WO2020184434A1 - 圧力センサ - Google Patents
圧力センサ Download PDFInfo
- Publication number
- WO2020184434A1 WO2020184434A1 PCT/JP2020/009673 JP2020009673W WO2020184434A1 WO 2020184434 A1 WO2020184434 A1 WO 2020184434A1 JP 2020009673 W JP2020009673 W JP 2020009673W WO 2020184434 A1 WO2020184434 A1 WO 2020184434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outer bottom
- stem
- pressure sensor
- insulating film
- boundary
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 36
- 239000012530 fluid Substances 0.000 claims abstract description 11
- 238000005336 cracking Methods 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 108
- 230000035882 stress Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0042—Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/06—Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
- G01L19/145—Housings with stress relieving means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
- G01L9/0055—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
Definitions
- the present invention relates to a pressure sensor in which a detection circuit is provided with an insulating film sandwiched between the outer bottom surfaces of the stem.
- a pressure sensor As a pressure sensor, a pressure sensor is known in which a detection circuit is provided on the outer bottom surface of a stem made of metal or the like with an insulating film sandwiched between them.
- a detection circuit for example, a pressure resistance effect (also referred to as a piezoresistive effect) may be used to detect distortion of the bottom wall portion (also referred to as a membrane or diaphragm) of a stem by a resistance change.
- the insulating film ensures the insulation between the stem and the detection circuit, thereby realizing appropriate pressure detection by the detection circuit.
- the insulating film of such a pressure sensor is formed on the bottom wall of the stem that is deformed by pressure and is exposed to a high temperature environment depending on the fluid to be measured, the film may peel off or crack. There is a problem that arises. Film peeling and cracks that occur in the insulating film have become a problem because they may lead to a decrease in the performance of the pressure sensor and a decrease in the durable life.
- the present invention has been made in view of such circumstances, and provides a pressure sensor that prevents the problem of peeling or cracking of the insulating film that insulates the stem and the detection circuit.
- the pressure sensor according to the present invention A stem having a flat outer bottom surface, an outer surface extending in a direction intersecting the outer bottom surface, and an inner surface that is opposite to the outer bottom surface and receives pressure from a fluid to be measured. It has a detection circuit provided with an insulating film interposed therebetween with respect to the outer bottom surface.
- the stem A skirt that is formed so as to surround the outer bottom surface, is composed of a surface that faces a direction different from the outer bottom surface and the outer surface when viewed from a direction perpendicular to the outer bottom surface, and connects the outer bottom surface and the outer surface.
- the insulating film covers at least a part of the foot portion.
- a base portion is formed on the surface of the stem to which the insulating film is in close contact.
- the outer bottom surface and the outer surface are connected substantially vertically, it is considered that stress concentration occurs in the portion of the insulating film covering this portion and its periphery, which is the starting point of film peeling and cracking. ..
- the outer bottom surface and the outer surface are not directly connected, but the outer bottom surface and the outer surface are connected via the skirt portion.
- the presence of the skirt alleviates a sudden change in surface orientation between the outer bottom surface and the outer surface, and reduces stress concentration in the insulating film covering the surface of the stem, thereby reducing the pressure according to the present invention.
- the sensor can prevent the insulating film from peeling off or cracking.
- the size may be 10 ⁇ m or more and 1 mm or less.
- the length of the skirt By setting the length of the skirt to 10 ⁇ m or more, stress concentration in the insulating film covering the skirt and its surroundings can be reduced more effectively. Therefore, a pressure sensor having such a skirt has durability and durability. A further improvement effect of reliability can be obtained.
- the length of the base portion is set to 1 mm or less, which contributes to the miniaturization of the pressure sensor.
- the skirt portion may be formed so as to surround the outer bottom surface and may have an inclined surface at an angle of 30 to 60 degrees with respect to the outer bottom surface when viewed in a cross section orthogonal to the outer bottom surface. Good.
- the inclined surface may be directly connected to the outer bottom surface or may be connected to the outer bottom surface via a connecting surface having an angle smaller than that of the inclined surface.
- the skirt portion having such an inclined surface effectively reduces stress concentration on the insulating film covering the boundary between the outer bottom surface and the skirt portion, and the insulating film peels off or cracks in or near the outer bottom surface. Can be effectively prevented.
- the inclined surface may have a constant angle with respect to the outer bottom surface when viewed in a cross section orthogonal to the outer bottom surface.
- the inclined surface may be changed so that the angle formed with respect to the outer bottom surface increases as the distance from the outer bottom surface increases when viewed in a cross section orthogonal to the outer bottom surface.
- the angle formed with respect to the outer bottom surface changes as the distance from the first boundary, which is the boundary between the outer bottom surface and the skirt portion, increases. It may have a curved surface shape that becomes large.
- the angle of the skirt By changing the angle of the skirt, the change in the surface direction at the boundary between the skirt and the outer bottom surface and the outer surface can be reduced more effectively.
- the angle formed by the skirt and the outer bottom surface increases transitionally from the boundary, so that such a pressure sensor effectively prevents local stress concentration of the insulating film, and the film. It is possible to effectively prevent the occurrence of peeling and cracks.
- FIG. 1 is a schematic cross-sectional view of the pressure sensor according to the first embodiment of the present invention.
- FIG. 2 is an enlarged cross-sectional view of the sensor main body of the pressure sensor shown in FIG.
- FIG. 3 is a conceptual diagram showing the shape of the stem of the sensor main body shown in FIG.
- FIG. 4 is an enlarged cross-sectional view of a sensor main body included in the pressure sensor according to the second embodiment of the present invention.
- FIG. 5 is a conceptual diagram showing the shape of the stem included in the sensor main body shown in FIG.
- FIG. 6 is a conceptual diagram showing the shape of the stem included in the pressure sensor according to the third embodiment of the present invention.
- FIG. 7 is a graph showing the relationship between the length of the base portion of the stem and the value of the maximum stress of the insulating film.
- FIG. 8 is a graph showing the relationship between the film thickness of the insulating film and the value of the maximum stress.
- FIG. 1 is a schematic cross-sectional view of the pressure sensor 10 according to the first embodiment of the present invention.
- the pressure sensor 10 includes a sensor main body 18 including a stem 20, a connecting member 12 in which a flow path 12b for transmitting pressure to the stem 20 is formed, and a holding member 14 for fixing the sensor main body 18 to the connecting member 12. It has a substrate portion 70 or the like that is wired to a detection circuit 50 or the like provided on the stem 20.
- a screw groove 12a for fixing the pressure sensor 10 to the measurement target is formed on the outer periphery of the connecting member 12.
- the sensor main body 18 and the stem 20 included in the sensor main body 18 have a bottomed (upper bottom) tubular outer shape, and one of the flow paths 12b in the connecting member 12 Provided at the end.
- the stem 20 is provided with a flange portion 21 on the opening side (Z-axis negative direction side), and the flange portion 21 is sandwiched between the holding member 14 and the connecting member 12, so that the sensor main body portion 18 is connected. It is fixed to the member 12.
- the opening of the stem 20 and the flow path 12b of the connecting member 12 are airtightly connected by using the holding member 14, and the pressure of the fluid to be measured is transmitted to the bottom wall portion 22 (see FIG. 2) of the stem 20. Be done.
- FIG. 2 is an enlarged cross-sectional view of the sensor main body 18 shown in FIG.
- the sensor main body 18 has a stem 20, an insulating film 40, and a detection circuit 50.
- the stem 20 has a substantially circular plate-shaped bottom wall portion 22 extending in the XY plane direction (see FIG. 3A) and a substantially cylindrical side wall portion connected to the outer peripheral edge of the bottom wall portion 22 and extending in the negative direction of the Z axis. It has a part 25 and.
- the stem 20 has a flange portion 21 protruding in the outer diameter direction at the end in the negative direction of the Z axis of the side wall portion 25, but the shape of the stem 20 is not limited to that shown in the embodiment, for example.
