WO2020186443A1 - 轮毂电机驱动系统用扭矩矢量分配系统 - Google Patents

轮毂电机驱动系统用扭矩矢量分配系统 Download PDF

Info

Publication number
WO2020186443A1
WO2020186443A1 PCT/CN2019/078628 CN2019078628W WO2020186443A1 WO 2020186443 A1 WO2020186443 A1 WO 2020186443A1 CN 2019078628 W CN2019078628 W CN 2019078628W WO 2020186443 A1 WO2020186443 A1 WO 2020186443A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
wheel
vector distribution
wheel motor
distribution system
Prior art date
Application number
PCT/CN2019/078628
Other languages
English (en)
French (fr)
Inventor
王瑾
苏辉
Original Assignee
舍弗勒技术股份两合公司
王瑾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 王瑾 filed Critical 舍弗勒技术股份两合公司
Priority to US17/438,581 priority Critical patent/US11780447B2/en
Priority to PCT/CN2019/078628 priority patent/WO2020186443A1/zh
Priority to DE112019007044.4T priority patent/DE112019007044T5/de
Priority to CN201980089833.0A priority patent/CN113329925A/zh
Publication of WO2020186443A1 publication Critical patent/WO2020186443A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • B62D9/002Steering deflectable wheels not otherwise provided for combined with means for differentially distributing power on the deflectable wheels during cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • B60K2023/043Control means for varying left-right torque distribution, e.g. torque vectoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/40Torque distribution

