WO2020192660A1 - 压力传感器及其制造方法 - Google Patents

压力传感器及其制造方法 Download PDF

Info

Publication number
WO2020192660A1
WO2020192660A1 PCT/CN2020/080926 CN2020080926W WO2020192660A1 WO 2020192660 A1 WO2020192660 A1 WO 2020192660A1 CN 2020080926 W CN2020080926 W CN 2020080926W WO 2020192660 A1 WO2020192660 A1 WO 2020192660A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
electrode
cover plate
substrate
sensitive
Prior art date
Application number
PCT/CN2020/080926
Other languages
English (en)
French (fr)
Inventor
聂泳忠
Original Assignee
西人马联合测控(泉州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西人马联合测控(泉州)科技有限公司 filed Critical 西人马联合测控(泉州)科技有限公司
Priority to US17/598,341 priority Critical patent/US20220170808A1/en
Publication of WO2020192660A1 publication Critical patent/WO2020192660A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0044Constructional details of non-semiconductive diaphragms

Definitions

  • This application relates to the technical field of microelectronic mechanical systems, and in particular to a pressure sensor and a manufacturing method thereof.
  • Pressure sensors are widely used in the measurement of pressure parameters in various fields such as national defense, aerospace, industrial production, and automatic control, especially in ultra-high temperature environments, such as measuring boilers, pipelines, high-temperature reaction vessels, oil wells and engines Cavity pressure, and used to measure the pressure on the outer surface of various weapon engines and spacecraft.
  • the pressure sensor has a large size and poor media compatibility.
  • the embodiments of the present application provide a pressure sensor, which aims to reduce the size and improve media compatibility.
  • a pressure sensor including: an upper cover plate having a first cover plate surface, wherein the upper cover plate has a cover plate through hole formed on the first cover plate surface; The first pressure-sensitive surface and the second pressure-sensitive surface, the first pressure-sensitive surface is attached to the first cover surface, wherein a first electrode is formed on the second pressure-sensitive surface, and at least part of the first electrode communicates with the cover Corresponding to the hole; the substrate has a first surface, the first surface and the second pressure-sensitive surface are joined, wherein a cavity is formed on the first surface at a position corresponding to the through hole of the cover, and a second electrode is formed on the wall of the cavity , The first electrode and the second electrode constitute the two electrodes of the capacitor.
  • a first substrate through hole and a second substrate through hole are formed on the first surface of the substrate on the peripheral side of the cavity, and the first substrate through hole and the second substrate through hole are formed on the first surface and the second substrate through hole.
  • the pressure-sensitive surface joints respectively have a first lead electrode and a second lead electrode, the first lead electrode is electrically connected to one of the first electrode and the second electrode, and the second lead electrode is electrically connected to the other of the first electrode and the second electrode. An electrical connection.
  • the first surface and the second pressure-sensitive surface are joined by an insulating layer.
  • the first electrode is between the insulating layer and the second pressure-sensitive surface; the second lead electrode is between the insulating layer and the second pressure-sensitive surface, and is electrically connected to the first electrode.
  • the first lead electrode is between the insulating layer and the first surface, and is electrically connected to the second electrode.
  • the upper cover plate and the base have the same thickness.
  • the contour of the through hole of the cover plate projected on the first pressure-sensitive surface is consistent with and corresponds to the contour of the cavity projected on the second pressure-sensitive surface.
  • the material of the upper cover plate, the pressure-sensitive film and/or the substrate is sapphire.
  • the structure size and packaging can be reduced.
  • the size can also improve media compatibility.
  • a method for manufacturing a pressure sensor which includes the following steps: providing an upper cover plate, the upper cover plate has a first cover plate surface, and the upper cover plate is formed with a cover plate on the first cover plate surface.
  • a pressure-sensitive film the pressure-sensitive film has a first pressure-sensitive surface and a second pressure-sensitive surface opposite, the first pressure-sensitive surface is attached to the first cover surface, and the second pressure-sensitive surface is formed with a first electrode , At least part of the first electrode corresponds to the through hole of the cover plate;
  • a substrate is provided, the substrate has a first surface, the first surface is joined with the second pressure-sensitive surface, and a cavity is formed on the first surface at a position corresponding to the through hole of the cover plate ,
  • the second electrode is formed on the wall of the cavity, the first electrode and the second electrode constitute the two electrodes of the capacitor; through the bonding process, the upper cover plate and the pressure-sensitive film, and the pressure-sensitive film and the substrate are respectively bonded , And get the pressure sensor after dicing.
  • the step of providing a pressure-sensitive film includes: depositing a metal layer on the surface of the pressure-sensitive film and etching to form a first electrode, a second lead electrode and a lead therebetween; Depositing an insulating layer on the surfaces of the first electrode and the second lead electrode and removing the insulating layer on the surface of the second lead electrode; forming the first lead electrode on the surface of the insulating layer; and
  • the step of providing the substrate includes: depositing a metal layer on the surface of the substrate with the cavity and etching to form the second electrode, the lead electrode ring and the lead therebetween; depositing on the surface of the substrate with the second electrode and the lead electrode ring The insulating layer removes the insulating layer on the surface of the lead electrode ring.
  • a pressure-sensitive film and a substrate provided with a cavity are provided, wherein the cavity is provided between the pressure-sensitive film and the substrate, and electrodes are provided on opposite walls of the cavity to form two electrodes of the capacitor ,
  • the pressure-sensitive film and the substrate are bonded by a bonding process, which can reduce the package size and structure size of the pressure sensor, while improving the media compatibility.
  • Figure 1 is a three-dimensional perspective view of a pressure sensor according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a pressure sensor according to an embodiment of the present application.
  • FIG. 3 is a top view of an upper cover plate of a pressure sensor according to an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of the upper cover of a pressure sensor according to an embodiment of the present application along the line 11-11 in FIG. 3;
  • Fig. 5 is a bottom view of a pressure sensitive film of a pressure sensor according to an embodiment of the present application.
  • FIG. 6 is a cross-sectional view of the pressure-sensitive film of a pressure sensor according to an embodiment of the present application along the line 21-21 in FIG. 5;
  • FIG. 7 is a top view of a substrate of a pressure sensor according to an embodiment of the present application.
  • FIG. 8 is a cross-sectional view of the base of a pressure sensor according to an embodiment of the present application along the line 31-31 in FIG. 7;
  • Fig. 9 is a flowchart of a method for manufacturing a pressure sensor according to an embodiment of the present application.
  • 10-upper cover plate 101-first sapphire wafer; 102-cover plate through hole; 103-first cover plate surface; 20-pressure sensitive film; 201-second sapphire wafer; 202-first electrode; 203-th A lead electrode; 204-first pressure-sensitive surface; 205-second pressure-sensitive surface; 206-second lead electrode; 30-substrate; 301-third sapphire wafer; 303-cavity; 304-second electrode; 305 -First surface; 306-first substrate through hole; 307-second substrate through hole; 401-insulating layer.
  • Fig. 1 is a three-dimensional perspective view of a pressure sensor according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a pressure sensor according to an embodiment of the present application.
  • the pressure sensor provided by the embodiment of the present application includes an upper cover 10, a pressure sensitive film 20 and a base 30.
  • the upper cover plate 10 has a first cover plate surface 103, wherein the upper cover plate 10 has a cover plate through hole 102 formed on the first cover plate surface 103.
  • the pressure-sensitive film 20 has a first pressure-sensitive surface 204 and a second pressure-sensitive surface 205 opposite to each other.
  • the first pressure-sensitive surface 204 is attached to the first cover surface 103, wherein a first electrode is formed on the second pressure-sensitive surface 205 202. At least part of the first electrode 202 corresponds to the through hole 102 of the cover plate.