- the stem may have a bottomed cylindrical shape having no flange portion.
- the material of the stem 20 include, but are not limited to, metal materials such as stainless steel, ceramics such as silicon carbide, and semiconductor materials such as silicon.
- the insulating film 40 is formed so as to cover the entire outer surface of the stem 20.
- the insulating film 40 secures the insulating property between the stem 20 and the detection circuit 50.
- the functional film on which the detection circuit 50 is formed is formed on the outer surface of the stem 20 via the insulating film 40.
- the thickness of the functional film on which the insulating film 40 and the detection circuit 50 are formed is shown to be thicker than the actual thickness.
- FIG. 3 is a conceptual diagram showing the shape of the stem 20 in the sensor main body 18 shown in FIG.
- FIG. 3A is a top view of the stem 20 viewed from the positive direction side of the Z axis
- FIG. 3B is a cross-sectional view of the stem 20 having a cross section parallel to the Z axis.
- the functional film on which the detection circuit 50 shown in FIG. 2 is formed and the insulating film 40 are shown by dotted lines.
- the outer surface of the stem 20 has an outer bottom surface 24, a skirt 28, an outer surface 27, a stepped surface 34, and an opening edge surface 36.
- the outer bottom surface 24 is an end surface on the upper side (Z-axis positive direction) side of the stem 20, and has a circular flat shape.
- the outer side surface 27 extends in a direction intersecting the outer bottom surface 24.
- the outer surface 27 shown in FIG. 3 extends in a direction (Z-axis direction) substantially perpendicular to the extending direction (X-axis and Y-axis directions) of the outer bottom surface 24, and has a cylindrical side surface shape.
- the skirt portion 28 is formed so as to surround the outer bottom surface 24.
- the skirt portion 28 is composed of a surface facing a direction different from the outer bottom surface 24 and the outer surface 27 when viewed from the Y direction or the X direction, which is a direction parallel to the outer bottom surface 24.
- the outer bottom surface 24 and the outer surface 27 are connected.
- the skirt portion 28 and the outer surface are formed from the first boundary 31 which is the boundary between the outer bottom surface 24 and the skirt portion 28.
- the length L1 up to the second boundary 32, which is the boundary between 27 and 27, is preferably 10 ⁇ m or more and 1 mm or less, and more preferably 40 ⁇ m or more and 500 ⁇ m or less.
- the skirt portion 28 is composed of an inclined surface forming a predetermined angle ⁇ with respect to the outer bottom surface 24 when viewed in a cross section orthogonal to the outer bottom surface 24.
- the angle ⁇ formed by the inclined surface forming the skirt 28 with respect to the outer bottom surface 24 is not particularly limited, but is preferably 30 to 60 degrees, for example.
- the foot portion 28 may be composed of one continuous surface as shown in FIG. 3, but may have a plurality of surfaces having different orientations and angles. As shown in FIG. 3B, the inclined surface forming the skirt portion 28 shown in FIG. 3 forms a constant angle ⁇ with respect to the outer bottom surface 24 when viewed in a cross section orthogonal to the outer bottom surface 24. Such an inclined surface can be easily and accurately formed by machining or the like, and it is possible to reduce dimensional variation of the stem 20.
- the stepped surface 34 of the stem 20 shown in FIG. 3 is the outer surface of the flange portion 21, and has a ring-shaped portion extending in the X-axis and Y-axis directions and a cylindrical side surface extending in the Z-axis direction. Has a part.
- the opening edge surface 36 is a ring-shaped flat surface that surrounds the opening of the cavity formed inside the stem 20, and constitutes an end surface on the lower side (Z-axis negative direction) side of the stem 20.
- the inner surface of the stem 20 has a pressure receiving inner surface 23 and an inner surface 26.
- the pressure receiving inner surface 23 is the opposite surface of the outer bottom surface 24 of the bottom wall portion 22, and receives pressure from the fluid to be measured.
- the pressure receiving inner surface 23 is also flat like the outer bottom surface 24, but the outer bottom surface 24 is a surface facing the Z-axis positive direction side, whereas the pressure receiving inner surface 23 is a surface facing the Z axis negative direction side. ..
- the bottom wall portion 22 of the stem 20 is deformed when the pressure receiving inner surface 23 receives pressure from the fluid, and at least a part of the bottom wall portion 22 functions as a membrane (or diaphragm).
- the inner side surface 26 is the opposite surface of the outer side surface 27 on the side wall portion 25.
- the thickness of the bottom wall portion 22 of the stem 20 is determined so as to cause appropriate deformation under the pressure of the fluid to be measured, and can be made thinner than, for example, the thickness of the side wall portion 25.
- a detection circuit 50 is provided on the outer bottom surface 24 opposite to the pressure receiving inner surface 23 via an insulating film 40, and the detection circuit 50 provides the detection circuit 50. , Deformation of the bottom wall portion 22 and pressure of the fluid are detected. Examples of the detection circuit 50 shown in FIGS. 1 and 2 include a circuit that detects the deformation of the bottom wall portion 22 and the pressure of the fluid by utilizing the piezoresistive effect (also referred to as the piezoresistive effect). Not limited to only.
- the detection circuit 50 is provided on the outer bottom surface 24 via the insulating film 40.
- the detection circuit 50 is formed by performing microfabrication on a part of the functional film by laser processing or a semiconductor processing technique such as screen printing.
- the functional film is formed on the outer bottom surface 24, the skirt portion 28, the outer surface 27, etc., which are the outer surfaces of the stem 20, so as to indirectly cover them via the insulating film 40. You may. Further, unlike this, the functional film may be formed only on the outer bottom surface 24 on which the detection circuit 50 is provided.
- the insulating film 40 is provided so as to directly contact and cover the outer bottom surface 24, the skirt portion 28, the outer surface 27, etc., which are the outer surfaces of the stem 20.
- the insulating film 40 is formed between the outer surface of the stem 20 and the detection circuit 50 and the functional film.
- the detection circuit 50 and the functional film are separated by the insulating film 40 and do not come into contact with the stem 20.
- the insulating film 40 is provided so as to cover the entire outer bottom surface 24 of the outer surface of the stem 20 and at least a part of the skirt portion 28 connecting the outer bottom surface 24 and the outer surface 27.
- the insulating film 40 may cover the entire outer bottom surface 24 and the skirt portion 28, and as shown in FIG. 2, in addition to the outer bottom surface 24 and the skirt portion 28, at least the outer surface 27 and the stepped surface 34. It may cover a part.
- the insulating film 40 secures the insulating property between the stem 20 and the detection circuit 50.
- the insulating film 40 is made of a thin film or the like, and the thickness of the insulating film 40 is thinner than the wall thickness of the stem 20 or the like.
- the pressure sensor 10 shown in FIG. 1 is manufactured by, for example, the following manufacturing process.
- the stem 20 as shown in FIG. 3 is manufactured.
- the stem 20 is manufactured, for example, by performing machining such as pressing, cutting, and polishing on a predetermined metal material.
- the skirt 28 shown in FIG. 3 is, for example, a corner where the outer bottom surface 24 and the outer surface 27 are connected in the intermediate product after manufacturing an intermediate product in which the outer surface 27 is vertically connected to the outer bottom surface 24. It can be formed by subjecting the portion to machining such as polishing.
- the insulating film 40 and the functional film are formed in multiple layers on the outer surface of the stem 20, and the formed multilayer film is microfabricated by semiconductor processing technology to form the detection circuit 50 in the multilayer film.
- the sensor main body 18 as shown in FIG. 2 is obtained.
- the pressure sensor 10 as shown in FIG. 1 is formed by fixing the sensor main body 18 to the connecting member 12 or the like and wiring the substrate 70 and the detection circuit 50 by wire bonding or the like. Can be manufactured.
- the method of forming the functional film and the insulating film 40 having the detection circuit 50 on the stem 20 is not particularly limited, but can be produced by, for example, a sputtering method, a vacuum vapor deposition method, a CVD method, a sol-gel method, or the like.
