WO2016063550A1 - 空調システムの制御装置、空調システム、及び空調システムの異常判定方法 - Google Patents
空調システムの制御装置、空調システム、及び空調システムの異常判定方法 Download PDFInfo
- Publication number
- WO2016063550A1 WO2016063550A1 PCT/JP2015/051666 JP2015051666W WO2016063550A1 WO 2016063550 A1 WO2016063550 A1 WO 2016063550A1 JP 2015051666 W JP2015051666 W JP 2015051666W WO 2016063550 A1 WO2016063550 A1 WO 2016063550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioning
- conditioning system
- unit
- indoor
- indoor unit
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/38—Failure diagnosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/49—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0428—Safety, monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/22—Preventing, detecting or repairing leaks of refrigeration fluids
- F25B2500/222—Detecting refrigerant leaks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2614—HVAC, heating, ventillation, climate control
Definitions
- the present invention relates to a control device for an air conditioning system, an air conditioning system, and an abnormality determination method for the air conditioning system.
- a manufacturer obtains air conditioning system operation data by remote monitoring, and proposes energy saving to the customer and determines whether maintenance is necessary.
- Non-Patent Document 1 a local server installed in a customer's building periodically transmits air-conditioner operation data to a center server for air-conditioning remote monitoring via the Internet. Discloses an air conditioning remote monitoring system in which operation data received by a center server is displayed. In this air conditioning remote monitoring system, the main data of the air conditioner (pressure value, refrigerant temperature, fan speed, compressor operating time, compressor speed, compressor start / stop frequency, etc.) are periodically sent to the center server at regular intervals. Send.
- the main data of the air conditioner pressure value, refrigerant temperature, fan speed, compressor operating time, compressor speed, compressor start / stop frequency, etc.
- the manufacturer identifies the failure part indicating the abnormality based on the operation data transmitted to the center server, and contacts the service center and requests for repair.
- the present invention has been made in view of such circumstances, and is capable of more easily and accurately grasping the operating state of the air conditioning system, an air conditioning system control device, an air conditioning system, and an air conditioning system abnormality determination method
- the purpose is to provide.
- the air conditioning system control device, the air conditioning system, and the air conditioning system abnormality determination method of the present invention employ the following means.
- the control device for an air conditioning system is a control device for an air conditioning system including one or a plurality of outdoor units and one or a plurality of indoor units, via the outdoor unit and a communication medium.
- An outdoor unit control unit configured to acquire information on a device mounted on the outdoor unit via the communication medium, and to output a control command to the device mounted on the outdoor unit;
- An indoor unit that is communicable with a unit via a communication medium, acquires information on a device mounted on the indoor unit via the communication medium, and outputs a control command to the device mounted on the indoor unit
- the storage means for storing the operation state of the air conditioning system for each load state of the air conditioning system, and the past operation state according to the load state equivalent to the current operation state, Different devices And a malfunction determination unit that determines the presence or absence of.
- the control device of the air conditioning system virtually includes an outdoor unit control unit that outputs a control command to a device mounted on the outdoor unit, and an indoor unit control unit that outputs a control command to the device mounted on the indoor unit. It is mounted on.
- Devices mounted on the outdoor unit and the indoor unit are, for example, an expansion valve, a fan, and a four-way valve. That is, since the indoor unit control unit and the outdoor unit control unit exist independently of the outdoor unit and the indoor unit, the configurations of the outdoor unit and the indoor unit are simplified. Further, for example, it is not necessary to install an advanced program in the outdoor unit and the indoor unit, such as mounting only the communication and actuating functions of parts, and the outdoor unit and the indoor unit can be easily replaced.
- the outdoor unit or the indoor unit may be an outdoor unit or an indoor unit manufactured by a manufacturer different from the control device as long as it satisfies the specifications.
- the outdoor unit and the indoor unit are controlled by different control devices
- the outdoor unit and the indoor unit are operated by different control programs. It is difficult to grasp accurately.
- the control device of the air conditioning system stores the operation state of the air conditioning system for each load state of the air conditioning system by the storage unit.
- the operating state of the air conditioning system is a combination of the operating point of each device mounted on the indoor unit or the outdoor unit and the state quantity of the air conditioning system (such as refrigerant temperature and pressure).
- the presence or absence of abnormality of an apparatus is determined by the abnormality determination means comparing with the past driving
- an equivalent load state is that it is within an allowable error range even if the outside air temperature, the number of indoor units operated, and the like are the same or different.
- the past operation state may be the past operation state of the device itself, or may be the past operation state of another air conditioning system having the same device configuration, for example.
- one control device controls the outdoor unit and the indoor unit, so that the control state of each device and various state quantities in the air conditioning system can be managed by this control device. That is, this configuration can easily and accurately grasp the operating state of the air conditioning system without using a remote monitoring server as in the conventional air conditioning system.
- the air conditioning system according to this configuration associates the operating point and state quantity of these devices and compares the current and past operating states. Thus, since it is determined whether there is an abnormality, it is possible to accurately grasp the influence of the operation of the device on the air conditioning system.
- the abnormality determination means determines whether or not there is an abnormality in the device based on a predetermined state quantity of the air conditioning system that is more likely to vary depending on the operation of the device. Good.
- the operation state of the air conditioning system can be determined earlier. it can.
- the refrigerant amount in the air conditioning system may be calculated based on the state quantity of the air conditioning system.
- the air conditioning system includes one or a plurality of outdoor units, one or a plurality of indoor units, and the control device described above.
- An abnormality determination method for an air conditioning system includes: one or a plurality of outdoor units; one or a plurality of indoor units; and communication with the outdoor unit via a communication medium. And acquiring information on the device mounted on the outdoor unit via the outdoor unit control unit that outputs a control command to the device mounted on the outdoor unit, and being able to communicate with the indoor unit via a communication medium
- An abnormality determination method for an air conditioning system including an indoor unit control unit that obtains information on a device mounted on the indoor unit via the communication medium and outputs a control command to the device mounted on the indoor unit And storing the operation state of the air conditioning system for each load state of the air conditioning system, and comparing the past operation state according to the load state equivalent to the current operation state, Abnormality Judges.
- FIG. 1 is a diagram showing a refrigerant system of an air conditioning system 1 according to the present embodiment.
- the air conditioning system 1 includes one outdoor unit B and a plurality of indoor units A1 and A2 connected by a refrigerant pipe 10 common to the outdoor unit B.
- a configuration in which two indoor units A1 and A2 are connected to one outdoor unit B is illustrated.
- the number of outdoor units B installed and the number of connected indoor units A1 and A2 are illustrated. Is not limited.
- the outdoor unit B includes, for example, a compressor 11 that compresses and sends out refrigerant, a four-way valve 12 that switches a refrigerant circulation direction, an outdoor heat exchanger 13 that exchanges heat between the refrigerant and outside air, an outdoor fan 15, and refrigerant.
- an accumulator 16 provided in the suction side piping of the compressor 11, for example, an outdoor unit expansion valve 17 which is an electronic expansion valve is provided.
- the outdoor unit B is provided with various sensors 20 (see FIG. 2) such as a pressure sensor 21 (high pressure sensor 21_1, low pressure sensor 21_2) for measuring the refrigerant pressure, an outdoor temperature sensor 24 for measuring the refrigerant temperature, and the like. ing.
- the high pressure sensor 21_1 measures the pressure of the refrigerant discharged from the compressor 11, and the low pressure sensor 21_2 measures the pressure of the refrigerant sent to the compressor 11.
- Each of the indoor units A1 and A2 includes an indoor heat exchanger 31, an indoor fan 32, an indoor unit expansion valve 33, and the like.
- the two indoor units A1 and A2 are connected to the refrigerant pipes 10 branched by the header 22 and the distributor 23 in the outdoor unit B, respectively.
- the indoor temperature sensor 35_1 measures the inlet refrigerant temperature of the indoor heat exchanger 31
- the indoor temperature sensor 35_2 measures the intermediate refrigerant temperature of the indoor heat exchanger 31
- the indoor temperature sensor 35_3 is connected to the indoor heat exchanger 31. Measure the outlet refrigerant temperature.
- FIG. 2 is an electrical configuration diagram of the air conditioning system 1 according to the present embodiment.
- indoor units A1 and A2 an outdoor unit B, and a control device 3 are connected via a common bus 5 so that information can be exchanged between them.
- the common bus 5 is an example of a communication medium, and the communication may be wireless or wired.
- the control device 3 is connected to a maintenance / inspection device 6 that performs maintenance / inspection via a communication medium 7, and is configured to transmit operation data periodically or to promptly notify that when an abnormality occurs. .
- each indoor unit control part 41_1, 41_2 and the outdoor unit control part 43 are provided independently of the indoor units A1, A2 and the outdoor unit B.
- the indoor unit control unit 41_1 that controls the indoor unit A1, the indoor unit control unit 41_2 that controls the indoor unit A2, and the outdoor unit control unit 43 that controls the outdoor unit B are virtualized control units. Each is mounted on the control device 3.
- the indoor unit control unit 41 and the outdoor unit control unit 43 exist independently of the indoor unit A and the outdoor unit B, the configurations of the indoor unit A and the outdoor unit B are simplified. Further, for example, it is not necessary to install an advanced program in the indoor unit A and the outdoor unit B, such as mounting only the communication and actuating functions of parts, and the indoor unit A and the outdoor unit B can be easily replaced. Can do.
- the indoor units A1 and A2 and the outdoor unit B may be indoor units A and B manufactured by a manufacturer different from the control device 3 as long as they satisfy the specifications.
- the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 are integrated into the control device 3 having one piece of hardware, and can operate independently on the hardware included in the control device 3. .
- the control device 3 includes a master control unit 40 for causing the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 to virtually exist in the control device.
- the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 are configured to be able to exchange information with each other. Moreover, the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 may perform autonomous distributed control that enables autonomous distributed control independent of each other while sharing information, for example.
- the autonomous distributed control refers to the sensors 20 and other control units (for example, in the case of the indoor unit control unit 41_1, the indoor unit control unit 41_2 and the outdoor unit control unit 43 correspond to other control units).
- the information is received from the information, and the information is input to the predetermined application according to the control rule, and the corresponding indoor unit A1, A2 or the outdoor unit B (for example, the indoor unit A1 in the case of the indoor unit control unit 41_1) is controlled. To give a directive.
- indoor unit A1 an indoor unit local controller 52 provided corresponding to each device 51 such as the indoor fan 32, the indoor unit expansion valve 33, etc. (see FIG. 1) is shared via a gateway (communication means) 53. It is connected to the bus 5.
- indoor unit A2 is also set as the structure similar to indoor unit A1.
- outdoor unit local controllers 62 provided corresponding to various devices 61 such as the compressor 11, the four-way valve 12, the outdoor fan 13 and the like (see FIG. 1) are connected via a gateway (communication means) 63. Are connected to a common bus 5.
- the gateways 53 and 63 are a collection of functions including, for example, a communication driver, an address storage area, a device attribute storage area, a component device information storage area, an OS, and a communication framework.
- the address storage area is a storage area for storing an address, which is a unique identification number assigned to communicate with the control device 3 or the like.
- the device attribute storage area is a storage area for storing its own attribute information and the attribute information of the devices 51 and 61 that it owns. For example, whether it is an indoor unit or an outdoor unit, capability, mounted sensors Information (for example, temperature sensor, pressure sensor, etc.), device information (for example, number of fan taps, full pulse of valve, etc.) is stored.
