WO2020179474A1 - 半導体装置の製造方法、プログラム及び基板処理装置 - Google Patents
半導体装置の製造方法、プログラム及び基板処理装置 Download PDFInfo
- Publication number
- WO2020179474A1 WO2020179474A1 PCT/JP2020/006792 JP2020006792W WO2020179474A1 WO 2020179474 A1 WO2020179474 A1 WO 2020179474A1 JP 2020006792 W JP2020006792 W JP 2020006792W WO 2020179474 A1 WO2020179474 A1 WO 2020179474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- processing chamber
- supply
- substrate
- supplied
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 136
- 239000000758 substrate Substances 0.000 title claims abstract description 48
- 239000004065 semiconductor Substances 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000007789 gas Substances 0.000 claims abstract description 381
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 8
- 150000002367 halogens Chemical class 0.000 claims abstract description 8
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 55
- 230000008569 process Effects 0.000 claims description 36
- 239000011261 inert gas Substances 0.000 claims description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 238000010926 purge Methods 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 238000002203 pretreatment Methods 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 abstract description 3
- 235000012431 wafers Nutrition 0.000 description 72
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 20
- 239000010936 titanium Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000003860 storage Methods 0.000 description 12
- 239000006227 byproduct Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000012495 reaction gas Substances 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000003779 heat-resistant material Substances 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910003902 SiCl 4 Inorganic materials 0.000 description 4
- 229910008482 TiSiN Inorganic materials 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 4
- 239000012528 membrane Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 2
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 108700021154 Metallothionein 3 Proteins 0.000 description 1
- 102100028708 Metallothionein-3 Human genes 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- GPTXWRGISTZRIO-UHFFFAOYSA-N chlorquinaldol Chemical compound ClC1=CC(Cl)=C(O)C2=NC(C)=CC=C21 GPTXWRGISTZRIO-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- OYMJNIHGVDEDFX-UHFFFAOYSA-J molybdenum tetrachloride Chemical compound Cl[Mo](Cl)(Cl)Cl OYMJNIHGVDEDFX-UHFFFAOYSA-J 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JYIFRKSFEGQVTG-UHFFFAOYSA-J tetrachlorotantalum Chemical compound Cl[Ta](Cl)(Cl)Cl JYIFRKSFEGQVTG-UHFFFAOYSA-J 0.000 description 1
- KPFWGLUVXPQOHO-UHFFFAOYSA-N trichloro(silyl)silane Chemical compound [SiH3][Si](Cl)(Cl)Cl KPFWGLUVXPQOHO-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical compound Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 1
- WIDQNNDDTXUPAN-UHFFFAOYSA-I tungsten(v) chloride Chemical compound Cl[W](Cl)(Cl)(Cl)Cl WIDQNNDDTXUPAN-UHFFFAOYSA-I 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45557—Pulsed pressure or control pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28568—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/32051—Deposition of metallic or metal-silicide layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
Definitions
- the present disclosure relates to a semiconductor device manufacturing method, a program, and a substrate processing apparatus.
- a tungsten (W) film is used for the control gate of a NAND (3D NAND) type flash memory having a three-dimensional structure, and a tungsten hexafluoride (WF 6 ) gas containing W is used to form the W film. It is used.
- a titanium nitride (TiN) film may be provided as a barrier film between the W film and the insulating film. This TiN film plays a role of enhancing the adhesion between the W film and the insulating film and also plays a role of preventing the fluorine (F) contained in the W film from diffusing into the insulating film, and the film is formed of titanium tetrachloride. It is generally carried out using (TiCl 4 ) gas and ammonia (NH 3 ) gas (see, for example, Patent Documents 1 and 2).
- the present disclosure provides a technique capable of improving membrane properties.
- a metal-containing gas is supplied to the substrate in the processing chamber, a reducing gas containing silicon and hydrogen and containing no halogen is supplied in parallel, and an exhausting step of exhausting the atmosphere in the processing chamber is performed.
- the step of repeating the first step a plurality of times, and the first step a plurality of times, the supply of the nitrogen-containing gas to the substrate in the treatment chamber and the exhaust of the atmosphere in the treatment chamber.
- a technique having a second step of performing the above steps and a step of repeating the second step a plurality of times.
- the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating unit (heating mechanism, heating system).
- the heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate.
- an outer tube 203 that is concentric with the heater 207 and that constitutes a reaction container (processing container) is disposed.
- the outer tube 203 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
- the outer tube 203 has a cylindrical shape with an upper end closed and a lower end opened.
- a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203.
- the manifold 209 is made of a metal material such as stainless steel (SUS).
- the manifold 209 is formed in a cylindrical shape having an open upper end and a lower end.
- An O-ring 220a serving as a seal member is provided between the upper end of the manifold 209 and the outer tube 203.
- an inner tube 204 constituting a reaction container is arranged inside the outer tube 203.
- the inner tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
- the inner tube 204 has a cylindrical shape with an upper end closed and a lower end opened.
- the outer tube 203, the inner tube 204, and the manifold 209 mainly form a processing container (reaction container).
- a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
- the processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
- nozzles 410, 420, 430 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
- Gas supply pipes 310, 320, 330 are connected to the nozzles 410, 420, 430, respectively.
- the processing furnace 202 of this embodiment is not limited to the above-mentioned form.
- the gas supply pipes 510, 520, and 530 are provided with MFC 512, 522, 532, which is a flow rate controller (flow control unit), and valves 514, 524, 534, which are on-off valves, in this order from the upstream side.
- MFC 512, 522, 532 which is a flow rate controller (flow control unit)
- valves 514, 524, 534 which are on-off valves, in this order from the upstream side.
- Nozzles 410, 420, 430 are connected to the tips of the gas supply pipes 310, 320, 330, respectively.
- the nozzles 410, 420, 430 are configured as L-shaped nozzles, and the horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
- the vertical portions of the nozzles 410, 420, and 430 are arranged so as to project outward in the radial direction of the inner tube 204, and the inside of the spare chamber 201a having a channel shape (groove shape) formed so as to extend in the vertical direction. It is provided in the spare chamber 201a toward the upper side (upper in the arrangement direction of the wafer 200) along the inner wall of the inner tube 204.
- the nozzles 410, 420, 430 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410a, 420a, 430a are provided at positions facing the wafer 200, respectively. Is provided.
- the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430, respectively.
- the plurality of gas supply holes 410a, 420a, 430a are provided from the lower portion to the upper portion of the inner tube 204, have the same opening area, and are provided at the same opening pitch.
- the gas supply holes 410a, 420a, 430a are not limited to the above-described form.
- the opening area may be gradually increased from the lower portion to the upper portion of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a more uniform.
- a plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at a height from the lower part to the upper part of the boat 217 described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 is supplied to the entire area of the wafer 200 accommodated from the lower part to the upper part of the boat 217.
- the nozzles 410, 420, 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend near the ceiling of the boat 217.
- the first flush tank 312 is arranged between the MFC 311 and the valve 314 of the gas supply pipe 310.
- a second flush tank 332 is arranged between the MFC 331 and the valve 334 of the gas supply pipe 330.
- a source gas containing a metal element (metal-containing gas) is supplied as a processing gas into the processing chamber 201 via the MFC 311, the valve 314, and the nozzle 410.
- a source gas containing a metal element metal-containing gas
- the raw material for example, titanium tetrachloride (TiCl 4 ) containing titanium (Ti) as a metal element and used as a halogen-based raw material (halide, halogen-based titanium raw material) is used.
- a reducing gas as a processing gas is supplied into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420.
- a silane (SiH 4 ) gas containing silicon (Si) and hydrogen (H) and as a halogen-free reducing gas can be used.
- SiH 4 acts as a reducing agent.
- a reaction gas as a processing gas is supplied into the processing chamber 201 through the MFC 331, the valve 334, and the nozzle 430.