- Examples of the material of the insulating film 40 include silicon oxide, silicon nitride, and alumina, but the material is not particularly limited.
- Examples of the material of the functional film include semiconductors such as silicon and metals with good conductors, but the material is not particularly limited.
- a photo patterning method which is a semiconductor processing technique, can be used. Since the stem 20 has a base portion 28 as shown in FIG. 2, there is a problem that the resist or the thin film becomes non-uniform at the vertical edge portion in the patterning / forming step of the functional film or the insulating film 40. Can be effectively prevented.
- the size of the stem 20 included in the pressure sensor 10 is not particularly limited, but for example, the diameter of the outer surface 27 shown in FIG. 3 is 3 mm to 20 mm.
- the thickness of the insulating film 40 formed on the stem 20 is also not particularly limited, but is, for example, 500 nm to 100 ⁇ m.
- the thickness of the functional film formed on the stem 20 is not particularly limited, but is, for example, 50 nm to 1 ⁇ m.
- the outer bottom surface 24 and the outer surface 27 are not directly connected, but the outer bottom surface 24 and the outer surface 27 are connected via the skirt 28.
- the insulating film 40 is provided on the insulating film 40.
- thermal stress is generated due to the difference in the coefficient of linear expansion between the stem material such as metal or ceramic and the insulating film which is a highly dielectric material.
- stress concentration occurs in the portion of the insulating film that covers the vicinity of the vertical edge of the stem, causing problems such as cracks in the insulating film and peeling of the insulating film from the stem surface.
- the pressure sensor 10 is located around the skirt portion 28, the first boundary 31 and the second boundary 32 by setting the length L1 of the skirt portion 28 to 10 ⁇ m or more.
- the stress concentration in the insulating film 40 can be reduced more effectively. Therefore, the pressure sensor 10 having such a base portion 28 can obtain a further improvement effect of durability and reliability. Further, by setting the length L1 of the skirt portion 28 to 1 mm or less, it contributes to the miniaturization of the pressure sensor 10.
- both the first boundary 31 and the second boundary 32 are formed. It is possible to reduce the change in the plane direction at the boundary of. Therefore, the pressure sensor 10 can reduce the stress concentration in the insulating film 40 formed along the first boundary 31 and the second boundary 32.
- the stem 20 of the pressure sensor 10 does not have a corner whose plane direction changes vertically around the outer bottom surface 24 where the detection circuit 50 is provided. Therefore, the pressure sensor 10 using such a stem 20 can reduce the occurrence of defects such as patterning defects and film formation defects that occur in the manufacturing process, and thus has good productivity.
- FIG. 4 is a schematic cross-sectional view showing a sensor main body 118 of the pressure sensor according to the second embodiment of the present invention.
- the pressure sensor according to the second embodiment is different from the shape of the base portion 128 in the stem 120, the shape of the insulating film 140, and the shape of the functional film on which the detection circuit 150 is formed. , The same as the pressure sensor 10 according to the first embodiment. In the description of the pressure sensor according to the second embodiment, only the differences from the pressure sensor 10 according to the first embodiment will be described, and the common points with the pressure sensor 10 will be omitted.
- the sensor main body 118 has a stem 120, an insulating film 140, and a functional film on which the detection circuit 150 is formed.
- the shape of the skirt portion 128 arranged on the outer peripheral portion of the bottom wall portion 122 of the stem 120 is different from that of the stem 20 shown in FIG. 2, but other parts are the same as those of the stem 20.
- FIG. 5 is a conceptual diagram showing the shape of the stem 120 in the sensor main body 118 shown in FIG.
- FIG. 5A is a top view of the stem 120 viewed from the positive direction side of the Z axis
- FIG. 5B is a cross-sectional view of the stem 120 having a cross section parallel to the Z axis.
- the skirt portion 128 has a curved surface shape in which the angle formed with respect to the outer bottom surface 24 increases transitionally as the distance from the first boundary 31 increases when viewed in a cross section orthogonal to the outer bottom surface 24.
- the skirt portion 128 may have the same radius of curvature as the length L1 of the skirt portion 128.
- the shape of the insulating film 140 follows the shape of the outer surface of the stem 120. Therefore, the portion of the insulating film 140 located above the skirt portion 128 of the stem 120 has a curved surface like the skirt portion 128. Further, the functional film on which the detection circuit 150 is formed is formed only on the outer bottom surface 24 with the insulating film 140 interposed therebetween. The insulating film 140 needs to cover the entire outer bottom surface 24, but it is not necessary to cover the entire base portion 128, and at least a part of the base portion 128 may be covered.
- the skirt portion 128 has a curved surface shape, and the angle ⁇ formed by the skirt portion 128 and the outer bottom surface 24 increases as the distance from the first boundary 31 increases. Since the stem 120 having the skirt portion 128 having such a shape can reduce the change in the plane direction around the first boundary 31 and the second boundary 32, the stress concentration in the insulating film 140 covering the stem 120 is more effective. Can be prevented. Further, the pressure sensor according to the second embodiment has the same effect as the pressure sensor 10 according to the first embodiment.
- FIG. 6 is a conceptual diagram showing the shape of the stem 220 in the pressure sensor according to the third embodiment of the present invention.
- FIG. 6A is a top view of the stem 220 viewed from the positive direction side of the Z axis
- FIG. 6B is a cross-sectional view of the stem 120 having a cross section parallel to the Z axis.
- the shape of the skirt portion 228 of the stem 220 is different, and the shape of the insulating film and the functional film is changed to the shape along the skirt portion 228. This is the same as the pressure sensor 10 according to the embodiment.
- the description of the pressure sensor according to the third embodiment only the differences from the pressure sensor 10 according to the first embodiment will be described, and the common points with the pressure sensor 10 will be omitted.
- the skirt portion 228 of the stem 220 has an inclined surface 228a forming an angle of 30 to 60 degrees with respect to the outer bottom surface 24 and an outer surface when viewed in a cross section orthogonal to the outer bottom surface 24. It has a connecting surface 228b at an angle smaller than the inclined surface 228a with respect to the bottom surface 24.
- the outer bottom surface 24, the connecting surface 228b, and the inclined surface 228a are formed concentrically, and the connecting surface 228b and the inclined surface 228a are formed so as to surround the outer bottom surface 24. ..
- the inclined surface may be directly connected to the outer bottom surface 24 like the inclined surface forming the skirt portion 28 shown in FIG. 3, and is shown in FIG. Like the inclined surface 228a, it may be connected to the outer bottom surface 24 via the connecting surface 228b.
- the surface included in the skirt portion 28 is the direction of the outer bottom surface 24 connected at the first boundary 31 and the outer surface connected at the second boundary 32 when viewed in a cross section orthogonal to the outer bottom surface 24. It is preferably composed of a surface facing a direction between the directions of 27.
- the pressure sensor using the stem 220 having the skirt portion 228 as shown in FIG. 6 has an effect of concentrating stress on the insulating film covering the first boundary 31 by having the skirt portion 28 having the connecting surface 228b and the inclined surface 228a. It is possible to effectively prevent the insulating film from peeling off or cracking in or near the outer bottom surface 24. Further, the pressure sensor according to the third embodiment has the same effect as the pressure sensor 10 according to the first embodiment.
- the inclined surface 228a shown in FIG. 6 is not limited to a surface having a constant angle ⁇ with respect to the outer bottom surface 24.
- the inclined surface of the stem 220 like the skirt 128 of the stem 120 shown in FIG. 5, is viewed in a cross section orthogonal to the outer bottom surface 24, and the angle formed with respect to the outer bottom surface 24 increases as the distance from the outer bottom surface 24 increases. It may be a curved surface that changes as follows.
- the pressure sensor according to the present invention has been described with reference to a plurality of embodiments, but the present invention is not limited to the above-described embodiments, and has many other embodiments and modifications. Needless to say.