Definitions

  • the present invention relates to the field of vehicles, and in particular to a torque vector distribution system for an in-wheel motor drive system of a vehicle.
  • the torque vector distribution function of the torque vector distribution system for the in-wheel motor drive system is usually used to realize the virtual differential function between the wheels. Furthermore, the torque vector distribution function can also realize a sports driving mode, and even a part of the body's steady-state electronic control function.
  • Fig. 1 shows a structural block diagram of a torque vector distribution system for an in-wheel motor drive system according to the prior art.
  • the torque vector distribution system for the in-wheel motor drive system includes two motor control units ICU, an inverter power converter IPC and a wheel motor WM.
  • two motor control units ICU respectively correspond to two wheel motors WM, and the two motor control units ICU are in data communication with the vehicle control unit VCU.
  • the vehicle control unit VCU calculates the target motor torque for each wheel motor WM based on the total torque request based on the signal from the body steady-state control unit/yaw angle sensing unit ESP/YAW, the two motor control units ICU make this target
  • the motor torque responds and converts the target motor torque into electric energy parameters that need to be applied to the wheel motors WM.
  • the inverter power converter IPC is respectively connected to a motor control unit ICU and quantitatively inputs power to the wheel motors WM based on the power parameters obtained in the corresponding motor control unit ICU, so that each wheel motor WM can achieve the target motor torque.
  • a motor control unit ICU quantitatively inputs power to the wheel motors WM based on the power parameters obtained in the corresponding motor control unit ICU, so that each wheel motor WM can achieve the target motor torque.
  • two wheel motors WM share a cooling circuit (shown by the dashed line in the figure), and a pump P pumps a cooling medium in the cooling circuit to circulate in the cooling circuit.
  • the pump P is controlled by the vehicle control unit VCU.
  • the motor control unit ICU The protection function makes the wheel motor WM unable to fully realize the target motor torque command of the vehicle control unit VCU. Further, the existing motor control unit ICU cannot realize the slip rate control function of the in-wheel motor drive system, and the real-time performance of calculating the target motor torque by the vehicle control unit VCU is not high enough.
  • the present invention was made based on the above-mentioned defects of the prior art.
  • the purpose of the present invention is to provide a new type of torque vector distribution system for in-wheel motor drive systems, which can overcome at least one of the above-mentioned drawbacks of the prior art.
  • the present invention provides a torque vector distribution system for an in-wheel motor drive system as follows, which includes: a drive module for measuring a plurality of specified parameters during a vehicle driving process; and a control module that is connected to The drive module and the vehicle control unit of the vehicle are connected to the steering control unit, and the control module is configured to receive the multiple specified parameters from the drive module, the total torque request from the vehicle control unit, and the The steering angle of the steering control unit, and the control module calculates the target of each wheel motor in the in-wheel motor drive system based on the total torque request and the steering angle according to at least one of the plurality of designated parameters Motor torque.
  • control module calculates the target wheel torque of each wheel of the vehicle based on the total torque request and the steering angle according to at least one of the plurality of designated parameters, and calculates the corresponding wheel torque based on the target wheel torque.
  • the target motor torque of each wheel motor is calculated.
  • the torque vector distribution system further includes: an electric energy input unit for receiving direct current from a power supply module of the vehicle; and an electric energy output unit, which is electrically connected to the electric energy input unit And is in data communication with the control module, the electrical energy output unit is configured to receive the direct current from the electrical energy input unit to convert the direct current into alternating current, and the electrical energy output module supplies the alternating current to the Each wheel motor enables each wheel motor to achieve the target motor torque.
  • the electric energy output unit shares a cooling circuit with each wheel motor of the vehicle, and the cooling circuit is provided with a pump for driving a cooling medium to circulate in the cooling circuit, and the pump is controlled by the driving module.
  • the driving module includes a yaw angle sensing unit, a wheel speed sensing unit, a temperature sensing unit, a pump control unit and a CAN bus control unit.
  • the torque vector distribution system can realize the first type of working mode, wherein the control module calculates the target motor torque and the torque distribution ratio of each wheel motor based on the total torque request and the steering angle according to the vehicle speed.
  • the torque vector distribution system can realize the second type of working mode, wherein the control module calculates the target of each wheel motor based on the total torque request and the steering angle according to the vehicle speed, yaw angle and lateral acceleration Motor torque and torque distribution ratio.
  • the torque vector distribution system can realize the third type of work mode, wherein the control module calculates the target motor torque of each wheel motor according to the vehicle speed and the wheel rotation speed.
  • the priority of the third type of work mode is higher than the first type of work mode and the second type of work mode.
  • the target motor torque is reduced.
  • the present invention provides a new type of torque vector distribution system for in-wheel motor drive systems, which uses a motor control unit instead of a vehicle control unit to perform torque vector distribution calculations, so that the target motor torque can be obtained more reasonably and in real time.
  • the performance is better; in addition, because the vehicle control unit does not need to perform calculations, the torque distribution and torque changes can be evaluated on the test bench of the motor control unit before the torque vector distribution system is integrated into the vehicle.
  • Fig. 1 shows a structural block diagram of a torque vector distribution system for an in-wheel motor drive system according to the prior art.
  • Fig. 2 shows a structural block diagram of a torque vector distribution system for an in-wheel motor drive system according to an embodiment of the present invention.
  • VCU vehicle control unit ESP/YAW body steady state control unit/yaw angle sensing unit
  • ICU motor control unit IPC inverter power converter WM wheel motor P pump SCU steering control unit DU drive module DICU1 first control unit DICU2 second Control unit PSIU power input unit PSOU power output unit.
  • a torque vector distribution system for an in-wheel motor drive system includes a drive module DU, a control module (including a first control unit DICU1 and a second control unit DICU2), an electric energy input unit PSIU, Power output unit PSOU and wheel motor WM.
  • the drive module DU is used to measure a plurality of designated parameters during the driving of the vehicle.
  • the drive module DU includes a yaw angle sensing unit, a wheel speed sensing unit, a temperature sensing unit, a pump control unit, and a CAN bus control unit.
  • the yaw angle sensing unit is, for example, a yaw angle sensor, which is used to measure the yaw angle (yaw rate) generated during the running of the vehicle.
  • the wheel speed sensing unit is, for example, a wheel speed sensor, and preferably a wheel speed sensor is installed corresponding to each wheel, and the wheel speed sensor is used to measure the speed of the corresponding wheel.
  • the temperature sensing unit is, for example, a temperature sensor, which is used to measure, for example, the temperature of the power output unit PSOU and/or the wheel motor WM.
  • the pump control unit is used to control the working state of the pump P for pumping the cooling medium in the cooling circuit.
  • the CAN bus control unit is used to control the communication in the CAN bus of the vehicle.
  • the yaw angle (yaw rate) measured by the drive module DU, wheel speed, temperature, and the current in the control module and the torque in the wheel motor WM are used as predetermined parameters for calculating the target motor torque.
  • One or more can affect the magnitude of the target motor torque.
  • control module is actually a motor control unit, and the control module is in data communication with the drive module DU, the vehicle control unit VCU and the steering control unit SCU of the vehicle.