- sensors 20 for example, a pressure sensor for measuring the refrigerant pressure and a temperature sensor for measuring the refrigerant temperature
- sensors 20 are respectively connected to the common bus 5 via the AD board 71. It is connected to the.
- a node having a correction function for correcting the measurement value may be provided between the AD board 71 and the sensors 20. In this way, by providing a correction function, it is possible to use inexpensive sensors that are inexpensive and not so high in measurement accuracy.
- the indoor unit control units 41 ⁇ / b> _ ⁇ b> 1 and 41 ⁇ / b> _ ⁇ b> 2 of the control device 3 receive measurement data and control from the sensors 20, the indoor unit local controller 52, and the outdoor unit local controller 62 via the common bus 5.
- Various pieces of equipment for example, the indoor fan 32, the indoor unit expansion valve 33, etc.
- a control command is output to
- the control command is sent to the indoor unit local controller 52 via the common bus 5 and the gateway 53.
- the indoor unit local controller 52 drives the corresponding device based on the received control command.
- the outdoor unit control unit 43 of the control device 3 acquires measurement data and control information from the sensors 20, the indoor unit local controller 52, and the outdoor unit local controller 62 via the common bus 5, and uses these measurement data as the measurement data. Based on this, by executing a predetermined outdoor unit control program, various devices (for example, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor fan 15, and the outdoor unit expansion valve 17) provided in the outdoor unit B are executed. Etc.) is output. The control command is sent to the outdoor unit local controller 62 via the common bus 5 and the gateway 63. The outdoor unit local controller 62 drives each corresponding device based on the received control command.
- various devices for example, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor fan 15, and the outdoor unit expansion valve 17
- Etc. is output.
- the control command is sent to the outdoor unit local controller 62 via the common bus 5 and the gateway 63.
- the outdoor unit local controller 62 drives each corresponding device based on the received control command.
- the indoor units A1 and A2 and the outdoor unit B may be autonomously distributed controlled by the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43, respectively.
- a control rule is set between the indoor units A1 and A2 and the outdoor unit B, and each performs control according to the control rule.
- the indoor units A1 and A2 may have set temperatures or settings set by the user or the like when the refrigerant pressure acquired from the sensors 20 is within a predetermined first allowable variation range.
- a control command for making the actual air flow and the actual air flow coincide with the air flow is determined and output to the indoor units A1 and A2 via the common bus 5, respectively.
- indoor unit control part 41_1 and 41_2 are good also as determining each control command by mutually exchanging information and cooperating.
- the outdoor unit control unit 43 controls the output command of the air conditioning system 1 for maintaining the refrigerant pressure within a predetermined second allowable fluctuation range, for example, the rotational speed of the compressor 11 and the rotational speed of the outdoor fan 15.
- the command is determined and transmitted to the outdoor unit B via the common bus 5.
- the outdoor unit control unit 43 can grasp the output change information of the indoor units A1 and A2 and determine the behavior of the outdoor unit B. It becomes possible.
- the control device 3, the indoor unit local controller 52, and the outdoor unit local controller 62 are, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
- a CPU Central Processing Unit
- RAM Random Access Memory
- ROM Read Only Memory
- a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
- the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
- the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
- the outdoor unit and the indoor unit are controlled by different control devices
- the outdoor unit and the indoor unit are operated by different control programs, so the operating state of the entire air conditioning system is accurately grasped. Difficult to do.
- it has been necessary to collect and manage data such as the operating state and various state quantities of the air conditioning system by a remote monitoring server or the like.
- the indoor unit A and the outdoor unit B manufactured by different manufacturers are used in the air conditioning system 1 according to the present embodiment, whether or not the devices mounted thereon are operating correctly as the air conditioning system 1 is determined. It is necessary to judge.
- the control device 3 of the air conditioning system 1 includes an abnormality determination control unit 44.
- the abnormality determination control unit 44 compares the current operation state of the air conditioning system 1 with a past operation state corresponding to a load state equivalent to the abnormality state of the device. An abnormality determination for determining presence / absence is executed.
- the current operation state is an operation state during operation. That is, the control device 3 performs passive monitoring control that acquires the operating state of the air conditioning system 1 that changes according to the operated device.
- the operating state is a combination of the operating point of each device mounted on the indoor unit A or the outdoor unit B and the state quantity of the air conditioning system 1.
- the state quantity is measured by the sensors 20, for example, the temperature of the refrigerant, the pressure of the refrigerant, the flow rate of the refrigerant, the degree of superheat, the room temperature, or the like, or the current value of the compressor 11.
- FIG. 3 is a functional block diagram illustrating functions of the abnormality determination control unit 44 in the control device 3 according to the present embodiment.
- the abnormality determination control unit 44 includes a state quantity acquisition unit 70, a storage unit 72, an abnormality determination unit 74, and a refrigerant amount calculation unit 76.
- the state quantity acquisition unit 70 acquires the state quantity of the air conditioning system 1 from various sensors as the operating state of the air conditioning system 1 together with the operating point of each device.
- the storage unit 72 stores the operation state acquired by the state quantity acquisition unit 70 in time series and for each load state of the air conditioning system 1.
- the abnormality determination unit 74 determines whether there is an abnormality in the device by comparing the current operation state stored in the storage unit 72 with a past operation state corresponding to a load state equivalent to the current operation state.
- an equivalent load state is that it is within an allowable error range even if the outside air temperature, the number of operating indoor units A, and the like are the same or different.
- the past operation state may be the past operation state of itself, or may be, for example, the past operation state of another air conditioning system 1 having the same device configuration in the same property or the same region. Good.
- the past operation state of the other air conditioning system 1 is stored in the storage unit 72 via the communication network.
- the refrigerant quantity calculation unit 76 executes a refrigerant quantity calculation process for calculating the refrigerant quantity in the air conditioning system 1 based on the acquired state quantity.
- the abnormality determination according to the present embodiment makes clear the change in the operation state when an abnormality occurs in the device by comparing the current operation state and the past operation state of the air conditioning system 1 in an equivalent load state. . Therefore, the abnormality determination according to the present embodiment makes it possible to grasp the operating state of the air conditioning system 1 more easily and accurately.
- the control device 3 since one control device 3 controls the indoor unit A and the outdoor unit B, the control device 3 controls the control state of each device, various state quantities in the air conditioning system 1, and the like. Can be managed. That is, the air conditioning system 1 according to the present embodiment can easily and accurately grasp the operating state of the air conditioning system 1 without using a remote monitoring server as in the conventional air conditioning system. Moreover, even if the indoor unit A and the outdoor unit B manufactured by different manufacturers are used, the air-conditioning system 1 according to the present embodiment associates the operating point and state quantity of these devices with the present and the past. Since the operation state is compared to determine whether there is an abnormality, it is possible to accurately grasp the influence of the operation of the device on the air conditioning system 1.
- the conventional air conditioning system that remotely monitors the presence or absence of abnormalities is equipped with a large number of devices, so the amount of operation data sent to a remote monitoring server, etc. is enormous, and the state of the air conditioning system is accurate. It is difficult to grasp quickly and determine whether there is an abnormality. Therefore, the state quantity acquisition unit 70 described above acquires a predetermined state quantity that is more likely to vary depending on the operation of the device. That is, sensors 20 that acquire state quantities are determined in advance according to the device that determines abnormality. As described above, the air conditioning system 1 according to this configuration determines whether there is an abnormality in the device based on only a predetermined state quantity that is more likely to vary depending on the operation of the device. The operating state can be determined earlier.
- Table 1 below is a table showing an example of a combination of an operation state to be compared with a device for determining abnormality in abnormality determination.
- the apparatus for determining abnormality is the indoor unit expansion valve 33
- the current opening degree and superheat degree of the indoor unit expansion valve 33 in the equivalent load state Degree and superheat degree are compared. That is, the opening degree of the indoor unit expansion valve 33 is the operating point of the device, and the degree of superheat is the state quantity. Since it has been verified in advance that the indoor unit expansion valve 33 operates in a predetermined control region, an abnormality determination for the indoor unit expansion valve 33 is performed based on the opening degree of the indoor unit expansion valve 33 and the degree of superheat accompanying it. Is done.
- the current opening degree of the indoor unit expansion valve 33 differs by a predetermined value or more compared to the past opening degree, it is determined that an abnormality may have occurred.
- the current opening degree of the indoor unit expansion valve 33 is the minimum opening degree and the degree of superheat is equal to or lower than a predetermined temperature, it is determined that an abnormality that the indoor unit expansion valve 33 is stuck (step out, etc.) has occurred.
- the present superheat degree is larger than a past superheat degree by a predetermined value (for example, 10 ° C.) or more, it is determined that an abnormality that the indoor unit expansion valve 33 does not close has occurred.
- the cause of the abnormality in which the indoor unit expansion valve 33 does not close may be due to the biting of foreign matter.
- the opening degree of the indoor unit expansion valve 33 is the maximum opening degree and the supercooling or high pressure is equal to or higher than a predetermined value, there is an abnormality in which the indoor unit expansion valve 33 is fixed (step-out etc.). It is determined. Further, when the current degree of supercooling (high pressure) is larger than the past degree of supercooling (high pressure), it is determined that an abnormality that the indoor unit expansion valve 33 does not close due to the biting of foreign matter or the like has occurred.
- the compressor 11 When the compressor 11 is a device that determines abnormality, the current value with respect to the rotation speed of the compressor 11 in the equivalent load state is compared with the past current value as a comparison of the operation state. That is, the rotation speed of the compressor 11 is an operating point of the device, and the current value of the compressor 11 is a state quantity. Thus, the presence or absence of abnormality of the compressor 11 is directly determined using the current value during operation of the compressor 11. Then, when the current value is different from the current value by a predetermined value (for example, 2A) or more, it is determined that an abnormality has occurred.
- a predetermined value for example, 2A
- the device that determines abnormality is the four-way valve 12
- whether or not the four-way valve 12 is functioning normally is determined based on the flow direction of the refrigerant during the cooling operation or the heating operation. That is, the valve position of the four-way valve 12 is the operating point of the device. And the state quantity acquired in this case is the value of any of the indoor temperature sensors 35_1, 35_2, and 35_3 and the outdoor temperature sensor 24. The reason for this is that the flow direction during cooling operation and the flow direction during heating operation are uniquely determined. Therefore, if the temperatures of the indoor unit A and the outdoor unit B are acquired, whether or not the four-way valve 12 functions normally. This is because it can be determined.
- the value of the outdoor temperature sensor 24 is higher than the value of the indoor temperature sensor 35_3 and the like.
- the value of the outdoor temperature sensor 24 is lower than the value of the indoor temperature sensor 35_3 or the like.
- the outdoor unit expansion valve 17 is used as a device for determining an abnormality, as in the indoor unit expansion valve 33, as a comparison of the operation state, for example, in the case of heating operation, the current opening of the outdoor unit expansion valve 17 in an equivalent load state is performed. The degree and the degree of superheat are compared with the past opening degree and degree of superheat. On the other hand, in the case of cooling operation, it is determined whether there is an abnormality such as sticking (out-of-step etc.) of the outdoor unit expansion valve 17 or foreign object biting depending on whether or not the current high pressure is higher than the high pressure at the previous equivalent operation. Is done.
- an abnormality such as sticking (out-of-step etc.) of the outdoor unit expansion valve 17 or foreign object biting depending on whether or not the current high pressure is higher than the high pressure at the previous equivalent operation. Is done.