- the present invention includes many other embodiments.
- the shape and fixed structure of the stem 20 shown in FIG. 1 is only an example, and the pressure sensor of the present invention can adopt any other shape and fixed structure in which the stem 20 is appropriately deformed in response to pressure.
- FIG. 7 As shown in FIG. 5, in the stem 120 provided with the skirt portion 128 having a curved surface corresponding to the length L1 of the skirt portion 128, a predetermined deformation occurred on the pressure receiving inner surface 23 of the stem 120.
- Insulating film material SiO 2 Insulation film thickness: 1000 ⁇ m
- Insulating film film formation method TEOS-CVD Length of skirt L1: 0.1 ⁇ m, 1 ⁇ m, 10 ⁇ m, 100 ⁇ m
- Stem material Austenitic stainless steel Temperature: 25 ° C
- the maximum principal stress applied to the insulating film 140 is reduced by increasing the length L1 of the foot portion 128.
- the maximum principal stress value is within the permissible range in which the insulating film 140 does not crack in the range where the length of the base 128 is 1 ⁇ m or more, and a larger safety factor is secured in the range where the length of the base 128 is 10 ⁇ m or more. Will be done.
- FIG. 8 of the second embodiment shows the maximum principal stress applied to the insulating film 140 in the same manner as in the first embodiment except that the length L1 of the skirt portion 128 is fixed and the thickness of the insulating film 140 is changed.
- the main calculation conditions different from those in the first embodiment are as follows. Insulating film thickness: 1 ⁇ m, 10 ⁇ m, 100 ⁇ m, 1000 ⁇ m Base length L1: 1 ⁇ m
- the maximum principal stress applied to the insulating film 140 is reduced by reducing the thickness of the insulating film 140.
- a larger safety factor is ensured in the range where the thickness of the insulating film 140 is 100 ⁇ m or less.
- the thickness of the insulating film 140 ensures sufficient insulating properties under any of the conditions of the second embodiment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
【課題】ステムと検出回路とを絶縁する絶縁膜の膜剥がれやクラックの問題を防止する圧力センサ。 【解決手段】平面状の外底面と、前記外底面に対して交差する方向に伸びる外側面と、前記外底面の反対面であって測定対象である流体からの圧力を受ける受圧内面と、を有するステムと、前記外底面に対して、絶縁膜を挟んで設けられる検出回路と、を有し、前記ステムは、前記外底面を取り囲むように形成され、前記外底面に平行な方向から見て前記外底面および前記外側面とは異なる方向を向く面で構成され、前記外底面と前記外側面とを接続する裾野部を有し、前記絶縁膜は、前記裾野部の少なくとも一部を覆う圧力センサ。
Description
本発明は、ステムの外底面に絶縁膜を挟んで検出回路を設ける圧力センサに関する。
圧力センサとして、金属などで形成されるステムの外底面に、絶縁膜を挟んで検出回路を設けるものが知られている。検出回路としては、たとえば圧抵抗効果(ピエゾ抵抗効果ともいう)を利用して、ステムの底壁部(メンブレン、またはダイアフラムともいう)の歪を抵抗変化により検出するものがある。このような圧力センサでは、絶縁膜が、ステムと検出回路との間の絶縁性を確保することにより、検出回路による適切な圧力検出を実現する。
しかしながら、このような圧力センサの絶縁膜は、圧力による変形を生じるステムの底壁部に形成されるため、また、測定対象の流体によっては高温環境に曝されるため、膜剥がれやクラックなどを生じる問題がある。絶縁膜に生じる膜剥がれやクラックは、圧力センサの性能低下および耐久寿命の低下につながるおそれがあるため、課題となっている。
本発明は、このような実情に鑑みてなされ、ステムと検出回路とを絶縁する絶縁膜の膜剥がれやクラックの問題を防止する圧力センサを提供する。
上記目的を達成するために、本発明に係る圧力センサは、
平面状の外底面と、前記外底面に対して交差する方向に伸びる外側面と、前記外底面の反対面であって測定対象である流体からの圧力を受ける受圧内面と、を有するステムと、
前記外底面に対して、絶縁膜を挟んで設けられる検出回路と、を有し、
前記ステムは、
前記外底面を取り囲むように形成され、前記外底面に垂直な方向から見て前記外底面および前記外側面とは異なる方向を向く面で構成され、前記外底面と前記外側面とを接続する裾野部を有し、
前記絶縁膜は、前記裾野部の少なくとも一部を覆う。
平面状の外底面と、前記外底面に対して交差する方向に伸びる外側面と、前記外底面の反対面であって測定対象である流体からの圧力を受ける受圧内面と、を有するステムと、
前記外底面に対して、絶縁膜を挟んで設けられる検出回路と、を有し、
前記ステムは、
前記外底面を取り囲むように形成され、前記外底面に垂直な方向から見て前記外底面および前記外側面とは異なる方向を向く面で構成され、前記外底面と前記外側面とを接続する裾野部を有し、
前記絶縁膜は、前記裾野部の少なくとも一部を覆う。
本発明に係る圧力センサでは、絶縁膜が密着するステムの表面に、裾野部が形成されている。従来のステムでは、外底面と外側面とが略垂直に接続しているため、絶縁膜においてこの部分を覆う部分およびその周辺に応力集中が生じ、膜剥がれやクラックの起点になっていたと考えられる。これに対して、本発明に係る圧力センサのステムでは、外底面と外側面とが直接接続されるのではなく、外底面と外側面とが裾野部を介して接続されている。したがって、裾野部の存在が、外底面と外側面との間の急激な面の向きの変化を緩和し、ステムの表面を覆う絶縁膜での応力集中を低減することにより、本発明に係る圧力センサは、絶縁膜の膜剥がれやクラックなどの発生を防止できる。
また、たとえば、前記外底面に垂直な方向から見て、前記外底面と前記裾野部との境界である第1境界から、前記裾野部と前記外側面との境界である第2境界までの長さは、10μm以上1mm以下であってもよい。
裾野部の長さを10μm以上とすることにより、裾野部およびその周辺を覆う絶縁膜での応力集中を、より効果的に低減できるため、このような裾野部を有する圧力センサは、耐久性や信頼性のさらなる改善効果が得られる。また、裾野部の長さを1mm以下とすることにより、圧力センサの小型化に資する。
また、たとえば、前記裾野部は、前記外底面を取り囲むように形成され、前記外底面に直交する断面でみて前記外底面に対して30度から60度の角度をなす傾斜面を有してもよい。
このような傾斜面を有する裾野部を設けることにより、外底面と裾野部の境界と、裾野部と外側面の境界のいずれの境界においても、これらの部分を覆う絶縁膜における応力集中を低減することができる。したがって、このような圧力センサは、絶縁膜の膜剥がれやクラックなどの発生を効果的に防止できる。