  • the control module is used to receive multiple specified parameters from the drive module DU, the total torque request from the vehicle control unit VCU, and the steering angle from the steering control unit SCU, and the control module is based on the total torque request and the steering angle and according to multiple specified parameters At least one of the specified parameters is used to calculate the target motor torque of each wheel motor WM in the in-wheel motor system.
  • the multiple specified parameters here are used to limit and calibrate the calculated target motor torque as necessary to prevent the calculated target motor torque from being incompatible with the actual working state of each component of the in-wheel motor drive system.
  • the control module includes a first control unit DICU1 and a second control unit DICU2.
  • the first control unit DICU1 is configured to receive a plurality of designated parameters, a total torque request and a steering angle, and calculate the target wheel torque of each wheel of the vehicle based on the total torque request and the steering angle and according to at least one designated parameter among the plurality of designated parameters.
  • the target wheel torque includes the magnitude and direction of the target output torque of the wheel.
  • the second control unit DICU2 is in data communication with the first control unit DICU1, and the second control unit DICU2 is used to receive the target wheel torque from the first control unit DICU1 and calculate the corresponding target motor torque of each wheel motor WM based on the target wheel torque. Further, the second control unit DICU2 also converts the target motor torque into electric energy parameters required by the wheel motor WM.
  • the target motor torque here is based on the target wheel torque of the wheel to calculate the size and direction of the torque required by the wheel motor WM, and further is achieved by controlling the electric energy parameters of the wheel electric motor WM (mainly controlling the electric energy input) Target motor torque.
  • the real-time performance can be greatly improved by transferring the calculation of the torque vector distribution of the in-wheel motor drive system from the vehicle control unit to the motor control unit (control module).
  • the calculation process of the vehicle control unit VCU is generally more than 10ms.
  • the calculation process of the motor control unit can reach about 1ms.
  • the motor control unit can consider the conditions of various parameters in the drive module when performing torque vector distribution, the calculated torque vector distribution result will not conflict with the actual working state of each component in the in-wheel motor drive system. Further, it also has other beneficial effects that are beneficial to system simulation.
  • the power input unit PSIU is used to receive direct current from the power supply module of the vehicle.
  • the power output unit PSOU is electrically connected to the power input unit PSIU.
  • the power output unit PSOU is used to receive direct current from the power input unit PSIU to convert the direct current into alternating current and supply the alternating current to the wheel motor WM based on the target motor torque.
  • the motor WM can achieve the target motor torque.
  • the power output unit PSOU and the wheel motors WM share a cooling circuit, and the cooling circuit is provided with a pump P for driving the cooling medium to circulate in the cooling circuit.
  • the pump P is controlled by the pump control unit in the drive module DU.
  • the torque vector distribution system for the in-wheel motor drive system according to the present invention does not perform the torque vector distribution calculation through the vehicle control unit VCU, but uses the torque vector distribution system itself for the in-wheel motor drive system to perform the torque vector distribution calculation, and only needs to go through the vehicle communication network
  • the total torque request from the vehicle control unit VCU and the steering angle from the steering control unit SCU are obtained.
  • the torque vector distribution system for the in-wheel motor drive system according to the present invention can realize the following first type of working mode, second type of working mode and The third type of work mode.
  • the control module calculates the target motor torque and torque distribution ratio of each wheel motor WM based on the total torque request and the steering angle according to the vehicle speed. For example, in the case of a certain total torque request, the target motor torque and torque distribution ratio can be obtained by looking up the table through two parameters of steering angle and vehicle speed.
  • the first type of working mode preferably includes a virtual differential mode and a running driving mode. Further, when calculating the vehicle speed, the speed of the vehicle is preferably determined by the wheel speeds obtained by the wheel speed sensors of the four wheels.
  • the control module calculates the target motor torque and torque distribution ratio of each wheel motor WM based on the total torque request and the steering angle according to the vehicle speed, yaw angle, and lateral acceleration.
  • the second type of working mode preferably includes a vehicle body electronic steady state control mode.
  • the third type of working mode no external input signal is required, and the control module only calculates the target motor torque of each wheel motor WM based on the vehicle speed and wheel speed.
  • the third type of working mode preferably includes a slip rate control mode.
  • this third type of work mode has the highest priority.
  • the highest priority here means that no matter whether the first type of work mode or the second type of work mode is implemented, the third type of work mode inspection is required at the end. The result of the target motor torque in the first-class working mode and the second-class working mode.
  • the target motor torque is limited. That is, if the wheel motor WM is in the driving mode, the positive torque of the wheel motor WM is reduced to the safe range; if the wheel motor WM is in the power generation mode, the negative torque of the wheel motor WM is reduced to the safe range.
  • the sensing units and control units in the drive module DU do not need to be integrated in hardware, but only the functions are integrated through software.
  • the control module limits in time in its own calculation cycle (usually within 1ms) Target motor torque. If the vehicle control unit VCU calculates the target motor torque according to the prior art, the calculation period is usually greater than 10 ms. Such a long period cannot protect the wheel motor or the electronic control system in time. In addition, it is difficult for the vehicle control unit VCU to obtain relevant information about all the components of the control module, and thus cannot effectively implement protective measures.
  • the flow of the cooling medium can also be controlled through the pump control unit, etc., and the flow rate of the cooling medium is generally controlled to ensure that the wheel motor and electric
  • the control system works in the allowable temperature range.
  • the control of reducing the power limit current can also be performed.
  • the third type of work mode described above is only optional, not a necessary work mode, but once executed, it is the work mode with the highest priority.
  • the torque vector distribution system for the in-wheel motor drive system according to the present invention also has the following beneficial effects:
  • the torque vector distribution system for the in-wheel motor drive system and the dual-wheel motor WM with a cooling circuit according to the present invention can be packaged into a single product package;
  • the torque vector distribution system for the in-wheel motor drive system according to the present invention can be independently developed
  • the modular architecture of the torque vector distribution system for the in-wheel motor drive system according to the present invention does not have to be open to the user, so the torque vector distribution system for the in-wheel motor drive system according to the present invention is formed independent of the vehicle control unit
  • the vehicle control unit VCU does not implement the vehicle torque vector distribution calculation, it will not cause the vehicle control unit VCU to recompile due to the simple change of the vehicle torque vector distribution algorithm;
  • the torque vector distribution system for the in-wheel motor drive system according to the present invention can be integrated into the vehicle only by data communication with the vehicle control unit VCU and communication with the pedal signal cable, and the integration method is simple and easy;
  • the torque vector distribution system for the in-wheel motor drive system does not require a vehicle steady-state control signal, and can calculate the vehicle torque vector distribution based only on its own yaw angle/yaw rate signal;
  • the vehicle control unit VCU does not need to care about the re-encoding of the yaw angle sensor signal, which reduces the effort of the vehicle control unit VCU calibration;