- the control device 3 determines a decrease in the refrigerant amount.
- the refrigerant amount decrease determination during the cooling operation, the refrigerant amount decrease is determined based on the opening degree of the indoor unit expansion valve 33 and the degree of superheat of the evaporator outlet. Specifically, if the indoor unit expansion valve 33 is fully open even though the actual degree of superheat has not reached the set target degree of superheat, it is determined that the amount of refrigerant is decreasing. . That is, the reason why the indoor unit expansion valve 33 is fully opened is not due to an abnormality of the indoor unit expansion valve 33 but is caused by a decrease in the refrigerant amount. Further, during the heating operation, a decrease in the refrigerant amount is determined based on the degree of opening of the outdoor unit expansion valve 17 and the degree of superheat of the evaporator outlet in the same manner as during cooling.
- the control device 3 may determine that the amount of refrigerant is decreasing. However, since the same phenomenon occurs due to an abnormality in the compressor 11, the opening degree of the indoor unit expansion valve 33 and the evaporator described above are also generated. It is preferable to determine the decrease in the refrigerant amount based on the degree of superheat at the outlet.
- FIG. 4 is a flowchart showing the flow of the abnormality determination process (abnormality determination program) according to the present embodiment.
- the abnormality determination process is executed by the control device 3.
- step 100 it is determined whether or not a predetermined accumulated operation time (for example, 50 hours) has elapsed since the end of the abnormality determination process executed last time. If the determination is affirmative, the process proceeds to step 102.
- a predetermined accumulated operation time for example, 50 hours
- step 102 abnormality determination is performed.
- step 104 it is determined whether or not there is a device showing an abnormality by the abnormality determination. If the determination is affirmative, the process proceeds to step 106, and if the determination is negative, the process returns to step 100.
- step 106 in order to eliminate the abnormality, the operation of the air conditioning system 1 is stopped and the abnormality determination process is terminated.
- FIG. 5 is a flowchart showing an example of the abnormality determination executed in step 102.
- the presence / absence of abnormality of the indoor unit expansion valve 33 is determined.
- step 200 the operating state of the air conditioning system 1 is acquired and stored in the storage unit 72 for each load state.
- step 202 it is determined whether or not there is a difference of a predetermined value or more between the current opening of the indoor unit expansion valve 33 and a past opening in a load state equivalent to the current opening. On the other hand, if the determination is negative, the process proceeds to step 204.
- step 204 it is determined whether or not the current superheat degree is higher than a past superheat degree in an equivalent load state by a predetermined value (for example, 10 ° C.) or more. In the case of a negative determination, the process proceeds to step 208.
- a predetermined value for example, 10 ° C.
- Step 206 an abnormality occurrence flag indicating that an abnormality has occurred in the indoor unit expansion valve 33 is set.
- step 208 it is determined whether or not the current opening of the indoor unit expansion valve 33 is the minimum opening and the degree of superheat is equal to or lower than a predetermined temperature (for example, 2 ° C.) that can be regarded as substantially zero. On the other hand, if the determination is negative, the process proceeds to step 210.
- a predetermined temperature for example, 2 ° C.
- step 210 an abnormality non-occurrence flag indicating that no abnormality has occurred in the indoor unit expansion valve 33 is set.
- step 104 when an abnormality occurrence flag is set, it is determined that there is a device indicating an abnormality.
- an abnormality of the device can be detected before the failure of the air conditioning system 1, and a certain level of abnormality determination using data is possible regardless of the determination by human thought.
- quality such as which manufacturer's equipment and which manufacturer's combination with the indoor unit causes problems, etc.
- Statistical data on devices that have problems. This result can be reflected in immediate response to abnormalities and design changes.
- the refrigerant quantity calculation process executed by the refrigerant quantity calculation unit 76 of the control device 3 will be described.
- the control device 3 since the control device 3 controls the indoor unit A and the outdoor unit B, it can manage various state quantities and the like in the air conditioning system 1. Therefore, the refrigerant amount calculation process calculates the refrigerant amount in the air conditioning system 1 using the state quantity of the refrigerant during operation of the air conditioning system 1. Thereby, the increase / decrease state of the refrigerant amount can be managed in time series, and the presence or absence of refrigerant leakage can be determined.
- the air conditioning system 1 is virtually divided into a plurality of regions (hereinafter referred to as “divided regions”).
- An example of division is: Outdoor heat exchanger 13,2. Indoor heat exchanger 31,3. 3.
- the gas pipe is a pipe in the refrigerant pipe 10 through which a gaseous refrigerant flows from the indoor unit A to the outdoor unit B.
- the liquid pipe is a pipe in the refrigerant pipe 10 through which a liquid refrigerant flows from the outdoor unit B to the indoor unit A.
- the pressure vessel is a compressor 11 and an accumulator 16.
- the in-machine pipe is a pipe that connects each device in the indoor unit A and a pipe that connects each device in the outdoor unit B.
- the amount of refrigerant can be calculated, for example, by multiplying the density (kg / m 3 ) of the refrigerant and the internal volume (m 3 ) of the pipe or the like.
- the refrigerant density is calculated based on a state quantity measured by a pressure sensor and a temperature sensor included in the air conditioning system 1.
- the length, inner diameter, and the like of each pipe through which the refrigerant flows are obtained in advance as design values, and the internal volume of the pipe and the like is calculated from the design values. Then, the refrigerant amount is calculated for each divided region, and the sum of them is estimated as the refrigerant amount circulating in the air conditioning system 1.
- Outdoor heat exchanger 13 (condenser) In the outdoor heat exchanger 13, the liquid phase and the gas phase are mixed, and the required refrigerant amount in the operating state varies greatly depending on the liquid phase region generated in the outdoor heat exchanger 13. Therefore, the control device 3 stores in advance a map in which the refrigerant amount in the outdoor heat exchanger 13 in the operating state of the air conditioning system 1 is predicted. In this map, for example, the horizontal axis is high pressure and the vertical axis is refrigerant amount, and the relationship between the high pressure and the refrigerant amount corresponding to different degrees of supercooling is shown.
- the refrigerant amount is calculated by reading the refrigerant amount corresponding to the measured value of the high-pressure sensor 21_1 and the degree of supercooling from the map.
- the average density of the refrigerant in the outdoor heat exchanger 13 is calculated based on the pressure and temperature in the outdoor heat exchanger 13, and the density is multiplied by the volume in the outdoor heat exchanger 13.
- the amount of refrigerant in the outdoor heat exchanger 13 may be calculated.
- the control device 3 controls the amount of refrigerant in the indoor heat exchanger 31 in the operating state of the air conditioning system 1 in the same manner as the outdoor heat exchanger 13.
- Predicted maps are stored in advance.
- the horizontal axis represents the low pressure and the vertical axis represents the refrigerant amount, and the relationship between the low pressure corresponding to the degree of superheat and the refrigerant amount is shown. That is, in the refrigerant amount calculation process, the refrigerant amount is calculated by reading out the refrigerant amount corresponding to the measured value of the low pressure sensor 21_2 and the degree of superheat from the map.
- the average density of the refrigerant in the indoor heat exchanger 31 is calculated based on the pressure and temperature in the indoor heat exchanger 31, and the density is multiplied by the volume in the indoor heat exchanger 31.
- the amount of refrigerant in the indoor heat exchanger 31 may be calculated.
- the gas density is calculated from the measured value of the low pressure sensor 21_2 and the measured value of the temperature sensor in the gas pipe, and the refrigerant amount is calculated by multiplying the gas density by the internal volume of the gas pipe. .
- the liquid density is calculated from the measured value of the low-pressure sensor 21_2 and the measured value of the temperature sensor in the liquid pipe, and the refrigerant amount is calculated by multiplying the liquid density by the internal volume of the liquid pipe. .
- the gas density is calculated from the measurement value of the low pressure sensor 21_2 and the measurement value of the temperature sensor in the pressure vessel, and the refrigerant amount is calculated by multiplying the gas density and the internal volume of the pressure vessel. .
- the inside of the pressure vessel is a substantially single-phase superheated gas.
- In-machine piping There are two types of in-machine piping: the piping through which the liquid phase flows (hereinafter referred to as “liquid line”) and the piping through which the gas phase flows (hereinafter referred to as “gas line”). Therefore, in the refrigerant amount calculation process, the liquid line and the gas line are virtually divided according to the operation state of the air conditioning system 1. In the refrigerant amount calculation process, the liquid density calculated from the pressure and temperature in the liquid line and the internal volume of the liquid line are multiplied to obtain the refrigerant amount in the liquid line, and the gas density calculated from the pressure and temperature in the gas line; The refrigerant volume in the gas line is obtained by multiplying the internal volume of the gas line. The sum of the refrigerant amount in the liquid line and the refrigerant amount in the gas line is used as the refrigerant amount in the in-machine piping.
- the refrigerant amount is not limited to storing the correlation equation in the control device 3 and being calculated based on the correlation equation.
- the control device 3 is connected to an external server and is calculated in this server. May be.
- FIG. 6 is a flowchart showing the flow of the refrigerant amount determination process according to the present embodiment.
- the refrigerant amount determination process is executed by the control device 3.
- step 300 it is determined whether or not a predetermined accumulated operation time (for example, 50 hours) has elapsed since the end of the refrigerant amount determination process executed last time. If the determination is affirmative, the process proceeds to step 302.
- a predetermined accumulated operation time for example, 50 hours
- step 302 the refrigerant amount calculation process described above is performed, and the calculated refrigerant amount is stored.
- step 304 it is determined whether or not the refrigerant amount calculated this time has decreased by a predetermined amount or more compared to the refrigerant amount calculated last time.
- This predetermined amount may be a ratio of the refrigerant amount calculated last time to the refrigerant amount calculated this time, or may be a difference (absolute value) between the refrigerant amount calculated last time and the refrigerant amount calculated this time. For example, when the predetermined amount is calculated based on the ratio, when the refrigerant amount calculated last time has decreased by 10% or more compared to the refrigerant amount calculated this time, the determination in step 304 is affirmative, and the process proceeds to step 306.
- the process returns to step 300. That is, when the decrease in the refrigerant amount is greater than or equal to the predetermined amount, an abnormality in which the refrigerant leaks from the air conditioning system 1 has occurred.
- step 306 it is reported that an abnormality has occurred, for example, via the maintenance / inspection apparatus 6, and the refrigerant amount determination process is terminated.
- the control device 3 of the air conditioning system 1 is capable of communicating with the outdoor unit B via the communication medium, and stores information on the devices mounted on the outdoor unit B via the communication medium.
- the outdoor unit control unit 43 that obtains and outputs a control command to a device mounted on the outdoor unit B can communicate with the indoor unit A via a communication medium, and is mounted on the indoor unit A via the communication medium.
- the control apparatus 3 memorize
- control apparatus 3 compares the operation state of the past air-conditioning system 1 with the operation
- each process may be executed at predetermined time intervals such as once a week.
