WO2021023251A1 - Mems结构、mems结构的制作方法及胎压传感器 - Google Patents
Mems结构、mems结构的制作方法及胎压传感器 Download PDFInfo
- Publication number
- WO2021023251A1 WO2021023251A1 PCT/CN2020/107296 CN2020107296W WO2021023251A1 WO 2021023251 A1 WO2021023251 A1 WO 2021023251A1 CN 2020107296 W CN2020107296 W CN 2020107296W WO 2021023251 A1 WO2021023251 A1 WO 2021023251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soi substrate
- layer
- substrate
- silicon layer
- mems structure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0018—Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
- B81B3/0021—Transducers for transforming electrical into mechanical energy or vice versa
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00134—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
- B81C1/0015—Cantilevers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00523—Etching material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00555—Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L17/00—Devices or apparatus for measuring tyre pressure or the pressure in other inflated bodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/02—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
- G01L9/06—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0228—Inertial sensors
- B81B2201/0235—Accelerometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0264—Pressure sensors
Definitions
- This application relates to the field of Micro-Electro-Mechanical System (MEMS), and specifically relates to a MEMS structure, a manufacturing method of the MEMS structure, and a tire pressure sensor.
- MEMS Micro-Electro-Mechanical System
- MEMS technology is a high-tech developed in semiconductor technology, which can be used to manufacture a variety of sensors. Compared with traditional sensors, MEMS sensors can be manufactured in batches and have the advantages of small size, low power consumption, and low price.
- MEMS devices such as acceleration sensors and pressure sensors can be formed.
- MEMS devices usually include functional layers of different thicknesses.
- the current mainstream method is to use electrochemical etching to form functional layers of various thicknesses.
- the above method requires the addition of a relatively expensive potentiostat, which increases the cost of equipment on the one hand, and increases the complexity of the process on the other hand.
- the present application provides a MEMS structure, a manufacturing method of the MEMS structure, and a tire pressure sensor, which ensure that each layer in the functional layers of different thicknesses has better uniformity, while reducing the difficulty of manufacturing.
- an embodiment of the present application provides a MEMS structure, which includes a first device.
- the first device includes: a first support member; a cantilever member including a first end and a second end opposed to each other.
- the supporting part is fixed, and the second end is suspended; the mass is connected to the second end of the cantilever part; and the first pressure-sensitive component is at least partially located in the cantilever part, and the first pressure-sensitive component generates a first electrical signal according to the deformation of the cantilever part ,
- the cantilever component and the mass block are located in a Silicon-On-Insulator (SOI) substrate.
- SOI substrate has a first surface and a second surface opposite to each other.
- the SOI substrate includes a first surface to a second surface.
- the first silicon layer, the first insulating layer, the second silicon layer, the second insulating layer, and the third silicon layer are sequentially stacked on the surface.
- the cantilever component includes a third silicon layer in the thickness dimension, and the mass includes The second silicon layer, the second insulating layer, and the third silicon layer.
- the first device further includes: a first cavity surrounding the mass block so that the mass block is suspended in the first cavity, wherein the first cavity extends from the first surface of the SOI substrate to The second surface is recessed.
- the first surface of the SOI substrate is bonded with a first substrate, and the first substrate closes the opening of the first cavity on the first surface.
- the second surface of the SOI substrate is bonded with a second substrate, the second substrate has a bonding surface facing the SOI substrate, and the second substrate includes a second substrate located on the bonding surface.
- a groove, the first groove corresponds to the position of the first device.
- the first device is an acceleration sensor;
- the first pressure-sensitive component includes a plurality of first varistors located in the cantilever component, and the plurality of first varistors are electrically connected. Bridge.
- the MEMS structure further includes a second device, the second device includes: a second supporting member; a deformable membrane, the periphery of the deformable membrane is connected to the second supporting member; and a second cavity Body, located on one side of the thickness direction of the deformable film; and the second pressure-sensitive component is at least partially located in the deformable film, the second pressure-sensitive component generates a second electrical signal according to the deformation of the deformable film, wherein the deformable film
- the second cavity is located in the SOI substrate.
- the deformable film includes a second silicon layer, a second insulating layer, and a third silicon layer in the thickness dimension. The second cavity penetrates the first silicon layer and the first silicon layer in the thickness dimension. Insulation.
- the first surface of the SOI substrate is bonded with a first substrate, and the first substrate has an air inlet channel that communicates with the outside world and the second cavity.
- the size of the air inlet passage is smaller than the size of the second cavity.
- the second surface of the SOI substrate is bonded with a second substrate, the second substrate has a bonding surface facing the SOI substrate, and the second substrate includes a second substrate located on the bonding surface. Two grooves, the second groove corresponds to the position of the second device.
- the second device is a pressure sensor;
- the second pressure-sensitive component includes a plurality of second varistors located in the cantilever member, and the plurality of second varistors are electrically connected. Bridge.
- an embodiment of the present application provides a tire pressure sensor, which includes the MEMS structure according to any one of the foregoing embodiments.
- an embodiment of the present application provides a method for manufacturing a MEMS structure, which includes: providing an SOI substrate.
- the SOI substrate has a first surface and a second surface opposite to each other.
- the SOI substrate includes a first surface to a second surface.
- the first silicon layer, the first insulating layer, the second silicon layer, the second insulating layer, and the third silicon layer are sequentially stacked on the surface; at least part of the first device of the first device is formed in the third silicon layer of the SOI substrate Pressure-sensitive component; the SOI substrate is patterned from the first surface of the SOI substrate to form the cantilever component and the mass of the first device, wherein the cantilever component includes a third silicon layer in the thickness dimension, and the mass includes The second silicon layer, the second insulating layer, and the third silicon layer; and the SOI substrate is patterned from the second surface of the SOI substrate, so that the mass and cantilever components are suspended.
- patterning the SOI substrate from the first surface of the SOI substrate to form the cantilever component and the mass of the first device includes: forming a patterned SOI substrate on the first surface of the SOI substrate.
- the first mask layer, the first mask layer has a ring-shaped first opening, and at least part of the first pressure-sensitive component corresponds to the position of the first opening; a patterned pattern is formed on the side of the first mask layer away from the SOI substrate
- the second mask layer, the second mask layer has a second opening, the outer contour of the second opening corresponds to the outer contour of the first opening; the first mask layer is used as a mask, and the second insulating layer is used as a patterning stop Layer, patterning the SOI substrate from the first surface to obtain a ring-shaped first sub-groove; using the second mask layer as a mask and the first insulating layer as a patterning stop layer, patterning the SOI liner from the first surface Bottom, so that the first sub-groo
- patterning the SOI substrate from the second surface of the SOI substrate so that the mass and the cantilever component are suspended includes: forming a patterned third surface on the second surface of the SOI substrate.
- the mask layer, the third mask layer has a third opening in a non-closed ring structure, and the non-closed part of the non-closed ring structure corresponds to the position of the cantilever component; the third mask layer is used as a mask, from the first surface
- the SOI substrate is patterned to obtain a connecting channel penetrating from the first surface to the second sub-slot, wherein the connecting channel and the second sub-slot jointly form the first cavity of the first device, and the mass is suspended in the first cavity.
- the second mask layer in the step of forming a patterned second mask layer on the side of the first mask layer away from the SOI substrate, the second mask layer further has a third opening, The positions and shapes of the three openings correspond to the second cavity of the second device; in the step of patterning the SOI substrate from the first surface using the second mask layer as a mask and the first insulating layer as a patterning stop layer , The third sub-groove corresponding to the third opening position is also obtained; in the step of removing the first insulating layer and the second insulating layer exposed on the groove bottom surface of the second sub-groove using the second mask layer as a mask, The first insulating layer exposed on the bottom surface of the third sub-groove is also removed, so that the third sub-groove is transformed into the second cavity of the second device, wherein the second silicon on the side of the second cavity in the thickness direction
- the second insulating layer and the third silicon layer form a deformable film
- the manufacturing method of the MEMS structure further includes: forming at least part of the second pressure-sensitive component of the second device in the third silicon layer of the SOI substrate; A surface patterned SOI substrate forms the deformable film of the second device and the second cavity, wherein the second cavity is located on one side of the deformable film, and the deformable film includes a second silicon layer and a second silicon layer in the thickness dimension.
- the second insulating layer and the third silicon layer, and the second cavity penetrates the first silicon layer and the first insulating layer in the thickness dimension.
- the step of patterning the SOI substrate from the first surface of the SOI substrate to form the deformable film of the second device and the second cavity is the same as the step of forming the second cavity from the SOI substrate.
- the steps of patterning the surface of the SOI substrate to form the cantilever component and the mass of the first device are performed simultaneously.
- the step of forming at least part of the second pressure-sensitive component of the second device in the third silicon layer of the SOI substrate is the same as forming in the third silicon layer of the SOI substrate
- the steps of at least part of the first pressure-sensitive component of the first device are carried out at the same time.
- the manufacturing method of the MEMS structure includes: forming a plurality of first pressure-sensitive resistors of the first device and the second device in the third silicon layer of the SOI substrate A plurality of second varistors; a heavily doped lead is formed in the third silicon layer of the SOI substrate, and the heavily doped lead electrically connects the plurality of first varistors into a Whist bridge and connects the plurality of second
- the varistor is electrically connected as a Whist bridge; a patterned passivation layer is formed on the second surface of the SOI substrate; a patterned conductor layer connected to the heavily doped lead is formed on the passivation layer.
- the manufacturing method of the MEMS structure further includes: providing a first substrate; patterning the first substrate to form an air inlet channel that penetrates two opposite surfaces of the first substrate; The first substrate is joined to the first surface of the SOI substrate, wherein the gas inlet channel is communicated with the second cavity of the second device.
- the manufacturing method of the MEMS structure further includes: providing a second substrate, the second substrate having a bonding surface; and patterning the bonding surface of the second substrate to form a first groove And a second groove; bonding the bonding surface of the second substrate with the second surface of the SOI substrate, wherein the first groove corresponds to the position of the first device, and the second groove corresponds to the position of the second device.
- the cantilever component, the mass block and other structures of the first device are formed on the same SOI substrate, wherein the SOI substrate is a multilayer SOI substrate, including sequentially from the first surface to the second surface
- the first silicon layer, the first insulating layer, the second silicon layer, the second insulating layer, and the third silicon layer are stacked, and each layer has high uniformity and consistency, so that the cantilever component and mass
- the other structures each have a layer structure with higher uniformity and consistency, which improves the manufacturing quality control of the first device.
- structures such as cantilever components and mass blocks with different thicknesses can be obtained by patterning the SOI substrate with the first insulating layer and the second insulating layer located in different layers as the patterning stop layer, which reduces the first device The complexity of the manufacturing process, while reducing manufacturing costs.
- the MEMS structure further includes a second device, and the deformable film of the second device includes the second silicon layer, the second insulating layer, and the third silicon layer of the SOI substrate in the thickness dimension, thereby obtaining Deformable film with high film uniformity and consistency.