Abstract

一种轮毂电机驱动系统用扭矩矢量分配系统,其利用电机控制单元代替车辆控制单元进行扭矩矢量分配计算,从而能够更合理地获得目标电机扭矩且实时性更好。另外,由于不需要车辆控制单元进行计算,因此可以在将扭矩矢量分配系统整合到车辆之前就能够在电机控制单元的试验台上对扭矩分配和扭矩变化进行评价。

Description

轮毂电机驱动系统用扭矩矢量分配系统 技术领域
本发明涉及车辆领域,且特别地涉及一种车辆的轮毂电机驱动系统用扭矩矢量分配系统。
背景技术
目前,在具有轮毂电机驱动系统的车辆中,由于在车轮之间没有差速单元,因此通常利用轮毂电机驱动系统用扭矩矢量分配系统的扭矩矢量分配功能来实现车轮之间的虚拟差速功能。进一步地,该扭矩矢量分配功能还能够实现运动驾驶模式,甚至实现一部分车身稳态电子控制功能。
图1示出了根据现有技术的轮毂电机驱动系统用扭矩矢量分配系统的结构框图。如图1所示,该轮毂电机驱动系统用扭矩矢量分配系统包括两个电机控制单元ICU、逆变器电能转换器IPC和车轮电机WM。
在图1所示的结构中,两个电机控制单元ICU分别对应两个车轮电机WM,并且两个电机控制单元ICU均与车辆控制单元VCU数据连通。在车辆控制单元VCU基于总扭矩请求根据来自车身稳态控制单元/横摆角感测单元ESP/YAW的信号计算得到针对各车轮电机WM的目标电机扭矩之后,两个电机控制单元ICU对该目标电机扭矩进行响应并将目标电机扭矩转换为需要施加到车轮电机WM的电能参数。逆变器电能转换器IPC分别与一个电机控制单元ICU连接并且基于对应的电机控制单元ICU中得到的电能参数向车轮电机WM定量输入电能,使得各车轮电机WM能够实现目标电机扭矩。需要说明的是,在现有技术中,两个车轮电机WM共用一个冷却回路(图中虚线所示),在该冷却回路中通过一个泵P泵送冷却介质在该冷却回路中进行循环,该泵P由车辆控制单元VCU进行控制。
在根据现有技术的轮毂电机驱动系统用扭矩矢量分配系统实现上述扭矩矢量分配的过程中,由于在车辆控制单元VCU中直接计算目标电机扭矩而不考虑两个电机控制单元ICU中的电流变化和车轮电机WM中的扭矩变化,因此在扭矩矢量分配系统整合到实际车辆之前难以在电机控制单元ICU的试验台上对扭矩分配和扭矩变化进行评价。另外,由于在车辆控制单元VCU中直接计算目标电机扭矩有可能会产生使得一个车轮电机WM处于驱动模式而另一个车轮电机WM同时处于发电模式的结果,因此在这种情况下电机控制单元ICU的保护功能使得车轮电机WM不能完全实现车辆控制单元VCU的目标电机扭矩的命令。进一步地,在现有的电机控制单元ICU中不能实现对轮毂电机驱动系统的滑移率控制功能,而且利用车辆控制单元VCU进行目标电机扭矩的计算的实时性也不够高。
发明内容
基于上述现有技术的缺陷而做出了本发明。本发明的发明目的在于提供一种新型的轮毂电机驱动系统用扭矩矢量分配系统,其能够克服上述现有技术的缺陷中的至少一个缺陷。
为了实现上述发明目的,本发明采用如下的技术方案。
本发明提供了一种如下的轮毂电机驱动系统用扭矩矢量分配系统,其包括:驱动模块,所述驱动模块用于测量车辆行驶过程中的多个指定参数;以及控制模块,所述控制模块与所述驱动模块以及车辆的车辆控制单元和转向控制单元连接,所述控制模块用于接收来自所述驱动模块的所述多个指定参数、来自所述车辆控制单元的总扭矩请求和来自所述转向控制单元的转向角度,并且所述控制模块基于所述总扭矩请求和所述转向角度根据所述多个指定参数中的至少一个指定参数来计算所述轮毂电机驱动系统中各车轮电机 的目标电机扭矩。
优选地,所述控制模块基于所述总扭矩请求和所述转向角度根据所述多个指定参数中的至少一个指定参数计算车辆的各车轮的目标车轮扭矩,并且基于所述目标车轮扭矩计算对应的各车轮电机的目标电机扭矩。
优选地,所述扭矩矢量分配系统还包括:电能输入单元,所述电能输入单元用于接收来自车辆的供电模块的直流电;以及电能输出单元,所述电能输出单元与所述电能输入单元电连接并与所述控制模块数据连通,所述电能输出单元用于接收来自所述电能输入单元的直流电以将该直流电转换成交流电并,所述电能输出模块基于所述目标电机扭矩将该交流电供给到各车轮电机,使得各车轮电机能够实现所述目标电机扭矩。
更优选地,所述电能输出单元与车辆的各车轮电机共用冷却回路,所述冷却回路设置有用于驱动冷却介质在所述冷却回路中进行循环的泵,所述泵由所述驱动模块控制。
优选地,所述驱动模块包括横摆角感测单元、车轮转速感测单元、温度感测单元、泵控制单元和CAN总线控制单元。
优选地,所述扭矩矢量分配系统能够实现第一类工作模式,其中所述控制模块基于所述总扭矩请求和所述转向角度根据车辆速度来计算各车轮电机的目标电机扭矩以及扭矩分配比率。
优选地,所述扭矩矢量分配系统能够实现第二类工作模式,其中所述控制模块基于所述总扭矩请求和所述转向角度根据车辆速度、横摆角和横向加速度来计算各车轮电机的目标电机扭矩以及扭矩分配比率。
