WO2020186384A1 - 导线、电子设备及导线的制作方法 - Google Patents

导线、电子设备及导线的制作方法 Download PDF

Info

Publication number
WO2020186384A1
WO2020186384A1 PCT/CN2019/078255 CN2019078255W WO2020186384A1 WO 2020186384 A1 WO2020186384 A1 WO 2020186384A1 CN 2019078255 W CN2019078255 W CN 2019078255W WO 2020186384 A1 WO2020186384 A1 WO 2020186384A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
wire
repair
elastic
Prior art date
Application number
PCT/CN2019/078255
Other languages
English (en)
French (fr)
Inventor
雷晓华
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2019/078255 priority Critical patent/WO2020186384A1/zh
Priority to CN201980073480.5A priority patent/CN113261393A/zh
Publication of WO2020186384A1 publication Critical patent/WO2020186384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/10Contact cables, i.e. having conductors which may be brought into contact by distortion of the cable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Definitions

  • This application relates to the technical field of the structure and production of wires, and in particular to a wire, an electronic device and a method for manufacturing the wire.
  • the wire mainly plays the role of transmitting current.
  • the wire is widely used in various electronic products.
  • the wire is often subjected to tensile stress during use, which causes the conductive layer in the wire to crack or even break, which causes the resistance of the wire to increase sharply or Wire breakage greatly affects the performance of electronic products.
  • the embodiment of the present application provides a wire, the wire includes a conductive layer, a repair layer, and an elastic encapsulation layer stacked in sequence, the repair layer is a movable conductive layer, and when the conductive layer is stretched, cracks appear The repair layer is at least partially filled in the crack under the squeezing action of the elastic encapsulation layer, so that the conductive layer is conducted at the crack.
  • An embodiment of the present application also provides an electronic device, which includes the wire as described above.
  • An embodiment of the present application also provides a method for manufacturing a wire, and the method for manufacturing the wire includes:
  • a workpiece to be processed which is provided with a conductive layer
  • repair layer Forming a repair layer stacked with the conductive layer, the repair layer being a movable conductive layer;
  • An elastic encapsulation layer laminated on the side of the repair layer away from the conductive layer is formed.
  • the repair layer is at least partially filled under the pressure of the elastic encapsulation layer In the crack, so that the conductive layer is conductive at the crack.
  • the wire includes a conductive layer, a repair layer, and an elastic encapsulation layer stacked one after another, the repair layer is a movable conductive layer, when the conductive When a crack occurs when the layer is stretched, the repair layer is at least partially filled in the crack under the squeezing action of the elastic encapsulation layer, so that the conductive layer is conducted at the crack, thereby achieving the The self-repairing function of the wire ensures the conductivity of the wire.
  • Fig. 1 is a first structural diagram of a wire provided by an embodiment of the present application
  • Figure 2 is a schematic cross-sectional view at P-P in Figure 1;
  • FIG. 3 is a second structural diagram of a wire provided by an embodiment of the present application.
  • FIG. 4 is a third structural diagram of a wire provided by an embodiment of the present application.
  • FIG. 5 is a fourth structural diagram of a wire provided by an embodiment of the present application.
  • Fig. 6 is an enlarged schematic diagram 1 of A in Fig. 4;
  • Fig. 7 is an enlarged schematic diagram 2 of A in Fig. 4;
  • Fig. 8 is an enlarged schematic diagram 1 of B in Fig. 1;
  • Fig. 9 is an enlarged schematic diagram 2 at B in Fig. 1;
  • FIG. 10 is a fifth schematic diagram of the structure of a wire provided by an embodiment of the present application.
  • FIG. 11 is a sixth structural diagram of a wire provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 13 is a first schematic flowchart of a method for manufacturing a wire provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the second process of the manufacturing method of the wire provided by the embodiment of the present application.
  • FIG. 15 is a third schematic flowchart of a method for manufacturing a wire provided by an embodiment of the present application.
  • 16 is a fourth schematic flowchart of a method for manufacturing a wire provided by an embodiment of the present application.
  • FIG. 17 is a fifth schematic flowchart of a method for manufacturing a wire provided by an embodiment of the present application.
  • FIG. 18 is a sixth flowchart of a method for manufacturing a wire provided by an embodiment of the present application.
  • an embodiment of the present application provides a wire 100.
  • the wire 100 includes a conductive layer 10, a repair layer 20 and an elastic encapsulation layer 30 stacked in sequence.
  • the repair layer 20 is a movable conductive layer.
  • the repair layer 20 is at least partially filled in the crack 60 under the squeezing action of the elastic encapsulation layer 30, so that the conductive layer 10 is The crack 60 is conductive.
  • the wire 100 is a stretchable wire, that is, the wire 100 is stretchable under external stretching.
  • the conductive layer 10 is an elastic conductive layer, the conductive layer 10 can take into account both stretchability and conductivity, and the conductive layer 10 is stretched by external stretching.
  • the conductive layer 10 includes an elastic matrix and a conductive medium dispersed in the elastic matrix.
  • the elastic matrix may be a rubber material, for example, the elastic matrix may be silicone rubber, styrene butadiene rubber, or nitrile rubber, etc.; the conductive medium may be a metal material or a non-metal material, for example, the conductive medium may be conductive silver powder , Silver nanowires, carbon nanotubes or conductive fibers.
  • the elastic base and the conductive medium are not limited to the above examples, and can be set according to actual needs.
  • the wire 100 may also be a non-stretchable wire, that is, the conductive layer 10 is an inelastic conductive layer.
  • the elastic encapsulation layer 30 may be made of rubber material, so that the elastic encapsulation layer 30 has a high stretch rate, and the elastic encapsulation layer 30 is stretched by external stretching.
  • the elastic packaging layer 30 may be a silicone rubber film.
  • the elastic packaging layer 30 may be an elastic silicone rubber film with a breaking elongation greater than 300% and a Shore A hardness greater than 30 degrees and less than 70 degrees.
  • the material of the elastic packaging layer 30 is not limited to the above examples, and can be set according to actual needs.
  • the elastic encapsulation layer 30 is an insulating layer, the elastic encapsulation layer 30 takes into account both insulation performance and stretchability, the elastic encapsulation layer 30 protects the conductive layer 10, and the elastic encapsulation layer 30 can The conductive layer 10 is isolated from the outside to prevent the conductive layer 10 from being exposed to cause leakage.
  • the repair layer 20 covers the conductive layer 10.
  • the repair layer 20 is a movable conductive layer, and the conductive material of the repair layer can move when stressed, and the repair layer 20 can flow under the squeezing action of the elastic encapsulation layer 30.
  • both the conductive layer 10 and the elastic packaging layer 30 are stretched by the stretching.
  • the volume of the repair layer 20 filled in the crack 60 when the wire 100 is in the unstretched state is smaller than the volume of the repair layer 20 filled in the crack 60 when the wire 100 is in the stretched state.
  • the crack 60 becomes larger as the wire 100 is stretched.
  • the elastic matrix and the elastic encapsulation layer 30 can be co-extended under external tension and press the repair layer 20 into the crack 60; when the wire 100 shrinks and recovers, the crack 60 follows When the wire 100 recovers and becomes smaller, at least part of the repair layer 20 is still filled in the crack 60, so that the repair layer 20 can repair the crack 60 of the conductive layer 10 and maintain the conductive layer 10 Continuity is to realize the conduction of the conductive layer 10 at the crack 60 and avoid the occurrence of non-contact gaps in the conductive layer 10, which may lead to increased resistance or disconnection.
  • the repair layer 20 includes a non-conductive fluid 21 and a conductive filler 22 dispersed in the non-conductive fluid 21.
  • the repair layer 20 has both the fluidity of the non-conductive fluid 21 and the conductivity of the conductive filler 22.
