動作する。移動装置63は、制御装置30からの指令に基づいて、ノズル部材62の位置を三次元的に変更する。図5に記載の例では、移動装置63は、ロボットアーム630を含む。
 図5に記載の例では、移動装置63(より具体的には、移動装置63-1)は、ノズル部材62-1を、餌支持部PLに対して相対移動させる。餌支持部PLは、例えば、第1飼育容器C1内に配置された餌支持部である。餌支持部PLは、メッシュ状の部材(換言すれば、網状の部材)によって構成されていることが好ましい。この場合、蚕の糞は、メッシュ状の部材の各開口を介して、餌支持部PLの下方に落下する。よって、餌支持部PLの上方の領域では、蚕の飼育環境が悪化しにくい。
 図5に記載の例では、移動装置63(より具体的には、第2移動装置63-2)は、第2ノズル部材62-2を、餌支持部PLに対して相対移動させる。餌支持部PLは、例えば、第2飼育容器C2内に配置されることとなる餌支持部である。餌支持部PLは、メッシュ状の部材(換言すれば、網状の部材)によって構成されていることが好ましい。この場合、蚕の糞は、メッシュ状の部材の各開口を介して、餌支持部PLの下方に落下する。よって、餌支持部PLの上方の領域では、蚕の飼育環境が悪化しにくい。 
(仕切り部材P)
 図5に記載の例では、第1飼育容器C1の内部に、仕切り部材Pが配置されている。図6に示されるように、仕切り部材P(より具体的には、第1仕切り部材P1)は、第1飼育容器C1内の空間を、蚕が育成される第1領域R1と、蚕の進入が制限された第2領域R2(すなわち、蚕が進入できない領域)とに仕切る部材である。仕切り部材Pの位置は、第1領域R1と第2領域R2とを仕切る第1位置(図6の上側の図を参照。)と、仕切り部材による仕切り状態が解除された第2位置(図6の下側の図を参照。)との間で位置変更可能である。第1位置(換言すれば、仕切り位置)は、例えば、仕切り部材Pが第1飼育容器C1内に配置されている時の仕切り部材Pの位置である。第2位置(換言すれば、非仕切り位置)は、例えば、仕切り部材Pが第1飼育容器C1から取り外されている時の仕切り部材Pの位置である。
(仕切り部材移動装置70)
 図7に記載の例では、蚕飼育システム1Bは、第1飼育容器C1に配置された仕切り部材Pを移動させる仕切り部材移動装置70を備える。仕切り部材移動装置70は、例えば、仕切り部材Pを、第1飼育容器C1内の第1位置から、第1飼育容器C1外の第2位置に移動させる。
 図7に記載の例では、仕切り部材移動装置70は、仕切り部材保持部71と、保持部移動装置72とを含む。仕切り部材保持部71は、仕切り部材Pを保持可能な部分である。仕切り部材保持部71は、第1把持部71aと第2把持部71bとを備えていてもよい。この場合、第1把持部71aと第2把持部71bとの間の間隔を小さくすることにより、仕切り部材保持部71は、仕切り部材Pを把持することが可能である。代替的に、仕切り部材保持部71は、仕切り部材Pを吊り下げ可能なフック部71c(必要であれば、図5を参照。)を備えていてもよい。
 保持部移動装置72は、例えば、ロボットアームを含む。保持部移動装置72のロボットアームは、図5に記載の移動装置63-1のロボットアーム630であってもよいし、移動装置63-1のロボットアーム630とは別のロボットアームであってもよい。なお、仕切り部材移動装置70は、仕切り部材Pを移動可能な装置であれば、その形状および構造に特に制限はない。
 仕切り部材移動装置70と制御装置30とは、有線または無線によって、信号伝達可能に接続されており、仕切り部材移動装置70は、制御装置30からの指令に基づいて動作する。より具体的には、仕切り部材移動装置70の仕切り部材保持部71は、制御装置30からの指令に基づいて、仕切り部材Pを保持する。その後、仕切り部材移動装置70の保持部移動装置72は、制御装置30からの指令に基づいて、仕切り部材保持部71を第1位置から第2位置に向かう方向に移動させる。こうして、仕切り部材Pが、第1飼育容器C1から取り外される。
(第1蚕飼育工程)
 図8および図9を参照して、第1飼育容器C1内で、複数の蚕Aを飼育する第1飼育工程(上述の第1ステップST1)の一例についてより詳細に説明する。
 ステップST201において、第1飼育容器C1内に配置された第1仕切り部材P1の一方側の第1領域R1で、複数の蚕が飼育される。ステップST201は、例えば、第1飼育容器保管領域AR1内に配置された第1飼育容器C1内で実行される。図9(b)に記載の例では、第1飼育容器保管領域AR1内に、複数の第1飼育容器C1が収容されている。第1飼育容器保管領域AR1内に収容されている第1飼育容器C1の数は、例えば、10個以上、50個以上、あるいは、100個以上である。
 ステップST201において、第1領域R1には、餌Fおよび複数の蚕Aが配置されている。また、ステップST201において、第2領域R2には、餌Fおよび蚕Aが配置されていない。
 第1飼育容器C1の第1領域R1には、予め、蚕の餌Fが供給される。第1領域R1への餌の供給は、例えば、餌供給装置60のノズル部材62-1(より具体的には、上述の第1ノズル621)を介して行われる(図9(a)を参照。)。第1領域R1に供給される餌の太さ(換言すれば、直径)は、例えば、3mm以下、あるいは、2mm以下である。第1領域R1内の複数の蚕Aは、第1領域R1内の餌Fを食べて成長する。なお、餌支持部PLが、メッシュ状の部材(換言すれば、網状の部材)である場合には、蚕の糞Mは、餌支持部PLの下方に落下する。よって、餌支持部PL上における蚕の飼育環境が悪化しない。
 ステップST202において、第1仕切り部材P1の他方側の第2領域R2に、餌Fが供給される。ステップST202は、例えば、第1飼育容器C1が、第1飼育容器保管領域AR1から餌供給装置60に向けて、搬送された後に行われる。
 第2領域R2への餌Fの供給は、例えば、餌供給装置60のノズル部材62-1(より具体的には、上述の第2ノズル622)を介して行われる(図9(c)を参照。)。ステップST202において、第2領域R2には蚕Aが存在していないため、第2領域R2に餌Fを供給するに際して蚕Aが邪魔になることはない。なお、第2ノズル622から供給される餌Fの太さは、第1ノズル621から供給される餌Fの太さよりも太いことが好ましい。第2ノズル622から供給される餌Fの太さ(換言すれば、直径)は、例えば、6mm以下、あるいは、5mm以下である。
 ステップST203において、第1仕切り部材P1によって第1領域R1と第2領域R2とが仕切られている状態(仕切り状態)が解除される(図9(d)を参照。)。当該解除は、例えば、仕切り部材移動装置70が、第1仕切り部材P1を移動させることにより実行される。図9(d)に記載の例では、当該解除は、仕切り部材移動装置70が、第1飼育容器C1から第1仕切り部材P1を取り外すことにより実行される。図9(d)に記載の例では、仕切り部材移動装置70は、仕切り部材Pの係合部Paに係合可能なフック部71cを備える。代替的に、仕切り部材移動装置70は、仕切り部材Pを把持可能な把持部を備えていてもよい。
 第1仕切り部材P1による仕切り状態が解除されると、第1領域R1と第2領域R2とが合体されることにより、複数の蚕Aが飼育される領域が大きくなる。よって、第1領域R1において成長した複数の蚕にとって、より適切な飼育環境が提供されることとなる。また、
 ステップST203の実行後、第1飼育容器C1は、第1飼育容器保管領域AR1に搬送される。第1飼育容器C1には、ステップST202において、新鮮な餌Fが供給されている。よって、複数の蚕Aは、新鮮な餌を食べて、更に成長する。
 図9に記載の例では、第1飼育容器C1に、第1仕切り部材P1に加えて、第2仕切り部材P2が配置されている。第2仕切り部材P2は、第1仕切り部材P1が第1飼育容器C1から取り外された後において、新たな第1領域Rn1(拡大された第1領域)と、新たな第2領域Rn2とを仕切る部材である(図9(d)を参照。)。
 第1飼育容器C1内に第2仕切り部材P2が配置されている場合には、ステップST204において、新たな第2領域Rn2に、餌Fが供給される。ステップST204は、例えば、第1飼育容器C1が、第1飼育容器保管領域AR1から餌供給装置60に向けて、搬送された後に行われる。
 新たな第2領域Rn2への餌の供給は、例えば、餌供給装置60のノズル部材62-1(より具体的には、上述の第3ノズル623)を介して行われる(図9(e)を参照。)。なお、第3ノズル623から供給される餌Fの太さは、第2ノズル622から供給される餌Fの太さよりも太いことが好ましい。第3ノズル623から供給される餌Fの太さ(換言すれば、直径)は、例えば、7mm以下である。
 ステップST205において、第2仕切り部材P2によって新たな第1領域Rn1と新たな第2領域Rn2とが仕切られている状態(仕切り状態)が解除される(図9(f)を参照。)。当該解除は、例えば、仕切り部材移動装置70が、第2仕切り部材P2を移動させることにより実行される。図9に記載の例では、当該解除は、仕切り部材移動装置70が、第1飼育容器C1から第2仕切り部材P2を取り外すことにより実行される。
 図9に記載の例では、第1飼育容器C1は、トレイ(換言すれば、上方が開放された比較的浅い容器)である。第1飼育容器C1の上方が開放されていることにより、第1飼育容器C1から仕切り部材Pを取り外し易い。
 図9に記載の例では、第1飼育容器C1内に配置される仕切り部材Pの数は、2個である。代替的に、第1飼育容器C1内に配置される仕切り部材Pの数は、1個、あるいは、3個以上であってもよい。また、図6に記載の例では、平面視において、仕切り部材Pは、L字形状を有する。しかし、仕切り部材Pの形状は、図6に記載の例に限定されない。例えば、図10に示されるように、平面視において、仕切り部材Pは、四角枠形状を有していてもよい。
(卵移載装置80)
 図11および図12を参照して、第1飼育容器C1(例えば、トレイ)に、蚕卵を移載する卵移載装置80の一例について説明する。
 卵移載装置80は、複数の蚕卵Eを収容した容器C3から、第1飼育容器C1に蚕卵Eを移載する。蚕飼育システム1が、卵移載装置80を有する場合、第1飼育容器C1(例えば、トレイ)に、蚕卵Eを移載する作業が自動化される。その結果、蚕の飼育が効率化される。また、蚕卵Eが、卵移載装置80によって自動的に行われることにより、実質的に、蚕の飼育環境に雑菌が混入することがない。卵移載装置80は、例えば、コンテナ2内(より具体的には、第1コンテナ2A内)に配置される。卵移載装置80が、コンテナ2内に配置される場合、蚕の飼育環境に雑菌が混入することがより一層効果的に抑制される。