- part of the structure of the second device can be formed in the same patterning process as the part of the structure of the first device.
- structures such as deformable films and masses containing the same layer structure in the thickness dimension can be formed in the same patterning process. Save device manufacturing process and improve manufacturing efficiency.
- Fig. 1 shows a schematic plan view of a MEMS structure according to an embodiment of the present application
- FIG. 2 shows a schematic diagram of the layer structure of the MEMS structure according to an embodiment of the present application
- FIG. 3 shows an exploded schematic diagram of the layer structure of the MEMS structure according to an embodiment of the present application
- 4a to 4q respectively show schematic cross-sectional views of various stages of the manufacturing method of the MEMS structure according to an embodiment of the present application.
- MEMS structure refers to the general term for the entire MEMS structure formed in each step of manufacturing a MEMS device, including all layers or regions that have been formed.
- FIG. 1 shows a schematic plan view of a MEMS structure according to an embodiment of the present application
- FIG. 2 shows a schematic view of a layer structure of the MEMS structure according to an embodiment of the present application
- FIG. 3 shows an exploded schematic diagram of the layer structure of the MEMS structure according to an embodiment of the present application.
- the schematic diagrams of the layer structure in the present application are all schematic in the principle of the structure, and the actual size and detailed position of each component included in the MEMS structure can be adjusted according to actual conditions.
- the MEMS structure 100 includes a first device 110.
- the MEMS structure will be described by taking the first device 110 as an acceleration sensor as an example. It can be understood that the first device 110 may also be other types of MEMS sensors and actuators with similar structures to acceleration sensors.
- the first device 110 includes a first supporting member 111, a cantilever member 112, a mass 113, and a first pressure-sensitive component PS1.
- the cantilever member 112 includes opposite first and second ends, the first end is fixed to the first supporting member 111, and the second end is suspended.
- the mass 113 is connected to the second end of the cantilever member 112.
- At least part of the first pressure-sensitive component PS1 is located in the cantilever component 112, and the first pressure-sensitive component PS1 generates a first electrical signal according to the deformation of the cantilever component 112.
- the cantilever component 112 and the mass 113 of the first device 110 are located in a silicon-on-insulator (SOI) substrate 130.
- SOI silicon-on-insulator
- the cantilever component 112 and the mass 113 may be patterned and formed on the same SOI substrate 130.
- the SOI substrate 130 has a first surface 130a and a second surface 130b opposed to each other.
- the SOI substrate 130 includes a first silicon layer 131, a first insulating layer 134, The second silicon layer 132, the second insulating layer 135, and the third silicon layer 133.
- the thickness of each layer included in the SOI substrate 130 can be configured according to the device requirements of the MEMS structure.
- the first insulating layer 134 and the second insulating layer 135 may be any one of a silicon oxide layer, a silicon nitride layer, and a silicon oxynitride, respectively, or a laminated insulating layer obtained by stacking these insulating layers into a plurality of layers.
- the first insulating layer 134 and the second insulating layer 135 may be silicon oxide layers, for example.
- the thickness of the cantilever member 112 is different from the thickness of the mass 113.
- the cantilever member 112 includes a third silicon layer 133 in the thickness dimension.
- the mass 113 includes a second silicon layer 132, a second insulating layer 135, and a third silicon layer 133 in the thickness dimension.
- the cantilever component 112 and the mass 113 of the first device 110 are formed on the same SOI substrate 130, where the SOI substrate 130 is a multilayer SOI substrate 130.
- the layers of the SOI substrate 130 have high uniformity and consistency, so that the cantilever component 112, the mass 113 and other structures prepared have a high uniformity and uniform layer structure, and the first device 110
- the precise control of the thickness of multiple features improves the manufacturing quality control of the first device 110.
- structures such as the cantilever component 112 and the mass block 113 with different thicknesses can be obtained by patterning the SOI substrate 130 by using the first insulating layer 134 and the second insulating layer 135 in different layers as the patterning stop layer.
- the complexity of the manufacturing process of the first device 110 is reduced, and the manufacturing cost is also reduced.
- the first device 110 further includes a first cavity 114.
- the first cavity 114 surrounds the mass 113 so that the mass 113 is suspended in the first cavity 114.
- the first cavity 114 is recessed from the first surface 130a of the SOI substrate 130 to the second surface 130b.
- at least part of the first cavity 114 is formed by patterning the first surface 130 a of the SOI substrate 130.
- the MEMS structure 100 further includes a second device 120.
- the MEMS structure will be described by taking the second device 120 as a pressure sensor as an example. It can be understood that the second device 120 may also be other types of MEMS sensors and actuators with similar structures to pressure sensors.
- the second device 120 includes a second supporting member 121, a deformable film 122, a second cavity 123, and a second pressure sensitive component PS2.
- the periphery of the deformable membrane 122 is connected to the second supporting member 121.
- the second cavity 123 is located on one side of the thickness direction of the deformable film 122.
- At least part of the second pressure-sensitive component PS2 is located in the deformable film 122, and the second pressure-sensitive component PS2 generates a second electrical signal according to the deformation of the deformable film 122.
- the deformable film 122 and the second cavity 123 of the second device 120 are located in the SOI substrate 130.
- the deformable film 122 includes a second silicon layer 132, a second insulating layer 135, and a third silicon layer 133 in the thickness dimension.
- the second cavity 123 penetrates the first silicon layer 131 and the first insulating layer 134 in the thickness dimension.
- the deformable film 122 and the second cavity 123 of the second device 120 may be patterned and formed on the same SOI substrate 130 with the cantilever component 112 and the mass 113 of the first device 110.
- the MEMS structure 100 further includes a second device 120.
- the deformable film 122 of the second device 120 is formed by patterning an SOI substrate.
- the layers of the SOI substrate have high uniformity, thereby obtaining a uniform film.
- part of the structure of the second device 120 can be formed in the same patterning process as the part of the structure of the first device 110.
- the deformable film 122, the mass 113 and the like that contain the same layer structure in the thickness dimension can be formed in the same patterning process. It is formed in the process, saving the device manufacturing process and improving the manufacturing efficiency.
- the first surface 130 a of the SOI substrate 130 is bonded with the first substrate 140.
- the first substrate 140 may be a glass substrate or a silicon substrate.
- the first substrate 140 may be bonded to the first surface 130a of the SOI substrate 130 through a bonding process.
- the second surface 130b of the SOI substrate 130 is bonded with the second substrate 150.
- the second substrate 150 may be a glass substrate or a silicon substrate.
- the second substrate 150 has a bonding surface 150 a facing the SOI substrate 130.
- the second substrate 150 may be bonded to the second surface 130b of the SOI substrate 130 through a bonding process.
- the first cavity 114 of the first device 110 has openings on the first surface 130a and the second surface 130b of the SOI substrate 130, respectively.
- the first substrate 140 closes the opening of the first cavity 114 on the first surface 130a.
- the second substrate 150 includes a first groove 151 located on the bonding surface 150a, the first groove 151 corresponds to the position of the first device 110, and the second substrate 150 encloses the first cavity 114 in the second The opening of the surface 130b.
- the accommodating space in the first groove 151 communicates with the first cavity 114 to form a sealed cavity of the first device 110 together.
- the first substrate 140 has an air inlet passage 141 connecting the outside world and the second cavity 123 of the second device 120.
- the air inlet passage 141 On a plane perpendicular to the thickness direction, the air inlet passage 141 has a smaller size than the second cavity. The size of the body 123.
- the second substrate 150 includes a second groove 152 located on the bonding surface 150 a, and the second groove 152 corresponds to the position of the second device 120.
- the first pressure-sensitive component PS1 may be a resistive pressure-sensitive component. In this embodiment, it includes a plurality of first pressure-sensitive resistors 115 located in the cantilever member 112. The number of the first pressure-sensitive resistors 115 is, for example, four. The plurality of first varistors 115 are electrically connected as a Whist bridge.
- the second pressure-sensitive component PS2 may also be a resistive pressure-sensitive component. In this embodiment, it includes a plurality of second pressure-sensitive resistors 124 located in the cantilever member 112, and the number of the first pressure-sensitive resistor 115 is, for example, four. One, the plurality of second varistors 124 are electrically connected as a Whist bridge.
- first pressure-sensitive component PS1 and the second pressure-sensitive component PS2 are not limited to being resistive pressure-sensitive components, and may also be capacitive pressure-sensitive components, for example.
- the first pressure-sensitive component PS1 and the second pressure-sensitive component PS2 respectively further include heavily doped leads 160 formed in the third silicon layer 131 of the SOI substrate 130, and the heavily doped leads 160 combine multiple
- the first varistors 115 are electrically connected to each other, and the plurality of second varistors 124 are electrically connected to each other.
- the formation process of the heavily doped lead 160 may be to select a predetermined region for ion implantation on the second surface 130b of the SOI substrate 130, wherein the doping type of the heavily doped lead 160 may be a P-type heavily doped.
- the MEMS structure 100 further includes a patterned passivation layer 170, and the patterned passivation layer 170 is located on the second surface 130 b of the SOI substrate 130.
- the passivation layer 170 is composed of, for example, silicon oxide or silicon nitride, and covers at least the plurality of first varistors 115 and the plurality of second varistors 124.
- a contact hole may be provided on the patterned passivation layer 170 so that at least part of the heavily doped lead 160 is exposed.
- the MEMS structure 100 may further include a patterned conductor layer 180 formed on the passivation layer 170.
- the conductive layer 180 is electrically connected to the heavily doped lead 160, wherein the conductive layer 180 can contact the heavily doped lead 160 through the contact hole described above to form an ohmic contact.
- the conductor layer 180 may include a pad 181 to facilitate the communication between the first pressure-sensitive component PS1 and the second pressure-sensitive component PS2 and an external circuit.
- the mass 113 of the first device 110 when it is in motion and generates acceleration, the mass 113 of the first device 110 is displaced relative to the first supporting member 111 due to inertia, so that the mass 113 is connected
- the cantilever member 112 is deformed.
- the deformed cantilever component 112 causes the first pressure-sensitive component PS1 at least partially in the cantilever component 112 to generate a first electrical signal to realize acceleration sensing.
- the first electrical signal is, for example, a signal of a change in the resistance value of the first pressure-sensitive component PS1.
- the gas in the environment can enter the second cavity 123 of the second device 120 through the gas inlet channel 141, and the different gas pressures in the second cavity 123 make the second device 120
- the deformable film 122 of 120 produces different deformations.
- the deformable membrane 122 with different deformation amounts causes the second pressure-sensitive component PS2 at least part of the deformable membrane 122 to generate different second electrical signals to realize pressure sensing.
- the second electrical signal is, for example, a signal of a change in the resistance value of the second pressure-sensitive component PS2.