また、たとえば、前記傾斜面は、前記外底面に対して直接接続するか、又は前記外底面に対して前記傾斜面より小さい角度をなす接続面を介して接続してもよい。
このような傾斜面を有する裾野部は、特に外底面と裾野部の境界を覆う絶縁膜への応力集中を、効果的に低減し、外底面およびその近くでの絶縁膜の膜剥がれやクラックなどの発生を、効果的に防止できる。
また、たとえば、前記傾斜面は、前記外底面に直交する断面でみて、前記外底面に対して一定の角度をなしてもよい。
このような傾斜面は、機械加工などにより容易に精度よく形成でき、寸法ばらつきを低減することが可能であるため、このようなステムを有する圧力センサは生産性が良好である。
また、たとえば、前記傾斜面は、前記外底面に直交する断面でみて、前記外底面から離れるに従って前記外底面に対してなす角度が大きくなるように変化してもよい。
傾斜面の角度が変化することにより、傾斜面を含む裾野部と、外底面および外側面との境界部分での面方向の変化を、より効果的に低減することができる。したがって、このような圧力センサは、絶縁膜の膜剥がれやクラックなどの発生を効果的に防止できる。
また、たとえば、前記裾野部は、前記外底面に直交する断面でみて、前記外底面と前記裾野部との境界である第1境界から離れるに従って、前記外底面に対してなす角度が遷移的に大きくなる曲面形状を有してもよい。
裾野部の角度が変化することにより、裾野部と外底面および外側面との境界部分での面方向の変化を、より効果的に低減できる。また、これに加えて、裾野部と外底面とのなす角度が、境界から遷移的に大きくなるため、このような圧力センサは、絶縁膜の局所的な応力集中を効果的に防止し、膜剥がれやクラックなどの発生を効果的に防止できる。
以下、本発明を、図面に示す実施形態に基づき説明する。
図1は、本発明の第1実施形態に係る圧力センサ10の概略断面図である。圧力センサ10は、ステム20などを含むセンサ本体部18、ステム20へ圧力を伝える流路12bが形成されている接続部材12、接続部材12に対してセンサ本体部18を固定する抑え部材14、ステム20に設けられる検出回路50などに対して配線される基板部70などを有する。
図1は、本発明の第1実施形態に係る圧力センサ10の概略断面図である。圧力センサ10は、ステム20などを含むセンサ本体部18、ステム20へ圧力を伝える流路12bが形成されている接続部材12、接続部材12に対してセンサ本体部18を固定する抑え部材14、ステム20に設けられる検出回路50などに対して配線される基板部70などを有する。
図1に示すように、接続部材12の外周には、圧力センサ10を測定対象に対して固定するためのねじ溝12aが形成されている。ねじ溝12aを介して圧力センサ10を固定することにより、接続部材12の内部に形成されている流路12bは、測定対象である流体で満たされる圧力室に対して、気密に連通する。
図1に示すように、センサ本体部18およびセンサ本体部18に含まれるステム20は、有底(上底)筒状の外形状を有しており、接続部材12における流路12bの一方の端部に設けられる。ステム20は、開口側(Z軸負方向側)にフランジ部21が設けられており、抑え部材14と接続部材12との間にフランジ部21が挟み込まれることにより、センサ本体部18が、接続部材12に対して固定される。ステム20の開口と接続部材12の流路12bとは、抑え部材14を用いて気密に連結されており、測定対象の流体の圧力が、ステム20の底壁部22(図2参照)に伝えられる。
図2は、図1に示すセンサ本体部18の拡大断面図である。センサ本体部18は、ステム20と絶縁膜40と検出回路50とを有する。ステム20は、XY平面方向に延びる略円形板状の底壁部22(図3(a)参照)と、底壁部22の外周縁に接続してZ軸負方向に延びる略円筒状の側壁部25とを有する。
また、ステム20は、側壁部25におけるZ軸負方向端部において外径方向に突出するフランジ部21を有するが、ステム20の形状としては、実施形態に示すもののみには限定されず、たとえば、ステムは、フランジ部を有しない有底円筒形状であってもよい。ステム20の材料としては、たとえばステンレスなどの金属材料や、炭化ケイ素のようなセラミックス、シリコンなどの半導体材料などが挙げられるが、特に限定されない。
図2に示すように、絶縁膜40は、ステム20の外表面全体を覆うように形成されている。絶縁膜40は、ステム20と検出回路50との絶縁性を確保する。検出回路50が形成される機能膜は、絶縁膜40を介してステム20の外表面に形成される。なお、説明を容易にするために、図2では、絶縁膜40および検出回路50が形成される機能膜の厚みを、実際より厚く記載している。
図3は、図2に示すセンサ本体部18におけるステム20の形状を表す概念図である。図3(a)はステム20をZ軸正方向側から見た上面図であり、図3(b)は、Z軸に平行な断面によるステム20の断面図である。なお、図3(b)では、図2に示す検出回路50が形成される機能膜と、絶縁膜40とを、点線で示している。図3(a)および図3(b)に示すように、ステム20の外表面は、外底面24と、裾野部28と、外側面27と、段差面34と、開口縁面36を有する。
外底面24は、ステム20の上方(Z軸正方向)側の端面であり、円形の平面状である。外側面27は、外底面24に対して交差する方向に延びている。図3に示す外側面27は、外底面24の延びる方向(X軸およびY軸方向)に対して略垂直な方向(Z軸方向)に延びており、円筒側面形状である。
図3(a)に示すように、裾野部28は、外底面24を取り囲むように形成されている。図3(b)に示すように、裾野部28は、外底面24に平行な方向であるY方向又はX方向から見て外底面24および外側面27とは異なる方向を向く面で構成され、外底面24と外側面27とを接続する。
図3(a)に示すように、外底面24に垂直な方向(Z軸方向)から見て、外底面24と裾野部28との境界である第1境界31から、裾野部28と外側面27まとの境界である第2境界32までの長さL1は、10μm以上1mm以下であることが好ましく、40μm以上500μm以下であることがさらに好ましい。長さL1を所定の値以上とすることにより、裾野部28の上に形成される絶縁膜40での応力集中を低減することができる。また、裾野部28の長さL1を所定の値以下とすることにより、ステム20の小型化に資する。
図3(b)に示すように、裾野部28は、外底面24に直交する断面で見て外底面24に対して所定の角度θをなす傾斜面で構成される。裾野部28を構成する傾斜面が外底面24に対してなす角度θは、特に限定されないが、たとえば30度から60度とすることが好ましい。角度θをこのような範囲とすることにより、外底面24と裾野部28の境界である第1境界31と、裾野部28と外側面27の境界である第2境界32の、いずれの境界31、32の近傍においても、ステム20の外表面を覆う絶縁膜40における応力集中を低減することができる。
裾野部28は、図3に示すように連続する1つの面で構成されていてもよいが、向きや角度が異なる複数の面を有していてもよい。図3に示す裾野部28を構成する傾斜面は、図3(b)に示すように、外底面24に直交する断面で見て、外底面24に対して一定の角度θをなす。このような傾斜面は、機械加工などにより容易に精度よく形成でき、ステム20の寸法ばらつきを低減することが可能である。
図3に示すステム20の段差面34は、フランジ部21の外表面であり、X軸およびY軸方向に延びておりリング形状をなす部分と、Z軸方向に延びており円筒側面形状をなす部分とを有する。開口縁面36は、ステム20の内部に形成される空洞の開口の周りを囲むリング状の平面であり、ステム20の下方(Z軸負方向)側の端面を構成する。
図3(b)に示すように、ステム20の内表面は、受圧内面23と、内側面26とを有する。受圧内面23は、底壁部22における外底面24の反対面であって、測定対象である流体からの圧力を受ける。受圧内面23も、外底面24と同様に平面状であるが、外底面24がZ軸正方向側を向く面であるのに対して、受圧内面23はZ軸負方向側を向く面である。
ステム20の底壁部22は、受圧内面23が流体からの圧力を受けることにより変形し、底壁部22の少なくとも一部がメンブレン(またはダイアフラム)として機能する。内側面26は、側壁部25における外側面27の反対面である。ステム20の底壁部22の厚みは、測定対象である流体の圧力を受けて適切な変形を生じるように定められ、たとえば側壁部25の厚みに比べて、薄くすることができる。
図2および図3(b)に示されるように、圧力センサ10では、受圧内面23とは反対面である外底面24に、絶縁膜40を介して検出回路50が設けられ、検出回路50により、底壁部22の変形および流体の圧力を検出する。図1および図2に示す検出回路50としては、たとえば、圧抵抗効果(ピエゾ抵抗効果ともいう)を利用して、底壁部22の変形および流体の圧力を検出する回路が挙げられるが、これのみには限定されない。
検出回路50は、絶縁膜40を介して外底面24の上に設けられている。図2に示すように、検出回路50は、機能膜の一部に対して、レーザー加工や、スクリーン印刷のような半導体加工技術による微細加工を行うことにより形成される。機能膜は、図2に示すように、ステム20の外表面である外底面24、裾野部28および外側面27などの上に、絶縁膜40を介してこれらを間接的に覆うように形成されてもよい。また、機能膜は、これとは異なり、検出回路50が設けられる外底面24の上にのみ、形成されていてもよい。