 図11に記載の例では、卵移載装置80は、液中の蚕卵Eを吸引する吸引管81と、吸引管81を、第1飼育容器C1に対して相対移動させる吸引管移動装置86とを含む。液中では、死んだ蚕卵E1は、生きている蚕卵E2よりも浮かびやすい。よって、液中の蚕卵(より具体的には、液中に沈んでいる蚕卵)を吸引することにより、生きている蚕卵E2を選別してピックアップすることが可能である。
 容器C3中の液体は、例えば、消毒液である。蚕卵Eが、容器C3中の消毒液に浸されることにより、蚕卵Eが滅菌される。この場合、蚕卵Eが第1飼育容器C1に移載されるときに、第1飼育容器C1に雑菌が混入するリスクが低減される。
 なお、容器C3からの蚕卵Eのピックアップを容易にする観点から、容器C3の先端部は、先端に向かうにつれて細くなる先細り形状を備えていることが好ましい。容器C3の先端部が先細り形状を有することにより、複数の蚕卵Eが、容器C3の底部近傍に集まりやすい。よって、吸引管81を、容器C3の底部近傍(換言すれば、容器C3の最深部)に挿入するだけで、吸引管81の先端を蚕卵Eの近傍に配置することが可能となる。
 図11に記載の例では、吸引管81は、配管82を介して、真空ポンプ84に接続されている。また、配管82には、開閉弁83が配置されている。吸引管81の先端が、容器C3中の液体中に位置している状態で、開閉弁83が開状態にされることにより、吸引管81は、1つの蚕卵Eを吸引する。代替的に、ピストンをシリンダに対して相対移動させることにより、吸引管81に吸引力を発生させてもよい。この場合、真空ポンプ84は、省略されてもよい。
 吸引管81が蚕卵Eを吸引した後、吸引管移動装置86は、吸引管81を、容器C3から第1飼育容器C1に向かう方向に移動させる。吸引管81の先端が、第1飼育容器C1の上方に来ると、吸引管81は蚕卵Eをリリースする。当該リリースは、吸引管81にエアを送ることにより実行されてもよいし、吸引管81を大気に開放することによって行われてもよい。
 図11に記載の例では、第1飼育容器C1に、仕切り部材Pが配置されている。この場合、卵移載装置80は、仕切り部材Pの一方側の領域(第1領域R1)のみに蚕卵Eを移載することが好ましい。換言すれば、卵移載装置80は、仕切り部材Pの他方側の領域(第2領域R2)には、蚕卵Eを移載しないことが好ましい。なお、第1飼育容器C1に仕切り部材Pが配置されていない場合には、卵移載装置80は、第1飼育容器C1の任意の位置に蚕卵Eを移載すればよい。
 卵移載装置80による蚕卵Eの移載は、第1飼育容器C1(より具体的には、第1領域R1)に餌Fが配置された後に実行されてもよいし、第1飼育容器C1(より具体的には、第1領域R1)に餌Fが配置される前に実行されてもよい。
 図11に記載の例では、吸引管移動装置86は、吸引管81を、鉛直方向(換言すれば、Z方向)に沿って移動させることができる。また、図11に記載の例では、吸引管移動装置86は、吸引管81を、第1水平方向(換言すれば、X方向)に沿って移動させることができる。
 図12に示されるように、卵移載装置80は、複数の吸引管81を備えていてもよい。卵移載装置80が、複数の吸引管81を備えている場合には、卵移載装置80は、複数の蚕卵を、同時に、第1飼育容器C1に移動させることが可能となる。なお、図12に記載の例では、卵移載装置80は、6個の吸引管81を備える。代替的に、卵移載装置80は、1個、2個、3個、4個、5個、あるいは、7個以上の吸引管81を備えていてもよい。
 図12に記載の例では、吸引管移動装置86は、吸引管81を、第2水平方向(換言すれば、X方向およびZ方向に対して垂直なY方向)に沿って移動させることができる。図11および図12に記載の例では、吸引管移動装置86は、吸引管81を3次元的に移動可能である。代替的に、吸引管移動装置86は、吸引管81を2次元的に移動可能であってもよい(例えば、吸引管移動装置86は、XZ平面に平行な面に沿う方向にのみ、吸引管81を移動可能であってもよい。)。
 図13に示されるように、蚕飼育システム1は、卵移載装置80と第1飼育容器保管領域AR1との間で、第1飼育容器C1を搬送する搬送装置41を備えていてもよい。図13に記載の例では、搬送装置41は、第1飼育容器搬送装置40とは別の搬送装置である。搬送装置41は、例えば、鉛直方向(換言すれば、Z方向)、および、第1水平方向(例えば、X方向)に沿って、第1飼育容器C1を搬送可能である。搬送装置41は、例えば、コンベヤ、または、棚T1に第1飼育容器C1を移載する移載装置付きの搬送装置を含む。
(蚕飼育システム1のその他の構成要素)
 図13を参照して、蚕飼育システム1のその他の構成要素について説明する。
 蚕飼育システム1は、監視用パソコン101を備えていてもよい。監視用パソコン101は、各装置(10、20、30、40、41、60、70、80、92)の状態を監視する。監視用パソコン101は、各装置(10、20、30、40、41、60、70、80、92)に異常が存在する場合、異常のある装置を特定する情報と、異常の種類を特定する情報とを、作業者に報知する。なお、上述の実施形態では、制御装置30が、各装置(10、20、30、40、41、60、70、80、92)を制御する例について説明された。代替的に、監視用パソコン101と制御装置30とが協働して各装置(10、20、30、40、41、60、70、80、92)を制御してもよい。
 蚕飼育システム1は、繭回収装置103を備えていてもよい。繭回収装置103は、第2飼育容器C2から繭を回収する装置(例えば、第2飼育容器C2から繭を回収するロボット)である。
 蚕飼育システム1は、第1飼育容器C1および/または第2飼育容器C2を洗浄する洗浄装置105を備えていてもよい。洗浄装置105は、例えば、第1飼育容器C1(または、第2飼育容器C2)にエアを吹き付けて、第1飼育容器C1(または、第2飼育容器C2)から、糞または残餌を取り除く。第1飼育容器C1(または、第2飼育容器C2)から取り出された糞は、他の家畜の飼料、あるいは、薬の成分として利用するために回収されてもよい。蚕が無菌環境で飼育されるとき、蚕の糞も無菌状態に維持される。よって、当該蚕の糞は、他の家畜の飼料、あるいは、薬の成分として好適である。
 なお、上述の例では、洗浄装置105は、エアを用いたエア洗浄装置である。代替的に、あるいは、付加的に、洗浄装置105は、第1飼育容器C1(または、第2飼育容器C2)に水または消毒液を吹き付けて、第1飼育容器C1(または、第2飼育容器C2)から、糞または残餌を取り除く装置であってもよい。
 洗浄装置105によって洗浄された第1飼育容器C1は、第1飼育容器保管領域AR1内での蚕の飼育のために再利用される。また、洗浄装置105によって洗浄された第2飼育容器C2は、第2飼育容器保管領域AR2内での蚕の飼育のために再利用される。
 図13に記載の例では、監視用パソコン101、繭回収装置103、洗浄装置105が第1コンテナ2A内に配置されている。代替的に、監視用パソコン101、繭回収装置103、洗浄装置105のうちの少なくとも1つが、第2コンテナ2B内に配置されてもよい。代替的に、監視用パソコン101、繭回収装置103、洗浄装置105のうちの少なくとも1つが、コンテナ2外に配置されていてもよい。
(蚕飼育方法)
 続いて、図13乃至図16を参照して、第2の実施形態における蚕飼育方法の一例について説明する。
 第1ステップST1において、第1飼育容器C1内で、複数の蚕が飼育される。第1ステップST1は、第1蚕飼育工程である。
 第1ステップST1では、まず、ステップST101において、蚕の餌Fが、第1飼育容器C1(より具体的には、第1領域R1)に供給される。ステップST101は、例えば、上述の餌供給装置60を用いて実行される。より具体的には、第1ノズル621が、第1飼育容器C1(より具体的には、第1領域R1)に対して相対移動しつつ、第1ノズル621が、第1飼育容器C1(より具体的には、第1領域R1)に餌Fを吐出する。
 ステップST102において、複数の蚕卵Eが、第1飼育容器C1に移載される。ステップST102は、例えば、上述の卵移載装置80を用いて実行される。より具体的には、搬送装置41が、卵移載装置80に向けて、第1飼育容器C1を搬送し、その後、卵移載装置80が、容器C3から第1飼育容器C1に、複数の蚕卵Eを移載する。なお、1つの第1飼育容器C1内に配置される蚕卵Eの数は、例えば、10個以上1000個以下、30個以上500個以下、あるいは、50個以上300個以下である。第1飼育容器C1は、複数の蚕卵Eが移載される前に、予め消毒液等によって滅菌されていることが好ましい。滅菌済みの第1飼育容器C1に、滅菌済みの蚕卵Eが移載され、かつ、当該第1飼育容器C1が無菌雰囲気ATに配置されることにより、第1飼育容器C1内で飼育される蚕の無菌状態が維持される。
 ステップST102は、ステップST101の前に実行されてよいし、ステップST101の後に実行されてもよい。ステップST101およびステップST102の実行後、第1飼育容器C1は、搬送装置41によって、第1飼育容器保管領域AR1に搬送される。
 その後、上述のステップST201乃至ステップST205が実行される。
 ステップST201において、第1飼育容器C1において(より具体的には、第1領域R1において)、複数の蚕Aが飼育される。第1飼育容器C1に第1仕切り部材P1が配置されている場合、第1仕切り部材P1によって規定された第1領域R1内で蚕が飼育される第1飼育期間は、数日間(例えば、5日間)である。
 第1飼育期間の経過後、第1飼育容器C1は、第1飼育容器保管領域AR1から餌供給装置60に向けて搬送される。当該搬送は、例えば、搬送装置41等を用いて実行される。
 ステップST202において、蚕の餌Fが、第1飼育容器C1(より具体的には、第2領域R2)に供給される。ステップST202は、例えば、上述の餌供給装置60を用いて実行される。より具体的には、第2ノズル622が、第1飼育容器C1(より具体的には、第2領域R2)に対して相対移動しつつ、第2ノズル622が、第1飼育容器C1(より具体的には、第2領域R2)に餌Fを吐出する。