优选地,所述扭矩矢量分配系统能够实现第三类工作模式,其中所述控制模块根据车辆速度和车轮转速来计算各车轮电机的目标电机扭矩。
更优选地,所述第三类工作模式的优先级高于所述第一类工作模式和所 述第二类工作模式。
更优选地,在所述第三类工作模式中,如果车轮的滑移率超过预定阀值,则减小所述目标电机扭矩。
通过采用上述技术方案,本发明提供了一种新型的轮毂电机驱动系统用扭矩矢量分配系统,其利用电机控制单元代替车辆控制单元进行扭矩矢量分配计算,从而能够更合理地获得目标电机扭矩且实时性更好;另外,由于不需要车辆控制单元进行计算,因此可以在将扭矩矢量分配系统整合到车辆之前就能够在电机控制单元的试验台上对扭矩分配和扭矩变化进行评价。
附图说明
图1示出了根据现有技术的轮毂电机驱动系统用扭矩矢量分配系统的结构框图。
图2示出了根据本发明的一实施方式的轮毂电机驱动系统用扭矩矢量分配系统的结构框图。
附图标记说明
VCU车辆控制单元 ESP/YAW车身稳态控制单元/横摆角感测单元 ICU电机控制单元 IPC逆变器电能转换器 WM车轮电机 P泵 SCU转向控制单元 DU驱动模块 DICU1第一控制单元 DICU2第二控制单元 PSIU电能输入单元 PSOU电能输出单元。
具体实施方式
以下将结合说明书附图对本发明的具体实施方式进行详细地说明。
如图2所示,根据本发明的一实施方式的轮毂电机驱动系统用扭矩矢量分配系统包括驱动模块DU、控制模块(包括第一控制单元DICU1和第二控制单元DICU2)、电能输入单元PSIU、电能输出单元PSOU和车轮电机WM。
在本实施方式中,驱动模块DU用于测量车辆行驶过程中的多个指定参数。具体地,该驱动模块DU包括横摆角感测单元、车轮转速感测单元、温度感测单元、泵控制单元和CAN总线控制单元。
横摆角感测单元例如为横摆角传感器,其用于测量车辆行驶过程中所产生的横摆角(横摆率)。
车轮转速感测单元例如为车轮转速传感器,优选对应于每个车轮均安装一个车轮转速传感器,该车轮转速传感器用于测量对应的车轮的转速。
温度感测单元例如为温度传感器,其用于测量例如电能输出单元PSOU和/或车轮电机WM的温度。
泵控制单元用于控制冷却回路中用于泵送冷却介质的泵P的工作状态。
CAN总线控制单元用于控制车辆的CAN总线中的通信。
基于以上结构,将驱动模块DU测量的横摆角(横摆率)、车轮转速、温度以及控制模块中的电流和车轮电机WM中的扭矩用作计算目标电机扭矩的预定参数,这些参数中的一个或多个能够影响目标电机扭矩的大小。
在本实施方式中,控制模块实际上为电机控制单元,并且该控制模块与驱动模块DU、车辆的车辆控制单元VCU和转向控制单元SCU数据连通。控制模块用于接收来自驱动模块DU的多个指定参数、来自车辆控制单元VCU的总扭矩请求和来自转向控制单元SCU的转向角度,并且控制模块基于总扭矩请求和转向角度并根据多个指定参数中的至少一个指定参数来计算轮毂电机系统中各车轮电机WM的目标电机扭矩。这里的多个指定参数用于对所计算的目标电机扭矩进行必要的限制和校准,防止所计算的目标电机扭矩与轮毂电机驱动系统的各组件的实际工作状态不能匹配。
具体地,控制模块包括第一控制单元DICU1和第二控制单元DICU2。第一控制单元DICU1用于接收多个指定参数、总扭矩请求和转向角度并且基于 总扭矩请求和转向角度并根据多个指定参数中的至少一个指定参数计算车辆的各车轮的目标车轮扭矩。该目标车轮扭矩包括车轮的目标输出扭矩的大小和方向。
第二控制单元DICU2与第一控制单元DICU1数据连通,并且第二控制单元DICU2用于接收来自第一控制单元DICU1的目标车轮扭矩并且基于目标车轮扭矩计算对应的各车轮电机WM的目标电机扭矩。进一步地,第二控制单元DICU2还将目标电机扭矩转化成车轮电机WM所需的电能参数。这里的目标电机扭矩是基于车轮的目标车轮扭矩计算车轮电机WM所需要的扭矩的大小和方向,而更进一步地是通过对车轮电机WM的电能参数控制(主要是对电能输入控制)来实现该目标电机扭矩。
与现有技术相比,通过将轮毂电机驱动系统的扭矩矢量分配的计算从车辆控制单元转移到电机控制单元(控制模块)能够大幅提高实时性,车辆控制单元VCU的计算过程一般处于10ms以上,而电机控制单元的计算过程则可以达到1ms左右。另外,由于电机控制单元在进行扭矩矢量分配时可以考虑驱动模块中各参数的情况,因此所计算得到的扭矩矢量分配结果不会与轮毂电机驱动系统中各组件的实际工作状态相冲突。进一步地,还具有有利于系统仿真等的其它有益效果。
在本实施方式中,电能输入单元PSIU用于接收来自车辆的供电模块的直流电。电能输出单元PSOU与电能输入单元PSIU电连接,电能输出单元PSOU用于接收来自电能输入单元PSIU的直流电以将该直流电转换成交流电并基于目标电机扭矩将该交流电定量供给到车轮电机WM,使得车轮电机WM能够实现目标电机扭矩。
