WO2020177284A1 - 防止空调器的压缩机液击的控制方法及控制系统 - Google Patents

防止空调器的压缩机液击的控制方法及控制系统 Download PDF

Info

Publication number
WO2020177284A1
WO2020177284A1 PCT/CN2019/103729 CN2019103729W WO2020177284A1 WO 2020177284 A1 WO2020177284 A1 WO 2020177284A1 CN 2019103729 W CN2019103729 W CN 2019103729W WO 2020177284 A1 WO2020177284 A1 WO 2020177284A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
liquid hammer
expansion valve
electronic expansion
air conditioner
Prior art date
Application number
PCT/CN2019/103729
Other languages
English (en)
French (fr)
Inventor
孙辉
冷宇
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020177284A1 publication Critical patent/WO2020177284A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the field of air conditioners, in particular to a control method and control system for preventing compressor liquid hammer of an air conditioner.
  • Compressor liquid shock means that liquid refrigerant enters the compressor.
  • a slight short-term liquid shock may not be a big problem, but frequent long-term and heavy liquid shock may cause permanent damage to the compressor part.
  • the present invention provides a control method for preventing compressor liquid hammer of an air conditioner, the air conditioner includes an electronic expansion valve, and the control method includes: judging by operating parameters of the compressor Whether there is liquid hammer in the compressor; if the judgment result is that the compressor has liquid hammer, the opening degree of the electronic expansion valve is gradually adjusted until the liquid hammer of the compressor disappears.
  • the step of "determining whether the compressor has liquid hammer based on the operating parameters of the compressor” includes: collecting the operating parameters of the compressor; calculating the operating parameters every other time Set the change value of the time interval T; determine whether the change value of the operating parameter is greater than the corresponding standard value and determine whether the compressor has liquid hammer according to the judgment result.
  • the operating parameters include the operating current I, the suction pressure Ps, and the exhaust pressure Pd of the compressor, "judge whether the change value of the operating parameter is greater than the corresponding standard value and
  • the step of judging whether the compressor has liquid hammer according to the judgment result” includes: judging whether ⁇ I is greater than a first preset value, judging whether ⁇ Ps is greater than a second preset value, judging whether ⁇ Pd is greater than a third preset value; when ⁇ I, When ⁇ Ps and ⁇ Pd are greater than the first, second and third preset values, respectively, it is determined that the compressor has liquid hammer; where ⁇ I is the change value of the operating current of the compressor every set time interval T ⁇ Ps is the change value of the suction pressure of the compressor every set time interval T; ⁇ Pd is the change value of the discharge pressure of the compressor every set time interval T.
  • the step of "gradually adjusting the opening of the electronic expansion valve until the liquid hammer of the compressor disappears" includes: determining the electronic expansion according to the current opening of the electronic expansion valve The adjustment value of the opening of the valve; adjust the opening of the electronic expansion valve with the adjustment value; control the electronic expansion valve to maintain the adjusted opening for a period of time, and then re-determine whether the compressor has liquid hammer; If the compressor still has liquid hammer, repeat the above steps until the compressor liquid hammer disappears.
  • the step of "re-judging whether the compressor has liquid hammer" includes: judging whether ⁇ I is less than a first preset value, and if the judgment result is that ⁇ I is less than the first preset value, then judging The compressor’s liquid hammer disappears; and/or it is determined whether ⁇ Ps is less than the second preset value, and if the result of the determination is that ⁇ Ps is less than the second preset value, it is determined that the compressor’s liquid hammer disappears; and/or whether ⁇ Pd is less than the first Three preset values, if the determination result is that ⁇ Pd is less than the third preset value, it is determined that the liquid hammer of the compressor disappears.
  • control method further includes: determining whether ⁇ I is greater than a fourth preset value, and when ⁇ I is greater than the fourth preset value, controlling the air conditioner to stop working, and the first 4.
  • the preset value is greater than the first preset value.
  • the electronic expansion valve is provided with a reference opening degree in each stage of the air conditioner
  • the control method further includes: in each stage of the air conditioner, judging the Before the compressor has liquid hammer, the air conditioner runs for a set time under the condition that the electronic expansion valve is at the reference opening degree.
  • the present invention also provides a control system for preventing compressor liquid hammer of an air conditioner
  • the air conditioner includes an electronic expansion valve
  • the control system includes a controller connected to the electronic expansion valve
  • the controller is configured to determine whether the compressor has liquid hammer based on the operating parameters of the compressor, and if the result of the determination is that the compressor has liquid hammer, it will gradually adjust the opening of the electronic expansion valve until The liquid hammer of the compressor disappeared.
  • control system further includes a parameter acquisition device; the controller determines whether there is liquid hammer in the compressor through the following steps: calculate the operating parameters collected by the parameter acquisition device every Set the change value of the time interval T; determine whether the change value of the operating parameter is greater than the corresponding standard value and determine whether the compressor has liquid hammer according to the judgment result.
  • the operating parameters include the operating current I, the suction pressure Ps, and the exhaust pressure Pd of the compressor
  • the parameter collection device includes a transformer connected to the controller, The first pressure sensor and the second pressure sensor, the transformer is configured to collect the operating current I of the compressor, and the first pressure sensor is configured to measure the suction pressure Ps of the compressor, the first pressure sensor
  • the second pressure sensor is configured to collect the discharge pressure Pd of the compressor; the controller determines whether the change value of the operating parameter is greater than the corresponding standard value through the following steps and determines whether there is liquid in the compressor according to the judgment result.
  • the control method and control system for preventing the liquid hammer of the air conditioner provided by the present invention are compared with the prior art method of setting a sufficiently large suction superheat to prevent liquid hammer.
  • the present invention judges by the operating parameters of the compressor The method of whether the compressor has liquid hammer is more direct, and can detect whether the compressor has liquid hammer in time; when it is determined that the compressor has liquid hammer, the opening of the electronic expansion valve is gradually adjusted to remove the liquid hammer, and the adjustment method is more reasonable , The opening degree of the electronic expansion valve can be adjusted to a better opening degree.
  • Figure 1 is a flowchart of a control method for preventing compressor liquid hammer of an air conditioner in an embodiment of the present invention
  • step S101 in the control method for preventing compressor liquid hammer of an air conditioner in an embodiment of the present invention
  • step S102 is a flowchart of step S102 in the control method for preventing compressor liquid hammer of an air conditioner in an embodiment of the present invention
  • FIG. 4 is a flow chart of a control method for preventing compressor liquid hammer during the startup phase of an air conditioner in an embodiment of the present invention
  • Fig. 5 is a schematic structural diagram of a control system for preventing compressor liquid hammer of an air conditioner in an embodiment of the present invention.