  • the base 30 has a first surface 305, the first surface 305 is joined with the second pressure-sensitive surface 205, wherein a cavity 303 is formed on the first surface 305 at a position corresponding to the through hole 102 of the cover plate, and the wall of the cavity 303 is formed
  • the first electrode 202 and the second electrode 304 are sealed between the pressure-sensitive film 20 and the substrate 30.
  • the materials of the pressure sensitive film 20 and the substrate 30 are insulating materials.
  • the upper cover 10 is made of the same insulating material as the pressure sensitive film 20 and the base 30.
  • the shapes of the upper cover 10, the pressure sensitive film 20 and the base 30 are not limited.
  • the shapes of the upper cover 10, the pressure sensitive film 20 and the base 30 may be the same or different, and may be, for example, a circle, a rectangle, or an ellipse. Shape, square or other shape.
  • the shape of the upper cover 10, the pressure-sensitive film 20 and the base 30 are the same, and all are square.
  • the shape of the cover plate through hole 102 is also not limited, and it may be cylindrical, forward cone, inverted cone, square column, etc., preferably cylindrical and located in the center of the upper cover plate 10.
  • the number of the through holes 102 of the cover plate is also not limited, and may be one or more, preferably one.
  • first pressure-sensitive surface 204 and the first cover surface 103, and between the first surface 305 and the second pressure-sensitive surface 205 may be bonding, bonding, welding, or separate Or cooperate with other connecting parts (such as tenon-and-mortise structure) for fitting connection.
  • the first electrode 202 is formed on the second pressure-sensitive surface 205 and at least partially corresponds to the cover plate through hole 102, that is, the projections of the first electrode 202 and the cover plate through hole 102 on the second pressure-sensitive surface 205 overlap .
  • the first electrode 202 completely corresponds to the through hole 102 of the cover plate.
  • the cover plate through hole 102 is a cylindrical through hole, and in a preferred embodiment, the first electrode 202 is circular.
  • the position of the cavity 303 provided on the first surface 305 may completely or partially correspond to the position of the cover plate through hole 102, that is, the projection of the cavity 303 on the first surface 305 and the cover plate through hole 102 on the first surface 305
  • the projections of are partially overlapped or completely overlapped, preferably completely overlapped.
  • the first electrode 202 is partially or completely within the range of the cavity 303.
  • the cover plate through hole 102 is a cylindrical through hole.
  • the projection of the cavity 303 on the first surface 305 is circular, and the diameter of the cavity 303 is the same as that of the cover plate.
  • the diameters of the through holes 102 are equal.
  • the cavity 303 has a depth in the thickness direction of the base 30.
  • the second electrode 304 and the first electrode 202 overlap in the lateral direction (refer to the direction shown in FIG. 2).
  • the first electrode 202 and the second electrode 304 constitute the two electrodes of the capacitor.
  • the cavity 303 is vacuumed to form a vacuum reference cavity, or optionally filled with insulating gas or partially provided with a solid insulating layer, so that the first electrode 202 and the second electrode 304 are insulated and isolated.
  • a lead pin can be set at the substrate 30, and the capacitance signal can be extracted through the capacitance demodulation circuit for demodulation, and finally a pressure signal is obtained, and the pressure received can be calculated according to the capacitance value change to realize the measurement of the pressure sensor .
  • a cavity 303 is provided between the pressure-sensitive film 20 and the substrate 30, and electrodes are arranged on the opposite walls of the cavity 303 to form two electrodes of the capacitor for pressure sensing.
  • the cover plate 10, the pressure sensitive film 20 and the substrate 30 are closely attached to each other, and electrodes are arranged on the corresponding surfaces.
  • the substrate 30 has a first substrate through hole 306 and a second substrate through hole 307 formed on the first surface 305 on the peripheral side of the cavity 303.
  • a substrate through hole 306 and a second substrate through hole 307 respectively have a first lead electrode 203 and a second lead electrode 206 at the junction of the first surface 305 and the second pressure-sensitive surface 205, the first lead electrode 203 and the first electrode 202 It is electrically connected to one of the second electrodes 304, and the second lead electrode 206 is electrically connected to the other of the first electrode 202 and the second electrode 304.
  • first substrate through hole 306 and the second substrate through hole 307 are not limited.
  • the first substrate through hole 306 and the second substrate through hole 307 may be symmetrically arranged with respect to the cavity 303, or may be in the cavity.
  • One side of the cavity 303 is provided.
  • the shape of the first substrate through hole 306 and the second substrate through hole 307 may be cylindrical, forward cone, inverted cone, square column, etc., preferably cylindrical.
  • the first lead electrode 203 and the second lead electrode 206 may respectively correspond to the first substrate through hole 306 and the second substrate through hole 307.
  • the first lead electrode 203 corresponds to the first substrate through hole 306, namely Located above the first substrate through hole 306 and communicating with the first substrate through hole 306
  • the second lead electrode 206 corresponds to the second substrate through hole 307, that is, located above the second substrate through hole 307 and communicates with the second substrate through hole 307 .
  • first lead electrode 203 and the second lead electrode 206 may be integrally formed, that is, composed of a single conductive member, or may be formed by connecting multiple conductive members. For example, a conductive ring and a conductive sheet are connected together. Stacked and connected.
  • the substrate 30 may also be provided with more than two substrate through holes, which are all within the protection scope of the present application.
  • the first surface 305 and the second pressure-sensitive surface 205 are joined by an insulating layer 401.
  • the insulating layer 401 may be first bonded to only one of the first surface 305 and the second pressure-sensitive surface 205, and then bonded to the other of the first surface 305 and the second pressure-sensitive surface 205.
  • the insulating layer 401 is divided into two layers, which are respectively attached to the first surface 305 and the second pressure-sensitive surface 205, and then the two insulating layers 401 are attached to form an integrated insulating layer 401.
  • the insulating layer 401 separates the first electrode 202 and the second electrode 304, and optionally separates the first lead electrode 203 and the second lead electrode 206.
  • the first electrode 202 and the second electrode 304 are sealed in the insulating layer 401.
  • the leads between the first electrode 202 and the second electrode 304 and the first lead electrode 203 and the second lead electrode 206 are sealed in the insulating layer 401.
  • the insulating layer 401 protects the high temperature resistant electrode film composed of the first electrode 202, the second electrode 304, the first lead electrode 203, and the second lead electrode 206, and also serves as a bonding layer between the pressure sensitive film 20 and the substrate 30.
  • the first electrode 202 is between the insulating layer 401 and the second pressure-sensitive surface 205; the second lead electrode 206 is between the insulating layer 401 and the second pressure-sensitive surface 205, and is connected to the first The electrode 202 is electrically connected.
  • the second lead electrode 206 and the first electrode 202 may be electrically connected through a lead wire disposed between the insulating layer 401 and the second pressure-sensitive surface 205.
  • the first lead electrode 203 is located between the insulating layer 401 and the first surface 305, and is electrically connected to the second electrode 304.
  • the first lead electrode 203 and the second electrode 304 may be electrically connected by a lead provided between the insulating layer 401 and the first surface 305.
  • the upper cover 10 and the base 30 have the same thickness.
  • Such a setting (especially in the case of high temperature) can effectively reduce the thermal stress of the pressure-sensitive membrane 20 to reduce the pressure measurement error caused by the thermal stress.
  • the three-layer structure in this application is symmetrical
  • the thermal stress of the designed pressure sensor at high temperature is only 1/4 of that of other structures.
  • the contour of the cover plate through hole 102 projected on the first pressure-sensitive surface 204 is consistent with and corresponds to the contour of the concave cavity 303 projected on the second pressure-sensitive surface 205.
  • the material of the upper cover 10, the pressure-sensitive film 20 and/or the substrate 30 is sapphire.