- the reaction gas for example, ammonia (NH 3 ) gas as N-containing gas containing nitrogen (N) can be used.
- nitrogen (N 2 ) gas as an inert gas is discharged into the processing chamber via MFC512,522,532, valves 514,524,534, and nozzles 410,420,430, respectively. It is supplied in 201.
- N 2 gas used as the inert gas
- the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, xenone, in addition to N 2 gas, will be described.
- a rare gas such as (Xe) gas may be used.
- the processing gas supply unit is mainly composed of gas supply pipes 310, 320, 330, MFC 311, 322, 331, valves 314, 324, 334, and nozzles 410, 420, 430, but only nozzles 410, 420, 430 are used. It may be considered as a processing gas supply unit.
- the treated gas supply unit may be simply referred to as a gas supply unit.
- the source gas supply unit (first gas supply unit) is mainly configured by the gas supply pipe 310, the MFC 311, and the valve 314, but the nozzle 410 is included in the source gas supply unit. You may think about it.
- the first flash tank 312 may be included in the raw material gas supply unit.
- the reducing gas supply unit is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 serves as the reducing gas supply unit (second gas supply unit). You may consider including it in.
- the reaction gas supply unit (third gas supply unit) is mainly composed of the gas supply pipe 330, the MFC 331, and the valve 334, and the nozzle 430 is used as the reaction gas supply unit. You may consider including it in.
- the second flash tank 332 may be included in the reaction gas supply unit.
- the reaction gas supply unit can also be referred to as a nitrogen-containing gas supply unit.
- the inert gas supply unit is mainly composed of gas supply pipes 510, 520, 530, MFC 512, 522, 532, and valves 514, 524, 534.
- the gas supply method according to the present embodiment is performed by the nozzles 410, 420 arranged in the preliminary chamber 201a in a vertically elongated annular space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200. Gas is transported via 430. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a provided at positions of the nozzles 410, 420, 430 facing the wafer.
- the gas supply holes 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, and the gas supply hole 430a of the nozzle 430 eject a source gas or the like in a direction parallel to the surface of the wafer 200.
- the exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzles 410, 420, 430 on the side wall of the inner tube 204, and is, for example, a slit-shaped through hole formed elongated in the vertical direction. Is.
- the gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 and flowing on the surface of the wafer 200 passes through the exhaust holes 204a into the inner tube 204 and the outer tube 203. It flows into the exhaust passage 206 formed by the gaps formed between them. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
- the exhaust holes 204a are provided at positions facing the side surfaces of the plurality of wafers 200, and the gas supplied from the gas supply holes 410a, 420a, 430a to the vicinity of the wafers 200 in the processing chamber 201 faces in the horizontal direction. And then flows into the exhaust passage 206 through the exhaust hole 204a.
- the exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
- the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
- a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
- an APC (Auto Pressure Controller) valve 243 and a vacuum pump as a vacuum exhaust device. 246 is connected.
- the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted by adjusting the exhaust conductance.
- the exhaust section is mainly composed of the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 2311, the APC valve 243, and the pressure sensor 245. At least the exhaust port 204a may be considered as an exhaust unit.
- the vacuum pump 246 may be included in the exhaust unit.
- a seal cap 219 is installed as a furnace port cover capable of airtightly closing the lower end opening of the manifold 209.
- the seal cap 219 is configured to come into contact with the lower end of the manifold 209 from the lower side in the vertical direction.
- the seal cap 219 is made of a metal material such as SUS.
- the shape of the seal cap 219 is formed in a disk shape.
- an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
- a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed.
- the rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
- the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
- the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203.
- the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
- the boat elevator 115 is configured as a transport device (convey mechanism) for transporting the wafers 200 housed in the boat 217 and the boat 217 into and out of the processing chamber 201.
- the boat 217 as a substrate support is configured such that a plurality of wafers 200, for example, 1 to 200 wafers 200 can be arranged in a horizontal posture and vertically aligned with their centers aligned with each other. There is.
- the boat 217 is formed of a heat resistant material such as quartz or SiC.
- a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages (not shown). With this configuration, heat from the heater 207 is less likely to be transferred to the seal cap 219 side.
- this embodiment is not limited to the above-described embodiment.
- the heat insulating plate 218 may not be provided below the boat 217, and a heat insulating tube configured as a tubular member containing a heat resistant material such as quartz or SiC may be provided.
- a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and by adjusting the amount of electricity to the heater 207 based on the temperature information detected by the temperature sensor 263,
- the temperature inside the processing chamber 201 is configured to have a desired temperature distribution.
- the temperature sensor 263 is L-shaped like the nozzles 410, 420 and 430, and is provided along the inner wall of the inner tube 204.
- the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I/O port 121d.
- the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus.
- An input/output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
- the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
- a control program for controlling the operation of the substrate processing apparatus, a process recipe in which a procedure and conditions of a semiconductor device manufacturing method, which will be described later, and the like are readablely stored.
- the process recipe is a combination that causes the controller 121 to execute each step (each step) in the method of manufacturing a semiconductor device described below and obtains a predetermined result, and functions as a program.
- the process recipe, the control program, and the like are collectively referred to simply as a program.
- the RAM 121b is configured as a memory area (work area) in which programs and data read by the CPU 121a are temporarily stored.
- the I / O port 121d has the above-mentioned MFC 311,322,331,512,522,532, valve 314,324,334,514,524,534, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature.
- the sensor 263, the rotation mechanism 267, the boat elevator 115, and the like are connected in a controllable manner.
- the connection includes being electrically directly connected, being indirectly connected, and being configured to be able to directly or indirectly transmit and receive electrical signals.
- the CPU 121a is configured to read and execute a control program from the storage device 121c, and read a recipe or the like from the storage device 121c in response to an input of an operation command from the input/output device 122.
- the CPU 121a adjusts the flow rate of various gases by the MFC 311, 322, 331, 521, 522, 532, opens and closes the valves 314, 324, 334, 514, 524, 534, and the APC valve so as to follow the contents of the read recipe.
- the controller 121 is stored in an external storage device (eg, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123.
- the above-mentioned program can be configured by installing it on a computer.
- the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
- the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
- the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
- Substrate processing process film forming process
- a step of forming for example, a metal film constituting a gate electrode on the wafer 200
- the step of forming the metal film is performed using the processing furnace 202 of the substrate processing apparatus 10 described above.
- the operation of each part of the substrate processing apparatus 10 is controlled by the controller 121.
- the structure shown in FIG. 12 may be formed on the wafer 200.
- This structure is an intermediate structure of a 3D NAND memory.
- a plurality of insulating films 102 are laminated on the wafer 200.
- the insulating film 102 shows an example in which eight layers are formed, but the number of layers may be several tens to several hundreds.
- a structure 104 having a channel, a charge trap film, or the like is formed on the laminated insulating film 102. Further, holes 105a formed by etching are formed in the laminated insulating film 102. Further, a gap 105b formed by etching is provided between the laminated insulating films 102.
- An insulating film 106 is formed on the inner surface of the gap 105b.
- the insulating film 106 is usually made of aluminum oxide (AlO).
- AlO aluminum oxide
- a wafer 200 having such a structure is preferably used. Therefore, in the film forming step S300 described below, a film is formed on the surface of the insulating film 106.
- a wafer itself When the word “wafer” is used in the present disclosure, “a wafer itself”, “a laminated body of a wafer and a predetermined layer or film formed on the surface thereof”, “a structure formed on the wafer and the surface thereof” May mean “body”.
- the term “wafer surface” is used in the present disclosure, “the surface of the wafer itself”, “the surface of a predetermined layer or film formed on the wafer”, “the wafer and the structure formed on the surface” May mean “body”.
- the use of the term “wafer” in the present disclosure is also synonymous with the use of the term “wafer”.
- the “TiN film containing no Si atom” means that the TiN film contains no Si atom at all, substantially no Si atom, or substantially no Si atom.