  • Controller 1 Compressor 2; Four-way valve 3; Electronic expansion valve 4; Heat exchanger 5; Evaporator 6; Liquid storage tank 7; Gas-liquid separator 8; Transformer 9; First pressure sensor P 1 ; Two pressure sensors P 2 ; a first temperature measuring device T 1 ; a second temperature measuring device T 2 .
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • FIG. 1 is a flowchart of the control method for preventing compressor liquid hammer of an air conditioner in an embodiment of the present invention.
  • this embodiment provides a control method for preventing compressor liquid strike of an air conditioner.
  • the air conditioner includes an electronic expansion valve, and the control method includes:
  • Step S101 Determine whether the compressor has liquid hammer based on the operating parameters of the compressor.
  • Step S102 If it is determined that there is liquid hammer in the compressor, gradually adjust the opening of the electronic expansion valve until the liquid hammer of the compressor disappears.
  • the method of this embodiment to determine whether the compressor has liquid hammer through the operating parameters of the compressor is more direct, and the compressor can be detected in time Whether liquid hammer occurs; when it is determined that the compressor has liquid hammer, the opening of the electronic expansion valve is gradually adjusted to eliminate the liquid hammer.
  • the adjustment method is more reasonable, and the opening of the electronic expansion valve can be adjusted to a better opening .
  • the electronic expansion valve is provided with a reference opening degree at each stage of the air conditioner
  • the control method further includes: at each stage of the air conditioner, before determining whether the compressor has liquid hammer, the air conditioner is at the reference Run the set time first under the condition of opening. This is because the compressor’s operating conditions change during the start-up phase or when the compressor transitions from one stage to the next, so that the compressor’s operating parameters have a large change in a period of time, but this is not the case. hit. Take the start-up phase of an air conditioner as an example.
  • the air conditioner runs for the first set time under the condition of the electronic expansion valve with the reference opening of the start-up phase, and then judges whether the compressor has liquid hammer through the operating parameters of the compressor; As soon as it enters the operating phase, the air conditioner operates for a second set time under the condition of the reference opening of the electronic expansion valve in the operating phase, and then judges whether the compressor has liquid hammer through the operating parameters of the compressor.
  • the first set time and the second set time may be the same or different, and the opening degree of the electronic expansion valve of the air conditioner is also different in each stage.
  • step S101 includes:
  • Step S1011 Collect operating parameters of the compressor.
  • the operating parameters may include the operating current I of the compressor, the suction pressure Ps, and the discharge pressure Pd. It should be noted that when collecting the operating parameters, it can be continuous collection or collection once every set time interval T. Among them, the operating current I of the compressor can be collected through a transformer, and the suction pressure Ps and discharge pressure Pd of the compressor can be collected through a pressure sensor.
  • Step S1012 Calculate the change value of the operating parameter every set time interval T; ⁇ I is the change value of the compressor operating current every set time interval T, ⁇ Ps is the compressor suction pressure every set time interval T ⁇ Pd is the change value of the compressor discharge pressure every set time interval T.
  • the time interval T can be set according to the specific air conditioner model and operating conditions. For example, for a certain model of air conditioner, the time during the startup phase, the cooling operation phase, and the heating operation phase The interval T may be the same or different.
  • Step S1013 Determine whether the change value of the operating parameter is greater than the corresponding standard value and determine whether the compressor has liquid hammer according to the judgment result. Specifically, this step includes: judging whether ⁇ I is greater than a first preset value, judging whether ⁇ Ps is greater than a second preset value, judging whether ⁇ Pd is greater than a third preset value, and when ⁇ I, ⁇ Ps, and ⁇ Pd are all greater than the first and the first, respectively. At the second and third preset values, it is determined that the compressor has liquid hammer. If the judgment result is that at least one of ⁇ I, ⁇ Ps, and ⁇ Pd is less than the corresponding set value, it is judged that the compressor does not have liquid hammer, so there is no need to adjust the electronic expansion valve.
  • the above-mentioned parameters are relatively simple to obtain and have high accuracy, making the calculation process relatively simple; and multi-parameters are used for synthesis
  • the judgment is beneficial to improve the accuracy of judging whether the compressor has liquid hammer.
  • step S102 includes:
  • Step S1021 Determine the adjustment value of the opening degree of the electronic expansion valve according to the current opening degree of the electronic expansion valve.
  • the current opening degree of the electronic expansion valve is 60%. Due to the occurrence of liquid hammer, the opening degree of the electronic expansion valve needs to be reduced. In this adjustment, the adjustment value of the opening degree of the electronic expansion valve can be set to 2% .
  • the above-mentioned specific opening value and the adjustment value of the liquid hammer opening are only exemplary description, and the specific opening and the adjustment value of the opening should be determined according to the specific environment.
  • Step S1022 Adjust the opening degree of the electronic expansion valve with the adjustment value. This is to enable the compressor to run to a relatively stable state under the opening of the electronic expansion valve, so as to prevent the compressor from not running smoothly after the electronic expansion valve is adjusted, which will affect the second judgment of whether the compressor has liquid hammer.
  • Step S1023 After controlling the electronic expansion valve to maintain the adjusted opening for a period of time, re-determine whether the compressor has liquid hammer. Determine whether ⁇ I is less than the first preset value, and if the judgment result is that ⁇ I is less than the first preset value, it is determined that the compressor's liquid hammer disappears; and/or whether ⁇ Ps is less than the second preset value, if the judgment result is that ⁇ Ps is less than the first preset value.
  • the second preset value determines that the liquid hammer of the compressor disappears; and/or whether the ⁇ Pd is less than the third preset value, and if the determination result is that ⁇ Pd is less than the third preset value, it is determined that the hydraulic hammer of the compressor disappears.
  • Step S1024 If the compressor still has liquid hammer, repeat the above steps until the compressor liquid hammer disappears.
  • control method provided in this embodiment further includes: determining whether ⁇ I is greater than a fourth preset value, and when ⁇ I is greater than the fourth preset value, controlling the air conditioner to stop working, and the fourth preset value is greater than the first preset value . This is because when the ⁇ I changes sharply, it is likely that the air conditioner has been overloaded, the pipeline is blocked, some structural damage, etc., and stopping the air conditioner in time will help protect the compressor and other structures of the air conditioner.
