WO2020181715A1 - 用于空调器的控制方法 - Google Patents

用于空调器的控制方法 Download PDF

Info

Publication number
WO2020181715A1
WO2020181715A1 PCT/CN2019/100152 CN2019100152W WO2020181715A1 WO 2020181715 A1 WO2020181715 A1 WO 2020181715A1 CN 2019100152 W CN2019100152 W CN 2019100152W WO 2020181715 A1 WO2020181715 A1 WO 2020181715A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
frequency
vibration displacement
vibration
displacement
Prior art date
Application number
PCT/CN2019/100152
Other languages
English (en)
French (fr)
Inventor
禚百田
时斌
李秀歌
程绍江
张锐钢
王军
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to EP19916538.2A priority Critical patent/EP3748250A4/en
Priority to US16/962,630 priority patent/US11287156B2/en
Publication of WO2020181715A1 publication Critical patent/WO2020181715A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the invention belongs to the technical field of air conditioners, and particularly relates to a control method for an air conditioner.
  • the air conditioner has become an essential device in people's lives.
  • the air conditioner technology has developed to a very mature stage, there are still some areas for improvement in the existing air conditioners.
  • the external units of existing air conditioners are equipped with compressors, and the compressors will continue to vibrate during operation.
  • the vibration of the compressor will inevitably cause the external units to follow vibration; especially for those equipped with inverter compressors.
  • the vibration frequency of the inverter compressor will change with the change of its own operating frequency. During the change of the operating frequency, there must be some operating frequencies that will cause resonance between the compressor and the external machine, which will lead to The external machine is prone to noise, and even causes the problem of damage to the components in the external machine.
  • the existing technicians In order to effectively avoid the resonance phenomenon between the compressor and the outdoor unit, the existing technicians usually measure the operating frequency points that cause the compressor and the outdoor unit to resonate before the air conditioner leaves the factory, and then control the inverter compressor. These operating frequency points are removed during the frequency change process to avoid resonance between the compressor and the external machine; however, through practice, it has been found that due to the manufacturing errors in the production of parts and the installation conditions of each external machine are also different, so , The resonance operating frequency point measured by the technician before the air conditioner leaves the factory is often different from the actual operating frequency point at which the resonance phenomenon occurs. As a result, the existing outdoor unit easily resonates with the compressor and generates noise, even causing external noise. Some parts in the machine are damaged.
  • the present invention provides a control method for an air conditioner.
  • the control method includes a compressor and a pipeline connected to the compressor, and the control method includes the following steps: during the operation of the air conditioner, obtaining the vibration displacement of the pipeline and recording it as the first vibration displacement; , Acquire the vibration displacement of the pipeline again and record it as the second vibration displacement; according to the first vibration displacement and the second vibration displacement, selectively adjust the operating parameters of the compressor.
  • the step of "selectively adjusting the operating parameters of the compressor based on the first vibration displacement and the second vibration displacement" specifically includes: calculating The difference between the second vibration displacement and the preset displacement and the difference between the second vibration displacement and the first vibration displacement; according to the difference between the second vibration displacement and the preset displacement and the first The difference between the second vibration displacement and the first vibration displacement is used to selectively adjust the operating parameters of the compressor.
  • the step of selectively adjusting the operating parameters of the compressor specifically includes: calculating the difference between the second vibration displacement and the preset displacement multiplied by a first coefficient, plus the second vibration displacement and the The result of multiplying the difference of the first vibration displacement by the second coefficient; according to the calculation result, the frequency of the compressor is selectively adjusted.
  • the first coefficient is greater than the second coefficient.
  • the step of "selectively adjusting the frequency of the compressor according to the calculation result" includes: if the calculation result is greater than a preset value, adjusting the compressor frequency.
  • the step of "adjusting the frequency of the compressor” specifically includes: obtaining the changing trend of the frequency of the compressor; and according to the changing trend of the frequency of the compressor , Controlling the adjustment direction of the frequency of the compressor; according to the calculation result, controlling the adjustment amount of the frequency of the compressor.
  • the step of "controlling the adjustment direction of the compressor frequency according to the change trend of the compressor frequency” specifically includes: if the frequency of the compressor is If the frequency of the compressor is increasing, the frequency of the compressor is increased; if the frequency of the compressor is decreasing, the frequency of the compressor is decreased.
  • the step of “acquiring the change trend of the frequency of the compressor” specifically includes: obtaining a first frequency corresponding to the first vibration displacement and A second frequency corresponding to the second vibration displacement; according to the first frequency and the second frequency, a change trend of the frequency of the compressor is determined.
  • the step of "selectively adjusting the frequency of the compressor according to the calculation result" further includes: if the calculation result is less than or equal to the preset value, not Adjust the frequency of the compressor.
  • the preset value is zero.
  • the air conditioner of the present invention includes a compressor and a pipe connected to the compressor
  • the control method of the present invention includes the following steps: During operation, the vibration displacement of the pipeline is acquired as the first vibration displacement; after a preset time, the vibration displacement of the pipeline is acquired again and recorded as the second vibration displacement; according to the first vibration displacement and the first vibration displacement Second, the vibration displacement is used to selectively adjust the operating parameters of the compressor.
  • the present invention detects the pipeline
  • the vibration displacement is used as the basic parameter for detecting vibration, thereby effectively improving the accuracy and sensitivity of detection.
  • the air conditioner can determine the real-time vibration of the pipeline through the second vibration displacement, and at the same time, the air conditioner can also determine the real-time vibration condition of the pipeline by combining the first vibration displacement and the second vibration displacement.
  • the vibration change of the pipeline so that the air conditioner can determine the vibration of the entire outdoor machine through the real-time vibration and vibration change of the pipeline, so that the air conditioner can detect the vibration of the external machine in real time and accurately, So as to effectively determine the possibility of resonance between the compressor and the external machine; the air conditioner can selectively change the operating parameters of the compressor according to the vibration of the external machine to change the vibration of the compressor, thereby effectively avoiding the compressor
  • the problem of pipe damage caused by resonance with the external machine thereby effectively improving the user experience.
  • the air conditioner can be based on the difference between the second vibration displacement and the preset displacement and the difference between the second vibration displacement and the first vibration displacement To selectively adjust the operating parameters of the compressor; it is understandable that the air conditioner can determine whether the vibration amplitude of the pipeline has exceeded the preset value according to the difference between the second vibration displacement and the preset displacement.
  • the air conditioner can also determine whether the change speed of the vibration amplitude of the pipeline is too fast according to the difference between the second vibration displacement and the first vibration displacement.
  • the air conditioner can selectively adjust the operating parameters of the compressor according to the vibration amplitude of the pipeline and the changing speed of the vibration amplitude, so that the compressor and the outdoor unit
  • the operating parameters of the compressor are changed in time, so that the vibration of the compressor is changed in time, thereby effectively avoiding the problem of resonance between the compressor and the external machine, which may damage the pipeline and generate noise.
  • the difference between the second vibration displacement and the preset displacement represents the deviation between the vibration amplitude of the pipeline and the preset amplitude
  • the first The coefficient represents the importance of the deviation between the vibration amplitude of the pipeline and the preset amplitude in this judgment