 ステップST203において、第1仕切り部材P1が、第1位置(仕切り位置)から、第2位置(非仕切り位置)に移動される。ステップST203は、例えば、上述の仕切り部材移動装置70を用いて実行される。
 ステップST203の実行後、第1飼育容器C1は、搬送装置41等によって、第1飼育容器保管領域AR1に搬送される。ステップST202の実行後(換言すれば、2回目の餌供給後)、第2仕切り部材P2によって規定された新たな第1領域Rn1内で蚕が飼育される第2飼育期間は、数日間(例えば、5日間)である。
 第2飼育期間の経過後、第1飼育容器C1は、第1飼育容器保管領域AR1から餌供給装置60に向けて搬送される。当該搬送は、例えば、搬送装置41等を用いて実行される。
 ステップST204において、蚕の餌Fが、第1飼育容器C1(より具体的には、新たな第2領域Rn2)に供給される。ステップST204は、例えば、上述の餌供給装置60を用いて実行される。より具体的には、第3ノズル623が、第1飼育容器C1(より具体的には、第2領域Rn2)に対して相対移動しつつ、第3ノズル623が、第1飼育容器C1(より具体的には、第2領域Rn2)に餌Fを吐出する。
 ステップST205において、第2仕切り部材P2が、第1位置(仕切り位置)から第2位置(非仕切り位置)に移動される。ステップST205は、例えば、上述の仕切り部材移動装置70を用いて実行される。
 ステップST205の実行後、第1飼育容器C1は、搬送装置41等によって、第1飼育容器保管領域AR1に搬送される。ステップST204の実行後(換言すれば、3回目の餌供給後)、第1飼育容器C1内で蚕が飼育される第3飼育期間は、数日間(例えば、5日間)である。
 なお、上述の例では、1つの第1飼育容器C1に、数日毎に、合計3回餌Fが供給される。代替的に、1つの第1飼育容器C1に餌が供給される回数は、1回、2回、あるいは、4回以上であってもよい。なお、第1飼育容器C1に、数日毎に餌Fが供給される場合には、蚕Aは、新鮮な餌を食べて成長することができる。これに対し、第1飼育容器C1に、1回しか餌Fが供給されない場合には、餌Fが、乾燥等により劣化するおそれがある。
 第1飼育容器C1内で、蚕が飼育される合計期間(例えば、第1飼育期間と、第2飼育期間と、第3飼育期間との合計)は、十数日間(例えば、15日間)である。この場合、第1飼育容器C1で、蚕は、卵から4齢幼虫に成長する。
 第1ステップST1(第1飼育工程)の実行後、第2ステップST2において、第1飼育容器C1内の複数の蚕(例えば、複数の4齢幼虫)が、第2飼育容器C2に移載される。当該移載は、蚕移載装置10を用いて実行される。
 第2ステップST2では、まず、第1飼育容器C1および第2飼育容器C2が蚕移載領域ARに搬送される。
 図13に記載の例では、破線B1に示されるように、第1飼育容器C1が、第1飼育容器保管領域AR1から蚕移載領域ARに搬送される。蚕移載領域ARへの第1飼育容器C1の搬送は、第1飼育容器搬送装置40を含む複数の搬送装置を用いて実行されてもよい。図13に記載の例では、第1飼育容器保管領域AR1が第1コンテナ2A内にあり、蚕移載領域ARが第2コンテナ2B内にある。このため、第1飼育容器C1は、第1コンテナ2Aから第2コンテナ2Bに搬送されることとなる。第1コンテナ2Aから第2コンテナ2Bへの第1飼育容器C1の搬送は、コンテナ連結部95を通って行われれる。
 図13に記載の例では、破線B2に示されるように、第2飼育容器C2が、第2飼育容器保管領域AR2から蚕移載領域ARに搬送される。蚕移載領域ARへの第2飼育容器C2の搬送は、第2飼育容器搬送装置20を含む複数の搬送装置を用いて実行されてもよい。図13に記載の例では、第2飼育容器搬送装置20は、第2飼育容器保管領域AR2内に配置されている。
 図13に記載の例では、第2飼育容器保管領域AR2が第2コンテナ2B内にあり、餌供給装置60が、第1コンテナ2A内にある。この場合、第2飼育容器C2に餌Fを供給するために、第2飼育容器C2は、第2コンテナ2B内の第2飼育容器保管領域AR2から第1コンテナ2A内の餌供給装置60に搬送される。当該搬送は、例えば、第2飼育容器搬送装置20および第1飼育容器搬送装置40を含む複数の搬送装置を用いて行われる。
 図13に記載の例では、蚕移載領域ARが第2コンテナ2B内にある。このため、第2飼育容器C2の飼育室SPに餌Fが供給された後、第2飼育容器C2は、第1コンテナ2Aから第2コンテナ2B(より具体的には、第2コンテナ2B内の蚕移載領域AR)に搬送される。
 第1飼育容器C1および第2飼育容器C2が蚕移載領域ARに搬送された後、蚕移載装置10は、蚕Aを、第1飼育容器C1から第2飼育容器C2の飼育室に移載する。なお、第2飼育容器C2の各飼育室に移載される蚕Aの数は、1個であることが好ましい。蚕Aが個別飼育されることにより、蚕Aのストレスが低減される。
 図14に記載の例では、第2飼育容器C2の第1端部Caに複数の開口OPが形成されている。複数の開口OPは、それぞれ、複数の飼育室SPの入口に対応する。蚕移載装置10は、当該開口OPを介して、各飼育室SPに、蚕Aを移載する。図14に記載の例では、開口OPは、第2飼育容器C2の側部に形成されている。第2飼育容器C2に複数の蚕が収容された後、複数の開口OPは、蓋部材CL(必要であれば、図1を参照。)によって覆われる。蓋部材CLには、通気孔が形成されていることが好ましい。蓋部材CLは、複数の開口OPが開放された第1状態と、複数の開口OPが蓋部材CLによって閉鎖された第2状態との間で状態変更する部材である。なお、第1状態は、開口OPを介して、蚕を飼育室SP内に挿入可能な状態を意味し、第2状態は、蚕が、開口OPを介して、飼育室SP外に抜け出せない状態を意味する。1つの蓋部材CLは、複数の開口OPが同時に閉鎖可能であることが好ましい。この場合、蓋部材CLによって複数の開口OPを効率的に閉鎖することができる。
 各飼育室SPの形状は、例えば、細長形状である。より具体的には、飼育室SPの奥行は、飼育室SPの高さの2倍以上であり、飼育室SPの奥行は、飼育室の幅の2倍以上である。飼育室SPの形状が細長形状である場合には、複数の蚕を個別養蚕する際のスペースが相対的に小さくて済む。図14に記載の例では、各飼育室SPの奥行方向の長さ(換言すれば、第2飼育容器C2の第1端部Caから第2端部Cbに向かう方向の長さ)は、例えば、20cm以上、30cm以上、あるいは、40cm以上である。飼育室SPの長手方向は、水平面に略平行であることが好ましい(換言すれば、飼育室SPの長手方向と水平面との間のなす角度は、20度以下であることが好ましい)。また、飼育室SPの長手方向端部に、上述の開口OPが形成されていることが好ましい。
 図14に記載の例では、第2飼育容器C2は、複数の飼育室SPを備える。第2飼育容器C2が備える飼育室SPの数は、例えば、10個以上1000個以下、30個以上500個以下、あるいは、50個以上300個以下である。各飼育室SP内には、餌Fを支持する餌支持部PLが配置されることが好ましい。餌支持部PLは、例えば、メッシュ状の部材(換言すれば、網状の部材)によって構成される。この場合、蚕の糞は、メッシュ状の部材の各開口を介して、餌支持部PLの下方に落下する。よって、餌支持部PLの上方の領域では、蚕の飼育環境が悪化しにくい。
 なお、餌支持部PLは、第2飼育容器C2の第1端部Ca(換言すれば、第2飼育容器C2の長手方向第1端部)から第2端部Cb(換言すれば、第2飼育容器C2の長手方向第2端部)に向かう方向に沿って延在していることが好ましい。また、餌支持部PL上に配置される餌Fは、第2飼育容器C2の第1端部Caから第2端部Cbに向かう方向に沿って延在していることが好ましい。
 図14に記載の例では、飼育室SPの各々が独立した筒状容器CYによって形成されており、当該筒状容器CYの集合体が、第2飼育容器C2の少なくとも一部を構成している。複数の筒状容器CYが、ハウジング部材Hによって囲まれることにより、第2飼育容器C2が構成されてもよい。この場合、筒状容器CYによって、第1の無菌雰囲気が提供され、複数の筒状容器CYを収容するハウジング部材Hによって、第2の無菌雰囲気が提供され、第2飼育容器C2を収容する第2飼育容器保管領域AR2(または、第2コンテナ2B等のコンテナ2)によって、第3の無菌雰囲気が提供される。よって、飼育室SP内の無菌状態がより確実に維持される。また、無菌の程度が、段階的に設定されることにより、効率良く低コストで、飼育室SP内の無菌状態を実現することができる。
 代替的に、図15に示されるように、飼育室SPの各々がハウジング部材H内に配置される仕切壁Jによって規定されてもよい。この場合、仕切壁Jによって、第1の無菌雰囲気が提供され、仕切壁Jを収容するハウジング部材Hによって、第2の無菌雰囲気が提供され、第2飼育容器C2を収容する第2飼育容器保管領域AR2(または、第2コンテナ2B等のコンテナ2)によって、第3の無菌雰囲気が提供される。よって、飼育室SP内の無菌状態がより確実に維持される。また、無菌の程度が、段階的に設定されることにより、効率良く低コストで、飼育室SP内の無菌状態を実現することができる。
 図14、図15に記載の例において、飼育室長手方向に垂直な面における飼育室SPの断面形状は、四角形状である。代替的に、飼育室長手方向に垂直な面における飼育室SPの断面形状は、六角形形状、八角形形状、または、その他の多角形形状であってもよい。更に代替的に、飼育室長手方向に垂直な面における飼育室SPの断面形状は、円形状であってもよい。
 図13に記載の例において、複数の蚕が、第1飼育容器C1から第2飼育容器C2に移載された後、第2飼育容器C2は、蚕移載領域ARから第2飼育容器保管領域AR2に搬送される。当該搬送は、第2飼育容器搬送装置20等を用いて実行される。また、複数の蚕が、第1飼育容器C1から第2飼育容器C2に移載された後、第1飼育容器C1は、洗浄装置105に搬送される。第1飼育容器C1は、洗浄装置105によって洗浄された後、蚕を集団飼育するために再利用される。
 第3ステップST3(第2飼育工程)において、第2飼育容器C2内で、複数の蚕が飼育される。第2蚕飼育工程では、例えば、複数の蚕Aの各々が、独立した飼育室SP内で個別飼育される。第2蚕飼育工程において、各々の蚕は、4齢幼虫から5齢幼虫に成長し、その後、5齢幼虫は、繭をつくる。