  • Fig. 4 is a flow chart of a control method for preventing compressor liquid hammer during the startup stage of an air conditioner in an embodiment of the present invention.
  • this embodiment provides a control method for preventing the compressor liquid hammer of the air conditioner.
  • the method includes:
  • Step S201 Turn on the air conditioner.
  • Step S202 Run for 5 minutes at the reference opening. It should be noted that this step starts with the start of the air conditioner.
  • the reference opening degree mentioned here is the reference opening degree preset during the start-up phase of the air conditioner, which can be set according to different air conditioner types and operating environment; and the operating time "5min" is only an exemplary description, and can also be set according to Set different air conditioner types and operating environment.
  • Step S203 Determine whether ⁇ I is greater than a first preset value, determine whether ⁇ Ps is greater than a second preset value, and determine whether ⁇ Pd is greater than a third preset value.
  • ⁇ I, ⁇ Ps, and ⁇ Pd are greater than the first, second, and third preset values, respectively, it is determined that the compressor has liquid hammer, and step S204 is executed at this time; if the judgment result is that at least one of ⁇ I, ⁇ Ps, and ⁇ Pd is If it is less than the corresponding set value, it is judged that the air conditioner does not have liquid hammer, and the air conditioner operates normally during the startup phase, so there is no need to adjust the electronic expansion valve.
  • Step S204 Determine the adjustment value of the opening degree of the electronic expansion valve according to the current opening degree of the electronic expansion valve, and adjust the opening degree of the electronic expansion valve with the adjustment value.
  • the reference opening of the electronic expansion valve during the start-up phase is 70%. Due to liquid hammer, the opening of the electronic expansion valve needs to be reduced. In the first adjustment, the reference opening is the current opening of the electronic expansion valve.
  • the adjustment value of the opening degree of the electronic expansion valve can be set to 5%.
  • the above-mentioned specific opening value and the adjustment value of the liquid hammer opening are only exemplary description, and the specific opening and the adjustment value of the opening should be determined according to the specific environment.
  • Step S205 Control the electronic expansion valve to maintain the adjusted opening for 5 minutes.
  • "5min” is only an exemplary description, and can be set according to different air conditioner types and operating environments.
  • Step S206 Determine whether ⁇ I is less than a first preset value. If the judgment result is that ⁇ I is less than the first preset value, the compressor's liquid hammer has disappeared and the adjustment can be stopped; if the judgment result is that ⁇ I is greater than the first preset value, step S207 is executed.
  • Step S207 Determine whether ⁇ I is greater than a fourth preset value. If the judgment result is that ⁇ I is greater than the fourth preset value, the operating current of the compressor fluctuates sharply, and the compressor and other parts of the air conditioner are likely to be damaged. At this time, the air conditioner should be controlled to stop running to ensure the air conditioner If the judgment result is that ⁇ I is smaller than the fourth preset value, return to step S204 for re-adjustment until the liquid hammer of the compressor disappears.
  • the second adjustment value of the opening degree of the electronic expansion valve can be the same as the first adjustment value or different from the first adjustment value.
  • the adjustment value is reduced in order, that is, the process of coarse adjustment and fine adjustment is adopted to adjust the opening of the electronic expansion valve, which is beneficial to the opening of the electronic expansion valve.
  • the degree is optimal.
  • step S207 determining whether ⁇ I is greater than the fourth preset value” is set as step S207, this is only an exemplary description. In essence, this step can be set in any part of the entire process. One link. Further, real-time monitoring of ⁇ I and judging whether ⁇ I is greater than the fourth preset value can detect whether the air conditioner has an operating risk in time, and can effectively reduce the possibility of damage to the air conditioner.
  • Fig. 5 is a schematic structural diagram of a control system for preventing compressor liquid hammer of an air conditioner in an embodiment of the present invention.
  • this embodiment also provides a control system for preventing compressor liquid strike of an air conditioner.
  • the air conditioner includes a compressor 2 and an electronic expansion valve 4, and the control system includes: a controller connected to the electronic expansion valve 4 1.
  • the controller 1 is configured to determine whether the compressor 2 has liquid hammer based on the operating parameters of the compressor 2. If the result of the determination is that the compressor 2 has liquid hammer, it will gradually adjust the opening of the electronic expansion valve 4 until the compressor 2 The liquid blow disappeared.
  • this embodiment uses the operating parameters of the compressor to determine whether the compressor has liquid hammer more directly, and can detect whether the compressor has occurred in time Liquid hammer: When it is determined that the compressor has liquid hammer, the opening of the electronic expansion valve is gradually adjusted to remove the liquid hammer. The adjustment method is more reasonable, and the opening of the electronic expansion valve can be adjusted to a better opening.
  • control system also includes a parameter acquisition device, and the controller 1 determines whether there is liquid hammer in the compressor through the following steps: Calculate the change value of the operating parameter collected by the parameter acquisition device every set time interval T ; Determine whether the change value of the operating parameter is greater than the corresponding standard value and determine whether the compressor has liquid hammer according to the judgment result.
  • the operating parameters include the operating current I, suction pressure Ps, and exhaust pressure Pd of the compressor 2, and the parameter collection device includes a transformer 9 connected to the controller 1, and a first pressure sensor P 1 And the second pressure sensor P 2 , the transformer 9 is configured to collect the operating current I of the compressor, the first pressure sensor P 1 is configured to measure the suction pressure Ps of the compressor, and the second pressure sensor P 2 is configured to collect The discharge pressure Pd of the compressor 2; the controller 1 is configured to determine whether the change value of the operating parameter is greater than the corresponding standard value through the following steps and determine whether there is liquid hammer in the compressor 2 according to the determination result: determine whether the ⁇ I is greater than the first preset Value, determine whether ⁇ Ps is greater than the second preset value, determine whether ⁇ Pd is greater than the third preset value; when ⁇ I, ⁇ Ps, and ⁇ Pd are greater than the first, second, and third preset values, then it is determined that the compressor 2 exists Liquid
  • the air conditioner also includes a four-way valve 3, a heat exchanger 5, an evaporator 6, a liquid storage tank 7, a gas-liquid separator 8, and a first temperature measuring device T 1 And the second temperature measuring device T 2 and other components.
  • the four-way valve 3 has four ports, namely C, S, E and D.
  • the four-way valve has different conduction states under different working states (refrigeration state or heating state).
  • the heat exchanger 5 and the evaporator 6 are used for heat exchange between the heat exchanger and the environment.
  • the liquid storage tank 7 and the gas-liquid separator 8 help prevent liquid refrigerant from entering the compressor.