  • the encapsulation layer 30 can flow under the squeezing action, and the conductive filler 22 can be filled into the crack 60 with the non-conductive fluid 21 to realize the conduction of the conductive layer 10 at the crack 60.
  • the non-conductive fluid 21 is a non-conductor, and the resistivity of the repair layer 20 is greater than the resistivity of the conductive layer 10, when the current is transmitted through the wire 100, the current is preferentially transmitted through the conductive layer 10.
  • non-conductive fluid 21 is a pseudoplastic non-Newtonian fluid or a thixotropic fluid.
  • the non-conductive fluid 21 may be a pseudoplastic non-Newtonian fluid or a thixotropic fluid.
  • the non-conductive fluid 21 may be polydimethyl silicone oil or liquid silicone rubber, then the non-conductive fluid 21 It has the characteristics of standing thickening and shear thinning, and the fluidity of the repair layer 20 is related to the stress state of the repair layer 20.
  • the viscosity of the repair layer 20 when the wire 100 is in the unstretched state is greater than the viscosity of the repair layer 20 when the wire 100 is in the stretched state.
  • the elastic encapsulation layer 30 and the conductive layer 10 are stretched and elongated, and squeeze the repair layer 20, so that the viscosity of the repair layer 20 becomes smaller , The fluidity is increased, so that the repair layer 20 can quickly repair the cracks 60 that appear on the conductive layer 10; when the wire 100 ends stretching, the elastic encapsulation layer 30 and the conductive layer 10 return to their original shape, After the repair layer 20 is allowed to stand still, the viscosity of the repair layer 20 becomes larger and the fluidity decreases, and the part of the repair layer 20 filled in the crack 60 can play a conductive role to ensure that the conductive layer 10 is Conductivity at the crack 60.
  • the conductive filler 22 may be metal or non-metal.
  • the conductive filler 22 may be conductive silver powder, silver nanowires, carbon nanotubes or conductive fibers.
  • the non-conductive fluid 21 and the conductive filler 22 are not limited to the above examples, and can be set according to actual needs.
  • the repair layer 20 includes a conductive fluid 23, and the conductive fluid 23 can be filled in the crack 60 to realize the conduction of the conductive layer 10 at the crack 60. Since the conductive fluid 23 has both fluidity and conductivity, it is not necessary to mix the conductive filler 22 in the conductive fluid 23 to increase the conductivity, and the fluidity of the repair layer 20 will not be restricted by the conductive filler 22.
  • the conductive fluid 23 may be liquid metal or ion conductive liquid. Of course, the conductive fluid 23 is not limited to the above examples, and can be set according to actual needs.
  • the repair layer 20 may also be solid.
  • the repair layer 20 may be conductive gel or conductive powder.
  • the repair layer 20 includes an interface compatibilizing filler 24, and the interface compatibilizing filler 24 at least partially contacts the conductive layer 10 to improve the relationship between the repair layer 20 and the conductive layer 10 Interface affinity.
  • the interface compatibilizing filler 24 is used to increase the interface affinity between the repair layer 20 and the conductive layer 10, thereby ensuring the bonding force between the repair layer 20 and the conductive layer 10, and avoiding the The repair layer 20 is separated from the conductive layer 10.
  • the part of the repair layer 20 filled in the crack 60 can play a bonding role, ensuring the strength of the conductive layer 10 at the crack 60 and avoiding the crack 60 from further expanding.
  • the interface affinity between the repair layer 20 and the conductive layer 10 increases, which facilitates the rapid penetration of the repair layer 20 into the cracks 60 on the conductive layer 10 to achieve rapid repair.
  • the interface compatibilizing filler 24 has good compatibility with the conductive layer 10.
  • the interfacial compatibilizing filler 24 may be a conductive ink.
  • the conductive ink includes liquid rubber and conductive filler dispersed in the liquid rubber.
  • the matrix part of the conductive layer 10 is formed by curing liquid rubber. Since the compatibility of liquid rubber and solid rubber is good, the compatibility of the interface compatibilizing filler 24 and the conductive layer 10 is good, which is beneficial to increase the The interface affinity between the repair layer 20 and the conductive layer 10 is described.
  • the above-mentioned liquid rubber may be liquid silicone rubber, liquid styrene butadiene rubber, or liquid nitrile butadiene rubber.
  • the interface compatibilizing filler 24 is dispersed in the non-conductive fluid 21. In the second embodiment, the interface compatibilizing filler 24 is dispersed in the conductive fluid 23.
  • the wire 100 further includes an elastic base layer 40, the conductive layer 10 is laminated on the elastic base layer 40, the conductive layer 10 and the elastic base layer 40 Adhesively, the repair layer 20 completely covers the conductive layer 10 on the side away from the elastic base layer 40.
  • the elastic base layer 40 may be made of rubber material, so that the elastic base layer 40 has a high stretch rate, and the elastic base layer 40 is stretched by external stretching.
  • the elastic base layer 40 may be a silicone rubber film.
  • the elastic base layer 40 may be an elastic silicone rubber film with an elongation at break greater than 300% and a Shore A hardness greater than 30 degrees and less than 70 degrees.
  • the material of the elastic base layer 40 is not limited to the above examples, and can be set according to actual needs.
  • the elastic base layer 40 is an insulating layer
  • the elastic base layer 40 takes into account both insulating properties and stretchability
  • the elastic base layer 40 protects the conductive layer 10
  • the elastic base layer 40 can
  • the conductive layer 10 is isolated from the outside to prevent the conductive layer 10 from being exposed to cause leakage.
  • the elastic base layer 40 and the elastic packaging layer 30 are both insulating layers
  • the elastic packaging layer 30 is bonded to the elastic base layer 40
  • the elastic base layer 40 and the elastic packaging layer 30 are jointly wrapped Covering the repair layer 20 and the conductive layer 10, the elastic base layer 40 and the elastic encapsulation layer 30 together form an insulating skin to protect the repair layer 20 and the conductive layer 10.
  • the conductive layer 10 is laminated on the elastic base layer 40, and the conductive layer 10 is bonded to the elastic base layer 40, so that the elastic base layer 40 and the conductive layer 10 form a whole, It is beneficial to prevent the crack 60 from expanding on the conductive layer 10.
  • a microporous structure 11 is provided on a side of the conductive layer 10 close to the repair layer 20, and the repair layer 20 is at least partially filled in the microporous structure 11. Since the repair layer 20 is a movable conductive layer and the conductive layer 10 is a solid conductive layer 10, conventional adhesives are not suitable for bonding the repair layer 20 and the conductive layer 10. In this embodiment, the microporous structure 11 is disposed on the surface of the conductive layer 10 away from the elastic base layer 40.
  • the repair layer 20 is a movable conductive layer
  • the repair layer 20 can be at least partially filled in the microporous structure 11, and the conductive layer 10
  • the microporous structure 11 has a strong adsorption effect on the repair layer 20, so that the interface bonding force between the conductive layer 10 and the repair layer 20 is increased, so that the repair layer 20 is stably attached to the conductive layer 10 on.
  • the elastic packaging layer 30 is provided with a boss 31 passing through the repair layer 20, and the end of the boss 31 is fixed to the conductive layer 10.
  • the boss 31 can be fixed to the conductive layer 10 by means of glue bonding, hot melt connection or snap connection.
  • the elastic packaging layer 30 is fixedly connected to the conductive layer 10 via the boss 31, so that the elastic packaging layer 30 is stable relative to the conductive layer 10.
  • the elastic encapsulation layer 30 reinforces the conductive layer 10 via the boss 31, which is beneficial to increase the strength of the conductive layer 10 and reduce the occurrence of cracks 60.
  • the elastic packaging layer 30 is provided with a plurality of the bosses 31, and the plurality of bosses 31 are arranged at intervals along the extending direction of the wire 100.
  • the elastic packaging layer 30 is fixedly connected to the conductive layer 10 via a plurality of the bosses 31, which is beneficial to increase the bonding strength of the elastic packaging layer 30 and the conductive layer 10, so that the elastic packaging layer 30 and The conductive layer 10 forms a whole to ensure the overall strength.
  • a plurality of the bosses 31 can limit the conductive layer 10 in the extending direction of the wire 100.