- the case where the Si content in the TiN film is extremely low is included, for example, the case where the Si content in the TiN film is about 4%, and preferably 4% or less.
- the flow and gas supply sequence of the method for manufacturing the semiconductor device of the present disclosure will be described below with reference to FIGS. 4 to 9 and 11.
- the horizontal axis of FIGS. 8 and 9 represents time, and the vertical axis represents the outline of the relationship between the gas supply amount, the valve opening degree, and the pressure.
- the supply amount, valve opening, and pressure are in arbitrary units.
- the gas supply amount in the present disclosure may include one or both of the gas flow rate and the gas supply time.
- the inside of the processing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed.
- the heater 207 heats the inside of the processing chamber 201 to a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled (temperature adjustment) based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
- the pressure in the processing chamber 201 here is adjusted to the pressure when the first gas is supplied in the subsequent first step S303.
- the second atmosphere adjusting step S403 may be performed.
- adjustment is performed to reduce the oxygen concentration in the processing chamber 201. Specifically, it is processed according to the flow example shown in FIG.
- This flow includes a third gas supply step S403a, an inert gas supply step S403b, and a vacuum exhaust step S403c.
- the valve 334 is opened, and NH 3 gas is supplied as a gas containing nitrogen and hydrogen as an atmosphere adjusting gas into the gas supply pipe 330.
- the NH 3 gas is supplied from the second flash tank 332 into the processing chamber 201 through the gas supply hole 430 a of the nozzle 430, and is exhausted from the exhaust pipe 231.
- the valves 514 and 524 are opened and the N 2 gas is flown into the gas supply pipes 510 and 520.
- the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 320 and the nozzles 410 and 420, and is exhausted from the exhaust pipe 231.
- the second flash tank 332 is supplied with NH 3 gas whose flow rate has been adjusted by the MFC 331, and a predetermined amount of NH 3 gas is stored.
- the gas is stored in the second flash tank 322 while the substrate processing apparatus 10 is idling or while a gas other than the NH 3 gas is being supplied.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to a pressure within the range of 1 to 3990 Pa, for example.
- the supply flow rate of the NH 3 gas controlled by the MFC 331 is, for example, within the range of 0.1 to 30 slm.
- the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 30 slm.
- the time for supplying the NH 3 gas to the wafer 200 is, for example, a time in the range of 0.01 to 30 seconds. After the supply time has passed, the valve 334 is closed.
- N 2 gas as an inert gas is introduced into the processing chamber 201 from the nozzles 410, 420, 430, and the NH 3 gas and by-products existing in the processing chamber 201 are introduced. Is purged into the exhaust pipe 231.
- the flow rates of the N 2 gas supplied to the nozzles 410, 420, 430 are adjusted by the MFCs 512, 522, 532. For example, it is adjusted from 0.1 slm to 20 slm.
- the film forming step S300 has at least a first step S303 and a second step S304 described below. Each step will be described with reference to FIGS. 4 and 6 to 9.
- the first step S303 includes at least a first gas supply step and a second gas supply step. As shown by the broken line in FIG. 6, a pretreatment step S303a may be performed before the first gas and second gas supply step S303b. Further, as shown by the broken line in FIG. 6, a post-treatment step S303c may be performed after the first gas/second gas supply step S303b. Further, the determination step S303d may be performed after the first gas / second gas supply step S303a or after the post-treatment step S303c. Each step will be described below.
- Pretreatment step S303a In the pretreatment step S303a, the supply of the inert gas and the exhaust of the inert gas are continuously performed.
- N 2 gas as the inert gas is supplied into the processing chamber 201, and the pressure inside the processing chamber 201 is adjusted.
- the flow rate of the N 2 gas is, for example, 0.1 to 5 slm, preferably 0.3 to 3 slm, and more preferably 0.5 to 2 slm.
- the pressure at this time is adjusted to be the pressure at the time of supplying the first gas later.
- the pressure is, for example, a pressure in the range of 1 to 3990 Pa. Specifically, it is set to 900 Pa.
- N 2 gas supply time is T1 hours. T1 is, for example, 1 to 10 seconds. Specifically, it is set to 7 seconds.
- the supply of the N 2 gas is stopped or the flow rate is decreased.
- the N 2 gas may be supplied from all the nozzles existing in the processing chamber 201, or may be supplied from any one of them. Further, it may be configured to supply from a nozzle other than the nozzle used in the next step. Further, the N 2 gas supply is maintained for a predetermined time (T2) in a state where the gas supply is stopped or the flow rate is reduced.
- the flow rate of the inert gas at this time is controlled by MFC512,522,532, and the flow rate is, for example, 0.01 to 1 slm, preferably 0.1 to 1 slm, and more preferably 0.1 to 1 slm, respectively. ..
- the predetermined time T2 is 1 to 10 seconds, specifically 5 seconds.
- First gas/second gas supply step S303b In the first gas/second gas supply step S303b, TiCl 4 gas as the first gas is supplied, and SiH 4 gas as the second gas is supplied after a predetermined time has elapsed. (First gas supply) The valve 314 is opened, and TiCl 4 gas, which is the first gas (raw material gas), flows into the gas supply pipe 310. The TiCl 4 gas is supplied into the processing chamber 201 through the gas supply hole 410a of the first flash tank 312 and the nozzle 410, and is exhausted from the exhaust pipe 231. At this time, TiCl 4 gas is supplied to the wafer 200.
- the valve 514 is opened at the same time, and an inert gas such as N 2 gas is allowed to flow in the gas supply pipe 510.
- the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, the N 2 gas is supplied into the processing chamber 201 together with the TiCl 4 gas, and the N 2 gas is exhausted from the exhaust pipe 231.
- the valves 524 and 534 are opened and the N 2 gas is flown into the gas supply pipes 520 and 530.
- the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
- the gas is stored in the first flash tank 312 while the substrate processing apparatus 10 is idling or while a gas other than the TiCl 4 gas is being supplied.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to a pressure within the range of 1 to 3990 Pa, for example. Specifically, it is set to 900 Pa.
- the supply flow rate of the TiCl 4 gas controlled by the MFC 311 is set, for example, within the range of 0.1 to 2.0 slm. Specifically, it is set to 0.9 slm.
- the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 20 slm.
- the opening of the APC valve 243 is controlled to be 5 to 30%, preferably 8 to 12%.
- the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is within the range of 300 to 600° C., for example.
- the gases flowing in the processing chamber 201 are TiCl 4 gas and N 2 gas.
- a Ti-containing layer is formed on the wafer 200 (base film on the surface).
- the Ti-containing layer may be a Ti layer containing Cl, a TiCl 4 adsorption layer, or both of them.
- the time during which the TiCl 4 gas and the N 2 gas are supplied is a predetermined T3-T4 time.
- the TiCl 4 gas supplied here reacts with the gas existing in the processing chamber 201 and the substance existing on the wafer 200 to generate HCl, which is a growth inhibiting factor.
- the gas existing in the processing chamber 201 and the substance existing on the wafer 200 are considered to be residual NH 3 . That is, HCl is generated by the remaining NH 3 and TiCl 4 .
- Finding a problem that this HCl reduces the uniformity of the TiN film in the plane of the wafer 200 and the uniformity of the TiN film formed in the holes 105a and the gaps 105b of the structure formed on the wafer 200. It was In addition, when performing the 3rd gas supply process S403a, from the 1st cycle, the subject that HCl was generated was discovered.
- SiH 4 gas supply After a lapse of a predetermined time from the start of the supply of the TiCl 4 gas, the valve 324 is opened and the SiH 4 gas which is the reducing gas is flown into the gas supply pipe 320.
- the predetermined time here is, for example, 0.01 to 5 seconds, and specifically 1 second.
- the flow rate of SiH 4 gas is adjusted by MFC322, is supplied into the processing chamber 201 from the gas supply hole 420a of the nozzle 420, and is exhausted from the exhaust pipe 231.