  • T 1 of the first temperature measuring device for measuring the intake air temperature of the compressor
  • a second temperature measuring device measuring the exhaust gas temperature T 2 for the compressor.
  • the specific models and parameters of each component can be selected according to specific implementation conditions, which are not limited in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种防止空调器的压缩机(2)液击的控制方法及控制系统,旨在解决现有的预先设置足够大的吸气过热度的预防液击的方法不能直接反应压缩机(2)是否正在液击,且过大的吸气过热度会导致机组功耗的增加的问题。为此目的,检测方法包括:通过压缩机(2)的运行参数来判断压缩机(2)是否存在液击;若判断结果为压缩机(2)存在液击,则逐步调整电子膨胀阀(4)的开度直至压缩机(2)的液击消失。通过压缩机(2)的运行参数来判断压缩机(2)是否发生液击的方法更为直接,且能及时发现压缩机(2)是否发生液击;当判定压缩机(2)存在液击时通过逐步调整电子膨胀阀(4)的开度来消除液击,调整方法更为合理,能够将电子膨胀阀(4)的开度调节至较佳的开度。

Description

防止空调器的压缩机液击的控制方法及控制系统 技术领域
本发明涉及空调领域,具体涉及一种防止空调器的压缩机液击的控制方法及控制系统。
背景技术
在空调机组的启动和运行阶段,压缩机随时都会存在液击的风险。压缩机液击是指有液体制冷剂进入压缩机内,轻微短时液击可能问题不大,但经常长时间和较重的液击,可能会造成压缩机压缩部分永久性的损坏。
现有技术中,通常是预先设置足够大的吸气过热度来预防压缩机液击,但此方法不能直接反应出压缩机是否正在进行液击,同时,过大的过热度会导致机组功耗的增加,从而导致机组不能使用或低效运转;而空调器在过大的过热度下运行也容易造成空调器中的部分组件被损坏,从而降低空调器的使用寿命。
相应地,本领域需要一种新的防止压缩机液击的控制方法及控制系统来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即现有的预先设置足够大的吸气过热度的预防液击的方法不能直接反应压缩机是否正在液击,且过大的吸气过热度会导致机组功耗的增加的问题,本发明提供了一种防止空调器的压缩机液击的控制方法,所述空调器包括电子膨胀阀,所述控制方法包括:通过所述压缩机的运行参数来判断所述压缩机是否存在液击;若判断结果为所述压缩机存在液击,则逐步调整所述电子膨胀阀的开度直至所述压缩机的液击消失。
在上述控制方法的优选技术方案中,“通过所述压缩机的运行参数来判断所述压缩机是否存在液击”的步骤包括:采集所述压缩机的运行参数;计算所述运行参数每隔设定时间间隔T的变化值;判断所 述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击。
在上述控制方法的优选技术方案中,所述运行参数包括所述压缩机的运行电流I、吸气压力Ps和排气压力Pd,“判断所述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击”的步骤包括:判断ΔI是否大于第一预设值、判断ΔPs是否大于第二预设值、判断ΔPd是否大于第三预设值;当ΔI、ΔPs和ΔPd分别都大于第一、第二和第三预设值时,则判定所述压缩机存在液击;其中,ΔI为所述压缩机的运行电流每隔设定时间间隔T的变化值,ΔPs为所述压缩机的吸气压力每隔设定时间间隔T的变化值;ΔPd为所述压缩机的排气压力每隔设定时间间隔T的变化值。
在上述控制方法的优选技术方案中,“逐步调整所述电子膨胀阀的开度直至所述压缩机的液击消失”的步骤包括:根据所述电子膨胀阀的当前开度确定所述电子膨胀阀的开度的调节值;以所述调节值调节所述电子膨胀阀的开度;控制所述电子膨胀阀维持调节后的开度一段时间后,重新判断所述压缩机是否存在液击;若所述压缩机仍存在液击,则重复上述步骤直至压缩机的液击消失。
在上述控制方法的优选技术方案中,“重新判断所述压缩机是否存在液击”的步骤包括:判断ΔI是否小于第一预设值,若判断结果为ΔI小于第一预设值则判定所述压缩机的液击消失;并且/或者判断ΔPs是否小于第二预设值,若判断结果为ΔPs小于第二预设值则判定所述压缩机的液击消失;并且/或者ΔPd是否小于第三预设值,若判断结果为ΔPd小于第三预设值则判定所述压缩机的液击消失。
在上述控制方法的优选技术方案中,所述控制方法还包括:判断ΔI是否大于第四预设值,当ΔI大于所述第四预设值时,控制所述空调器停止工作,所述第四预设值大于所述第一预设值。
在上述控制方法的优选技术方案中,所述电子膨胀阀在所述空调器的每个阶段均设置有基准开度,所述控制方法还包括:在所述空调器每个阶段,判断所述压缩机是否存在液击之前,所述空调器在所述电子膨胀阀以处于基准开度的条件下先运行设定时间。
为了解决上述问题,本发明还提供了一种防止空调器的压缩机液击的控制系统,所述空调器包括电子膨胀阀,所述控制系统包括:与所述电子膨胀阀连接的控制器,所述控制器被配置为通过所述压缩机的运行参数来判断所述压缩机是否存在液击,若判断结果为所述压缩机存在液击,则逐步调整所述电子膨胀阀的开度直至所述压缩机的液击消失。
在上述控制系统的优选技术方案中,所述控制系统还包括参数采集装置;所述控制器通过下列步骤判断所述压缩机是否存在液击:计算所述参数采集装置采集到的运行参数每隔设定时间间隔T的变化值;判断所述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击。
在上述控制系统的优选技术方案中,所述运行参数包括所述压缩机的运行电流I、吸气压力Ps和排气压力Pd,所述参数采集装置包括与所述控制器连接的互感器、第一压力传感器和第二压力传感器,所述互感器被配置为采集所述压缩机的运行电流I,所述第一压力传感器被配置为测量所述压缩机的吸气压力Ps、所述第二压力传感器被配置为采集所述压缩机的排气压力Pd;所述控制器通过下列步骤判断所述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击:判断ΔI是否大于第一预设值、判断ΔPs是否大于第二预设值以及判断ΔPd是否大于第三预设值;当ΔI、ΔPs和ΔPd分别都大于第一、第二和第三预设值时,则判定所述压缩机存在液击;其中,ΔI为所述压缩机的运行电流每隔设定时间间隔T的变化值,ΔPs为所述压缩机的吸气压力每隔设定时间间隔T的变化值;ΔPd为所述压缩机的排气压力每隔设定时间间隔T的变化值。