- the flow of the abnormality determination process and the refrigerant amount determination process described in the above embodiment is also an example, and unnecessary steps are deleted or new steps are added within a range not departing from the gist of the present invention. The order may be changed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空調システム(1)の制御装置(3)は、室外機(B)と通信媒体を介して通信可能とされ、通信媒体を介して室外機(B)に搭載される機器の情報を取得すると共に、室外機(B)に搭載される機器へ制御指令を出力する室外機制御部(43)と、室内機(A)と通信媒体を介して通信可能とされ、通信媒体を介して室内機(A)に搭載される機器の情報を取得すると共に、室内機(A)に搭載される機器へ制御指令を出力する室内機制御部(41)と、を備える。そして、制御装置(3)は、空調システム(1)の負荷状態毎に空調システム(1)の運転状態を記憶し、現在の運転状態と同等の負荷状態に応じた過去の運転状態とを比較することで、機器の異常の有無を判定する。これにより、空調システム(1)の制御装置(3)は、空調システム(1)の運転状態を、より簡便かつ正確に把握可能とする。
Description
本発明は、空調システムの制御装置、空調システム、及び空調システムの異常判定方法に関するものである。
従来の空調システムでは、保守の一環として、例えば、メーカーが遠隔監視によって空調システムの運転データを取得し、顧客に対して省エネルギー化の提案やメンテナンスの必要性の有無の判定等を行っている。
室外機と室内機とを各々異なる制御装置で制御している従来の空調システムでは、室外機、室内機が各々異なる制御プログラムによって動作するため、空調システムの運転状態を正確に把握することが難しい。
そこで、非特許文献1には、顧客の建物内に設置したローカルサーバが空調機の運転データを定期的に空調遠隔監視用のセンターサーバにインターネットを介して送信し、空調遠隔監視センターの監視画面にセンターサーバが受信した運転データが表示される空調遠隔監視システムが開示されている。この空調遠隔監視システムでは、空調機の主要なデータ(圧力値、冷媒温度、ファン回転数、圧縮機運転時間、圧縮機回転数、圧縮機発停回数等)を一定の間隔でセンターサーバに定期送信する。
そこで、非特許文献1には、顧客の建物内に設置したローカルサーバが空調機の運転データを定期的に空調遠隔監視用のセンターサーバにインターネットを介して送信し、空調遠隔監視センターの監視画面にセンターサーバが受信した運転データが表示される空調遠隔監視システムが開示されている。この空調遠隔監視システムでは、空調機の主要なデータ(圧力値、冷媒温度、ファン回転数、圧縮機運転時間、圧縮機回転数、圧縮機発停回数等)を一定の間隔でセンターサーバに定期送信する。
そして、異常が発生した場合、メーカーは、センターサーバに送信された運転データに基づいて異常を示す故障部位を特定し、サービスセンターへ連絡や修理の要請を実施している。
東芝レビュー Vol.60 No.6(2005) p.52-55
しかしながら、インターネット等の外部ネットワーク環境が不十分な地域では、空調遠隔監視用のセンターサーバを設置することは困難であり、また、空調遠隔監視用のセンターサーバの設置にもコストを必要とする。
さらに、異なるメーカーが製造した室外機や室内機が空調システムに用いられていると、それらに搭載されている機器(機能部品ともいう。)が空調システムとして正しく動作しているか否かを判定する必要がある。この判定を行わないと、空調システムの異常の原因が明確にできず、異常の責任を有するメーカーを明確にできない。
本発明は、このような事情に鑑みてなされたものであって、空調システムの運転状態をより簡便かつ正確に把握可能とする、空調システムの制御装置、空調システム、及び空調システムの異常判定方法を提供することを目的とする。
上記課題を解決するために、本発明の空調システムの制御装置、空調システム、及び空調システムの異常判定方法は以下の手段を採用する。
本発明の第一態様に係る空調システムの制御装置は、一又は複数台の室外機、及び一又は複数台の室内機を備える空調システムの制御装置であって、前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御部と、前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御部と、前記空調システムの負荷状態毎に前記空調システムの運転状態を記憶する記憶手段と、現在の前記運転状態と同等の負荷状態に応じた過去の前記運転状態とを比較することで、前記機器の異常の有無を判定する異常判定手段と、を備える。
本構成に係る空調システムの制御装置は、室外機に搭載される機器へ制御指令を出力する室外機制御部と、室内機に搭載される機器へ制御指令を出力する室内機制御部を仮想的に搭載している。室外機や室内機に搭載されている機器は、例えば膨張弁、ファン、及び四方弁である。
すなわち、室内機制御部及び室外機制御部は、室外機及び室内機とは独立して存在するので、室外機及び室内機の構成が簡素化される。さらに、例えば、通信と部品のアクチュエート機能のみの搭載というように、室外機及び室内機に高度なプログラムを搭載する必要がなく、室外機及び室内機の交換を容易に行うことができる。なお、室外機や室内機は、仕様を満たすものであれば、制御装置とは異なるメーカーが製造した室外機や室内機であってもよい。
すなわち、室内機制御部及び室外機制御部は、室外機及び室内機とは独立して存在するので、室外機及び室内機の構成が簡素化される。さらに、例えば、通信と部品のアクチュエート機能のみの搭載というように、室外機及び室内機に高度なプログラムを搭載する必要がなく、室外機及び室内機の交換を容易に行うことができる。なお、室外機や室内機は、仕様を満たすものであれば、制御装置とは異なるメーカーが製造した室外機や室内機であってもよい。
ここで、室外機と室内機とを各々異なる制御装置で制御している従来の空調システムでは、室外機、室内機が各々異なる制御プログラムによって動作するため、空調システム全体の異常を含む運転状態を正確に把握することが難しい。このため、従来の空調システムでは、遠隔監視用のサーバ等によって空調システムの運転状態や各種状態量等のデータを集約して管理する必要があった。さらに、空調システムに異なるメーカーが製造した室外機や室内機が用いられていると、それらに搭載されている機器が空調システムとして正しく動作しているか否かを判定する必要がある。
そこで、本構成に係る空調システムの制御装置は、記憶手段によって、空調システムの負荷状態毎に空調システムの運転状態を記憶する。空調システムの運転状態とは、室内機又は室外機に搭載されている各機器の運転点と空調システムの状態量(冷媒の温度や圧力等)との組み合わせである。そして、異常判定手段によって、現在の運転状態と同等の負荷状態に応じた過去の運転状態とが比較されることで、機器の異常の有無が判定される。すなわち、制御装置は、パッシブ型の監視制御を行う。
なお、同等の負荷状態とは、外気温度や室内機の運転台数等が同じ、又は異なっていても許容誤差範囲内であることである。また、過去の運転状態は、自身の過去の運転状態であってもよいし、例えば、機器の構成が同じ他の空調システムの過去の運転状態であってもよい。
なお、同等の負荷状態とは、外気温度や室内機の運転台数等が同じ、又は異なっていても許容誤差範囲内であることである。また、過去の運転状態は、自身の過去の運転状態であってもよいし、例えば、機器の構成が同じ他の空調システムの過去の運転状態であってもよい。
また、本構成に係る空調システムは、一つの制御装置が室外機及び室内機を制御するので、この制御装置によって、各機器の制御状態や空調システムにおける各種状態量等を管理可能である。すなわち、本構成は、従来の空調システムのように遠隔監視用のサーバを用いることなく、空調システムの運転状態を、簡便かつ正確に把握可能である。
また、本構成に係る空調システムは、異なるメーカーが製造した室外機や室内機が用いられたとしても、これらの機器の運転点と状態量とを関連付けて、現在と過去との運転状態を比較して異常の有無を判定するので、機器の動作が空調システムに与える影響を正確に把握可能となる。
また、本構成に係る空調システムは、異なるメーカーが製造した室外機や室内機が用いられたとしても、これらの機器の運転点と状態量とを関連付けて、現在と過去との運転状態を比較して異常の有無を判定するので、機器の動作が空調システムに与える影響を正確に把握可能となる。
以上のように、本構成は、同等の負荷状態における現在と過去の空調システムの運転状態を比較するので、機器に異常が生じた場合における運転状態の変化が明確になる。従って、本構成は、空調システムの運転状態をより簡便かつ正確に把握可能となる。
上記第一態様では、前記異常判定手段が、前記機器の運転に応じてより変動が表れ易い、前記空調システムの予め定められた状態量に基づいて、前記機器の異常の有無を判定してもよい。
本構成によれば、機器の運転に応じてより変動が表れ易い、予め定められた状態量に基づいて、機器の異常の有無を判定するので、空調システムの運転状態をより早く判定することができる。
上記第一態様では、前記空調システムの状態量に基づいて空調システム内の冷媒量を算出してもよい。
本構成によれば、冷媒流量の時間変化に基づいて、冷媒の漏れの有無を検出できる。
本発明の第二態様に係る空調システムは、一又は複数台の室外機と、一又は複数台の室内機と、上記記載の制御装置と、を備える。
本発明の第三態様に係る空調システムの異常判定方法は、一又は複数台の室外機、一又は複数台の室内機、前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御部、及び前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御部を備える空調システムの異常判定方法であって、前記空調システムの負荷状態毎に前記空調システムの運転状態を記憶し、現在の前記運転状態と同等の負荷状態に応じた過去の前記運転状態とを比較することで、前記機器の異常の有無を判定する。
本発明によれば、空調システムの運転状態をより簡便かつ正確に把握可能とする、という優れた効果を有する。
以下に、本発明に係る空調システムの制御装置、空調システム、及び空調システムの異常判定方法の一実施形態について、図面を参照して説明する。
図1は、本実施形態に係る空調システム1の冷媒系統を示した図である。図1に示すように、空調システム1は、1台の室外機Bと、該室外機Bと共通の冷媒配管10により接続される複数の室内機A1,A2とを備える。図1では、便宜上、1台の室外機Bに、2台の室内機A1,A2が接続されている構成を例示しているが、室外機Bの設置台数及び室内機A1,A2の接続台数については限定されない。
室外機Bは、例えば、冷媒を圧縮して送出する圧縮機11、冷媒の循環方向を切り換える四方弁12、冷媒と外気との間で熱交換を行う室外熱交換器13、室外ファン15、冷媒の機液分離等を目的として圧縮機11の吸入側配管に設けられたアキュムレータ16、例えば電子膨張弁である室外機膨張弁17等を備えている。また、室外機Bには、冷媒圧力を計測する圧力センサ21(高圧センサ21_1、低圧センサ21_2)、冷媒温度等を計測する室外温度センサ24等の各種センサ類20(図2参照)が設けられている。なお、高圧センサ21_1は圧縮機11から吐出された冷媒の圧力を計測し、低圧センサ21_2は圧縮機11へ送られる冷媒の圧力を計測する。
室内機A1,A2はそれぞれ、室内熱交換器31、室内ファン32、及び室内機膨張弁33等を備えている。2台の室内機A1,A2は、それぞれ室外機B内のヘッダー22、ディストリビュータ23で分岐された各冷媒配管10に接続されている。
室内温度センサ35_1は、室内熱交換器31の入口冷媒温度を計測し、室内温度センサ35_2は、室内熱交換器31の中間冷媒温度を計測し、室内温度センサ35_3は、室内熱交換器31の出口冷媒温度を計測する。
室内温度センサ35_1は、室内熱交換器31の入口冷媒温度を計測し、室内温度センサ35_2は、室内熱交換器31の中間冷媒温度を計測し、室内温度センサ35_3は、室内熱交換器31の出口冷媒温度を計測する。
図2は、本実施形態に係る空調システム1の電気的構成図である。図2に示すように、室内機A1,A2、室外機B、制御装置3が共通バス5を介して接続されており、相互に情報の授受が可能な構成とされている。なお、共通バス5は、通信媒体の一例であり、通信は無線、有線を問わない。
制御装置3は、保守点検を行う保守点検装置6に通信媒体7を介して接続され、定期的に運転データを送信したり、異常発生時にはその旨を速やかに通知できるような構成とされている。