 5齢幼虫が繭を作る前に、空調装置92は、第2飼育容器C2の第1端部Caまたは第2端部Cbに乾燥空気を供給することが好ましい。5齢幼虫は、乾燥空気を好むため、第2飼育容器C2の第1端部Caまたは第2端部Cbに乾燥空気を供給することにより、5齢幼虫が、第1端部Caまたは第2端部Cbに集まる。この場合、第1端部Caまたは第2端部Cbから繭を取り出すのが容易となる(例えば、繭回収装置103、より具体的には、ロボットが、第1端部Caまたは第2端部Cbから繭を取り出すのが容易となる。)。
 5齢幼虫が繭を作った後、第2飼育容器C2は、第2飼育容器保管領域AR2から繭回収装置103に向けて搬送される。当該搬送は、例えば、第2飼育容器搬送装置20等の搬送装置を用いて実行される。
 図13に記載の例では、第2飼育容器保管領域AR2が第2コンテナ2B内にあり、繭回収装置103が第1コンテナ2A内にある。このため、第2飼育容器C2は、第2コンテナ2Bから第1コンテナ2Aに搬送されることとなる。図13に記載の例では、第1コンテナ2A内での第2飼育容器C2の搬送は、第1飼育容器搬送装置40を用いて実行される。第2飼育容器C2から繭が取り出された後、第2飼育容器C2は、洗浄装置105に搬送される。第2飼育容器C2は、洗浄装置105によって洗浄された後、蚕を個別飼育するために再利用される。
 第2の実施形態における蚕飼育方法では、日齢が相対的に小さな蚕の飼育と、日齢が相対的に大きな蚕の飼育とを、分割して行うことにより、相対的に小さなスペースで、効率的に蚕を飼育することができる。また、第1飼育容器C1から第2飼育容器C2への蚕の移載、第1飼育容器C1または第2飼育容器C2の搬送、第1飼育容器C1への蚕卵の移載、第1飼育容器C1または第2飼育容器C2への餌Fの供給、第1飼育容器C1または第2飼育容器C2の洗浄、第2飼育容器C2からの繭の回収のうちの少なくとも1つの動作(好ましくは、全ての動作)が、機械的に自動的に実行される。このため、蚕の飼育効率が向上し、かつ、蚕の飼育環境に雑菌が混入しにくくなる。
 なお、第1飼育容器C1および/または第2飼育容器C2が、洗浄されて再利用される場合、無菌雰囲気外から無菌雰囲気内(例えば、コンテナ2内)に、第1飼育容器C1および/または第2飼育容器C2を補充することなく、蚕の飼育を繰り返し実行することが可能である。よって、無菌雰囲気AT内に雑菌が進入するリスクが低減される。なお、繭回収装置103によって回収された繭は、コンテナ2(より具体的には、第1コンテナ2A)の扉DR(必要であれば、図4を参照。)を介して取り出されてもよい。また、餌Fおよび/または蚕卵Eの補充は、コンテナ2(より具体的には、第1コンテナ2A)の扉DRを介して行われてもよい。当該扉DRは、コンテナ2内への雑菌の進入を防止する観点から、2重扉であることが好ましい。
(蚕移載装置10)
 図17を参照して、実施形態における蚕飼育システム1において採用可能な蚕移載装置10の一例について説明する。
 図17に記載の例では、蚕移載装置10は、保持部材移動装置12(より具体的には、アーム部)と、把持部110とを有する。保持部材移動装置12は、例えば、1個以上の関節部を含むロボットアームである。また、把持部110は、例えば、第1把持片111aおよび第2把持片111bを含む複数の把持片111を有する。なお、把持部110が有する把持片111の数は、2個であってもよいし、3個以上であってもよい。
 把持片111のうちの蚕と接触する接触部112は、弾性変形可能な部材(弾性部材)で構成されていることが好ましい。接触部112は、例えば、シリコーンゴムによって形成される。接触部112を弾性材料(例えば、シリコーンゴム)によって形成することにより、形状が変化し、かつ、運動する蚕を、好適に把持することが可能となる。
 把持片111は、例えば、弾性材料によって囲まれた内部空間ISを有する把持片であってもよい。この場合、内部空間ISにエア等の流体を供給することにより、把持片111を駆動することが可能である。図17に記載の例では、各把持片111は、内部空間ISに流体を供給する流体供給路PHを備える。

 本発明は上記各実施形態に限定されず、本発明の技術思想の範囲内において、各実施形態は適宜変形又は変更され得ることは明らかである。また、各実施形態又は変形例で用いられる種々の技術は、技術的矛盾が生じない限り、他の実施形態又は変形例にも適用可能である。さらに、各実施形態又は変形例における任意付加的な構成は、適宜省略可能である。例えば、第2の実施形態に含まれる各構成要素は、第1の実施形態においても採用可能である。
 第2の実施形態では、複数の蚕が、複数のコンテナ(2A、2B)を用いて飼育される例について説明された。しかし、第2の実施形態において、複数の蚕が、1つのコンテナ2を用いて飼育されても構わない。また、第2の実施形態において、複数の蚕が、コンテナとは関係のなく設定された無菌環境内で飼育されても構わない。
 第2の実施形態では、蚕移載装置10、および、第2飼育容器搬送装置20が、第2コンテナ2B内に配置される例について説明された。代替的に、蚕移載装置10、または、第2飼育容器搬送装置20が、第1コンテナ2A内に配置されてもよい。更に代替的に、蚕移載装置10、または、第2飼育容器搬送装置20が、コンテナとは関係のない無菌環境内に配置されてもよい。
 また、第2の実施形態では、第1飼育容器搬送装置40、餌供給装置60、仕切り部材移動装置70、および、卵移載装置80が、第1コンテナ2A内に配置される例について説明された。代替的に、第1飼育容器搬送装置40、餌供給装置60、仕切り部材移動装置70、または、卵移載装置80が、第2コンテナ2B内に配置されてもよい。更に代替的に、第1飼育容器搬送装置40、餌供給装置60、仕切り部材移動装置70、または、卵移載装置80が、コンテナとは関係のない無菌環境内に配置されてもよい。
 また、第2の実施形態では、第1飼育容器C1から第2飼育容器C2に移載される蚕が、4齢幼虫の蚕である場合の例について説明された。代替的に、第1飼育容器C1から第2飼育容器C2に移載される蚕は、例えば、5齢幼虫の蚕であってもよい。また、5齢幼虫の蚕(より具体的には、繭を作る直前の蚕)が、第2飼育容器C2に移載される場合、第2飼育容器C2に餌を配置することが省略されてもよい。この場合、第2飼育容器C2を餌供給装置60に向けて搬送する必要はない。また、第2飼育容器C2に餌を配置しない場合には、上述の実施形態の説明において、「餌支持部PL」は、「支持部」に読み替えられる。「支持部」は、蚕を支持可能な支持部である。
 また、図14、図15に記載の例では、第2飼育容器C2の第1端部Ca(第1端面)に、蚕が通過可能なOPが配置されている。付加的に、第2飼育容器C2の第2端部Cb(第2端面)に、蚕が通過可能な開口が配置されていてもよい。
[実施形態3]
図18~図31を参照して、実施態様3に係る自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体について説明する。
[蚕の成長]
 蚕の卵は、30度以上で約3日間で孵化するので、孵化するタイミングを調製することが可能である。孵化から日数を数えておき、幼虫、稚蚕(ちさん)、脱皮1齢、2齢、3齢、4齢、5齢、5齢の熟蚕までを管理する。概ね3齢~5齢までは集団で飼育する。1つのコンテナにおいて、100万頭程度の蚕の飼育が可能である。
 例えば15日目、3齢から4齢への脱皮前の蚕の活動が少ない時期に、ピッキングロボで集団飼育容器から蚕を取り出して、個別飼育容器に移動する。あるいは、卵の時から個別飼育容器で飼育することも可能である。卵、稚蚕、1齢~5齢、熟蚕のいずれの段階で、集団飼育容器から個別飼育容器に蚕を移動してもよい。
 個別飼育容器はSUS製であり製造コストがかかるものであるため、なるべく使用頻度を高めたい。このためには、熟蚕まで集団飼育を行い、熟蚕となってから個別飼育容器に移動すると有利である。例えば25日目の熟蚕になるまで集団飼育容器で飼育し、糸を吐き始める準備ができた熟蚕を、個別飼育容器に移動させてもよい。この場合、糸を吐き始める準備ができたかどうかは、大量の糞とおしっこをすること、体色が白から黄色がかった透明に変化すること、頭を持ち上げること等の特徴から目視により、又は、カメラからの画像を画像認識することにより自動的に検出することができる。
 5齢の熟蚕(じゅくさん)となる際の特徴は、10日餌を間食べ続けること、その後、おしっこ、大量の糞、白から黄色(透明)への変化である。孵化後25日目から糸を吐き始める。28日目で繭を作り始め、3日くらいで繭を取り出す。日数が目安になるので、ほぼ時期は特定できるが、センシングによって繭を取り出す時期を調整してもよい。センシングは1時間に1回程度の頻度でよい。繭が完成すると蚕は繭の中で動かなくなるため、繭に光を当ててセンサで見ることで、繭が完成したことを検出可能である。また、カメラとしては、カラーカメラ、モノクロカメラに加え、X線カメラ、赤外線カメラ等を用いることも可能である。
 成虫から卵をとる場合には、繭を破って出てくる成虫の蚕蛾まで飼育する。一頭の雌が卵約200個を生む。
[飼料について]
 桑の葉を乾燥パウダーとすると、重量は生の葉の三分の一となる。パウダーの細かさは、例えば80μm~100μm程度とする。桑の葉の水分は冬60%、夏70%低出である。この水分量の70%~60%が、30%程度となるまでヒートポンプ式乾燥機で約6時間かけて乾燥させる。さらに、水分量3%までは乾燥3日間程度の時間を要する。そこで、水分量30%から3%まで乾燥させるときに、真空においてマイクロ波を照射しながら攪拌して乾燥させると、例えば20分間程度の短時間で乾燥できる。乾燥パウダーからババロア状のかまぼこ型ブロックを整形する。形は、かまぼこ型に限らず、大きさ、形状も任意である。飼育ケースの所望の位置に、所定の大きさの餌のブロックを所定の配置、所定の量だけ配置することができる。柔らかさは成分ないし比率によって、概ね、マヨネーズくらいから、うどんぐらいの方さまでとする。
 ヒートポンプ式乾燥機で最初から最後まで乾燥させてもよい。調合した餌をホッパーから投入すると、ポンプにより絞り出され、所望の太さのかまぼこ型グロックの餌を飼育容器の所定の場所に提供できる。太さ、配合比は、蚕の成長に合わせて変更できる。餌の配合や、ブロックの大きさ、太さ等の調整も自動化されている。
 桑の葉の乾燥パウダーは、前述の製法により、無菌化されている。副飼料である、脱脂大豆 醤油や豆腐製造から出たおからを乾燥させたものは、食用であり無菌化されている。副飼料には、アミノ酸、プロテインが含まれる。さらに、水分(水は殺菌済みの水、無菌の水を使用。)が加えられ、これら3者を混ぜ合わせてババロア状の柔らかい、餌のブロックに成形する。