本发明提供的防止空调器的压缩机液击的控制方法及控制系统,相对于现有技术中设置足够大的吸气过热度来防止液击的方法,本发明通过压缩机的运行参数来判断压缩机是否发生液击的方法更为直接,且能及时发现压缩机是否发生液击;当判定压缩机存在液击时通过逐步调整电子膨胀阀的开度来解除液击,调整方法更为合理,能够将电子膨胀阀的开度调节至更为较佳的开度。
附图说明
下面参照附图来描述本发明的防止空调器的压缩机液击的控制方法及控制系统。附图中:
图1为本发明实施例中的防止空调器的压缩机液击的控制方法的流程图;
图2为本发明实施例中的防止空调器的压缩机液击的控制方法中的步骤S101的流程图;
图3为本发明实施例中的防止空调器的压缩机液击的控制方法中的步骤S102的流程图;
图4为本发明实施例中的一种空调器启动阶段的防止压缩机液击的控制方法的流程图;
图5为本发明实施例中的防止空调器的压缩机液击的控制系统的结构示意图。
附图标记列表:
控制器1;压缩机2;四通阀3;电子膨胀阀4;换热器5;蒸发器6;储液罐7;气液分离器8;互感器9;第一压力传感器P 1;第二压力传感器P 2;第一温度测量装置T 1;第二温度测量装置T 2
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机 械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1,对本发明的防止空调器的压缩机液击的控制方法进行描述,图1为本发明实施例中的防止空调器的压缩机液击的控制方法的流程图。请参见图1,本实施例提供了一种防止空调器的压缩机液击的控制方法,空调器包括电子膨胀阀,该控制方法包括:
步骤S101:通过压缩机的运行参数来判断压缩机是否存在液击。
步骤S102:若判断结果为压缩机存在液击,则逐步调整电子膨胀阀的开度直至压缩机的液击消失。
相对于现有技术中设置足够大的吸气过热度来防止液击的方法,本实施例通过压缩机的运行参数来判断压缩机是否发生液击的方法更为直接,且能及时发现压缩机是否发生液击;当判定压缩机存在液击时通过逐步调整电子膨胀阀的开度来消除液击,调整方法更为合理,能够将电子膨胀阀的开度调节至更为较佳的开度。
进一步地,电子膨胀阀在空调器的每个阶段均设置有基准开度,控制方法还包括:在空调器的每个阶段,判断压缩机是否存在液击之前,空调器在电子膨胀阀处于基准开度的条件下先运行设定时间。这是因为压缩机在启动阶段或者由一个阶段向下一个阶段过渡时压缩机的工况改变,从而使得压缩机的运行参数在一个时间段内是具有较大变化的,但此时并非发生液击。以空调器启动阶段为例,空调器在电子膨胀阀以启动阶段的基准开度的条件下运行第一设定时间后再通过压缩机的运行参数来判断压缩机是否存在液击;当空调器刚进入到运行阶段,空调器在电子膨胀阀以运行阶段的基准开度的条件下运行第二设定时间后再通过压缩机的运行参数来判断压缩机是否存在液击。需要说明的是,第一设定时间与第二设定时间可以相同也可以不同,而空调器在每个阶段其电子膨胀阀的开度也有所不同。
图2为本发明实施例中的防止空调器的压缩机液击的控制方法中的步骤S101的流程图。请参见图2,进一步地,在本实施例提供的防止空调器的压缩机液击的控制方法中,步骤S101包括:
步骤S1011:采集压缩机的运行参数。具体地,在本实施例中,运行参数可以包括压缩机的运行电流I、吸气压力Ps和排气压力Pd。需要说明的是,采集运行参数时,可以是连续采集,也可以是每隔设定时间间隔T采集一次。其中,可以通过互感器采集压缩机的运行电流I,通过压力传感器来采集压缩机的吸气压力Ps和排气压力Pd。
步骤S1012:计算运行参数每隔设定时间间隔T的变化值;ΔI为压缩机的运行电流每隔设定时间间隔T的变化值,ΔPs为压缩机的吸气压力每隔设定时间间隔T的变化值;ΔPd为压缩机的排气压力每隔设定时间间隔T的变化值。需要说明的是,时间间隔T可以根据具体的空调器的型号及运行条件进行设定,例如,对于某一型号的空调器来说,其在启动阶段、制冷运行阶段和制热运行阶段的时间间隔T可以相同也可以不同。
步骤S1013:判断运行参数的变化值是否大于对应的标准值并根据判断结果判定压缩机是否存在液击。具体地,该步骤包括:判断ΔI是否大于第一预设值、判断ΔPs是否大于第二预设值、判断ΔPd是否大于第三预设值,当ΔI、ΔPs和ΔPd分别都大于第一、第二和第三预设值时,则判定压缩机存在液击。若判断结果为ΔI、ΔPs和ΔPd中至少有一项是小于对应的设定值的,则判断压缩机没有发生液击,因此无需对电子膨胀阀进行调节。
在本实施例中,通过以ΔI、ΔPs和ΔPd作为判断压缩机是否发生液击的判断参数,上述参数获取较为简单,且具有较高的精度,使得运算过程较为简单;并且采用多参数进行综合判断,有利于提高判断压缩机是否发生液击的准确度。
图3为本发明实施例中的防止空调器的压缩机液击的控制方法中的步骤S102的流程图。请参见图3,进一步地,在本实施例中,步骤S102包括:
步骤S1021:根据电子膨胀阀的当前开度确定电子膨胀阀的开度的调节值。例如,电子膨胀阀的当前开度为60%,由于发生了液击,因此需要降低电子膨胀阀的开度,在本次调节中,可以将电子膨胀阀的开度的调节值设置为2%。需要上述具体的开度值液击开度的调节值仅为示例性说明,具体的开度及开度的调节值应根据具体的环境确定。
步骤S1022:以调节值调节电子膨胀阀的开度。这是为了使压缩机在该电子膨胀阀的开度下能够运行至较为平稳的状态,避免电子膨胀阀调节后压缩机还没有运行平稳而影响对压缩机是否存在液击的再次判断。
步骤S1023:控制电子膨胀阀维持调节后的开度一段时间后,重新判断压缩机是否存在液击。判断ΔI是否小于第一预设值,若判断结果为ΔI小于第一预设值则判定压缩机的液击消失;并且/或者判断ΔPs是否小于第二预设值,若判断结果为ΔPs小于第二预设值则判定压缩机的液击消失;并且/或者ΔPd是否小于第三预设值,若判断结果为ΔPd小于第三预设值则判定压缩机的液击消失。
步骤S1024:若压缩机仍存在液击,则重复上述步骤直至压缩机的液击消失。
在本实施例中,通过逐步调整电子膨胀阀的开度并且在每次调整的后,待压缩机运行平稳后再重新判断压缩机是否存在液击,能够更为准确地将电子膨胀阀调节到最佳开度,这有利于压缩机以较佳的状态运行,降低空调器的功耗,也能够防止电子膨胀阀等与过热度相关的部件被损坏从而提高空调器的使用寿命。
进一步地,本实施例提供的控制方法还包括:判断ΔI是否大于第四预设值,当ΔI大于第四预设值时,控制空调器停止工作,第四预设值大于第一预设值。这是因为当ΔI急剧变化时很可能是空调器发生了过载、管路堵塞、某些结构损伤等情况,及时将空调器停止运行有利于保护压缩机及空调器的其他结构。
图4为本发明实施例中的一种空调器启动阶段的防止压缩机液击的控制方法的流程图。请参见图4,结合空调器启动阶段,本实施例提供了一种对防止空调器的压缩机液击的控制方法,该方法包括:
步骤S201:开启空调器。
步骤S202:以基准开度运行5min。需要说明的是,该步骤以空调器启动为时间的起点。此处所说的基准开度为空调器在启动阶段预先设定的基准开度,可以根据不同的空调器类型、运行环境进行设定;而运行时间“5min”仅是示例性说明,也可以根据不同的空调器类型、运行环境进行设定。
步骤S203:判断ΔI是否大于第一预设值、判断ΔPs是否大于第二预设值、判断ΔPd是否大于第三预设值。当ΔI、ΔPs和ΔPd分别都大于第一、第二和第三预设值时,则判定压缩机存在液击,此时执行步骤S204;若判断结果为ΔI、ΔPs和ΔPd中至少有一项是小于对应的设定值的,则判断空调器没有发生液击,空调器在启动阶段的运行正常,因此无需对电子膨胀阀进行调节。
步骤S204:根据电子膨胀阀的当前开度确定电子膨胀阀的开度的调节值,以调节值调节电子膨胀阀的开度。例如,电子膨胀阀在启动阶段的基准开度为70%,由于发生了液击,因此需要降低电子膨胀阀的开度,在第一次调节中,基准开度即为电子膨胀阀的当前开度,可以将电子膨胀阀的开度的调节值设置为5%。需要上述具体的开度值液击开度的调节值仅为示例性说明,具体的开度及开度的调节值应根据具体的环境确定。
步骤S205:控制电子膨胀阀维持调节后的开度5min。“5min”仅是示例性说明,可以根据不同的空调器类型、运行环境进行设定。
步骤S206:判断ΔI是否小于第一预设值。如果判断结果为ΔI小于第一预设值,则压缩机的液击已经消失,可以停止调整;如果判断结果为ΔI大于第一预设值,则执行步骤S207。
步骤S207:判断ΔI是否大于第四预设值。如果判断结果为ΔI大于第四预设值,则压缩机的运行电流波动剧烈,压缩机及空调器的其他部件很可能存在被损坏的风险,此时应控制空调器停止运行,以保证空调器的安全;如果判断结果为ΔI小第四预设值,则返回步骤S204进行重新调节,直至压缩机的液击消失。需要说明的是,第二次电子膨胀阀的开度的调节值可以与第一次的调节值相同,也可以与第一次的调节值不同,当第二次电子膨胀阀的开度的调节值可以与第一次的调节值不同时,优选的,调节值的大小依次减小,即采用粗调-细调的过程实现对电子膨胀阀开度的调节,这有利于电子膨胀阀的开度达到最佳。
需要说明的是,在该具体实施例中,虽然讲“判断ΔI是否大于第四预设值”设置为步骤S207,但这仅是示例性说明,实质上,该步骤可以设置在整个流程的任一环节。进一步地,实时监测ΔI并判断 ΔI是否大于第四预设值能够及时发现空调器是否存在运行风险,能够有效降低空调器被损坏的可能。
图5为本发明实施例中的防止空调器的压缩机液击的控制系统的结构示意图。请参见图5,本实施例还提供了一种防止空调器的压缩机液击的控制系统,空调器包括压缩机2和电子膨胀阀4,控制系统包括:与电子膨胀阀4连接的控制器1,控制器1被配置为通过压缩机2的运行参数来判断压缩机2是否存在液击,若判断结果为压缩机2存在液击,则逐步调整电子膨胀阀4的开度直至压缩机2的液击消失。相对于现有技术中设置足够大的吸气过热度来防止液击的方法,本实施例通过压缩机的运行参数来判断压缩机是否发生液击更为直接,且能及时发现压缩机是否发生液击;当判定压缩机存在液击时通过逐步调整电子膨胀阀的开度来解除液击,调整方法更为合理,能够将电子膨胀阀的开度调节至更为较佳的开度。
进一步地,请继续参见图5,控制系统还包括参数采集装置,控制器1通过下列步骤判断压缩机是否存在液击:计算参数采集装置采集到的运行参数每隔设定时间间隔T的变化值;判断运行参数的变化值是否大于对应的标准值并根据判断结果判定压缩机是否存在液击。
进一步地,请继续参见图5,运行参数包括压缩机2的运行电流I、吸气压力Ps和排气压力Pd,参数采集装置包括与控制器1连接的互感器9、第一压力传感器P 1和第二压力传感器P 2,互感器9被配置为采集压缩机的运行电流I,第一压力传感器P 1被配置为测量压缩机的吸气压力Ps、第二压力传感器P 2被配置为采集压缩机2的排气压力Pd;控制器1被配置通过下列步骤判断运行参数的变化值是否大于对应的标准值并根据判断结果判定压缩机2是否存在液击:判断ΔI是否大于第一预设值、判断ΔPs是否大于第二预设值、判断ΔPd是否大于第三预设值;当ΔI、ΔPs和ΔPd分别都大于第一、第二和第三预设值时,则判定压缩机2存在液击;其中,ΔI为压缩机2的运行电流每隔设定时间间隔T的变化值,ΔPs为压缩机2的吸气压力每隔设定时间间隔T的变化值;ΔPd为压缩机2的排气压力每隔设定时间间隔T的变化值。
需要说明的是,虽然本实施例并未详细说明,但空调器还包括四通阀3、换热器5、蒸发器6、储液罐7和气液分离器8、第一温度测量装置T 1和第二温度测量装置T 2等组件。四通阀3具有四个接口,即C、S、E和D这四个接口,四通阀在不同的工作状态下(制冷状态或制热状态)成不同的导通状态。换热器5和蒸发器6用于换热器与环境进行热交换。储液罐7和气液分离器8有利于防止液体制冷剂进入到压缩机。第一温度测量装置T 1用于测量压缩机的吸气温度,第二温度测量装置T 2用于测量压缩机的排气温度。各组件的具体型号和参数可以根据具体的实施条件进行选择,本发明对此并不做限定。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种防止空调器的压缩机液击的控制方法,所述空调器包括电子膨胀阀,其特征在于,所述控制方法包括:
    通过所述压缩机的运行参数来判断所述压缩机是否存在液击;
    若判断结果为所述压缩机存在液击,则逐步调整所述电子膨胀阀的开度直至所述压缩机的液击消失。
  2. 根据权利要求1所述的控制方法,其特征在于,“通过所述压缩机的运行参数来判断所述压缩机是否存在液击”的步骤包括:
    采集所述压缩机的运行参数;
    计算所述运行参数每隔设定时间间隔T的变化值;
    判断所述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击。
  3. 根据权利要求2所述的控制方法,其特征在于,所述运行参数包括所述压缩机的运行电流I、吸气压力Ps和排气压力Pd,“判断所述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击”的步骤包括:
    判断ΔI是否大于第一预设值、判断ΔPs是否大于第二预设值以及判断ΔPd是否大于第三预设值;
    当ΔI、ΔPs和ΔPd分别都大于第一、第二和第三预设值时,则判定所述压缩机存在液击;
    其中,ΔI为所述压缩机的运行电流每隔设定时间间隔T的变化值,ΔPs为所述压缩机的吸气压力每隔设定时间间隔T的变化值;ΔPd为所述压缩机的排气压力每隔设定时间间隔T的变化值。
  4. 根据权利要求3所述的控制方法,其特征在于,“逐步调整所述电子膨胀阀的开度直至所述压缩机的液击消失”的步骤包括:
    根据所述电子膨胀阀的当前开度确定所述电子膨胀阀的开度的调节值;
    以所述调节值调节所述电子膨胀阀的开度;
    控制所述电子膨胀阀维持调节后的开度一段时间后,重新判断所述压缩机是否存在液击;
    若所述压缩机仍存在液击,则重复上述步骤直至压缩机的液击消失。
  5. 根据权利要求4所述的控制方法,其特征在于,“重新判断所述压缩机是否存在液击”的步骤包括:
    判断ΔI是否小于第一预设值,若判断结果为ΔI小于第一预设值则判定所述压缩机的液击消失;
    并且/或者判断ΔPs是否小于第二预设值,若判断结果为ΔPs小于第二预设值则判定所述压缩机的液击消失;
    并且/或者ΔPd是否小于第三预设值,若判断结果为ΔPd小于第三预设值则判定所述压缩机的液击消失。
  6. 根据权利要求3所述的控制方法,其特征在于,所述控制方法还包括:
    判断ΔI是否大于第四预设值,当ΔI大于所述第四预设值时,控制所述空调器停止工作,所述第四预设值大于所述第一预设值。
  7. 根据权利要求1所述的控制方法,其特征在于,所述电子膨胀阀在所述空调器的每个阶段均设置有基准开度,所述控制方法还包括:
    在所述空调器的每个阶段,判断所述压缩机是否存在液击之前,所述空调器在所述电子膨胀阀处于基准开度的条件下先运行设定时间。
  8. 一种防止空调器的压缩机液击的控制系统,所述空调器包括电子膨胀阀,其特征在于,所述控制系统包括:
    与所述电子膨胀阀连接的控制器,所述控制器被配置为通过所述压缩机的运行参数来判断所述压缩机是否存在液击,若判断结果为所述压缩机存在液击,则逐步调整所述电子膨胀阀的开度直至所述压缩 机的液击消失。
  9. 根据权利要求8所述的控制系统,其特征在于,所述控制系统还包括参数采集装置;
    所述控制器通过下列步骤判断所述压缩机是否存在液击:
    计算所述参数采集装置采集到的运行参数每隔设定时间间隔T的变化值;
    判断所述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击。
  10. 根据权利要求9所述的控制系统,其特征在于,所述运行参数包括所述压缩机的运行电流I、吸气压力Ps和排气压力Pd,所述参数采集装置包括与所述控制器连接的互感器、第一压力传感器和第二压力传感器,所述互感器被配置为采集所述压缩机的运行电流I,所述第一压力传感器被配置为测量所述压缩机的吸气压力Ps、所述第二压力传感器被配置为采集所述压缩机的排气压力Pd;
    所述控制器通过下列步骤判断所述运行参数的变化值是否大于对应的标准值并根据判断结果判定所述压缩机是否存在液击:
    判断ΔI是否大于第一预设值、判断ΔPs是否大于第二预设值以及判断ΔPd是否大于第三预设值;
    当ΔI、ΔPs和ΔPd分别都大于第一、第二和第三预设值时,则判定所述压缩机存在液击;
    其中,ΔI为所述压缩机的运行电流每隔设定时间间隔T的变化值,ΔPs为所述压缩机的吸气压力每隔设定时间间隔T的变化值;ΔPd为所述压缩机的排气压力每隔设定时间间隔T的变化值。
PCT/CN2019/103729 2019-03-01 2019-08-30 防止空调器的压缩机液击的控制方法及控制系统 WO2020177284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910156502.6A CN110006138B (zh) 2019-03-01 2019-03-01 防止空调器的压缩机液击的控制方法及控制系统
CN201910156502.6 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020177284A1 true WO2020177284A1 (zh) 2020-09-10

Family

ID=67166245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103729 WO2020177284A1 (zh) 2019-03-01 2019-08-30 防止空调器的压缩机液击的控制方法及控制系统

Country Status (2)

Country Link
CN (1) CN110006138B (zh)
WO (1) WO2020177284A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543328A (zh) * 2022-01-17 2022-05-27 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器、存储介质
CN115371308A (zh) * 2022-08-18 2022-11-22 南京天加环境科技有限公司 一种防回液空调系统及控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006138B (zh) * 2019-03-01 2022-10-25 青岛海尔空调电子有限公司 防止空调器的压缩机液击的控制方法及控制系统
CN110553441B (zh) * 2019-09-19 2021-08-20 重庆美的通用制冷设备有限公司 运行控制方法、系统、可读存储介质、压缩及空调系统
CN114353262B (zh) * 2021-12-21 2023-08-15 青岛海尔空调电子有限公司 用于空调压缩机液击故障的控制方法及装置、空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092686A2 (en) * 2003-04-04 2004-10-28 Carrier Corporation Compressor protection from liouid hazards
CN102032731A (zh) * 2010-12-08 2011-04-27 海尔集团公司 中央空调器及控制该中央空调器中冷媒流量的方法
CN202267261U (zh) * 2011-06-24 2012-06-06 大连三洋压缩机有限公司 涡旋变频并联冷凝机组
CN105526683A (zh) * 2016-02-19 2016-04-27 珠海格力电器股份有限公司 一种空调系统的控制方法及装置
EP3109573A1 (en) * 2015-06-24 2016-12-28 Emerson Climate Technologies GmbH Components cross-mapping in a refrigeration system
CN107289695A (zh) * 2016-04-12 2017-10-24 天津市冰科制冷设备有限公司 一种制冷压缩机组的节能控制系统
CN110006138A (zh) * 2019-03-01 2019-07-12 青岛海尔空调电子有限公司 防止空调器的压缩机液击的控制方法及控制系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438544B (zh) * 2013-09-04 2015-11-11 深圳麦克维尔空调有限公司 一种空调设备的过热度控制方法及系统
