WO2020184537A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2020184537A1
WO2020184537A1 PCT/JP2020/010167 JP2020010167W WO2020184537A1 WO 2020184537 A1 WO2020184537 A1 WO 2020184537A1 JP 2020010167 W JP2020010167 W JP 2020010167W WO 2020184537 A1 WO2020184537 A1 WO 2020184537A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
speed
value
angular velocity
Prior art date
Application number
PCT/JP2020/010167
Other languages
English (en)
French (fr)
Inventor
宮本 直樹
清水 亮
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to CN202080020282.5A priority Critical patent/CN113573941B/zh
Priority to JP2021505071A priority patent/JP7127733B2/ja
Publication of WO2020184537A1 publication Critical patent/WO2020184537A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control device.
  • a four-wheel drive vehicle with motors on the front and rear wheels, such as hybrid vehicles, plug-in hybrid vehicles, and electric vehicles
  • the required torque is calculated based on the driver's accelerator operation amount, and this requirement is obtained.
  • Torque is distributed to the front and rear motors. Electric power is supplied to the front and rear motors from a battery. The upper limit of the power supplied from the battery is determined based on the battery condition such as the battery temperature and the remaining battery level. When power is supplied from the battery to the front and rear motors, the torque distributed to the front and rear motors is limited so as not to exceed this upper limit power.
  • the required torque required by the driver is calculated based on the accelerator opening signal, the brake signal, the vehicle speed signal, the shift position signal, the signal corresponding to the behavior of the vehicle, and the like. .. Then, based on the predetermined torque distribution ratio, the torque (command torque) in which the required torque is distributed to the front wheel side and the rear wheel side is calculated.
  • the torque that can be output from the front and rear rotating electric machines is calculated.
  • the power distribution ratio which is the distribution ratio of electric power from the battery to the rotary electric machine
  • the power distribution ratio is corrected based on the output torque of the front and rear rotating electric machines, and the electric power is distributed from the battery to the front and rear rotating electric machines based on the corrected power distribution ratio.
  • the electric power supplied to the front and rear rotary electric machines is controlled so as not to exceed the upper limit electric power of the battery (see paragraphs 0036 to 0048 of Patent Document 1, FIG. 3 and the like).
  • the front motor for driving the front wheels the rear motor for driving the rear wheels, and the angular speed calculation unit for calculating the front and rear motor angular speeds from the motor rotation speeds of the front and rear motors, respectively.
  • An output calculation unit that calculates the total output limit value that can be output from the battery based on the state of the battery that supplies power to the front and rear motors, and a torque calculation unit that calculates the torque distribution to the front and rear motors.
  • the total output limit value is limited by the total torque limit value calculated based on the motor angular speed of the motor on the low rotation side of the front and rear motors, and the rotation is low with respect to the torque required value after torque distribution to the front and rear motors.
  • a vehicle control device is configured that limits the torque of the high-speed motor while maintaining the torque of the side motor based on the total torque limit value and the torque of the low-speed motor.
  • the motor angular velocity when the rate of increase in the motor angular velocity of the front and rear motors during traveling is smaller than a predetermined value, the motor angular velocity is calculated based on the current value of the motor rotation speed at each time point during traveling.
  • the increase rate of the motor angular velocity when the increase rate of the motor angular velocity is equal to or higher than the predetermined value, the motor angular velocity can be calculated based on the predicted value of the motor rotation speed predicted by the increase rate with respect to the current value of the motor rotation speed. ..
  • the corrected axle speed of the front wheels is calculated by adding a predetermined speed correction value to the axle speed of the front wheels, and the magnitude relationship between the corrected axle speed and the axle speed of the rear wheels is determined.
  • the speed correction value applied when turning, accelerating, or climbing a slope can be made larger than the speed correction value applied when traveling straight at a constant speed.
  • power is supplied to the front motor that drives the front wheels, the rear motor that drives the rear wheels, the angular speed calculation unit that calculates the front and rear motor angular speeds from the motor rotation speeds of the front and rear motors, and the front and rear motors. It has an output calculation unit that calculates the total output limit value that can be output from the battery based on the state of the battery, and a torque calculation unit that calculates the torque distribution to the front and rear motors, and is calculated by the angular speed calculation unit.
  • the upper limit of the required torque calculated based on the accelerator operation amount of the driver is set, and the total output limit value is set to the front and rear motor.
  • the total torque limit value calculated based on the motor angular speed of the low rotation side motor is used, and the torque required by the low rotation side motor is maintained with respect to the torque required value after the torque is distributed to the front and rear motors.
  • a vehicle control device that limits the torque of the high-speed motor is based on the total torque limit value and the torque of the low-speed motor. According to this vehicle control device, the power supply capacity of the battery can be used in just proportion in a four-wheel drive vehicle in which motors are provided on the front wheels and the rear wheels, respectively.
  • FIG. 1 shows an example of the vehicle 10 equipped with the vehicle control device according to the present invention.
  • the vehicle 10 is a four-wheel drive vehicle in which motors 12 and 14 are provided on the front and rear wheels 11 and 13, respectively.
  • the vehicle control device includes a front motor 12 that drives the front wheels 11, a rear motor 14 that drives the rear wheels 13, an angular speed calculation unit 15 that calculates the front and rear motor angular speeds from the motor rotation speeds of the front and rear motors 12, and 14, respectively.