 餌の配合比率は、例えば、桑パウダー10%、副飼料20%、水分70%程度とする。桑の葉を高温乾燥した場合には、栄養成分失われているため、補助的な添加剤を加えることが望ましい。一方、桑の葉を低温乾燥させた場合には、栄養成分が失われにくいため、補助的な添加剤が必要ない可能性がある。
 桑の葉を乾燥させる温度は、オーブンでの乾燥(繭内の蚕を処理するためのオーブン)は80℃程度、ヒートポンプ方式の乾燥は50~60℃程度、真空中のマイクロ波での乾燥は40℃程度であり、その他、フリーズドライのように乾燥及び粉砕を行ってもよい。
 集団飼育容器には飼料供給手段によって飼料が自動で供給される。蚕の成長に合わせて飼料の太さ、配合比を調整できる。集団飼育容器において、飼料を供給する位置を蚕の成長に合わせて変える。例えば、5日目の飼料の補充時には、卵と最初の餌を供給する位置と隣接する位置に所定の配合比、サイズ(太さ)の餌を供給する。また、10日目の飼料の補充時には、5日目に配置した飼料の位置からさらに隣接した位置に、所定の配合比、サイズ(太さ)の餌を供給する。さらに、15日目の飼料の補充時には、10日目に配置した飼料の位置からさらに隣接した位置に、所定の配合比、サイズ(太さ)の餌を供給する。このように、飼料を供給する位置をずらしていくことで、蚕の位置を飼料のある場所に誘導することによって、糞が特定の飼料の位置だけに溜まることを防ぐことができる。
 図18は、システム全体の平面図であり、第1コンテナ202及び第2コンテナ203からなる。図19は第1コンテナの平面図であり、図20は、第2コンテナの平面図であり、図21は図20の側面図である。第1コンテナは処理用のスペースであり、第2コンテナは蚕育成用のスペースである。集団飼育容器への蚕の卵の投入、餌の投入、蚕の積み替え等の処理は全て第1コンテナにおいて、自動的に行われる。第1コンテナでは、餌や卵の補充などのメンテナンス以外は全自動であるため、無人かつ無菌化が可能である。第2コンテナにはメンテナンス以外では作業者が入ることはなく、蚕の飼育環境は常に無人かつ無菌化が可能である。自動化によって作業者が立ち入らないことにより、無菌化がしやすいことも本実施形態の特徴である。
 第1コンテナ202は、ロボットアーム210、卵ないし飼料供給位置211、蚕のピックアップ位置(回転テーブル)212、個別飼育容器への蚕の移動ないし個別飼育容器からの繭の取り出し位置(昇降可能)213等を備えている。卵ないし飼料供給位置211において飼育容器に卵ないし飼料が供給される。蚕のピックアップ位置には、飼育容器を回転させる回転テーブルが設けられており、集団飼育容器から蚕をピックアップする。このピックアップされた蚕は、個別飼育容器への蚕の移動位置213に搬送された個別飼育容器へ移動させる。また、個別飼育容器からの繭の取り出し位置213においては、個別飼育容器内で蚕が作った繭を取り出す。図22は、ロボットアーム210が本来の位置とは異なる位置にある時の写真であるが、中央上方が卵ないし飼料供給位置211、中央手前には集団飼育容器が搬送されており、その左上には蚕のピックアップ位置(回転テーブル)212があり、さらにその左上には本来はロボットアーム210が位置する。図22の左上には個別飼育容器への蚕の移動ないし個別飼育容器からの繭の取り出し位置(昇降可能)213が設けられている。
 第2コンテナ203は、飼育容器自動収納手段215及び飼育棚216等を備えている。飼育容器自動収納手段215が飼育容器を自動的に搬送することにより、無人化を実現している。飼育容器自動収納手段215は第2コンテナ内の長さ方向に移動可能であると共に第2コンテナ内の全ての飼育棚216にアクセスし、飼育棚を自動的に取り回すことができる。さらに、第1コンテナと第2コンテナとの間は連結コンベア214により連結されており、第1コンテナと第2コンテナとの間で、無人かつ無菌状態で飼育容器の搬送が可能である。
[蚕移動手段]
 ロボットアーム210は蚕をピックアップするピッキングロボとして使用できる。ピッキングロボにおいては、ソフトロボティックスの技術を用いた吸盤ないしハンドにより、蚕を優しくソフトにピックアップすることが可能である。例えば、3齢3cmぐらいの蚕については、ロボットアーム先端の真空吸盤で吸い上げる。また例えば、柔らかいエアー駆動のハンドによって蚕を把持するとよい。ハンドの材手としては粘着性シリコン製の柔らかい材料が望まし。また例えば、柔らかいエアー駆動のハンドで把持すると共に、真空吸盤で吸い上げることも有効である。ロボットアーム210を繭のピックアップハンドとして用いる場合には、例えばピックアップハンドをエアーで駆動し、繭をソフトに把持することが望ましい。蚕をピックアップするハンドと、繭をピックアップするハンドとは、自動的に交換可能である。
 蚕のピックアップ位置212では、回転テーブルになっているため、集団飼育容器を回転させながらピッキングロボットによって蚕をピッキングすることができる。例えば、単眼カメラによる二次元の画像認識により、蚕の位置を判定する。また、単眼カメラによる二次元の画像認識により、繭の位置を判定して、繭ピッキング用ハンドにより、繭を取り出す。蚕ピック位置にカメラ1台、繭ピック位置に別のカメラ1台。ただし、二軸カメラ(ステレオカメラ)を用いて、三次元での画像認識を行うことも可能である。個別飼育容器への蚕の移動ないし個別飼育容器からの繭の取り出し位置213においては、個別飼育容器はリフターによって昇降可能となっている。個別飼育容器への蚕の移動と、個別飼育容器からの繭の取り出しは、同じ位置213において行われる。
 図27は検知用カメラの写真である。検知用カメラはピッキングロボットの上方に、例えば蚕ピック位置にカメラ1台、繭ピック位置に別のカメラ1台が設けられている。カメラの近傍には撮影範囲を照明するための照明手段が設けられている。この検知用カメラにより得られた画像を画像認識することにより、ピックアップする蚕ないし繭を検知する。
[卵供給手段]
 卵ないし飼料供給位置211において、卵は飼育容器に投入される。蚕の卵の特徴として、水中では元気な卵は沈み、死んだ卵は浮き上がる。そこで、元気な卵をスポイトにより取り出す、ロボット利用して、卵を飼育容器に投入する例を説明する。V溝状の消毒液槽に卵を投入すると、正常な卵はV溝の底に沈む。底に沈んでいる卵を吸引手段(スポイト状の吸引手段、複数併設)により吸引し、集団飼育容器の所定の場所に卵を投入する。複数列、例えば6列に卵を並べていく。餌も卵の配列と平行に、その卵の配列の間に、複数列供給する。消毒液は例えばオスバン液(登録商標)を用いることができる。原液を1%程度に薄める。オゾン水でもよい。卵の表面を消毒する。これにより、蚕の卵も無菌状態とすることができる。
[養蚕システムをコンテナで実現した例]
 特に限定されるものではないが、本実施形態の自動養蚕システムは2つのコンテナに収容することで、実現可能である。第1コンテは作業スペースであり、第2コンテナは飼育室となり、両者を接続するコンベアで接続する。これらのコンテナにより、2万頭程度の蚕を飼育することができ、さらに規模を拡大すれば、100万頭単位での養蚕が可能である。
 第1コンテナでの作業には、卵の選別、集団飼育容器の準備、個別飼育容器の準備、餌の追加、蚕のピックアップ、集団飼育容器から個別飼育容器への移動等が含まれる。ロボットアームについては、複数台のピッキングロボを用いることもできる。この場合、例えば、円周状等の周回状のコンベアの周囲(内周側や外周側)に複数のピッキングロボを配置し、カメラによる画像認識により、熟蚕だけをピックアップしていくことが可能である。並列処理により、ピックアップ作業の時間短縮がかのである。
 第2コンテナは、個別飼育容器、集団飼育容器を格納する複数の飼育棚が設けられている。図29~図31に、第2コンテナに配置される飼育棚、飼育容器自動収納手段を示す。図29は、飼育棚の写真である。図30は、飼育容器自動収納手段のレールの写真である。図31は、飼育容器自動収納手段の写真である。飼育容器自動収納手段は昇降手段、及び、飼育棚への飼育容器の収納ないし取り出し手段が設けられている。
[無菌飼育]
 餌、卵、飼育容器、第1及び第2コンテナ内等が全て無菌状態である、すなわち、完全無菌である。コンテナ内湿度は70%とされ、餌が乾くのを防いでいる。餌の水分量は70%であり、先のコンテナ内湿度条件はこれに一致させている。室温は蚕が好む20~25℃とすることが望ましい。無菌状態樽の出、餌がいたみにくいので、蚕の健康を維持することが可能である。無菌状態とするために、卵の外側を消毒している。前述のとおり、V溝状の消毒液槽に卵を投入して、底に沈んだものだけを取り出している。無菌の飼料を供給しており、また、飼育環境を除菌ないし無菌環境としている。例えばへパフィルター(HEPAフィルター)を用いた空気清浄機を用いたクリーンルームとされ、1ミクロンサイズのごみを取り除くことが可能である。
 蚕の卵は、30度以上で3日程度で孵化するので、卵の購入時に孵化定日を指定することで、孵化日の管理が可能である。卵の購入時には、品種、個数、孵化日等が指定される。
[飼育方法]
 定期的に例えば5日ごとに餌やりを行う。飼育容器に卵と餌を投入し、5日目に餌をやり、また5日後に餌やり、さらに5日後に餌やりを行い、合計15日後に、3齢から4齢への脱皮前の動かない期間、3齢で3cmくらいの大きさの蚕を、ピッキングロボ(例えば真空引きした吸盤)にて個別飼育用のチューブへ移す、チューブ内には餌を満載、例えば20g程度与えておく。個別飼育容器内で25日目に糸を吐き出し繭を作り始め、その3日後、合計28日目には、繭をピッキングハンドで取り出す。
[洗浄工程]
 蚕の糞は漢方薬として利用できる為、糞も回収する。糞は個別飼育容器の金網の隙間から落ちて底にたまるので、糞だけを回収することが可能である。脱皮の抜け殻、餌の残りは、金網の上に残るので、分別可能である。集団飼育容器、個別飼育容器、仕切部材は、使用後には洗浄、例えば自動洗浄される。特に限定されるものではないが、例えば洗浄槽内の水流による自動洗浄の採用も可能である。
 集めた繭の回収、集めた糞の回収、集めた残渣(食べ残し、脱皮物)の回収、飼料の補充、卵の補充等についても全て自動化可能であるので、養蚕の無人化が可能であり、完全自動化の養蚕システムが実現できる。ただし、これらの中のいずれかを人手で行うようにしてもよい。