  • the boss 31 drives the multiple segments of the conductive layer 10 to reset synchronously, and the multiple bosses 31 can limit the multiple segments to prevent adjacent segments from moving relative to each other and causing adjacent segments. The increase in the gap between the segments helps to ensure the repair effect of the repair layer 20.
  • the wire 100 further includes an inner packaging layer 50, and the inner packaging layer 50 is blocked between the repair layer 20 and the elastic packaging layer 30.
  • the inner packaging layer 50 covers the surface of the repair layer 20 away from the conductive layer 10. If the inner packaging layer 50 is an elastic insulating layer, the inner packaging layer 50 has both stretchability and insulation properties.
  • the inner packaging layer 50 is fixedly connected to the elastic packaging layer 30 and the conductive layer 10.
  • the inner packaging layer 50 can isolate the repair layer 20 from the elastic packaging layer 30, avoiding the The repair layer 20 contacts the elastic packaging layer 30, so that when the elastic packaging layer 30 is stretched and cracks appear, the inner packaging layer 50 can prevent the repair layer 20 from penetrating the cracks on the elastic packaging layer 30 Inside, the insulation performance of the elastic encapsulation layer 30 is prevented from being affected; and when the elastic encapsulation layer 30 is broken, the inner encapsulation layer 50 can also protect the repair layer 20 from leakage, thereby avoiding leakage .
  • the implementation of the present application also provides an electronic device 200, which includes the wire 100 as described above.
  • the electronic device 200 may be a smart phone, earphone, tablet computer, smart watch, notebook computer, or wearable device.
  • the wire 100 includes a conductive layer 10, a repair layer 20, and an elastic encapsulation layer 30 stacked in sequence.
  • the repair layer 20 is used to fill the cracks 60 generated by the conductive layer 10 being stretched, so that the wire 100
  • the electrical performance of the electronic device can be repaired and supplemented, thereby avoiding the failure of the product due to the open circuit of the wire 100 or the sudden increase in resistance, which is beneficial to ensure the reliability of the electronic device 200 and increase the service life.
  • the conductive circuit can be set into a low curvature shape such as a straight line or a non-S shape, which reduces the width space occupied by the wiring and makes the product frame narrower.
  • an embodiment of the present application also provides a method for manufacturing a wire.
  • the manufacturing method of the wire is used for the manufacturing of the wire 100.
  • the manufacturing method of the wire includes the following steps 101 to 103:
  • step 101 "providing parts to be processed” includes steps 1011 to 1013:
  • the bearing member mainly plays a bearing role.
  • the carrier may be a glass substrate or a plastic film, which is not limited here, and can be set according to actual needs.
  • the elastic base layer 40 may be a silicone rubber film.
  • the elastic base layer 40 may be an elastic silicon with a breaking elongation greater than 300% and a Shore A hardness greater than 30 degrees and less than 70 degrees.
  • the elastic base layer 40 takes into account both insulation performance and stretchability.
  • the elastic base layer 40 may be formed by curing liquid rubber on the carrier. The above liquid rubber can be cured by vulcanization treatment.
  • the material of the elastic base layer 40 is not limited to the above examples, and can be set according to actual needs.
  • step 1013 "forming the conductive layer 10 covering the elastic base layer 40" includes steps 1014 to 1016:
  • the conductive filler 22 may be conductive silver powder, silver nanowire, carbon nanotube, conductive fiber, or the like.
  • the conductive filler 22 is not limited to the above examples, and can be selected according to actual needs.
  • step 1015 the conductive filler 22 and the liquid rubber are mixed and dispersed according to a preset ratio to obtain the conductive ink.
  • the value of the aforementioned preset ratio can be set according to actual needs and is not limited here.
  • the conductive ink is used for curing to form the conductive layer 10 in a subsequent step.
  • the conductive ink may be used to form a layer to be vulcanized on the surface of the elastic base layer 40 away from the carrier through a process such as printing, printing, or glue, and then vulcanize the layer to be vulcanized. Processing to cure the liquid rubber in the conductive ink to form the elastic matrix. Then the conductive layer 10 is an elastic conductive layer 10, which can take into account both stretchability and conductivity. The conductive layer 10 can be stretched by external stretching. After curing, the conductive layer 10 and the elastic base layer 40 are adhered, so that the elastic base layer 40 and the conductive layer 10 form a whole, which is beneficial to prevent the crack 60 on the conductive layer 10 from expanding.
  • a process such as printing, printing, or glue
  • repair layer 20 Form a repair layer 20 stacked with the conductive layer 10, and the repair layer 20 is a movable conductive layer.
  • step 102 in the first embodiment, "forming a repair layer 20 laminated with the conductive layer 10" includes steps 1021 to 1023:
  • 1021 Provide non-conductive fluid 21 and conductive filler 22.
  • the non-conductive fluid 21 may be a pseudoplastic non-Newtonian fluid or a thixotropic fluid.
  • the non-conductive fluid 21 may be polydimethyl silicone oil or liquid silicone rubber, and the repair layer 20 has The characteristics of thickening and shear thinning on standing.
  • the conductive filler 22 may be metal or non-metal.
  • the conductive filler 22 may be conductive silver powder, silver nanowires, carbon nanotubes or conductive fibers.
  • the non-conductive fluid 21 and the conductive filler 22 are not limited to the above examples, and can be set according to actual needs.
  • step 1022 the non-conductive fluid 21 and the conductive filler 22 are mixed and dispersed according to a preset ratio to obtain the fluid to be processed.
  • the value of the aforementioned preset ratio can be set according to actual needs and is not limited here.
  • the fluid to be processed is used for processing to form the repair layer 20 in a subsequent step.
  • the repair layer 20 may be formed on the surface of the elastic base layer 40 away from the carrier by using the process of printing, printing or glue dispensing.
  • the repair layer 20 is a movable conductive layer, and the repair layer 20 has both the static thickening and shear thinning characteristics of the non-conductive fluid 21 and the conductivity of the conductive filler 22.
  • the non-conductive fluid 21 is a non-conductor, and the resistivity of the repair layer 20 is greater than the resistivity of the conductive layer 10, when the current is transmitted through the wire 100, the current is preferentially transmitted through the conductive layer 10.
  • the non-conductive fluid 21 has the characteristics of standing and thickening. After the repair layer 20 is left standing on the conductive layer 10, the viscosity of the repair layer 20 becomes larger and the fluidity decreases, which is beneficial to avoid the The repair layer 20 flows and overflows, thereby reducing waste and facilitating subsequent processing.
  • forming a repair layer 20 laminated with the conductive layer 10 includes steps 1024 to 1025:
  • the conductive fluid 23 has both fluidity and conductivity. It is not necessary to mix the conductive filler 22 in the conductive fluid 23 to increase the conductivity, and the fluidity of the repair layer 20 will not be affected by the conductive filler 22. limit.
  • the conductive fluid 23 may be liquid metal or ion conductive liquid. Of course, the conductive fluid 23 is not limited to the above examples, and can be set according to actual needs.
  • the conductive fluid 23 may be first formed on the surface of the elastic base layer 40 away from the carrier to form the repair layer 20 by printing, printing, or glue dispensing.
  • An elastic encapsulation layer 30 laminated on the side of the repair layer 20 away from the conductive layer 10 is formed.
  • the repair layer 20 is placed on the elastic encapsulation layer. Under the squeezing action of 30, the crack 60 is at least partially filled to make the conductive layer 10 conduct at the crack 60.
  • the elastic encapsulation layer 30 can be formed by curing liquid rubber.
  • the elastic base layer 40 and the elastic packaging layer 30 are both insulating layers, and the elastic packaging layer 30 is bonded to the elastic base layer 40, and the elastic base layer 40 and the elastic packaging layer 30 are common Covering the repair layer 20 and the conductive layer 10, the elastic base layer 40 and the elastic encapsulation layer 30 together form an insulating outer skin, which protects the repair layer 20 and the conductive layer 10.