在本实施方式中,为了控制电能输出单元PSOU和车轮电机WM的温度,电能输出单元PSOU与车轮电机WM共用一个冷却回路,该冷却回路设置有 用于驱动冷却介质在冷却回路中进行循环的泵P,泵P由驱动模块DU中的泵控制单元进行控制。
以上详细说明了根据本发明的一实施方式的轮毂电机驱动系统用扭矩矢量分配系统的结构,以下将说明该轮毂电机驱动系统用扭矩矢量分配系统的工作方法。
根据本发明的轮毂电机驱动系统用扭矩矢量分配系统不通过车辆控制单元VCU进行扭矩矢量分配计算,而是通过轮毂电机驱动系统用扭矩分配系统自身进行扭矩矢量分配计算,并且仅需要经由车辆通信网络获得来自车辆控制单元VCU的总扭矩请求和来自转向控制单元SCU的转向角度两个外部输入信号。通过外部输入信号(上述总扭矩请求和转向角度)和内部获得的各指定参数能够使得根据本发明的轮毂电机驱动系统用扭矩矢量分配系统实现以下的第一类工作模式、第二类工作模式和第三类工作模式。
在第一类工作模式中,控制模块基于总扭矩请求和转向角度根据车辆速度来计算各车轮电机WM的目标电机扭矩以及扭矩分配比率。例如,在总扭矩请求一定的情况下,可以通过转向角度和车辆速度两个参数来查表获得目标电机扭矩以及扭矩分配比率。该第一类工作模式优选地包括虚拟差速模式和运行驾驶模式。进一步地,在计算车辆速度时优选通过四个车轮的车轮转速传感器所获得的车轮转速来确定车辆的速度。
在第二类工作模式中,控制模块基于总扭矩请求和转向角度根据车辆速度、横摆角和横向加速度来计算各车轮电机WM的目标电机扭矩以及扭矩分配比率。该第二类工作模式优选地包括车身电子稳态控制模式。
在第三类工作模式中,不需要外部输入信号,控制模块仅根据车辆速度和车轮转速来计算各车轮电机WM的目标电机扭矩。该第三类工作模式优选地包括滑移率控制模式。为了车辆的行驶安全,该第三类工作模式的优先级 最高。这里的优先级最高是指无论实施第一类工作模式还是第二类工作模式最后均需要进行第三类工作模式检验,也就是说一旦满足第三类工作模式实施条件则会极大地影响第一类工作模式和第二类工作模式中的目标电机扭矩的结果。
进一步地,在第三类工作模式中,如果车轮的滑移率超过预定阀值,则限制目标电机扭矩。也就是说,如果车轮电机WM处于驱动模式,则将车轮电机WM的正向扭矩减小到安全范围;如果车轮电机WM处于发电模式,则将车轮电机WM的负向扭矩减小到安全范围。
以上对本发明的具体技术方案进行了详细地阐述,但是还需要补充说明的是:
I.驱动模块DU中的各感测单元和控制单元可以不必在硬件上集成在一起而仅通过软件将功能整合在一起即可。
II.在根据多个预定参数计算目标电机扭矩时,当车轮电机或电控系统的任何一部分的温度过高或者过压过流时,控制模块在自身的计算周期(通常是1ms内)及时限制目标电机扭矩。如果按照现有技术的车辆控制单元VCU计算目标电机扭矩的情况,其计算周期通常大于10ms,这样长的周期不能及时对车轮电机或电控系统能够进行保护。另外,车辆控制单元VCU很难获得控制模块的所有部件的相关信息,从而也不能有效地实施保护措施。
进一步地,当车轮电机或电控系统的任何一部分的温度过高或者过压过流时,还可以通过泵控制单元等控制冷却介质的流动,一般控制冷却介质的流速,以保证车轮电机和电控系统均工作在允许的温度范围。另外,当检测到电控系统的部件温度超过一定温度的情况下,还可以执行降低功率限制电流的控制。
III.以上说明的第三类工作模式仅是可选的,不是必要的工作模式,但 是一旦执行则是优先级最高的工作模式。
IV.根据本发明的轮毂电机驱动系统用扭矩矢量分配系统还具有如下的有益效果:
具有冷却回路的根据本发明的轮毂电机驱动系统用扭矩矢量分配系统和双车轮电机WM可以打包成单独的产品包;
在开发过程中,可以独立于车辆控制单元VCU的开发,而单独地开发根据本发明的轮毂电机驱动系统用扭矩矢量分配系统;
在使用过程中,根据本发明的轮毂电机驱动系统用扭矩矢量分配系统的模块架构对于使用者来说不必开放,因此根据本发明的轮毂电机驱动系统用扭矩矢量分配系统形成为独立于车辆控制单元VCU的黑盒模块;
在车辆控制单元VCU不实现车辆扭矩矢量分配计算的情况下,不会由于车辆扭矩矢量分配的算法的简单改变而导致车辆控制单元VCU的重新编译;
在根据本发明的轮毂电机驱动系统用扭矩矢量分配系统的仿真阶段不需要公开车辆控制单元VCU的内部架构;
根据本发明的轮毂电机驱动系统用扭矩矢量分配系统只需要与车辆控制单元VCU数据连通且与踏板的信号线缆通信就可以集成到车辆中,集成方式简单易行;
根据本发明的轮毂电机驱动系统用扭矩矢量分配系统不需要车辆稳态控制信号,仅基于其自身的横摆角/横摆率信号就能够进行车辆扭矩矢量分配的计算;
在本发明的技术方案中,车辆控制单元VCU不需要关心横摆角传感器信号的重新编码,减小了车辆控制单元VCU校准的努力;以及
不会出现现有技术中由于车辆控制单元VCU计算的扭矩矢量不合理导致供电模块等受损的情况。