- the valve 524 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 520.
- the flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, the N 2 gas is supplied into the process chamber 201 together with the SiH 4 gas, and the N 2 gas is exhausted from the exhaust pipe 231.
- the valve 534 is opened and the N 2 gas is flown into the gas supply pipe 530.
- the N 2 gas is supplied into the processing chamber 201 via the gas supply pipe 330 and the nozzle 430, and is exhausted from the exhaust pipe 231.
- the TiCl 4 gas, the SiH 4 gas, and the N 2 gas are supplied to the wafer 200 in parallel.
- the time during which the TiCl 4 gas and the SiH 4 gas are supplied in parallel is T4.
- the opening of the APC valve 243 at this time is about 5 to 40%, preferably 8 to 12%, and is controlled to maintain the pressure during the period when the TiCl 4 gas is being supplied. Therefore, the valve opening is larger than the valve opening when TICl 4 gas is supplied.
- the SiH 4 gas By supplying the SiH 4 gas, it is possible to reduce the growth inhibitory factor HCl, is removed.
- the following reaction is occurring. For example, it is a reaction of 4HCl+SiH 4 ⁇ SiCl 4 +4H 2 .
- the substance generated here has a high vapor pressure and is exhausted from the exhaust pipe 231 without being adsorbed in the wafer 200 or the processing chamber 201.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, 130 to 3990 Pa, preferably 500 to 2660 Pa, and more preferably 600 to 1500 Pa. Furthermore, it is preferable to maintain the same pressure as during the period when the TiCl 4 gas is being supplied. Specifically, 900 Pa is maintained.
- the pressure range that can be maintained may vary depending on the configuration of the substrate processing apparatus 10, the environment inside the processing chamber 201, the surface state of the wafer 200 to be processed, the number of wafers 200, and the like. .. According to the technique of the present disclosure, a pressure range of ⁇ 20% is allowed during the period during which the TiCl 4 gas is supplied.
- the pressure range, the pressure in the processing chamber 201 is lower than 130 Pa, SiH 4 Si contained in the gas enters the Ti-containing layer, Si content in the film included in the TiN film to be formed is high There is a possibility that it will become a TiSiN film.
- Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the TiN film formed becomes high, and TiSiN It may become a film.
- the elemental composition of the film to be formed changes if the pressure in the processing chamber 201 is too low or too high.
- the supply flow rate of the SiH 4 gas controlled by the MFC 322 is set to be equal to or higher than the flow rate of the TiCl 4 gas.
- the flow rate is in the range of 0.1 to 5 slm, preferably 0.3 to 3 slm, and more preferably 0.5 to 2 slm. Specifically, it is set to 1.0 slm.
- the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, 0.01 to 20 slm, preferably 0.1 to 10 slm, and more preferably 0.1 to 1 slm.
- the temperature of the heater 207 is set to the same temperature as the TiCl 4 gas supply step.
- the surface of the wafer 200 and the surface of the structure are supplied.
- TiCl 4 gas is supplied to most of the inside), and SiH 4 gas greatly contributes to the capture of HCl floating in the atmosphere of the treatment chamber 201. That is, it is possible to remove HCl, SiH 4 , SiCl 4 , H 2 , etc. while adsorbing TiCl 4 .
- the valve 324 is closed. , SiH 4 gas supply is stopped. Specifically, it is supplied for 4 seconds. That is, the time for supplying the SiH 4 gas to the wafer 200 is, for example, 0.01 to 60 seconds, preferably 0.1 to 30 seconds, and more preferably 1 to 20 seconds. If the time for supplying the SiH 4 gas to the wafer 200 is shorter than 0.01 seconds, HCl, which is a growth inhibitor, may remain in the Ti-containing layer without being sufficiently reduced by the SiH 4 gas.
- HCl which is a growth inhibitor
- the Si contained in the SiH 4 gas enters the Ti-containing layer, and the Si content in the film contained in the formed TiN film is increased. There is a possibility that the TiSiN film becomes high and becomes a TiSiN film. Further, when the SiH 4 gas supply is repeated many times, it is necessary to suppress the SiH 4 gas supply time in order to suppress the increase of the Si concentration in the film.
- the supply of the SiH 4 gas is stopped before the supply of the TiCl 4 gas is stopped, HCl may not be sufficiently reduced by the SiH 4 gas and may remain. Specifically, as shown in FIG. 8, the supply is stopped at the same time. Note that in the case of FIG. 9, HCl, which is a reaction inhibitor (by-product), remains in the processing chamber 201 and on the wafer 200. Therefore, it is preferable to stop the supply at the same time as in FIG. ..
- the gas supply pipe 310 After a lapse of a predetermined time from the start of the supply of the TiCl 4 gas, for example, 0.01 to 60 seconds later, preferably 0.1 to 30 seconds later, more preferably 1 to 20 seconds later, the gas supply pipe 310.
- the valve 314 is closed to stop the supply of TiCl 4 gas. Specifically, it is supplied for 5 seconds. That is, the time for supplying the TiCl 4 gas to the wafer 200 is, for example, a time in the range of 0.01 to 10 seconds.
- Step S303c a process of removing the first gas, the second gas, and the by-products remaining in the processing chamber 201 is performed. Specifically, the inert gas supply process and the exhaust gas process are performed.
- the step of supplying the inert gas N 2 gas as the inert gas is supplied into the processing chamber 201.
- the flow rate of the N 2 gas is set to be higher than the flow rate of the first gas/second gas supply step. After a lapse of a predetermined time (T5) from the start of supplying the N 2 gas, for example, after 0.01 to 10 seconds, specifically 2 seconds, the flow rate is reduced or the valve is closed.
- the opening degree of the APC valve 243 is set to 20 to 100%. It is preferably about 50%. By adjusting the valve opening degree in this way, sudden pressure fluctuations can be suppressed. As a result, it is possible to remove the gas and the like remaining in the processing chamber 201.
- the inside of the processing chamber 201 is evacuated for a predetermined time (T6) to remove the residual gas.
- the vacuum exhaust here is exhausted so that the pressure becomes, for example, 100 Pa or less.
- the opening degree of the APC valve 243 at this time is maintained at the opening degree of the APC valve 243 when N 2 gas is supplied.
- Determination step S303d it is determined whether or not at least the first gas/second gas supply step S303d has been performed a predetermined number of times (X times). If the execution is performed a predetermined number of times, a Y (YES) determination is made and the first step S303 is terminated. If it has not been executed a predetermined number of times, it is determined as N (No), and the first gas/second gas supply step S303d is repeatedly performed while the number of times is the predetermined number.
- the predetermined number of times (X times) is 2 to 30. It is preferably 10 to 20, and more preferably 15 to 20.
- the film formation rate with respect to the number of times is the result of drawing a saturation curve (not shown). This phenomenon is considered to be caused by the decrease in the number of TiCl 4 adsorption sites on the wafer 200, the occurrence of steric hindrance due to the adsorbed TiCl 4 and the increase in the amount of by-products produced. Therefore, even if the number of times is increased, it does not contribute to the film forming rate and the throughput is lowered.
- the T3 and T4 times after the 11th time may be configured to be shorter than the T3 and T4 times up to 10 times.
- the number of X times increases, the number of adsorption sites of TiCl 4 on the wafer 200 tends to decrease and saturate, and the amount of by-products produced tends to increase, so that the amount of gas contributing to film formation decreases. Therefore, for example, the supply time of the first gas and the second gas in the eleventh and subsequent cycles may be shortened.
- the above-described pretreatment step S303a is preferably performed from the second first gas/second gas supply step S303d.
- HCl and SiH 4 generated in the first first gas / second gas supply step S303d are removed.
- the post-treatment step S303c it is necessary to remove the gas remaining in the treatment chamber 201 as much as possible in order to promote the adsorption of TiCl 4 gas from the second time onward.