図2に示すように、絶縁膜40は、ステム20の外表面である外底面24、裾野部28および外側面27などに直接接触して、これらを覆うように設けられる。絶縁膜40は、ステム20の外表面と、検出回路50および機能膜との間に形成されている。検出回路50および機能膜は、絶縁膜40によって隔てられており、ステム20に対しては接触しない。
絶縁膜40は、ステム20の外表面のうち、外底面24の全体を覆い、かつ、外底面24と外側面27とを接続する裾野部28の少なくとも一部を覆うように設けられる。ただし、絶縁膜40は、外底面24および裾野部28の全体を覆っていてもよく、図2に示すように、外底面24および裾野部28に加えて、外側面27や段差面34の少なくとも一部を覆っていてもよい。
絶縁膜40は、ステム20と検出回路50との絶縁性を確保する。なお、図2では、絶縁膜40は薄膜などで構成され、絶縁膜40の厚みは、ステム20の肉厚などに比べて薄い。
図1に示す圧力センサ10は、たとえば以下のような製造工程により製造される。まず、圧力センサ10の製造では、図3に示すようなステム20を製造する。ステム20は、たとえば所定の金属材料に対してプレス、切削、研磨などの機械加工を行うことにより、製造される。図3に示す裾野部28は、たとえば、外底面24に対して外側面27が垂直に接続された中間製造物を製造したのち、中間製造物において外底面24と外側面27が接続するコーナーの部分に対して、研磨などの機械加工を施すことにより形成することができる。
次に、ステム20の外表面に絶縁膜40と機能膜とを多層形成し、形成した多層膜に対して半導体加工技術による微細加工を行うことにより多層膜に検出回路50を形成する。これらの工程により、図2に示すようなセンサ本体部18を得る。さらに、図1に示すように、センサ本体部18を接続部材12などに固定するとともに、基板70と検出回路50とをワイヤボンディングなどにより配線することにより、図1に示すような圧力センサ10を製造することができる。
検出回路50を有する機能膜と絶縁膜40の、ステム20に対する形成方法は特に限定されないが、たとえば、スパッタリング法、真空蒸着法、CVD法、ゾル・ゲル法などにより製造することができる。絶縁膜40の材質としては、酸化ケイ素、窒化ケイ素、アルミナなどがあげられるが、特に限定されない。機能膜の材質としては、シリコンなどの半導体や、良導体の金属などが挙げられるが、特に限定されない。
また、検出回路50を有する機能膜や絶縁膜40のパターニング法として、半導体加工技術であるフォトパターニング法などを用いることができる。なお、ステム20が図2に示すような裾野部28を有していることにより、機能膜や絶縁膜40のパターニング・形成工程において、レジストや薄膜が、垂直なエッジ部分において不均一となる問題を、効果的に防止することができる。
圧力センサ10に含まれるステム20の大きさは特に限定されないが、たとえば、図3に示す外側面27の直径は、3mm~20mmである。また、ステム20に形成される絶縁膜40の厚みも特に限定されないが、たとえば500nm~100μmである。また、ステム20に形成される機能膜の厚みは特に限定されないが、たとえば50nm~1μmである。
以上のように、圧力センサ10は、図3に示すように、外底面24と外側面27とが直接接続されるのではなく、外底面24と外側面27とが裾野部28を介して接続されており、絶縁膜40がその上に設けられている。ここで、実施形態のような圧力センサでは、金属やセラミクスのようなステムの材料と、高誘電材料である絶縁膜との線膨張係数の違いに起因する熱応力が生じる。従来の圧力センサでは、絶縁膜においてステムの垂直なエッジ近傍を覆う部分に応力集中が生じ、絶縁膜にクラックが生じたり、絶縁膜がステム表面から剥がれたりする問題が生じていた。
しかし、上述した圧力センサ10では、図2に示すように、ステム20が裾野部28を有するため、外底面24と外側面27との間における急激な面方向の変化を緩和し、ステム20の外表面に沿って形成される絶縁膜40での応力集中を低減することができる。したがって、このような圧力センサ10は、絶縁膜40にクラックが生じたり、絶縁膜40がステム20表面から剥がれたりする問題を防止することができ、高い耐久性と信頼性を有する。
また、図3(a)に示すように、圧力センサ10は、裾野部28の長さL1を10μm以上とすることにより、裾野部28および第1境界31および第2境界32の周辺に位置する絶縁膜40での応力集中を、より効果的に低減できる。そのため、このような裾野部28を有する圧力センサ10は、耐久性や信頼性のさらなる改善効果が得られる。また、裾野部28の長さL1を1mm以下とすることにより、圧力センサ10の小型化に資する。
また、図3(b)に示すように、裾野部28が、外底面24に対して30度から60度の角度θをなす傾斜面を有するため、第1境界31と第2境界32の両方の境界における面方向の変化を小さくすることができる。このため、圧力センサ10は、第1境界31と第2境界32に沿って形成される絶縁膜40における応力集中を低減することができる。
また、圧力センサ10のステム20では、従来の形状のステムとは異なり、検出回路50が設けられる外底面24の周りに垂直に面方向が変化するコーナーが無い。そのため、このようなステム20を用いる圧力センサ10は、パターニング不良や成膜不良など、製造工程で生じる不良発生を低減できるため、生産性が良好である。
以上のように、実施形態を示して本発明に係る圧力センサを説明したが、本発明は上述した実施形態のみに限定されるものではなく、他の多くの実施形態および変形例を有することは言うまでもない。図4は、本発明の第2実施形態に係る圧力センサのセンサ本体部118を示す模式断面図である。
図4に示すように、第2実施形態に係る圧力センサは、ステム120における裾野部128の形状と、絶縁膜140の形状と、検出回路150が形成される機能膜の形状が異なることを除き、第1実施形態に係る圧力センサ10と同様である。第2実施形態に係る圧力センサの説明では、第1実施形態に係る圧力センサ10との相違点のみ説明し、圧力センサ10との共通点については説明を省略する。
図4に示すように、センサ本体部118は、ステム120と、絶縁膜140と、検出回路150が形成される機能膜とを有する。ステム120は、底壁部122の外周部に配置される裾野部128の形状が、図2に示すステム20とは異なるが、その他の部分はステム20と同様である。
図5は、図4に示すセンサ本体部118におけるステム120の形状を表す概念図である。図5(a)はステム120をZ軸正方向側から見た上面図であり、図5(b)は、Z軸に平行な断面によるステム120の断面図である。図5(b)に示すように、裾野部128は、外底面24に直交する断面でみて、第1境界31から離れるにしたがって、外底面24に対してなす角度が遷移的に大きくなる曲面形状を有する。たとえば、裾野部128は、裾野部128の長さL1とおなじ曲率半径を有してもよい。
図5に示すように、絶縁膜140の形状は、ステム120の外表面の形状に追従する。したがって、絶縁膜140においてステム120の裾野部128の上に位置する部分は、裾野部128と同様に曲面状になっている。また、検出回路150が形成される機能膜は、絶縁膜140を挟んで外底面24の上のみに形成されている。なお、絶縁膜140は、外底面24については全体を覆っている必要があるが、裾野部128については全体を覆う必要はなく、少なくとも裾野部128の一部を覆っていればよい。
図4および図5に示すステム120では、裾野部128が曲面形状を有しており、裾野部128と外底面24とのなす角度θが、第1境界31から離れるにしたがって大きくなる。このような形状の裾野部128を有するステム120は、第1境界31および第2境界32周辺での面方向の変化を小さくできるため、これを覆う絶縁膜140での応力集中を、より効果的に防止できる。また、第2実施形態に係る圧力センサは、第1実施形態に係る圧力センサ10と同様の効果を奏する。
図6は、本発明の第3実施形態に係る圧力センサにおけるステム220の形状を表す概念図である。図6(a)はステム220をZ軸正方向側から見た上面図であり、図6(b)は、Z軸に平行な断面によるステム120の断面図である。図6に示すように、第3実施形態に係る圧力センサは、ステム220における裾野部228の形状が異なり、絶縁膜および機能膜の形状が裾野部228に沿う形状に変わることを除き、第1実施形態に係る圧力センサ10と同様である。第3実施形態に係る圧力センサの説明では、第1実施形態に係る圧力センサ10との相違点のみ説明し、圧力センサ10との共通点については説明を省略する。
図6(b)に示すように、ステム220の裾野部228は、外底面24に直交する断面で見て、外底面24に対して30度から60度の角度をなす傾斜面228aと、外底面24に対して傾斜面228aより小さい角度をなす接続面228bを有する。図6(a)に示すように、外底面24、接続面228bおよび傾斜面228aは同心円状に形成されており、接続面228bおよび傾斜面228aは、外底面24を取り囲むように形成されている。
図3と図6の比較から理解されるように、傾斜面は、図3に示す裾野部28を構成する傾斜面のように外底面24に対して直接接続してもよく、図6に示す傾斜面228aのように、接続面228bを介して外底面24に接続してもよい。図6に示すように、裾野部28に含まれる面は、外底面24に直交する断面で見て、第1境界31で接続する外底面24の向きと、第2境界32で接続する外側面27の向きとの間の方向を向く面で構成されることが好ましい。