 卵供給手段、飼料供給手段、蚕移動手段、繭取出手段、飼育容器自動収納手段、及び、飼育容器移動手段も全て自動化されており、人手を介さないことで、無菌化しやすく、蚕のストレスを低減できる。伝統養蚕では、まぶしに入れるタイミング、上蔟(じょうぞく)時期を揃えることがとても難しかった。本実施形態では、上蔟時期をセンシングにより、分析し、分析結果に応じた可変作業が可能である。監視(センサ)、データ分析・意思決定(AIの利用)、分析結果に応じた可変作業(ロボットで自動化)が可能である。3~5齢で、個別飼育容器に移す場合には、上蔟時期の管理は不要である。繭を取り出す時期は、日数によって、あるいは、センシングによって、決定できる。熟蚕だけを選んでピックアップする場合には、同じ集団飼育容器内でも生育の遅い蚕もいるため、ピックアップ作業時期を調整できるように、ピックアップ位置近傍に集団飼育容器を一時的にストックできる集団飼育容器ストッカを設けておくとよい。IoT技術を用いることにより、蚕の育成状況をモニタリングし、成長に応じた作業時期の最適化が可能である。例えば、カメラにより蚕ないし繭の状況をモニタリングする。例えば1時間ごとにモニタリングする。
[個別飼育容器]
 個別飼育容器は、マトリックス状に、例えば5段×10列で飼育スペースが設けられている。1つの飼育スペースを仕切部材で2つの部屋に仕切られている。繭の取り出しは、作業台上で片方ずつ仕切部材を長さ方向半分まで押し出す。例えば、縦5段横10列、チューブ中央に仕切り、網による底上げがあり、フンは網の下にたまっている。中央の仕切りの周囲が弾性部材、例えばスポンジになっていて、仕切りを半分移動させると、中の糞を掻き出せる。繭を取り出すと同時に、一次的な清掃が完了する。両面に着脱可能な蓋(透光性)が設けられている。
[集団飼育容器]
 集団飼育容器は、略方形有底状の容器であり、中央には乾燥防止用の水分供給手段が設けられている。図22の中央下の略方形の容器を参照。水分供給手段は水分をしみこませたスポンジ等とすることができる。あるいは、直接水を水分供給手段としての容器に入れておくこともできる。集団飼育容器の上面には着脱可能な蓋(透光性)が設けられている。
[仕切部材]
 図23は仕切部材の写真である。仕切部材240は個別飼育容器の飼育スペースに挿入されている。仕切部材240は、仕切部241及び平面部243を有している。仕切部41は飼育スペースを2つの空間に仕切る。平面部243は、蚕ないし繭を飼育するための床となる。平面部243には複数の孔部が設けられており、蚕の糞は孔部から落ちて、飼育スペースの底部と、平面部243の下部との間に溜まる。仕切部241の周囲には例えばスポンジ等からなる弾性部材242が設けられている。弾性部材242は、飼育スペースの内壁の形状及び寸法に対応している。平面部の243の両端部には上面側に凸となる、凸部246が設けられている。
図24は、仕切部材240を仕切部材移動手段220によって、仕切部材240の長さの半分の距離だけ飼育スペースから押し出した場合を示した図である。このように仕切部材240を飼育スペースから半分だけ押し出すと、弾性部材242は飼育スペースの内壁に摺接しているので、収納スペース内の糞と糞以外の残渣とを分別して取り出すことができる。図25は、個別飼育容器から繭を取り出す際の写真である。図25は実際の設置位置とは異なる参考写真であるため、実際の配置関係とは異なっている。繭を取り出す位置は、仕切部材240を飼育スペースから半分だけ押し出した位置であると共に、仕切部材収容部は個別飼育容器に接した状態で、突出した側の仕切部材240が仕切部材収容部に嵌められている。この状態では糞は弾性部材242により掻き出され、糞回収容器により回収される。一方、糞以外の残渣である食べ残された餌や脱皮した皮等は、平面部の243の上に残るため、糞と糞以外の残渣とを分別して取り出すことが可能である。繭の取出しには、例えば図26に示される繭ピッキングアームを用いることができる。
 図24の位置から仕切部材240を飼育スペース内に戻すために、仕切部材移動手段220に設けられた爪部は、凸部246と係合するようになっている。個別飼育容器はリフターの上に載せられているので、その高さを調整できる。個別飼育容器は例えば5段10列の合計50個の飼育スペースを有している。各段には10個の飼育スペースがあり、この各段の10個の収納スペースに挿入されている仕切部材240は、仕切部材移動手段220の10個のアームにより、同時に移動させることができる。仕切部材移動手段220に設けられた爪部と凸部246との係合、及び、係合解除は、リフターの高さ調整により行われる。個別飼育容器を180度回転させれば、反対側からも212の両側から仕切部材240を飼育スペースから半分だけ押し出すと、反対側からも仕切部材240を飼育スペースから押し出すことができる。
0207】
[実施形態4]
 本実施形態では、図31~図37を参照して、集団飼育容器から個別飼育へと移す際に、実施形態3とは異なり、ピッキングロボを用いない方法を説明する。
 2齢(20mmくらい)からまぶし(仕切によって仕切られた50mm×50mm程度の複数の升(ます))の中に移す。すなわち、集団飼育から個別飼育へ移す。
(実施例1)
 図32において、漏斗(ろうと)のような例えば円錐状の器具(漏斗310)を用いて、蚕を上蔟室容300に1頭ずつ入れていく。各升301に蚕が1頭ずつ入らない場合、例えば、1つの升の中に2頭入ってしまう場合や、空の升が生じた場合等には、ピックロボットを用いて各升に蚕が1頭ずつ入るように蚕を移動させる。
 3日程度で繭が取れるので、年間120回の繭の生産が可能となる。飼育器の施入日数が少なくて済む。
 図33に変形例の漏斗310Aを示す。漏斗301Aの抽出口の上方には第1シャッター311が設けられ、抽出口の下方には第2シャッター312が設けられ、第1シャッターと第2シャッターとの間にはシャッター室313が設けられる。第1シャッター311を開き、例えば1頭の蚕が第1シャッター室に移動したら、すぐに第1シャッター311を閉じることにより、1頭の蚕がシャッター室313に移動する。次に、第2シャッター312を開くとシャッター室から1頭の蚕が漏斗310から、1つの升301へと抽出される。これにより、升301に対し1頭ずつの蚕を収容することができる。シャッター313にセンサを設けた場合には、このセンサによる蚕の検出に応じて、第1シャッター311及び第2シャッター312を制御することが可能となる。これにより、蚕を1頭ずつシャッター室に移動させ、蚕を確実に1頭ずつ漏斗から抽出することが可能となる。
(実施例2)
 図34では、集団飼育容器320の上から、複数の升331に仕切られた個別移動升330をかぶされる。集団飼育容器320の内側寸法は、個別移動升330外形寸法に略一致している。蚕は上の方に登る習性と他の蚕との距離をとる習性があるため、升部材の各升の中に1頭の蚕が自ら入っていく。
(実施例2の変形例2-1)
 格子状の升部材に代えて、例えば波状の仕切部材を複数積層したもの、すなわち、複数の波型升333が設けられた波型個別移動升333を用いる。図35の波型個別移動升333は、図34の個別移動升330のような矩形の升部材を製造するよりも、仕切部材を積層して製造する方が簡単であるため、装置が安価となる。仕切部材は波型に限らず、例えば連続的な矩形でもよい。
(実施例2の変形例2-2)
 格子状の個別移動升330に代えて、例えば図36Bのように、金網335(図36A)を連続的な波型形状に屈曲成形した金網型個別移動升336(図36B)を用いて、蚕を上蔟することができる。熟蚕は立体形状の場所で繭を作る習性がある。この蚕の習性を利用すると、金網型個別移動升336に形成された金網間の立体的なスペースを蚕は立体形状と認識し、このスペースに繭を作る。
(実施例2の変形例2-3)
 図37に示すように、蚕が餌のある場所に集まる習性を利用し、ペースト状の餌を分散配置することにより、集団飼育容器320中で蚕を全体に分散配置させ、それにより、個別移動升330を上からかぶせた時に、升331に蚕が1頭ずつ移動するように誘導することが可能となる。
 図37Aでは、卵から孵ったばかりの小さい蚕を、第1仕切321内で飼育する場合の図である。餌325は第1仕切321内に分散して配置される。蚕は分散された餌のところに集まることにより、結果的に蚕を分散して飼育することができる。
 図37Bは、蚕が大きくなってきたときに、第1仕切321を取り外し、第2仕切内322で飼育する場合の説明図である。第2仕切内に餌が均等に分散され、この餌に蚕が集まることにより、結果的に第2仕切内322において蚕を分散して飼育することができる。
 図37Cは、さらに蚕が大きく成長すると、第2仕切322を取り外し、集団飼育容器320全体で蚕を飼育する。集団飼育容器320内には均等にペースト状の餌が分散配置される。蚕は餌に集まるため、結果として、蚕は集団飼育容器320内に略均等に分散される。この状態で蚕が熟さんとなった時に、集団飼育容器320の上から個別移動升330をかぶせると、略均等に分散した熟蚕を升331に1頭ずつ誘導することが可能となる。
(実施例3)
 集団飼育容器320内で飼育した場合には、集団飼育容器320内には蚕の他に、蚕の糞と、餌の残り等の残渣が溜まっている。上蔟するためには熟蚕だけを取り出したいが、容器からそのまま熟蚕を取り出そうとすると、どうしても残渣が一緒に出てきてしまう。そこで、蚕が自力で集団飼育容器320内で踏み留まれる程度の出力の真空吸引ノズルを用いることにより、集団飼育容器320内の残渣だけを吸い取り、熟蚕だけをまとめて取り出すことが可能となる。熟蚕だけを取り出せれば、図32の実施例の漏斗310に蚕をまとめて投入することが可能となる。さらには、漏斗310を用いなくとも、蚕は他の蚕と距離をとる性質があるため、上蔟室容器300の上に熟蚕をばらまくだけで、蚕は自ら1頭ずつ各升301に入り、そこで繭を作ることができる。ここでは、上蔟室容器300に蚕をばらまく例を説明したが、本実施例はこれに限定されるものではなく、例えば蚕を図36Bの金網型個別移動升、竹で編んだ網状の升部材等に蚕をばらまくことによっても、蚕は自ら1頭ずつ各升ないしは個別スペースに入っていき、そこで、繭を作ることができる。
 これらの各実施例、変形例において、蚕の習性
・蚕は互いに距離を取ろうとする習性、
・上に登ろうとする習性、及び、