- the MEMS structure 100 of the embodiment of the present application when it includes the first device 110 and the second device 120 at the same time, it can simultaneously realize the sensing of acceleration and pressure.
- the MEMS structure 100 may be used in tire pressure monitoring.
- the embodiment of the present application also provides a tire pressure sensor, which may include the MEMS structure 100 according to any one of the foregoing embodiments.
- the MEMS structure 100 in the tire pressure sensor may include a first device 110 and a second device 120 at the same time, wherein the first device 110 may be an acceleration sensor, and the second device 120 may be a pressure sensor.
- the tire pressure sensor can be used in a tire pressure monitoring system (Tire Pressure Monitoring System, TPMS).
- TPMS is mainly used to automatically monitor the tire pressure in real time when the car is driving to ensure driving safety.
- TPMS can be divided into direct and indirect.
- Direct TPMS has become the mainstream of tire pressure monitoring due to its high system accuracy.
- the tire pressure sensor in the direct TPMS adopts MEMS technology to realize the monolithic integration of the pressure sensor and the acceleration sensor, and the detection method of the pressure sensor and the acceleration sensor can adopt the piezoresistive type.
- the suspension beam 112 and the mass 113 of the first device 110 are formed on the same SOI substrate 130.
- the SOI substrate 130 is a multilayer SOI substrate 130, including a first silicon layer 131, a first insulating layer 134, a second silicon layer 132, and a second silicon layer 131, a first insulating layer 134, a second silicon layer 132, and a The insulating layer 135 and the third silicon layer 133.
- the layers of the SOI substrate 130 have high uniformity and consistency, so that the cantilever component 112, the mass 113 and other structures have a high uniformity and uniform layer structure, and the tire pressure sensor
- the precise control of multiple feature thicknesses improves the manufacturing quality control of the first device 110, thereby improving the quality of the tire pressure sensor.
- structures such as the cantilever component 112 and the mass block 113 with different thicknesses can be obtained by patterning the SOI substrate 130 by using the first insulating layer 134 and the second insulating layer 135 in different layers as the patterning stop layer.
- the complexity of the manufacturing process of the first device 110 and the tire pressure sensor is reduced, and the manufacturing cost is reduced at the same time.
- the MEMS structure 100 of the tire pressure sensor further includes a second device 120.
- the deformable film 122 of the second device 120 includes the second silicon layer 132, the second insulating layer 135, and the third silicon layer 133 of the SOI substrate 130 in the thickness dimension, thereby obtaining a film with high uniformity and consistency. ⁇ 122 ⁇ Deformation film 122.
- part of the structure of the second device 120 can be formed in the same patterning process as the part of the structure of the first device 110.
- the deformable film 122, the mass 113 and the like that contain the same layer structure in the thickness dimension can be formed in the same patterning process. It is formed in the process, saving the device manufacturing process and improving the manufacturing efficiency.
- the embodiment of the present application also provides a manufacturing method of a MEMS structure.
- the manufacturing process of the MEMS structure 100 in the foregoing embodiment of the present application will be described below as an example.
- 4a to 4q respectively show schematic cross-sectional views of various stages of the manufacturing method of the MEMS structure according to an embodiment of the present application.
- an SOI substrate 130 is provided.
- the SOI substrate 130 has a first surface 130a and a second surface 130b opposite to each other.
- the SOI substrate 130 includes a first silicon layer 131, a first insulating layer 134, a second silicon layer 132, a second insulating layer 135, and a third silicon layer 133 sequentially stacked from the first surface 130a to the second surface 130b.
- the first device 110 and the second device 120 will be simultaneously formed on the same SOI substrate 130 in the next step.
- the next step can form other numbers of devices on the SOI substrate 130, for example, only the first device 110 is formed.
- the next step at least part of the first pressure-sensitive component PS1 of the first device 110 and the third silicon layer 133 of the SOI substrate 130 are formed in the third silicon layer 133 of the SOI substrate 130. At least part of the second pressure-sensitive component PS2 of the second device 120 is formed therein.
- the step of forming at least part of the second pressure-sensitive component PS2 of the second device 120 in the third silicon layer 133 of the SOI substrate 130 is the same as forming in the third silicon layer 133 of the SOI substrate 130
- the steps of at least part of the first pressure-sensitive component PS1 of the first device 110 are performed simultaneously.
- a plurality of first varistors 115 of the first device 110 and a plurality of second varistors 124 of the second device 120 are formed in the third silicon layer 133 of the SOI substrate 130.
- a shielding layer may be formed on the second surface 130b of the SOI substrate 130.
- the shielding layer may be a silicon oxide layer.
- the process of forming the shielding layer may be low pressure chemical vapor deposition, plasma chemical vapor deposition, or thermal oxidation, etc. Craft.
- the method of forming the first varistor 115 and the second varistor 124 may be a photolithography process and an ion implantation process.
- a photoresist is formed on the second surface 130b of the SOI substrate 130 as a mask layer, and the photoresist is patterned by a photolithography process, wherein the opening pattern on the photoresist and the first varistor 115 and The pattern of the second varistor 124 corresponds. Afterwards, ion implantation is performed at the opening of the photoresist to form the first varistor 115 and the second varistor 124. After the first varistor 115 and the second varistor 124 are formed, the photoresist can be stripped off.
- a heavily doped lead 160 is formed in the third silicon layer 133 of the SOI substrate 130.
- the heavily doped lead 160 electrically connects the plurality of first varistors 115 as a Whist bridge and connects the plurality of The two varistors 124 are electrically connected as a Whist bridge.
- the method of forming the heavily doped wire 160 may be through a photolithography process and an ion implantation process, which is similar to the foregoing process and will not be described in detail.
- the doping type of the heavily doped wire 160 may be P-type heavily doped.
- a patterned passivation layer 170 is formed on the second surface 130b of the SOI substrate 130.
- the passivation layer 170 may be silicon oxide or silicon nitride.
- the process of patterning the passivation layer 170 may be to form a patterned photoresist on the passivation layer 170 through a photolithography process, and then use the patterned photoresist as a mask to perform dry etching or wet etching Process, a contact hole is formed on the passivation layer 170.
- a patterned conductor layer 180 connected to the heavily doped wiring 160 is formed on the passivation layer 170.
- the patterned conductor layer 180 includes pads.
- the SOI substrate 130 is patterned from the first surface 130 a of the SOI substrate 130 to form the cantilever member 112 and the mass 113 of the first device 110.
- the cantilever component 112 includes a third silicon layer 133 in the thickness dimension
- the mass 113 includes a second silicon layer 132, a second insulating layer 135, and a third silicon layer 133 in the thickness dimension.
- the SOI substrate 130 is patterned from the first surface 130a of the SOI substrate 130 to form the deformable film 122 and the second cavity 123 of the second device 120.
- the second cavity 123 is located on one side of the deformable film 122.
- the deformable film 122 includes a second silicon layer 132, a second insulating layer 135, and a third silicon layer 133 in the thickness dimension. Dimensionally penetrates the first silicon layer 131 and the first insulating layer 134.
- the step of patterning the SOI substrate 130 from the first surface 130a of the SOI substrate 130 to form the deformable film 122 and the second cavity 123 of the second device 120 is the same as the step of forming the second cavity 123 from the SOI substrate 130.
- the SOI substrate 130 is patterned on a surface 130a, and the steps of forming the suspension beam 112 and the mass 113 of the first device 110 are performed simultaneously.
- a patterned first mask layer Y1 is formed on the first surface 130a of the SOI substrate 130.
- the first mask layer Y1 has a ring-shaped first opening K1, and at least a part of the first pressure-sensitive component PS1 corresponds to the position of the first opening K1.
- a patterned second mask layer Y2 is formed on the side of the first mask layer Y1 away from the SOI substrate 130.
- the second mask layer Y2 has a second opening K2, and the outer contour of the second opening K2 corresponds to the outer contour of the first opening K1.
- the second mask layer Y2 in the step of forming the patterned second mask layer Y2 on the side of the first mask layer Y1 facing away from the SOI substrate 130, the second mask layer Y2 further has a third opening K3.
- the position and shape of K3 correspond to the second cavity 123 of the second device 120.
- the process of patterning the first mask layer Y1 and the process of patterning the second mask layer Y2 can be performed by a photolithography process, a dry etching process or a wet etching process, wherein the patterned first mask layer Y1 is the first deep cavity mask, and the patterned second mask layer Y2 is the second deep cavity mask.
- the SOI substrate 130 is patterned from the first surface 130a to obtain a ring-shaped first sub-groove G1.
- the patterning process may be a deep reactive ion silicon etching process, during which the first insulating layer 134 may be individually etched using a dry etching process or a wet etching process.
- the SOI substrate 130 is patterned from the first surface 130a, so that the first sub-groove G1 is transformed into a groove bottom with The raised second sub-groove G2.
- the third sub-groove G3 corresponding to the position of the third opening K3 is also obtained.
- the patterning process may be a deep reactive ion silicon etching process.
- the first insulating layer 134 and the second insulating layer 135 exposed on the bottom surface of the second sub-groove G2 are removed to obtain the cantilever component 112 and the mass 113.
- the first insulating layer 134 exposed on the bottom surface of the third sub-groove G3 is also removed, so that the third sub-groove G3 is transformed into the second cavity 123 of the second device 120, wherein the second cavity 123 in the thickness direction
- the second silicon layer 132, the second insulating layer 135 and the third silicon layer 133 on the side of the body 123 form the deformable film 122 of the second device 120.
- the first mask layer Y1 and the second mask layer Y2 can be peeled off.
- the SOI substrate 130 is patterned from the second surface 130b of the SOI substrate 130, so that the mass 113 and the cantilever component 112 are suspended.
- a patterned third mask layer may be formed on the second surface 130b of the SOI substrate 130.
- the third mask layer has a third opening in an unclosed ring structure, and the unclosed portion of the unclosed ring structure corresponds to the position of the cantilever member 112.
- the SOI substrate 130 is patterned from the first surface 130a to obtain a connection channel T1 penetrating from the first surface 130a to the second sub-groove G2.
- the connecting channel T1 and the second sub-groove G2 jointly form the first cavity 114 of the first device 110, and the mass 113 is suspended in the first cavity 114.
- the patterned first substrate 140 may be bonded to the first surface 130a of the SOI substrate 130.
- the second substrate 150 may also be bonded to the second surface 130b of the SOI substrate 130.
- the first substrate 140 may be a glass substrate or a silicon substrate.
- the first substrate 140 is patterned to form air inlet channels 141 penetrating two opposite surfaces of the first substrate 140.
- the intake passage 141 may be formed by wet etching and other processes.
- the first substrate 140 is joined to the first surface 130a of the SOI substrate 130, wherein the air inlet channel 141 is in communication with the second cavity 123 of the second device 120.
- the first substrate 140 may be bonded to the first surface 130a of the SOI substrate 130 through a bonding process such as anodic bonding.
- a second substrate 150 is provided, and the second substrate 150 has a bonding surface 150a.