  • the difference between the second vibration displacement and the first vibration displacement represents the vibration of the pipeline
  • the amplitude change rate, the second coefficient represents the importance of the pipeline vibration amplitude change rate in this judgment; the air conditioner compares the pipeline vibration amplitude and the vibration amplitude change rate The vibration of the pipeline is judged, and when the vibration of the pipeline is already serious, the air conditioner adjusts the frequency of the compressor to effectively change the vibration of the compressor.
  • the control method of the present invention reduces
  • the difference between the second vibration displacement and the preset displacement and the difference between the second vibration displacement and the first vibration displacement are used as basic parameters for calculating the adjustment value. It is understandable that when judging the vibration of the pipeline, the importance of the vibration amplitude is greater than the importance of the change speed of the vibration amplitude. Therefore, preferably, the first coefficient is greater than the second coefficient.
  • the air conditioner needs to adjust the frequency of the compressor; if the calculation result is less than or equal to the preset value, it means that there is no risk of resonance between the compressor and the external machine at this time. In this case, The air conditioner does not need to adjust the frequency of the compressor.
  • the air conditioner when the calculation result is greater than the preset value, the air conditioner needs to adjust the frequency of the compressor; specifically, the air conditioner
  • the adjustment direction of the compressor needs to be controlled according to the change trend of the frequency of the compressor. Since changing the frequency of the compressor will cause the compression efficiency of the compressor to be changed, the heat exchange efficiency of the entire air conditioner is changed.
  • the change trend of the compressor must be considered, that is, the change trend of the frequency of the compressor needs to be considered based on the consideration of meeting the heat exchange demand; if the frequency of the compressor rises The trend indicates that the heat exchange efficiency of the air conditioner needs to be improved.
  • the air conditioner can only increase the frequency of the compressor, so as not to affect the heat exchange efficiency of the air conditioner;
  • the frequency of the compressor shows a downward trend, indicating that the heat exchange efficiency of the air conditioner needs to be reduced. Therefore, the air conditioner can only reduce the frequency of the compressor to avoid unnecessary energy waste.
  • the adjustment amount of the frequency of the compressor by the air conditioner is the above calculation result, so that the air conditioner can adjust the frequency of the compressor in different amplitudes according to different vibration conditions.
  • the air conditioner determines the compressor based on the above calculation results. Adjust the frequency of the compressor so that the compressor can skip a part of the frequency points near the resonance frequency point, thereby effectively reducing the vibration of the compressor and the external machine.
  • Figure 1 is a flow chart of the main steps of the control method of the present invention.
  • Fig. 2 is a flowchart of the steps of a preferred embodiment of the control method of the present invention.
  • the prior art personnel usually measure these operating frequency points that cause the compressor and the external machine to resonate before leaving the air conditioner, and then control the frequency change of the inverter compressor.
  • These operating frequency points are removed to avoid resonance between the compressor and the external machine; however, due to the influence of external factors, the resonance operating frequency points measured by the technicians before the air conditioner leaves the factory are often different from the actual operating frequency points where the resonance phenomenon occurs.
  • the same which causes the existing outdoor machine to easily resonate with the compressor to generate noise, and even cause the problem of damage to some parts of the outdoor machine.
  • the present invention provides a control method for an air conditioner.
  • the control method selectively adjusts the operating parameters of the compressor according to the vibration of the pipeline, thereby effectively avoiding The compressor and the external machine resonate to produce noise, and even cause the problem of pipeline damage.
  • the air conditioner includes an outdoor machine and a compressor arranged in the outdoor machine, the suction port of the compressor is connected with the suction pipe, and the discharge port of the compressor is connected with the exhaust pipe. Since the pipe diameter of the suction pipe is generally larger than that of the exhaust pipe, the vibration amplitude of the exhaust pipe is usually greater than that of the suction pipe.
  • the displacement sensor in the preferred embodiment is arranged in the exhaust pipe So that the displacement sensor can detect the vibration displacement of the exhaust duct.
  • the displacement sensor can also be arranged on the suction pipe, or on the suction pipe and the exhaust pipe at the same time, as long as the displacement sensor can detect and The vibration displacement of the pipeline connected to the compressor is sufficient.
  • the air conditioner further includes a controller that can obtain the detection result of the displacement sensor and the operating parameters of the air conditioner, and the controller can also control the operating parameters of the compressor.
  • the controller may be the original controller of the air conditioner, It may also be a controller separately provided for implementing the control method of the present invention, and technicians can set the structure and model of the controller by themselves according to actual use requirements.
  • FIG. 1 is a flowchart of the main steps of the control method of the present invention.
  • the control method of the present invention mainly includes the following steps:
  • step S1 during the operation of the air conditioner, the controller can obtain the vibration displacement of the exhaust duct through the displacement sensor and record it as the first vibration displacement; it should be noted that The first vibration displacement may be the vibration displacement of a certain point on the exhaust pipe or the average value of the vibration displacements of multiple points on the exhaust pipe. Then, in step S2, after the first vibration displacement is detected and the preset time has elapsed, the controller obtains the vibration displacement of the exhaust pipe through the displacement sensor again and records it as the second vibration displacement; It is understandable that the technician can set the length of the preset time according to the actual use situation, and the second vibration displacement can be either the vibration displacement of a certain point on the exhaust pipe, or the The average value of the vibration displacement of multiple points on the exhaust pipe.
  • the controller in this preferred embodiment obtains the vibration displacement of the exhaust duct through the displacement sensor provided in the air conditioner itself; however, the controller can obviously also The vibration displacement of the exhaust pipe is acquired through an external sensor.
  • the present invention does not impose any limitation on the manner in which the controller obtains the vibration displacement, as long as the controller can acquire the vibration displacement of the exhaust pipe.
  • the controller can selectively adjust the operating parameters of the compressor according to the first vibration displacement and the second vibration displacement.
  • the technician can judge whether the second vibration displacement is greater than the first vibration displacement as a judgment condition, or judge whether the ratio of the second vibration displacement to the first vibration displacement is greater than
  • the preset ratio is used as the judgment condition, and it is even possible to bring the first vibration displacement and the second vibration displacement into the relational expression and judge whether they can satisfy the relational expression as the judgment condition; that is, this specific judgment
  • the change of the condition does not deviate from the basic principle of the present invention. As long as the judgment condition adopts the first vibration displacement and the second vibration displacement as basic parameters, it belongs to the protection scope of the present invention.
  • the operating parameters of the compressor described in the present invention can be operating parameters such as frequency, suction pressure, and exhaust pressure.
  • the technical personnel can select the control according to actual needs. For the operating parameters adjusted in the method, as long as the controller adjusts the operating parameters, the vibration condition of the compressor can be changed.
  • Fig. 2 is a flowchart of the steps of a preferred embodiment of the control method of the present invention.
  • a preferred embodiment of the control method of the present invention mainly includes the following steps:
  • S103 Calculate the difference between the second vibration displacement and the preset displacement and the difference between the second vibration displacement and the first vibration displacement
  • S104 Calculate the result of multiplying the difference between the second vibration displacement and the preset displacement by the first coefficient and adding the difference between the second vibration displacement and the first vibration displacement by the second coefficient;
  • S108 Control the adjustment direction of the compressor's frequency according to the change trend of the compressor's frequency; control the adjustment amount of the compressor's frequency according to the calculation result.
  • the controller can obtain the vibration displacement of the exhaust duct through the displacement sensor and record it as the first vibration displacement; it should be noted that The first vibration displacement may be the vibration displacement of a certain point on the exhaust pipe or the average value of the vibration displacements of multiple points on the exhaust pipe.
  • step S102 after the first vibration displacement is detected and the preset time has elapsed, the controller again obtains the vibration displacement of the exhaust pipe through the displacement sensor and records it as the second vibration displacement
  • the technician can set the length of the preset time according to the actual use situation, and the second vibration displacement can be the vibration displacement of a certain point on the exhaust pipe, or it can be The average value of the vibration displacement of multiple points on the exhaust pipe.
  • the controller in this preferred embodiment obtains the vibration displacement of the exhaust duct through the displacement sensor provided in the air conditioner itself; however, the controller can obviously also The vibration displacement of the exhaust pipe is acquired through an external sensor.
  • the present invention does not impose any limitation on the manner in which the controller obtains the vibration displacement, as long as the controller can acquire the vibration displacement of the exhaust pipe.
  • the controller can calculate the difference between the second vibration displacement and the preset displacement and the difference between the second vibration displacement and the first vibration displacement. It should be noted that in this preferred embodiment, the difference between the second vibration displacement and the preset displacement and the difference between the second vibration displacement and the first vibration displacement are only used as an intermediate calculation amount However, it is obvious that the controller can also directly use the difference between the second vibration displacement and the preset displacement and the difference between the second vibration displacement and the first vibration displacement to selectively adjust the Describe the operating parameters of the compressor.
  • the difference between the second vibration displacement and the preset displacement is greater than the first preset difference or the difference between the second vibration displacement and the first vibration displacement is greater than the second preset difference
  • the operating parameters of the compressor are adjusted; of course, technicians can set the specific values of the first preset difference and the second preset difference according to actual usage requirements.
  • those skilled in the art can understand that the skilled person can set the size of the preset displacement according to different conditions of the air conditioner, as long as the vibration displacement of the compressor is greater than the preset displacement. It is sufficient if there is a risk of resonance between the compressor and the external machine or resonance has occurred.
  • the controller can calculate the difference between the second vibration displacement and the preset displacement multiplied by a first coefficient, plus the second vibration displacement and the first vibration displacement The result of multiplying the difference by the second coefficient.
  • the first coefficient and the second coefficient are usually different, and when the second vibration displacement and the preset While the difference between the displacement and the difference between the second vibration displacement and the first vibration displacement are used as dependent variables, the technician also needs to set the first coefficient and the first coefficient by himself through experiments or modeling.
  • the specific value of the second coefficient, preferably, the first coefficient is greater than the second coefficient.
  • step S105 the controller can determine whether the above calculation result is greater than zero; it should be noted that although the preset value used in the preferred embodiment is zero, the skilled person can obviously The actual situation is to set the size of the preset value by yourself. For example, when the preset value is set to 1, the judgment condition becomes to judge whether the above calculation result is greater than 1, and the change of this specific value does not deviate from the original The basic principle of the invention. In this preferred embodiment, if the above calculation result is greater than zero, it indicates that there is a risk of resonance between the compressor and the outdoor machine. At this time, step S107 is executed. If the above calculation result is less than or equal to zero, it means that the vibration of the compressor and the external machine is small.
  • step S106 is executed, that is, the controller does not need to adjust the frequency of the compressor.
  • the non-adjustment of the frequency of the compressor in step S106 means that the frequency of the compressor is not adjusted hoppingly, that is, the frequency of the compressor is not adjusted according to the adjustment method of the present invention.
  • the frequency is adjusted, that is, the control method of the present invention does not affect other control logic of the compressor.
  • step S107 the controller executes step S107, that is, obtains the change trend of the frequency of the compressor.
  • the controller can obtain the frequencies corresponding to two adjacent time points to determine the changing trend of the compressor frequency; as a preferred embodiment, if the first vibration displacement is to be obtained The time point is recorded as the first time point, and the time point at which the second vibration displacement is obtained is recorded as the second time point, then the controller can obtain the operating frequency of the compressor at the first time point, which is recorded as The first frequency is obtained, and the operating frequency of the compressor at the second time point is obtained, which is recorded as the second frequency.
  • the controller can obtain the second frequency by comparing the first frequency and the second frequency. The changing trend of the compressor frequency.
  • the frequency of the compressor has an upward trend; if the second frequency is less than the first frequency, the frequency of the compressor has a downward trend . It is understandable that if the second frequency is equal to the first frequency, the vibration of the compressor will not change, and the vibration of the compressor and the external machine will not change.
  • the present invention does not impose any restrictions on the specific manner in which the controller obtains the change trend of the frequency.
  • the technician can set it according to actual usage requirements.
  • the controller can also store the frequency through its internal storage. The frequency change curve is used to judge the change trend of frequency.
  • the controller can control the adjustment direction of the frequency of the compressor according to the change trend of the frequency of the compressor; and control the adjustment amount of the frequency of the compressor according to the calculation result.
  • the controller may first determine the frequency adjustment direction, or first determine the frequency adjustment amount, or determine the frequency adjustment direction and adjustment amount at the same time. This change in the execution sequence does not deviate from the present invention. Fundamental. Specifically, if the frequency of the compressor shows an upward trend, the frequency of the compressor is increased; if the frequency of the compressor shows a downward trend, the frequency of the compressor is reduced.
  • the controller uses the previous calculation result as the frequency adjustment amount to adjust the frequency of the compressor; for example, if the frequency of the compressor shows a downward trend, and the calculation result is 1 Hz, then the frequency of the compressor can be reduced by 1 Hz.
  • the technical personnel can also set the frequency adjustment amount according to the actual situation.
  • the adjustment amount can also be a fixed value. The change of this specific adjustment amount does not deviate from the basic principle of the present invention. It belongs to the protection scope of the present invention.
  • fixHz (realPosNow–maxPos)*Rate1+(realPosNow–realPosLast)*Rate2
  • realPosNow is the second vibration displacement, the unit is ⁇ m; maxPos is the preset displacement, the unit is ⁇ m; Rate1 is the first coefficient; realPosLast is the first vibration displacement, the unit is ⁇ m; Rate2 is the second coefficient.
  • the frequency adjustment is shown in the following table:
  • the current operating frequency of the compressor is 51.3Hz and the frequency of the compressor is on the rise, the current operating frequency should be increased by 2Hz, that is, directly Adjust the operating frequency of the compressor to 53.3Hz; if the first vibration displacement is 2.3 ⁇ m and the second vibration displacement is 4.1 ⁇ m, the frequency adjustment can be calculated to be 3.6Hz, and at the same time, due to the compression
  • the current operating frequency of the compressor is 70.6 Hz, and the frequency of the compressor shows a downward trend, the current operating frequency should be reduced by 3.6 Hz, that is, the operating frequency of the compressor is directly adjusted to 67.0 Hz.

Abstract

一种用于空调器的控制方法,属于空调器技术领域,旨在解决现有空调器的外机与压缩机容易发生共振现象的问题。空调器包括压缩机以及与压缩机相连的管道,控制方法包括下列步骤:在空调器的运行过程中,获取管道的振动位移记作第一振动位移;经过预设时间后,再次获取管道的振动位移记作第二振动位移;根据第一振动位移和第二振动位移,选择性地调节压缩机的运行参数。通过管道的实时振动情况和振动变化情况确定外机的振动情况,以便空调器能够根据外机的振动情况选择性地改变压缩机的运行参数,即选择性地改变压缩机的振动情况,从而有效避免压缩机容易与外机发生共振现象而导致管道损坏的问题。

Description

用于空调器的控制方法 技术领域
本发明属于空调器技术领域,具体涉及一种用于空调器的控制方法。
背景技术
随着人们生活水平的不断提高,人们对生活环境也提出了越来越高的要求。为了维持舒适的环境温度,空调器已经成为人们生活中必不可少的一种设备。近年来,虽然空调器技术已经发展到十分成熟的地步,但是,现有空调器依然存在一些需要改进的地方。例如,现有空调器的外机中均设置有压缩机,而压缩机在工作过程中会持续产生振动现象,压缩机的振动必然会导致外机跟随振动;特别是对于配置有变频压缩机的空调器而言,变频压缩机的振动频率会随着自身运转频率的改变而改变,在运转频率的变化过程中,必然存在部分运转频率会使压缩机与外机之间发生共振现象,进而导致外机容易产生噪音,甚至还会导致外机内的元件被损坏的问题。
为了有效避免压缩机与外机之间发生共振现象,现有技术人员通常都会在空调器出厂前先测量出这些使压缩机和外机发生共振现象的运转频率点,然后在控制变频压缩机产生频率变化的过程中将这些运转频率点去除,从而避免压缩机和外机发生共振现象;但是,通过实践发现,由于零件在生产中存在制造误差,并且各个外机的安装情况也有所差异,因此,技术人员在空调器出厂前测量出的共振运转频率点往往和实际发生共振现象的运转频率点并不相同,因而导致现有外机很容易与压缩机发生共振现象而产生噪音,甚至导致外机中的部分零件被损坏的问题。
相应地,本领域需要一种新的用于空调器的控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调器的外机与压缩机之间容易发现共振现象的问题,本发明提供了一种用于空调器的控制方法,所述空调器包括压缩机以及与所述压缩机相连的管道,所述控制方法包括下列步骤:在所述空调器的运行过程中,获取所述管道的振动位移记作第一振动位移;经过预设时间后,再次获取所述管道的振动位移记作第二振动位移;根据所述第一振动位移和所述第二振动位移,选择性地调节所述压缩机的运行参数。
在上述用于空调器的控制方法的优选技术方案中,“根据所述第一振动位移和所述第二振动位移,选择性地调节所述压缩机的运行参数”的步骤具体包括:计算所述第二振动位移与预设位移的差值以及所述第二振动位移与所述第一振动位移的差值;根据所述第二振动位移与所述预设位移的差值以及所述第二振动位移与所述第一振动位移的差值,选择性地调节所述压缩机的运行参数。
在上述用于空调器的控制方法的优选技术方案中,“根据所述第二振动位移与所述预设位移的差值以及所述第二振动位移与所述第一振动位移的差值,选择性地调节所述压缩机的运行参数”的步骤具体包括:计算所述第二振动位移与所述预设位移的差值乘以第一系数再加上所述第二振动位移与所述第一振动位移的差值乘以第二系数的结果;根据计算结果,选择性地调节所述压缩机的频率。
在上述用于空调器的控制方法的优选技术方案中,所述第一系数大于所述第二系数。
在上述用于空调器的控制方法的优选技术方案中,“根据计算结果,选择性地调节所述压缩机的频率”的步骤包括:如果计算结果大于预设值,则调节所述压缩机的频率。
在上述用于空调器的控制方法的优选技术方案中,“调节所述压缩机的频率”的步骤具体包括:获取所述压缩机的频率的变化趋势;根据所述压缩机的频率的变化趋势,控制所述压缩机的频率的调节方向;根据计算结果,控制所述压缩机的频率的调节量。
在上述用于空调器的控制方法的优选技术方案中,“根据所述压缩机的频率的变化趋势,控制所述压缩机的频率的调节方向”的步骤具体包括:如果所述压缩机的频率呈上升趋势,则使所述压缩机的频 率增大;如果所述压缩机的频率呈下降趋势,则使所述压缩机的频率减小。
在上述用于空调器的控制方法的优选技术方案中,“获取所述压缩机的频率的变化趋势”的步骤具体包括:获取与所述第一振动位移相对应的第一频率以及与所述第二振动位移相对应的第二频率;根据所述第一频率和所述第二频率,确定所述压缩机的频率的变化趋势。
在上述用于空调器的控制方法的优选技术方案中,“根据计算结果,选择性地调节所述压缩机的频率”的步骤还包括:如果计算结果小于或等于所述预设值,则不调节所述压缩机的频率。
在上述用于空调器的控制方法的优选技术方案中,所述预设值为零。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的空调器包括压缩机以及与所述压缩机相连的管道,本发明的控制方法包括下列步骤:在所述空调器的运行过程中,获取所述管道的振动位移记作第一振动位移;经过预设时间后,再次获取所述管道的振动位移记作第二振动位移;根据所述第一振动位移和所述第二振动位移,选择性地调节所述压缩机的运行参数。可以理解的是,由于管道是柔性构件,并且管道与压缩机直接相连,因而管道是最容易跟随压缩机产生振动的构件,同时管道也是最容易被损坏的构件;鉴于此,本发明通过检测管道的振动位移作为检测振动情况的基础参数,从而有效提高检测的准确度和灵敏度。在本发明的控制方法中,所述空调器能够通过所述第二振动位移确定管道的实时振动情况,同时,所述空调器还能够结合所述第一振动位移和所述第二振动位移确定管道的振动变化情况,以使所述空调器能够通过管道的实时振动情况和振动变化情况来确定整个外机的振动情况,以便所述空调器能够对外机的振动情况进行实时而准确的检测,从而有效判断压缩机与外机发生共振现象的可能性;所述空调器能够根据外机的振动情况选择性地改变所述压缩机的运行参数以改变压缩机的振动情况,从而有效避免压缩机与外机发生共振现象而导致管道损坏的问题,进而有效提升用户的使用体验。
进一步地,在本发明的优选技术方案中,所述空调器能够根据所述第二振动位移与所述预设位移的差值以及所述第二振动位移与所 述第一振动位移的差值来选择性地调节所述压缩机的运行参数;可以理解的是,所述空调器能够根据所述第二振动位移与所述预设位移的差值判断所述管道的振动幅度是否已经超过预设幅度,当所述管道的振动幅度超过预设幅度时,压缩机与外机就存在发生共振现象的风险,甚至已经发生共振现象,并且所述管道也存在被损坏的风险;同时,所述空调器还能够根据所述第二振动位移与所述第一振动位移的差值判断所述管道的振动幅度的变化速度是否过快,当所述管道的振动幅度的变化速度过快时,压缩机与外机也同样存在发生共振现象的风险;所述空调器能够根据所述管道的振动幅度以及振动幅度的变化速度选择性地调节所述压缩机的运行参数,以便在压缩机与外机存在发生共振现象的风险时使所述压缩机的运行参数及时改变,从而使得所述压缩机的振动情况及时改变,进而有效避免压缩机与外机发生共振现象而损坏管道、产生噪音的问题。
进一步地,在本发明的优选技术方案中,所述第二振动位移与所述预设位移的差值表示所述管道的振动幅度与所述预设幅度之间的偏离量,所述第一系数表示所述管道的振动幅度与所述预设幅度之间的偏离量在此次判断中的重要程度,所述第二振动位移与所述第一振动位移的差值表示所述管道的振动幅度的变化快慢,所述第二系数表示所述管道的振动幅度的变化快慢在此次判断中的重要程度;所述空调器在综合所述管道的振动幅度以及振动幅度的变化快慢来对所述管道的振动情况进行判断,当所述管道的振动情况已经较为严重时,所述空调器对所述压缩机的频率进行调节,从而有效改变所述压缩机的振动情况。需要说明的是,所述管道的振动幅度比所述预设幅度大得越多,所述压缩机的频率的调节量也应该越大,以便所述压缩机的振动情况能够发生较大变化;同时,所述管道的振动幅度的变化越快,所述压缩机的频率的调节量也应该越大,以便所述压缩机的振动情况能够发生较大变化;因此,本发明的控制方法将所述第二振动位移与所述预设位移的差值和所述第二振动位移与所述第一振动位移的差值作为计算调节量的基础参数。可以理解的是,在判断所述管道的振动情况时,振动幅度的重要性大于振动幅度的变化速度的重要性,因此,优选地,所述第一系数大于所述第二系数。
进一步地,在本发明的优选技术方案中,如果所述计算结果大于所述预设值,则说明压缩机与外机存在发生共振现象的风险,甚至已经发生共振现象,在此情形下,所述空调器需要对所述压缩机的频率进行调节;如果所述计算结果小于或等于所述预设值,则说明此时压缩机与外机不存在发生共振现象的风险,在此情形下,所述空调器无需对所述压缩机的频率进行调节。
进一步地,在本发明的优选技术方案中,在所述计算结果大于所述预设值的情况下,所述空调器需要对所述压缩机的频率进行调节;具体而言,所述空调器需要根据所述压缩机的频率的变化趋势来控制其调节方向,由于改变所述压缩机的频率会导致所述压缩机的压缩效率被改变,从而导致整个空调器的换热效率被改变,因此,在对所述压缩机的频率进行调节时必须考虑到其本身的变化趋势,即需要考虑基于满足换热需求考虑时所述压缩机的频率的变化趋势;如果所述压缩机的频率呈上升趋势,说明所述空调器的换热效率需要被提升,因此,所述空调器也只能将所述压缩机的频率增大,以免对所述空调器的换热效率造成影响;如果所述压缩机的频率呈下降趋势,说明所述空调器的换热效率需要被降低,因此,所述空调器也只能将所述压缩机的频率减小,以免造成不必要的能源浪费。同时,所述空调器对所述压缩机的频率的调节量就是上述计算结果,以便所述空调器能够根据不同的振动情况对所述压缩机的频率进行不同幅度的调节,由于所述压缩机的频率是位于共振频率点附近的频率点时也很容易导致压缩机和外机产生较大幅度的振动,因此,在本控制方法中,所述空调器通过上述计算结果来确定所述压缩机的频率的调节量,以便所述压缩机能够跳过一部分共振频率点附近的频率点,从而有效减弱压缩机和外机的振动情况。
附图说明
图1是本发明的控制方法的主要步骤流程图;
图2是本发明的控制方法的优选实施例的步骤流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
基于背景技术中提出的现有技术人员通常都是通过在空调器出厂前先测量出这些使压缩机和外机发生共振现象的运转频率点,然后在控制变频压缩机产生频率变化的过程中将这些运转频率点去除,从而避免压缩机和外机发生共振现象;但是,受外界因素影响,技术人员在空调器出厂前测量出的共振运转频率点往往和实际发生共振现象的运转频率点并不相同,因而导致现有外机很容易与压缩机发生共振现象而产生噪音,甚至导致外机中的部分零件被损坏的问题。为解决现有技术中的上述问题,本发明提供了一种用于空调器的控制方法,所述控制方法根据所述管道的振动情况选择性地调节所述压缩机的运行参数,从而有效避免压缩机与外机发生共振现象而产生噪音,甚至导致管道损坏的问题。
具体地,所述空调器包括外机以及设置在所述外机中的压缩机,所述压缩机的吸气口与吸气管道相连,所述压缩机的排气口与排气管道相连。由于吸气管道的管径通常都大于排气管道的管径,因而排气管道的振动幅度通常大于吸气管道的振幅,鉴于此,本优选实施例中的位移传感器设置在所述排气管道上,以使所述位移传感器能够检测所述排气管道的振动位移。本领域技术人员能够理解的是,本发明不对所述空调器的具体结构作任何限制,只要所述空调器能够执行本发明的控制方法即可;同时,本发明也不对所述位移传感器的具体设置位置和数量作任何限制,即所述位移传感器也可以设置在所述吸气管道上,或者同时设置在所述吸气管道和所述排气管道上,只要所述位移传感器能够检测出与所述压缩机相连的管道的振动位移即可。
进一步地,所述空调器还包括控制器,所述控制器能够获取所述位移传感器的检测结果以及所述空调器的运行参数,并且所述控制器还能够控制所述压缩机的运行参数。需要说明的是,本发明不对所述 控制器的具体结构和型号作任何限制,只要所述控制器能够实现上述功能即可,并且所述控制器可以是所述空调器原有的控制器,也可以是为执行本发明的控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的结构和型号。
首先参阅图1,该图是本发明的控制方法的主要步骤流程图。如图1所示,基于上述实施例中所述的空调器,本发明的控制方法主要包括下列步骤:
S1:在空调器的运行过程中,获取排气管道的振动位移记作第一振动位移;
S2:经过预设时间后,再次获取排气管道的振动位移记作第二振动位移;
S3:根据第一振动位移和第二振动位移,选择性地调节压缩机的运行参数。
进一步地,在步骤S1中,在所述空调器的运行过程中,所述控制器能够通过所述位移传感器获取所述排气管道的振动位移记作第一振动位移;需要说明的是,所述第一振动位移既可以是所述排气管道上某一点的振动位移,也可以是所述排气管道上多个点的振动位移的平均值。接着,在步骤S2中,在检测完第一振动位移且经过所述预设时间后,所述控制器再次通过所述位移传感器获取所述排气管道的振动位移并记作第二振动位移;可以理解的是,技术人员可以根据实际使用情况自行设定所述预设时间的长短,并且所述第二振动位移既可以是所述排气管道上某一点的振动位移,也可以是所述排气管道上多个点的振动位移的平均值。本领域技术人员能够理解的是,虽然本优选实施例中所述的控制器通过所述空调器自身设置的位移传感器来获取所述排气管道的振动位移;但是,所述控制器显然还可以通过外部传感器来获取所述排气管道的振动位移,本发明不对所述控制器获取振动位移的方式作任何限制,只要所述控制器能够获取所述排气管道的振动位移即可。
进一步地,在步骤S3中,所述控制器能够根据所述第一振动位移和所述第二振动位移选择性地调节所述压缩机的运行参数。可以理解的是,技术人员既可以将判断所述第二振动位移是否大于所述第一振动位移作为判断条件,也可以将判断所述第二振动位移与所述第一振 动位移的比值是否大于预设比值作为判断条件,甚至还可以将所述第一振动位移和所述第二振动位移带入关系式中并判断其是否能够满足该关系式作为判断条件;也就是说,这种具体判断条件的改变并不偏离本发明的基本原理,只要其判断条件中采用所述第一振动位移和所述第二振动位移作为基础参数就属于本发明的保护范围。此外,本领域技术人员还能够理解的是,本发明中所述的压缩机的运行参数可以是频率、吸气压力、排气压力等运行参数,技术人员可以根据实际使用需求自行选定本控制方法中所调节的运行参数,只要所述控制器对该运行参数进行调节后,所述压缩机的振动情况能够得以改变即可。
下面参阅图2,该图是本发明的控制方法的优选实施例的步骤流程图。如图2所示,基于上述实施例中所述的空调器,本发明的控制方法的优选实施例主要包括下列步骤:
S101:在空调器的运行过程中,获取排气管道的振动位移记作第一振动位移;
S102:经过预设时间后,再次获取排气管道的振动位移记作第二振动位移;
S103:计算第二振动位移与预设位移的差值以及第二振动位移与第一振动位移的差值;
S104:计算第二振动位移与预设位移的差值乘以第一系数再加上第二振动位移与第一振动位移的差值乘以第二系数的结果;
S105:判断计算结果是否大于零;如果是,则执行步骤S107;如果否,则执行步骤S106;
S106:不调节压缩机的频率;
S107:获取压缩机的频率的变化趋势;
S108:根据压缩机的频率的变化趋势,控制压缩机的频率的调节方向;根据计算结果,控制压缩机的频率的调节量。
进一步地,在步骤S101中,在所述空调器的运行过程中,所述控制器能够通过所述位移传感器获取所述排气管道的振动位移记作第一振动位移;需要说明的是,所述第一振动位移既可以是所述排气管道上某一点的振动位移,也可以是所述排气管道上多个点的振动位移的平均值。
进一步地,在步骤S102中,在检测完第一振动位移且经过所述预设时间后,所述控制器再次通过所述位移传感器获取所述排气管道的振动位移并记作第二振动位移;可以理解的是,技术人员可以根据实际使用情况自行设定所述预设时间的长短,并且所述第二振动位移既可以是所述排气管道上某一点的振动位移,也可以是所述排气管道上多个点的振动位移的平均值。
本领域技术人员能够理解的是,虽然本优选实施例中所述的控制器通过所述空调器自身设置的位移传感器来获取所述排气管道的振动位移;但是,所述控制器显然还可以通过外部传感器来获取所述排气管道的振动位移,本发明不对所述控制器获取振动位移的方式作任何限制,只要所述控制器能够获取所述排气管道的振动位移即可。
进一步地,在步骤S103中,所述控制器能够计算所述第二振动位移与预设位移的差值以及所述第二振动位移与所述第一振动位移的差值。需要说明的是,在本优选实施例中,所述第二振动位移与预设位移的差值以及所述第二振动位移与所述第一振动位移的差值仅作为一个中间计算量来使用,但是,所述控制器显然还可以直接通过所述第二振动位移与所述预设位移的差值以及所述第二振动位移与所述第一振动位移的差值来选择性地调节所述压缩机的运行参数。例如,当所述第二振动位移与所述预设位移的差值大于第一预设差值或所述第二振动位移与所述第一振动位移的差值大于第二预设差值时,就对所述压缩机的运行参数进行调节;当然,技术人员可以根据实际使用需求自行设定所述第一预设差值和所述第二预设差值的具体数值。此外,本领域技术人员能够理解的是,技术人员可以根据空调器的不同情况自行设定所述预设位移的大小,只要当所述压缩机的振动位移大于所述预设位移时就能够判断出压缩机与外机已经存在发生共振现象的风险或者已经发生共振现象即可。
进一步地,在步骤S104中,所述控制器能够计算所述第二振动位移与所述预设位移的差值乘以第一系数再加上所述第二振动位移与所述第一振动位移的差值乘以第二系数的结果。本领域技术人员能够理解的是,本发明的控制方法应用于不同空调器时,所述第一系数和所述第二系数通常是不同的,在使用所述第二振动位移与所述预设位移的 差值和所述第二振动位移与所述第一振动位移的差值作为因变量的同时,技术人员还需要通过实验或者建模的方式自行设定所述第一系数和所述第二系数的具体值,优选地,所述第一系数大于所述第二系数。
进一步地,在步骤S105中,所述控制器能够判断上述计算结果是否大于零;需要说明的是,虽然本优选实施例中所取用的预设值为零,但是,技术人员显然还可以根据实际情况自行设定所述预设值的大小,例如,将所述预设值取为1时,其判断条件就变为判断上述计算结果是否大于1,这种具体数值的改变并不偏离本发明的基本原理。在本优选实施例中,如果上述计算结果大于零,则说明压缩机和外机存在共振风险,此时,执行步骤S107。如果上述计算结果小于或等于零,则说明压缩机和外机的振动较小,此时,执行步骤S106,即所述控制器无需对所述压缩机的频率进行调节。需要说明的是,步骤S106中所述的不对所述压缩机的频率进行调节指的是不对所述压缩机的频率进行跳跃性的调节,即不按本发明的调节方式对所述压缩机的频率进行调节,也就是说,本发明的控制方法不影响所述压缩机的其他调控逻辑。
进一步地,在上述计算结果大于零的情形下,所述控制器执行步骤S107,即获取所述压缩机的频率的变化趋势。在该步骤中,所述控制器能够获取相邻两个时间点所对应的频率来判断所述压缩机的频率的变化趋势;作为一种优选实施例,如果将获取所述第一振动位移的时间点记作第一时间点,将获取所述第二振动位移的时间点记作第二时间点,则所述控制器能够获取所述压缩机在第一时间点时的运转频率,记作第一频率,并获取所述压缩机在第二时间点时的运转频率,记作第二频率,所述控制器通过比较所述第一频率和所述第二频率的大小就可以得到所述压缩机的频率的变化趋势。具体地,如果所述第二频率大于所述第一频率,则所述压缩机的频率呈上升趋势;如果所述第二频率小于所述第一频率,则所述压缩机的频率呈下降趋势。可以理解的是,如果所述第二频率等于所述第一频率,则所述压缩机的振动情况就不会产生变化,压缩机和外机的振动情况也就不可能发生改变。此外,还需要说明的是,本发明不对所述控制器获取频率的变化趋势的具体方式作任何限制,技术人员可以根据实际使用需求自行设定,例如,所述控制器还可以通过其内部存储的频率变化曲线来对频率的变化趋势进行判断。
进一步地,在步骤S108中,所述控制器能够根据所述压缩机的频率的变化趋势,控制所述压缩机的频率的调节方向;根据计算结果,控制所述压缩机的频率的调节量。需要说明的是,所述控制器既可以先确定频率的调节方向,也可以先确定频率的调节量,或者同时确定频率的调节方向和调节量,这种执行顺序的改变并不偏离本发明的基本原理。具体而言,如果所述压缩机的频率呈上升趋势,则使所述压缩机的频率增大;如果所述压缩机的频率呈下降趋势,则使所述压缩机的频率减小。在确定出其调节方向以后,所述控制器将之前的计算结果作为频率的调节量对所述压缩机的频率进行调节;例如,如果所述压缩机的频率呈下降趋势,并且上述计算结果为1Hz,则使所述压缩机的频率减小1Hz即可。此外,还需要说明的是,技术人员也可以根据实际情况自行设定频率的调节量,例如其调节量也可以是一个定值,这种具体调节量的改变并不偏离本发明的基本原理,属于本发明的保护范围。
更进一步地,在上述计算结果大于零的情况下,所述压缩机的频率的调节量fixHz的表达式为:
fixHz=(realPosNow–maxPos)*Rate1+(realPosNow–realPosLast)*Rate2
其中,realPosNow为第二振动位移,单位为μm;maxPos为预设位移,单位为μm;Rate1为第一系数;realPosLast为第一振动位移,单位为μm;Rate2为第二系数。
作为一种优选实施例,本实施例中的预设位移maxPos=3μm,第一系数Rate1=2,第二系数Rate2=0.8。在此情形下,频率的调节情况如下表所示:
Figure PCTCN2019100152-appb-000001
基于上表中的内容,在预设位移maxPos=3μm,第一系数Rate1=2,第二系数Rate2=0.8的情况下:如果测得第一振动位移为2.2μm,第二振动位移为3.5μm,则可以计算出频率的调节量为2Hz,同时,由于 所述压缩机的当前运转频率为51.3Hz,并且所述压缩机的频率呈上升趋势,则应该使当前运转频率增大2Hz,即直接将所述压缩机的运转频率调节至53.3Hz;如果测得第一振动位移为2.3μm,第二振动位移为4.1μm,则可以计算出频率的调节量为3.6Hz,同时,由于所述压缩机的当前运转频率为70.6Hz,并且所述压缩机的频率呈下降趋势,则应该使当前运转频率减小3.6Hz,即直接将所述压缩机的运转频率调节至67.0Hz。需要说明的是,上述内容仅作为示例示出,并不对本发明的保护范围构成任何限制。
最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。
至此,已经结合附图描述了本发明的优选实施方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于空调器的控制方法,其特征在于,所述空调器包括压缩机以及与所述压缩机相连的管道,所述控制方法包括下列步骤:
    在所述空调器的运行过程中,获取所述管道的振动位移记作第一振动位移;
    经过预设时间后,再次获取所述管道的振动位移记作第二振动位移;
    根据所述第一振动位移和所述第二振动位移,选择性地调节所述压缩机的运行参数。
  2. 根据权利要求1所述的控制方法,其特征在于,“根据所述第一振动位移和所述第二振动位移,选择性地调节所述压缩机的运行参数”的步骤具体包括:
    计算所述第二振动位移与预设位移的差值以及所述第二振动位移与所述第一振动位移的差值;
    根据所述第二振动位移与所述预设位移的差值以及所述第二振动位移与所述第一振动位移的差值,选择性地调节所述压缩机的运行参数。
  3. 根据权利要求2所述的控制方法,其特征在于,“根据所述第二振动位移与所述预设位移的差值以及所述第二振动位移与所述第一振动位移的差值,选择性地调节所述压缩机的运行参数”的步骤具体包括:
    计算所述第二振动位移与所述预设位移的差值乘以第一系数再加上所述第二振动位移与所述第一振动位移的差值乘以第二系数的结果;
    根据计算结果,选择性地调节所述压缩机的频率。
  4. 根据权利要求3所述的控制方法,其特征在于,所述第一系数大于所述第二系数。
  5. 根据权利要求3所述的控制方法,其特征在于,“根据计算结果,选择性地调节所述压缩机的频率”的步骤包括:
    如果计算结果大于预设值,则调节所述压缩机的频率。
  6. 根据权利要求5所述的控制方法,其特征在于,“调节所述压缩机的频率”的步骤具体包括:
    获取所述压缩机的频率的变化趋势;
    根据所述压缩机的频率的变化趋势,控制所述压缩机的频率的调节方向;
    根据计算结果,控制所述压缩机的频率的调节量。
  7. 根据权利要求6所述的控制方法,其特征在于,“根据所述压缩机的频率的变化趋势,控制所述压缩机的频率的调节方向”的步骤具体包括:
    如果所述压缩机的频率呈上升趋势,则使所述压缩机的频率增大;
    如果所述压缩机的频率呈下降趋势,则使所述压缩机的频率减小。
  8. 根据权利要求6所述的控制方法,其特征在于,“获取所述压缩机的频率的变化趋势”的步骤具体包括:
    获取与所述第一振动位移相对应的第一频率以及与所述第二振动位移相对应的第二频率;
    根据所述第一频率和所述第二频率,确定所述压缩机的频率的变化趋势。
  9. 根据权利要求5所述的控制方法,其特征在于,“根据计算结果,选择性地调节所述压缩机的频率”的步骤还包括:
    如果计算结果小于或等于所述预设值,则不调节所述压缩机的频率。
  10. 根据权利要求5或9所述的控制方法,其特征在于,所述预设值为零。
PCT/CN2019/100152 2019-03-11 2019-08-12 用于空调器的控制方法 WO2020181715A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19916538.2A EP3748250A4 (en) 2019-03-11 2019-08-12 CONTROL METHOD FOR AIR CONDITIONING
US16/962,630 US11287156B2 (en) 2019-03-11 2019-08-12 Method for controlling air conditioner compressor frequency based on vibration of pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910181740.2 2019-03-11
CN201910181740.2A CN110030683B (zh) 2019-03-11 2019-03-11 用于空调器的控制方法

Publications (1)

Publication Number Publication Date
WO2020181715A1 true WO2020181715A1 (zh) 2020-09-17

Family

ID=67235201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100152 WO2020181715A1 (zh) 2019-03-11 2019-08-12 用于空调器的控制方法

Country Status (4)

Country Link
US (1) US11287156B2 (zh)
EP (1) EP3748250A4 (zh)
CN (1) CN110030683B (zh)
WO (1) WO2020181715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460773A (zh) * 2020-12-07 2021-03-09 珠海格力电器股份有限公司 空调系统的控制方法、装置、存储介质及空调器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030683B (zh) * 2019-03-11 2021-11-26 青岛海尔空调电子有限公司 用于空调器的控制方法
CN112393394B (zh) * 2019-08-15 2022-03-25 广东美的制冷设备有限公司 空调器的控制方法、装置、空调器及电子设备
CN110617562A (zh) * 2019-09-12 2019-12-27 成都仙德科技有限公司 一种便携式声能空调震动抑制方法
CN111023327A (zh) * 2019-12-26 2020-04-17 宁波奥克斯电气股份有限公司 一种空调器及其控制方法
CN114383378A (zh) * 2020-10-20 2022-04-22 青岛海尔电冰箱有限公司 制冷系统降噪方法、制冷装置及计算机存储介质
CN115493319A (zh) * 2021-06-18 2022-12-20 重庆海尔制冷电器有限公司 制冷设备的降噪控制方法
CN113587390A (zh) * 2021-07-26 2021-11-02 Tcl空调器(中山)有限公司 管道保护方法、装置、空调器及计算机可读存储介质
CN114234398A (zh) * 2021-12-01 2022-03-25 格力电器(合肥)有限公司 一种空调配管动力控制方法、控制装置及计算机存储介质
CN115355639A (zh) * 2022-08-11 2022-11-18 海信冰箱有限公司 一种冰箱和压缩机的振动调节方法
CN116105411B (zh) * 2023-04-04 2023-07-18 宁波奥克斯电气股份有限公司 压缩机控制方法、装置、空调器及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078088A (ko) * 2001-04-04 2002-10-18 엘지전자 주식회사 진동을 이용한 멀티 공기조화기의 배관 연결 탐색 장치 및방법
KR20050074751A (ko) * 2004-01-14 2005-07-19 엘지전자 주식회사 공기조화기의 압축기 토출파이프 파손 방지 구조 및 이를이용한 파손 방지 방법
CN101821505A (zh) * 2007-10-05 2010-09-01 艾默生环境优化技术有限公司 可变速压缩机中的振动保护
CN105650816A (zh) * 2016-01-22 2016-06-08 珠海格力电器股份有限公司 空调器的控制方法及控制装置
CN105674480A (zh) * 2016-01-04 2016-06-15 广东美的制冷设备有限公司 空调器及空调器的降噪控制方法和降噪控制装置
CN106016576A (zh) * 2015-03-24 2016-10-12 Lg电子株式会社 空调机及其控制方法
CN107404260A (zh) * 2017-08-31 2017-11-28 广东美芝制冷设备有限公司 压缩机高频谐波转矩补偿方法、压缩机控制器及空调器
CN107514839A (zh) * 2017-08-15 2017-12-26 青岛海尔空调器有限总公司 一种空调压缩机管路振动保护的方法及装置
CN110030683A (zh) * 2019-03-11 2019-07-19 青岛海尔空调电子有限公司 用于空调器的控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399548A (en) * 1981-04-13 1983-08-16 Castleberry Kimberly N Compressor surge counter
JP3527974B2 (ja) * 1998-03-31 2004-05-17 株式会社トヨトミ 空気調和機の制御装置
JP2000041397A (ja) * 1998-07-22 2000-02-08 Matsushita Refrig Co Ltd 空気調和装置における振動軽減装置
JP4027211B2 (ja) * 2002-11-22 2007-12-26 株式会社大気社 室圧制御システム
US7124637B2 (en) * 2004-03-22 2006-10-24 Johnson Controls Technology Company Determining amplitude limits for vibration spectra
EP2494209B8 (en) * 2009-10-27 2019-01-09 Nortek Air Solutions, LLC Fan array control system
CN102345916B (zh) * 2011-08-29 2013-11-20 深圳市锐钜科技有限公司 一种变频空调频率共振消除方法及系统
CN103912956B (zh) * 2013-01-04 2016-12-28 广东美的制冷设备有限公司 变频空调及其共振点跳跃自适应方法
US9817408B2 (en) * 2013-07-30 2017-11-14 Trane International Inc. Vibration control for a variable speed cooling system
US10203267B2 (en) * 2014-07-03 2019-02-12 Hamilton Sundstrand Corporation Health and usage management of an environmental control system
CN104697150B (zh) * 2015-03-25 2017-07-07 广东美的制冷设备有限公司 一种空调管路振动控制系统及方法
US9759213B2 (en) * 2015-07-28 2017-09-12 Computational Systems, Inc. Compressor valve health monitor
CN105241026B (zh) * 2015-10-30 2018-05-15 海信(山东)空调有限公司 一种振动控制方法和设备
WO2017158693A1 (ja) * 2016-03-14 2017-09-21 三菱電機株式会社 空気調和機
CN208238062U (zh) * 2018-05-04 2018-12-14 广东美的制冷设备有限公司 室外机和空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078088A (ko) * 2001-04-04 2002-10-18 엘지전자 주식회사 진동을 이용한 멀티 공기조화기의 배관 연결 탐색 장치 및방법
KR20050074751A (ko) * 2004-01-14 2005-07-19 엘지전자 주식회사 공기조화기의 압축기 토출파이프 파손 방지 구조 및 이를이용한 파손 방지 방법
CN101821505A (zh) * 2007-10-05 2010-09-01 艾默生环境优化技术有限公司 可变速压缩机中的振动保护
CN106016576A (zh) * 2015-03-24 2016-10-12 Lg电子株式会社 空调机及其控制方法
CN105674480A (zh) * 2016-01-04 2016-06-15 广东美的制冷设备有限公司 空调器及空调器的降噪控制方法和降噪控制装置
CN105650816A (zh) * 2016-01-22 2016-06-08 珠海格力电器股份有限公司 空调器的控制方法及控制装置
CN107514839A (zh) * 2017-08-15 2017-12-26 青岛海尔空调器有限总公司 一种空调压缩机管路振动保护的方法及装置
CN107404260A (zh) * 2017-08-31 2017-11-28 广东美芝制冷设备有限公司 压缩机高频谐波转矩补偿方法、压缩机控制器及空调器
CN110030683A (zh) * 2019-03-11 2019-07-19 青岛海尔空调电子有限公司 用于空调器的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748250A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460773A (zh) * 2020-12-07 2021-03-09 珠海格力电器股份有限公司 空调系统的控制方法、装置、存储介质及空调器

Also Published As

Publication number Publication date
EP3748250A1 (en) 2020-12-09
US11287156B2 (en) 2022-03-29
US20210215371A1 (en) 2021-07-15
EP3748250A4 (en) 2022-01-12
CN110030683B (zh) 2021-11-26
CN110030683A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2020181715A1 (zh) 用于空调器的控制方法
WO2021004453A1 (zh) 空调器及其控制方法
WO2019158087A1 (zh) 用于空调器的自清洁控制方法
WO2019042042A1 (zh) 一种空调的控制方法及装置
CN103809437B (zh) 一种电机的恒风量控制方法
WO2021169525A1 (zh) 用于空调机组的除霜控制方法
WO2018006597A1 (zh) 调节空调器电子膨胀阀的方法
CN107166642A (zh) 一种变频空调室外直流风机控制方法
CN107255340A (zh) 防止变频空调器的压缩机过热的控制方法及控制系统
CN102654130B (zh) 一种对计算机进行温度控制的方法和计算机
CN106524613A (zh) 一种变频风冷热泵机组及其控制方法、控制装置
WO2018188521A1 (zh) 空调器制热运行控制方法
CN106369757A (zh) 一种多联机的压缩机频率控制方法、装置及多联机
WO2020177284A1 (zh) 防止空调器的压缩机液击的控制方法及控制系统
WO2020134404A1 (zh) 空调器及其控制方法
CN106801972B (zh) 一种变频空调器保护控制方法和变频空调器
WO2018188522A1 (zh) 一种空调器制热运行控制方法
CN113375284B (zh) 一种外风机控制方法、装置及空调器
WO2020187236A1 (zh) 空调器自清洁控制方法
WO2021022766A1 (zh) 用于空调机组的压缩机冷却控制方法
CN107421055A (zh) 变频空调、停机控制方法及计算机可读存储介质
CN107560079A (zh) 用于防结霜的控制方法及装置、空调
CN107906668B (zh) 空调系统的节流控制方法、装置与空调器
CN110836434A (zh) 一种空调器制冷剂泄漏检测方法及装置
CN113154653A (zh) 一种空调频率和外风机的控制方法、装置及空调器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019916538

Country of ref document: EP

Effective date: 20200831

NENP Non-entry into the national phase

Ref country code: DE