- the purging utilizing the effect of the pressure fluctuation is the post-treatment step S303c. Therefore, the time (T5 + T6) of the post-treatment step S303c may be longer than the time (T1 + T2) of the pretreatment step S303a according to the processing content of the first step S303. With this configuration, it is possible to promote the adsorption of TiCl 4 within the determined time of the first step S303.
- the purging step S304 may be performed after the first step and before the second step S305. Since the purging step S304 here is performed to the same effect as the second atmosphere adjusting step 403 and the post-treatment step S303c described above, the description thereof will be omitted.
- the second step S305 includes at least a third gas supply step S305a, as shown in FIGS. 7, 8 and 9. Further, in the second step S305, a purging step S305b and a determining step S305c may be added as shown by the broken line in FIG. Each step will be described below.
- [Third gas supply step S305a] (NH 3 gas supply)
- the valve 334 is opened, and NH 3 gas is flown into the gas supply pipe 330 as a reaction gas.
- the NH 3 gas is supplied into the processing chamber 201 from the second flash tank 332 via the gas supply hole 430a of the nozzle 430, and is exhausted from the exhaust pipe 231.
- NH 3 gas is supplied to the wafer 200.
- the valve 534 is simultaneously opened and N 2 gas is flown into the gas supply pipe 530.
- the flow rate of the N 2 gas flowing through the gas supply pipe 530 is adjusted by the MFC 532.
- the N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231.
- the valves 514 and 524 are opened and the N 2 gas is flown into the gas supply pipes 510 and 520.
- the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 320 and the nozzles 410 and 420, and is exhausted from the exhaust pipe 231.
- the gas is stored in the second flash tank 322 while the substrate processing apparatus 10 is idling or while a gas other than the NH 3 gas is being supplied.
- the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to a pressure within the range of 1 to 3990 Pa, for example.
- the supply flow rate of the NH 3 gas controlled by the MFC 331 is, for example, within the range of 0.1 to 30 slm.
- the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 30 slm.
- the time for supplying the NH 3 gas to the wafer 200 is, for example, a time in the range of 0.01 to 30 seconds.
- the temperature of the heater 207 at this time is set to the same temperature as in the first step S303.
- the gases flowing in the processing chamber 201 are NH 3 gas and N 2 gas.
- the NH 3 gas undergoes a substitution reaction with at least a part of the Ti-containing layer formed on the wafer 200 in the first step.
- Ti contained in the Ti-containing layer and N contained in the NH 3 gas are combined to form a TiN layer containing Ti and N and containing substantially no Si on the wafer 200.
- ammonium chloride (NH 4 Cl) is formed as a by-product of this reaction.
- Step S305c It may be determined whether or not the third gas supply step S305a has been executed at least a predetermined number of times (Y times). If the predetermined number of times has not been performed, the third gas supply step S305a is repeated, and if the predetermined number of times has been performed, the next step is performed.
- the predetermined number of times is Y times, and Y is 3 to 50 times. It is preferably 20 to 50 times.
- the second step S305 is performed.
- the determination step S307 shown in FIG. 4 is performed.
- Step S307 it is determined whether the film forming step S300 has been executed a predetermined number of times (Z times). If the predetermined number of times has not been performed, the film forming step S300 is repeated, and if the predetermined number of times has been performed, the next step is performed.
- the predetermined number of times is Z times, and Z is 1 to 200 times.
- the process is repeated until the TiN film of 0.5 to 5.0 nm is formed, for example.
- the time (T1 + T2) of the second and subsequent pretreatment steps S303a is set in the first pretreatment step S303a for the purpose of removing the above-mentioned HCl and NH 4 Cl. It may be configured longer than the time (T1 + T2). Thereby, HCL and NH 4 Cl remaining in the treatment chamber 201 can be removed.
- the second film forming step S404 is a step of repeating the gas supply sequence shown in FIG. 11 a predetermined number of times, and a TiN film is formed in the same manner as the above-mentioned step. If a TiN film having a desired film thickness is formed in the film forming step S300, this step is unnecessary. However, in the film formation in the film formation step S300, the film formation throughput may be lower than that of the conventionally known TiN film formation method. In that case, the TiN film layer formed first in the desired film thickness is formed in the film forming step S300, and then the second film forming step S404 is performed to increase the film thickness. It is possible to suppress a decrease in membrane throughput.
- N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530, and exhausted from the exhaust pipe 231.
- the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with an inert gas, and the gas and byproducts remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (afterpurge).
- the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to normal pressure (return to atmospheric pressure).
- TiCl 4 is used as the raw material gas, but the present invention is not limited to this, but tungsten hexafluoride (WF 6 ), tantalum tetrachloride (TaCl 4 ), tungsten hexachloride (WCl 6 ), and tungsten pentachloride
- a halogen-containing gas such as (WCl 5 ), molybdenum tetrachloride (MoCl 4 ), silicon tetrachloride (SiCl 4 ), disilicon hexachloride (Si 2 Cl 6 , hexachlorodisilane (HCDS)), preferably Cl-containing gas. It can be applied to gases and the membrane types formed with them. In addition to the tantalum (Ta) type, it can be applied to Si type gases such as trichlorodisilane (TCS) and film species formed using them.
- TCS trichlorodisilane
- SiH 4 has been used as the reducing gas for reducing HCl, but the present invention is not limited to this, and for example, disilane (Si 2 H 6 ) and trisdimethylaminosilane (SiH [N (CH 3 ) 2 ]] containing H are used.
- a silane gas such as 3
- a gas containing an element other than Si and hydrogen a gas such as diboran (B 2 H 6 ), phosphine (PH 3 ), active hydrogen-containing gas, or hydrogen-containing gas is applied. be able to.
- a kind of reducing gas has been used, but the present invention is not limited to this, and two or more kinds of reducing gases may be used.
- HCl has been used as a by-product of reduction using a reducing gas, but the present invention is not limited to this, and hydrogen fluoride (HF), hydrogen iodide (HI), hydrogen bromide (HBr), etc. Can also be applied when is generated.
- HF hydrogen fluoride
- HI hydrogen iodide
- HBr hydrogen bromide
- the present invention is not limited to this, and the pre-production is performed from one nozzle. It may be mixed and supplied.
- the present invention is not limited to this, and the TiCl 4 gas and the NH 3 gas are not limited to this. It is also applicable to a configuration in which the reducing gas is supplied at the time of supplying or after supplying the TiCl 4 gas and the NH 3 gas.
- the present disclosure is not limited to this, and one or several substrates can be processed at a time. It can also be suitably applied to the case where film formation is performed using a single-wafer type substrate processing apparatus for processing a substrate.