制御装置3は、保守点検を行う保守点検装置6に通信媒体7を介して接続され、定期的に運転データを送信したり、異常発生時にはその旨を速やかに通知できるような構成とされている。
ここで、従来の空調システムでは、各室内機ユニット及び室外機ユニットの内部に、それぞれ制御装置が設けられている。これに対し、本実施形態では、各室内機制御部41_1,41_2及び室外機制御部43が、室内機A1,A2及び室外機Bとは独立して設けられている。具体的には、室内機A1を制御する室内機制御部41_1、室内機A2を制御する室内機制御部41_2、及び室外機Bを制御する室外機制御部43は、仮想化された制御部としてそれぞれ制御装置3に実装されている。
すなわち、室内機制御部41及び室外機制御部43は、室内機A及び室外機Bとは独立して存在するので、室内機A及び室外機Bの構成が簡素化される。さらに、例えば、通信と部品のアクチュエート機能のみの搭載というように、室内機A及び室外機Bに高度なプログラムを搭載する必要がなく、室内機A及び室外機Bの交換を容易に行うことができる。なお、室内機A1,A2や室外機Bは、仕様を満たすものであれば、制御装置3と異なるメーカーが製造した室内機Aや室外機Bであってもよい。
つまり、室内機制御部41_1,41_2及び室外機制御部43は、1つのハードウェアを有する制御装置3に集約されており、制御装置3が備えるハードウェア上でそれぞれ独立した動作が可能とされる。制御装置3は、室内機制御部41_1、41_2及び室外機制御部43を制御装置内に仮想的に存在させるためのマスター制御部40を有している。
制御装置3において、室内機制御部41_1,41_2及び室外機制御部43は、互いに情報の授受が可能な構成とされている。また、室内機制御部41_1,41_2及び室外機制御部43は、例えば、情報を共有しながら各自が独立した自律分散制御を実現させる自律分散制御を行うこととしてもよい。ここで、自律分散制御とは、センサ類20や他の制御部(例えば、室内機制御部41_1であれば、室内機制御部41_2及び室外機制御部43が他の制御部に相当する。)から情報を受信し、該情報を入力として所定のアプリケーションが制御ルールに従い、対応する室内機A1,A2又は室外機B(例えば、室内機制御部41_1であれば、室内機A1)に対して制御指令を与えることをいう。
室内機A1において、室内ファン32、室内機膨張弁33等(図1参照)の各種機器51に対応してそれぞれ設けられている室内機ローカルコントローラ52は、ゲートウェイ(通信手段)53を介して共通バス5に接続されている。なお、図示が省略されているが、室内機A2も室内機A1と同様の構成とされている。
室外機Bにおいて、圧縮機11、四方弁12、室外ファン13等(図1参照)の各種機器61に対応してそれぞれ設けられている室外機ローカルコントローラ62は、ゲートウェイ(通信手段)63を介して共通バス5に接続されている。
室外機Bにおいて、圧縮機11、四方弁12、室外ファン13等(図1参照)の各種機器61に対応してそれぞれ設けられている室外機ローカルコントローラ62は、ゲートウェイ(通信手段)63を介して共通バス5に接続されている。
ゲートウェイ53,63は、例えば、通信ドライバ、アドレス記憶領域、機器属性記憶領域、構成機器情報記憶領域、OS、通信フレームワークを含む機能の集まりである。
アドレス記憶領域は、制御装置3等と通信を行うために割り振られる固有の識別番号であるアドレスを記憶するための記憶領域である。
また、機器属性記憶領域は、自身の属性情報及び保有する機器51、61の属性情報を記憶するための記憶領域であり、例えば、室内機であるか室外機であるか、能力、搭載センサ類(例えば、温度センサ、圧力センサ等)、機器の情報(例えば、ファンタップ数、弁のフルパルス等)等の情報が格納されている。
アドレス記憶領域は、制御装置3等と通信を行うために割り振られる固有の識別番号であるアドレスを記憶するための記憶領域である。
また、機器属性記憶領域は、自身の属性情報及び保有する機器51、61の属性情報を記憶するための記憶領域であり、例えば、室内機であるか室外機であるか、能力、搭載センサ類(例えば、温度センサ、圧力センサ等)、機器の情報(例えば、ファンタップ数、弁のフルパルス等)等の情報が格納されている。
さらに、室内機A1,A2及び室外機Bに設けられたセンサ類20(例えば、冷媒圧力を計測する圧力センサや冷媒温度を計測する温度センサ等)は、それぞれADボード71を介して共通バス5に接続されている。ここで、センサ類20の計測精度が低い場合には、ADボード71とセンサ類20との間に、計測値を補正するための補正機能を有するノードを設けることとしてもよい。このように、補正機能を持たせることにより、センサ類20として廉価で計測精度のさほど高くないセンサを利用することが可能となる。
このような空調システム1においては、例えば、制御装置3の室内機制御部41_1,41_2は、共通バス5を介してセンサ類20、室内機ローカルコントローラ52、室外機ローカルコントローラ62から計測データや制御情報を取得し、これらの計測データに基づいて、所定の室内機制御プログラムを実行することにより、室内機A1,A2に設けられた各種機器(例えば、室内ファン32、室内機膨張弁33等)に対して制御指令を出力する。制御指令は、共通バス5、ゲートウェイ53を介して室内機ローカルコントローラ52へ送られる。室内機ローカルコントローラ52は、受信した制御指令に基づいて、それぞれ対応する機器を駆動する。これにより、制御指令に基づく室内機A1,A2の制御が実現される。
同様に、制御装置3の室外機制御部43は、共通バス5を介してセンサ類20、室内機ローカルコントローラ52、室外機ローカルコントローラ62から計測データや制御情報を取得し、これらの計測データに基づいて、所定の室外機制御プログラムを実行することにより、室外機Bに設けられた各種機器(例えば、圧縮機11、四方弁12、室外熱交換器13、室外ファン15、室外機膨張弁17等)に対して制御指令を出力する。制御指令は、共通バス5、ゲートウェイ63を介して室外機ローカルコントローラ62へ送られる。室外機ローカルコントローラ62は、受信した制御指令に基づいて、それぞれ対応する機器を駆動する。
室内機A1,A2及び室外機Bは、それぞれ室内機制御部41_1,41_2及び室外機制御部43によって自律分散制御されてもよい。この場合、室内機A1,A2及び室外機B間には、制御ルールが設定されており、この制御ルールに従ってそれぞれが制御を行う。たとえば、冷媒圧力を例に挙げると、室内機A1,A2は、センサ類20から取得した冷媒圧力が、所定の第1許容変動範囲内の場合には、ユーザなどに設定された設定温度や設定風量に、実温度や実風量を一致させるための制御指令を決定し、共通バス5を介して室内機A1,A2にそれぞれ出力する。ここで、室内機制御部41_1,41_2は、互いに情報の授受を行い協調することにより、各々の制御指令を決定することとしてもよい。また、室外機制御部43は、冷媒圧力を所定の第2許容変動範囲内に維持するための空調システム1の出力指令、例えば、圧縮機11の回転数や室外ファン15の回転速度等に関する制御指令を決定し、共通バス5を介して室外機Bに送信する。
例えば、第1許容範囲を第2許容範囲よりも広く設定しておくことで、室外機制御部43は室内機A1,A2の出力変化情報を把握し、室外機Bの挙動を決定することが可能となる。
例えば、第1許容範囲を第2許容範囲よりも広く設定しておくことで、室外機制御部43は室内機A1,A2の出力変化情報を把握し、室外機Bの挙動を決定することが可能となる。
なお、制御装置3、室内機ローカルコントローラ52、及び室外機ローカルコントローラ62は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
ここで、室外機と室内機とを各々異なる制御装置で制御している従来の空調システムでは、室外機、室内機が各々異なる制御プログラムによって動作するため、空調システム全体の運転状態を正確に把握することが難しい。このため、従来の空調システムでは、遠隔監視用のサーバ等によって空調システムの運転状態や各種状態量等のデータを集約して管理する必要があった。
また、本実施形態に係る空調システム1に異なるメーカーが製造した室内機Aや室外機Bが用いられていると、それらに搭載されている機器が空調システム1として正しく動作しているか否かを判定する必要がある。
また、本実施形態に係る空調システム1に異なるメーカーが製造した室内機Aや室外機Bが用いられていると、それらに搭載されている機器が空調システム1として正しく動作しているか否かを判定する必要がある。
そこで、本実施形態に係る空調システム1の制御装置3は、異常判定制御部44を備える。
異常判定制御部44は、空調システム1の運転状態を判定するために、空調システム1の現在の運転状態と同等の負荷状態に応じた過去の運転状態とを比較することで、機器の異常の有無を判定する異常判定を実行する。なお、現在の運転状態とは、換言すると、運転中における運転状態である。
すなわち、制御装置3は、動作した機器に応じて変化する空調システム1の運転状態を取得するパッシブ型の監視制御を行う。運転状態は、室内機A又は室外機Bに搭載されている各機器の運転点と空調システム1の状態量との組み合わせである。状態量は、センサ類20で計測される、例えば冷媒の温度、冷媒の圧力、冷媒の流量、過熱度、室内温度等、又は圧縮機11の電流値等である。
異常判定制御部44は、空調システム1の運転状態を判定するために、空調システム1の現在の運転状態と同等の負荷状態に応じた過去の運転状態とを比較することで、機器の異常の有無を判定する異常判定を実行する。なお、現在の運転状態とは、換言すると、運転中における運転状態である。
すなわち、制御装置3は、動作した機器に応じて変化する空調システム1の運転状態を取得するパッシブ型の監視制御を行う。運転状態は、室内機A又は室外機Bに搭載されている各機器の運転点と空調システム1の状態量との組み合わせである。状態量は、センサ類20で計測される、例えば冷媒の温度、冷媒の圧力、冷媒の流量、過熱度、室内温度等、又は圧縮機11の電流値等である。
図3は、本実施形態に係る制御装置3における異常判定制御部44の機能を示す機能ブロック図である。
異常判定制御部44は、状態量取得部70、記憶部72、異常判定部74、及び冷媒量算出部76を備える。
状態量取得部70は、空調システム1の運転状態として、各機器の運転点と共に、空調システム1の状態量を各種センサ等から取得する。
記憶部72は、状態量取得部70によって取得された運転状態を時系列、かつ空調システム1の負荷状態毎に記憶する。
異常判定部74は、記憶部72に記憶された現在の運転状態と同等の負荷状態に応じた過去の運転状態とを比較することで、機器の異常の有無を判定する。
なお、同等の負荷状態とは、外気温度や室内機Aの運転台数等が同じ、又は異なっていても許容誤差範囲内であることである。
また、過去の運転状態は、自身の過去の運転状態であってもよいし、例えば、同一物件内や同一地域内における機器の構成が同じ他の空調システム1の過去の運転状態であってもよい。他の空調システム1の過去の運転状態との比較を行う形態の場合は、例えば、通信ネットワークを介して他の空調システム1の過去の運転状態が記憶部72に記憶される。
また、過去の運転状態は、自身の過去の運転状態であってもよいし、例えば、同一物件内や同一地域内における機器の構成が同じ他の空調システム1の過去の運転状態であってもよい。他の空調システム1の過去の運転状態との比較を行う形態の場合は、例えば、通信ネットワークを介して他の空調システム1の過去の運転状態が記憶部72に記憶される。
冷媒量算出部76は、取得した状態量に基づいて、空調システム1内の冷媒量を算出する冷媒量算出処理を実行する。
このように、本実施形態に係る異常判定は、同等の負荷状態における現在と過去の空調システム1の運転状態を比較することで、機器に異常が生じた場合における運転状態の変化が明確になる。従って、本実施形態に係る異常判定は、空調システム1の運転状態が、より簡便かつ正確に把握可能となる。
また、本実施形態に係る空調システム1は、一つの制御装置3が室内機A及び室外機Bを制御するので、この制御装置3によって、各機器の制御状態や空調システム1における各種状態量等を管理可能である。すなわち、本実施形態に係る空調システム1は、従来の空調システムのように遠隔監視用のサーバを用いることなく、空調システム1の運転状態を、簡便かつ正確に把握可能である。
また、本実施形態に係る空調システム1は、異なるメーカーが製造した室内機Aや室外機Bが用いられたとしても、これらの機器の運転点と状態量とを関連付けて、現在と過去との運転状態を比較して異常の有無を判定するので、機器の動作が空調システム1に与える影響を正確に把握可能となる。
また、本実施形態に係る空調システム1は、異なるメーカーが製造した室内機Aや室外機Bが用いられたとしても、これらの機器の運転点と状態量とを関連付けて、現在と過去との運転状態を比較して異常の有無を判定するので、機器の動作が空調システム1に与える影響を正確に把握可能となる。