- the second substrate 150 may be a glass substrate or a silicon substrate.
- the bonding surface 150a of the second substrate 150 is patterned to form a first groove 151 and a second groove 152.
- the process of forming the first groove 151 and the second groove 152 may be to form a shallow groove through a process such as wet etching.
- the bonding surface 150a of the second substrate 150 is bonded to the second surface 130b of the SOI substrate 130, where the first groove 151 corresponds to the position of the first device 110, and the second groove 152 corresponds to the second device 120. Location correspondence.
- the second substrate 150 may be bonded to the second surface 130b of the SOI substrate 130 through a bonding process such as anodic bonding.
- the fabrication of the MEMS structure 100 of the embodiment of the present application is completed. It should be noted that there is no necessary sequence between the above-mentioned processing of the first substrate 140, the processing of the second substrate 150, and the processing of the SOI substrate 130, and can be performed in any order. In addition, many specific details of the application are described above, such as the structure, materials, dimensions, processing technology and technology of the device, in order to understand the application more clearly. However, as those skilled in the art can understand, the application may not be implemented according to these specific details.
- the cantilever component 112 and the mass 113 of the first device 110 are formed on the same SOI substrate 130.
- the SOI substrate 130 is a multilayer SOI substrate 130, including a first silicon layer 131, a first insulating layer 134, a second silicon layer 132, and a second silicon layer 131, a first insulating layer 134, a second silicon layer 132, and a The insulating layer 135 and the third silicon layer 133.
- the layers of the SOI substrate 130 have high uniformity and consistency, so that the cantilever component 112, the mass 113 and other structures prepared have a high uniformity and uniform layer structure, and the first device 110
- the precise control of the thickness of multiple features improves the manufacturing quality control of the first device 110.
- structures such as the cantilever component 112 and the mass block 113 with different thicknesses can be obtained by patterning the SOI substrate 130 by using the first insulating layer 134 and the second insulating layer 135 in different layers as the patterning stop layer, respectively. This reduces the complexity of the manufacturing process of the first device 110 and the tire pressure sensor, while reducing the manufacturing cost.
- the manufactured MEMS structure 100 further includes a second device 120.
- the deformable film 122 of the second device 120 includes the second silicon layer 132, the second insulating layer 135, and the third silicon layer 133 of the SOI substrate 130 in the thickness dimension, thereby obtaining a film with high uniformity and consistency. ⁇ 122 ⁇ Deformation film 122.
- part of the structure of the second device 120 can be formed in the same patterning process as the part of the structure of the first device 110.
- the deformable film 122, the mass 113 and the like that contain the same layer structure in the thickness dimension can be formed in the same patterning process. It is formed in the process, saving the device manufacturing process and improving the manufacturing efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Pressure Sensors (AREA)
- Micromachines (AREA)
Abstract
一种MEMS结构、MEMS结构的制作方法及胎压传感器,MEMS结构(100)包括第一器件(110),第一器件(110)包括:第一支承部件(111);悬梁部件(112);质量块(113);以及第一压敏组件(PS1),其中,悬梁部件(112)及质量块(113)位于绝缘体上硅衬底(130)内,SOI衬底(130)具有相对的第一表面(130a)和第二表面(130b),SOI衬底(130)包括自第一表面(130a)至第二表面(130b)依次叠层设置的第一硅层(131)、第一绝缘层(134)、第二硅层(132)、第二绝缘层(135)以及第三硅层(133),悬梁部件(112)在厚度维度上包含第三硅层(133),质量块(113)在厚度维度上包含第二硅层(132)、第二绝缘层(135)以及第三硅层(133)。MEMS结构(100)的第一器件(110)的悬梁部件(112)、质量块(113)等结构各自具有较高均匀性和一致性的层结构,提高第一器件(110)的制造品控。此外,降低了第一器件(110)制造工艺的复杂性,同时降低制造成本。
Description
相关申请的交叉引用
本申请要求2019年8月6日提交的、申请号为201910722234.X、发明名称为“MEMS结构、MEMS结构的制作方法及胎压传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及微机电系统(Micro-Electro-Mechanical System,MEMS)领域,具体涉及一种MEMS结构、MEMS结构的制作方法及胎压传感器。
MEMS技术是在半导体技术上发展起来的一项高新技术,可用于制造多种传感器,与传统的传感器相比,MEMS传感器可实现批量制造,具有体积小、功耗低、价格低等优点。
利用MEMS技术可以形成加速度传感器、压力传感器等MEMS器件。MEMS器件中通常包括不同厚度的功能层,为保证各功能层厚度的均一性,目前主流的方法是采用电化学腐蚀来形成各种厚度的功能层。上述方法需添加较为昂贵的恒电位仪,一方面提高了设备成本,另一方面增加了工艺的复杂度。
发明内容
本申请提供一种MEMS结构、MEMS结构的制作方法及胎压传感器,保证不同厚度功能层中各层具有较好的均一性,同时降低制作难度。
第一方面,本申请实施例提供一种MEMS结构,其包括第一器件,第一器件包括:第一支承部件;悬梁部件,包括相对的第一端和第二端,第一端与第一支承部件固定,第二端悬空;质量块,连接于悬梁部件的第二 端;以及第一压敏组件,至少部分位于悬梁部件内,第一压敏组件根据悬梁部件的形变产生第一电信号,其中,悬梁部件及质量块位于绝缘体上硅(Silicon-On-Insulator,SOI)衬底内,SOI衬底具有相对的第一表面和第二表面,SOI衬底包括自第一表面至第二表面依次叠层设置的第一硅层、第一绝缘层、第二硅层、第二绝缘层以及第三硅层,悬梁部件在厚度维度上包含第三硅层,质量块在厚度维度上包含第二硅层、第二绝缘层以及第三硅层。
根据本申请第一方面的前述实施方式,第一器件还包括:第一腔体,围绕质量块,使得质量块悬空于第一腔体,其中第一腔体自SOI衬底的第一表面向第二表面凹陷。
根据本申请第一方面的前述任一实施方式,SOI衬底的第一表面接合有第一衬底,第一衬底封闭第一腔体在第一表面的开口。
根据本申请第一方面的前述任一实施方式,SOI衬底的第二表面接合有第二衬底,第二衬底具有朝向SOI衬底的接合面,第二衬底包括位于接合面的第一凹槽,第一凹槽与第一器件位置对应。
根据本申请第一方面的前述任一实施方式,第一器件为加速度传感器;第一压敏组件包括位于悬梁部件内的多个第一压敏电阻,多个第一压敏电阻电连接为惠斯特电桥。
根据本申请第一方面的前述任一实施方式,MEMS结构还包括第二器件,第二器件包括:第二支承部件;可形变膜,可形变膜的周边与第二支承部件连接;第二腔体,位于可形变膜的厚度方向的一侧;以及第二压敏组件,至少部分位于可形变膜内,第二压敏组件根据可形变膜的形变产生第二电信号,其中,可形变膜、第二腔体位于SOI衬底内,可形变膜在厚度维度上包含第二硅层、第二绝缘层以及第三硅层,第二腔体在厚度维度上贯穿第一硅层以及第一绝缘层。