- a substrate composed of other materials can be applied to the case of performing substrate processing using a material such as a ceramic substrate or a glass substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本開示は、膜特性を向上可能な技術を提供する。
処理室内の基板に対して、金属含有ガスの供給と、シリコンおよび水素を含みハロゲンを含まない還元ガスの供給と、を並行して行う供給工程と、処理室内の雰囲気を排気する排気工程とを、行う第1の工程と、第1の工程を複数回繰り返す工程と、第1の工程を複数回繰り返した後であって、処理室内の基板に対する窒素含有ガスの供給と処理室内の雰囲気の排気とを行う第2の工程と、第2の工程を複数回繰り返す工程と、を有する技術が提供される。
以下、実施形態の例について、図を参照しながら説明する。
基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に、例えばゲート電極を構成する金属膜を形成する工程の一例について、図4を用いて説明する。金属膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。なお、ここでの処理室201内の圧力は、後の第1工程S303で第1ガスが供給される時の圧力に調整される。
続いて、第2雰囲気調整工程S403を行っても良い。第2雰囲気調整工程S403では、処理室201内の酸素濃度の低下させる調整が行われる。具体的には、図5に示すフロー例に従って処理される。このフローは、第3ガス供給工程S403a、不活性ガス供給工程S403b、真空排気工程S403cを含む。
第3ガス供給工程S403aでは、まず、バルブ334を開き、ガス供給管330内に、雰囲気調整ガスとして窒素と水素を含むガスとしてNH3ガスを流す。NH3ガスは、第2フラッシュタンク332から、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このとき、ノズル410,420内へのNH3ガスの侵入を防止するために、バルブ514,524を開き、ガス供給管510,520内にN2ガスを流す。N2ガスは、ガス供給管310,320、ノズル410,420を介して処理室201内に供給され、排気管231から排気される。なお、第2フラッシュタンク332には、MFC331で流量調整されたNH3ガスが、供給されて、所定量のNH3ガスが貯留される。なお、第2フラッシュタンク322へのガスの貯留は、基板処理装置10のアイドリング中や、NH3ガス以外のガスの供給中に行われる。
(b)成膜工程S300の最初に供給されるTiCl4ガスの供給状態と、2回目以降に供給されるTiCl4ガスの供給状態や、2サイクル目以降に供給されるTiCl4ガスの供給状態とがそれぞれ異なる状態になり、ウエハ200に形成されるTi含有層の特性が層毎に異なってしまうことを抑制することが可能となる。
不活性ガス供給工程S403bでは、各ノズル410,420,430から、処理室201内に不活性ガスとしてのN2ガスを導入し、処理室201内に存在する、NH3ガスや、副生成物を排気管231に押し出すパージ処理が行われる。各ノズル410,420,430に供給されるN2ガスの流量は、MFC512,522,532で調整される。例えば、0.1slm~20slmで調整される。
真空排気工程S403cでは、処理室201内の雰囲気を排気し、処理室201内の圧力の調整が行われる。ここでの処理室201内の圧力は、後の第1工程S303で第1ガスが供給される時の圧力に調整される。この時の不活性ガスの流量は、MFC512,522,532で制御され、それぞれ例えば0.01~1slm、好ましくは0.1~1slm、より好ましくは0.1~1slmの範囲内の流量とする。ここでの処理室201内の圧力を、後の第1工程S303で第1ガスが供給される時の圧力に調整することで、第1ガス供給時の圧力変動を抑制することができ、第1ガスをウエハ200の表面に均一に供給することが可能となる。
続いて、成膜工程S300が行われる。成膜工程S300は、少なくとも、以下に記載する第1の工程S303と第2の工程S304を有する。それぞれの工程について、図4、図6~図9を用いて説明する。
第1の工程S303は、少なくとも、第1ガスの供給工程と、第2ガスの供給工程を含む。図6の破線で示す様に、第1ガスと第2ガスの供給工程S303bの前に、前処理工程S303aを行っても良い。また、図6の破線で示す様に、第1ガス・第2ガス供給工程S303bの後に、後処理工程S303cを行っても良い。また、第1ガス・第2ガス供給工程S303aの後、又は後処理工程S303cの後に、判定工程S303dを行っても良い。以下に、それぞれの工程について説明する。
前処理工程S303aでは、不活性ガスの供給と不活性ガスの排気が連続して行われる。
第1ガス・第2ガス供給工程S303bでは、第1ガスとしてのTiCl4ガスが供給され、所定時間経過後に第2ガスとしてのSiH4ガスが供給される。(第1ガス供給) バルブ314を開き、ガス供給管310内に第1ガス(原料ガス)であるTiCl4ガスを流す。TiCl4ガスは、第1フラッシュタンク312、ノズル410のガス供給孔410aを介して、処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiCl4ガスが供給される。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、TiCl4ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420,430内へのTiCl4ガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内にN2ガスを流す。N2ガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。なお、第1フラッシュタンク312へのガスの貯留は、基板処理装置10のアイドリング中や、TiCl4ガス以外のガスの供給中に行われる。
TiCl4ガスの供給開始から所定時間経過後に、バルブ324を開き、ガス供給管320内に還元ガスであるSiH4ガスを流す。ここの所定時間は、例えば0.01~5秒とし、具体的には1秒である。SiH4ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、同時にバルブ524を開き、ガス供給管520内にN2ガス等の不活性ガスを流す。ガス供給管520内を流れたN2ガスは、MFC522により流量調整され、SiH4ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル430内へのTiCl4ガスとSiH4ガスの侵入を防止するために、バルブ534を開き、ガス供給管530内にN2ガスを流す。N2ガスは、ガス供給管330、ノズル430を介して処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiCl4ガスとSiH4ガスとN2ガスが並行して供給されることとなる。すなわち少なくともTiCl4ガスとSiH4ガスとは並行して供給されるタイミングを有する。このTiCl4ガスとSiH4ガスが並行して供給されている時間はT4とする。ここで、好ましくは、T4時間>T3時間とする。この様に構成することにより、基板の再表面へのSiの吸着を抑制することが可能となる。なお、この時のAPCバルブ243の開度は、5~40%程度であり、好ましくは8~12%で、TiCl4ガスが供給されている期間の圧力を維持する様に制御される。よって、TICl4ガスが供給されているときのバルブ開度よりも大きいバルブ開度となる。
後処理工程S303cでは、処理室201内に残留する第1ガス、第2ガス、副生成物を除去する処理が行われる。具体的には、不活性ガスの供給工程と排気工程が行われる。不活性ガスの供給工程では、不活性ガスとしてのN2ガスを、処理室201内に供給する。ここで、N2ガスの流量は、第1ガス・第2ガスの供給工程の時の流量よりも多くなるように設定される。N2ガスの供給を開始してから所定時間(T5)経過後であって、例えば、0.01~10秒後、具体的には2秒後、流量を低下させるか、バルブを閉じる。ここで、APCバルブ243の開度は、20~100%とする。好ましくは、50%程度とする。この様にバルブ開度を調整することにより、急激な圧力変動を抑制できる。その結果、処理室201内に残留したガス等を除去することが可能となる。
判定工程S303dでは、少なくとも第1ガス・第2ガス供給工程S303dが所定回数(X回)実行されたか否かの判定が行われる。所定回数実行されていれば、Y(YES)判定とし、第1の工程S303を終了させる。所定回数実行されていなければ、N(No)判定とし、所定回数となるままで第1ガス・第2ガス供給工程S303dを繰り返し行わせる。ここで所定回数(X回)は、2~30である。好ましくは10~20であり、更に好ましくは、15~20である。回数を多くすることで、ウエハ200面内の均一性や、構造体表面のカバレッジ(被覆率)を向上させることができる。一方で、回数に対する成膜レートは、飽和曲線を描く結果(不図示)となる。この現象は、ウエハ200上のTiCl4の吸着サイト数の減少、吸着したTiCl4による立体障害の発生、副生成物生成量の増加が原因と考えられる。それ故、回数を増やしても成膜レートに寄与せず、スループットの低下を発生させるためこの様な範囲にすることが好ましい。
なお、第1の工程の後であって、第2の工程S305の前に、パージ工程S304を行わせても良い。ここでのパージ工程S304は、上述の第2雰囲気調整工程403や、後処理工程S303cと略同様の趣旨の工程が行われるので、説明を省略する。
第2の工程S305は、図7、図8、図9に示す様に、少なくとも第3ガス供給工程S305aを含む。また、第2の工程S305は、図7の破線で示す様に、パージ工程S305bや判定工程S305cを追加しても良い。以下にそれぞれの工程について説明する。
(NH3ガス供給)
第3ガス供給工程S305aでは、バルブ334を開き、ガス供給管330内に、反応ガスとしてNH3ガスを流す。NH3ガスは、第2フラッシュタンク332からノズル430のガス供給孔430aを介して処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、NH3ガスが供給される。このとき同時にバルブ534を開き、ガス供給管530内にN2ガスを流す。ガス供給管530内を流れたN2ガスは、MFC532により流量調整される。N2ガスはNH3ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410,420内へのNH3ガスの侵入を防止するために、バルブ514,524を開き、ガス供給管510,520内にN2ガスを流す。N2ガスは、ガス供給管310,320、ノズル410,420を介して処理室201内に供給され、排気管231から排気される。なお、第2フラッシュタンク322へのガスの貯留は、基板処理装置10のアイドリング中や、NH3ガス以外のガスの供給中に行われる。
(残留ガス除去)