  • the elastic encapsulation layer 30, the conductive layer 10, and the elastic base layer 40 all have stretchability, so the wire 100 is a stretchable wire 100, that is, the wire 100 can be stretched under external stretching.
  • the elastic packaging layer 30 may be a silicone rubber film.
  • the elastic packaging layer 30 may be an elastic silicone rubber film with a breaking elongation greater than 300% and a Shore A hardness greater than 30 degrees and less than 70 degrees.
  • the material of the elastic packaging layer 30 is not limited to the above examples, and can be set according to actual needs.
  • the wire 100 includes a conductive layer 10, a repair layer 20, and an elastic encapsulation layer 30 stacked in sequence.
  • the repair layer 20 is used to fill the cracks 60 generated by the conductive layer 10 being stretched, so that the The electrical performance of the wire 100 can be repaired and guaranteed, thereby avoiding the failure of the product due to the opening of the wire 100 or a sharp increase in resistance, which helps to ensure the reliability of the electronic device using the wire 100, thereby increasing the service life.
  • the wire 100 may also be a non-stretchable wire, that is, the conductive layer 10 is an inelastic conductive layer.
  • the repair layer 20 has the characteristics of standing thickening and shear thinning, and the fluidity of the repair layer 20 is related to the stress state of the repair layer 20.
  • the elastic encapsulation layer 30 and the conductive layer 10 are stretched and elongated, and squeeze the repair layer 20, so that the viscosity of the repair layer 20 becomes smaller ,
  • the fluidity is increased, so that the repair layer 20 can quickly repair the cracks 60 that appear on the conductive layer 10; when the wire 100 ends stretching, the elastic encapsulation layer 30 and the conductive layer 10 return to their original shape,
  • the repairing layer 20 is in a static state, so that the viscosity of the repairing layer 20 increases and the fluidity decreases, and the part of the repairing layer 20 filled in the crack 60 can play a conductive role to ensure that the conductive layer 10 Conductivity at the crack 60.
  • the method for manufacturing the wire further includes: providing an interface compatibilizing filler 24;
  • the interface compatibilizing filler 24 is also dispersed in the non-conductive fluid 21;
  • the interface compatibilizing filler 24 at least partially contacts the conductive layer 10 to improve the repair layer 20 and the conductive layer.
  • the interface affinity of the conductive layer 10 is described.
  • the interface compatibilizing filler 24 is used to increase the interface affinity between the repair layer 20 and the conductive layer 10, so as to ensure that the repair layer 20 is stably attached to the conductive layer 10 and avoid the The repair layer 20 is separated from the conductive layer 10.
  • the part of the repair layer 20 filled in the crack 60 can play a bonding role, ensuring the strength of the conductive layer 10 at the crack 60 and avoiding the crack 60 from further expanding.
  • the interface affinity between the repair layer 20 and the conductive layer 10 increases, which facilitates the rapid penetration of the repair layer 20 into the cracks 60 on the conductive layer 10 to achieve rapid repair.
  • the interface compatibilizing filler 24 may be a conductive ink.
  • the conductive ink includes a liquid rubber and a conductive filler dispersed in the liquid rubber.
  • the matrix part of the conductive layer 10 is formed by curing the liquid rubber. If the compatibility is good, the compatibility between the interface compatibilizing filler 24 and the conductive layer 10 is good, which is beneficial to increase the interface affinity between the repair layer 20 and the conductive layer 10.
  • the above-mentioned liquid rubber may be liquid silicone rubber, liquid styrene butadiene rubber, or liquid nitrile butadiene rubber.
  • the interface compatibilizing filler 24 is dispersed in the non-conductive fluid 21.
  • the interface compatibilizing filler 24 is dispersed in the conductive fluid 23.
  • step 101 the conductive layer 10 is provided with a microporous structure 11 on the side close to the repair layer 20; in step 102, the repair layer 20 is at least partially filled in The microporous structure 11.
  • the microporous structure 11 may be formed by chemical etching treatment or mechanical processing. Since the repair layer 20 is a movable conductive layer and the conductive layer 10 is a solid conductive layer 10, conventional adhesives are not suitable for bonding the repair layer 20 and the conductive layer 10. The microporous structure 11 is disposed on the surface of the conductive layer 10 away from the elastic base layer 40.
  • the repair layer 20 is a movable conductive layer
  • the repair layer 20 can be at least partially filled in the microporous structure 11, and the conductive layer 10
  • the microporous structure 11 has a strong adsorption effect on the repair layer 20, so that the interface bonding force between the conductive layer 10 and the repair layer 20 is increased, so that the repair layer 20 is stably attached to the conductive layer 10 on.
  • step 103 the elastic packaging layer 30 is provided with a boss 31 passing through the repair layer 20, and the end of the boss 31 is fixed to the conductive layer 10.
  • the boss 31 can be fixed to the conductive layer 10 by means of glue bonding, hot melt connection or snap connection.
  • the elastic packaging layer 30 is fixedly connected to the conductive layer 10 via the boss 31, so that the elastic packaging layer 30 is stable relative to the conductive layer 10.
  • the elastic encapsulation layer 30 reinforces the conductive layer 10 via the boss 31, which is beneficial to increase the strength of the conductive layer 10 and reduce the occurrence of cracks 60.
  • the elastic packaging layer 30 is provided with a plurality of the bosses 31, and the plurality of bosses 31 are arranged at intervals along the extending direction of the wire 100.
  • the elastic packaging layer 30 is fixedly connected to the conductive layer 10 via a plurality of the bosses 31, which is beneficial to increase the bonding strength of the elastic packaging layer 30 and the conductive layer 10, so that the elastic packaging layer 30 and The conductive layer 10 forms a whole to ensure the overall strength.
  • a plurality of the bosses 31 can limit the conductive layer 10 in the extending direction of the wire 100.
  • the boss 31 drives the multiple segments of the conductive layer 10 to reset synchronously, and the multiple bosses 31 can limit the multiple segments to prevent adjacent segments from moving relative to each other and causing adjacent segments. The increase in the gap between the segments helps to ensure the repair effect of the repair layer 20.
  • step 103 an inner encapsulation layer 50 laminated on the side of the repair layer 20 away from the conductive layer 10 is formed, and the inner encapsulation layer 50 is blocked from the repair layer Between 20 and the elastic encapsulation layer 30.
  • the inner packaging layer 50 covers the surface of the repair layer 20 away from the conductive layer 10. If the inner packaging layer 50 is an elastic insulating layer, the inner packaging layer 50 has both stretchability and insulation properties. The inner packaging layer 50 is fixedly connected to the elastic packaging layer 30 and the conductive layer 10.
  • the inner packaging layer 50 can isolate the repair layer 20 from the elastic packaging layer 30, avoiding the The repair layer 20 contacts the elastic packaging layer 30, so that when the elastic packaging layer 30 is stretched and cracks 60 appear, the inner packaging layer 50 can prevent the repair layer 20 from penetrating into the elastic packaging layer 30 In the crack 60, the insulation performance of the elastic packaging layer 30 is prevented from being affected; and when the elastic packaging layer 30 is broken, the inner packaging layer 50 can also protect the repair layer 20 from leakage, thereby avoiding leakage Case.
  • the wire includes a conductive layer, a repair layer, and an elastic encapsulation layer stacked one after another, the repair layer is a movable conductive layer, when the conductive When a crack occurs when the layer is stretched, the repair layer is at least partially filled in the crack under the squeezing action of the elastic encapsulation layer, so that the conductive layer is conducted at the crack, thereby achieving the The self-repairing function of the wire ensures the conductivity of the wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请实施例提供一种导线(100),所述导线(100)包括依次层叠设置的导电层(10)、修复层(20)和弹性封装层(30),所述修复层(20)为可活动的导电层,当所述导电层(10)被拉伸后出现裂纹时,所述修复层(20)在所述弹性封装层(30)的挤压作用下至少部分填充于所述裂纹内,以使所述导电层(10)在所述裂纹处导通,从而实现所述导线(100)的自修复功能,避免造成所述导线(100)断路或电阻激增而使产品失效的情况,保证所述导线(100)的导电性能,有利于保证所述电子设备的使用可靠性,增加使用寿命。