図6に示すような裾野部228を有するステム220を用いる圧力センサは、裾野部28が接続面228bと傾斜面228aを有することにより、第1境界31を覆う絶縁膜への応力集中を、効果的に低減し、外底面24およびその近くでの絶縁膜の膜剥がれやクラックなどの発生を、効果的に防止できる。また、第3実施形態に係る圧力センサは、第1実施形態に係る圧力センサ10と同様の効果を奏する。なお、図6に示す傾斜面228aは、外底面24に対してなす角度θが一定である面に限定されない。ステム220の傾斜面は、図5に示すステム120の裾野部128のように、外底面24に直交する断面で見て、外底面24から離れるにしたがって外底面24に対してなす角度が大きくなるように変化する曲面であってもよい。
以上のように、複数の実施形態を挙げて本発明にかかる圧力センサを説明したが、本発明は上述した実施形態のみに限定されるものではなく、他の多くの実施形態および変形例を有することは言うまでもない。本発明には、これらの他にも多くの実施形態が含まれる。たとえば、図1に示すステム20の形状および固定構造は一例にすぎず、本発明の圧力センサは、ステム20が圧力に応じて適切に変形する、他の任意の形状および固定構造を採用できる。
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されない。
第1実施例
図7は、図5に示すように、裾野部128の長さL1に対応する曲面を有する裾野部128を備えるステム120において、ステム120の受圧内面23に所定の変形が生じた際に、裾野部128の上に形成された絶縁膜140に加えられる最大主応力と、ステム120の裾野部128の長さL1の関係を計算した結果を表すグラフである。その他の主な計算の条件は以下の通りである。
絶縁膜の材質:SiO2
絶縁膜の厚み:1000μm
絶縁膜の成膜方法:TEOS-CVD
裾野部の長さL1:0.1μm、1μm、10μm、100μm
ステムの材質:オーステナイト系ステンレス
温度:25℃
図7は、図5に示すように、裾野部128の長さL1に対応する曲面を有する裾野部128を備えるステム120において、ステム120の受圧内面23に所定の変形が生じた際に、裾野部128の上に形成された絶縁膜140に加えられる最大主応力と、ステム120の裾野部128の長さL1の関係を計算した結果を表すグラフである。その他の主な計算の条件は以下の通りである。
絶縁膜の材質:SiO2
絶縁膜の厚み:1000μm
絶縁膜の成膜方法:TEOS-CVD
裾野部の長さL1:0.1μm、1μm、10μm、100μm
ステムの材質:オーステナイト系ステンレス
温度:25℃
図7からは、裾野部128の長さL1が長くなることにより、絶縁膜140に加えられる最大主応力が低減することが理解できる。最大主応力の値は、裾野部128の長さが1μm以上の範囲において絶縁膜140がクラックを生じない許容範囲となり、裾野部128の長さが10μm以上の範囲では、さらに大きな安全率が確保される。
第2実施例
図8は、裾野部128の長さL1を固定し、絶縁膜140の厚みを変化させたことを除き、第1実施例と同様にして、絶縁膜140に加えられる最大主応力を算出した。第1実施例と異なる主な計算の条件は以下の通りである。
絶縁膜の厚み:1μm、10μm、100μm、1000μm
裾野部の長さL1:1μm
図8は、裾野部128の長さL1を固定し、絶縁膜140の厚みを変化させたことを除き、第1実施例と同様にして、絶縁膜140に加えられる最大主応力を算出した。第1実施例と異なる主な計算の条件は以下の通りである。
絶縁膜の厚み:1μm、10μm、100μm、1000μm
裾野部の長さL1:1μm
図8からは、絶縁膜140の厚みが薄くなることにより、絶縁膜140に加えられる最大主応力が低減することが理解できる。最大主応力の値は、絶縁膜140の厚みが100μm以下の範囲では、さらに大きな安全率が確保される。なお、絶縁膜140の厚みは、第2実施例のいずれの条件でも、十分な絶縁性が確保される。
10…圧力センサ
12…接続部材
12a…ねじ溝
12b…流路
14…抑え部材
18、118…センサ本体部
20、120、220…ステム
21…フランジ部
22、122…底壁部(メンブレン)
23…受圧内面
24…外底面
25…側壁部
26…内側面
27…外側面
28、128、228…裾野部
228a…傾斜面
228b…接続面
31…第1境界
32…第2境界
34…段差面
36…開口縁面
40、140…絶縁膜
50、150…検出回路
70…基板部
82…接続配線
12…接続部材
12a…ねじ溝
12b…流路
14…抑え部材
18、118…センサ本体部
20、120、220…ステム
21…フランジ部
22、122…底壁部(メンブレン)
23…受圧内面
24…外底面
25…側壁部
26…内側面
27…外側面
28、128、228…裾野部
228a…傾斜面
228b…接続面
31…第1境界
32…第2境界
34…段差面
36…開口縁面
40、140…絶縁膜
50、150…検出回路
70…基板部
82…接続配線
Claims (7)
- 平面状の外底面と、前記外底面に対して交差する方向に伸びる外側面と、前記外底面の反対面であって測定対象である流体からの圧力を受ける受圧内面と、を有するステムと、
前記外底面に対して、絶縁膜を挟んで設けられる検出回路と、を有し、
前記ステムは、
前記外底面を取り囲むように形成され、前記外底面に平行な方向から見て前記外底面および前記外側面とは異なる方向を向く面で構成され、前記外底面と前記外側面とを接続する裾野部を有し、
前記絶縁膜は、前記裾野部の少なくとも一部を覆う圧力センサ。 - 前記外底面に垂直な方向から見て、前記外底面と前記裾野部との境界である第1境界から、前記裾野部と前記外側面との境界である第2境界までの長さは、10μm以上1mm以下である請求項1に記載の圧力センサ。
- 前記裾野部は、前記外底面を取り囲むように形成され、前記外底面に直交する断面で見て前記外底面に対して30度から60度の角度をなす傾斜面を有する請求項1又は請求項2に記載の圧力センサ。
- 前記傾斜面は、前記外底面に対して直接接続するか、又は前記外底面に対して前記傾斜面より小さい角度をなす接続面を介して接続する請求項3に記載の圧力センサ。
- 前記傾斜面は、前記外底面に直交する断面で見て、前記外底面に対して一定の角度をなす請求項3又は請求項4に記載の圧力センサ。
- 前記傾斜面は、前記外底面に直交する断面でみて、前記外底面から離れるに従って前記外底面に対してなす角度が大きくなるように変化する請求項3又は請求項4に記載の圧力センサ。
- 前記裾野部は、前記外底面に直交する断面でみて、前記外底面と前記裾野部との境界である第1境界から離れるに従って、前記外底面に対してなす角度が遷移的に大きくなる曲面形状を有する請求項1から請求項3までのいずれかに記載の圧力センサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20769048.8A EP3940359A4 (en) | 2019-03-11 | 2020-03-06 | PRESSURE SENSOR |
CN202080019007.1A CN113574356B (zh) | 2019-03-11 | 2020-03-06 | 压力传感器 |
US17/437,736 US12018992B2 (en) | 2019-03-11 | 2020-03-06 | Pressure sensor with tapered stem |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019043798A JP7164835B2 (ja) | 2019-03-11 | 2019-03-11 | 圧力センサ |
JP2019-043798 | 2019-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184434A1 true WO2020184434A1 (ja) | 2020-09-17 |
Family
ID=72426364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/009673 WO2020184434A1 (ja) | 2019-03-11 | 2020-03-06 | 圧力センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US12018992B2 (ja) |
EP (1) | EP3940359A4 (ja) |
JP (1) | JP7164835B2 (ja) |
CN (1) | CN113574356B (ja) |
WO (1) | WO2020184434A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021131346A (ja) * | 2020-02-21 | 2021-09-09 | Tdk株式会社 | 圧力センサ |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7451907B2 (ja) * | 2019-09-09 | 2024-03-19 | Tdk株式会社 | 圧力センサ素子 |
JP7142226B2 (ja) | 2020-09-03 | 2022-09-27 | パナソニックIpマネジメント株式会社 | 食品管理システム |