  • An output calculation unit 17 that calculates the total output limit value that can be output from the battery 16 based on the state of the battery 16 that supplies power to the front and rear motors 12 and 14, and a torque that calculates the torque distribution to the front and rear motors 12 and 14.
  • the calculation unit 18 is a main component. As shown in FIG. 1, the angular velocity calculation unit 15, the output calculation unit 17, and the torque calculation unit 18 can be included in a part of the functions of the electronic control unit 19, but are configured separately from the electronic control unit 19. You can also do it.
  • the axle speeds of the front and rear wheels 11 and 13 can be calculated by multiplying the motor angular velocity calculated by the angular velocity calculation unit 15 by a predetermined conversion coefficient. Specifically, the front axle speed is calculated by multiplying the motor angular velocity of the front motor 12 by the conversion coefficient for the front motor, and the rear axle speed is calculated by multiplying the motor angular velocity of the rear motor 14 by the conversion coefficient for the rear motor. ing.
  • the amount of depression of the accelerator pedal 20 by the driver is detected by the pedal force sensor 21. Then, the required torque of the driver is calculated by the required torque calculation unit 22 provided in the electronic control unit 19 based on the detected value of the pedal force sensor 21.
  • the front axle speed and the rear axle speed match.
  • the axle speeds of the front and rear wheels 11 and 13 may deviate. For example, when the front axle speed is higher than the rear axle speed, it can be determined that the front wheels 11 are slipping.
  • the rear axle speed is higher than the front axle speed, it can be determined that the rear wheels 13 are slipping. This slip may occur not only on one of the front and rear wheels 11 and 13, but also on both front and rear wheels 11 and 13.
  • the total output limit value of the battery 16 is calculated based on the battery state such as the battery temperature and the remaining battery level. Since the output of the battery 16 decreases as the battery temperature decreases and the remaining battery level decreases, the total output limit value is basically suppressed to a small value.
  • the torque calculation unit 18 appropriately corrects the difference between the axle speeds of 11 and 13.
  • FIG. 2 shows a flowchart of the processing flow of the vehicle control device.
  • the output calculation unit 17 calculates the total output limit value according to the upper limit power of the battery 16 (step S1).
  • the angular velocity calculation unit 15 calculates the front motor angular velocity of the front motor 12 and the rear motor angular velocity of the rear motor 14, respectively (steps S2 and S3).
  • step S4 the magnitude of the front axle speed and the rear axle speed calculated by the angular velocity calculation unit 15 is compared.
  • the driver required torque is limited by the torque value obtained by dividing the total output limit value of the battery 16 by the front motor angular velocity (step S5).
  • the rear torque is limited by the torque value obtained by dividing the value obtained by subtracting the front motor output from the total output limit value by the rear motor angular velocity (step S6), and the series of processing flows is completed (step S7).
  • step S4 when the front axle speed is equal to or higher than the rear axle speed (No side in step S4), the driver required torque is limited by the torque value obtained by dividing the total output limit value of the battery 16 by the rear motor angular velocity (step S8). ). Then, the front torque is limited by the torque value obtained by dividing the value obtained by subtracting the rear motor output from the total output limit value by the front motor angular velocity (step S9), and the series of processing flows is completed (step S7).
  • the torque required by the driver is limited based on the motor angular velocity on the side of the front and rear wheels 11 and 13 where the axle speed is smaller, so that the power supply capacity of the battery 16 is fully utilized. it can. Moreover, the remaining torque of the required torque distributed to the wheel side of the low axle speed is distributed to the side of the front and rear wheels 11 and 13 where the axle speed is high (the side where slip occurs) (torque on the high axle speed side). Therefore, the limited torque suppresses an excessive increase in the axle speed due to slippage, and stable running can be realized.
  • FIGS. 3 and 4 The control block diagram of the vehicle control device is shown in FIGS. 3 and 4.
  • FIG. 3 calculates the motor torques of the front and rear wheels 11 and 13 based on the total output limit value of the battery 16 (output base)
  • FIG. 4 shows the motor torques of the front and rear wheels 11 and 13 based on the total torque limit values of the front and rear motors 12 and 14 (torque base). doing.
  • the total output limit value corresponding to the upper limit power (block B1) of the battery 16 is calculated (block B2).
  • the total torque limit value is calculated from the total output limit value (block B2), the front motor angular velocity (block B3), and the rear motor angular velocity (block B4) (block B5).
  • This total torque limit value can be calculated by the following formula A.
  • Total torque limit value total output limit value ⁇ motor angular velocity (type A)
  • the vehicle 10 In addition to calculating the total torque limit value each time using the above formula A, the vehicle 10 is provided with a map obtained by performing the calculation in advance, and a value determined from the map is selected. Therefore, the control time may be shortened.
  • the angular velocity of the motor on the low rotation side is selected from the front and rear motors 12 and 14 as the motor angular velocity.
  • the A formula by selecting one of the angular velocities of the front and rear motors 12 and 14 calculated by the angular velocity calculation unit 15, the A formula is always controlled regardless of the magnitude of the angular velocities of the front and rear motors 12 and 14. Can be applied to. Therefore, the delay associated with the switching of the control type can be eliminated, and problems such as torque loss during the driving operation can be prevented.
  • the total torque limit is imposed on the required torque (block B6) by the driver with the total torque limit value (block B5) as the upper limit (block B7). Then, the torque distribution to the front and rear motors 12 and 14 is calculated based on the limitation of the total torque (block B8), and the output is allocated to each of the front and rear motors 12 and 14 from this torque distribution.