Claims (10)

  1. 一种轮毂电机驱动系统用扭矩矢量分配系统,其包括:
    驱动模块,所述驱动模块用于测量车辆行驶过程中的多个指定参数;以及
    控制模块,所述控制模块与所述驱动模块以及车辆的车辆控制单元和转向控制单元连接,所述控制模块用于接收来自所述驱动模块的所述多个指定参数、来自所述车辆控制单元的总扭矩请求和来自所述转向控制单元的转向角度,并且所述控制模块基于所述总扭矩请求和所述转向角度根据所述多个指定参数中的至少一个指定参数来计算所述轮毂电机驱动系统中各车轮电机的目标电机扭矩。
  2. 根据权利要求1所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述控制模块基于所述总扭矩请求和所述转向角度根据所述多个指定参数中的至少一个指定参数计算车辆的各车轮的目标车轮扭矩,并且基于所述目标车轮扭矩计算对应的各车轮电机的目标电机扭矩。
  3. 根据权利要求1或2所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述扭矩矢量分配系统还包括:
    电能输入单元,所述电能输入单元用于接收来自车辆的供电模块的直流电;以及
    电能输出单元,所述电能输出单元与所述电能输入单元电连接并与所述控制模块数据连通,所述电能输出单元用于接收来自所述电能输入单元的直流电以将该直流电转换成交流电并,所述电能输出模块基于所述目标电机扭矩将该交流电供给到各车轮电机,使得各车轮电机能够实现所述目标电机扭矩。
  4. 根据权利要求3所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述电能输出单元与车辆的各车轮电机共用冷却回路,所述冷却回 路设置有用于驱动冷却介质在所述冷却回路中进行循环的泵,所述泵由所述驱动模块控制。
  5. 根据权利要求1至4中任一项所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述驱动模块包括横摆角感测单元、车轮转速感测单元、温度感测单元、泵控制单元和CAN总线控制单元。
  6. 根据权利要求1至5中任一项所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述扭矩矢量分配系统能够实现第一类工作模式,其中所述控制模块基于所述总扭矩请求和所述转向角度根据车辆速度来计算各车轮电机的目标电机扭矩以及扭矩分配比率。
  7. 根据权利要求1至6中任一项所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述扭矩矢量分配系统能够实现第二类工作模式,其中所述控制模块基于所述总扭矩请求和所述转向角度根据车辆速度、横摆角和横向加速度来计算各车轮电机的目标电机扭矩以及扭矩分配比率。
  8. 根据权利要求1至7中任一项所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述扭矩矢量分配系统能够实现第三类工作模式,其中所述控制模块根据车辆速度和车轮转速来计算各车轮电机的目标电机扭矩。
  9. 根据权利要求8所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,所述第三类工作模式的优先级高于所述第一类工作模式和所述第二类工作模式。
  10. 根据权利要求8或9所述的轮毂电机驱动系统用扭矩矢量分配系统,其特征在于,在所述第三类工作模式中,如果车轮的滑移率超过预定阀值,则减小所述目标电机扭矩。
PCT/CN2019/078628 2019-03-19 2019-03-19 轮毂电机驱动系统用扭矩矢量分配系统 WO2020186443A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/438,581 US11780447B2 (en) 2019-03-19 2019-03-19 Torque vector distribution system for hub motor driving system
PCT/CN2019/078628 WO2020186443A1 (zh) 2019-03-19 2019-03-19 轮毂电机驱动系统用扭矩矢量分配系统
DE112019007044.4T DE112019007044T5 (de) 2019-03-19 2019-03-19 Torque-vectoring-system für nabenmotor-antriebssystem
CN201980089833.0A CN113329925A (zh) 2019-03-19 2019-03-19 轮毂电机驱动系统用扭矩矢量分配系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078628 WO2020186443A1 (zh) 2019-03-19 2019-03-19 轮毂电机驱动系统用扭矩矢量分配系统

Publications (1)

Publication Number Publication Date
WO2020186443A1 true WO2020186443A1 (zh) 2020-09-24

Family

ID=72518901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078628 WO2020186443A1 (zh) 2019-03-19 2019-03-19 轮毂电机驱动系统用扭矩矢量分配系统

Country Status (4)

