WO2018006597A1 - 调节空调器电子膨胀阀的方法 - Google Patents

调节空调器电子膨胀阀的方法 Download PDF

Info

Publication number
WO2018006597A1
WO2018006597A1 PCT/CN2017/073139 CN2017073139W WO2018006597A1 WO 2018006597 A1 WO2018006597 A1 WO 2018006597A1 CN 2017073139 W CN2017073139 W CN 2017073139W WO 2018006597 A1 WO2018006597 A1 WO 2018006597A1
Authority
WO
WIPO (PCT)
Prior art keywords
integral coefficient
coefficient
temperature
frequency
pid algorithm
Prior art date
Application number
PCT/CN2017/073139
Other languages
English (en)
French (fr)
Inventor
许文明
付裕
张明杰
王飞
徐贝贝
刘聚科
罗荣邦
袁俊军
丁爽
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Priority to US16/314,853 priority Critical patent/US10828965B2/en
Priority to EP17823410.0A priority patent/EP3480537B1/en
Publication of WO2018006597A1 publication Critical patent/WO2018006597A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3216Control means therefor for improving a change in operation duty of a compressor in a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3267Cooling devices information from a variable is obtained related to the operation of an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of air conditioning technology, and more particularly to the regulation of air conditioners, and more particularly to a method of adjusting an electronic expansion valve of an air conditioner.
  • the PID algorithm can be used to control the twist of the electronic expansion valve. Specifically, the difference between the actual exhaust gas temperature of the compressor and the target exhaust gas temperature is used as a deviation, and the PID calculation is performed based on the deviation to realize the adjustment control of the electronic expansion valve degree, and the valve control can be made more rapid. , the follow-up to changes in the outside world.
  • the PID parameter value is fixed, so that the adjustment of the valve degree cannot adapt to the changes of different types of air conditioners and different operating conditions.
  • the valve throttle adjustment is not accurate enough, and it is difficult to achieve the ideal air conditioner refrigerant.
  • the energy efficiency ratio of the circulatory system is not accurate enough, and it is difficult to achieve the ideal air conditioner refrigerant.
  • a method of adjusting an electronic expansion valve of an air conditioner comprising:
  • the advantages and positive effects of the present invention are: using the method of the present invention to perform PID adjustment control on the electronic expansion valve, in a cooling mode in which the outdoor ambient temperature is a high temperature condition or the outdoor ambient temperature is In the heating mode of low temperature condition, the smaller integral coefficient is selected as the integral coefficient of the PID algorithm, so that the adjustment value of the regulating valve is smaller during the operation, and the fluctuation of the exhaust temperature and the fluctuation of the valve degree adjustment are reduced;
  • a larger integral coefficient is selected as the integral coefficient of the PID algorithm, so that the adjustment value is larger during the operation of the condition, and the valve adjustment speed is fast.
  • the electronic expansion valve has a precise and stable adjustment, which is beneficial to the improvement of the energy efficiency ratio of the air conditioning refrigerant circulation system.
  • a heating mode in which the outdoor ambient temperature is a high temperature state or a heating mode in which the outdoor ambient temperature is a low temperature state different integration coefficients are used depending on the operating frequency of the compressor, so that compression due to different operating frequencies of the compressor can be reduced. Machine exhaust fluctuations and fluctuations in valve temperature adjustment.
  • the general applicability of the valve adjustment method to different air conditioners and different operating conditions has been added.
  • FIG. 1 is a flow chart of one embodiment of a method of adjusting an electronic expansion valve of an air conditioner of the present invention.
  • FIG. 1 is a flow chart of an embodiment of a method for adjusting an electronic expansion valve of an air conditioner according to the present invention. Specifically, the electronic expansion valve in an air conditioning refrigerant circulation system is adjusted. A flow chart of an embodiment.
  • the method for implementing electronic expansion valve control in this embodiment includes the following steps:
  • Step 11 After the compressor is started, the actual operating frequency of the compressor, the actual exhaust temperature, and the actual outdoor ambient temperature are obtained.
  • the actual operating frequency of the compressor refers to the actual operating frequency of the compressor collected according to the set sampling frequency after the compressor is started. Since the operating frequency of the compressor is controlled by a controller on the air conditioner computer board, the controller can easily obtain the actual operating frequency of the compressor operation.
  • the actual exhaust gas temperature refers to the actual exhaust gas temperature of the compressor collected after the compressor is started according to the set sampling frequency. It can be detected by setting a temperature sensor at the exhaust port of the compressor, and it can be obtained through the controller.
  • ⁇ Exhaust temperature is the temperature of the outdoor environment where the compressor is collected according to the set sampling frequency. It can be detected by the temperature sensor set on the outdoor unit and obtained by the air conditioner controller.
  • Step 12 Under the cooling operation condition, determine the integral coefficient of the PID algorithm by using the first setting rule or the second setting rule according to the actual outdoor temperature and the first set outer ring temperature; Under the operating condition, the integral coefficient of the PID algorithm is obtained by using the first setting rule or the third setting rule according to the actual outdoor temperature and the second set outer ring temperature.
  • the actual outdoor temperature is compared with the first set outer ring temperature, and if the actual outdoor temperature is less than the first set outer temperature, according to the first setting
  • the rule obtains the integral coefficient of the PID algorithm; if the outdoor ambient temperature is not less than the first set outer loop temperature, perform the following processing:
  • the first set outer ring temperature is an outdoor ambient temperature value preset and stored, and can be modified by authorization, and is a limit temperature reflecting the outdoor environment temperature being high temperature or non-high temperature under the cooling condition
  • the value, for example, the first set outer ring temperature is 38 °C.
  • the first set frequency is a pre-set and stored compressor operating frequency value that can be modified by authorization and is a limiting frequency that reflects the low frequency operation and non-low frequency operation of the compressor under refrigeration conditions.
  • the first set frequency is 30 Hz.
  • the first set base integral coefficient, the second set base integral coefficient, and the second set rule are also known and stored in advance in the air conditioner controller, and can also be modified by authorization.
  • the integral coefficient of the PID algorithm acquired according to the first setting rule is not less than the integral coefficient of the PID algorithm acquired according to the second setting rule, and the first set basic integral coefficient is greater than the second set basic integral coefficient . That is, regardless of whether the operating frequency of the compressor is less than the first set frequency, the integral coefficient of the PID algorithm acquired according to the first setting rule in the cooling mode in which the outdoor ambient temperature is not high temperature is not less than the outdoor ambient temperature.
  • the integral coefficient of the PID algorithm acquired according to the second setting rule in the cooling mode of the high temperature condition. In the cooling mode where the outdoor ambient temperature is high temperature, if the compressor operating frequency Not less than the first set frequency, indicating that the compressor is running at a high frequency. In this case, the first set base integral coefficient used to calculate the integral coefficient of the PID algorithm is greater than the low frequency of the compressor operating frequency being less than the first set frequency.
  • the second set base integral coefficient used to calculate the integral coefficient of the PID algorithm in the operating state is, regardless of whether the operating frequency of the compressor is less
  • the air conditioner operates in a heating condition, the actual outdoor ambient temperature is compared with the second set outer ring temperature, and if the actual outdoor ambient temperature is greater than the second set outer ring temperature, according to the first setting
  • the rule obtains the integral coefficient of the PID algorithm; if the actual outdoor ambient temperature is not greater than the second set outer loop temperature, the following processing is performed: [0027] comparing the actual operating frequency with the second set frequency, ⁇ the running frequency is not less than the second set frequency, and the integral coefficient of the PID algorithm is obtained according to the third set basic integral coefficient and the third setting rule; if the actual running frequency is less than the second set frequency, according to the fourth setting basis
  • the integral coefficient and the third setting rule acquire the integral coefficient of the PI D algorithm.
  • the second set outer ring temperature is an outdoor ambient temperature value preset and stored, and can be modified by authorization, and is a limit reflecting whether the outdoor ambient temperature is low temperature or non-low temperature under heating conditions
  • the temperature value for example, the second set outer ring temperature is 10 °C.
  • the second set frequency is a compressor operating frequency value preset and stored, which can be modified by authorization, and is a limit frequency reflecting the low frequency operation and non-low frequency operation of the compressor under heating conditions.
  • the second set frequency is 35 Hz.
  • the third set basic integral coefficient, the fourth set basic integral coefficient, and the third set rule are also known and stored in advance in the air conditioner controller, and can also be modified by authorization.
  • the integral coefficient of the PID algorithm acquired according to the first setting rule is not less than the integral coefficient of the PID algorithm acquired according to the third setting rule, and the third set basic integral coefficient is greater than the fourth set basic integral coefficient . That is, regardless of whether the operating frequency of the compressor is less than the second set frequency, the integral coefficient of the PID algorithm acquired according to the first setting rule is not less than the outdoor ambient temperature in the heating mode in which the outdoor ambient temperature is a non-low temperature condition. The integral coefficient of the PID algorithm acquired according to the second setting rule in the heating mode of the low temperature condition.
  • the first calculation coefficient of the PID algorithm is used. 3.
  • the fourth set base integral coefficient used to calculate the integral coefficient of the PID algorithm in the low frequency operation state in which the base integral coefficient is greater than the compressor operating frequency is greater than the second set frequency.
  • Step 13 Taking the difference between the actual exhaust gas temperature and the set target exhaust gas temperature as a deviation, and performing PID control on the twist of the electronic expansion valve based on the deviation. [0031] after obtaining the integral coefficient of the PID algorithm according to the first setting rule or according to the second setting rule or the third setting rule, assigning the integral coefficient in the PID algorithm based on the acquired integral coefficient, and then Perform the process of PID valve adjustment.
  • the process of the PID valve is specifically: calculating the difference between the actual exhaust gas temperature obtained in step 11 and the set target exhaust gas temperature as the deviation, and using the deviation as the deviation in the PID control, and based on step 12
  • the acquired integral coefficient is used as a parameter to perform PID control to implement a PID control process for the electronic expansion valve.
  • setting the target exhaust temperature refers to the desired exhaust gas temperature, which can be set in advance or can be determined. For example, it is determined based on the flow rate of the refrigerant, or it is determined according to the operating frequency of the compressor.
  • the set target exhaust temperature is determined based on the actual operating frequency of the compressor.
  • a correspondence table between the compressor operating frequency and the target exhaust temperature is preset and stored, and one frequency segment corresponds to a target exhaust temperature.
  • the target exhaust temperature corresponding to the actual operating frequency of the compressor is found as the set target exhaust temperature.
  • the above-mentioned method is used to perform PID adjustment control on the electronic expansion valve.
  • a heating mode in which the outdoor ambient temperature is a high temperature state or a heating mode in which the outdoor ambient temperature is a low temperature state a smaller integral coefficient is selected as the PID algorithm.
  • the integral coefficient makes the adjustment value of the valve ⁇ during operation small, reduces the fluctuation of the exhaust temperature and the fluctuation of the valve ⁇ adjustment; and the cooling mode in which the outdoor ambient temperature is non-high temperature or the outdoor ambient temperature is non-low temperature
  • a larger integral coefficient is selected as the integral coefficient of the PID algorithm, so that the adjustment value is larger during the operation of the condition, and the valve adjustment speed is fast.
  • the electronic expansion valve has a precise and stable adjustment, which is beneficial to the improvement of the energy efficiency ratio of the air conditioning refrigerant circulation system.
  • a heating mode in which the outdoor ambient temperature is a high temperature state or a heating mode in which the outdoor ambient temperature is a low temperature state different integration coefficients are used depending on the operating frequency of the compressor, so that compression due to different operating frequencies of the compressor can be reduced. Machine exhaust fluctuations and fluctuations in valve temperature adjustment.
  • the general applicability of the valve adjustment method to different air conditioners and different operating conditions has been added.
  • the first setting rule in step 12 is: the integral coefficient is the fifth set integral Coefficient.
  • obtaining the integral coefficient of the PID algorithm according to the first setting rule is specifically: assigning the integral coefficient of the PID algorithm to the fifth set integral coefficient. That is, in the heating mode in which the outdoor ambient temperature is not high temperature or the outdoor ambient temperature is not low temperature, the integral coefficient of the PID algorithm is a fixed value. With such a design, a better adjustment effect can be obtained by a simple processing method.
  • the assignment of the differential coefficient in the PID algorithm in step 13 is not specifically limited and may be a fixed value.
  • the assignment of the proportionality coefficient in the PID algorithm is preferably determined based on the acquired integral coefficient.
  • the method further includes: obtaining and determining according to the first correspondence relationship between the integral coefficient and the proportional coefficient The scale factor corresponding to the integral coefficient of the PID algorithm acquired by the first setting rule.
  • step 13 the proportional coefficient of the PID algorithm in the PID control is obtained according to the first correspondence relationship between the integral coefficient and the proportional coefficient, and the integral coefficient of the PID algorithm acquired according to the first setting rule in step 12. Corresponding scale factor. More preferably, the integral coefficient is the fifth set integral coefficient ⁇ , and the proportional coefficient is the first set proportional coefficient, which is also a fixed value.
  • the second setting rule adopted in the cooling condition preferably includes:
  • the actual running frequency is not less than the first set frequency, and the actual outdoor ambient temperature is greater than the third set outer loop temperature, and the integral coefficient is the first set basic integral coefficient;
  • the integral coefficient is the second set basic integral coefficient
  • the third set outer loop temperature is greater than the first set outer loop temperature, and f is the real loop operating frequency.
  • the integral coefficient of the PID algorithm acquired according to the first setting rule in step 12 is not less than the integral coefficient of the PID algorithm acquired according to the second setting rule, and therefore, the first set basic integral
  • the maximum value of the determined integral coefficient is the fifth set integral coefficient, and cannot be greater than the fifth set integral coefficient.
  • the value of ki is a value calculated according to the formula; and if the integral coefficient ki calculated according to the above formula is not less than the fifth set integral coefficient Then, the value of ki is the fifth set integral coefficient.
  • the assignment of the differential coefficient in the PID algorithm in step 13 is not specifically limited and may be a fixed value.
  • the assignment of the scale factor in the PID algorithm is also preferably determined based on the acquired integral coefficient.
  • the method further includes: obtaining and determining according to the second correspondence relationship between the integral coefficient and the proportional coefficient.
  • the second set rule sets the proportional coefficient corresponding to the integral coefficient of the PID algorithm.
  • the proportional coefficient of the PID algorithm in the PID control is a ratio corresponding to the integral coefficient of the PID algorithm acquired according to the second setting rule acquired according to the second correspondence relationship between the integral coefficient and the proportional coefficient. coefficient. More preferably, the second correspondence relationship is: if the integral coefficient is not smaller than the sixth set integral coefficient, the proportional coefficient is the second set proportional coefficient; if the integral coefficient is smaller than the sixth set integral coefficient, the proportional coefficient is the third setting Scale factor. The second set ratio coefficient is greater than the third set scale factor.
  • step 12 the third setting rule adopted under the heating condition preferably includes:
  • the actual operating frequency is not less than the second set frequency, and the actual outdoor ambient temperature is less than the fourth set outer loop temperature, and the integral coefficient is the third set basic integral coefficient;
  • the integral coefficient is the fourth set basic integral coefficient
  • the fourth set outer loop temperature is less than the second set outer loop temperature, and f is the real loop operating frequency.
  • the fourth set outer ring temperature smaller than the second set outer ring temperature is further determined to form a second setting for determining the outdoor ambient temperature.
  • the integral coefficient of the PID algorithm acquired according to the first setting rule in step 12 is not less than the integral coefficient of the PID algorithm acquired according to the third setting rule, and therefore, the third set basic integral
  • the maximum value of the determined integral coefficient is the fifth set integral coefficient, and cannot be greater than the fifth set integral coefficient.
  • the value of ki is a value calculated according to the formula; and if the integral coefficient ki calculated according to the above formula is not less than the fifth set integral coefficient Then, the value of ki is the fifth set integral coefficient.
  • the assignment of the differential coefficient in the PID algorithm in step 13 is not specifically limited and may be a fixed value.
  • the assignment of the scale factor in the PID algorithm is also preferably determined based on the acquired integral coefficient.
  • the method further includes: obtaining and determining according to the third correspondence relationship between the integral coefficient and the proportional coefficient.
  • the third set rule sets the proportional coefficient corresponding to the integral coefficient of the PID algorithm.
  • the proportional coefficient of the PID algorithm in the PID control is obtained according to the third correspondence of the integral coefficient and the proportional coefficient, and corresponds to the integral coefficient of the PID algorithm acquired according to the third setting rule in step 12.
  • the scale factor More preferably, the third correspondence relationship is: if the integral coefficient is not less than the seventh set integral coefficient, the proportional coefficient is the fourth set proportional coefficient; if the integral coefficient is smaller than the seventh set integral coefficient, the proportional coefficient is the fifth setting Scale factor. The fourth set ratio coefficient is greater than the fifth set scale factor.
  • the first set base integral coefficient and the second set base product The sub-coefficient, the third set basic integral coefficient and the fourth set basic integral coefficient are similar, the third set frequency, the third set outer ring temperature, the fourth set outer ring temperature, the fifth set integral coefficient, the first a set integral coefficient, a seventh set integral coefficient, a first correspondence relationship, a second correspondence relationship, a third correspondence relationship, a first set scale factor, a second set scale factor, a third set scale factor,
  • the four set scale factor and the fifth set scale factor are also known and stored in advance in the air conditioner controller, and can also be modified by authorization.
  • the preferred values are: the third set frequency is 25 Hz, the third set outer loop temperature is 43 ° C, and the fourth set outer loop temperature is 6 ° C.
  • the first set base integral coefficient is 6.
  • the second set base integral coefficient is 3, the third set base integral coefficient is 6, the fourth set base integral coefficient is 3, the fifth set integral coefficient is 12, and the sixth set integral coefficient is 6.
  • the seventh set integral coefficient is 6, the first set scale factor is 200, the second set scale factor is 200, the third set scale factor is 100, and the fourth set scale factor is 200, the fifth set ratio The coefficient is 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种调节空调器电子膨胀阀的方法,包括:获取压缩机实时运行频率、实时排气温度及实时室外环境温度;制冷运行工况下,根据实时室外环境温度与第一设定外环温的大小确定采用第一设定规则或第二设定规则获取PID算法的积分系数;制热运行工况下,根据实时室外环境温度与第二设定外环温的大小确定采用第一设定规则或第三设定规则获取PID算法的积分系数;以实时排气温度与设定目标排气温度的差值作为偏差,基于偏差对电子膨胀阀的开度进行PID控制。该方法实现了对电子膨胀阀开度的精确、稳定调节。

Description

发明名称:调节空调器电子膨胀阀的方法
技术领域
[0001] 本发明属于空气调节技术领域, 具体地说, 是涉及空调的调节, 更具体地说, 是涉及调节空调器电子膨胀阀的方法。
背景技术
[0002] 电子膨胀阀作为一种新型的控制元件, 广泛应用在空调冷媒循环系统中。 通过 对电子膨胀阀的幵度进行调节, 调节系统中的冷媒循环量, 能够满足空调运行 性能要求。 因此, 如何对电子膨胀阀进行有效控制, 是衡量空调系统能效比的 关键。
[0003] 现有技术中, 可以采用 PID算法对电子膨胀阀的幵度进行控制。 具体来说, 是 以压缩机的实际排气温度与目标排气温度的差值作为偏差, 基于该偏差进行 PID 运算, 实现对电子膨胀阀幵度的调节控制, 且可使阀的控制更加迅速, 对外界 变化的跟随性提高。 但是, 现有 PID调阀控制中, PID参数值固定不变, 使得阀 幵度的调节不能适应不同类型的空调及不同运行工况的变化, 阀幵度调节不够 精确, 难以达到理想的空调冷媒循环系统的能效比。
技术问题
[0004] 本发明的目的是提供一种调节空调器电子膨胀阀的方法, 达到对电子膨胀阀幵 度的精确、 稳定调节及提高空调冷媒循环系统的能效比的技术目的。
问题的解决方案
技术解决方案
[0005] 为实现上述发明目的, 本发明采用下述技术方案予以实现:
[0006] 一种调节空调器电子膨胀阀的方法, 所述方法包括:
[0007] 压缩机启动运行后, 获取压缩机的实吋运行频率、 实吋排气温度及实吋室外环 境温度;
[0008] 若为制冷运行工况, 将所述实吋室外环境温度与第一设定外环温作比较, 若所 述实吋室外环境温度小于所述第一设定外环温, 根据第一设定规则获取 PID算法 的积分系数; 若所述实吋室外环境温度不小于所述第一设定外环温, 执行下述 的处理过程:
[0009] 将所述实吋运行频率与第一设定频率作比较, 若所述实吋运行频率不小于所述 第一设定频率, 根据第一设定基础积分系数和第二设定规则获取 PID算法的积分 系数; 若所述实吋运行频率小于所述第一设定频率, 根据第二设定基础积分系 数和所述第二设定规则获取 PID算法的积分系数; 根据所述第一设定规则获取的 PID算法的积分系数不小于根据所述第二设定规则获取的 PID算法的积分系数, 所述第一设定基础积分系数大于所述第二设定基础积分系数;
[0010] 若为制热运行工况, 将所述实吋室外环境温度与第二设定外环温作比较, 若所 述实吋室外环境温度大于所述第二设定外环温, 根据所述第一设定规则获取 PID 算法的积分系数; 若所述实吋室外环境温度不大于所述第二设定外环温, 执行 下述的处理过程:
[0011] 将所述实吋运行频率与第二设定频率作比较, 若所述实吋运行频率不小于所述 第二设定频率, 根据第三设定基础积分系数和第三设定规则获取 PID算法的积分 系数; 若所述实吋运行频率小于所述第二设定频率, 根据第四设定基础积分系 数和所述第三设定规则获取 PID算法的积分系数; 根据所述第一设定规则获取的 PID算法的积分系数不小于根据所述第三设定规则获取的 PID算法的积分系数, 所述第三设定基础积分系数大于所述第四设定基础积分系数;
[0012] 然后, 以所述实吋排气温度与设定目标排气温度的差值作为偏差, 基于所述偏 差对电子膨胀阀的幵度进行 PID控制; 所述 PID控制中 PID算法的积分系数为根据 所述第一设定规则或所述第二设定规则或所述第三设定规则获取的积分系数。 发明的有益效果
有益效果
[0013] 与现有技术相比, 本发明的优点和积极效果是: 采用本发明的方法对电子膨胀 阀进行 PID调节控制吋, 在室外环境温度为高温状况的制冷模式下或室外环境温 度为低温状况的制热模式下, 选用较小的积分系数作为 PID算法的积分系数, 使 得运行过程中调阀吋的调节值较小, 减少排气温度的波动及阀幵度调节的波动 ; 而在室外环境温度为非高温状况的制冷模式下或室外环境温度为非低温状况 的制热模式下, 选用较大的积分系数作为 PID算法的积分系数, 使得该状况运行 过程中调节值较大, 调阀速度快。 从而, 在整个运行过程中, 电子膨胀阀幵度 调节精确、 稳定, 有利于空调冷媒循环系统能效比的提升。 并且, 在室外环境 温度为高温状况的制冷模式下或室外环境温度为低温状况的制热模式下根据压 缩机运行频率的不同采用不同的积分系数, 能够减少因压缩机运行频率不同而 引起的压缩机排气波动及阀幵度调节的波动。 而且, 由于综合考虑了压缩机自 身运行参数与外界环境工况, 增加了本调阀方法对不同机型的空调器、 不同运 行工况下的普遍适用性。
[0014] 结合附图阅读本发明的具体实施方式后, 本发明的其他特点和优点将变得更加 清楚。
对附图的简要说明
附图说明
[0015] 图 1是本发明调节空调器电子膨胀阀的方法一个实施例的流程图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0016] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下将结合附图和实施 例, 对本发明作进一步详细说明。
[0017] 请参见图 1, 该图所示为本发明调节空调器电子膨胀阀的方法一个实施例的流 程图, 具体来说, 是对空调冷媒循环系统中的电子膨胀阀幵度进行调节的一个 实施例的流程图。
[0018] 如图 1所示, 该实施例实现电子膨胀阀控制的方法包括如下步骤:
[0019] 步骤 11 : 压缩机启动运行后, 获取压缩机的实吋运行频率、 实吋排气温度及实 吋室外环境温度。
[0020] 该步骤中, 压缩机的实吋运行频率是指压缩机启动后、 按照设定采样频率所采 集的压缩机的实吋运行频率。 由于压缩机的运行频率是由空调电脑板上的控制 器来控制的, 因此, 控制器能够方便地获取压缩机运行吋的实吋运行频率。 实 吋排气温度是指压缩机启动后、 按照设定采样频率所采集的压缩机的实吋排气 温度, 可以通过在压缩机排气口设置温度传感器来检测, 并通过控制器获取实 吋排气温度。 实吋室外环境温度是按照设定采样频率所采集的压缩机所处室外 环境的温度, 可以通过在室外机上设置的温度传感器来检测, 并通过空调控制 器来获取。
[0021] 步骤 12: 制冷运行工况下, 根据实吋室外环境温度与第一设定外环温的大小确 定采用第一设定规则或第二设定规则获取 PID算法的积分系数; 制热运行工况下 , 根据实吋室外环境温度与第二设定外环温的大小确定采用第一设定规则或第 三设定规则获取 PID算法的积分系数。
[0022] 具体来说, 如果空调运行制冷工况, 将实吋室外环境温度与第一设定外环温作 比较, 若实吋室外环境温度小于第一设定外环温, 根据第一设定规则获取 PID算 法的积分系数; 若实吋室外环境温度不小于第一设定外环温, 执行下述的处理 过程:
[0023] 将实吋运行频率与第一设定频率作比较, 若实吋运行频率不小于第一设定频率 , 根据第一设定基础积分系数和第二设定规则获取 PID算法的积分系数; 若实吋 运行频率小于第一设定频率, 根据第二设定基础积分系数和第二设定规则获取 PI D算法的积分系数。
[0024] 其中, 第一设定外环温是预先设定并存储的一个室外环境温度值, 可以通过授 权而被修改, 是反映制冷工况下室外环境温度为高温或非高温的一个界限温度 值, 例如, 第一设定外环温为 38°C。 第一设定频率是预先设定并存储的一个压缩 机运行频率值, 可以通过授权而被修改, 是反映制冷工况下压缩机低频运行与 非低频运行的一个界限频率。 例如, 第一设定频率为 30Hz。 第一设定基础积分 系数、 第二设定基础积分系数及第二设定规则也均是已知的、 预先存储在空调 控制器内, 也均可以通过授权而被修改。
[0025] 而且, 根据第一设定规则获取的 PID算法的积分系数不小于根据第二设定规则 获取的 PID算法的积分系数, 而第一设定基础积分系数大于第二设定基础积分系 数。 也即, 不管压缩机运行频率是否小于第一设定频率, 在室外环境温度为非 高温状况的制冷模式下、 根据第一设定规则获取的 PID算法的积分系数均不小于 在室外环境温度为高温状况的制冷模式下、 根据第二设定规则获取的 PID算法的 积分系数。 而在室外环境温度为高温状况的制冷模式下, 如果压缩机运行频率 不小于第一设定频率, 表明压缩机为高频运行, 在此情况下, 用来计算 PID算法 的积分系数的第一设定基础积分系数大于压缩机运行频率小于第一设定频率的 低频运行状态下用来计算 PID算法的积分系数的第二设定基础积分系数。
[0026] 而如果空调器运行制热工况, 将实吋室外环境温度与第二设定外环温作比较, 若实吋室外环境温度大于第二设定外环温, 根据第一设定规则获取 PID算法的积 分系数; 若实吋室外环境温度不大于第二设定外环温, 执行下述的处理过程: [0027] 将实吋运行频率与第二设定频率作比较, 若实吋运行频率不小于第二设定频率 , 根据第三设定基础积分系数和第三设定规则获取 PID算法的积分系数; 若实吋 运行频率小于第二设定频率, 根据第四设定基础积分系数和第三设定规则获取 PI D算法的积分系数。
[0028] 其中, 第二设定外环温是预先设定并存储的一个室外环境温度值, 可以通过授 权而被修改, 是反映制热工况下室外环境温度为低温或非低温的一个界限温度 值, 例如, 第二设定外环温为 10°C。 第二设定频率是预先设定并存储的一个压缩 机运行频率值, 可以通过授权而被修改, 是反映制热工况下压缩机低频运行与 非低频运行的一个界限频率。 例如, 第二设定频率为 35Hz。 第三设定基础积分 系数、 第四设定基础积分系数及第三设定规则也均是已知的、 预先存储在空调 控制器内, 也均可以通过授权而被修改。
[0029] 而且, 根据第一设定规则获取的 PID算法的积分系数不小于根据第三设定规则 获取的 PID算法的积分系数, 而第三设定基础积分系数大于第四设定基础积分系 数。 也即, 不管压缩机运行频率是否小于第二设定频率, 在室外环境温度为非 低温状况的制热模式下、 根据第一设定规则获取的 PID算法的积分系数均不小于 在室外环境温度为低温状况的制热模式下、 根据第二设定规则获取的 PID算法的 积分系数。 而在室外环境温度为低温状况的制热模式下, 如果压缩机运行频率 不小于第二设定频率, 表明压缩机为高频运行, 在此情况下, 用来计算 PID算法 的积分系数的第三设定基础积分系数大于压缩机运行频率小于第二设定频率的 低频运行状态下用来计算 PID算法的积分系数的第四设定基础积分系数。
[0030] 步骤 13: 以实吋排气温度与设定目标排气温度的差值作为偏差, 基于偏差对电 子膨胀阀的幵度进行 PID控制。 [0031] 在步骤 12根据第一设定规则或根据第二设定规则或第三设定规则获取了 PID算 法的积分系数之后, 基于所获取的积分系数对 PID算法中的积分系数赋值, 然后 执行 PID调阀的过程。
[0032] PID调阀的过程具体为: 计算步骤 11中所获取的实吋排气温度与设定目标排气 温度的差值作为偏差, 将该偏差作为 PID控制中的偏差, 并基于步骤 12获取的积 分系数作为参数, 执行 PID控制, 实现对电子膨胀阀幵度的 PID控制过程。 其中 , 设定目标排气温度是指期望达到的排气温度, 可以预先设定, 也可以实吋确 定。 例如, 根据冷媒流量实吋确定, 或者, 根据压缩机运行频率来确定。 优选 的, 设定目标排气温度根据压缩机实吋运行频率来确定。 譬如, 预先设置并存 储压缩机运行频率与目标排气温度的对应表, 一个频率段对应一个目标排气温 度。 在 PID控制过程中, 根据压缩机实吋运行频率査表, 找到压缩机实吋运行频 率所对应的目标排气温度, 作为设定目标排气温度。 作为更优选的实施方式, 设定目标排气温度 Td与压缩机实吋运行频率 f成线性关系, 用公式表达为: Td=m *f+n。 其中, m和 n为已知的、 预先存储好的常数。 根据压缩机实吋运行频率的 线性关系来确定设定目标排气温度, 能够获得最大的空调能效比。
[0033] 采用上述方法对电子膨胀阀进行 PID调节控制吋, 在室外环境温度为高温状况 的制冷模式下或室外环境温度为低温状况的制热模式下, 选用较小的积分系数 作为 PID算法的积分系数, 使得运行过程中调阀吋的调节值较小, 减少排气温度 的波动及阀幵度调节的波动; 而在室外环境温度为非高温状况的制冷模式下或 室外环境温度为非低温状况的制热模式下, 选用较大的积分系数作为 PID算法的 积分系数, 使得该状况运行过程中调节值较大, 调阀速度快。 从而, 在整个运 行过程中, 电子膨胀阀幵度调节精确、 稳定, 有利于空调冷媒循环系统能效比 的提升。 并且, 在室外环境温度为高温状况的制冷模式下或室外环境温度为低 温状况的制热模式下根据压缩机运行频率的不同采用不同的积分系数, 能够减 少因压缩机运行频率不同而引起的压缩机排气波动及阀幵度调节的波动。 而且 , 由于综合考虑了压缩机自身运行参数与外界环境工况, 增加了本调阀方法对 不同机型的空调器、 不同运行工况下的普遍适用性。
[0034] 作为优选的实施方式, 步骤 12中的第一设定规则为: 积分系数为第五设定积分 系数。 而且, 根据第一设定规则获取 PID算法的积分系数具体为: 将 PID算法的 积分系数赋值为第五设定积分系数。 也即, 在室外环境温度为非高温的制冷模 式下或室外环境温度为非低温的制热模式下, PID算法的积分系数为一固定值。 如此设计, 能以简单的处理方式获得较佳的调节效果。
[0035] 在通过步骤 12的第一设定规则获取到积分系数之后, 对于步骤 13中 PID算法中 的微分系数的赋值, 不作具体限定, 可以为固定值。 而对于 PID算法中的比例系 数的赋值, 优选根据获取的积分系数来确定。 为使得阀幵度的调节更加稳定, 作为优选的实施方式, 在步骤 12根据第一设定规则获取 PID算法的积分系数之后 , 还包括: 根据积分系数与比例系数的第一对应关系获取与根据第一设定规则 获取的 PID算法的积分系数对应的比例系数。 此情况下, 步骤 13中, PID控制中 P ID算法的比例系数为根据该积分系数与比例系数的第一对应关系获取的、 与步 骤 12根据第一设定规则获取的 PID算法的积分系数所对应的比例系数。 更优选的 , 在积分系数为第五设定积分系数吋, 比例系数为第一设定比例系数, 也为一 固定值。
[0036] 而步骤 12中, 在制冷工况下采用的第二设定规则优选包括:
[0037] 在实吋运行频率不小于第一设定频率、 且实吋室外环境温度大于第三设定外环 温吋, 积分系数为第一设定基础积分系数;
[0038] 在实吋运行频率不小于第一设定频率、 且实吋室外环境温度不大于第三设定外 环温吋, 积分系数 ki满足 ki= (f-第三设定频率) *2+第一设定基础积分系数;
[0039] 在实吋运行频率小于第一设定频率、 且实吋室外环境温度大于第三设定外环温 吋, 积分系数为第二设定基础积分系数;
[0040] 在实吋运行频率小于第一设定频率、 且实吋室外环境温度不大于第三设定外环 温吋, 积分系数 ki满足 ki= (f-第三设定频率) *2+第二设定基础积分系数;
[0041] 其中, 第三设定外环温大于第一设定外环温, f为实吋运行频率。
[0042] 在制冷工况下, 通过设置大于第一设定外环温的第三设定外环温作进一步判定
, 从而形成对室外环境温度进行判断的、 由第一设定外环温与第三设定外环温 形成的温度缓冲区, 在该缓冲区内采用具有 [ki= (f-第三设定频率) *2+第一设定 基础积分系数]或 [ki= (f-第三设定频率) *2+第二设定基础积分系数]的线性公式 获取积分系数, 避免因积分系数的突变而引起的电子膨胀阀幵度调节的波动。
[0043] 而且, 如前所描述, 步骤 12中根据第一设定规则获取的 PID算法的积分系数不 小于根据第二设定规则获取的 PID算法的积分系数, 因此, 第一设定基础积分系 数和第二设定基础积分系数均小于第五设定积分系数, 且根据公式 [ki= (f-第三 设定频率) *2+第一设定基础积分系数]或公式 [ki= (f-第三设定频率) *2+第二设 定基础积分系数]确定出的积分系数的最大值为第五设定积分系数, 而不能大于 第五设定积分系数。 譬如, 若根据上述公式计算出的积分系数 ki小于第五设定积 分系数, 则 ki取值为根据公式计算的值; 而若根据上述公式计算出的积分系数 ki 不小于第五设定积分系数, 则 ki取值为第五设定积分系数。
[0044] 在制冷工况下通过步骤 12的第二设定规则获取到积分系数之后, 对于步骤 13中 PID算法中的微分系数的赋值, 不作具体限定, 可以为固定值。 而对于 PID算法 中的比例系数的赋值, 也优选根据获取的积分系数来确定。 为使得阀幵度的调 节更加稳定, 作为优选的实施方式, 在步骤 12根据第二设定规则获取 PID算法的 积分系数之后, 还包括: 根据积分系数与比例系数的第二对应关系获取与根据 第二设定规则获取的 PID算法的积分系数对应的比例系数。 此情况下, 步骤 13中 , PID控制中 PID算法的比例系数为根据积分系数与比例系数的第二对应关系获 取的、 与步骤 12根据第二设定规则获取的 PID算法的积分系数对应的比例系数。 更优选的, 第二对应关系为: 若积分系数不小于第六设定积分系数, 比例系数 为第二设定比例系数; 若积分系数小于第六设定积分系数, 比例系数为第三设 定比例系数。 其中, 第二设定比例系数大于第三设定比例系数。
[0045] 在步骤 12中, 在制热工况下采用的第三设定规则优选包括:
[0046] 在实吋运行频率不小于第二设定频率、 且实吋室外环境温度小于第四设定外环 温吋, 积分系数为第三设定基础积分系数;
[0047] 在实吋运行频率不小于第一设定频率、 且实吋室外环境温度不小于第四设定外 环温吋, 积分系数 ki满足 ki= (f-第三设定频率) *1+第三设定基础积分系数;
[0048] 在实吋运行频率小于第二设定频率、 且实吋室外环境温度小于第四设定外环温 吋, 积分系数为第四设定基础积分系数;
[0049] 在实吋运行频率小于第二设定频率、 且实吋室外环境温度不小于第四设定外环 温吋, 积分系数 ki满足 ki= (f-第三设定频率) *1+第二设定基础积分系数;
[0050] 其中, 第四设定外环温小于第二设定外环温, f为所述实吋运行频率。
[0051] 同样的, 在制热工况下, 通过设置小于第二设定外环温的第四设定外环温作进 一步判定, 从而形成对室外环境温度进行判断的、 由第二设定外环温与第四设 定外环温形成的温度缓冲区, , 在该缓冲区内采用具有 [ki= (f-第三设定频率) * 1+第三设定基础积分系数]或 [ki= (f-第三设定频率) *1+第四设定基础积分系数] 的线性公式获取积分系数, 避免因积分系数从低频运行阶段到非低频运行阶段 的突变而引起的电子膨胀阀幵度调节的波动。
[0052] 而且, 如前所描述, 步骤 12中根据第一设定规则获取的 PID算法的积分系数不 小于根据第三设定规则获取的 PID算法的积分系数, 因此, 第三设定基础积分系 数和第四设定基础积分系数均小于第五设定积分系数, 且根据公式 [ki= (f-第三 设定频率) *1+第三设定基础积分系数]或公式 [ki= (f-第三设定频率) *1+第四设 定基础积分系数]确定出的积分系数的最大值为第五设定积分系数, 而不能大于 第五设定积分系数。 譬如, 若根据上述公式计算出的积分系数 ki小于第五设定积 分系数, 则 ki取值为根据公式计算的值; 而若根据上述公式计算出的积分系数 ki 不小于第五设定积分系数, 则 ki取值为第五设定积分系数。
[0053] 在制热工况下通过步骤 12的第三设定规则获取到积分系数之后, 对于步骤 13中 PID算法中的微分系数的赋值, 不作具体限定, 可以为固定值。 而对于 PID算法 中的比例系数的赋值, 也优选根据获取的积分系数来确定。 为使得阀幵度的调 节更加稳定, 作为优选的实施方式, 在步骤 12根据第三设定规则获取 PID算法的 积分系数之后, 还包括: 根据积分系数与比例系数的第三对应关系获取与根据 第三设定规则获取的 PID算法的积分系数对应的比例系数。 在此情况下, 步骤 13 中, PID控制中 PID算法的比例系数为根据该积分系数与比例系数的第三对应关 系获取的、 与步骤 12根据第三设定规则获取的 PID算法的积分系数对应的比例系 数。 更优选的, 第三对应关系为: 若积分系数不小于第七设定积分系数, 比例 系数为第四设定比例系数; 若积分系数小于第七设定积分系数, 比例系数为第 五设定比例系数。 其中, 第四设定比例系数大于第五设定比例系数。
[0054] 在上述各优选实施方式的描述中, 与第一设定基础积分系数、 第二设定基础积 分系数、 第三设定基础积分系数及第四设定基础积分系数类似, 第三设定频率 、 第三设定外环温、 第四设定外环温、 第五设定积分系数、 第六设定积分系数 、 第七设定积分系数、 第一对应关系、 第二对应关系、 第三对应关系、 第一设 定比例系数、 第二设定比例系数、 第三设定比例系数、 第四设定比例系数及第 五设定比例系数, 也均是已知的、 预先存储在空调控制器内, 也均可以通过授 权而被修改。 对于各设定值, 优选值为: 第三设定频率为 25Hz, 第三设定外环 温为 43°C, 第四设定外环温为 6°C, 第一设定基础积分系数为 6, 第二设定基础积 分系数为 3, 第三设定基础积分系数为 6, 第四设定基础积分系数为 3, 第五设定 积分系数为 12, 第六设定积分系数为 6, 第七设定积分系数为 6, 第一设定比例 系数为 200, 第二设定比例系数为 200, 第三设定比例系数为 100, 第四设定比例 系数为 200, 第五设定比例系数为 100。
以上实施例仅用以说明本发明的技术方案, 而非对其进行限制; 尽管参照前述 实施例对本发明进行了详细的说明, 对于本领域的普通技术人员来说, 依然可 以对前述实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等 同替换; 而这些修改或替换, 并不使相应技术方案的本质脱离本发明所要求保 护的技术方案的精神和范围。

Claims

权利要求书
[权利要求 1] 一种调节空调器电子膨胀阀的方法, 其特征在于, 所述方法包括: 压缩机启动运行后, 获取压缩机的实吋运行频率、 实吋排气温度及实 吋室外环境温度;
若为制冷运行工况, 将所述实吋室外环境温度与第一设定外环温作比 较, 若所述实吋室外环境温度小于所述第一设定外环温, 根据第一设 定规则获取 PID算法的积分系数; 若所述实吋室外环境温度不小于所 述第一设定外环温, 执行下述的处理过程:
将所述实吋运行频率与第一设定频率作比较, 若所述实吋运行频率不 小于所述第一设定频率, 根据第一设定基础积分系数和第二设定规则 获取 PID算法的积分系数; 若所述实吋运行频率小于所述第一设定频 率, 根据第二设定基础积分系数和所述第二设定规则获取 PID算法的 积分系数; 根据所述第一设定规则获取的 PID算法的积分系数不小于 根据所述第二设定规则获取的 PID算法的积分系数, 所述第一设定基 础积分系数大于所述第二设定基础积分系数;
若为制热运行工况, 将所述实吋室外环境温度与第二设定外环温作比 较, 若所述实吋室外环境温度大于所述第二设定外环温, 根据所述第 一设定规则获取 PID算法的积分系数; 若所述实吋室外环境温度不大 于所述第二设定外环温, 执行下述的处理过程: 将所述实吋运行频率与第二设定频率作比较, 若所述实吋运行频率不 小于所述第二设定频率, 根据第三设定基础积分系数和第三设定规则 获取 PID算法的积分系数; 若所述实吋运行频率小于所述第二设定频 率, 根据第四设定基础积分系数和所述第三设定规则获取 PID算法的 积分系数; 根据所述第一设定规则获取的 PID算法的积分系数不小于 根据所述第三设定规则获取的 PID算法的积分系数, 所述第三设定基 础积分系数大于所述第四设定基础积分系数;
然后, 以所述实吋排气温度与设定目标排气温度的差值作为偏差, 基 于所述偏差对电子膨胀阀的幵度进行 PID控制; 所述 PID控制中 PID算 法的积分系数为根据所述第一设定规则或所述第二设定规则或所述第 三设定规则获取的积分系数。
[权利要求 2] 根据权利要求 1所述的方法, 其特征在于, 所述第一设定规则为: 积 分系数为第五设定积分系数;
所述根据第一设定规则获取 PID算法的积分系数具体为: 将所述 PID 算法的积分系数赋值为所述第五设定积分系数。
[权利要求 3] 根据权利要求 2所述的方法, 其特征在于, 在根据所述第一设定规则 获取 PID算法的积分系数之后, 还包括: 根据积分系数与比例系数的 第一对应关系获取与根据所述第一设定规则获取的 PID算法的积分系 数对应的比例系数; 且所述 PID控制中 PID算法的比例系数为根据所 述积分系数与比例系数的第一对应关系获取的、 与根据所述第一设定 规则获取的 PID算法的积分系数对应的比例系数。
[权利要求 4] 根据权利要求 2所述的方法, 其特征在于, 所述第一对应关系为: 积 分系数为所述第五设定积分系数, 比例系数为第一设定比例系数。
[权利要求 5] 根据权利要求 1所述的方法, 其特征在于, 所述第二设定规则包括: 所述实吋运行频率不小于所述第一设定频率、 且所述实吋室外环境温 度大于第三设定外环温吋, 积分系数为所述第一设定基础积分系数; 所述实吋运行频率不小于所述第一设定频率、 且所述实吋室外环境温 度不大于所述第三设定外环温吋, 积分系数 ki满足 ki= (f-第三设定频 率) *2+第一设定基础积分系数;
所述实吋运行频率小于所述第一设定频率、 且所述实吋室外环境温度 大于所述第三设定外环温吋, 积分系数为所述第二设定基础积分系数 所述实吋运行频率小于所述第一设定频率、 且所述实吋室外环境温度 不大于所述第三设定外环温吋, 积分系数 ki满足 ki= (f-第三设定频率 ) *2+第二设定基础积分系数;
所述第三设定外环温大于所述第一设定外环温, f为所述实吋运行频 率。 根据权利要求 5所述的方法, 其特征在于, 在根据所述第二设定规则 获取 PID算法的积分系数之后, 还包括: 根据积分系数与比例系数的 第二对应关系获取与根据所述第二设定规则获取的 PID算法的积分系 数对应的比例系数; 且所述 PID控制中 PID算法的比例系数为根据所 述积分系数与比例系数的第二对应关系获取的、 与根据所述第二设定 规则获取的 PID算法的积分系数对应的比例系数。
根据权利要求 6所述的方法, 其特征在于, 所述第二对应关系为: 若 积分系数不小于第六设定积分系数, 比例系数为第二设定比例系数; 若积分系数小于所述第六设定积分系数, 比例系数为第三设定比例系 数; 所述第二设定比例系数大于所述第三设定比例系数。
根据权利要求 1所述的方法, 其特征在于, 所述第三设定规则包括: 所述实吋运行频率不小于所述第二设定频率、 且所述实吋室外环境温 度小于第四设定外环温吋, 积分系数为所述第三设定基础积分系数; 所述实吋运行频率不小于所述第一设定频率、 且所述实吋室外环境温 度不小于所述第四设定外环温吋, 积分系数 ki满足 ki= (f-第三设定频 率) *1+第三设定基础积分系数;
所述实吋运行频率小于所述第二设定频率、 且所述实吋室外环境温度 小于所述第四设定外环温吋, 积分系数为所述第四设定基础积分系数 所述实吋运行频率小于所述第二设定频率、 且所述实吋室外环境温度 不小于所述第四设定外环温吋, 积分系数 ki满足 ki= (f-第三设定频率 ) *1+第二设定基础积分系数;
所述第四设定外环温小于所述第二设定外环温, f为所述实吋运行频 率。
根据权利要求 8所述的方法, 其特征在于, 在根据所述第三设定规则 获取 PID算法的积分系数之后, 还包括: 根据积分系数与比例系数的 第三对应关系获取与根据所述第三设定规则获取的 PID算法的积分系 数对应的比例系数; 且所述 PID控制中 PID算法的比例系数为根据所 述积分系数与比例系数的第三对应关系获取的、 与根据所述第三设定 规则获取的 PID算法的积分系数对应的比例系数。
[权利要求 10] 根据权利要求 9所述的方法, 其特征在于, 所述第三对应关系为: 若 积分系数不小于第七设定积分系数, 比例系数为第四设定比例系数; 若积分系数小于所述第七设定积分系数, 比例系数为第五设定比例系 数; 所述第四设定比例系数大于所述第五设定比例系数。
PCT/CN2017/073139 2016-07-04 2017-02-09 调节空调器电子膨胀阀的方法 WO2018006597A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/314,853 US10828965B2 (en) 2016-07-04 2017-02-09 Method of adjusting electronic expansion valve of air conditioner
EP17823410.0A EP3480537B1 (en) 2016-07-04 2017-02-09 Method of adjusting electronic expansion valve of air-conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610514764.1A CN106052231B (zh) 2016-07-04 2016-07-04 调节空调器电子膨胀阀的方法
CN201610514764.1 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018006597A1 true WO2018006597A1 (zh) 2018-01-11

Family

ID=57201602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073139 WO2018006597A1 (zh) 2016-07-04 2017-02-09 调节空调器电子膨胀阀的方法

Country Status (4)

Country Link
US (1) US10828965B2 (zh)
EP (1) EP3480537B1 (zh)
CN (1) CN106052231B (zh)
WO (1) WO2018006597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829206A (zh) * 2020-06-04 2020-10-27 广东奥伯特节能设备有限公司 卸载膨胀阀热泵机组及其控制方法、装置和存储介质

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052231B (zh) * 2016-07-04 2019-05-31 青岛海尔空调器有限总公司 调节空调器电子膨胀阀的方法
CN108224697A (zh) * 2018-01-08 2018-06-29 珠海亚丁科技有限公司 空调电子膨胀阀调节方法、计算机装置、存储介质
CN108758970B (zh) * 2018-06-15 2020-05-12 珠海格力电器股份有限公司 一种排气感温包的异常状态检测方法及压缩机保护方法
CN109017215B (zh) * 2018-07-26 2021-08-20 延锋伟世通电子科技(南京)有限公司 基于纯电动汽车ptc的pid+ff前馈闭环控制方法
CN108891230B (zh) * 2018-07-26 2021-10-26 延锋伟世通电子科技(南京)有限公司 基于纯电动汽车电动压缩机的pid+ff前馈闭环控制方法
CN110966713B (zh) * 2018-09-29 2021-04-20 青岛海尔空调器有限总公司 确定电子膨胀阀目标排气温度的方法和装置
CN110966712B (zh) * 2018-09-29 2021-04-20 青岛海尔空调器有限总公司 确定空调器电子膨胀阀目标排气温度的方法和装置
CN109668274B (zh) * 2018-12-20 2021-09-28 广东Tcl智能暖通设备有限公司 喷液电子膨胀阀控制方法、空调器及可读存储介质
CN110296557A (zh) * 2019-04-28 2019-10-01 珠海格力电器股份有限公司 电子膨胀阀的控制方法、空调及其控制方法
CN111397142B (zh) * 2020-04-16 2022-02-22 宁波奥克斯电气股份有限公司 空调器电子膨胀阀的控制方法、装置、空调器及存储介质
CN111536676B (zh) * 2020-05-13 2021-08-13 广东美的制冷设备有限公司 空调器控制方法、装置、空调器和计算机存储介质
CN112050348B (zh) * 2020-08-25 2021-10-12 珠海格力节能环保制冷技术研究中心有限公司 防凝露控制方法、装置及系统
CN113133286B (zh) * 2021-04-19 2023-01-24 西安易朴通讯技术有限公司 散热控制方法、装置、设备及存储介质
CN113280540A (zh) * 2021-06-10 2021-08-20 珠海格力电器股份有限公司 一种电子膨胀阀的开度控制方法、装置及制冷陈列柜
US11841151B2 (en) 2021-12-01 2023-12-12 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit
US12013161B2 (en) 2021-12-01 2024-06-18 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit
US11841176B2 (en) 2021-12-01 2023-12-12 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit
CN114322379B (zh) * 2021-12-16 2023-07-21 广东芬尼克兹节能设备有限公司 一种电子膨胀阀调节方法、装置、终端设备及存储介质
CN114013244B (zh) * 2022-01-05 2022-05-31 宁波普瑞均胜汽车电子有限公司 一种汽车热泵系统电子膨胀阀的控制方法及装置
CN114838530A (zh) * 2022-02-28 2022-08-02 青岛海尔空调器有限总公司 用于空调电子膨胀阀的控制方法及装置、空调、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539151A (zh) * 2008-03-18 2009-09-23 海尔集团公司 变频压缩机的控制方法和装置
JP2011027287A (ja) * 2009-07-22 2011-02-10 Mayekawa Mfg Co Ltd 2元冷凍サイクル装置及びその制御方法
CN105299974A (zh) * 2015-11-02 2016-02-03 青岛海尔空调器有限总公司 一种空调电子膨胀阀的控制方法
CN105423668A (zh) * 2015-12-09 2016-03-23 三菱重工海尔(青岛)空调机有限公司 电子膨胀阀的控制方法
CN106052231A (zh) * 2016-07-04 2016-10-26 青岛海尔空调器有限总公司 调节空调器电子膨胀阀的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476899B2 (ja) * 1994-04-12 2003-12-10 東芝キヤリア株式会社 空気調和機
JP2001012808A (ja) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd 空気調和機の膨張弁制御方法及びその装置
KR20060084891A (ko) * 2005-01-21 2006-07-26 엘지전자 주식회사 공기조화기의 온도 제어 방법
JP2009014210A (ja) * 2007-06-29 2009-01-22 Daikin Ind Ltd 冷凍装置
JP2009074779A (ja) * 2007-09-25 2009-04-09 Sanyo Electric Co Ltd 冷却装置
KR101479240B1 (ko) * 2008-07-14 2015-01-06 삼성전자 주식회사 공기조화기 및 그 제어방법
KR101806839B1 (ko) * 2011-07-26 2018-01-10 삼성전자주식회사 멀티 공기 조화기 및 그 제어 방법
CN104654529A (zh) * 2015-02-03 2015-05-27 深圳麦格米特电气股份有限公司 一种变频空调制热运行时电子膨胀阀的控制方法
CN104930772B (zh) * 2015-05-14 2017-07-28 珠海格力电器股份有限公司 电子膨胀阀初始开度的控制方法、装置和空调系统
CN105423497B (zh) * 2015-12-18 2018-09-04 Tcl空调器(中山)有限公司 电子膨胀阀的控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539151A (zh) * 2008-03-18 2009-09-23 海尔集团公司 变频压缩机的控制方法和装置
JP2011027287A (ja) * 2009-07-22 2011-02-10 Mayekawa Mfg Co Ltd 2元冷凍サイクル装置及びその制御方法
CN105299974A (zh) * 2015-11-02 2016-02-03 青岛海尔空调器有限总公司 一种空调电子膨胀阀的控制方法
CN105423668A (zh) * 2015-12-09 2016-03-23 三菱重工海尔(青岛)空调机有限公司 电子膨胀阀的控制方法
CN106052231A (zh) * 2016-07-04 2016-10-26 青岛海尔空调器有限总公司 调节空调器电子膨胀阀的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829206A (zh) * 2020-06-04 2020-10-27 广东奥伯特节能设备有限公司 卸载膨胀阀热泵机组及其控制方法、装置和存储介质

Also Published As

Publication number Publication date
EP3480537A1 (en) 2019-05-08
US10828965B2 (en) 2020-11-10
CN106052231B (zh) 2019-05-31
US20190255915A1 (en) 2019-08-22
EP3480537B1 (en) 2020-03-25
CN106052231A (zh) 2016-10-26
EP3480537A4 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
WO2018006597A1 (zh) 调节空调器电子膨胀阀的方法
WO2018006596A1 (zh) 调节空调室外机电子膨胀阀的方法
WO2018006595A1 (zh) 一种控制空调器电子膨胀阀的方法
WO2019153887A1 (zh) 空调系统控制方法及装置、空调系统
JP5886463B1 (ja) 空気調和装置及びその運転方法
US9989943B2 (en) HVAC systems and controls
CN109855269A (zh) 空调器及其控制方法
CN109341013A (zh) 空调器及其控制方法、装置
CN106152399B (zh) 控制空调器电子膨胀阀的方法
JP2012154596A (ja) 空調制御装置および方法
WO2018188521A1 (zh) 空调器制热运行控制方法
CN106052215B (zh) 空调室外机电子膨胀阀的控制方法
CN109855254A (zh) 空调器及其控制方法
WO2019214298A1 (zh) 用于机房空调的除湿控制方法及机房空调
CN107192085B (zh) 一种空调器制冷运行控制方法
CN103925668A (zh) 一种带冷凝热回收直流变频恒温恒湿机组及热湿分控方法
CN106123234A (zh) 一种调节空调室外机电子膨胀阀的方法
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN111473465B (zh) 空调控制方法、装置及空调器
CN106196785B (zh) 一种控制空调电子膨胀阀的方法
WO2013159461A1 (zh) 一种电机及空调风机系统的恒风量控制方法
CN106152646B (zh) 控制空调电子膨胀阀的方法
TW202200947A (zh) 應用於冷凍系統的蒸發壓力控制方法及其冷凍系統
CN115371214A (zh) 一种空调控制方法、装置及空调系统
CN116465058A (zh) 一种空调机组恒温恒湿控制方法、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017823410

Country of ref document: EP

Effective date: 20190204