  • the vehicle 10 is provided with a map obtained by performing the calculation in advance, and a value determined from the map is selected. Therefore, the control time may be shortened.
  • the rear torque is limited (block B10) by comparing the torque distribution to the rear motor 14 (block B8) and the rear torque limit value (block B9), and the rear motor torque is determined (block B11).
  • Front torque limit value (total output limit value-rear motor output) ⁇ front motor angular velocity (C type)
  • the vehicle 10 In addition to calculating the front torque limit value each time using the above formula C, the vehicle 10 is provided with a map obtained by performing the calculation in advance, and a value determined from the map is selected. Therefore, the control time may be shortened.
  • the front torque is limited (block B13) by comparing the torque distribution (block B8) with respect to the front motor 12 and the front torque limit value (block B12), and the front motor torque is determined (block B14).
  • the basic configuration of the control block diagram shown in FIG. 4 is the same as that of the control block diagram shown in FIG. 3 (blocks B1 to B14).
  • the total torque limit value (block B5) is used instead of the total output limit value (block B2) for the front and rear motors.
  • the front-rear motor torque (block B8) is used instead of the output
  • the angular velocity ratio (block B15) is used instead of the angular velocities (blocks B3 and B4) of the front-rear motors 12 and 14, respectively.
  • the angular velocity ratio is defined by the following equation D.
  • Rear torque limit value (total torque limit value-front motor torque) x angular velocity ratio (B'type)
  • Front torque limit value (total torque limit value-rear motor torque) ⁇ angular velocity ratio (C'type)
  • Angular velocity ratio front motor angular velocity ⁇ rear motor angular velocity (D type)
  • these values are determined from the map obtained by having the vehicle 10 have a map obtained by performing the calculation in advance.
  • the control time may be shortened by allowing the value to be selected.
  • control block diagram shown in FIG. 3 and the control block diagram shown in FIG. 4 differ only in whether the front-rear motor torque is calculated based on the output or the torque, and the contents of these controls are the same. doing.
  • This control is a control that limits the front-rear torque based on the front-rear axle speed, and can be paralleled with other controls such as a traction control for suppressing slip.
  • FIG. 5 shows a timing chart related to the operation of the vehicle 10 when the control is performed based on the above control.
  • This timing chart shows “vehicle speed”, “axle torque” (total of front and rear torque), “front axle motor torque”, “rear axle motor torque”, and “vehicle drive power and battery” in order from the top to the bottom. "Power” is shown.
  • the vehicle 10 is accelerated by depressing the accelerator pedal 20 of the driver.
  • the vehicle body speed means the ideal vehicle speed (based on the amount of depression of the accelerator pedal 20) expected by the driver.
  • both the front axle speed and the rear axle speed are larger than the vehicle body speed, and the rear axle speed is higher than the front axle speed. This means that both the front and rear wheels 11 and 13 cause slippage due to acceleration, and the amount of slippage is particularly large on the rear wheel 13 side.
  • the vehicle drive power increases with acceleration from the stopped state (time t 0 ), and reaches the upper limit power of the battery at time t 1 .
  • the vehicle driving power exceeds the upper limit electric power of the battery 16 (the time t 1 and later), there is a fear that the charge capacity of the battery 16 is reduced.
  • the vehicle drive power reaches the upper limit power of the battery 16 (time t 1 )
  • the motor torque of the rear axle having a high axle speed is limited as shown in the “rear axle motor torque” stage.
  • the vehicle drive power can be suppressed to the upper limit power of the battery, and as shown in the "vehicle speed" stage, the rear axle speed can be brought close to the front axle speed, and stable running of the vehicle 10 can be realized.
  • the vehicle driving power may not be suppressed to the upper limit power of the battery 16.
  • the motor angular velocity is calculated by the angular velocity calculation unit 15 based on the motor rotation speed.
  • the current value (actual value) at that time is adopted as the motor rotation speed.
  • the transmission of the current value in the control system causes a slight communication delay, and when the increase rate of the motor angular velocity is large, for example, when the vehicle 10 suddenly slips during normal running, the transmission thereof is not performed. There is a possibility that the control may be delayed due to the communication delay (see the control value (before correction) in FIG. 6).
  • the rate of increase in the motor angular velocity becomes larger than a predetermined value (switching threshold) (time t 1 )
  • the motor speed corresponding to the rate of increase is used.
  • the motor angular velocity is corrected based on the predicted value.
  • the control value of the motor angular velocity can be brought close to the actual value (see the control value (after correction) in FIG. 6), and the motor angular velocity can be controlled with high accuracy. It is preferable that the magnitude of this correction is increased as the rate of increase in the motor angular velocity increases from the viewpoint of improving the accuracy of the control value.
  • the magnitude is directly compared between the front axle speed and the rear axle speed.
  • a predetermined speed correction value is added to the front axle speed. You may want to compare the magnitude between the speed and the rear axle speed.
  • the configuration of the vehicle control device, the flowchart of the processing flow, the control block, the timing chart, and the correction of the motor angular speed described above are merely examples for explaining the present invention, and the front wheels 11 and the rear wheels 13 are respectively.
  • the problem of the present invention of enabling the power supply capacity of the battery 16 to be used in just proportion in the four-wheel drive vehicle 10 provided with the motors 12 and 14, the above-mentioned components and processes can be solved.
  • the flow and the like can be changed as appropriate.