CN105509387B (zh) * 2014-10-09 2018-04-03 青岛海尔空调电子有限公司 风冷热泵机组及其中的电子膨胀阀开度控制方法、空调
CN104481881B (zh) * 2014-10-27 2017-05-24 珠海格力电器股份有限公司 空调机组压缩机液击判断方法、系统和空调机组
JP6052456B2 (ja) * 2015-04-28 2016-12-27 ダイキン工業株式会社 冷凍装置
CN104848489B (zh) * 2015-05-15 2018-02-02 广东美的制冷设备有限公司 空调器的控制方法
CN106482411B (zh) * 2015-08-31 2019-03-26 海尔(深圳)研发有限责任公司 一种多联机空调压缩机防液击控制方法
CN106014946B (zh) * 2016-06-16 2018-09-18 珠海格力电器股份有限公司 一种压缩机寿命的控制方法、装置及制冷系统
CN106403427B (zh) * 2016-08-31 2019-04-02 烟台欧森纳地源空调股份有限公司 一种制冷系统启动阶段电子膨胀阀的控制方法
CN108088041B (zh) * 2017-12-06 2021-06-22 广东美的制冷设备有限公司 电子膨胀阀的控制方法、辐射空调、及存储介质
CN108954712B (zh) * 2018-07-23 2020-12-18 广东美的暖通设备有限公司 空调器的控制方法与控制系统及空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092686A2 (en) * 2003-04-04 2004-10-28 Carrier Corporation Compressor protection from liouid hazards
CN102032731A (zh) * 2010-12-08 2011-04-27 海尔集团公司 中央空调器及控制该中央空调器中冷媒流量的方法
CN202267261U (zh) * 2011-06-24 2012-06-06 大连三洋压缩机有限公司 涡旋变频并联冷凝机组
EP3109573A1 (en) * 2015-06-24 2016-12-28 Emerson Climate Technologies GmbH Components cross-mapping in a refrigeration system
CN105526683A (zh) * 2016-02-19 2016-04-27 珠海格力电器股份有限公司 一种空调系统的控制方法及装置
CN107289695A (zh) * 2016-04-12 2017-10-24 天津市冰科制冷设备有限公司 一种制冷压缩机组的节能控制系统
CN110006138A (zh) * 2019-03-01 2019-07-12 青岛海尔空调电子有限公司 防止空调器的压缩机液击的控制方法及控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543328A (zh) * 2022-01-17 2022-05-27 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器、存储介质
CN114543328B (zh) * 2022-01-17 2023-11-21 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器、存储介质
CN115371308A (zh) * 2022-08-18 2022-11-22 南京天加环境科技有限公司 一种防回液空调系统及控制方法
CN115371308B (zh) * 2022-08-18 2023-12-19 南京天加环境科技有限公司 一种防回液空调系统及控制方法

Also Published As

Publication number Publication date
CN110006138B (zh) 2022-10-25
CN110006138A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2020177284A1 (zh) 防止空调器的压缩机液击的控制方法及控制系统
CN110895020B (zh) 一种制冷剂泄漏检测方法及空调器
CN102032731B (zh) 中央空调器及控制该中央空调器中冷媒流量的方法
US20110088414A1 (en) Air conditioning apparatus refrigerant quantity determination method and air conditioning apparatus
JP4462096B2 (ja) 空気調和装置
WO2011148856A1 (ja) 熱源側熱交換器用ファンの制御方法および空気調和装置
CN111197836A (zh) 一种空调器传感器脱落智能检测方法及空调器
US11774128B2 (en) Environmental control unit including maintenance prediction
CN105004007A (zh) 变频空调器的控制方法及装置
CN103245154A (zh) 一种汽车空调系统电子膨胀阀的控制方法
CN105299840A (zh) 多联机系统及其旁通阀体的故障检测方法
WO2016063550A1 (ja) 空調システムの制御装置、空調システム、及び空調システムの異常判定方法
CN112393377A (zh) 故障判断方法及空调器
CN110836519B (zh) 一种空调器冷媒泄漏检测方法及检测系统
CN105864953A (zh) 空调节流部件的堵塞检测方法、装置及空调
CN110529993B (zh) 运行控制装置及方法、空调器、计算机可读存储介质
CN106440443B (zh) 一种适用高温制冷的空调系统及控制方法
JPH09159293A (ja) 空気調和機の圧縮機保護制御装置
KR100565995B1 (ko) 실내기 설치 위치에 따른 멀티형 에어컨의 운전 방법
KR20000073045A (ko) 공기조화기의 팽창기구 고장판단방법
CN107355951B (zh) 空调制冷模式控制方法、装置以及空调
JP2008202868A (ja) 空気調和機
JP6444536B2 (ja) 圧縮機劣化診断装置および圧縮機劣化診断方法
CN114484729B (zh) 空调器容错控制方法、装置、空调器及存储介质
JP2005098633A (ja) 二段圧縮機搭載低温機器診断装置、低温機器遠隔監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918029

Country of ref document: EP

Kind code of ref document: A1