根据本申请第一方面的前述任一实施方式,SOI衬底的第一表面接合有第一衬底,第一衬底具有连通外界与第二腔体的进气通道,在垂直于厚度方向的平面上,进气通道的尺寸小于第二腔体的尺寸。
根据本申请第一方面的前述任一实施方式,SOI衬底的第二表面接合 有第二衬底,第二衬底具有朝向SOI衬底的接合面,第二衬底包括位于接合面的第二凹槽,第二凹槽与第二器件位置对应。
根据本申请第一方面的前述任一实施方式,第二器件为压力传感器;第二压敏组件包括位于悬梁部件内的多个第二压敏电阻,多个第二压敏电阻电连接为惠斯特电桥。
第二方面,本申请实施例提供一种胎压传感器,其包括根据上述任一实施方式的MEMS结构。
第三方面,本申请实施例提供一种MEMS结构的制作方法,其包括:提供SOI衬底,SOI衬底具有相对的第一表面和第二表面,SOI衬底包括自第一表面至第二表面依次叠层设置的第一硅层、第一绝缘层、第二硅层、第二绝缘层以及第三硅层;在SOI衬底的第三硅层内形成第一器件的至少部分第一压敏组件;自SOI衬底的第一表面图案化SOI衬底,形成第一器件的悬梁部件以及质量块,其中,悬梁部件在厚度维度上包含第三硅层,质量块在厚度维度上包含第二硅层、第二绝缘层以及第三硅层;以及自SOI衬底的第二表面图案化SOI衬底,使得质量块以及悬梁部件悬空。
根据本申请第三方面的任一实施方式,自SOI衬底的第一表面图案化SOI衬底,形成第一器件的悬梁部件以及质量块包括:在SOI衬底的第一表面形成图案化的第一掩膜层,第一掩膜层具有环状的第一开口,第一压敏组件的至少部分与第一开口位置对应;在第一掩膜层背离SOI衬底一侧形成图案化的第二掩膜层,第二掩膜层具有第二开口,第二开口的外轮廓与第一开口的外轮廓对应;以第一掩膜层为掩膜、以第二绝缘层为图案化停止层,自第一表面图案化SOI衬底,得到环状的第一子槽;以第二掩膜层为掩膜、以第一绝缘层为图案化停止层,自第一表面图案化SOI衬底,使得第一子槽转变为槽底具有凸起的第二子槽;以第二掩膜层为掩膜,去除暴露于第二子槽的槽底表面的第一绝缘层及第二绝缘层,得到悬梁部件以及质量块。
根据本申请第三方面的前述任一实施方式,自SOI衬底的第二表面图案化SOI衬底,使得质量块以及悬梁部件悬空包括:在SOI衬底的第二表面形成图案化的第三掩膜层,第三掩膜层具有呈非封闭环状结构的第三开 口,非封闭环状结构的非封闭部与悬梁部件位置对应;以第三掩膜层为掩膜,自第一表面图案化SOI衬底,得到自第一表面贯穿至第二子槽的连接通道,其中,连接通道与第二子槽共同形成第一器件的第一腔体,质量块悬空于第一腔体。
根据本申请第三方面的前述任一实施方式,在第一掩膜层背离SOI衬底一侧形成图案化的第二掩膜层的步骤中,第二掩膜层还具有第三开口,第三开口的位置及形状与第二器件的第二腔体对应;以第二掩膜层为掩膜、以第一绝缘层为图案化停止层,自第一表面图案化SOI衬底的步骤中,还得到与第三开口位置对应的第三子槽;以第二掩膜层为掩膜,去除暴露于第二子槽的槽底表面的第一绝缘层及第二绝缘层的步骤中,还去除暴露于第三子槽的槽底表面的第一绝缘层,使得第三子槽转变为第二器件的第二腔体,其中,在厚度方向上第二腔体一侧的第二硅层、第二绝缘层以及第三硅层形成第二器件的可形变膜。
根据本申请第三方面的前述任一实施方式,MEMS结构的制作方法还包括:在SOI衬底的第三硅层内形成第二器件的至少部分第二压敏组件;自SOI衬底的第一表面图案化SOI衬底,形成第二器件的可形变膜以及第二腔体,其中,第二腔体位于可形变膜的一侧,可形变膜在厚度维度上包含第二硅层、第二绝缘层以及第三硅层,第二腔体在厚度维度上贯穿第一硅层以及第一绝缘层。
根据本申请第三方面的前述任一实施方式,自SOI衬底的第一表面图案化SOI衬底,形成第二器件的可形变膜以及第二腔体的步骤,与自SOI衬底的第一表面图案化SOI衬底,形成第一器件的悬梁部件以及质量块的步骤同时进行。
根据本申请第三方面的前述任一实施方式,在SOI衬底的第三硅层内形成第二器件的至少部分第二压敏组件的步骤,与在SOI衬底的第三硅层内形成第一器件的至少部分第一压敏组件的步骤同时进行,MEMS结构的制作方法包括:在SOI衬底的第三硅层内形成第一器件的多个第一压敏电阻以及第二器件的多个第二压敏电阻;在SOI衬底的第三硅层内形成重掺杂引线,重掺杂引线将多个第一压敏电阻电连接为惠斯特电桥、将多个第 二压敏电阻电连接为惠斯特电桥;在SOI衬底的第二表面形成图案化的钝化层;在钝化层上形成连接至重掺杂引线的图案化的导体层。
根据本申请第三方面的前述任一实施方式,MEMS结构的制作方法还包括:提供第一衬底;图案化第一衬底,形成贯穿第一衬底相对的两个表面的进气通道;将第一衬底与SOI衬底的第一表面接合,其中进气通道与第二器件的第二腔体连通。
根据本申请第三方面的前述任一实施方式,MEMS结构的制作方法还包括:提供第二衬底,第二衬底具有接合面;图案化第二衬底的接合面,形成第一凹槽以及第二凹槽;将第二衬底的接合面与SOI衬底的第二表面接合,其中第一凹槽与第一器件位置对应,第二凹槽与第二器件位置对应。
根据本申请实施例的MEMS结构,其第一器件的悬梁部件、质量块等结构形成于同一SOI衬底,其中该SOI衬底为多层SOI衬底,包括自第一表面至第二表面依次叠层设置的第一硅层、第一绝缘层、第二硅层、第二绝缘层以及第三硅层,各层具有较高的均匀性和一致性,使得制得的悬梁部件、质量块等结构各自具有较高均匀性和一致性的层结构,提高第一器件的制造品控。此外,具有不同厚度的悬梁部件、质量块等结构,可以通过分别以位于不同层的第一绝缘层、第二绝缘层作为图案化停止层,对SOI衬底图案化得到,降低了第一器件制造工艺的复杂性,同时降低制造成本。
在一些可选的实施例中,MEMS结构还包括第二器件,第二器件的可形变膜在厚度维度上包含SOI衬底的第二硅层、第二绝缘层以及第三硅层,从而得到膜层均匀性和一致性较高的可形变膜。此外,第二器件的部分结构可以与第一器件的部分结构在同一图案化过程中形成,例如厚度维度上包含相同层结构的可形变膜、质量块等结构可以在同一图案化过程中形成,节省器件制造工序,提高制造效率。
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表 示相同或相似的特征,附图并未按照实际的比例绘制。
图1示出根据本申请实施例的MEMS结构的平面结构示意图;
图2示出根据本申请实施例的MEMS结构的层结构示意图;
图3示出根据本申请实施例的MEMS结构的层结构分解示意图;
图4a至图4q分别示出根据本申请实施例的MEMS结构的制作方法的各个阶段的截面示意图。
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
应当理解,在描述部件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将部件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。
本申请实施例提供一种微机电系统(Micro-Electro-Mechanical System, MEMS)结构。在本申请中,术语“MEMS结构”指在制造MEMS器件的各个步骤中形成的整个MEMS结构的统称,包括已经形成的所有层或区域。
图1示出根据本申请实施例的MEMS结构的平面结构示意图,图2示出根据本申请实施例的MEMS结构的层结构示意图。图3示出根据本申请实施例的MEMS结构的层结构分解示意图。其中本申请中的层结构示意图均为在结构原理上的示意,MEMS结构包含的各部件的实际尺寸、细节位置等可依据实际情况调整。
MEMS结构100包括第一器件110,在下文中将以第一器件110是加速度传感器为例说明MEMS结构。可以理解,第一器件110还可以是其它与加速度传感器类似结构的各种类型的MEMS传感器和执行器。
该第一器件110包括第一支承部件111、悬梁部件112、质量块113以及第一压敏组件PS1。悬梁部件112包括相对的第一端和第二端,第一端与第一支承部件111固定,第二端悬空。质量块113连接于悬梁部件112的第二端。第一压敏组件PS1的至少部分位于悬梁部件112内,第一压敏组件PS1根据悬梁部件112的形变产生第一电信号。
其中,第一器件110的悬梁部件112及质量块113位于绝缘体上硅(Silicon-On-Insulator,SOI)衬底130内。在一些实施例中,悬梁部件112及质量块113可以在同一SOI衬底130上图案化形成。
SOI衬底130具有相对的第一表面130a和第二表面130b,该SOI衬底130包括自第一表面130a至第二表面130b依次叠层设置的第一硅层131、第一绝缘层134、第二硅层132、第二绝缘层135以及第三硅层133。
SOI衬底130包括的各层的厚度可以根据该MEMS结构的器件要求进行配置。第一绝缘层134、第二绝缘层135分别可以是氧化硅层、氮化硅层、氮氧化硅中任一,或是将这些绝缘层叠设为复数层得到的叠层绝缘层。在本实施例中,第一绝缘层134、第二绝缘层135例如可以是氧化硅层。
悬梁部件112的厚度与质量块113的厚度不同。在一些实施例中,悬梁部件112在厚度维度上包含第三硅层133。质量块113在厚度维度上包含第二硅层132、第二绝缘层135以及第三硅层133。
根据本申请实施例的MEMS结构100,其第一器件110的悬梁部件112、 质量块113等结构形成于同一SOI衬底130,其中该SOI衬底130为多层SOI衬底130。SOI衬底130的各层具有较高的均匀性和一致性,使得制得的悬梁部件112、质量块113等结构各自具有较高均匀性和一致性的层结构,同时实现对第一器件110的多个特征厚度的精确控制,提高第一器件110的制造品控。
此外,具有不同厚度的悬梁部件112、质量块113等结构,可以通过分别以位于不同层的第一绝缘层134、第二绝缘层135作为图案化停止层,对SOI衬底130图案化得到,降低了第一器件110制造工艺的复杂性,同时降低制造成本。
在一些实施例中,第一器件110还包括第一腔体114。第一腔体114围绕质量块113,使得质量块113悬空于第一腔体114。其中第一腔体114自SOI衬底130的第一表面130a向第二表面130b凹陷。在一些实施例中,第一腔体114的至少部分通过图案化SOI衬底130的第一表面130a形成。
在一些实施例中,MEMS结构100还包括第二器件120,在下文中将以第二器件120是压力传感器为例说明MEMS结构。可以理解,第二器件120还可以是其它与压力传感器类似结构的各种类型的MEMS传感器和执行器。
该第二器件120包括第二支承部件121、可形变膜122、第二腔体123以及第二压敏组件PS2。可形变膜122的周边与第二支承部件121连接。第二腔体123位于可形变膜122的厚度方向的一侧。第二压敏组件PS2的至少部分位于可形变膜122内,第二压敏组件PS2根据可形变膜122的形变产生第二电信号。
其中,第二器件120的可形变膜122、第二腔体123位于SOI衬底130内。可形变膜122在厚度维度上包含第二硅层132、第二绝缘层135以及第三硅层133。第二腔体123在厚度维度上贯穿第一硅层131以及第一绝缘层134。在一些实施例中,第二器件120的可形变膜122、第二腔体123可以与第一器件110的悬梁部件112、质量块113等部件在同一SOI衬底130上图案化形成。
在上述本申请实施例中,MEMS结构100还包括第二器件120,第二 器件120的可形变膜122通过图案化SOI衬底形成,SOI衬底的各层均一性高,从而得到膜层均匀性和一致性较高的可形变膜122。此外,第二器件120的部分结构可以与第一器件110的部分结构在同一图案化过程中形成,例如厚度维度上包含相同层结构的可形变膜122、质量块113等结构可以在同一图案化过程中形成,节省器件制造工序,提高制造效率。
在一些实施例中,SOI衬底130的第一表面130a接合有第一衬底140。第一衬底140可以是玻璃衬底,也可以是硅衬底。在本实施例中,第一衬底140可以是通过键合工艺与SOI衬底130的第一表面130a接合。
在一些实施例中,SOI衬底130的第二表面130b接合有第二衬底150。第二衬底150可以是玻璃衬底,也可以是硅衬底。第二衬底150具有朝向SOI衬底130的接合面150a。在本实施例中,第二衬底150可以是通过键合工艺与SOI衬底130的第二表面130b接合。