TiN層を形成した後、バルブ334を閉じて、NH3ガスの供給を停止する。これにより、処理室201内に残留する未反応もしくはTiN層の形成に寄与した後のNH3ガスや副生成物(NH4Cl)を処理室201内から排除する。なお、ここでのAPCバルブ243のバルブ開度は、略全開(略100%)とし、N2ガスの合計流量は、1slm~100slmとし、具体的には、60slmで180Paとなる様に各MFCとAPCバルブ243を制御する。この様に構成することにより、1サイクルで生成される副生成物を排気することができ、次のサイクルに与える影響を低減することができる。
少なくとも第3ガス供給工程S305aが所定回数(Y回)実行されたかを判定しても良い。所定回数行われていなければ、第3ガス供給工程S305aを繰り返し行わせ、所定回数行われていれば、次の工程を行わせる。ここで、所定回数はY回であり、Yは3~50である。好ましくは、20~50回である。ここで、X<Yとし、X:Y=1:2(~4)とすることにより、ウエハ200面内や、構造体表面に均一な特性の膜を形成させることが可能となる。
判定工程S307では、成膜工程S300が所定回数(Z回)実行されたかを判定する。所定回数回数行われていなければ、成膜工程S300を繰り返し行わせ、所定回数行われていれば、次の工程を行わせる。ここで、所定回数はZ回であり、Zは1~200である。ここでは、例えば0.5~5.0nmのTiN膜が形成されるまでの回数行われる。
続いて、第2成膜工程S404が行われても良い。第2成膜工程S404は、図11に示すガス供給シーケンスを所定回数繰り返す工程であり、上述の工程と同様にTiN膜が形成される。なお、成膜工程S300で所望の膜厚のTiN膜が形成されていれば、本工程は、不要である。しかしながら、成膜工程S300での成膜では、従来から知られているTiNの成膜法に比べて、成膜スループットが低下する可能性がある。その場合、所望の膜厚の内の最初に形成されるTiN膜の層を、成膜工程S300で形成し、その後、膜厚を稼ぐため、第2成膜工程S404を行わせることで、成膜スループットの低下を抑制することが可能となる。
ガス供給管510,520,530のそれぞれからN2ガスを処理室201内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
本実施形態の例によれば、以下に示す1つまたは複数の効果を得ることができる。(a)成膜中に発生し、成膜速度を低下させるHClを効率よく排出でき、成膜速度を上げることができる。(b)膜中のSi濃度を低減させることができる。(c)膜の被覆率を向上させることができる。
図10に示す様に、本開示の技術によれば、平面に占めるTiN粒の比率を大きくすることができ、被覆率が向上する。第1ガスと第2ガスの供給を複数回に分けて行うことで、処理室201内に存在するHCl濃度の減少、ウエハ200上に形成されるTiCl4による立体障害の大きさを減少させることで、被覆率が向上していると考えられる。(d)耐酸化性を向上させる。
図10に示す様に、膜の粒径が大きくなることで、結晶粒界が減少(膜の表面積が減少)し、耐酸化性が向上する。
Claims (13)
- 処理室内の基板に対して、金属含有ガスの供給と、シリコンおよび水素を含みハロゲンを含まない還元ガスの供給と、を並行して行う供給工程と、前記処理室内の雰囲気を排気する排気工程とを、行う第1の工程と、
前記第1の工程を複数回繰り返す工程と、
前記第1の工程を複数回繰り返した後であって、
前記処理室内の基板に対する窒素含有ガスの供給と前記処理室内の雰囲気の排気とを行う第2の工程と、
前記第2の工程を複数回繰り返す工程と、
を有する半導体装置の製造方法。 - 前記第1の工程では、前記金属含有ガスの供給開始後に前記還元ガスを供給する請求項1に記載の半導体装置の製造方法。
- 前記第1の工程は、前記金属含有ガスの供給停止と前記還元ガスの供給停止とを同時に行う請求項1または2に記載の半導体装置の製造方法。
- 前記第1の工程では、前記還元ガスの供給を停止させた後に前記金属含有ガスの供給を停止させる請求項1または2に記載の半導体装置の製造方法。
- 前記第1の工程の前であって、前記基板に対して、窒素と水素を含むガスの供給と、前記窒素と水素を含むガスの供給後に、パージを行う雰囲気調整工程を有する請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。
- 前記第1の工程は、前記金属含有ガスの供給前に、前記処理内の圧力を前記金属含有ガスの供給時の圧力と揃える様に調整する前処理工程を有する請求項1乃至5のいずれか一項に記載の半導体装置の製造方法。
- 前記第1の工程の排気工程は、前記処理室内に不活性ガスを供給する工程と前記不活性ガスの供給後に排気する工程とを有する請求項1乃至6のいずれか一項に記載の半導体装置の製造方法。
- 前記第1の工程の間、前記処理室の圧力を維持する請求項1乃至7のいずれか一項に記載の半導体装置の製造方法。
- 前記第1の工程では、前記基板に供給される前記金属含有ガスの供給量が前記還元ガスの供給量よりも多くなるように前記金属含有ガスと前記還元ガスが供給される請求項1乃至8のいずれか一項に記載の半導体装置の製造方法。
- 前記第1の工程では、前記金属含有ガスはフラッシュタンクを経由して供給し、前記還元ガスは、フラッシュタンクを経由せずに供給される請求項1乃至9のいずれか一項に記載の半導体装置の製造方法。
- 前記第2の工程の繰り返し回数は、前記第1の工程の繰り返し回数よりも多く構成される請求項1乃至10のいずれか一項に記載の半導体装置の製造方法。
- 基板処理装置の処理室内の基板に対して、金属含有ガスの供給と、シリコンおよび水素を含みハロゲンを含まない還元ガスの供給と、を並行して実行させる供給手順と、前記処理室内の雰囲気を排気させる排気手順とを、行わせる第1の手順と、
前記第1の工程を複数回繰り返させる手順と、
前記第1の工程を複数回繰り返した後であって、
前記処理室内の基板に対する窒素含有ガスの供給と排気とを行わせる第2の手順と、
前記第2の工程を複数回繰り返させる手順と、
をコンピュータによって前記基板処理装置実行させるプログラム。 - 基板を処理する処理室と、
前記基板に金属含有ガスを供給する第1ガス供給部と、
前記基板にシリコンおよび水素を含みハロゲンを含まない還元ガスを供給する第2ガス供給部と、
前記基板に窒素含有ガスの供給を供給する第3ガス供給部と、
前記処理室内の雰囲気を排気する排気部と、
前記基板に対して、前記金属含有ガスの供給と、前記還元ガスの供給とを並行して実行させる供給処理と、前記処理室内の雰囲気を排気する排気処理とを行う第1の処理と、前記第1の処理を複数回繰り返す処理と、前記第1の処理の後であって、前記基板に対する前記窒素含有ガスの供給と、前記処理室内の雰囲気の排気とを行わせる第2の処理と、前記第2の処理を複数回繰り返し行う処理と、を前記第1ガス供給部と前記第2ガス供給部と前記第3ガス供給部と前記排気部に行わせるように構成された制御部と、を有する基板処理装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021503958A JP7157236B2 (ja) | 2019-03-06 | 2020-02-20 | 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置 |
KR1020217028284A KR102660213B1 (ko) | 2019-03-06 | 2020-02-20 | 반도체 장치의 제조 방법, 프로그램, 기판 처리 장치 및 기판 처리 방법 |
CN202080018060.XA CN113518836B (zh) | 2019-03-06 | 2020-02-20 | 半导体装置的制造方法、记录介质、基板处理装置和基板处理方法 |
US17/466,884 US12000045B2 (en) | 2019-03-06 | 2021-09-03 | Method of manufacturing semiconductor device, non-transitory computer-readable recording medium, substrate processing apparatus and substrate processing method |
US18/651,088 US20240279807A1 (en) | 2019-03-06 | 2024-04-30 | Method of manufacturing semiconductor device, non-transitory computer-readable recording medium, substrate processing apparatus and substrate processing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-040371 | 2019-03-06 | ||
JP2019040371 | 2019-03-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/466,884 Continuation US12000045B2 (en) | 2019-03-06 | 2021-09-03 | Method of manufacturing semiconductor device, non-transitory computer-readable recording medium, substrate processing apparatus and substrate processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179474A1 true WO2020179474A1 (ja) | 2020-09-10 |
Family
ID=72337927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006792 WO2020179474A1 (ja) | 2019-03-06 | 2020-02-20 | 半導体装置の製造方法、プログラム及び基板処理装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US12000045B2 (ja) |
JP (1) | JP7157236B2 (ja) |
KR (1) | KR102660213B1 (ja) |
CN (1) | CN113518836B (ja) |
WO (1) | WO2020179474A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059780A (ja) * | 2019-10-08 | 2021-04-15 | ユ−ジーン テクノロジー カンパニー.リミテッド | 薄膜蒸着装置および薄膜蒸着方法 |
JP2022127250A (ja) * | 2021-02-19 | 2022-08-31 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、プログラムおよび基板処理方法 |
JP2023023351A (ja) * | 2021-08-05 | 2023-02-16 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003524888A (ja) * | 1999-10-15 | 2003-08-19 | エーエスエム アメリカ インコーポレイテッド | 感受性表面上にナノラミネート薄膜を堆積するための方法 |