・熟蚕は、3次元スペースでは繭をつくり、2次元空間では平面に糸を吐くとうい習性等、を利用して、蚕が自ら1頭ずつ各升に入っていくような装置について説明したが、全ての蚕が自らの行動により、上蔟させることができるとは限らない。何頭かは蚕の自らの行動によっては上蔟させることができないことがあるので、このような蚕については、例えば図28に図示されたロボットアームによって、強制的に上蔟させるようにすることができる。また、ロボットアームを複数用いれば、蚕を上蔟させる処理時間をより短くすることができる。
 以上、本発明の実施形態の自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体について説明したが、これらの実施形態は、本発明の技術思想を具体化するための自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体を説明するために例示したものであり、本発明をこの実施形態例に限定することを意図するものではない。本発明は、各実施形態や各実施例ないし変形例を組み合わせたものや、種々の変更を行ったものにも均しく適用し得るものである。
1、1A、1B:蚕飼育システム
2     :コンテナ
2A    :第1コンテナ
2B    :第2コンテナ
10    :蚕移載装置
11    :蚕保持部材
11a   :第1把持部
11b   :第2把持部
11c   :真空吸着部
12    :保持部材移動装置
13    :カメラ
20    :第2飼育容器搬送装置
30    :制御装置
40    :第1飼育容器搬送装置
41    :搬送装置
60    :餌供給装置
61    :餌貯留容器
62、62-1:ノズル部材
62-2  :第2ノズル部材
62h   :開口
63、63-1:移動装置
63-2  :第2移動装置
64    :餌供給管
64d   :第1分岐管
64e   :第2分岐管
64m   :メイン管
64r   :戻り管
65    :餌供給ポンプ
67    :水供給管
70    :仕切り部材移動装置
71    :仕切り部材保持部
71a   :第1把持部
71b   :第2把持部
71c   :フック部
72    :保持部移動装置
80    :卵移載装置
81    :吸引管
82    :配管
83    :開閉弁
84    :真空ポンプ
86    :吸引管移動装置
91    :断熱材
92    :空調装置
92a   :空気供給口
95    :コンテナ連結部
101   :監視用パソコン
103   :繭回収装置
105   :洗浄装置
110   :把持部
111   :把持片
111a  :第1把持片
111b  :第2把持片
112   :接触部
201  自動養蚕システム
202  第1コンテナ
203  第2コンテナ
210  ロボットアーム
211  卵ないし飼料供給位置
212  蚕のピックアップ位置(回転テーブル)
213  個別飼育容器への蚕の移動ないし個別飼育容器からの繭の取り出し位置(昇降可能)
214  連結コンベア
215  飼育容器自動収納手段
216  飼育棚
220  仕切部材移動手段(押す、引く(仕切部材の凸部に爪をかけて引く))
230  飼育容器自動収納手段のレール
240  仕切部材
241  仕切部
242  弾性部材
243  平面部
244  孔
245  フランジ部
246  凸部
300  上蔟室容器
301  升
310  漏斗
311  第1シャッター
312  第2シャッター
320  集団飼育容器
321  第1仕切
322  第2仕切
325  餌
330  個別移動升
331  升
332  波型個別移動升
333  波型升
335  金網
336  金網型個別移動升
611   :攪拌装置
620   :切替弁
621   :第1ノズル
622   :第2ノズル
623   :第3ノズル
630   :ロボットアーム
641、643、645:開閉弁
651   :回転シャフト
652   :羽根部材
671   :開閉弁
672   :フィルタ
921   :ファン
922   :熱交換器
923   :フィルタ
924   :フィルタ
A     :蚕
AR    :蚕移載領域
AR1   :第1飼育容器保管領域
AR2   :第2飼育容器保管領域
AT    :無菌雰囲気
C1    :第1飼育容器
C2    :第2飼育容器
C3    :容器
CL    :蓋部材
CY    :筒状容器
Ca    :第1端部
Cb    :第2端部
D1    :分岐部
D2    :分岐部
DR    :扉
DR1   :第1扉
DR2   :第2扉
E、E1、E2:蚕卵
F     :餌
F1    :桑
F2    :おから
H     :ハウジング部材
IS    :内部空間
J     :仕切壁
M     :糞
M1、M2 :モータ
OP    :開口
P     :仕切り部材
P1    :第1仕切り部材
P2    :第2仕切り部材
PH    :流体供給路
PL    :餌支持部
Pa    :係合部
R1    :第1領域
R2    :第2領域
Rn1   :第1領域
Rn2   :第2領域
SP    :飼育室
SP1   :第1飼育室
SP2   :第2飼育室
T1    :棚
T2    :棚
Wa    :外壁
Ws    :内面

Claims (17)

  1.  集団飼育容器に卵を自動で供給する卵供給手段、
     集団飼育容器に飼料を自動で供給する飼料供給手段、
     集団飼育容器から個別飼育容器に蚕を自動で移動させる蚕移動手段、
     個別飼育容器から繭を自動で取り出す繭取出手段、
     集団飼育容器及び/又は個別飼育容器を飼育棚に自動で収納すると共に、飼育棚から自動で取り出す飼育容器自動収納手段、及び、
     前記各手段の間で集団飼育容器及び/又は個別飼育容器を自動で移動させる飼育容器移動手段、
    を備えることを特徴とする自動養蚕システム。
  2.  前記卵は消毒され、
     前記飼料は殺菌処理されており、かつ、
     前記各手段は除菌ないし無菌環境に配置されていることを特徴とする請求項1に記載の自動養蚕システム。
  3.  前記飼料は乾燥されたパウダー、副飼料及び水分を混合すると共に、
     蚕の成長に応じて所望の形状ないし大きさに成形されたものであることを特徴とする請求項1又は2に記載の自動養蚕システム。
  4.  前記蚕移動手段は、ロボットアーム及びカメラを含むと共に、
     前記カメラからの画像により蚕の位置を判断し、前記ロボットアームに設けた蚕ピックアップ手段により、蚕を移動させることを特徴とする請求項1~3のいずれか1項に記載の自動養蚕システム。
  5.  前記繭取出手段は、ロボットアーム及びカメラを含むと共に、
     前記カメラからの画像により繭の位置を判断し、前記ロボットアームに設けた繭ピックアップ手段により、繭を取り出すことを特徴とする請求項1~4のいずれか1項に記載の自動養蚕システム。
  6.  前記繭取出手段のロボットアームは、前記蚕移動手段のロボットアームと共用であることを特徴とする請求項5に記載の自動養蚕システム。
  7.  前記繭取出手段は、漏斗状蚕投入装置、個別移動升、積層状移動升、網状移動升、餌誘導蚕拡散手段、残渣取り除き手段、または、升状ないし網状上蔟装置の少なくとも1つを含むことを特徴とする請求項1~3のいずれか1項に記載の自動養蚕システム。
  8.  前記個別飼育容器は複数の飼育スペースが設けられており、
     各飼育スペースを複数に仕切る仕切部材が挿入されており、
     蚕ないし繭は前記仕切部材の上で飼育されており、
     前記仕切部材の移動と共に、蚕ないし繭を飼育スペースから露出させることが可能であることを特徴とする請求項1~6のいずれか1項に記載の自動養蚕システム。
  9.  前記仕切部材は前記飼育スペースの底面から距離のある平面部を有していると共に、
     前記飼育スペースの内壁の形状ないし寸法に対応した弾性部材を有しており、
     前記仕切部材の移動に対応して、前記弾性部材が飼育スペース内壁に沿って摺接することによって、前記飼育スペース内の糞と糞以外の残渣とを分けて回収可能であることを特徴とする請求項7に記載の自動養蚕システム。
  10.  前記卵供給手段は、消毒液槽及び吸引部材を備えており、
     前記卵は前記消毒液槽に投入され、
     前記消毒液槽の中の卵は前記吸引部材により吸引され、前記集団飼育容器の所定の場所に載置されることを特徴とする請求項1~9のいずれか1項に記載の自動養蚕システム。
  11.  前記飼料供給手段は、蚕の成長に応じて、前記集団飼育容器育容器の異なる位置に飼料を供給することを特徴とする請求項1~10のいずれか1項に記載の自動養蚕システム。
  12.  前記飼料供給手段は、蚕の成長に応じて、配合比の異なる飼料を供給することを特徴とする請求項1~11のいずれか1項に記載の自動養蚕システム。
  13.  集団飼育容器に卵を自動で供給する卵供給手段、
     集団飼育容器に飼料を自動で供給する飼料供給手段、
     蚕の育成状態を自動で判定する育成状態判定手段、及び、
     前記育成状態判定手段によって判定された所定の育成状態の蚕を集団飼育容器から自動でピックアップするピックアップ手段
    を備えることを特徴とする自動養蚕システム。
  14.  請求項1~13のいずれか1項に記載の自動養蚕システムの各手段を動作させるための演算を実行するためのプログラム。
  15.  請求項14に記載のプログラムを記憶したことを特徴とする記憶媒体。
  16.  集団飼育容器に卵を自動で供給するステップ、
     集団飼育容器に飼料を自動で供給するステップ、
     集団飼育容器から個別飼育容器に蚕を自動で移動させるステップ、
     個別飼育容器から繭を自動で取り出すステップ、
     集団飼育容器及び/又は個別飼育容器を飼育棚に自動で収納すると共に、飼育棚から自動で取り出すステップ、及び、
     前記各手段の間で集団飼育容器及び/又は個別飼育容器を自動で移動させるステップ、
    を備えることを特徴とする自動養蚕方法。
  17.  集団飼育容器に卵を自動で供給するステップ、
     集団飼育容器に飼料を自動で供給するステップ、
     蚕の育成状態を自動で判定するステップ、及び、