Description

导线、电子设备及导线的制作方法 技术领域
本申请涉及导线的结构与制作技术领域,具体涉及一种导线、电子设备及导线的制作方法。
背景技术
导线主要起到传输电流的作用,目前导线在各种电子产品中的应用十分广泛,导线在使用过程中经常受到拉应力,导致导线中的导电层出现裂纹甚至断裂,进而导致电线的电阻激增或者电线断路,十分影响电子产品的使用性能。
发明内容
本申请实施例提供一种导线,所述导线包括依次层叠设置的导电层、修复层和弹性封装层,所述修复层为可活动的导电层,当所述导电层被拉伸后出现裂纹时,所述修复层在所述弹性封装层的挤压作用下至少部分填充于所述裂纹内,以使所述导电层在所述裂纹处导通。
本申请实施例还提供一种电子设备,所述电子设备包括如上所述的导线。
本申请实施例还提供一种导线的制作方法,所述导线的制作方法包括:
提供待加工件,所述待加工件设有导电层;
形成与所述导电层层叠设置的修复层,所述修复层为可活动的导电层;
形成层叠于所述修复层背离所述导电层一侧的弹性封装层,当所述导电层被拉伸后出现裂纹时,所述修复层在所述弹性封装层的挤压作用下至少部分填充于所述裂纹内,以使所述导电层在所述裂纹处导通。
本申请实施例提供的导线、电子设备及导线的制作方法,通过所述导线包括依次层叠设置的导电层、修复层和弹性封装层,所述修复层为可活动的导电层,当所述导电层被拉伸出现裂纹时,所述修复层在所述弹性封装层的挤压作用下至少部分填充于所述裂纹内,以使所述导电层在所述裂纹处导通,从而实现所述导线的自修复功能,保证所述导线的导电性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的导线的结构示意图一;
图2是图1中的P-P处的截面示意图;
图3是本申请实施例提供的导线的结构示意图二;
图4是本申请实施例提供的导线的结构示意图三;
图5是本申请实施例提供的导线的结构示意图四;
图6是图4中A处的放大示意图一;
图7是图4中A处的放大示意图二;
图8是图1中B处的放大示意图一;
图9是图1中B处的放大示意图二;
图10是本申请实施例提供的导线的结构示意图五;
图11是本申请实施例提供的导线的结构示意图六;
图12是本申请实施例提供的电子设备的结构示意图;
图13是本申请实施例提供的导线的制作方法的流程示意图一;
图14是本申请实施例提供的导线的制作方法的流程示意图二;
图15是本申请实施例提供的导线的制作方法的流程示意图三;
图16是本申请实施例提供的导线的制作方法的流程示意图四;
图17是本申请实施例提供的导线的制作方法的流程示意图五;
图18是本申请实施例提供的导线的制作方法的流程示意图六。
具体实施方式
请参阅图1、图3、图4和图5,本申请实施例提供一种导线100,所述导线100包括依次层叠设置的导电层10、修复层20和弹性封装层30。所述修复层20为可活动的导电层。当所述导电层10被拉伸后出现裂纹60时,所述修复层20在所述弹性封装层30的挤压作用下至少部分填充于所述裂纹60内,以使所述导电层10在所述裂纹60处导通。
本实施方式中,所述导线100为可拉伸导线,即所述导线100在外部拉伸作用下可伸长。其中,所述导电层10为弹性导电层,则所述导电层10可以兼顾可拉伸性能和导电性能,所述导电层10受到外部拉伸而伸长。所述导电层10包括弹性基体和分散于所述弹性基体中的导电介质。所述弹性基体可以为橡胶材质,例如所述弹性基体可以是硅橡胶、丁苯橡胶或丁腈橡胶等;所述导电介质可以是金属材质或非金属材质,例如所述导电介质可以是导电银粉、银纳米线、碳纳米管或导电纤维等。当然,所述弹性基体和所述导电介质并不局限于上述举例,可以根据实际需要进行设置。在其他实施方式中,所述导线100也可以为不可拉伸导线,即所述导电层10为非弹性导电层。
所述弹性封装层30可以为橡胶材质,使得所述弹性封装层30具有高拉伸率,所述弹性封装层30受到外部拉伸作用而伸长。所述弹性封装层30可以为有机硅橡胶薄膜,例如,所述弹性封装层30可以为断裂伸长率大于300%,邵氏A硬度大于30度并小于70度的弹性硅橡胶薄膜。当然,所述弹性封装层30的材质不限于上述举例,可以根据实际需要设置。且所述弹性封装层30为绝缘层,则所述弹性封装层30兼顾绝缘性能和可拉伸性能,所述弹性封装层30对所述导电层10起保护作用,所述弹性封装层30可以将所述导电层10与外界隔绝开,避免所述导电层10暴露而引发漏电。
请参阅图1、图3、图4和图5,所述修复层20覆盖在所述导电层10上。所述修复层20为可活动的导电层,所述修复层的导电材料在受力时可发生移动,则所述修复层20在所述弹性封装层30的挤压作用下可流动。当所述导线100受到外部拉伸作用时,所述导电层10和所述弹性封装层30均受到拉伸作用而伸长。所述修复层20在所述导线100处于未拉伸状态下填充于裂纹60中的体积小于所述修复层20在所述导线100处于拉伸状态下填充于裂纹60中的体积。当所述导电层10被拉伸而出现裂纹60,即所述导电层10的拉伸幅度超过所述导电层10自身的材料极限,上述裂纹60随所述导线100的拉伸而变大,所述弹性基体可与所述弹性封装层30在外部拉伸作用下共同伸长,并将所述修复层20压入所述裂纹60内;当所述导线100收缩回复时,上述裂纹60随所述导线100的回复而变小,至少部分所述修复层20仍填充于所述裂纹60内,从而所述修复层20可以修复所述导电层10的裂纹60,保持所述导电层10的连续性,实现所述导电层10在所述裂纹60处导通,避免所述导电层10出现非接触性空隙,而导致电阻升高或断路的情况。
请参阅图6,第一实施方式中,所述修复层20包括非导电流体21和分散于所述非导电流体21中的导电填料22。所述修复层20兼具所述非导电流体21的流动性和所述导电填料22的导电性,当所述导电层10被拉伸而出现裂纹60,所述非导电流体21在所述弹性封装层30的挤压作用下可发生流动,所述导电填料22可随所述非导电流体21填入所述裂纹60内,实现所述导电层10在所述裂纹60处导通。所述非导电流体21为非导体,所述修复层20的电阻率大于所述导电层10的电阻率,则通过所述导线100传输电流时,电流优先通过所述导电层10进行传输。
进一步地,所述非导电流体21为假塑性非牛顿流体或触变性流体。
本实施方式中,所述非导电流体21可以是假塑性非牛顿流体或触变性流体,例如,所述非导电流体21可以是聚二甲基硅油或液体硅橡胶,则所述非导电流体21具有静置增稠和剪切变稀的特性,所述修复层20的流动性与所述修复层20的受力状态有关。所述修复层20在所述导线100处于未拉伸状态下的粘度大于所述修复层20在所述导线100处于拉伸状态下的粘度。当所述导线100被拉伸时,所述弹性封装层30和所述导电层10被拉伸而伸长,并对所述修复层20造成挤压,使得所述修复层20的粘度变小,流动性增加,使得所述修复层20可以快速修复所述导电层10上出现的裂纹60;当所述导线100结束拉伸后,所述弹性封装层30和所述导电层10回复原状,所述修复层20静置后,使得所述修复层20的粘度变大,流动性减少,则填充于所述裂纹60内的部分修复层20可以起到导电作用,保证所述导电层10在所述裂纹60处的导电性。
所述导电填料22可以是金属或非金属,例如,所述导电填料22可以是导电银粉、银纳米线、碳纳米管或导电纤维等。所述非导电流体21和所述导电填料22并不局限于上述举例,可以根据实际需要进行设置。
请参阅图7,第二实施方式中,所述修复层20包括导电流体23,所述导电流体23可填入所述裂纹60内,实现所述导电层10在所述裂纹60处导通。由于所述导电流体23兼具流动性和导电性,不必在所述导电流体23混入导电填料22以增加导电性,则所述修复层20的流动性不会受到导电填料22的限制。所述导电流体23可以是液态金属或离子导电液,当然,所述导电流体23并不局限于上述举例,可以根据实际需要进行设置。
在其他实施方式中,所述修复层20也可以是固体,例如,所述修复层20可以是导电凝胶或导电粉末。
请参阅图8,进一步地,所述修复层20包括界面增容填料24,所述界面增容填料24至少部分接触所述导电层10,以提高所述修复层20与所述导电层10的界面亲和力。
本实施方式中,所述界面增容填料24用于增加所述修复层20与所述导电层10的界面亲和力,从而保证所述修复层20与所述导电层10的结合力,避免所述修复层20脱离所述导电层10。并且,填充于所述裂纹60内的部分修复层20可以起到粘结作用,保证所述导电层10在所述裂纹60处的强度,避免裂纹60进一步扩大。所述修复层20与所述导电层10的界面亲和力增加,便于所述修复层20快速渗入所述导电层10上的裂纹60内,实现快速修复。所述界面增容填料24与所述导电层10具有良好的相容性,所述界面增容填料24可以是导电油墨,上述导电油墨包括液体橡胶和分散于液体橡胶中的导电填料,而所述导电层10中的基体部分由液体橡胶固化形成,由于液体橡胶和固体橡胶的相容性良好,则所述界面增容填料24与所述导电层10的相容性良好,有利于增加所述修复层20与所述导电层10的界面亲和力。上述液体橡胶可以是液体硅橡胶、液体丁苯橡胶或液体丁腈橡胶等。