Country Link
US (1) US11780447B2 (zh)
CN (1) CN113329925A (zh)
DE (1) DE112019007044T5 (zh)
WO (1) WO2020186443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4147895A1 (en) * 2021-09-10 2023-03-15 Hino Motors, Ltd. Drive control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210064634A (ko) * 2019-11-26 2021-06-03 현대자동차주식회사 인휠모터 차량의 스티어링 부하 축소를 위한 제어 방법
US20220258723A1 (en) * 2021-02-15 2022-08-18 GM Global Technology Operations LLC Motion and torque control architecture for mobile platform having distributed torque actuators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015193A (en) * 1995-07-18 2000-01-18 Daimlerchrysler Ag Braking and steering system for a vehicle
CN102167082A (zh) * 2011-03-21 2011-08-31 武汉理工大学 电动轮驱动汽车的差力主动转向系统及其控制方法
JP4807030B2 (ja) * 2005-10-11 2011-11-02 トヨタ自動車株式会社 制駆動制御装置
CN103935265A (zh) * 2014-04-24 2014-07-23 吴刚 一种电动汽车的车身稳定控制系统
CN104494464A (zh) * 2014-12-25 2015-04-08 西安交通大学 一种分布式驱动电动汽车多电机协调控制器
CN105172785A (zh) * 2015-09-09 2015-12-23 北京汽车研究总院有限公司 一种汽车扭矩矢量分配的方法及系统
CN106864306A (zh) * 2017-02-21 2017-06-20 长沙理工大学 一种分布式驱动电动汽车多模式电子差速控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650671B2 (ja) * 2009-03-05 2015-01-07 ボルグワーナー トルクトランスファー システムズ エービー トルクベクタリングデバイス
KR101316862B1 (ko) * 2011-11-24 2013-10-08 현대자동차주식회사 차량의 토크 벡터링 시스템 및 그것의 제어방법
KR101655663B1 (ko) * 2015-04-07 2016-09-22 현대자동차주식회사 E-4wd 하이브리드 자동차의 전/후륜 토크 분배 제어 방법
CN104786804B (zh) * 2015-04-30 2017-12-15 郑州宇通客车股份有限公司 一种车辆及其轮边驱动系统和轮边驱动扭矩分配方法
CN205022575U (zh) * 2015-09-09 2016-02-10 北京汽车研究总院有限公司 汽车扭矩矢量分配系统及汽车
JP6447430B2 (ja) * 2015-09-09 2019-01-09 アイシン精機株式会社 トルクベクタリング装置
JP6451690B2 (ja) * 2016-05-11 2019-01-16 トヨタ自動車株式会社 車両の駆動力制御装置
US10737680B2 (en) * 2018-05-03 2020-08-11 Ford Global Technologies, Llc Speed control of super positioning torque vectoring differential

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015193A (en) * 1995-07-18 2000-01-18 Daimlerchrysler Ag Braking and steering system for a vehicle
JP4807030B2 (ja) * 2005-10-11 2011-11-02 トヨタ自動車株式会社 制駆動制御装置
CN102167082A (zh) * 2011-03-21 2011-08-31 武汉理工大学 电动轮驱动汽车的差力主动转向系统及其控制方法
CN103935265A (zh) * 2014-04-24 2014-07-23 吴刚 一种电动汽车的车身稳定控制系统
CN104494464A (zh) * 2014-12-25 2015-04-08 西安交通大学 一种分布式驱动电动汽车多电机协调控制器
CN105172785A (zh) * 2015-09-09 2015-12-23 北京汽车研究总院有限公司 一种汽车扭矩矢量分配的方法及系统
CN106864306A (zh) * 2017-02-21 2017-06-20 长沙理工大学 一种分布式驱动电动汽车多模式电子差速控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4147895A1 (en) * 2021-09-10 2023-03-15 Hino Motors, Ltd. Drive control device

Also Published As

Publication number Publication date
CN113329925A (zh) 2021-08-31
US11780447B2 (en) 2023-10-10
US20220169259A1 (en) 2022-06-02
DE112019007044T5 (de) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2020186443A1 (zh) 轮毂电机驱动系统用扭矩矢量分配系统
CN106932208B (zh) 电动汽车驱动系统的输出扭矩监测方法、装置及电动汽车
EP2839983B1 (en) Electric-vehicle control device, and method for controlling electric vehicle
CN109885111B (zh) 一种散热控制方法、装置及充电桩
CN102668368B (zh) 电动车辆的功率转换装置
US20140300296A1 (en) Method for controlling the operation of an arrangement of at least two electric machines, and motor vehicle
CN102248900A (zh) 当电流传感器不正常操作时车辆的马达扭矩控制的方法和系统
CN103192868A (zh) 汽车电动助力转向系统
US10389280B2 (en) High frequency injection-based high voltage interlock
CN109080642B (zh) 一种多轴独立轮边驱动车辆的车速测算方法和测算装置
CN109795547A (zh) 一种电动助力转向系统的助力力矩控制方法、装置及车辆
CN103879305B (zh) 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
CN113630043B (zh) 一种电机控制方法及系统
CN107681943A (zh) 一种电动汽车交流驱动电机输出扭矩的估计方法
JP7151111B2 (ja) 電動機駆動装置
CN202783353U (zh) 一种基于dsp的交流永磁式电动助力转向控制系统
JP5462121B2 (ja) モータ制御装置
CN110562047B (zh) 一种基于主从硬件构架的冗余扭矩监控系统
JP2021109454A (ja) 車両の旋回制御装置
JP2015080290A (ja) モータ制御システム
CN112744083B (zh) 一种制动系统故障的安全控制方法、装置及电动汽车
EP3883126A1 (en) Electric vehicle control method, and control device
CN109560731B (zh) Dc电机的再生电流限制
AU2011337072A1 (en) Electrical retarding deration
WO2015001849A1 (ja) 電動車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919656

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19919656

Country of ref document: EP

Kind code of ref document: A1