  • the upper cover 10, the pressure sensitive film 20 and the substrate 30 are all sapphire materials. It is understandable that the upper cover 10, the pressure-sensitive film 20 and the substrate 30 may not be limited to sapphire materials, and may also be other materials or material combinations that have similar or better performance to sapphire as a pressure sensor.
  • Sapphire material has good thermal, mechanical and electrical insulation properties at high temperatures, its melting point exceeds 2000°C, and its mechanical properties are good at 1500°C.
  • the pressure sensor made of sapphire material in the embodiment of the present application has excellent insulation, realizes isolation between the medium and the electricity, and improves the environmental adaptability and anti-electromagnetic interference ability of the sensor.
  • the pressure sensor made of sapphire material in the embodiment of the present application does not need to be separately provided with heat sinks, water cooling or pressure pipes, and can perform undistorted measurement in a high temperature environment.
  • a larger light source module and optical signal demodulation module are not required, it can be smaller in size and has higher accuracy.
  • the pressure sensor isolates the electrical connection device from the pressure medium to be measured, improves the media compatibility of the sensor, and can reduce the overall size of the pressure sensor, thereby reducing the overall package size of the sensor .
  • the size of the pressure sensor provided by the embodiments of the application can be reduced to less than 2mm ⁇ 2mm, the working temperature can be raised to above 1000°C, and it has good compatibility with pressure media, and can measure conductive or non-conductive gas and hydraulic pressure media at high temperatures .
  • a pressure sensor manufacturing method includes the following steps:
  • An upper cover plate 10 is provided, the upper cover plate 10 has a first cover plate surface 103, and the upper cover plate 10 has a cover plate through hole 102 formed on the first cover plate surface 103.
  • a pressure-sensitive film 20 is provided.
  • the pressure-sensitive film 20 has a first pressure-sensitive surface 204 and a second pressure-sensitive surface 205 opposite to each other.
  • the first pressure-sensitive surface 204 is attached to the first cover surface 103, and the second pressure-sensitive surface 205 is
  • a first electrode 202 is formed, and at least a part of the first electrode 202 corresponds to the cover plate through hole 102.
  • a substrate 30 is provided.
  • the substrate 30 has a first surface 305, the first surface 305 is joined with the second pressure-sensitive surface 205, a cavity 303 is formed on the first surface 305 at a position corresponding to the through hole 102 of the cover plate, and the wall of the cavity 303
  • a second electrode 304 is formed at the portion, and the first electrode 202 and the second electrode 304 constitute two electrodes of the capacitor.
  • the upper cover plate 10 and the pressure-sensitive film 20, and the pressure-sensitive film 20 and the base 30 are respectively bonded, and then diced to obtain a pressure sensor.
  • the processing method of the through hole 102 of the cover plate may be formed by laser processing, wet etching or dry etching.
  • the cavity 303 may be formed on the first surface 305 by using a dry etching or wet etching process.
  • a high-temperature resistant electrode film is prepared on the second pressure-sensitive surface 205 by a thin film deposition process, and then the first electrode 202 is formed by photolithography patterning, wet etching or dry etching in sequence. .
  • the second electrode 304 for example, a high temperature resistant electrode film is prepared on the wall of the cavity 303 by a thin film deposition process, and then the second electrode 304 is fabricated by photolithography patterning, wet etching or dry etching in sequence.
  • the cavity 303 is provided between the pressure-sensitive film 20 and the substrate 30, and is located in the cavity 303 Electrodes are arranged on the opposite wall to form the two electrodes of the capacitor, and the pressure sensitive film 20 and the substrate 30 are bonded by a bonding process, which can reduce the package size and structure size of the pressure sensor, while improving the media compatibility and providing high precision Pressure measurement.
  • the step of providing the pressure sensitive film 20 includes:
  • a metal layer is deposited on the surface of the pressure sensitive film 20 and etched to form the first electrode 202, the second lead electrode 206, and the leads therebetween.
  • the metal layer can be a composite metal film of titanium nitride/ruthenium/titanium nitride (TiN/Ru/TiN), or other high-temperature resistant conductive metal such as titanium nitride/platinum/titanium nitride (TiN/Pt/TiN) Film system.
  • the insulating layer is deposited on the surface of the pressure sensitive film 20 with the first electrode 202 and the second lead electrode 206 and the insulating layer on the surface of the second lead electrode 206 is removed.
  • the insulating layer may be an aluminum oxide (Al 2 O 3 ) film.
  • a first lead electrode 203 is formed on the surface of the insulating layer.
  • the step of forming the first lead electrode 203 may be the same as the step of forming the second lead electrode 206, or a conductive wafer may be directly provided to form the first lead electrode 203.
  • the positions of the first lead electrode 203 and the second lead electrode 206 on the plane are staggered.
  • the surface of the insulating layer of the pressure sensitive film 20 is planarized by a chemical mechanical polishing process (CMP) to facilitate the bonding operation.
  • CMP chemical mechanical polishing process
  • titanium nitride/ruthenium/titanium nitride and aluminum oxide, or titanium nitride/platinum/titanium nitride and aluminum oxide composite film layer increases the adhesion between the film layer and the sapphire substrate, improves the temperature resistance of the electrode, and also It can be used as a bonding layer for sapphire wafers.
  • the step of providing the substrate 30 includes:
  • a metal layer is deposited on the surface of the substrate 30 with the cavity 303 and etched to form the second electrode 304, the lead electrode ring and the lead therebetween.
  • the metal layer can be a composite metal film of titanium nitride/ruthenium/titanium nitride (TiN/Ru/TiN), or other high-temperature resistant conductive metal such as titanium nitride/platinum/titanium nitride (TiN/Pt/TiN) Film system.
  • An insulating layer is deposited on the surface of the substrate 30 with the second electrode 304 and the lead electrode ring, and the insulating layer on the surface of the lead electrode ring is removed.
  • the insulating layer may be an aluminum oxide (Al 2 O 3 ) film.
  • the insulating layer on the surface of the lead electrode ring can be removed by photolithography and etching processes.
  • the position of the lead electrode ring is: when the pressure sensitive film 20 is attached to the substrate 30, the lead electrode ring on the substrate 30 and the first lead electrode 203 on the pressure sensitive film 20 overlap each other correspondingly, and can form an electrical connection .
  • the surface of the insulating layer of the substrate 30 is planarized by a chemical mechanical polishing process (CMP) to facilitate the bonding operation.
  • CMP chemical mechanical polishing process
  • the thickness of the pressure-sensitive film 20 is different according to the different range settings of the pressure sensor. Therefore, after the pressure-sensitive film 20 is bonded to the substrate 30, the thickness of the pressure-sensitive film 20 can be reduced according to actual needs. After thinning and polishing treatment, after thinning and polishing, it is bonded with the upper cover 10 to form a three-layer structure.
  • a method for manufacturing a pressure sensor including the following steps:
  • S10 Provide a first sapphire wafer 101, a second sapphire wafer 201, and a third sapphire wafer 301; wherein the size of the three sapphire wafers is not limited, and a 4-inch sapphire wafer is selected as an example;
  • a cover plate through hole 102 is provided on the first sapphire wafer 101 to form an upper cover plate 10, and a first substrate through hole 306 and a second substrate through hole 307 are provided on the third sapphire wafer 301;
  • S40 Provide an electrode layer and an insulating layer on the surface of the third sapphire wafer 301 with the cavity 303 to form the substrate 30;
  • S50 Provide an electrode layer and an insulating layer on one surface of the second sapphire wafer 201 to form a pressure sensitive film 20;
  • step S40 includes:
  • TiN/Ru/TiN titanium nitride/ruthenium/titanium nitride
  • step S50 includes:
  • step S60 includes:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压力传感器及其制造方法,其中该压力传感器包括:上盖板(10),具有第一盖板面(103),其中上盖板(10)在第一盖板面(103)上形成有盖板通孔(102);感压膜(20),感压膜(20)具有相对的第一感压面(204)和第二感压面(205),第一感压面(204)与第一盖板面(103)贴合,其中第二感压面(205)上形成有第一电极(202),第一电极(202)至少部分与盖板通孔(102)对应;基底(30),具有第一表面(305),第一表面(305)与第二感压面(205)接合,其中第一表面(305)对应盖板通孔(102)的位置处形成有凹腔(303),凹腔(303)的壁部处形成有第二电极(304),第一电极(202)和第二电极(304)构成电容器的两个电极。该压力传感器能够缩小结果尺寸和封装尺寸,又能提高介质兼容性。

Description

压力传感器及其制造方法
相关申请的交叉引用
本申请要求享有于2019年03月27日提交的名称为“压力传感器及其制造方法”的中国专利申请201910237241.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及微电子机械系统技术领域,特别是涉及一种压力传感器及其制造方法。
背景技术
压力传感器广泛应用于国防、航空航天、工业生产和自动控制等各领域压力参数的测量,尤其在超高温环境中的应用较为广泛,例如用于测量锅炉、管道、高温反应容器、油井和发动机内腔压力,以及用于测量各式武器发动机和航天器外表面的压力。
而现有技术中,压力传感器尺寸较大,并且介质兼容性差。
因此,亟需一种新的压力传感器。
发明内容
本申请实施例提供一种压力传感器,旨在缩小尺寸,提高介质兼容性。
本申请实施例一方面提供了一种压力传感器,包括:上盖板,具有第一盖板面,其中上盖板在第一盖板面上形成有盖板通孔;感压膜,具有相对的第一感压面和第二感压面,第一感压面与第一盖板面贴合,其中第二感压面上形成有第一电极,第一电极的至少部分与盖板通孔对应;基底,具有第一表面,第一表面与第二感压面接合,其中第一表面上对应盖板通 孔的位置处形成有凹腔,凹腔的壁部处形成有第二电极,第一电极与第二电极构成电容器的两个电极。
根据本申请的一个方面,基底于第一表面上在凹腔周侧形成有第一基底通孔和第二基底通孔,第一基底通孔和第二基底通孔在第一表面与第二感压面接合处分别具有第一引线电极和第二引线电极,第一引线电极与第一电极和第二电极中的一个电连接,第二引线电极与第一电极和第二电极中的另一个电连接。
根据本申请的一个方面,第一表面与第二感压面之间通过绝缘层接合。
根据本申请的一个方面,第一电极处于绝缘层与第二感压面之间;第二引线电极处于绝缘层与第二感压面之间,并且与第一电极电连接。
根据本申请的一个方面,第一引线电极处于绝缘层与第一表面之间,并且与第二电极电连接。
根据本申请的一个方面,上盖板与基底厚度相等。
根据本申请的一个方面,盖板通孔投影在第一感压面上的轮廓与凹腔投影在第二感压面上的轮廓相一致并对应。
根据本申请的一个方面,上盖板、感压膜和/或基底的材料为蓝宝石。
在本申请实施例中,通过在感压膜与基底之间设置凹腔,并在凹腔的相对壁部设置电极以构成电容器的两个电极,以进行压力感测,能够缩小结构尺寸和封装尺寸的同时又能提高介质兼容性。
本申请实施例另一方面,提供一种压力传感器制造方法,包括以下步骤:提供上盖板,上盖板具有第一盖板面,上盖板在第一盖板面上形成有盖板通孔;提供感压膜,感压膜具有相对的第一感压面和第二感压面,第一感压面与第一盖板面贴合,第二感压面上形成有第一电极,第一电极的至少部分与盖板通孔对应;提供基底,基底具有第一表面,第一表面与第二感压面接合,第一表面上对应盖板通孔的位置处形成有凹腔,凹腔的壁部处形成有第二电极,第一电极与第二电极构成电容器的两个电极;通过键合工艺,分别将上盖板与感压膜,感压膜与基底进行键合,再划片后得到压力传感器。
根据本申请的另一个方面,提供感压膜的步骤包括:在感压膜的表面上沉积金属层并刻蚀形成第一电极、第二引线电极以及其间的引线;在感压膜的带有第一电极和第二引线电极的表面沉积绝缘层并将第二引线电极处表面的绝缘层去除;在绝缘层表面形成第一引线电极;并且
提供基底的步骤包括:在基底的带有凹腔的表面上沉积金属层并刻蚀形成第二电极、引线电极环以及其间的引线;在基底的带有第二电极和引线电极环的表面沉积绝缘层并将引线电极环处表面的绝缘层去除。
在本申请实施例中,通过提供感压膜和设置有凹腔的基底,其中凹腔设置在感压膜和基底之间,并在凹腔的相对壁部设置电极以构成电容器的两个电极,以键合工艺贴合感压膜和基底,能够缩小压力传感器的封装尺寸和结构尺寸,同时又能提高介质兼容性。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请实施例的一种压力传感器的三维透视图;
图2是本申请实施例的一种压力传感器的结构示意图;
图3是本申请实施例的一种压力传感器的上盖板的俯视图;
图4是本申请实施例的一种压力传感器的上盖板沿图3中的线11-11的剖面图;
图5是本申请实施例的一种压力传感器的感压膜的仰视图;
图6是本申请实施例的一种压力传感器的感压膜沿图5中的线21-21的剖面图;
图7是本申请实施例的一种压力传感器的基底的俯视图;
图8是本申请实施例的一种压力传感器的基底沿图7中的线31-31的剖面图;
图9是本申请实施例的一种压力传感器制造方法的流程图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
10-上盖板;101-第一蓝宝石晶片;102-盖板通孔;103-第一盖板面;20-感压膜;201-第二蓝宝石晶片;202-第一电极;203-第一引线电极;204-第一感压面;205-第二感压面;206-第二引线电极;30-基底;301-第三蓝宝石晶片;303-凹腔;304-第二电极;305-第一表面;306-第一基底通孔;307-第二基底通孔;401-绝缘层。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的实施例的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图8对根据本申请实施例的压力传感器进行详细描述。
一并参考图1-2,其中图1为本申请实施例提供的一种压力传感器的 三维透视图,图2是本申请实施例的一种压力传感器的结构示意图。本申请实施例提供的压力传感器包括上盖板10、感压膜20和基底30。如图3-4所示,上盖板10具有第一盖板面103,其中上盖板10在第一盖板面103上形成有盖板通孔102。感压膜20具有相对的第一感压面204和第二感压面205,第一感压面204与第一盖板面103贴合,其中第二感压面205上形成有第一电极202,第一电极202的至少部分与盖板通孔102对应。基底30具有第一表面305,第一表面305与第二感压面205接合,其中第一表面305上对应盖板通孔102的位置处形成有凹腔303,凹腔303的壁部处形成有第二电极304,第一电极202与第二电极304构成电容器的两个电极。其中,第一电极202与第二电极304密封地设置在感压膜20和基底30之间。优选地,感压膜20和基底30的材料为绝缘材料。优选地,上盖板10为与感压膜20和基底30相同的绝缘材料。
其中,对上盖板10、感压膜20和基底30的形状不做限定,上盖板10、感压膜20和基底30的形状可以相同也可以不同,可以例如是圆形、矩形、椭圆形、正方形或其他形状。优选地,上盖板10、感压膜20和基底30的形状相同,并且都为正方形。对盖板通孔102的形状也不做限定,可以是圆柱形、正锥形、倒锥形、方柱形等,优选为圆柱形并且位于上盖板10的中心。对盖板通孔102的数量也不做限定,可以是一个或多个,优选为一个。
可以理解的是,第一感压面204与第一盖板面103之间,以及第一表面305与第二感压面205之间接合的形式可以是键合、粘合、焊接、或者单独或配合采用其他连接部件(例如榫卯结构)进行贴合连接。
具体地,第一电极202形成在第二感压面205上并且至少部分与盖板通孔102对应,即第一电极202与盖板通孔102在第二感压面205上的投影交叠。优选地第一电极202与盖板通孔102完全对应。在上述优选实施例中,盖板通孔102为圆柱形通孔,则在一个优选实施例中,第一电极202为圆形。
第一表面305上设置的凹腔303的位置可以完全或部分地对应盖板通孔102的位置,即凹腔303在第一表面305上的投影与盖板通孔102在第 一表面305上的投影部分交叠或完全交叠,优选地为完全交叠。这样,第一电极202部分或完全处于凹腔303的范围内。在上述优选实施例中,盖板通孔102为圆柱形通孔,则在一个优选实施例中,凹腔303在第一表面305上的投影为圆形,并且凹腔303的直径与盖板通孔102的直径相等。凹腔303在基底30的厚度方向上有纵深。第二电极304与第一电极202在横向(参考图2所示方向)上有交叠。
第一电极202与第二电极304构成电容器的两个电极,凹腔303中为真空的,形成真空参考腔,或者可选地填充有绝缘气体或部分设置有固体绝缘层,以使第一电极202与第二电极304之间绝缘隔离。当感压膜20在盖板通孔102处受外界压力时,导致盖板通孔102处感压膜20形变,进而使第一电极202与第二电极304构成的电容器间距发生改变而引起电容值变化,可以在基底30处设置引线插针,可以将电容信号引出通过电容解调电路进行解调,最终得到压力信号,从而根据该电容值变化计算出所受压力,以实现压力传感器的测量。
在本申请实施例中,通过在感压膜20与基底30之间设置凹腔303,并在凹腔303的相对壁部设置电极以构成电容器的两个电极,以进行压力感测,由于上盖板10、感压膜20与基底30相互之间紧密贴合,并在相应表面处设置电极,这样的结构保证电学连接器件与被测压力介质隔离,提高传感器的介质兼容性和抗电磁干扰能力,同时能够减小压力传感器整体尺寸,进而缩小传感器整体封装尺寸,并且又能通过所形成的电容器进行高精度压力测量。
在一些可选的实施例中,如图2、5-8所示,基底30于第一表面305上在凹腔303周侧形成有第一基底通孔306和第二基底通孔307,第一基底通孔306和第二基底通孔307在第一表面305与第二感压面205接合处分别具有第一引线电极203和第二引线电极206,第一引线电极203与第一电极202和第二电极304中的一个电连接,第二引线电极206与第一电极202和第二电极304中的另一个电连接。
其中,对第一基底通孔306和第二基底通孔307的位置和形状不做限定,第一基底通孔306和第二基底通孔307可以相对于凹腔303对称设 置,也可以在凹腔303的一侧设置。第一基底通孔306和第二基底通孔307的形状可以是圆柱形、正锥形、倒锥形、方柱形等,优选为圆柱形。
具体地,第一引线电极203和第二引线电极206可以分别对应于第一基底通孔306和第二基底通孔307,优选地,第一引线电极203对应于第一基底通孔306,即位于第一基底通孔306上方并与第一基底通孔306连通,第二引线电极206对应于第二基底通孔307,即位于第二基底通孔307上方并与第二基底通孔307连通。
可以理解的是,第一引线电极203和第二引线电极206可以是一体成型,即由单个导电件构成,也可以是由多个导电件连接而成,示例地,由导电环与导电片相叠连接而成。
可以理解的是,基底30还可以设置多于两个的基底通孔,这均在本申请的保护范围之内。
在一些可选的实施例中,如图2所示,第一表面305与第二感压面205之间通过绝缘层401接合。其中,绝缘层401可以是先只贴合在第一表面305和第二感压面205中的一个上,而后再与第一表面305和第二感压面205中的另一个贴合而成,或者优选地,绝缘层401分为两层,分别贴合在第一表面305和第二感压面205上,再由这两层绝缘层401贴合成一体的绝缘层401。绝缘层401将第一电极202和第二电极304间隔开,并且可选地将第一引线电极203和第二引线电极206间隔开。可选地,第一电极202和第二电极304密封在绝缘层401中。可选地,第一电极202和第二电极304,与第一引线电极203和第二引线电极206之间的引线密封在绝缘层401中。绝缘层401即保护第一电极202、第二电极304、第一引线电极203和第二引线电极206等构成的耐高温电极薄膜,又作为感压膜20与基底30之间的键合层。
在一些可选的实施例中,第一电极202处于绝缘层401与第二感压面205之间;第二引线电极206处于绝缘层401与第二感压面205之间,并且与第一电极202电连接。可选地,第二引线电极206与第一电极202之间可以通过设置在绝缘层401与第二感压面205之间的引线实现电连接。
在一些可选的实施例中,第一引线电极203处于绝缘层401与第一表 面305之间,并且与第二电极304电连接。可选地,第一引线电极203与第二电极304可以通过设置在绝缘层401与第一表面305之间的引线实现电连接。
在一些可选的实施例中,上盖板10与基底30厚度相等。这样的设置(尤其是在高温的情况)能够有效减小感压膜20所受热应力,以减小热应力引起的压力测量误差,通过理论计算和有限元仿真,本申请中三层体结构对称设计的压力传感器在高温下的热应力仅为其他结构的1/4。
在一些可选的实施例中,盖板通孔102投影在第一感压面204上的轮廓与凹腔303投影在第二感压面205上的轮廓相一致并对应。
在一些可选的实施例中,上盖板10、感压膜20和/或基底30的材料为蓝宝石。优选地,上盖板10、感压膜20和基底30都是蓝宝石材料。可以理解的是,上盖板10、感压膜20和基底30可以不限于蓝宝石材料,也可以是与蓝宝石作为压力传感器性质相近或性能更优的其他材料或材料组合。蓝宝石材料在高温下具有很好的热、力和电绝缘性能,其熔点超过2000℃,在1500℃时机械性能良好。本申请实施例的蓝宝石材料的压力传感器,具有优异的绝缘性,实现介质与电气隔离,提高传感器的环境适应性和抗电磁干扰能力。本申请实施例的蓝宝石材料的压力传感器不需要单独设置散热片、水冷或者引压管,就能在高温环境下进行不失真测量。并且,相对于光纤F-P式压力传感器,由于不需要体积较大的光源模块和光学信号解调模块,可以做到更小尺寸,并且具有更高精度。相对于无线LC谐振式压力传感器,由于无线LC谐振式压力传感器的厚膜线圈和电容电极置于绝压腔外部,直接与被测介质接触,所以不能测量导电介质,环境适应性和抗电磁干扰能力差,最高工作温度较低,本申请实施例提供的压力传感器使电学连接器件与被测压力介质隔离,提高传感器的介质兼容性,同时能够减小压力传感器整体尺寸,进而缩小传感器整体封装尺寸。本申请实施例提供的压力传感器的尺寸可以减小至2mm×2mm以下,工作温度可提升至1000℃以上,并且与压力介质兼容性好,能够测量高温下导电或非导电的气、液压力介质。
为了更好地理解本申请,下面结合图9对根据本申请实施例的压力传 感器制造方法进行详细描述。
如图9所示,本申请提供的一种压力传感器制造方法包括以下步骤:
提供上盖板10,上盖板10具有第一盖板面103,上盖板10在第一盖板面103上形成有盖板通孔102。
提供感压膜20,感压膜20具有相对的第一感压面204和第二感压面205,第一感压面204与第一盖板面103贴合,第二感压面205上形成有第一电极202,第一电极202的至少部分与盖板通孔102对应。
提供基底30,基底30具有第一表面305,第一表面305与第二感压面205接合,第一表面305上对应盖板通孔102的位置处形成有凹腔303,凹腔303的壁部处形成有第二电极304,第一电极202与第二电极304构成电容器的两个电极。
通过键合工艺,分别将上盖板10与感压膜20,感压膜20与基底30进行键合,再划片后得到压力传感器。
其中,盖板通孔102的加工方式可以为激光加工、湿法腐蚀或者干法刻蚀形成。可以采用干法刻蚀或湿法腐蚀工艺在第一表面305形成凹腔303。对于第一电极202,示例地,先在第二感压面205上通过薄膜沉积工艺制备耐高温电极薄膜,再依次采用光刻图形化、湿法腐蚀或干法刻蚀制作成第一电极202。对于第二电极304,示例地,在凹腔303的壁部上通过薄膜沉积工艺制备耐高温电极薄膜,再依次采用光刻图形化、湿法腐蚀或干法刻蚀制作成第二电极304。
在本申请实施例中,通过提供上盖板10、感压膜20和设置有凹腔303的基底30,其中凹腔303设置在感压膜20和基底30之间,并在凹腔303的相对壁部设置电极以构成电容器的两个电极,以键合工艺贴合感压膜20和基底30,能够缩小压力传感器的封装尺寸和结构尺寸,同时又能提高介质兼容性,并提供高精度压力测量。
在一些可选的实施例中,提供感压膜20的步骤包括:
在感压膜20的表面上沉积金属层并刻蚀形成第一电极202、第二引线电极206以及其间的引线。金属层可以是氮化钛/钌/氮化钛(TiN/Ru/TiN)复合金属膜,也可以是如氮化钛/铂/氮化钛 (TiN/Pt/TiN)的其他耐高温导电金属膜系。
在感压膜20的带有第一电极202和第二引线电极206的表面沉积绝缘层并将第二引线电极206处表面的绝缘层去除。绝缘层可以是氧化铝(Al 2O 3)薄膜。
在绝缘层表面形成第一引线电极203。形成第一引线电极203的步骤可以与形成第二引线电极206的步骤相同,或者可以直接设置导电圆片以形成第一引线电极203。第一引线电极203与第二引线电极206在平面上的位置错开。
可选地,通过化学机械抛光工艺(CMP)对感压膜20的绝缘层表面进行平坦化处理,以便于键合操作。
其中,氮化钛/钌/氮化钛与氧化铝,或氮化钛/铂/氮化钛与氧化铝复合膜层增加膜层与蓝宝石基底的粘结性,提高电极的耐温性能,还可以用其作为蓝宝石晶片的键合层。
在一些可选的实施例中,提供基底30的步骤包括:
在基底30的带有凹腔303的表面上沉积金属层并刻蚀形成第二电极304、引线电极环以及其间的引线。金属层可以是氮化钛/钌/氮化钛(TiN/Ru/TiN)复合金属膜,也可以是如氮化钛/铂/氮化钛(TiN/Pt/TiN)的其他耐高温导电金属膜系。
在基底30的带有第二电极304和引线电极环的表面沉积绝缘层并将引线电极环处表面的绝缘层去除。绝缘层可以是氧化铝(Al 2O 3)薄膜。可以通过光刻和刻蚀工艺将引线电极环处表面的绝缘层去除。
其中,引线电极环的位置为:在感压膜20与基底30贴合时,使基底30上的引线电极环与感压膜20上的第一引线电极203相互对应重叠,并能形成电连接。
可选地,通过化学机械抛光工艺(CMP)对基底30的绝缘层表面进行平坦化处理,以便于键合操作。
可选地,根据压力传感器的不同量程设置,感压膜20的厚度也不同,因此在完成感压膜20与基底30键合之后,可根据实际需要对感压膜20的厚度进行相应的减薄和抛光处理,减薄抛光之后,再与上盖板10进 行键合,形成三层结构。
在本申请的另一个实施例中,提供一种压力传感器制造方法,包括以下步骤:
S10:提供第一蓝宝石晶片101、第二蓝宝石晶片201和第三蓝宝石晶片301;其中,对上述三个蓝宝石晶片的尺寸不做限定,示例地选取为4英寸蓝宝石晶片;
S20:通过激光加工工艺,在第一蓝宝石晶片101上提供盖板通孔102以形成上盖板10,在第三蓝宝石晶片301上提供第一基底通孔306和第二基底通孔307;
S30:通过湿法刻蚀工艺,在第三蓝宝石晶片301上提供凹腔303;
S40:在第三蓝宝石晶片301的带有凹腔303的表面上提供电极层和绝缘层,以形成基底30;
S50:在第二蓝宝石晶片201的一个表面上提供电极层和绝缘层,以形成感压膜20;
S60:通过键合工艺,分别将上盖板10与感压膜20,感压膜20与基底30进行键合;
S70:划片,得到压力传感器。
在一些可选的实施例中,步骤S40包括:
S41:通过物理气相沉积(PVD)工艺,在基底30的带有凹腔303的表面上沉积氮化钛/钌/氮化钛(TiN/Ru/TiN)复合金属膜;
S42:通过光刻图形化和干法刻蚀工艺,将氮化钛/钌/氮化钛复合金属膜刻蚀形成第二电极304、引线电极环以及其间的引线;
S43:通过物理气相沉积工艺,在基底30的带有第二电极304和引线电极环的表面沉积氧化铝(Al 2O 3)薄膜;
S44:通过光刻图形化和干法刻蚀工艺,将引线电极环处表面的氧化铝薄膜去除。
在一些可选的实施例中,步骤S50包括:
S51:通过物理气相沉积工艺,在感压膜20的表面上沉积氮化钛/钌/氮化钛复合金属膜;
S52:通过光刻图形化和干法刻蚀工艺,将氮化钛/钌/氮化钛复合金属膜刻蚀形成第一电极202、第二引线电极206以及其间的引线;
S53:通过物理气相沉积工艺,在感压膜20的带有第一电极202和第二引线电极206的表面沉积氧化铝薄膜;
S54:通过光刻图形化和干法刻蚀工艺,将第二引线电极206处表面的氧化铝薄膜去除;
S55:在氧化铝薄膜表面形成第一引线电极203。
在一些可选的实施例中,步骤S60包括:
S61:通过化学机械抛光(CMP)工艺,分别将感压膜20、基底30的氧化铝薄膜的粗糙度降低至0.5nm以下;
S62:通过氧化铝直接键合工艺,使感压膜20、基底30的氧化铝薄膜键合,键合区形成绝缘层401;
S63:通过蓝宝石减薄抛光工艺,根据所需量程来对感压膜20的没有氧化铝薄膜的一侧进行减薄;
S64:通过蓝宝石直接键合工艺,将上盖板10与感压膜20的没有氧化铝薄膜的一侧进行键合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种压力传感器,其中,包括:
    上盖板,具有第一盖板面,其中所述上盖板在所述第一盖板面上形成有盖板通孔;
    感压膜,具有相对的第一感压面和第二感压面,所述第一感压面与所述第一盖板面贴合,其中所述第二感压面上形成有第一电极,所述第一电极的至少部分与所述盖板通孔对应;
    基底,具有第一表面,所述第一表面与所述第二感压面接合,其中所述第一表面上对应所述盖板通孔的位置处形成有凹腔,所述凹腔的壁部处形成有第二电极,所述第一电极与所述第二电极构成电容器的两个电极。
  2. 根据权利要求1所述的压力传感器,其中,所述基底于所述第一表面上在所述凹腔周侧形成有第一基底通孔和第二基底通孔,所述第一基底通孔和所述第二基底通孔在所述第一表面与所述第二感压面接合处分别具有第一引线电极和第二引线电极,所述第一引线电极与所述第一电极和所述第二电极中的一个电连接,所述第二引线电极与所述第一电极和所述第二电极中的另一个电连接。
  3. 根据权利要求1或2所述的压力传感器,其中,所述第一表面与所述第二感压面之间通过绝缘层接合。
  4. 根据权利要求3所述的压力传感器,其中,所述第一电极处于所述绝缘层与所述第二感压面之间;所述第二引线电极处于所述绝缘层与所述第二感压面之间,并且与所述第一电极电连接。
  5. 根据权利要求3所述的压力传感器,其中,所述第一引线电极处于所述绝缘层与所述第一表面之间,并且与所述第二电极电连接。
  6. 根据权利要求1所述的压力传感器,其中,所述上盖板与所述基底厚度相等。
  7. 根据权利要求1所述的压力传感器,其中,所述盖板通孔投影在所述第一感压面上的轮廓与所述凹腔投影在所述第二感压面上的轮廓相一致并对应。
  8. 根据权利要求1所述的压力传感器,其中,所述上盖板、所述感压膜和/或所述基底的材料为蓝宝石。
  9. 一种压力传感器制造方法,其中,包括以下步骤:
    提供上盖板,所述上盖板具有第一盖板面,所述上盖板在所述第一盖板面上形成有盖板通孔;
    提供感压膜,所述感压膜具有相对的第一感压面和第二感压面,所述第一感压面与所述第一盖板面贴合,所述第二感压面上形成有第一电极,所述第一电极的至少部分与所述盖板通孔对应;
    提供基底,所述基底具有第一表面,所述第一表面与所述第二感压面接合,所述第一表面上对应所述盖板通孔的位置处形成有凹腔,所述凹腔的壁部处形成有第二电极,所述第一电极与所述第二电极构成电容器的两个电极;
    通过键合工艺,分别将所述上盖板与所述感压膜,所述感压膜与所述基底进行键合,再划片后得到所述压力传感器。
  10. 根据权利要求9所述的压力传感器制造方法,其中,
    提供感压膜的步骤包括:
    在所述感压膜的所述表面上沉积金属层并刻蚀形成第一电极、第二引线电极以及其间的引线;
    在所述感压膜的带有所述第一电极和所述第二引线电极的表面沉积绝缘层并将所述第二引线电极处表面的绝缘层去除;
    在绝缘层表面形成第一引线电极;并且
    提供基底的步骤包括:
    在所述基底的带有所述凹腔的表面上沉积金属层并刻蚀形成第二电极、引线电极环以及其间的引线;
    在所述基底的带有所述第二电极和所述引线电极环的表面沉积绝缘层并将所述引线电极环处表面的绝缘层去除。
PCT/CN2020/080926 2019-03-27 2020-03-24 压力传感器及其制造方法 WO2020192660A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/598,341 US20220170808A1 (en) 2019-03-27 2020-03-24 Pressure sensor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910237241.0A CN110044537A (zh) 2019-03-27 2019-03-27 压力传感器及其制造方法
CN201910237241.0 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020192660A1 true WO2020192660A1 (zh) 2020-10-01

Family

ID=67275353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080926 WO2020192660A1 (zh) 2019-03-27 2020-03-24 压力传感器及其制造方法

Country Status (3)

Country Link
US (1) US20220170808A1 (zh)
CN (1) CN110044537A (zh)
WO (1) WO2020192660A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044537A (zh) * 2019-03-27 2019-07-23 西人马联合测控(泉州)科技有限公司 压力传感器及其制造方法
CN112897450B (zh) * 2021-01-19 2022-11-11 北京遥测技术研究所 一种mems绝压式压力传感器及其加工方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189916A (en) * 1990-08-24 1993-03-02 Ngk Spark Plug Co., Ltd. Pressure sensor
CN1550767A (zh) * 2003-05-08 2004-12-01 维加.格里沙伯股份公司 压力测量机构及接通方法
US20050183508A1 (en) * 2004-02-23 2005-08-25 Alps Electric Co., Ltd. Pressure sensor for detecting pressure by using capacitance variation according to deflection of diaphragm
CN1672023A (zh) * 2002-07-31 2005-09-21 恩德莱斯和豪瑟尔两合公司 电容压力传感器
CN101680813A (zh) * 2007-06-04 2010-03-24 恩德莱斯和豪瑟尔两合公司 电容式压力传感器
CN105899924A (zh) * 2013-12-11 2016-08-24 恩德莱斯和豪瑟尔两合公司 压力传感器
CN107003196A (zh) * 2014-12-04 2017-08-01 恩德莱斯和豪瑟尔两合公司 压力测量单元
CN107076629A (zh) * 2014-10-17 2017-08-18 Vega格里沙贝两合公司 用于测定压力测量信号的方法以及用于该方法的压力测量装置
CN107389229A (zh) * 2017-07-17 2017-11-24 合肥皖科智能技术有限公司 一种陶瓷电容压力传感器
CN206891622U (zh) * 2017-07-17 2018-01-16 合肥皖科智能技术有限公司 一种陶瓷电容压力传感器
CN110044537A (zh) * 2019-03-27 2019-07-23 西人马联合测控(泉州)科技有限公司 压力传感器及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528452A (en) * 1994-11-22 1996-06-18 Case Western Reserve University Capacitive absolute pressure sensor
DE19509250C1 (de) * 1995-03-15 1996-09-12 Bosch Gmbh Robert Verfahren zur Herstellung eines Drucksensors
CN100510667C (zh) * 2004-07-02 2009-07-08 阿尔卑斯电气株式会社 玻璃衬底和使用了该玻璃衬底的静电电容式压力传感器
JP2008032451A (ja) * 2006-07-27 2008-02-14 Epson Toyocom Corp 容量変化型圧力センサ
CN102062662B (zh) * 2010-11-05 2012-10-10 北京大学 一种单片集成SiC MEMS压力传感器及其制备方法
CN105424231B (zh) * 2015-12-23 2019-01-08 深圳顺络电子股份有限公司 一种高精度陶瓷压力传感器
CN106468604A (zh) * 2016-09-29 2017-03-01 苏州工业园区纳米产业技术研究院有限公司 高温压力传感器及其制作方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189916A (en) * 1990-08-24 1993-03-02 Ngk Spark Plug Co., Ltd. Pressure sensor
CN1672023A (zh) * 2002-07-31 2005-09-21 恩德莱斯和豪瑟尔两合公司 电容压力传感器
CN1550767A (zh) * 2003-05-08 2004-12-01 维加.格里沙伯股份公司 压力测量机构及接通方法
US20050183508A1 (en) * 2004-02-23 2005-08-25 Alps Electric Co., Ltd. Pressure sensor for detecting pressure by using capacitance variation according to deflection of diaphragm
CN101680813A (zh) * 2007-06-04 2010-03-24 恩德莱斯和豪瑟尔两合公司 电容式压力传感器
CN105899924A (zh) * 2013-12-11 2016-08-24 恩德莱斯和豪瑟尔两合公司 压力传感器
CN107076629A (zh) * 2014-10-17 2017-08-18 Vega格里沙贝两合公司 用于测定压力测量信号的方法以及用于该方法的压力测量装置
CN107003196A (zh) * 2014-12-04 2017-08-01 恩德莱斯和豪瑟尔两合公司 压力测量单元
CN107389229A (zh) * 2017-07-17 2017-11-24 合肥皖科智能技术有限公司 一种陶瓷电容压力传感器
CN206891622U (zh) * 2017-07-17 2018-01-16 合肥皖科智能技术有限公司 一种陶瓷电容压力传感器
CN110044537A (zh) * 2019-03-27 2019-07-23 西人马联合测控(泉州)科技有限公司 压力传感器及其制造方法

Also Published As

Publication number Publication date
CN110044537A (zh) 2019-07-23
US20220170808A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US9835507B2 (en) Dynamic quantity sensor
US6450039B1 (en) Pressure sensor and method of manufacturing the same
US8230746B2 (en) Combined type pressure gauge, and manufacturing method of combined type pressure gauge
WO2020192660A1 (zh) 压力传感器及其制造方法
JP2015515609A (ja) カテーテルダイおよびその製造方法
JP2012047725A (ja) 静電容量圧力センサ
EP3321655B1 (en) All silicon capacitive pressure sensor
US20220221363A1 (en) Pressure Sensor Device and Method for Forming a Pressure Sensor Device
WO2020248466A1 (zh) 背孔引线式压力传感器及其制备方法
WO2016129230A1 (ja) 半導体装置およびその製造方法
WO2021023251A1 (zh) Mems结构、mems结构的制作方法及胎压传感器
CN108351267A (zh) 电容式压力传感器及其制造方法
US9464950B2 (en) Capacitive pressure sensors for high temperature applications
US10160636B2 (en) Ceramic substrate, bonded body, module, and method for manufacturing ceramic substrate
CN113465794B (zh) 一种双空腔压力计芯片及其制造工艺
TWI593948B (zh) 具有複合腔體的壓力感測器及其製造方法
CN113447171B (zh) 一种压力计芯片及其制造工艺
US20220404224A1 (en) Sensor Device for Determining Differential Pressure in Liquid or Gaseous Media
JP2006156815A (ja) 気密構造体を有するデバイス及びその製造方法
JP6142736B2 (ja) 半導体圧力センサ
JPH11241968A (ja) 静電容量型圧力センサ及びその製造方法
JP2003004566A (ja) 静電容量型圧力センサ及びその製造方法
CN115901078A (zh) 电容式压差传感器及其制造方法
JPH10284737A (ja) 静電容量型半導体センサの製造方法
CN116793545A (zh) 一种压力传感器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777730

Country of ref document: EP

Kind code of ref document: A1