  • This vehicle control device can be widely applied to a vehicle 10 having motors 12 and 14 on the front and rear wheels 11 and 13, respectively, such as a hybrid vehicle, a plug-in hybrid vehicle, and an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

前輪(11)用の前モータ(12)と、後輪(13)用の後モータ(14)と、モータ回転数から前後のモータ角速度を演算する角速度演算部(15)と、電池(16)の状態に基づいて、この電池(16)から出力可能な総出力制限値を演算する出力演算部(17)と、前後モータ(12、14)へのトルク配分を演算するトルク演算部(18)と、を有し、前後輪(11、13)の車軸速度の間に大小差が生じたときに、要求トルクの上限を、前記総出力制限値を低回転側のモータのモータ角速度に基づいて算出した総トルク制限値で制限し、前後モータ(12、14)へのトルク配分後のトルク要求値に対し、低回転側のモータによるトルクを維持しつつ、高回転側のモータによるトルクを、前記総トルク制限値と前記低回転側のモータのトルクに基づいて制限した車両制御装置を構成する。

Description

車両制御装置
 この発明は、車両制御装置に関する。
 ハイブリッド車、プラグインハイブリッド車、電気自動車等のように前輪及び後輪にそれぞれモータが設けられた4輪駆動式の車両においては、ドライバのアクセル操作量に基づいて要求トルクが算出され、この要求トルクが前後モータに配分される。この前後モータには、電池から電力が供給される。電池からの供給電力は、電池温度や電池残量等の電池状態に基づいて上限電力が決められる。そして、電池から前後モータに電力が供給される際には、この上限電力を超えないように前後モータに配分されるトルクが制限される。
 例えば、特許文献1に係る制御装置においては、アクセル開度信号、ブレーキ信号、車速信号、シフト位置信号、及び、車両の挙動に対応する信号等に基づき、運転者が要求する要求トルクを算出する。そして、所定のトルク分配比に基づき、前記要求トルクを前輪側及び後輪側に分配したトルク(指令トルク)を算出する。
 ここで、前後の回転電機(モータ)から出力可能なトルクを算出する。そして、所定のトルク分配比に基づき、電池から回転電機に対する電力の分配比であるパワー分配比を算出する。さらに、前後の回転電機の出力可能トルクに基づき、前記パワー分配比を補正し、この補正したパワー分配比に基づいて、電池から前後の回転電機に対し電力を分配する。このようにすることで、前後の回転電機に供給される電力が、電池の上限電力を超えないように制御している(特許文献1の段落0036~0048、図3等参照)。
特開2015-53782号公報
 特許文献1に係る制御装置においては、スリップ等によって前後の車軸の角速度に差が生じた場合、前後のモータの電力バランスが崩れる虞がある。ここで、後輪にスリップが生じ、後輪側の車軸の角速度が、前輪側の車軸の角速度よりも大きくなった場合を例として説明する。電池の出力電力P、モータトルクT、及び、角速度ωの間にはP=T×ωの関係が成立するが、低回転の前輪側(低ω)を基準とすると、前記式の見掛け上トルクTを大きく取れることとなり、電池の上限電力を超えてしまい、電池の劣化促進等の問題が生じる。
 この一方で、高回転の後輪側(高ω)を基準とすると、前記式の見掛け上トルクTを小さくせざるを得ず、電池の上限電力を使い切れずに車両の動力性能が損なわれる問題がある。
 そこで、この発明は、前輪及び後輪にそれぞれモータが設けられた4輪駆動式の車両において、電池の電力供給能力を過不足なく利用可能とすることを課題とする。
 上記の課題を解決するために、この発明においては、前輪を駆動する前モータと、後輪を駆動する後モータと、前記前後モータのモータ回転数から前後のモータ角速度をそれぞれ演算する角速度演算部と、前記前後モータに電力を供給する電池の状態に基づいて、該電池から出力可能な総出力制限値を演算する出力演算部と、前記前後モータへのトルク配分を演算するトルク演算部と、を有し、前記角速度演算部によって演算されたモータ角速度から算出した前記前後輪の車軸速度の間に大小差が生じたときに、ドライバのアクセル操作量に基づいて算出される要求トルクの上限を、前記総出力制限値を前記前後モータのうち低回転側のモータのモータ角速度に基づいて算出した総トルク制限値で制限し、該前後モータへのトルク配分後のトルク要求値に対し、低回転側のモータによるトルクを維持しつつ、高回転側のモータによるトルクを、前記総トルク制限値と前記低回転側のモータのトルクに基づいて制限する車両制御装置を構成した。
 前記構成においては、走行中における前記前後モータのモータ角速度の増加率が予め定めた所定値よりも小さいときは、走行中の各時点におけるモータ回転数の現在値に基づいて該モータ角速度を算出する一方で、該モータ角速度の増加率が前記所定値以上のときは、モータ回転数の現在値に対し前記増加率で予測したモータ回転数の予測値に基づいて該モータ角速度を算出する構成とできる。
 前記各構成においては、前輪の車軸速度に予め定めた所定の速度補正値を加えた前輪の補正車軸速度を算出し、該補正車軸速度と後輪の車軸速度との間で大小関係を判断する構成とできる。
 この構成においては、一定速度での直進走行時に適用される前記速度補正値に対し、旋回時、加速時、又は、登坂時に適用される該速度補正値を大きくした構成とできる。