また、異常の有無等を遠隔監視される従来の空調システムでは、多数の機器が搭載されているので、遠隔監視用のサーバ等に送信する運転データ量が膨大であり、空調システムの状態を正確かつ迅速に把握し、異常の有無を判定することが難しい。
そこで、上述した状態量取得部70は、機器の運転に応じてより変動が表れ易い、予め定められた状態量を取得する。すなわち、異常を判定する機器に応じて状態量を取得するセンサ類20が予め定められている。
このように、本構成に係る空調システム1は、機器の運転に応じてより変動が表れ易い、予め定められた状態量のみに基づいて、機器の異常の有無を判定するので、空調システム1の運転状態をより早く判定することができる。
そこで、上述した状態量取得部70は、機器の運転に応じてより変動が表れ易い、予め定められた状態量を取得する。すなわち、異常を判定する機器に応じて状態量を取得するセンサ類20が予め定められている。
このように、本構成に係る空調システム1は、機器の運転に応じてより変動が表れ易い、予め定められた状態量のみに基づいて、機器の異常の有無を判定するので、空調システム1の運転状態をより早く判定することができる。
下記表1は、異常判定において、異常を判定する機器と比較する運転状態との組み合わせの一例を示した表である。
異常を判定する機器を室内機膨張弁33とする場合、例えば冷房運転の場合、運転状態の比較として、同等の負荷状態における室内機膨張弁33の現在の開度及び過熱度と、過去の開度及び過熱度とが比較される。すなわち、室内機膨張弁33の開度が機器の運転点であり、過熱度が状態量である。室内機膨張弁33が所定の制御域で動作することを予め検証されているため、室内機膨張弁33の開度とそれに伴う過熱度の大きさに基づいて、室内機膨張弁33に対する異常判定が行われる。
室内機膨張弁33の現在の開度が、過去の開度に比べて所定値以上異なる場合には、異常が生じている可能性があると判定される。
そして、室内機膨張弁33の現在の開度が最小開度、かつ過熱度が所定温度以下の場合には、室内機膨張弁33が固着(脱調等)する異常が生じていると判定される。
また、現在の過熱度が過去の過熱度に比べて、所定値(例えば10℃)以上大きい場合には、室内機膨張弁33が閉じない異常が生じていると判定される。室内機膨張弁33が閉じない異常の原因は、異物の噛み込み等が考えられる。
そして、室内機膨張弁33の現在の開度が最小開度、かつ過熱度が所定温度以下の場合には、室内機膨張弁33が固着(脱調等)する異常が生じていると判定される。
また、現在の過熱度が過去の過熱度に比べて、所定値(例えば10℃)以上大きい場合には、室内機膨張弁33が閉じない異常が生じていると判定される。室内機膨張弁33が閉じない異常の原因は、異物の噛み込み等が考えられる。
一方、暖房運転の場合、室内機膨張弁33の開度が最大開度、かつ過冷却又は高圧が所定値以上の場合、室内機膨張弁33が固着(脱調等)する異常が生じていると判定される。また、現在の過冷却度(高圧)が過去の過冷却度(高圧)に比べて大きい場合には、異物の噛み込み等により、室内機膨張弁33が閉じない異常が生じていると判定される。
異常を判定する機器を圧縮機11とする場合、運転状態の比較として、同等の負荷状態における圧縮機11の回転数に対する現在の電流値と過去の電流値とが比較される。すなわち、圧縮機11の回転数が機器の運転点であり、圧縮機11の電流値が状態量である。このように、圧縮機11の異常の有無は、圧縮機11の運転時の電流値を用いて直接的に判定される。
そして、現在の電流値が、過去の電流値に比べて所定値(例えば2A)以上異なる場合には、異常が生じていると判定される。
そして、現在の電流値が、過去の電流値に比べて所定値(例えば2A)以上異なる場合には、異常が生じていると判定される。
異常を判定する機器を四方弁12とする場合、冷房運転又は暖房運転時における冷媒の流れ方向に基づいて、四方弁12が正常に機能しているか否かが判定される。すなわち、四方弁12の弁位置が機器の運転点である。
そして、この場合に取得される状態量は、室内温度センサ35_1,35_2,35_3の何れかと室外温度センサ24の値である。この理由は、冷房運転時の流れ方向、暖房運転時の流れ方向が一義的に決まるため、室内機Aと室外機Bの温度を取得すれば、四方弁12が正常に機能しているか否かの判定が可能なためである。具体的には、冷房運転時に四方弁12が正常に機能しているのであれば、室外温度センサ24の値が室内温度センサ35_3等の値よりも高くなる。一方、暖房運転時に四方弁12が正常に機能しているのであれば、室外温度センサ24の値が室内温度センサ35_3等の値よりも低くなる。
そして、この場合に取得される状態量は、室内温度センサ35_1,35_2,35_3の何れかと室外温度センサ24の値である。この理由は、冷房運転時の流れ方向、暖房運転時の流れ方向が一義的に決まるため、室内機Aと室外機Bの温度を取得すれば、四方弁12が正常に機能しているか否かの判定が可能なためである。具体的には、冷房運転時に四方弁12が正常に機能しているのであれば、室外温度センサ24の値が室内温度センサ35_3等の値よりも高くなる。一方、暖房運転時に四方弁12が正常に機能しているのであれば、室外温度センサ24の値が室内温度センサ35_3等の値よりも低くなる。
異常を判定する機器を室外機膨張弁17とする場合、室内機膨張弁33と同様に、運転状態の比較として、例えば暖房運転の場合、同等の負荷状態における室外機膨張弁17の現在の開度及び過熱度と、過去の開度及び過熱度とが比較される。一方、冷房運転の場合、現在の高圧が過去の同等運転時の高圧に比べて大きいか否かによって、室外機膨張弁17の固着(脱調等)や異物噛み込み等の異常の有無が判定される。
機器に異常が生じていると判定された場合には、制御装置3によって、冷媒量の減少判定が行われることが好ましい。
冷媒量の減少判定として、冷房運転時には、室内機膨張弁33の開度と蒸発器出口の過熱度に基づいて、冷媒量の減少を判定する。具体的には、設定された目標過熱度に実際の過熱度が達していないにもかかわらず、室内機膨張弁33が全開となっている場合には、冷媒量が減少していると判定する。すなわち、室内機膨張弁33が全開となる理由は、室内機膨張弁33の異常によるものではなく、冷媒量の減少が原因とされる。
また、暖房運転時には、室外機膨張弁17の開度と蒸発器出口の過熱度に基づいて、冷房時と同様に冷媒量の減少を判定する。
冷媒量の減少判定として、冷房運転時には、室内機膨張弁33の開度と蒸発器出口の過熱度に基づいて、冷媒量の減少を判定する。具体的には、設定された目標過熱度に実際の過熱度が達していないにもかかわらず、室内機膨張弁33が全開となっている場合には、冷媒量が減少していると判定する。すなわち、室内機膨張弁33が全開となる理由は、室内機膨張弁33の異常によるものではなく、冷媒量の減少が原因とされる。
また、暖房運転時には、室外機膨張弁17の開度と蒸発器出口の過熱度に基づいて、冷房時と同様に冷媒量の減少を判定する。
なお、冷媒量が減少するとガス冷媒も減少するため、冷媒量が減少していない場合に比べ、高圧や低圧の低下、圧縮機11の吐出温度の低下が生じる。これにより、制御装置3は、冷媒量が減少していると判定してもよいが、圧縮機11の異常によっても同様の現象が生じるため、上述した室内機膨張弁33の開度と蒸発器出口の過熱度に基づいて、冷媒量の減少を判定する方が好ましい。
図4は、本実施形態に係る異常判定処理(異常判定プログラム)の流れを示すフローチャートである。異常判定処理は、制御装置3によって実行される。
まず、ステップ100では、前回実行した異常判定処理の終了から所定の積算運転時間(例えば50時間)が経過したか否かを判定し、肯定判定の場合にステップ102へ移行する。
ステップ102では、異常判定を行う。
次のステップ104では、異常判定によって異常を示す機器があるか否かを判定し、肯定判定の場合はステップ106へ移行し、否定判定の場合はステップ100へ戻る。
ステップ106では、異常を解消するために、空調システム1の運転を停止し、異常判定処理を終了する。
図5は、ステップ102で実行される異常判定の一例を示すフローチャートである。図5では、一例として、室内機膨張弁33の異常の有無を判定する。
まず、ステップ200では、空調システム1の運転状態を取得し、負荷状態毎に記憶部72に記憶する。
次のステップ202では、室内機膨張弁33の現在の開度と同等の負荷状態における過去の開度とに所定値以上の差があるか否かを判定し、肯定判定の場合はステップ210へ移行する一方、否定判定の場合はステップ204へ移行する。
次のステップ204では、現在の過熱度が同等の負荷状態における過去の過熱度よりも所定値(例えば10℃)以上高いか否かを判定し、肯定判定の場合はステップ206へ移行する一方、否定判定の場合はステップ208へ移行する。
ステップ206では、室内機膨張弁33に異常が生じていることを示す異常発生フラグを立てる。
ステップ208では、室内機膨張弁33の現在の開度が最小開度であり、かつ過熱度が略ゼロとみなせる所定温度(例えば2℃)以下か否かを判定し、肯定判定の場合はステップ206へ移行する一方、否定判定の場合はステップ210へ移行する。
ステップ210では、室内機膨張弁33に異常が生じていないことを示す異常未発生フラグを立てる。
これにより、上述したステップ104では、異常発生フラグが立った場合に、異常を示す機器があると判定する。
以上説明した異常判定により、機器の異常が空調システム1の故障前に検知できると共に、人の思考による判定によらず、データを用いた一定の水準の異常判定が可能となる。
また、故障予知運転による結果のみを集約し、機器の認証結果と不適合部位のデータを集計することで、どのメーカーのどの機器、どのメーカーの室内機との組み合わせで問題が発生するか等、品質的に問題が発生する機器等の統計データが得られる。そして、この結果を、異常に対する即時対応、設計変更に反映させることが可能となる。
また、運転状態によっては、例えば室内部屋で発生する負荷に対して、室内機Aの能力が足りない(選定ミス、性能低下)等を区分することが可能となり、不適合に対する補償の範囲を制限することができる。
また、故障予知運転による結果のみを集約し、機器の認証結果と不適合部位のデータを集計することで、どのメーカーのどの機器、どのメーカーの室内機との組み合わせで問題が発生するか等、品質的に問題が発生する機器等の統計データが得られる。そして、この結果を、異常に対する即時対応、設計変更に反映させることが可能となる。
また、運転状態によっては、例えば室内部屋で発生する負荷に対して、室内機Aの能力が足りない(選定ミス、性能低下)等を区分することが可能となり、不適合に対する補償の範囲を制限することができる。
次に、制御装置3の冷媒量算出部76で実行される冷媒量算出処理について説明する。
上述したように、制御装置3は、室内機A及び室外機Bを制御するので、空調システム1における各種状態量等を管理できる。
そこで、冷媒量算出処理は、空調システム1の運転中の冷媒の状態量を用いて、空調システム1内の冷媒量を算出する。これにより、冷媒量の増減の状態を時系列で管理することができ、冷媒の漏れの有無を判定できる。
上述したように、制御装置3は、室内機A及び室外機Bを制御するので、空調システム1における各種状態量等を管理できる。
そこで、冷媒量算出処理は、空調システム1の運転中の冷媒の状態量を用いて、空調システム1内の冷媒量を算出する。これにより、冷媒量の増減の状態を時系列で管理することができ、冷媒の漏れの有無を判定できる。
本実施形態に係る冷媒量算出処理は、空調システム1を仮想的に複数の領域(以下「分割領域」という。)に分ける。
分割の一例は、1.室外熱交換器13、2.室内熱交換器31、3.ガス管、4.液管、5.圧力容器、6.機内配管である。
ガス管は、冷媒配管10のうち、室内機Aから室外機Bへ向かうガス状の冷媒が流れる配管である。液管は、冷媒配管10のうち、室外機Bから室内機Aへ向かう液状の冷媒が流れる配管である。
圧力容器は、圧縮機11とアキュムレータ16である。
機内配管は、室内機A内における各機器を接続する配管と、室外機B内における各機器を接続する配管である。
分割の一例は、1.室外熱交換器13、2.室内熱交換器31、3.ガス管、4.液管、5.圧力容器、6.機内配管である。
ガス管は、冷媒配管10のうち、室内機Aから室外機Bへ向かうガス状の冷媒が流れる配管である。液管は、冷媒配管10のうち、室外機Bから室内機Aへ向かう液状の冷媒が流れる配管である。
圧力容器は、圧縮機11とアキュムレータ16である。
機内配管は、室内機A内における各機器を接続する配管と、室外機B内における各機器を接続する配管である。
冷媒量は、例えば、冷媒の密度(kg/m3)と配管等の内容積(m3)とを乗算することで算出可能である。
冷媒密度は、空調システム1が備える圧力センサと温度センサによって計測された状態量に基づいて算出される。また、冷媒が流れる各配管の長さや内径等は、予め設計値として得られており、設計値から配管等の内容積は算出される。そして、分割領域毎に冷媒量が算出され、それらの総和が空調システム1を循環する冷媒量として推定される。