JP2013122068A (ja) * | 2011-12-09 | 2013-06-20 | Ulvac Japan Ltd | タングステン化合物膜の形成方法、及び半導体装置 |
JP2015067869A (ja) * | 2013-09-30 | 2015-04-13 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5774822B2 (ja) | 2009-05-25 | 2015-09-09 | 株式会社日立国際電気 | 半導体デバイスの製造方法及び基板処理装置 |
JP2011014872A (ja) | 2009-06-04 | 2011-01-20 | Tokyo Electron Ltd | アモルファスカーボン膜の形成方法および形成装置 |
JP5524785B2 (ja) * | 2010-09-21 | 2014-06-18 | 株式会社日立国際電気 | 半導体装置の製造方法及び基板処理装置 |
JP6091940B2 (ja) * | 2013-03-11 | 2017-03-08 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
JP6245643B2 (ja) | 2013-03-28 | 2017-12-13 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
JP6306411B2 (ja) | 2014-04-17 | 2018-04-04 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
US10643925B2 (en) * | 2014-04-17 | 2020-05-05 | Asm Ip Holding B.V. | Fluorine-containing conductive films |
JP6706903B2 (ja) * | 2015-01-30 | 2020-06-10 | 東京エレクトロン株式会社 | タングステン膜の成膜方法 |
JP6560767B2 (ja) | 2016-02-10 | 2019-08-14 | 株式会社Kokusai Electric | 基板処理装置、基板保持具及び半導体装置の製造方法 |
KR102137477B1 (ko) | 2016-03-29 | 2020-07-24 | 가부시키가이샤 코쿠사이 엘렉트릭 | 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 |
JP6568127B2 (ja) * | 2017-03-02 | 2019-08-28 | 株式会社Kokusai Electric | 半導体装置の製造方法、プログラム及び記録媒体 |
JP6586433B2 (ja) * | 2017-03-30 | 2019-10-02 | 株式会社Kokusai Electric | 基板処理方法、基板処理装置、プログラム |
CN111066124A (zh) | 2017-09-25 | 2020-04-24 | 株式会社国际电气 | 半导体装置的制造方法、基板处理装置及程序 |
JP2019175911A (ja) * | 2018-03-27 | 2019-10-10 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置およびプログラム |
JP6902060B2 (ja) * | 2019-02-13 | 2021-07-14 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法、およびプログラム |
JP7307038B2 (ja) * | 2020-09-23 | 2023-07-11 | 株式会社Kokusai Electric | 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法 |
JP7539481B2 (ja) * | 2020-09-23 | 2024-08-23 | 株式会社Kokusai Electric | 基板処理方法、プログラム及び基板処理装置 |
WO2022130559A1 (ja) * | 2020-12-17 | 2022-06-23 | 株式会社Kokusai Electric | 半導体装置の製造方法、プログラム及び基板処理装置 |
JP7273079B2 (ja) * | 2021-02-15 | 2023-05-12 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法、プログラムおよび基板処理方法 |
-
2020
- 2020-02-20 WO PCT/JP2020/006792 patent/WO2020179474A1/ja active Application Filing
- 2020-02-20 KR KR1020217028284A patent/KR102660213B1/ko active IP Right Grant
- 2020-02-20 JP JP2021503958A patent/JP7157236B2/ja active Active
- 2020-02-20 CN CN202080018060.XA patent/CN113518836B/zh active Active
-
2021
- 2021-09-03 US US17/466,884 patent/US12000045B2/en active Active
-
2024
- 2024-04-30 US US18/651,088 patent/US20240279807A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003524888A (ja) * | 1999-10-15 | 2003-08-19 | エーエスエム アメリカ インコーポレイテッド | 感受性表面上にナノラミネート薄膜を堆積するための方法 |
JP2013122068A (ja) * | 2011-12-09 | 2013-06-20 | Ulvac Japan Ltd | タングステン化合物膜の形成方法、及び半導体装置 |
JP2015067869A (ja) * | 2013-09-30 | 2015-04-13 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059780A (ja) * | 2019-10-08 | 2021-04-15 | ユ−ジーン テクノロジー カンパニー.リミテッド | 薄膜蒸着装置および薄膜蒸着方法 |
JP2022127250A (ja) * | 2021-02-19 | 2022-08-31 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、プログラムおよび基板処理方法 |
JP7248722B2 (ja) | 2021-02-19 | 2023-03-29 | 株式会社Kokusai Electric | 基板処理方法、基板処理装置、プログラムおよび半導体装置の製造方法 |
TWI835038B (zh) * | 2021-02-19 | 2024-03-11 | 日商國際電氣股份有限公司 | 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式 |
JP2023023351A (ja) * | 2021-08-05 | 2023-02-16 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113518836B (zh) | 2023-11-24 |
US12000045B2 (en) | 2024-06-04 |
US20210395891A1 (en) | 2021-12-23 |
JP7157236B2 (ja) | 2022-10-19 |
KR102660213B1 (ko) | 2024-04-23 |
KR20210123370A (ko) | 2021-10-13 |
JPWO2020179474A1 (ja) | 2021-12-02 |
US20240279807A1 (en) | 2024-08-22 |
CN113518836A (zh) | 2021-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11469083B2 (en) | Plasma generating device, substrate processing apparatus, and method of manufacturing semiconductor device | |
US11915938B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
WO2020179474A1 (ja) | 半導体装置の製造方法、プログラム及び基板処理装置 | |
US20240344194A1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
US20160093476A1 (en) | Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Non-Transitory Computer-Readable Recording Medium | |
JP2023101578A (ja) | 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法 | |
WO2020178973A1 (ja) | 半導体装置の製造方法、基板処理装置、およびプログラム | |
US20240055259A1 (en) | Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus | |
US20200399759A1 (en) | Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium | |
US20220093392A1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium | |
WO2022130559A1 (ja) | 半導体装置の製造方法、プログラム及び基板処理装置 | |
EP4261324A1 (en) | Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus | |
JP7159446B2 (ja) | 基板処理方法、基板処理装置、プログラムおよび半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20766078 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021503958 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217028284 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20766078 Country of ref document: EP Kind code of ref document: A1 |