     前記蚕の育成状態を自動で判定するステップによって判定された所定の育成状態の蚕を集団飼育容器から自動でピックアップするステップ
    を備えることを特徴とする自動養蚕方法。
PCT/IB2020/052486 2019-03-18 2020-03-18 自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体 WO2020188506A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080021944.0A CN113613491A (zh) 2019-03-18 2020-03-18 自动养蚕系统、自动养蚕方法、程序以及存储介质
JP2021506782A JPWO2020188506A1 (ja) 2019-03-18 2020-03-18
GB2105091.9A GB2598438C (en) 2020-03-18 2021-04-09 Active electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-049552 2019-03-18
JP2019049552 2019-03-18

Publications (2)

Publication Number Publication Date
WO2020188506A1 true WO2020188506A1 (ja) 2020-09-24
WO2020188506A9 WO2020188506A9 (ja) 2021-05-27

Family

ID=72519831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/052486 WO2020188506A1 (ja) 2019-03-18 2020-03-18 自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体

Country Status (3)

Country Link
JP (1) JPWO2020188506A1 (ja)
CN (1) CN113613491A (ja)
WO (1) WO2020188506A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113575525A (zh) * 2021-07-27 2021-11-02 芜湖慧盈自动化设备有限公司 一种蚕种培育与养蚕工业化集成系统及其工作方法
CN114946777A (zh) * 2022-03-04 2022-08-30 那坡同益新丝绸科技实业有限公司 一种基于agv的养蚕加料处理系统
CN115245147A (zh) * 2021-12-29 2022-10-28 嵊州陌桑高科股份有限公司 一种全龄工厂化养蚕中的五龄养蚕线及其养蚕工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287396B (zh) * 2021-12-29 2023-12-29 嵊州陌桑高科股份有限公司 一种工厂化养蚕的便于取蚕卵的收蚁工艺
CN114287397A (zh) * 2021-12-29 2022-04-08 嵊州陌桑高科股份有限公司 一种工厂化养蚕的快速投放蚕卵的收蚁工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371591U (ja) * 1976-11-18 1978-06-15
JPS6134021B2 (ja) * 1981-12-02 1986-08-05 Honda Motor Co Ltd
JPH0974947A (ja) * 1995-09-14 1997-03-25 Nichiharachiyou 蚕の飼育方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2852411B2 (ja) * 1995-12-25 1999-02-03 農林水産省蚕糸・昆虫農業技術研究所長 昆虫の自動飼育装置
KR100261043B1 (ko) * 1998-05-14 2000-07-01 김강권 큰누에 자동사육장치
TW201642737A (zh) * 2015-06-05 2016-12-16 Li Sheng Biotech Co Ltd 蠶飼養系統
JP6134021B1 (ja) * 2016-02-02 2017-05-24 新菱冷熱工業株式会社 蚕の飼育装置
CN107660523A (zh) * 2017-11-22 2018-02-06 蓬安县斯创格汽车配件科技有限公司 一种养蚕自动喂料消毒设备
CN109035244B (zh) * 2018-08-14 2022-08-30 张家港江苏科技大学产业技术研究院 自动摘茧系统、自动摘茧机及摘茧方法
CN109122601B (zh) * 2018-09-19 2020-12-25 贵州恒盛丝绸科技有限公司 应用于桑蚕智能化喂料和消毒系统的蚕架搬移方法
CN109436862B (zh) * 2018-11-23 2023-12-12 柳州蚕润丝圆蚕业机械科技有限公司 小蚕饲育自动化生产线总成

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371591U (ja) * 1976-11-18 1978-06-15
JPS6134021B2 (ja) * 1981-12-02 1986-08-05 Honda Motor Co Ltd
JPH0974947A (ja) * 1995-09-14 1997-03-25 Nichiharachiyou 蚕の飼育方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113575525A (zh) * 2021-07-27 2021-11-02 芜湖慧盈自动化设备有限公司 一种蚕种培育与养蚕工业化集成系统及其工作方法
CN115245147A (zh) * 2021-12-29 2022-10-28 嵊州陌桑高科股份有限公司 一种全龄工厂化养蚕中的五龄养蚕线及其养蚕工艺
CN115245147B (zh) * 2021-12-29 2024-01-26 嵊州陌桑高科股份有限公司 一种全龄工厂化养蚕中的五龄养蚕线及其养蚕工艺
CN114946777A (zh) * 2022-03-04 2022-08-30 那坡同益新丝绸科技实业有限公司 一种基于agv的养蚕加料处理系统
CN114946777B (zh) * 2022-03-04 2023-03-14 那坡同益新丝绸科技实业有限公司 一种基于agv的养蚕加料处理系统

Also Published As

Publication number Publication date
JPWO2020188506A1 (ja) 2020-09-24
WO2020188506A9 (ja) 2021-05-27
CN113613491A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2020188506A1 (ja) 自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体
JP2021058179A (ja) 自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体
KR102617250B1 (ko) 곤충 사육 방법
TWI606027B (zh) 有機肥料及飼料製造系統
RU2736337C2 (ru) Способ перемещения предварительно инкубированных яиц в птичник и используемое для этого устройство перемещения
KR102593372B1 (ko) 곤충을 사육하기 위한 사육장
JP3657326B2 (ja) 蚕の飼育方法
Cantarero et al. Behavioural responses to ectoparasites in pied flycatchers Ficedula hypoleuca: an experimental study
WO2017007310A1 (en) Insect breeding facility and method for the industrial scale production of mature larvae from egg-laying mothers
JP2018509167A (ja) 昆虫を繁殖させるための方法及び設備
HUT67573A (en) Method and apparatus for mass producing insects
JP2021058116A (ja) 自動養蚕システム、自動養蚕方法、プログラム及び記憶媒体
KR100786021B1 (ko) 파리포식천적 대량사육장치
KR102363800B1 (ko) 유충 사육 및 가공을 위한 자동화 시스템
Dozier et al. Bobwhite quail production and management guide
CN101356906B (zh) 一种卵寄生蜂人工繁殖方法及装置
CN101036454B (zh) 一种饲育1龄野桑蚕的方法
CN109496971B (zh) 一种斑嘴环企鹅的人工孵化方法
JP6635425B2 (ja) 蚕飼育装置、および、蚕飼育方法
CN111066674B (zh) 一种畜联网环境监控及数据识别式自动化饲喂系统
KR20070106838A (ko) 반날개과 대량사육방법 및 반날개과 상품용기
CN114304080A (zh) 一种全龄饲料工厂化养蚕工艺
TWI692302B (zh) 養殖系統及養殖方法
RU2807445C1 (ru) Отсек роста насекомых, система их выращивания и способы выращивания насекомых
CN216874495U (zh) 一种畜牧业用蛋鸡养殖装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774729

Country of ref document: EP

Kind code of ref document: A1