在第一实施方式中,所述界面增容填料24分散于所述非导电流体21中。在第二实施方式中,所述界面增容填料24分散于所述导电流体23中。
请参阅图1和图2,进一步地,所述导线100还包括弹性基底层40,所述导电层10层叠于所述弹性基底层40上,所述导电层10与所述弹性基底层40相粘合,所述修复层20完全覆盖所述导电层10背离所述弹性基底层40一侧。
本实施方式中,所述弹性基底层40可以为橡胶材质,使得所述弹性基底层40具有高拉伸率,所述弹性基底层40受到外部拉伸作用而伸长。所述弹性基底层40可以为有机硅橡胶薄膜,例如,所述弹性基底层40可以为断裂伸长率大于300%,邵氏A硬度大于30度并小于70度的弹性硅橡胶薄膜。当然,所述弹性基底层40的材质不限于上述举例,可以根据实际需要设置。且所述弹性基底层40为绝缘层,则所述弹性基底层40兼顾绝缘性能和可拉伸性能,所述弹性基底层40对所述导电层10起保护作用,所述弹性基底层40可以将所述导电层10与外界隔绝开,避免所述导电层10暴露而引发漏电。所述弹性基底层40和所述弹性封装层30均为绝缘层,所述弹性封装层30与所述弹性基底层40相粘合,所述弹性基底层40和所述弹性封装层30共同包覆所述修复层20和所述导电层10,则所述弹性基底层40和所述弹性封装层30共同构成绝缘外皮,对所述修复层20和所述导电层10进行保护。通过所述导电层10层叠于所述弹性基底层40上,且所述导电层10与所述弹性基底层40相粘合,使得所述弹性基底层40与所述导电层10形成一个整体,有利于阻止所述导电层10上裂纹60的扩展。
请参阅图9,进一步地,所述导电层10靠近所述修复层20一侧设有微孔结构11,所述修复层20至少部分填充于所述微孔结构11中。由于所述修复层20为可活动的导电层,所述导电层10为固态导电层10,常规的黏胶不适合用于粘结所述修复层20与所述导电层10。本实施方式中,所述微孔结构11设置于所述导电层10背离所述弹性基底层40的表面上。通过所述导电层10上设置微孔结构11,由于所述修复层20为可活动的导电层,所述修复层20可以至少部分填充于所述微孔结构11内,所述导电层10经所述微孔结构11对所述修复层20有强吸附作用,使得所述导电层10与所述修复层20的界面结合力增加,从而实现所述修复层20稳定附着于所述导电层10上。
请参阅图10,进一步地,所述弹性封装层30设有穿过所述修复层20的凸台31,所述凸台31的端部固定于所述导电层10。
本实施方式中,可以通过胶水粘结、热熔连接或卡合连接等方式将所述凸台31固定于所述导电层10上。所述弹性封装层30经所述凸台31与所述导电层10固定连接,使得所述弹性封装层30相对所述导电层10稳固。所述弹性封装层30经所述凸台31对所述导电层10进行补强,有利于增加所述导电层10的强度,减少出现裂纹60的情况。所述弹性封装层30设有多个所述凸台31,多个所述凸台31沿所述导线100的延伸方向间隔排列。所述弹性封装层30经多个所述凸台31与所述导电层10固定连接,有利于增加所述弹性封装层30与所述导电层10的结合强度,使得所述弹性封装层30和所述导电层10形成一个整体,保证整体强度。并且,多个所述凸台31可以在所述导线100的延伸方向上对所述导电层10进行限位。当所述导电层10被拉断形成不连续的多个分段(两个或两个以上的分段),所述导电层10结束拉伸后,所述弹性封装层30可以经多个所述凸台31带动所述导电层10的多个分段同步复位,多个所述凸台31可以对上述多个分段进行限位,避免相邻的分段相对彼此移动而造成相邻分段之间的间隙增大,有利于保证所述修复层20的修复效果。
请参阅图11,进一步地,所述导线100还包括内封装层50,所述内封装层50阻隔于所述修复层20与所述弹性封装层30之间。本实施方式中,所述内封装层50覆盖在所述修复层20背离所述导电层10的表面上。所述内封装层50为弹性绝缘层,则所述内封装层50兼具可拉伸性能和绝缘性能。所述内封装层50固定连接所述弹性封装层30和所述导电层10。通过所述内封装层50阻隔于所述修复层20与所述弹性封装层30之间,所述内封装层50可以将所述修复层20与所述弹性封装层30隔离开,避免所述修复层20接触所述弹性封装层30,从而当所述弹性封装层30被拉伸后出现裂纹时,所述内封装层50可以阻止所述修复层20渗入所述弹性封装层30上的裂纹内,避免所述弹性封装层30的绝缘性能受到影响;并且当所述弹性封装层30破裂时,所述内封装层50也可以保护所述修复层20免于泄露,进而避免出现漏电的情况。
请参阅图12,本申请实施还提供一种电子设备200,所述电子设备200包括如上所述的导线100。可以理解的是,所述电子设备200可以是智能手机、耳机、平板电脑、智能手表、笔记本电脑或可穿戴设备等。通过所述导线100包括依次层叠设置的导电层10、修复层20和弹性封装层30,所述修复层20用于填充所述导电层10被拉伸而产生的裂纹60,使所述导线100的电性能得以修复和补充,从而避免造成所述导线100断路或电阻激增而使产品失效的情况,有利于保证所述电子设备200的使用可靠性,增加使用寿命。同时,可将导电线路设置成直线、非S型等低曲率形状,减少布线占用宽度空间,使产品边框更窄。
请参阅图13,本申请实施例还提供一种导线的制作方法。所述导线的制作方法用于导线100的制作。所述导线的制作方法包括以下的步骤101至步骤103:
101:提供待加工件,所述待加工件设有导电层10。
请参阅图14,在步骤101中,“提供待加工件”包括步骤1011至步骤1013:
1011:提供承载件。
在步骤1011中,所述承载件主要起到承载作用。所述承载件可以是玻璃基板,也可以是塑胶薄膜,在此不作限定,可以根据实际需要进行设置。
1012:在所述承载件上加工形成弹性基底层40。
在步骤1012中,所述弹性基底层40可以为有机硅橡胶薄膜,例如,所述弹性基底层40可以为断裂伸长率大于300%,邵氏A硬度大于30度并小于70度的弹性硅橡胶薄膜,则所述弹性基底层40兼顾绝缘性能和可拉伸性能。可以利用液体橡胶在所述承载件上固化形成所述弹性基底层40。上述液体橡胶可以经硫化处理而固化。当然,所述弹性基底层40的材质不限于上述举例,可以根据实际需要设置。
1013:形成覆盖所述弹性基底层40的导电层10。
请参阅图15,在步骤1013中,“形成覆盖所述弹性基底层40的导电层10”包括步骤1014至步骤1016:
1014:提供液体橡胶和导电填料22。
在步骤1014中,所述导电填料22可以是导电银粉、银纳米线、碳纳米管或导电纤维等。当然,所述导电填料22并不局限于上述举例,可以根据实际需要选用。
1015:将所述导电填料22分散于所述液体橡胶中,以获得导电油墨。
在步骤1015中,将所述导电填料22与所述液体橡胶按照预设比例进行混合分散,获得所述导电油墨。上述预设比例的数值可以根据实际需要设定,在此不作限定。所述导电油墨用于在后续步骤中固化形成所述导电层10。
1016:利用所述导电油墨在所述弹性基底层40背离所述承载件的表面上形成所述导电层10,其中,所述液体橡胶固化形成弹性基体。
在步骤1016中,可以通过印刷、打印或点胶等工艺先将所述导电油墨在所述弹性基底层40背离所述承载件的表面上形成待硫化层,再对所述待硫化层进行硫化处理,以使得所述导电油墨中的液体橡胶固化形成所述弹性基体。则所述导电层10为弹性导电层10,可以兼顾可拉伸性能和导电性能,所述导电层10可以受到外部拉伸而伸长。固化后的所述导电层10与所述弹性基底层40相粘合,使得所述弹性基底层40与所述导电层10形成一个整体,有利于阻止所述导电层10上裂纹60的扩展。
102:形成与所述导电层10层叠设置的修复层20,所述修复层20为可活动的导电层。
请参阅图16,在步骤102中,在第一实施方式中,“形成与所述导电层10层叠设置的修复层20”包括步骤1021至步骤1023:
1021:提供非导电流体21和导电填料22。
在步骤1021中,所述非导电流体21可以为假塑性非牛顿流体或触变性流体,例如,所述非导电流体21可以是聚二甲基硅油或液体硅橡胶,则所述修复层20具有静置增稠和剪切变稀的特性。所述导电填料22可以是金属或非金属,例如,所述导电填料22可以是导电银粉、银纳米线、碳纳米管或导电纤维等。所述非导电流体21和所述导电填料22并不局限于上述举例,可以根据实际需要进行设置。
1022:将所述导电填料22分散于所述非导电流体21中,获得待加工流体。
在步骤1022中,将所述非导电流体21和所述导电填料22按照预设比例混合分散,以获得所述待加工流体。上述预设比例的数值可以根据实际需要设定,在此不作限定。所述待加工流体用于在后续步骤中加工形成所述修复层20。
1023:利用所述待加工流体在所述导电层10上形成所述修复层20。
在步骤1023中,可以通过印刷、打印或点胶等工艺先将所述待加工流体在所述弹性基底层40背离所述承载件的表面上形成所述修复层20。所述修复层20为可活动的导电层,所述修复层20兼具所述非导电流体21的静置增稠和剪切变稀的特性和所述导电填料22的导电性。所述非导电流体21为非导体,所述修复层20的电阻率大于所述导电层10的电阻率,则通过所述导线100传输电流时,电流优先通过所述导电层10进行传输。所述非导电流体21具有静置增稠的特性,则所述修复层20在所述导电层10上静置后,所述修复层20的粘度变大,流动性减少,有利于避免所述修复层20流动而溢出,从而可以减少浪费,并有利于后续加工。
请参阅图17,在第二实施方式中,“形成与所述导电层10层叠设置的修复层20”包括步骤1024至步骤1025:
1024:提供导电流体23。
在步骤1024中,所述导电流体23兼具流动性和导电性,不必在所述导电流体23混入导电填料22以增加导电性,则所述修复层20的流动性不会受到导电填料22的限制。所述导电流体23可以是液态金属或离子导电液,当然,所述导电流体23并不局限于上述举例,可以根据实际需要进行设置。
1025:利用所述导电流体23在所述导电层10上形成所述修复层20。
在步骤1025中,可以通过印刷、打印或点胶等工艺先将所述导电流体23在所述弹性基底层40背离所述承载件的表面上形成所述修复层20。
103:形成层叠于所述修复层20背离所述导电层10一侧的弹性封装层30,当所述导电层10被拉伸后出现裂纹60时,所述修复层20在所述弹性封装层30的挤压作用下至少部分填充于所述裂纹60内,以使所述导电层10在所述裂纹60处导通。
在步骤103中,可利用液体橡胶固化形成所述弹性封装层30。所述弹性基底层40和所述弹性封装层30均为绝缘层,且所述弹性封装层30与所述弹性基底层40相粘合,所述弹性基底层40和所述弹性封装层30共同包覆所述修复层20和所述导电层10,则所述弹性基底层40和所述弹性封装层30共同构成绝缘外皮,对所述修复层20和所述导电层10进行保护。所述弹性封装层30、所述导电层10和所述 弹性基底层40均具有可拉伸性能,则所述导线100为可拉伸导线100,即所述导线100在外部拉伸作用下可伸长,且所述导线100仍能正常导通,有利于扩大所述导线100的应用范围。所述弹性封装层30可以为有机硅橡胶薄膜,例如,所述弹性封装层30可以为断裂伸长率大于300%,邵氏A硬度大于30度并小于70度的弹性硅橡胶薄膜。当然,所述弹性封装层30的材质不限于上述举例,可以根据实际需要设置。
并且,通过所述导线100包括依次层叠设置的导电层10、修复层20和弹性封装层30,所述修复层20用于填充所述导电层10被拉伸而产生的裂纹60,使所述导线100的电性能得以修复和保障,从而避免造成所述导线100断路或电阻激增而使产品失效的情况,,有利于保证应用所述导线100的电子设备的可靠性,进而增加使用寿命。在其他实施方式中,所述导线100也可以为不可拉伸导线,即所述导电层10为非弹性导电层。
所述修复层20具有静置增稠和剪切变稀的特性,所述修复层20的流动性与所述修复层20的受力状态有关。当所述导线100被拉伸时,所述弹性封装层30和所述导电层10被拉伸而伸长,并对所述修复层20造成挤压,使得所述修复层20的粘度变小,流动性增加,使得所述修复层20可以快速修复所述导电层10上出现的裂纹60;当所述导线100结束拉伸后,所述弹性封装层30和所述导电层10回复原状,所述修复层20处于静置状态,使得所述修复层20的粘度变大,流动性减少,则填充于所述裂纹60内的部分修复层20可以起到导电作用,保证所述导电层10在所述裂纹60处的导电性。
请参阅图18,进一步地,“将导电填料22分散于所述非导电流体21中,获得待加工流体”的步骤之前,所述导线的制作方法还包括:提供界面增容填料24;
“将导电填料22分散于所述非导电流体21中,获得待加工流体”的步骤中,还将所述界面增容填料24分散于所述非导电流体21中;
“利用所述待加工流体在所述导电层10上形成所述修复层20”的步骤中,所述界面增容填料24至少部分接触所述导电层10,以提高所述修复层20与所述导电层10的界面亲和力。
本实施方式中,所述界面增容填料24用于增加所述修复层20与所述导电层10的界面亲和力,从而保证所述修复层20稳定附着于所述导电层10上,避免所述修复层20脱离所述导电层10。并且,填充于所述裂纹60内的部分修复层20可以起到粘结作用,保证所述导电层10在所述裂纹60处的强度,避免裂纹60进一步扩大。所述修复层20与所述导电层10的界面亲和力增加,便于所述修复层20快速渗入所述导电层10上的裂纹60内,实现快速修复。所述界面增容填料24可以是导电油墨,上述导电油墨包括液体橡胶和分散于液体橡胶中的导电填料,而所述导电层10中的基体部分由液体橡胶固化形成,由于液体橡胶与固体橡胶的相容性良好,则所述界面增容填料24与所述导电层10的相容性良好,有利于增加所述修复层20与所述导电层10的界面亲和力。上述液体橡胶可以是液体硅橡胶、液体丁苯橡胶或液体丁腈橡胶等。在第一实施方式中,所述界面增容填料24分散于所述非导电流体21中。在第二实施方式中,所述界面增容填料24分散于所述导电流体23中。
请参阅图9和图13,进一步地,在步骤101中,所述导电层10靠近所述修复层20一侧设有微孔结构11;在步骤102中,所述修复层20至少部分填充于所述微孔结构11中。
本实施方式中,所述微孔结构11可以通过化学腐蚀处理或机械加工形成。由于所述修复层20为可活动的导电层,所述导电层10为固态导电层10,常规的黏胶不适合用于粘结所述修复层20与所述导电层10。所述微孔结构11设置于所述导电层10背离所述弹性基底层40的表面上。通过所述导电层10上设置微孔结构11,由于所述修复层20为可活动的导电层,所述修复层20可以至少部分填充于所述微孔结构11内,所述导电层10经所述微孔结构11对所述修复层20有强吸附作用,使得所述导电层10与所述修复层20的界面结合力增加,从而实现所述修复层20稳定附着于所述导电层10上。
请参阅图10和图13,进一步地,在步骤103中,所述弹性封装层30设有穿过所述修复层20的凸台31,所述凸台31的端部固定于所述导电层10。
本实施方式中,可以通过胶水粘结、热熔连接或卡合连接等方式将所述凸台31固定于所述导电层10上。所述弹性封装层30经所述凸台31与所述导电层10固定连接,使得所述弹性封装层30相对所述导电层10稳固。所述弹性封装层30经所述凸台31对所述导电层10进行补强,有利于增加所述导电层10的强度,减少出现裂纹60的情况。所述弹性封装层30设有多个所述凸台31,多个所述凸台31沿所 述导线100的延伸方向间隔排列。所述弹性封装层30经多个所述凸台31与所述导电层10固定连接,有利于增加所述弹性封装层30与所述导电层10的结合强度,使得所述弹性封装层30和所述导电层10形成一个整体,保证整体强度。并且,多个所述凸台31可以在所述导线100的延伸方向上对所述导电层10进行限位。当所述导电层10被拉断形成不连续的多个分段(两个或两个以上的分段),所述导电层10结束拉伸后,所述弹性封装层30可以经多个所述凸台31带动所述导电层10的多个分段同步复位,多个所述凸台31可以对上述多个分段进行限位,避免相邻的分段相对彼此移动而造成相邻分段之间的间隙增大,有利于保证所述修复层20的修复效果。
请参阅图11和图13,进一步地,在步骤103中,形成层叠于所述修复层20背离所述导电层10一侧的内封装层50,所述内封装层50阻隔于所述修复层20与所述弹性封装层30之间。
本实施方式中,所述内封装层50覆盖在所述修复层20背离所述导电层10的表面上。所述内封装层50为弹性绝缘层,则所述内封装层50兼具可拉伸性能和绝缘性能。所述内封装层50固定连接所述弹性封装层30和所述导电层10。通过所述内封装层50阻隔于所述修复层20与所述弹性封装层30之间,所述内封装层50可以将所述修复层20与所述弹性封装层30隔离开,避免所述修复层20接触所述弹性封装层30,从而当所述弹性封装层30被拉伸后出现裂纹60时,所述内封装层50可以阻止所述修复层20渗入所述弹性封装层30上的裂纹60内,避免所述弹性封装层30的绝缘性能受到影响;并且当所述弹性封装层30破裂时,所述内封装层50也可以保护所述修复层20免于泄露,进而避免出现漏电的情况。
本申请实施例提供的导线、电子设备及导线的制作方法,通过所述导线包括依次层叠设置的导电层、修复层和弹性封装层,所述修复层为可活动的导电层,当所述导电层被拉伸出现裂纹时,所述修复层在所述弹性封装层的挤压作用下至少部分填充于所述裂纹内,以使所述导电层在所述裂纹处导通,从而实现所述导线的自修复功能,保证所述导线的导电性能。
综上所述,虽然本申请已以较佳实施例揭露如上,但该较佳实施例并非用以限制本申请,该领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的防护范围以权利要求界定的范围为准。

Claims (25)

  1. 一种导线,其特征在于,所述导线包括依次层叠设置的导电层、修复层和弹性封装层,所述修复层为可活动的导电层,当所述导电层被拉伸后出现裂纹时,所述修复层在所述弹性封装层的挤压作用下至少部分填充于所述裂纹内,以使所述导电层在所述裂纹处导通。
  2. 如权利要求1所述的导线,其特征在于,所述修复层的导电材料在受力时可发生移动。
  3. 如权利要求2所述的导线,其特征在于,所述修复层为流体。
  4. 如权利要求3所述的导线,其特征在于,所述修复层在所述导线处于未拉伸状态下的粘度大于所述修复层在所述导线处于拉伸状态下的粘度。
  5. 如权利要求1所述的导线,其特征在于,所述修复层的电阻大于导电层的电阻。
  6. 如权利要求1所述的导线,其特征在于,所述修复层在所述导线处于未拉伸状态下填充于裂纹中的体积小于所述修复层在所述导线处于拉伸状态下填充于裂纹中的体积。
  7. 如权利要求1所述的导线,其特征在于,所述修复层包括非导电流体和分散于所述非导电流体中的导电填料,所述导电填料可随所述非导电流体填入所述裂纹内。
  8. 如权利要求7所述的导线,其特征在于,所述非导电流体为假塑性非牛顿流体或触变性流体。
  9. 如权利要求1所述的导线,其特征在于,所述修复层包括导电流体,所述导电流体可填入所述裂纹内。
  10. 如权利要求1所述的导线,其特征在于,所述修复层包括界面增容填料,所述界面增容填料至少部分接触所述导电层,以提高所述修复层与所述导电层的界面亲和力。
  11. 如权利要求1所述的导线,其特征在于,所述导电层包括弹性基体和分散于所述弹性基体中的导电介质,所述修复层覆盖在所述弹性基体上,所述弹性基体可与所述弹性封装层在外部拉伸作用下共同伸长,并将所述修复层压入所述裂纹内。
  12. 如权利要求11所述的导线,其特征在于,所述导线还包括弹性基底层,所述导电层层叠于所述弹性基底层上,所述导电层与所述弹性基底层相粘合,所述修复层完全覆盖所述导电层背离所述弹性基底层一侧。
  13. 如权利要求12所述的导线,其特征在于,所述弹性基底层和所述弹性封装层均为绝缘层,所述弹性基底层和所述弹性封装层共同包覆所述修复层和所述导电层。
  14. 如权利要求1所述的导线,其特征在于,所述导电层靠近所述修复层一侧设有微孔结构,所述修复层至少部分填充于所述微孔结构中。
  15. 如权利要求1所述的导线,其特征在于,所述弹性封装层设有穿过所述修复层的凸台,所述凸台的端部固定于所述导电层。
  16. 如权利要求15所述的导线,其特征在于,所述弹性封装层设有多个所述凸台,多个所述凸台沿所述导线的延伸方向间隔排列。
  17. 如权利要求1所述的导线,其特征在于,所述导线还包括内封装层,所述内封装层阻隔于所述修复层与所述弹性封装层之间。
  18. 一种电子设备,所述电子设备包括如权利要求1~17任意一项所述的导线。
  19. 一种导线的制作方法,其特征在于,所述导线的制作方法包括:
    提供待加工件,所述待加工件设有导电层;
    形成与所述导电层层叠设置的修复层,所述修复层为可活动的导电层;
    形成层叠于所述修复层背离所述导电层一侧的弹性封装层,当所述导电层被拉伸后出现裂纹时,所述修复层在所述弹性封装层的挤压作用下至少部分填充于所述裂纹内,以使所述导电层在所述裂纹处导通。
  20. 如权利要求19所述的导线的制作方法,其特征在于,“形成与所述导电层层叠设置的修复层”包括步骤:
    提供非导电流体和导电填料;
    将所述导电填料分散于所述非导电流体中,获得待加工流体;
    利用所述待加工流体在所述导电层上形成所述修复层。
  21. 如权利要求20所述的导线的制作方法,其特征在于,“提供非导电流体”的步骤中,所述非导电流体为假塑性非牛顿流体或触变性流体。
  22. 如权利要求20所述的导线的制作方法,其特征在于,“将导电填料分散于所述非导电流体中,获得待加工流体”的步骤之前,所述导线的制作方法还包括:提供界面增容填料;
    “将导电填料分散于所述非导电流体中,获得待加工流体”的步骤中,还将所述界面增容填料分散于所述非导电流体中;
    “利用所述待加工流体在所述导电层上形成所述修复层”的步骤中,所述界面增容填料至少部分接触所述导电层,以提高所述修复层与所述导电层的界面亲和力。
  23. 如权利要求19所述的导线的制作方法,其特征在于,“形成与所述导电层层叠设置的修复层”包括步骤:
    提供导电流体;
    利用所述导电流体在所述导电层上形成所述修复层。
  24. 如权利要求19所述的导线的制作方法,其特征在于,“提供待加工件”包括步骤:
    提供承载件;
    在所述承载件上加工形成弹性基底层;
    形成覆盖所述弹性基底层的导电层。
  25. 如权利要求24所述的导线的制作方法,其特征在于,“形成覆盖所述弹性基底层的导电层”包括步骤:
    提供液体橡胶和导电填料;
    将所述导电填料分散于所述液体橡胶中,以获得导电油墨;
    利用所述导电油墨在所述弹性基底层背离所述承载件的表面上形成所述导电层,其中,所述液体橡胶固化形成弹性基体。
PCT/CN2019/078255 2019-03-15 2019-03-15 导线、电子设备及导线的制作方法 WO2020186384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/078255 WO2020186384A1 (zh) 2019-03-15 2019-03-15 导线、电子设备及导线的制作方法
CN201980073480.5A CN113261393A (zh) 2019-03-15 2019-03-15 导线、电子设备及导线的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078255 WO2020186384A1 (zh) 2019-03-15 2019-03-15 导线、电子设备及导线的制作方法

Publications (1)

Publication Number Publication Date
WO2020186384A1 true WO2020186384A1 (zh) 2020-09-24

Family

ID=72519475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078255 WO2020186384A1 (zh) 2019-03-15 2019-03-15 导线、电子设备及导线的制作方法

Country Status (2)

Country Link
CN (1) CN113261393A (zh)
WO (1) WO2020186384A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115356791B (zh) * 2022-08-01 2024-04-12 武汉华星光电半导体显示技术有限公司 盖板、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141254A1 (en) * 2011-07-08 2014-05-22 Hitachi, Ltd. Self-repairing laminated structure and self-fusing insulated wire
CN106031312A (zh) * 2014-02-21 2016-10-12 学校法人早稻田大学 自我修复型配线及伸缩器件
CN106409152A (zh) * 2016-09-26 2017-02-15 昆山工研院新型平板显示技术中心有限公司 一种金属线、金属线自修复的方法以及柔性显示屏
CN106549021A (zh) * 2016-12-02 2017-03-29 京东方科技集团股份有限公司 柔性显示基板、柔性显示装置及其修复方法
CN108054171A (zh) * 2017-11-28 2018-05-18 华南师范大学 一种柔性基板及其制备方法和一种电润湿显示用基板
CN109417850A (zh) * 2016-06-21 2019-03-01 微软技术许可有限责任公司 柔性互连

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409011B (zh) * 2011-04-14 2013-09-11 Polychem Uv Eb Internat Corp Construction and Manufacturing Method of Transparent Conductive Line
CN106229333B (zh) * 2016-09-26 2019-02-12 昆山工研院新型平板显示技术中心有限公司 导线
CN107123470B (zh) * 2017-05-05 2019-06-14 北京科技大学 一种柔弹性导电薄膜及其制备方法
CN109448889A (zh) * 2018-12-05 2019-03-08 业成科技(成都)有限公司 自修复导电结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141254A1 (en) * 2011-07-08 2014-05-22 Hitachi, Ltd. Self-repairing laminated structure and self-fusing insulated wire
CN106031312A (zh) * 2014-02-21 2016-10-12 学校法人早稻田大学 自我修复型配线及伸缩器件
CN109417850A (zh) * 2016-06-21 2019-03-01 微软技术许可有限责任公司 柔性互连
CN106409152A (zh) * 2016-09-26 2017-02-15 昆山工研院新型平板显示技术中心有限公司 一种金属线、金属线自修复的方法以及柔性显示屏
CN106549021A (zh) * 2016-12-02 2017-03-29 京东方科技集团股份有限公司 柔性显示基板、柔性显示装置及其修复方法
CN108054171A (zh) * 2017-11-28 2018-05-18 华南师范大学 一种柔性基板及其制备方法和一种电润湿显示用基板

Also Published As

Publication number Publication date
CN113261393A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
KR101993813B1 (ko) 상온 액체금속 캡슐 잉크, 그 제조 방법, 및 이를 이용하여 형성한 상온 액체금속 캡슐 배선
KR101563242B1 (ko) 이방성 도전 필름 및 전자 장치
CN108847452B (zh) 一种可拉伸显示装置及其制备方法
WO2018196326A1 (zh) 走线结构、显示基板及显示装置
KR101993812B1 (ko) 상온 액체금속 캡슐 및 그 제조 방법
WO2020186384A1 (zh) 导线、电子设备及导线的制作方法
JP3541777B2 (ja) 異方性導電接続材料
US20200407216A1 (en) Physical quantity sensor and semiconductor device
JP6806328B2 (ja) 電子装置
KR102627619B1 (ko) 다층 이방성 전도 필름
KR101964881B1 (ko) 상온 액체 금속 캡슐을 이용하여 디바이스를 치유하는 신축성 패키지 및 이의 제조방법
CN101436440B (zh) 导电颗粒及各向异性导电粘结剂膜
KR20170120478A (ko) 표시 장치 및 표시 장치의 제조 방법
JP2016062879A (ja) 異方性導電材料
JP6300865B2 (ja) トランスデューサ用可撓性シート
WO2020186517A1 (zh) 电连接组件、电子设备及电连接组件的制备方法
EP2395822A1 (en) Mounting structure, electronic component, circuit board, board assembly, electronic device, and stress relaxation member
JP2017182709A (ja) 異方性導電接続構造体
JP2006032412A (ja) 弾性導電接着剤及び電極間接続構造
JP5988718B2 (ja) トランスデューサ用可撓性シート及びトランスデューサ用可撓性シートの製造方法。
KR101436243B1 (ko) 돌기 삽입형 신축성 기판과 그 제조방법 및 그 신축성 기판을 이용하여 이루어지는 신축성 전자소자 패키지와 그 제조방법
WO2018150897A1 (ja) 異方性導電接続構造体、異方性導電接続構造体の製造方法、異方性導電フィルム、及び異方性導電ペースト
KR101967401B1 (ko) 테스트 소켓
WO2020186516A1 (zh) 电连接组件、电子设备及电连接组件的制备方法
JP2000021470A (ja) 導電部材とこれを用いた低圧縮低抵抗コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920494

Country of ref document: EP

Kind code of ref document: A1