第一器件110的第一腔体114在SOI衬底130的第一表面130a、第二表面130b分别具有开口。在一些实施例中,第一衬底140封闭第一腔体114在第一表面130a的开口。在一些实施例中,第二衬底150包括位于接合面150a的第一凹槽151,第一凹槽151与第一器件110位置对应,第二衬底150封闭第一腔体114在第二表面130b的开口。在一些实施例中,第一凹槽151内的容纳空间与第一腔体114连通,共同形成第一器件110的密闭腔。
在一些实施例中,第一衬底140具有连通外界与第二器件120的第二腔体123的进气通道141,在垂直于厚度方向的平面上,进气通道141的尺寸小于第二腔体123的尺寸。
在一些实施例中,第二衬底150包括位于接合面150a的第二凹槽152,第二凹槽152与第二器件120位置对应。
第一压敏组件PS1可以是电阻式压敏组件,在本实施例中,其包括位于悬梁部件112内的多个第一压敏电阻115,第一压敏电阻115的数量例如是四个,多个第一压敏电阻115电连接为惠斯特电桥。
第二压敏组件PS2也可以是电阻式压敏组件,在本实施例中,其包括包括位于悬梁部件112内的多个第二压敏电阻124,第一压敏电阻115的数 量例如是四个,多个第二压敏电阻124电连接为惠斯特电桥。
可以理解的是,在其它一些实施例中,第一压敏组件PS1、第二压敏组件PS2分别不限于是电阻式压敏组件,例如也可以是电容式压敏组件。
本实施例中,第一压敏组件PS1、第二压敏组件PS2分别还包括形成在SOI衬底130的第三硅层131内的重掺杂引线160,该重掺杂引线160将多个第一压敏电阻115相互电连接、将多个第二压敏电阻124相互电连接。
重掺杂引线160的形成过程可以是在SOI衬底130的第二表面130b选择预定的区域进行离子注入,其中重掺杂引线160的掺杂类型可以是P型重掺杂。
在一些实施例中,MEMS结构100还包括图案化的钝化层170,图案化的钝化层170位于SOI衬底130的第二表面130b。钝化层170例如由氧化硅或氮化硅组成,至少覆盖多个第一压敏电阻115、多个第二压敏电阻124。
图案化的钝化层170上可以设置有接触孔,使得至少部分重掺杂引线160暴露。MEMS结构100还可以包括形成在钝化层170上的图案化的导体层180。导体层180与重掺杂引线160电连接,其中导体层180可以通过上述的接触孔与重掺杂引线160接触,形成欧姆接触。在一些实施例中,导体层180可以包括焊盘181,以便于第一压敏组件PS1、第二压敏组件PS2与外界电路连通。
根据上述本申请实施例的MEMS结构100,当其处于运动中而产生加速度时,第一器件110的质量块113由于惯性,产生相对于第一支承部件111的位移,从而使得质量块113所连接的悬梁部件112产生形变。形变的悬梁部件112使得至少部分处于悬梁部件112内的第一压敏组件PS1产生第一电信号,以实现对加速度的感测。该第一电信号例如是第一压敏组件PS1内电阻值的变化信号。
根据上述本申请实施例的MEMS结构100,其所处环境内的气体能够通过进气通道141进入第二器件120的第二腔体123,第二腔体123内气体的不同气压使得第二器件120的可形变膜122产生不同的形变。不同形变量的可形变膜122使得至少部分处于可形变膜122内的第二压敏组件PS2 产生不同的第二电信号,以实现对压力的感测。该第二电信号例如是第二压敏组件PS2内电阻值的变化信号。
根据上述本申请实施例的MEMS结构100,当其同时包括第一器件110、第二器件120时,能够同时实现对加速度以及压力的感测。在一些实施例中,该MEMS结构100可以应用于胎压监测中。
本申请实施例还提供一种胎压传感器,其可以包括根据上述任一实施方式的MEMS结构100。在一些实施例中,胎压传感器中的MEMS结构100可以同时包括第一器件110和第二器件120,其中第一器件110可以是加速度传感器,第二器件120可以是压力传感器。
胎压传感器可以应用于胎压监测系统(Tire Pressure Monitoring System,TPMS)中,该TPMS主要用于汽车行驶时实时对轮胎气压进行自动监测,以保障行车安全。TPMS可以分为直接式和间接式,直接式TPMS因系统准确率高成为轮胎气压监测的主流。其中,直接式TPMS中的胎压传感器采用MEMS技术实现压力传感器和加速度传感器的单片集成,压力传感器和加速度传感器检测方式均可以采用压阻式。
根据本申请实施例的胎压传感器,其包括的MEMS结构100中,第一器件110的悬梁部件112、质量块113等结构形成于同一SOI衬底130。其中该SOI衬底130为多层SOI衬底130,包括自第一表面130a至第二表面130b依次叠层设置的第一硅层131、第一绝缘层134、第二硅层132、第二绝缘层135以及第三硅层133。SOI衬底130的各层具有较高的均匀性和一致性,使得制得的悬梁部件112、质量块113等结构各自具有较高均匀性和一致性的层结构,同时实现对胎压传感器的多个特征厚度的精确控制,提高第一器件110的制造品控,进而提高胎压传感器的品质。
此外,具有不同厚度的悬梁部件112、质量块113等结构,可以通过分别以位于不同层的第一绝缘层134、第二绝缘层135作为图案化停止层,对SOI衬底130图案化得到,降低了第一器件110及胎压传感器的制造工艺的复杂性,同时降低制造成本。
在一些可选的实施例中,胎压传感器的MEMS结构100还包括第二器件120。第二器件120的可形变膜122在厚度维度上包含SOI衬底130的第 二硅层132、第二绝缘层135以及第三硅层133,从而得到膜层均匀性和一致性较高的可形变膜122。
此外,第二器件120的部分结构可以与第一器件110的部分结构在同一图案化过程中形成,例如厚度维度上包含相同层结构的可形变膜122、质量块113等结构可以在同一图案化过程中形成,节省器件制造工序,提高制造效率。
本申请实施例还提供一种MEMS结构的制作方法,以下将以上述本申请实施例的MEMS结构100的制作过程为例对MEMS结构的制作方法进行说明。
图4a至图4q分别示出根据本申请实施例的MEMS结构的制作方法的各个阶段的截面示意图。
如图4a,提供SOI衬底130。该SOI衬底130具有相对的第一表面130a和第二表面130b。SOI衬底130包括自第一表面130a至第二表面130b依次叠层设置的第一硅层131、第一绝缘层134、第二硅层132、第二绝缘层135以及第三硅层133。
本实施例中,在接下来的步骤中会在同一SOI衬底130上同时形成第一器件110和第二器件120。在其它一些实施例中,接下来的步骤可以在SOI衬底130上形成其它数量的器件,例如是只形成第一器件110。
本实施例中,在接下来的步骤中,在SOI衬底130的第三硅层133内形成第一器件110的至少部分第一压敏组件PS1以及在SOI衬底130的第三硅层133内形成第二器件120的至少部分第二压敏组件PS2。其中在一些实施例中,在SOI衬底130的第三硅层133内形成第二器件120的至少部分第二压敏组件PS2的步骤,与在SOI衬底130的第三硅层133内形成第一器件110的至少部分第一压敏组件PS1的步骤同时进行。
如图4b,在SOI衬底130的第三硅层133内形成第一器件110的多个第一压敏电阻115以及第二器件120的多个第二压敏电阻124。在一些实施例中,可以在SOI衬底130的第二表面130b形成遮蔽层,遮蔽层可以是氧化硅层,形成遮蔽层的工艺可以是低压化学气相沉积、等离子体化学气相沉积或热氧化等工艺。形成第一压敏电阻115及第二压敏电阻124的方式 可以是通过光刻工艺以及离子注入工艺。具体地,在SOI衬底130的第二表面130b形成光刻胶的作为掩膜层,通过光刻工艺将光刻胶图案化,其中光刻胶上的开口图案与第一压敏电阻115及第二压敏电阻124的图案对应。之后,在光刻胶的开口处进行离子注入,形成第一压敏电阻115及第二压敏电阻124。形成第一压敏电阻115及第二压敏电阻124后,可以将光刻胶剥离。
如图4c,在SOI衬底130的第三硅层133内形成重掺杂引线160,重掺杂引线160将多个第一压敏电阻115电连接为惠斯特电桥、将多个第二压敏电阻124电连接为惠斯特电桥。形成重掺杂引线160的方式可以是通过光刻工艺以及离子注入工艺,与前述过程类似,不再详述。重掺杂引线160的掺杂类型可以是P型重掺杂。
如图4d,在SOI衬底130的第二表面130b形成图案化的钝化层170。钝化层170可以是氧化硅或氮化硅。图案化钝化层170的过程可以是在钝化层170上通过光刻工艺形成图案化的光刻胶,之后以该图案化的光刻胶为掩膜进行干法刻蚀或湿法刻蚀工艺,在钝化层170上形成接触孔。
如图4e,在钝化层170上形成连接至重掺杂引线160的图案化的导体层180。在一些实施例中,图案化的导体层180包括焊盘。
至此,已经在SOI衬底130的第三硅层133内形成第一器件110的至少部分第一压敏组件PS1以及第二器件120的至少部分第二压敏组件PS2。之后,对于第一器件110,自SOI衬底130的第一表面130a图案化SOI衬底130,形成第一器件110的悬梁部件112以及质量块113。其中,悬梁部件112在厚度维度上包含第三硅层133,质量块113在厚度维度上包含第二硅层132、第二绝缘层135以及第三硅层133。对于第二器件120,自SOI衬底130的第一表面130a图案化SOI衬底130,形成第二器件120的可形变膜122以及第二腔体123。其中,第二腔体123位于可形变膜122的一侧,可形变膜122在厚度维度上包含第二硅层132、第二绝缘层135以及第三硅层133,第二腔体123在厚度维度上贯穿第一硅层131以及第一绝缘层134。
在一些实施例中,自SOI衬底130的第一表面130a图案化SOI衬底 130,形成第二器件120的可形变膜122以及第二腔体123的步骤,与自SOI衬底130的第一表面130a图案化SOI衬底130,形成第一器件110的悬梁部件112以及质量块113的步骤同时进行。
如图4f,在SOI衬底130的第一表面130a形成图案化的第一掩膜层Y1。第一掩膜层Y1具有环状的第一开口K1,第一压敏组件PS1的至少部分与第一开口K1位置对应。
请继续参考如图4f,在第一掩膜层Y1背离SOI衬底130一侧形成图案化的第二掩膜层Y2。第二掩膜层Y2具有第二开口K2,第二开口K2的外轮廓与第一开口K1的外轮廓对应。在一些实施例中,在第一掩膜层Y1背离SOI衬底130一侧形成图案化的第二掩膜层Y2的步骤中,第二掩膜层Y2还具有第三开口K3,第三开口K3的位置及形状与第二器件120的第二腔体123对应。
图案化第一掩膜层Y1的过程以及图案化第二掩膜层Y2的过程都可以通过光刻工艺以及干法刻蚀工艺或湿法刻蚀工艺进行,其中图案化的第一掩膜层Y1为第一深腔掩膜,图案化的第二掩膜层Y2为第二深腔掩膜。
如图4g,以第一掩膜层Y1为掩膜、以第二绝缘层135为图案化停止层,自第一表面130a图案化SOI衬底130,得到环状的第一子槽G1。图案化工艺可以是深反应离子硅刻蚀工艺,期间,第一绝缘层134可以采用干法刻蚀工艺或湿法刻蚀工艺单独刻蚀。
如图4h,以第二掩膜层Y2为掩膜、以第一绝缘层134为图案化停止层,自第一表面130a图案化SOI衬底130,使得第一子槽G1转变为槽底具有凸起的第二子槽G2。同时,还得到与第三开口K3位置对应的第三子槽G3。图案化工艺可以是深反应离子硅刻蚀工艺。
如图4i,以第二掩膜层Y2为掩膜,去除暴露于第二子槽G2的槽底表面的第一绝缘层134及第二绝缘层135,得到悬梁部件112以及质量块113。同时,还去除暴露于第三子槽G3的槽底表面的第一绝缘层134,使得第三子槽G3转变为第二器件120的第二腔体123,其中,在厚度方向上第二腔体123一侧的第二硅层132、第二绝缘层135以及第三硅层133形成第二器件120的可形变膜122。
之后,如图4j,可以将第一掩膜层Y1以及第二掩膜层Y2剥离。
如图4k,自SOI衬底130的第二表面130b图案化SOI衬底130,使得质量块113以及悬梁部件112悬空。具体地,在一些实施例中,可以在SOI衬底130的第二表面130b形成图案化的第三掩膜层。该第三掩膜层具有呈非封闭环状结构的第三开口,非封闭环状结构的非封闭部与悬梁部件112位置对应。然后,以第三掩膜层为掩膜,自第一表面130a图案化SOI衬底130,得到自第一表面130a贯穿至第二子槽G2的连接通道T1。连接通道T1与第二子槽G2共同形成第一器件110的第一腔体114,质量块113悬空于第一腔体114。
在一些实施例中,完成上述步骤后,可以在SOI衬底130的第一表面130a接合图案化的第一衬底140。在一些实施例中,还可以在SOI衬底130的第二表面130b接合第二衬底150。
如图4l,提供第一衬底140。第一衬底140可以是玻璃衬底,也可以是硅衬底。
如图4m,图案化第一衬底140,形成贯穿第一衬底140相对的两个表面的进气通道141。该进气通道141可以通过湿法刻蚀等工艺形成。
如图4n,将第一衬底140与SOI衬底130的第一表面130a接合,其中进气通道141与第二器件120的第二腔体123连通。在本实施例中,第一衬底140可以是通过阳极键合等键合工艺与SOI衬底130的第一表面130a接合。
如图4o,提供第二衬底150,第二衬底150具有接合面150a。第二衬底150可以是玻璃衬底,也可以是硅衬底。
如图4p,图案化第二衬底150的接合面150a,形成第一凹槽151以及第二凹槽152。形成第一凹槽151以及第二凹槽152的过程可以是通过湿法刻蚀等工艺形成浅槽。
如图4q,将第二衬底150的接合面150a与SOI衬底130的第二表面130b接合,其中第一凹槽151与第一器件110位置对应,第二凹槽152与第二器件120位置对应。第二衬底150可以是通过阳极键合等键合工艺与SOI衬底130的第二表面130b接合。
至此,完成本申请实施例的MEMS结构100的制作。需要说明的是,上述对第一衬底140的加工过程、对第二衬底150的加工过程以及对SOI衬底130的加工过程之间没有必须的先后顺序,从而能够以任意的顺序进行。此外,在上文中描述了本申请的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本申请。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本申请。
根据本申请实施例的MEMS结构的制作方法,其制得的MEMS结构100中,第一器件110的悬梁部件112、质量块113等结构形成于同一SOI衬底130。其中该SOI衬底130为多层SOI衬底130,包括自第一表面130a至第二表面130b依次叠层设置的第一硅层131、第一绝缘层134、第二硅层132、第二绝缘层135以及第三硅层133。SOI衬底130的各层具有较高的均匀性和一致性,使得制得的悬梁部件112、质量块113等结构各自具有较高均匀性和一致性的层结构,同时实现对第一器件110的多个特征厚度的精确控制,提高第一器件110的制造品控。
此外,具有不同厚度的悬梁部件112、质量块113等结构,通过分别以位于不同层的第一绝缘层134、第二绝缘层135作为图案化停止层,对SOI衬底130图案化得到,降低了第一器件110及胎压传感器的制造工艺的复杂性,同时降低制造成本。
在一些可选的实施例中,制得的MEMS结构100还包括第二器件120。第二器件120的可形变膜122在厚度维度上包含SOI衬底130的第二硅层132、第二绝缘层135以及第三硅层133,从而得到膜层均匀性和一致性较高的可形变膜122。
此外,第二器件120的部分结构可以与第一器件110的部分结构在同一图案化过程中形成,例如厚度维度上包含相同层结构的可形变膜122、质量块113等结构可以在同一图案化过程中形成,节省器件制造工序,提高制造效率。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该申请仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好 地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。
Claims (19)
- 一种MEMS结构,包括第一器件,所述第一器件包括:第一支承部件;悬梁部件,包括相对的第一端和第二端,所述第一端与所述第一支承部件固定,所述第二端悬空;质量块,连接于所述悬梁部件的第二端;以及第一压敏组件,至少部分位于所述悬梁部件内,所述第一压敏组件根据所述悬梁部件的形变产生第一电信号,其中,所述悬梁部件及所述质量块位于SOI衬底内,所述SOI衬底具有相对的第一表面和第二表面,所述SOI衬底包括自所述第一表面至所述第二表面依次叠层设置的第一硅层、第一绝缘层、第二硅层、第二绝缘层以及第三硅层,所述悬梁部件在厚度维度上包含所述第三硅层,所述质量块在厚度维度上包含所述第二硅层、所述第二绝缘层以及所述第三硅层。
- 根据权利要求1所述的MEMS结构,其中,所述第一器件还包括:第一腔体,围绕所述质量块,使得所述质量块悬空于所述第一腔体,其中所述第一腔体自所述SOI衬底的所述第一表面向所述第二表面凹陷。
- 根据权利要求2所述的MEMS结构,其中,所述SOI衬底的所述第一表面接合有第一衬底,所述第一衬底封闭所述第一腔体在所述第一表面的开口。
- 根据权利要求1所述的MEMS结构,其中,所述SOI衬底的所述第二表面接合有第二衬底,所述第二衬底具有朝向所述SOI衬底的接合面,所述第二衬底包括位于所述接合面的第一凹槽,所述第一凹槽与所述第一器件位置对应。
- 根据权利要求1至4任一项所述的MEMS结构,其中,所述第一器件为加速度传感器;所述第一压敏组件包括位于所述悬梁部件内的多个第一压敏电阻,所述多个第一压敏电阻电连接为惠斯特电桥。
- 根据权利要求1所述的MEMS结构,还包括第二器件,所述第二 器件包括:第二支承部件;可形变膜,所述可形变膜的周边与所述第二支承部件连接;第二腔体,位于所述可形变膜的厚度方向的一侧;以及第二压敏组件,至少部分位于所述可形变膜内,所述第二压敏组件根据所述可形变膜的形变产生第二电信号,其中,所述可形变膜、所述第二腔体位于所述SOI衬底内,所述可形变膜在厚度维度上包含所述第二硅层、所述第二绝缘层以及所述第三硅层,所述第二腔体在厚度维度上贯穿所述第一硅层以及所述第一绝缘层。
- 根据权利要求6所述的MEMS结构,其中,所述SOI衬底的所述第一表面接合有第一衬底,所述第一衬底具有连通外界与所述第二腔体的进气通道,在垂直于厚度方向的平面上,所述进气通道的尺寸小于所述第二腔体的尺寸。
- 根据权利要求6所述的MEMS结构,其中,所述SOI衬底的所述第二表面接合有第二衬底,所述第二衬底具有朝向所述SOI衬底的接合面,所述第二衬底包括位于所述接合面的第二凹槽,所述第二凹槽与所述第二器件位置对应。
- 根据权利要求6至8任一项所述的MEMS结构,其中,所述第二器件为压力传感器;所述第二压敏组件包括位于所述悬梁部件内的多个第二压敏电阻,所述多个第二压敏电阻电连接为惠斯特电桥。
- 一种胎压传感器,包括根据权利要求1至9任一项所述的MEMS结构。
- 一种MEMS结构的制作方法,包括:提供SOI衬底,所述SOI衬底具有相对的第一表面和第二表面,所述SOI衬底包括自所述第一表面至所述第二表面依次叠层设置的第一硅层、第一绝缘层、第二硅层、第二绝缘层以及第三硅层;在所述SOI衬底的所述第三硅层内形成第一器件的至少部分第一压敏组件;自所述SOI衬底的所述第一表面图案化所述SOI衬底,形成所述第一器件的悬梁部件以及质量块,其中,所述悬梁部件在厚度维度上包含所述第三硅层,所述质量块在厚度维度上包含所述第二硅层、所述第二绝缘层以及所述第三硅层;以及自所述SOI衬底的所述第二表面图案化所述SOI衬底,使得所述质量块以及所述悬梁部件悬空。
- 根据权利要求11所述的MEMS结构的制作方法,其中,所述自所述SOI衬底的所述第一表面图案化所述SOI衬底,形成所述第一器件的悬梁部件以及质量块包括:在所述SOI衬底的所述第一表面形成图案化的第一掩膜层,所述第一掩膜层具有环状的第一开口,所述第一压敏组件的至少部分与所述第一开口位置对应;在所述第一掩膜层背离所述SOI衬底一侧形成图案化的第二掩膜层,所述第二掩膜层具有第二开口,所述第二开口的外轮廓与所述第一开口的外轮廓对应;以所述第一掩膜层为掩膜、以所述第二绝缘层为图案化停止层,自所述第一表面图案化所述SOI衬底,得到环状的第一子槽;以所述第二掩膜层为掩膜、以所述第一绝缘层为图案化停止层,自所述第一表面图案化所述SOI衬底,使得所述第一子槽转变为槽底具有凸起的第二子槽;以所述第二掩膜层为掩膜,去除暴露于所述第二子槽的槽底表面的所述第一绝缘层及所述第二绝缘层,得到所述悬梁部件以及所述质量块。
- 根据权利要求12所述的MEMS结构的制作方法,其中,所述自所述SOI衬底的所述第二表面图案化所述SOI衬底,使得所述质量块以及所述悬梁部件悬空包括:在所述SOI衬底的所述第二表面形成图案化的第三掩膜层,所述第三掩膜层具有呈非封闭环状结构的第三开口,所述非封闭环状结构的非封闭部与所述悬梁部件位置对应;以所述第三掩膜层为掩膜,自所述第一表面图案化所述SOI衬底,得 到自所述第一表面贯穿至所述第二子槽的连接通道,其中,所述连接通道与所述第二子槽共同形成所述第一器件的第一腔体,所述质量块悬空于所述第一腔体。
- 根据权利要求12所述的MEMS结构的制作方法,其中,所述在所述第一掩膜层背离所述SOI衬底一侧形成图案化的第二掩膜层的步骤中,所述第二掩膜层还具有第三开口,所述第三开口的位置及形状与第二器件的第二腔体对应;所述以所述第二掩膜层为掩膜、以所述第一绝缘层为图案化停止层,自所述第一表面图案化所述SOI衬底的步骤中,还得到与所述第三开口位置对应的第三子槽;所述以所述第二掩膜层为掩膜,去除暴露于所述第二子槽的槽底表面的所述第一绝缘层及所述第二绝缘层的步骤中,还去除暴露于所述第三子槽的槽底表面的所述第一绝缘层,使得所述第三子槽转变为所述第二器件的第二腔体,其中,在厚度方向上所述第二腔体一侧的所述第二硅层、所述第二绝缘层以及所述第三硅层形成所述第二器件的可形变膜。
- 根据权利要求11所述的MEMS结构的制作方法,所述MEMS结构的制作方法还包括:在所述SOI衬底的所述第三硅层内形成第二器件的至少部分第二压敏组件;自所述SOI衬底的所述第一表面图案化所述SOI衬底,形成所述第二器件的可形变膜以及第二腔体,其中,所述第二腔体位于所述可形变膜的一侧,所述可形变膜在厚度维度上包含所述第二硅层、所述第二绝缘层以及所述第三硅层,所述第二腔体在厚度维度上贯穿所述第一硅层以及所述第一绝缘层。
- 根据权利要求15所述的MEMS结构的制作方法,其中,所述自所述SOI衬底的所述第一表面图案化所述SOI衬底,形成所述第二器件的可形变膜以及第二腔体的步骤,与所述自所述SOI衬底的所述第一表面图案化所述SOI衬底,形成所述第一器件的悬梁部件以及质量块的步骤同时进行。
- 根据权利要求15所述的MEMS结构的制作方法,其中,所述在所述SOI衬底的所述第三硅层内形成第二器件的至少部分第二压敏组件的步骤,与所述在所述SOI衬底的所述第三硅层内形成第一器件的至少部分第一压敏组件的步骤同时进行,所述MEMS结构的制作方法包括:在所述SOI衬底的所述第三硅层内形成所述第一器件的多个第一压敏电阻以及所述第二器件的多个第二压敏电阻;在所述SOI衬底的所述第三硅层内形成重掺杂引线,所述重掺杂引线将多个所述第一压敏电阻电连接为惠斯特电桥、将多个所述第二压敏电阻电连接为惠斯特电桥;在所述SOI衬底的所述第二表面形成图案化的钝化层;在所述钝化层上形成连接至所述重掺杂引线的图案化的导体层。
- 根据权利要求15所述的MEMS结构的制作方法,还包括:提供第一衬底;图案化所述第一衬底,形成贯穿所述第一衬底相对的两个表面的进气通道;将所述第一衬底与所述SOI衬底的所述第一表面接合,其中所述进气通道与所述第二器件的所述第二腔体连通。
- 根据权利要求15所述的MEMS结构的制作方法,还包括:提供第二衬底,所述第二衬底具有接合面;图案化所述第二衬底的所述接合面,形成第一凹槽以及第二凹槽;将所述第二衬底的所述接合面与所述SOI衬底的所述第二表面接合,其中所述第一凹槽与所述第一器件位置对应,所述第二凹槽与所述第二器件位置对应。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910722234.XA CN110577185B (zh) | 2019-08-06 | 2019-08-06 | Mems结构、mems结构的制作方法及胎压传感器 |
CN201910722234.X | 2019-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021023251A1 true WO2021023251A1 (zh) | 2021-02-11 |
Family
ID=68810967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/107296 WO2021023251A1 (zh) | 2019-08-06 | 2020-08-06 | Mems结构、mems结构的制作方法及胎压传感器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110577185B (zh) |
WO (1) | WO2021023251A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110577185B (zh) * | 2019-08-06 | 2021-11-16 | 西人马联合测控(泉州)科技有限公司 | Mems结构、mems结构的制作方法及胎压传感器 |
US20220024754A1 (en) * | 2020-07-23 | 2022-01-27 | Vanguard International Semiconductor Corporation | Micro-electromechanical system device and method of forming the same |
CN113504002B (zh) * | 2021-06-28 | 2023-02-24 | 福建船政交通职业学院 | 一种胎压计零件 |
CN114459666B (zh) * | 2022-02-14 | 2023-03-17 | 北京航空航天大学 | 一种电容式压差传感器、制造方法及其应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030048970A1 (en) * | 2001-09-12 | 2003-03-13 | Cole Barrett E. | Tunable optical filter |
CN102157679A (zh) * | 2009-12-28 | 2011-08-17 | 通用电气公司 | 用于制造传感器的方法 |
RU2457577C1 (ru) * | 2011-03-24 | 2012-07-27 | Открытое акционерное общество "Научно-исследовательский институт физических измерений" | Многофункциональный измерительный модуль |
CN103792036A (zh) * | 2014-03-05 | 2014-05-14 | 中国电子科技集团公司第三十八研究所 | 气压与加速度传感器相集成的mems芯片及其制作方法 |
CN104062464A (zh) * | 2014-06-13 | 2014-09-24 | 浙江工业大学 | 一种mems压阻式加速度、压力集成传感器及制造方法 |
CN104864988A (zh) * | 2015-06-10 | 2015-08-26 | 中国电子科技集团公司第十三研究所 | 硅岛膜结构的mems压力传感器及其制作方法 |
CN105293423A (zh) * | 2015-11-12 | 2016-02-03 | 中国工程物理研究院电子工程研究所 | 一种基于五层soi硅片的mems单片集成方法 |
CN108627287A (zh) * | 2018-06-06 | 2018-10-09 | 上海天沐自动化仪表有限公司 | 一体化硅压阻式传感器芯片 |
CN110002395A (zh) * | 2019-04-10 | 2019-07-12 | 北京盛通恒瑞科贸有限公司 | 一种压阻式双轴运动传感器及其制作方法 |
CN110577185A (zh) * | 2019-08-06 | 2019-12-17 | 西人马联合测控(泉州)科技有限公司 | Mems结构、mems结构的制作方法及胎压传感器 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10178184A (ja) * | 1996-12-17 | 1998-06-30 | Mitsubishi Materials Corp | 半導体慣性センサ及びその製造方法 |
JPH10270715A (ja) * | 1997-03-26 | 1998-10-09 | Mitsubishi Materials Corp | 半導体慣性センサの製造方法 |
JPH10270714A (ja) * | 1997-03-26 | 1998-10-09 | Mitsubishi Materials Corp | 半導体慣性センサの製造方法 |
KR100555650B1 (ko) * | 2003-12-22 | 2006-03-03 | 삼성전자주식회사 | 압력, 온도 및 가속도를 동시에 측정할 수 있는 mems센서와 그 제조방법, 및 그것을 사용하는 타이어 압력모니터링 시스템 |
JP5775281B2 (ja) * | 2010-10-08 | 2015-09-09 | ローム株式会社 | Memsセンサおよびその製造方法 |
JP5541306B2 (ja) * | 2011-05-27 | 2014-07-09 | 株式会社デンソー | 力学量センサ装置およびその製造方法 |
CN104058361A (zh) * | 2013-03-20 | 2014-09-24 | 北京大学 | 一种基于预制空腔soi基片的集成压阻式加速度计与压力计的加工方法 |
DE102013209238B4 (de) * | 2013-05-17 | 2017-10-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | MEMS-Struktur und Verfahren zum Herstellen derselben |
CN103926034B (zh) * | 2014-03-25 | 2016-08-31 | 慧石(上海)测控科技有限公司 | 硅压力芯片结构设计及工艺 |
CN106289334A (zh) * | 2016-08-02 | 2017-01-04 | 上海芯赫科技有限公司 | 一种具有自检测功能的电容式复合传感器及其制造方法 |
-
2019
- 2019-08-06 CN CN201910722234.XA patent/CN110577185B/zh not_active Expired - Fee Related
-
2020
- 2020-08-06 WO PCT/CN2020/107296 patent/WO2021023251A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030048970A1 (en) * | 2001-09-12 | 2003-03-13 | Cole Barrett E. | Tunable optical filter |
CN102157679A (zh) * | 2009-12-28 | 2011-08-17 | 通用电气公司 | 用于制造传感器的方法 |
RU2457577C1 (ru) * | 2011-03-24 | 2012-07-27 | Открытое акционерное общество "Научно-исследовательский институт физических измерений" | Многофункциональный измерительный модуль |
CN103792036A (zh) * | 2014-03-05 | 2014-05-14 | 中国电子科技集团公司第三十八研究所 | 气压与加速度传感器相集成的mems芯片及其制作方法 |
CN104062464A (zh) * | 2014-06-13 | 2014-09-24 | 浙江工业大学 | 一种mems压阻式加速度、压力集成传感器及制造方法 |
CN104864988A (zh) * | 2015-06-10 | 2015-08-26 | 中国电子科技集团公司第十三研究所 | 硅岛膜结构的mems压力传感器及其制作方法 |
CN105293423A (zh) * | 2015-11-12 | 2016-02-03 | 中国工程物理研究院电子工程研究所 | 一种基于五层soi硅片的mems单片集成方法 |
CN108627287A (zh) * | 2018-06-06 | 2018-10-09 | 上海天沐自动化仪表有限公司 | 一体化硅压阻式传感器芯片 |
CN110002395A (zh) * | 2019-04-10 | 2019-07-12 | 北京盛通恒瑞科贸有限公司 | 一种压阻式双轴运动传感器及其制作方法 |
CN110577185A (zh) * | 2019-08-06 | 2019-12-17 | 西人马联合测控(泉州)科技有限公司 | Mems结构、mems结构的制作方法及胎压传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN110577185B (zh) | 2021-11-16 |
CN110577185A (zh) | 2019-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021023251A1 (zh) | Mems结构、mems结构的制作方法及胎压传感器 | |
US10785557B2 (en) | MEMS microphone and method of manufacturing the same | |
US7159466B2 (en) | Piezo resistance type semiconductor device and its manufacturing method | |
JP4159895B2 (ja) | 静電容量型圧力センサ及びその製造方法 | |
US9835507B2 (en) | Dynamic quantity sensor | |
JP5649474B2 (ja) | 静電容量型圧力センサおよび静電容量型圧力センサの製造方法 | |
WO2012122877A1 (zh) | Mems压力传感器及其制作方法 | |
JP2015515609A (ja) | カテーテルダイおよびその製造方法 | |
JPS6325982A (ja) | 半導体圧力変換装置の製造方法 | |
CN103604538A (zh) | 基于soi技术的mems压力传感器芯片及其制造方法 | |
US20100031752A1 (en) | Pressure sensor with resistance strain gages | |
TW201302598A (zh) | 量測環境力的裝置與製造該裝置的方法 | |
CN111947815A (zh) | Mems压力芯片及其制备方法 | |
US7192819B1 (en) | Semiconductor sensor device using MEMS technology | |
US10741746B2 (en) | Pressure sensor and manufacturing method thereof | |
JPH06267382A (ja) | 圧力スイッチ及びその製造方法 | |
US6802222B2 (en) | Diaphragm-type semiconductor device and method for manufacturing diaphragm-type semiconductor device | |
KR100904994B1 (ko) | 압력센서 제조방법 및 그 구조 | |
CN111107473B (zh) | Mic和压力传感器的集成结构与方法 | |
JPH09116173A (ja) | 半導体センサおよびその製造方法 | |
US11054326B2 (en) | Physical quantity sensor | |
KR20050075225A (ko) | 단일칩으로 집적되는 mems 멀티 센서 및 그 제조방법 | |
CN112924058A (zh) | 压力传感器及其制造方法 | |
CN109540371B (zh) | 一种压力传感器及其制造方法 | |
JPS6276783A (ja) | 半導体圧力センサ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20851023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20851023 Country of ref document: EP Kind code of ref document: A1 |