冷媒密度は、空調システム1が備える圧力センサと温度センサによって計測された状態量に基づいて算出される。また、冷媒が流れる各配管の長さや内径等は、予め設計値として得られており、設計値から配管等の内容積は算出される。そして、分割領域毎に冷媒量が算出され、それらの総和が空調システム1を循環する冷媒量として推定される。
次に、冷房運転の場合を例に冷媒量の算出方法を分割領域毎に説明する。
1.室外熱交換器13(凝縮器)
室外熱交換器13は、液相と気相が混在しており、その内部に発生する液相領域によって、運転状態における必要冷媒量が大きく異なる。そこで、制御装置3は、空調システム1の運転状態における室外熱交換器13内の冷媒量を予測したマップを予め記憶する。このマップは、例えば、横軸が高圧、縦軸が冷媒量とされ、異なる過冷却度に応じた高圧と冷媒量との関係が示される。
すなわち、冷媒量算出処理では、高圧センサ21_1の計測値と過冷却度とに応じた冷媒量をマップから読み出すことで、冷媒量を算出する。
なお、これに限らず、室外熱交換器13における圧力と温度に基づいて、室外熱交換器13内の冷媒の平均密度を算出し、密度と室外熱交換器13内の容積を乗算することで、室外熱交換器13内の冷媒量を算出してもよい。
室外熱交換器13は、液相と気相が混在しており、その内部に発生する液相領域によって、運転状態における必要冷媒量が大きく異なる。そこで、制御装置3は、空調システム1の運転状態における室外熱交換器13内の冷媒量を予測したマップを予め記憶する。このマップは、例えば、横軸が高圧、縦軸が冷媒量とされ、異なる過冷却度に応じた高圧と冷媒量との関係が示される。
すなわち、冷媒量算出処理では、高圧センサ21_1の計測値と過冷却度とに応じた冷媒量をマップから読み出すことで、冷媒量を算出する。
なお、これに限らず、室外熱交換器13における圧力と温度に基づいて、室外熱交換器13内の冷媒の平均密度を算出し、密度と室外熱交換器13内の容積を乗算することで、室外熱交換器13内の冷媒量を算出してもよい。
2.室内熱交換器31(蒸発器)
室内熱交換器31も、液相と気相が混在しているので、室外熱交換器13と同様に、制御装置3が、空調システム1の運転状態における室内熱交換器31内の冷媒量を予測したマップを予め記憶する。このマップは、例えば、横軸が低圧、縦軸が冷媒量とされ、過熱度に応じた低圧と冷媒量との関係が示される。
すなわち、冷媒量算出処理では、低圧センサ21_2の計測値と過熱度に応じた冷媒量をマップから読み出すことで、冷媒量を算出する。
なお、これに限らず、室内熱交換器31における圧力と温度に基づいて、室内熱交換器31内の冷媒の平均密度を算出し、密度と室内熱交換器31内の容積を乗算することで、室内熱交換器31内の冷媒量を算出してもよい。
室内熱交換器31も、液相と気相が混在しているので、室外熱交換器13と同様に、制御装置3が、空調システム1の運転状態における室内熱交換器31内の冷媒量を予測したマップを予め記憶する。このマップは、例えば、横軸が低圧、縦軸が冷媒量とされ、過熱度に応じた低圧と冷媒量との関係が示される。
すなわち、冷媒量算出処理では、低圧センサ21_2の計測値と過熱度に応じた冷媒量をマップから読み出すことで、冷媒量を算出する。
なお、これに限らず、室内熱交換器31における圧力と温度に基づいて、室内熱交換器31内の冷媒の平均密度を算出し、密度と室内熱交換器31内の容積を乗算することで、室内熱交換器31内の冷媒量を算出してもよい。
3.ガス管
冷媒量算出処理では、低圧センサ21_2の測定値とガス管における温度センサの計測値とからガス密度を算出し、このガス密度とガス管の内容積とを乗算して冷媒量を算出する。
冷媒量算出処理では、低圧センサ21_2の測定値とガス管における温度センサの計測値とからガス密度を算出し、このガス密度とガス管の内容積とを乗算して冷媒量を算出する。
4.液管
冷媒量算出処理では、低圧センサ21_2の測定値と液管における温度センサの計測値とから液密度を算出し、この液密度と液管の内容積とを乗算して冷媒量を算出する。
冷媒量算出処理では、低圧センサ21_2の測定値と液管における温度センサの計測値とから液密度を算出し、この液密度と液管の内容積とを乗算して冷媒量を算出する。
5.圧力容器
冷媒量算出処理では、低圧センサ21_2の測定値と圧力容器における温度センサの計測値とからガス密度を算出し、このガス密度と圧力容器の内容積とを乗算して冷媒量を算出する。
なお、空調システム1の運転中はアキュムレータ16内に液がないので、圧力容器内は、ほぼ単相の過熱ガスと想定できる。
冷媒量算出処理では、低圧センサ21_2の測定値と圧力容器における温度センサの計測値とからガス密度を算出し、このガス密度と圧力容器の内容積とを乗算して冷媒量を算出する。
なお、空調システム1の運転中はアキュムレータ16内に液がないので、圧力容器内は、ほぼ単相の過熱ガスと想定できる。
6.機内配管
機内配管は、液相が流れる配管(以下「液ライン」という。)と気相が流れる配管(以下「ガスライン」という。)とがある。そこで、冷媒量算出処理では、空調システム1の運転状態に応じて液ラインとガスラインとを仮想的に分ける。冷媒量算出処理では、液ラインにおける圧力と温度から算出した液密度と、液ラインの内容積とを乗算して液ライン内の冷媒量とし、ガスラインにおける圧力と温度から算出したガス密度と、ガスラインの内容積とを乗算してガスライン内の冷媒量とする。そして、液ライン内の冷媒量とガスライン内の冷媒量との和が、機内配管における冷媒量とされる。
機内配管は、液相が流れる配管(以下「液ライン」という。)と気相が流れる配管(以下「ガスライン」という。)とがある。そこで、冷媒量算出処理では、空調システム1の運転状態に応じて液ラインとガスラインとを仮想的に分ける。冷媒量算出処理では、液ラインにおける圧力と温度から算出した液密度と、液ラインの内容積とを乗算して液ライン内の冷媒量とし、ガスラインにおける圧力と温度から算出したガス密度と、ガスラインの内容積とを乗算してガスライン内の冷媒量とする。そして、液ライン内の冷媒量とガスライン内の冷媒量との和が、機内配管における冷媒量とされる。
なお、冷媒量は、上述したように、制御装置3で相関式を記憶し、この相関式に基づいて算出されることに限られず、制御装置3が外部のサーバに接続され、このサーバにおいて算出されてもよい。
図6は、本実施形態に係る冷媒量判定処理の流れを示すフローチャートである。冷媒量判定処理は、制御装置3によって実行される。
まず、ステップ300では、前回実行した冷媒量判定処理の終了から所定の積算運転時間(例えば50時間)が経過したか否かを判定し、肯定判定の場合にステップ302へ移行する。
ステップ302では、上述した冷媒量算出処理を行い、算出した冷媒量を記憶する。
次のステップ304では、今回算出された冷媒量が前回算出された冷媒量に比べて、所定量以上減少したか否かを判定する。この所定量は、前回算出した冷媒量の今回算出した冷媒量に対する割合であってもよいし、前回算出した冷媒量と今回算出した冷媒量との差(絶対値)であってもよい。例えば、割合によって所定量を算出する場合は、前回算出した冷媒量が、今回算出した冷媒量に比べて10%以上減少した場合に、ステップ304では肯定とし、ステップ306へ移行する。一方、減算量が10%未満の場合は、否定と判定し、ステップ300へ戻る。
すなわち、冷媒量の減少が所定量以上の場合は、空調システム1から冷媒が漏れ出る異常が発生していることとなる。
すなわち、冷媒量の減少が所定量以上の場合は、空調システム1から冷媒が漏れ出る異常が発生していることとなる。
ステップ306では、異常が発生していることを、例えば、保守点検装置6を介して発報し、冷媒量判定処理を終了する。
以上説明したように、本実施形態に係る空調システム1の制御装置3は、室外機Bと通信媒体を介して通信可能とされ、通信媒体を介して室外機Bに搭載される機器の情報を取得すると共に、室外機Bに搭載される機器へ制御指令を出力する室外機制御部43と、室内機Aと通信媒体を介して通信可能とされ、通信媒体を介して室内機Aに搭載される機器の情報を取得すると共に、室内機Aに搭載される機器へ制御指令を出力する室内機制御部41と、を備える。そして、制御装置3は、空調システム1の負荷状態毎に空調システム1の運転状態を記憶し、現在の運転状態と同等の負荷状態に応じた過去の運転状態とを比較することで、機器の異常の有無を判定する。
このように、制御装置3は、同等の負荷状態における運転中と過去の空調システム1の運転状態を比較するので、機器に異常が生じた場合における運転状態の変化を明確にし、空調システム1の運転状態をより簡便かつ正確に把握可能となる。
以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。
例えば、上記実施形態では、異常判定処理や冷媒量判定処理を前回実行した各処理の終了から所定の積算運転時間の経過後に実行する形態について説明したが、本発明は、これに限定されるものではなく、各処理を週に1回等、所定の時間間隔毎に実行する形態としてもよい。
また、上記実施形態で説明した異常判定処理や冷媒量判定処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
1 空調システム
3 制御装置
41 室内機制御部
43 室外機制御部
72 記憶部
74 異常判定部
A 室内機
B 室外機
3 制御装置
41 室内機制御部
43 室外機制御部
72 記憶部
74 異常判定部
A 室内機
B 室外機
Claims (5)
- 一又は複数台の室外機、及び一又は複数台の室内機を備える空調システムの制御装置であって、
前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御部と、
前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御部と、
前記空調システムの負荷状態毎に前記空調システムの運転状態を記憶する記憶手段と、
現在の前記運転状態と同等の負荷状態に応じた過去の前記運転状態とを比較することで、前記機器の異常の有無を判定する異常判定手段と、
を備える空調システムの制御装置。 - 前記異常判定手段は、前記機器の運転に応じてより変動が表れ易い、前記空調システムの予め定められた状態量に基づいて、前記機器の異常の有無を判定する請求項1記載の空調システムの制御装置。
- 前記空調システムの状態量に基づいて前記空調システム内の冷媒量を算出する請求項1又は請求項2記載の空調システムの制御装置。
- 一又は複数台の室外機と、
一又は複数台の室内機と、
請求項1から請求項3の何れか1項記載の制御装置と、
を備える空調システム。 - 一又は複数台の室外機、一又は複数台の室内機、前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御部、及び前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御部を備える空調システムの異常判定方法であって、
前記空調システムの負荷状態毎に前記空調システムの運転状態を記憶し、
現在の運転状態と同等の負荷状態に応じた過去の前記運転状態とを比較することで、前記機器の異常の有無を判定する空調システムの異常判定方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/520,764 US20170314801A1 (en) | 2014-10-24 | 2015-01-22 | Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system |
EP15851930.6A EP3196563B1 (en) | 2014-10-24 | 2015-01-22 | Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system |
CN201580057524.7A CN107076449A (zh) | 2014-10-24 | 2015-01-22 | 空调系统的控制装置、空调系统以及空调系统的异常判定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014217461A JP2016084969A (ja) | 2014-10-24 | 2014-10-24 | 空調システムの制御装置、空調システム、及び空調システムの異常判定方法 |
JP2014-217461 | 2014-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016063550A1 true WO2016063550A1 (ja) | 2016-04-28 |
Family
ID=55760608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051666 WO2016063550A1 (ja) | 2014-10-24 | 2015-01-22 | 空調システムの制御装置、空調システム、及び空調システムの異常判定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170314801A1 (ja) |