 この発明では、前輪を駆動する前モータと、後輪を駆動する後モータと、前記前後モータのモータ回転数から前後のモータ角速度をそれぞれ演算する角速度演算部と、前記前後モータに電力を供給する電池の状態に基づいて、該電池から出力可能な総出力制限値を演算する出力演算部と、前記前後モータへのトルク配分を演算するトルク演算部と、を有し、前記角速度演算部によって演算されたモータ角速度から算出した前記前後輪の車軸速度の間に大小差が生じたときに、ドライバのアクセル操作量に基づいて算出される要求トルクの上限を、前記総出力制限値を前記前後モータのうち低回転側のモータのモータ角速度に基づいて算出した総トルク制限値で制限し、該前後モータへのトルク配分後のトルク要求値に対し、低回転側のモータによるトルクを維持しつつ、高回転側のモータによるトルクを、前記総トルク制限値と前記低回転側のモータのトルクに基づいて制限する車両制御装置を構成した。この車両制御装置によると、前輪及び後輪にそれぞれモータが設けられた4輪駆動式の車両において、電池の電力供給能力を過不足なく利用可能とできる。
この発明に係る車両制御装置が搭載された車両の一例(4輪駆動車)を示す模式図である。 車両制御装置の処理フローを示すフローチャートである。 車両制御装置の制御ブロック図(出力ベース)である。 車両制御装置の制御ブロック図(トルクベース)である。 車両制御装置のタイミングチャートである。 モータ角速度の補正を示す図である。
 この発明に係る車両制御装置が搭載された車両10の一例を図1に示す。この車両10は、前後輪11、13のそれぞれにモータ12、14が設けられた4輪駆動車である。
 車両制御装置は、前輪11を駆動する前モータ12と、後輪13を駆動する後モータ14と、前後モータ12、14のモータ回転数から前後のモータ角速度をそれぞれ演算する角速度演算部15と、前後モータ12、14に電力を供給する電池16の状態に基づいて、電池16から出力可能な総出力制限値を演算する出力演算部17と、前後モータ12、14へのトルク配分を演算するトルク演算部18と、を主要な構成要素としている。角速度演算部15、出力演算部17、及び、トルク演算部18は、図1に示すように、電子制御ユニット19の機能の一部に含めることができるが、電子制御ユニット19とは別に構成することもできる。
 前後輪11、13の車軸速度は、角速度演算部15によって演算されたモータ角速度に、所定の換算係数を乗じることによって算出できる。具体的には、前モータ12のモータ角速度に前モータ用換算係数を乗じることによって前車軸速度を算出し、後モータ14のモータ角速度に後モータ用換算係数を乗じることによって後車軸速度を算出している。
 ドライバによるアクセルペダル20の踏み込み量は、踏力センサ21によって検出される。そしてこの踏力センサ21の検出値に基づいて、電子制御ユニット19に設けられた要求トルク演算部22によってドライバの要求トルクが演算される。
 前後輪11、13ともスリップを生じることなく走行しているときは、前車軸速度と後車軸速度は一致する。これに対し、前後輪11、13の少なくとも一方にスリップが生じると、前後輪11、13の車軸速度にずれが生じることがある。例えば、前車軸速度が後車軸速度よりも大きいときは、前輪11にスリップが生じていると判断できる。これに対し、後車軸速度が前車軸速度よりも大きいときは、後輪13にスリップが生じていると判断できる。このスリップは、前後輪11、13の一方のみに生じる場合だけではなく、前後輪11、13の両方で生じる場合もある。
 電池16の総出力制限値は、電池温度や電池残量等の電池状態に基づいて演算される。電池温度が低いほど、及び、電池残量が低いほど電池16の出力は低下するため、総出力制限値は基本的に小さく抑えられる。
 前後モータ12、14へのトルク配分は、基本的には予め定められた所定の比率(例えば、前モータ:後モータ=4:6)とされるが、角速度演算部15によって検出された前後輪11、13の車軸速度差に対応して、トルク演算部18によって適宜修正される。
 車両制御装置の処理フローのフローチャートを図2に示す。この処理フローにおいては、まず、出力演算部17によって、電池16の上限電力に応じた総出力制限値を演算する(ステップS1)。次に、角速度演算部15によって、前モータ12の前モータ角速度、及び、後モータ14の後モータ角速度をそれぞれ演算する(ステップS2、S3)。
 さらに、角速度演算部15によって算出された前車軸速度と後車軸速度の大小が比較される(ステップS4)。前車軸速度が後車軸速度よりも小さい場合は(ステップS4のYes側)、電池16の総出力制限値を前モータ角速度で除したトルク値によって、ドライバ要求トルクを制限する(ステップS5)。そして、総出力制限値から前モータ出力を引いた値を後モータ角速度で除したトルク値によって後トルクを制限し(ステップS6)、一連の処理フローを終了する(ステップS7)。
 この一方で、前車軸速度が後車軸速度以上の場合は(ステップS4のNo側)、電池16の総出力制限値を後モータ角速度で除したトルク値によって、ドライバ要求トルクを制限する(ステップS8)。そして、総出力制限値から後モータ出力を引いた値を前モータ角速度で除したトルク値によって前トルクを制限し(ステップS9)、一連の処理フローを終了する(ステップS7)。
 この一連の処理フローに示すように、前後輪11、13のうち車軸速度の小さい側のモータ角速度に基づいてドライバによる要求トルクを制限したので、電池16の電力供給能力を余すことなく十分に利用できる。しかも、前後輪11、13のうち車軸速度の大きい側(スリップが生じている側)に、要求トルクのうち低車軸速度の車輪側に配分した残りのトルクを配分する(高車軸速度側のトルクを制限する)ようにしたので、制限されたトルクによって、スリップに伴う車軸速度の過度の上昇を抑制して、安定した走行を実現できる。
 車両制御装置の制御ブロック図を図3及び図4に示す。図3は電池16の総出力制限値に基づいて(出力ベース)、図4は前後モータ12、14の総トルク制限値に基づいて(トルクベース)、前後輪11、13のモータトルクをそれぞれ算出している。
 図3に示す制御ブロック図においては、電池16の上限電力(ブロックB1)に応じた総出力制限値を演算する(ブロックB2)。ここで、この総出力制限値(ブロックB2)、前モータ角速度(ブロックB3)、及び、後モータ角速度(ブロックB4)から、総トルク制限値が演算される(ブロックB5)。この総トルク制限値は、次のA式によって算出できる。
 総トルク制限値=総出力制限値÷モータ角速度 (A式)
 なお、この総トルク制限値は、上記A式を用いて都度演算するほかに、演算を事前に行うことによって得られるマップを車両10に持たせておき、そのマップから決まる値を選択させるようにして、制御時間の短縮を図るなどしてもよい。
 ここで、モータ角速度は、前後モータ12、14のうち、低回転側のモータの角速度が選択される。このA式においては、角速度演算部15によって演算された前後モータ12、14の角速度のうちの一方を選択することにより、前後モータ12、14の角速度の大小に関係なく、常にこのA式を制御に適用できる。このため、制御式の切り替えに伴う遅延をなくすことができ、運転操作中のトルク抜け等の不具合を防止できる。
 さらに、この総トルク制限値(ブロックB5)を上限として、ドライバによる要求トルク(ブロックB6)に対し総トルクの制限が課せられる(ブロックB7)。そして、この総トルクの制限に基づいて、前後モータ12、14に対するトルク配分が演算され(ブロックB8)、このトルク配分から前後モータ12、14それぞれへの出力が割り振られる。
 ここで、後モータ14のモータ角速度よりも前モータ12のモータ角速度の方が小さいときは、前モータ12に振り分けられる出力、総出力制限値(ブロックB2)、及び、後モータ角速度(ブロックB4)から、後トルク制限値が演算される(ブロックB9)。この後トルク制限値は、次のB式によって算出できる。
 後トルク制限値=(総出力制限値-前モータ出力)÷後モータ角速度 (B式)
 なお、この後トルク制限値は、上記B式を用いて都度演算するほかに、演算を事前に行うことによって得られるマップを車両10に持たせておき、そのマップから決まる値を選択させるようにして、制御時間の短縮を図るなどしてもよい。
 さらに、後モータ14に対するトルク配分(ブロックB8)と、後トルク制限値(ブロックB9)との比較によって後トルクが制限され(ブロックB10)、後モータトルクが決定される(ブロックB11)。
 また、前モータ12のモータ角速度よりも後モータ14のモータ角速度の方が小さいときは、後モータ14に振り分けられる出力、総出力制限値(ブロックB2)、及び、前モータ角速度(ブロックB3)から、前トルク制限値が演算される(ブロックB12)。この前トルク制限値は、次のC式によって算出できる。
 前トルク制限値=(総出力制限値-後モータ出力)÷前モータ角速度 (C式)
 なお、この前トルク制限値は、上記C式を用いて都度演算するほかに、演算を事前に行うことによって得られるマップを車両10に持たせておき、そのマップから決まる値を選択させるようにして、制御時間の短縮を図るなどしてもよい。
 さらに、前モータ12に対するトルク配分(ブロックB8)と、前トルク制限値(ブロックB12)との比較によって前トルクが制限され(ブロックB13)、前モータトルクが決定される(ブロックB14)。
 図4に示す制御ブロック図は、その基本的な構成は図3で示した制御ブロック図と共通する(ブロックB1~B14)。その一方で、前トルク制限値の演算(ブロックB12)及び後トルク制限値の演算(ブロックB9)において、総出力制限値(ブロックB2)の代わりに総トルク制限値(ブロックB5)が、前後モータ出力の代わりに前後モータトルク(ブロックB8)が、前後モータ12、14の角速度(ブロックB3、B4)の代わりに角速度比(ブロックB15)がそれぞれ用いられている点で相違する。
 この場合、後トルク制限値を算出する上記B式の代わりに次のB’式が、前トルク制限値を算出するために上記C式の代わりに次のC’式がそれぞれ用いられる。また、角速度比は次のD式で定義される。
 後トルク制限値=(総トルク制限値-前モータトルク)×角速度比 (B’式)
 前トルク制限値=(総トルク制限値-後モータトルク)÷角速度比 (C’式)
 角速度比=前モータ角速度÷後モータ角速度 (D式)
 なお、これらの値は、上記B’式、C’式、D式を用いて都度演算するほかに、演算を事前に行うことによって得られるマップを車両10に持たせておき、そのマップから決まる値を選択させるようにして、制御時間の短縮を図るなどしてもよい。
 図3に示す制御ブロック図と、図4に示す制御ブロック図は、前後モータトルクの算出を、出力ベースで行うかトルクベースで行うかの違いのみであって、これらの制御の内容自体は共通している。
 上記において説明したフローチャートに基づく処理フロー(図2)、及び、制御ブロックに基づく制御(図3、図4)は、車両10の走行中、常時継続して行われる。また、この制御は、前後車軸速度に基づいて前後トルクを制限する制御であり、スリップを抑制するためのトラクションコントロール等の他の制御と並立できる。
 上記の制御に基づいて制御を行なうときの車両10の動作に係るタイミングチャートを図5に示す。このタイミングチャートは、上段から下段に向かって順に、「車速」、「車軸トルク」(前後トルクの合計)、「前車軸モータトルク」、「後車軸モータトルク」、並びに、「車両駆動電力及び電池電力」を示している。
 「車速」の段に示すように、ドライバのアクセルペダル20の踏み込みによって車両10は加速する。ここで、車体速とは、ドライバが期待する(アクセルペダル20の踏み込み量に基づく)理想の車速を意味している。この車速例では、車体速に対し、前車軸速度及び後車軸速度のいずれも大きく、かつ、後車軸速度の方が前車軸速度よりも大きい。これは、前後輪11、13のいずれも加速に伴うスリップを生じており、特に後輪13側でスリップ量が大きいことを意味している。
 「車両駆動電力及び電池電力」の段に示すように、停車状態(時間t)からの加速に伴って車両駆動電力は増大し、時間tにおいて電池の上限電力に到達する。このまま、前後モータ12、14に電力供給を継続すると、車両駆動電力が電池16の上限電力を超えてしまい(時間t以降)、電池16の充電容量が低下する虞がある。
 そこで、車両駆動電力が電池16の上限電力に到達したとき(時間t)は、「後車軸モータトルク」の段に示すように、車軸速度が大きい後車軸のモータトルクを制限する。これにより、車両駆動電力を電池の上限電力に抑制できるとともに、「車速」の段に示すように、後車軸速度を前車軸速度に近付けて、車両10の安定走行を実現できる。
 また、前車軸速度と後車軸速度の差が小さいときは、高速の後車軸側のみモータトルクを制限しても、車両駆動電力を電池16の上限電力に抑制できないことが生じ得る。この場合は、「前車軸モータトルク」の段に示すように、低速の前車軸側のモータトルクも併せて制限して(時間t以降)、車両駆動電力の抑制を図る。
 次にモータ角速度の補正について、図6を用いて説明する。このモータ角速度は、既述の通りモータ回転数に基づいて角速度演算部15によって演算される。このとき、モータ回転数として、その時点での現在値(実値)が採用される。ところが、制御系内におけるその現在値の伝達は、若干の通信遅延が生じ、例えば車両10が通常走行中に急にスリップを生じたときのように、モータ角速度の増加率が大きいときは、その通信遅延によって制御に遅延が生じる虞がある(図6中の制御値(補正前)参照)。
 そこで、モータ角速度の増加率が予め定めた所定値(切替閾値)よりも大きくなった時点で(時間t)、モータ回転数の現在値の代わりに、その増加率に対応したモータ回転数の予測値に基づいてモータ角速度を補正する。このように、補正を行うことによって、モータ角速度の制御値と実値を近付けることができ(図6中の制御値(補正後)参照)、モータ角速度の制御を精度よく行うことができる。この補正の大きさは、モータ角速度の増加率が大きいほど大きくするのが制御値の精度向上の点で好ましい。
 また、図2のフローチャートでは、前車軸速度と後車軸速度との間で大小を直接比較しているが、例えば、次のE式に示すように、前車軸速度に所定の速度補正値を加えたものと後車軸速度との間で大小を比較するようにしてもよい。
 前車軸速度+速度補正値<後車軸速度 (E式)
 車両10の加速の際には、前輪11よりも後輪13に大きな駆動トルクを与えて、この後輪13が若干スリップ気味になるときに最大のトラクションを得ることができる場合がある。この場合、E式に示すように、前車軸速度に速度補正値を加えて、後輪13に若干のスリップを許容することによって、より高い走行性能を確保できる。この速度補正値は、車両10の走行状態を考慮して適宜変更でき、例えば、一定速度での直進走行時における速度補正値よりも、旋回時、加速時、登坂時等のように大きなトラクションを必要とする走行状態における速度補正値を大きくするのが好ましい。
 上記において説明した車両制御装置の構成、処理フローのフローチャート、制御ブロック、タイミングチャート、及び、モータ角速度の補正は、この発明を説明するための単なる例示に過ぎず、前輪11及び後輪13にそれぞれモータ12、14が設けられた4輪駆動式の車両10において、電池16の電力供給能力を過不足なく利用可能とする、というこの発明の課題を解決し得る限りにおいて、上記の構成要素、処理フロー等に適宜変更を加えることができる。
 この車両制御装置は、ハイブリッド車、プラグインハイブリッド車、電気自動車等のように、前後輪11、13にそれぞれモータ12、14を備えた車両10に幅広く適用できる。
10 車両
11 前輪
12 前モータ
13 後輪
14 後モータ
15 角速度演算部
16 電池
17 出力演算部
18 トルク演算部
19 電子制御ユニット
20 アクセルペダル
21 踏力センサ
22 要求トルク演算部

Claims (4)

  1.  前輪を駆動する前モータと、
     後輪を駆動する後モータと、
     前記前後モータのモータ回転数から前後のモータ角速度をそれぞれ演算する角速度演算部と、
     前記前後モータに電力を供給する電池の状態に基づいて、該電池から出力可能な総出力制限値を演算する出力演算部と、
     前記前後モータへのトルク配分を演算するトルク演算部と、
    を有し、前記角速度演算部によって演算されたモータ角速度から算出した前記前後輪の車軸速度の間に大小差が生じたときに、ドライバのアクセル操作量に基づいて算出される要求トルクの上限を、前記総出力制限値を前記前後モータのうち低回転側のモータのモータ角速度に基づいて算出した総トルク制限値で制限し、該前後モータへのトルク配分後のトルク要求値に対し、低回転側のモータによるトルクを維持しつつ、高回転側のモータによるトルクを、前記総トルク制限値と前記低回転側のモータのトルクに基づいて制限する車両制御装置。
  2.  走行中における前記前後モータのモータ角速度の増加率が予め定めた所定値よりも小さいときは、走行中の各時点におけるモータ回転数の現在値に基づいて該モータ角速度を算出する一方で、該モータ角速度の増加率が前記所定値以上のときは、モータ回転数の現在値に対し前記増加率で予測したモータ回転数の予測値に基づいて該モータ角速度を算出する
    請求項1に記載の車両制御装置。
  3.  前輪の車軸速度に予め定めた所定の速度補正値を加えた前輪の補正車軸速度を算出し、該補正車軸速度と後輪の車軸速度との間で大小関係を判断する
    請求項1又は2に記載の車両制御装置。
  4.  一定速度での直進走行時に適用される前記速度補正値に対し、旋回時、加速時、又は、登坂時に適用される該速度補正値を大きくした
    請求項3に記載の車両制御装置。
PCT/JP2020/010167 2019-03-13 2020-03-10 車両制御装置 WO2020184537A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080020282.5A CN113573941B (zh) 2019-03-13 2020-03-10 车辆控制装置
JP2021505071A JP7127733B2 (ja) 2019-03-13 2020-03-10 車両制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-045651 2019-03-13
JP2019045651 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020184537A1 true WO2020184537A1 (ja) 2020-09-17

Family

ID=72427885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010167 WO2020184537A1 (ja) 2019-03-13 2020-03-10 車両制御装置

Country Status (3)

Country Link
JP (1) JP7127733B2 (ja)
CN (1) CN113573941B (ja)
WO (1) WO2020184537A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050413A (ja) * 2016-09-23 2018-03-29 日立オートモティブシステムズ株式会社 電動車両の制御装置、制御方法および制御システム
JP2018058584A (ja) * 2012-06-11 2018-04-12 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited 車両制御システムおよび車両制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162104A (ja) * 2003-12-04 2005-06-23 Sony Corp 搬送体、搬送体の加速装置、搬送体の減速装置、搬送体の搬送方法、搬送体の加速方法および搬送体の減速方法
JP4670691B2 (ja) * 2006-03-14 2011-04-13 日産自動車株式会社 車両用駆動制御装置、自動車及び車両用駆動制御方法
JP5965700B2 (ja) * 2012-03-30 2016-08-10 本田技研工業株式会社 車両用駆動装置
CN104842816A (zh) * 2014-04-08 2015-08-19 北汽福田汽车股份有限公司 电动汽车的扭矩控制方法和扭矩控制装置
JP6553556B2 (ja) * 2016-08-08 2019-07-31 トヨタ自動車株式会社 自動車

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058584A (ja) * 2012-06-11 2018-04-12 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited 車両制御システムおよび車両制御方法
JP2018050413A (ja) * 2016-09-23 2018-03-29 日立オートモティブシステムズ株式会社 電動車両の制御装置、制御方法および制御システム

Also Published As

Publication number Publication date
CN113573941B (zh) 2023-07-18
CN113573941A (zh) 2021-10-29
JP7127733B2 (ja) 2022-08-30
JPWO2020184537A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US7114589B2 (en) Control device for hybrid four-wheel-drive vehicle and hybrid four-wheel-drive vehicle
JP5790871B2 (ja) 電動車両の駆動力制御装置および電動車両の駆動力制御方法
JP4755063B2 (ja) 電動車両、そのスリップ制御装置および制御方法
JP5835583B2 (ja) 電動車両の駆動力制御装置
WO2017033637A1 (ja) 電動車両の制御装置
CN110167785B (zh) 电动车辆的控制装置、控制系统及控制方法
JP2016111878A (ja) 車両の駆動トルク制御装置
JP2008074328A (ja) ハイブリッド車両の駆動力制御装置
JP7176360B2 (ja) 電動車両
JP2021027648A (ja) 変速制御方法及び変速制御システム
JP2007112195A (ja) ハイブリッド車両のモータ電力供給制御装置
WO2020184537A1 (ja) 車両制御装置
JP2008024204A (ja) ハイブリッド車両の制御装置
WO2023013565A1 (ja) 車両制御装置
JP4802643B2 (ja) 車両およびその制御方法
KR20210018652A (ko) 차량의 휠 슬립 제어 방법
WO2015019399A1 (ja) 車両の制振制御装置
JP2022057096A (ja) 車両の制御装置
JP4165344B2 (ja) 車両の制御装置
JP2020078103A (ja) 変速制御装置
WO2022085082A1 (ja) 駆動力制御方法及び駆動力制御装置
JP2018129890A (ja) 車両の出力制御装置
JP2004052625A (ja) ハイブリッド車両
WO2023182209A1 (ja) 車両の走行制御装置
WO2022070732A1 (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770655

Country of ref document: EP

Kind code of ref document: A1