JP2023124671A (ja) * | 2022-02-25 | 2023-09-06 | Tdk株式会社 | 絶縁膜付き金属部材、物理量センサおよび圧力センサ |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0513782A (ja) | 1991-07-04 | 1993-01-22 | Nagano Keiki Seisakusho Ltd | 圧力センサの金属製ダイヤフラム |
JPH05129636A (ja) * | 1991-11-01 | 1993-05-25 | Citizen Watch Co Ltd | ダイアフラムを有する素子およびその製造方法 |
JP2006010623A (ja) * | 2004-06-29 | 2006-01-12 | Denso Corp | 圧力センサ |
JP2011164072A (ja) * | 2010-02-15 | 2011-08-25 | Seiko Instruments Inc | ダイヤフラム、圧力センサ、及びダイヤフラムの製造方法 |
US20180080844A1 (en) * | 2016-09-22 | 2018-03-22 | Robert Bosch Gmbh | Pressure sensor for detecting a pressure of a fluid medium in a measuring chamber |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3449268B2 (ja) | 1998-12-21 | 2003-09-22 | 松下電工株式会社 | 半導体圧力センサ |
JP2005258625A (ja) * | 2004-03-10 | 2005-09-22 | Sanyo Electric Co Ltd | 圧力センサ |
JP2005283255A (ja) * | 2004-03-29 | 2005-10-13 | Sanyo Electric Co Ltd | 圧力センサ |
JP4742577B2 (ja) * | 2004-12-14 | 2011-08-10 | 日産自動車株式会社 | 圧力センサおよびその製造方法 |
JP5034394B2 (ja) | 2006-09-13 | 2012-09-26 | 株式会社デンソー | 圧力センサ |
DE102008000128B4 (de) * | 2007-01-30 | 2013-01-03 | Denso Corporation | Halbleitersensorvorrichtung und deren Herstellungsverfahren |
JP6115935B2 (ja) * | 2013-01-25 | 2017-04-19 | セイコーインスツル株式会社 | 二相ステンレス鋼からなる時効熱処理加工材とそれを用いたダイヤフラムと圧力センサとダイヤフラムバルブ及び二相ステンレス鋼の製造方法 |
-
2019
- 2019-03-11 JP JP2019043798A patent/JP7164835B2/ja active Active
-
2020
- 2020-03-06 EP EP20769048.8A patent/EP3940359A4/en active Pending
- 2020-03-06 CN CN202080019007.1A patent/CN113574356B/zh active Active
- 2020-03-06 WO PCT/JP2020/009673 patent/WO2020184434A1/ja unknown
- 2020-03-06 US US17/437,736 patent/US12018992B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0513782A (ja) | 1991-07-04 | 1993-01-22 | Nagano Keiki Seisakusho Ltd | 圧力センサの金属製ダイヤフラム |
JPH05129636A (ja) * | 1991-11-01 | 1993-05-25 | Citizen Watch Co Ltd | ダイアフラムを有する素子およびその製造方法 |
JP2006010623A (ja) * | 2004-06-29 | 2006-01-12 | Denso Corp | 圧力センサ |
JP2011164072A (ja) * | 2010-02-15 | 2011-08-25 | Seiko Instruments Inc | ダイヤフラム、圧力センサ、及びダイヤフラムの製造方法 |
US20180080844A1 (en) * | 2016-09-22 | 2018-03-22 | Robert Bosch Gmbh | Pressure sensor for detecting a pressure of a fluid medium in a measuring chamber |
Non-Patent Citations (1)
Title |
---|
See also references of EP3940359A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021131346A (ja) * | 2020-02-21 | 2021-09-09 | Tdk株式会社 | 圧力センサ |
JP7164837B2 (ja) | 2020-02-21 | 2022-11-02 | Tdk株式会社 | 圧力センサ |
Also Published As
Publication number | Publication date |
---|---|
CN113574356A (zh) | 2021-10-29 |
US20220155166A1 (en) | 2022-05-19 |
EP3940359A1 (en) | 2022-01-19 |
CN113574356B (zh) | 2024-03-08 |
EP3940359A4 (en) | 2022-12-14 |
JP2020148480A (ja) | 2020-09-17 |
US12018992B2 (en) | 2024-06-25 |
JP7164835B2 (ja) | 2022-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020184434A1 (ja) | 圧力センサ | |
JP5033421B2 (ja) | 超純粋環境および高腐食環境において使用可能なセンサーとその製造方法 | |
US5801313A (en) | Capacitive sensor | |
US9835507B2 (en) | Dynamic quantity sensor | |
JP2004506180A (ja) | 超純度の非常に腐食性の強い環境において使用可能なセンサ | |
JP4925306B2 (ja) | 圧力センサ | |
JP6654157B2 (ja) | 圧力センサ | |
EP2873958B1 (en) | Capacitive pressure sensors for high temperature applications | |
WO2020192660A1 (zh) | 压力传感器及其制造方法 | |
US10160636B2 (en) | Ceramic substrate, bonded body, module, and method for manufacturing ceramic substrate | |
JP7115372B2 (ja) | 絶縁膜付き金属材料および圧力センサ | |
US11054326B2 (en) | Physical quantity sensor | |
WO2016017290A1 (ja) | 圧力センサ | |
US7367234B2 (en) | Pressure sensor | |
JP4250387B2 (ja) | 変換器およびその製造方法 | |
US12072256B2 (en) | Pressure sensor device | |
JP2006177919A (ja) | 圧力センサ | |
JP2007047100A (ja) | 静電容量型圧力センサ及びその製造方法 | |
US20230146603A1 (en) | Pressure sensor chip, pressure sensor, and manufacturing method thereof | |
JP6621434B2 (ja) | Memsセンサ | |
JPH11241966A (ja) | 静電容量式圧力検出器 | |
JP2001215160A (ja) | 力学的物理量の変換器 | |
JPH11241968A (ja) | 静電容量型圧力センサ及びその製造方法 | |
CN118424522A (zh) | 一种纳米薄膜高温绝压压力传感器 | |
JP2023119476A (ja) | 膜電極構造および圧力センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20769048 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020769048 Country of ref document: EP Effective date: 20211011 |