EP (1) | EP3196563B1 (ja) |
JP (1) | JP2016084969A (ja) |
CN (1) | CN107076449A (ja) |
WO (1) | WO2016063550A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6464903B2 (ja) * | 2015-04-16 | 2019-02-06 | ダイキン工業株式会社 | 空気調和機のインバータ駆動装置 |
WO2018087799A1 (ja) * | 2016-11-08 | 2018-05-17 | 三菱電機株式会社 | 空気調和装置 |
JP7376807B2 (ja) * | 2019-03-19 | 2023-11-09 | ダイキン工業株式会社 | 装置評価システム及び装置評価方法 |
KR20210135710A (ko) | 2020-05-06 | 2021-11-16 | 엘지전자 주식회사 | 공기조화기 시스템 및 그 제어방법 |
WO2021250815A1 (ja) | 2020-06-10 | 2021-12-16 | 三菱電機株式会社 | 冷凍サイクル装置 |
GB2610983C (en) * | 2020-07-13 | 2024-04-17 | Mitsubishi Electric Corp | Air-conditioning apparatus |
JP7177366B2 (ja) * | 2021-04-28 | 2022-11-24 | ダイキン工業株式会社 | 空気調和装置の据え付け支援システム、据え付け支援装置、及び据え付け支援方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001021192A (ja) * | 1999-07-12 | 2001-01-26 | Mitsubishi Electric Building Techno Service Co Ltd | 遠隔監視システム |
JP2002115891A (ja) * | 2000-10-06 | 2002-04-19 | Mitsubishi Electric Corp | 空調機の遠隔監視システム、および室内機の監視方法 |
JP2005207644A (ja) * | 2004-01-21 | 2005-08-04 | Mitsubishi Electric Corp | 機器診断装置、冷凍サイクル装置、流体回路診断方法、機器監視システム、冷凍サイクル監視システム |
JP2005309724A (ja) * | 2004-04-21 | 2005-11-04 | Tokyo Gas Co Ltd | 異常診断システム及び異常診断方法 |
US20060086103A1 (en) * | 2004-10-26 | 2006-04-27 | Lg Electronics Inc. | Abnormal state detecting apparatus of multi-type air conditioner and method thereof |
JP2008249234A (ja) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3102208B2 (ja) * | 1993-06-30 | 2000-10-23 | ダイキン工業株式会社 | 空気調和装置の運転制御装置 |
JP2002349940A (ja) * | 2001-05-30 | 2002-12-04 | Matsushita Electric Ind Co Ltd | 空気調和システム |
KR100677282B1 (ko) * | 2005-06-17 | 2007-02-02 | 엘지전자 주식회사 | 공기조화기의 실외기 제어방법 및 제어장치 |
US20070015637A1 (en) * | 2005-07-18 | 2007-01-18 | University Of Victoria Innovation And Development Corporation | Device for measuring the striking force and reaction time of martial artists |
JP4518208B2 (ja) * | 2008-10-07 | 2010-08-04 | ダイキン工業株式会社 | 空気調和装置の遠隔管理システムおよび遠隔管理方法 |
JP2010121810A (ja) * | 2008-11-18 | 2010-06-03 | Panasonic Corp | 空気調和機の通信制御装置 |
JP4958936B2 (ja) * | 2009-04-13 | 2012-06-20 | 三菱電機株式会社 | 空気調和システム診断装置 |
EP2442042B1 (en) * | 2009-06-12 | 2020-07-29 | Mitsubishi Electric Corporation | Air conditioning system diagnosis apparatus |
US20120072029A1 (en) * | 2010-09-20 | 2012-03-22 | Heatvu Inc. | Intelligent system and method for detecting and diagnosing faults in heating, ventilating and air conditioning (hvac) equipment |
JP2012127603A (ja) * | 2010-12-17 | 2012-07-05 | Mitsubishi Electric Building Techno Service Co Ltd | 空調システム |
CN103597292B (zh) * | 2011-02-28 | 2016-05-18 | 艾默生电气公司 | 用于建筑物的供暖、通风和空调hvac系统的监视系统和监视方法 |
US20120240072A1 (en) * | 2011-03-18 | 2012-09-20 | Serious Materials, Inc. | Intensity transform systems and methods |
US9251472B1 (en) * | 2011-09-26 | 2016-02-02 | 31North, Inc. | Method and system for monitoring a building |
US10001790B2 (en) * | 2013-02-26 | 2018-06-19 | Honeywell International Inc. | Security system with integrated HVAC control |
-
2014
- 2014-10-24 JP JP2014217461A patent/JP2016084969A/ja active Pending
-
2015
- 2015-01-22 WO PCT/JP2015/051666 patent/WO2016063550A1/ja active Application Filing
- 2015-01-22 US US15/520,764 patent/US20170314801A1/en not_active Abandoned
- 2015-01-22 EP EP15851930.6A patent/EP3196563B1/en active Active
- 2015-01-22 CN CN201580057524.7A patent/CN107076449A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001021192A (ja) * | 1999-07-12 | 2001-01-26 | Mitsubishi Electric Building Techno Service Co Ltd | 遠隔監視システム |
JP2002115891A (ja) * | 2000-10-06 | 2002-04-19 | Mitsubishi Electric Corp | 空調機の遠隔監視システム、および室内機の監視方法 |
JP2005207644A (ja) * | 2004-01-21 | 2005-08-04 | Mitsubishi Electric Corp | 機器診断装置、冷凍サイクル装置、流体回路診断方法、機器監視システム、冷凍サイクル監視システム |
JP2005309724A (ja) * | 2004-04-21 | 2005-11-04 | Tokyo Gas Co Ltd | 異常診断システム及び異常診断方法 |
US20060086103A1 (en) * | 2004-10-26 | 2006-04-27 | Lg Electronics Inc. | Abnormal state detecting apparatus of multi-type air conditioner and method thereof |
JP2008249234A (ja) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3196563A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3196563B1 (en) | 2020-12-09 |
JP2016084969A (ja) | 2016-05-19 |
US20170314801A1 (en) | 2017-11-02 |
EP3196563A1 (en) | 2017-07-26 |
CN107076449A (zh) | 2017-08-18 |
EP3196563A4 (en) | 2017-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6359423B2 (ja) | 空調システムの制御装置、空調システム、及び空調システムの制御装置の異常判定方法 | |
WO2016063550A1 (ja) | 空調システムの制御装置、空調システム、及び空調システムの異常判定方法 | |
US11769118B2 (en) | Systems and methods for automated diagnostics of HVAC systems | |
US9239180B2 (en) | Refrigeration and air-conditioning apparatus | |
US9696073B2 (en) | Fault detection and diagnostic system for a refrigeration circuit | |
JP6609417B2 (ja) | 空気調和機 | |
JP5525965B2 (ja) | 冷凍サイクル装置 | |
JP7257782B2 (ja) | 空気調和システム | |
JP5622859B2 (ja) | 熱源装置 | |
AU2018423601B2 (en) | Failure diagnosis system | |
WO2016077559A1 (en) | On board chiller capacity calculation | |
WO2017033240A1 (ja) | データ取得システム、異常検知システム、冷凍サイクル装置、データ取得方法、及び異常検知方法 | |
JP2019066164A (ja) | 冷媒量推定方法及び空気調和装置 | |
US11828511B2 (en) | Systems and methods for humidity control in an air conditioning system | |
WO2017175406A1 (ja) | 空調吹き出し温度推定装置及びプログラム | |
CN111006306B (zh) | 一种多联机 | |
KR102521851B1 (ko) | 칠러 시스템 | |
JP6519098B2 (ja) | 空気調和装置 | |
WO2024058149A1 (ja) | 機器性能値予測方法、システム、およびプログラム | |
JP2024106268A (ja) | 異常判定装置、温度調節システム、異常判定方法、および異常判定プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15851930 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15520764 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015851930 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |