WO2020179181A1 - 銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法 - Google Patents

銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法 Download PDF

Info

Publication number
WO2020179181A1
WO2020179181A1 PCT/JP2019/049161 JP2019049161W WO2020179181A1 WO 2020179181 A1 WO2020179181 A1 WO 2020179181A1 JP 2019049161 W JP2019049161 W JP 2019049161W WO 2020179181 A1 WO2020179181 A1 WO 2020179181A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
negative electrode
copper
less
foil according
Prior art date
Application number
PCT/JP2019/049161
Other languages
English (en)
French (fr)
Inventor
牧子 佐藤
賢 大久保
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to CN201980088858.9A priority Critical patent/CN113330611B/zh
Priority to KR1020217021939A priority patent/KR20220002243A/ko
Publication of WO2020179181A1 publication Critical patent/WO2020179181A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/34Alkaline compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a copper foil, a negative electrode current collector for a lithium ion battery including the same, and a method for manufacturing the same.
  • An object of the present invention is to provide a novel copper foil, a negative electrode current collector for a lithium ion battery including the same, and a method for manufacturing the same.
  • At least a part of the surface has a protrusion having a height of 5 nm or more, and in the part, the density of the protrusion is an average of 15 or more and 100 or less per 3.8 ⁇ m.
  • the surface may be plated.
  • the density of the convex portions may be 20 or more and 62 or less on average per 3.8 ⁇ m.
  • the three-point standard deviation ⁇ of the surface roughness Rz of the part may be 0.5 or less, or may be 0.3 or less.
  • the average of the surface roughness Rz of the part may be 2 ⁇ m or less, or may be 1.54 ⁇ m or less.
  • the number of measured current values by binarization per 4 ⁇ m 2 of copper foil may be 200 or more on average or 500 or more.
  • Current total area per copper foil 4 [mu] m 2 may be the average 100000 2 more or 300000Nm 2 or more.
  • XPS X-ray photoelectron spectroscopy
  • the amount of oxygen in the depth direction of 5 nm from the surface may be 50% or less or 25% or less.
  • a metal layer other than copper may be formed on at least a part of the surface. The thickness of the metal layer may be 15 nm or more and 200 nm or less.
  • Another embodiment of the present invention is a negative electrode current collector of a lithium ion battery containing any of the above copper foils.
  • a further embodiment of the present invention is a method for producing a negative electrode current collector of a lithium ion battery containing any of the above copper foils, which comprises sodium chlorite, sodium hypochlorite, potassium chlorate, and perchlorite.
  • the average value is the average when a plurality of points are randomly measured, for example, 3 points.
  • the present invention has made it possible to provide a novel copper foil, a negative electrode current collector for a lithium ion battery including the same, and a method for manufacturing the same.
  • 3 is a scanning electron microscope (SEM) image showing a cross section of each copper foil in (A) Examples 1 to 7 and (B) Comparative Examples 1 to 3 of the present invention.
  • (C) is an image showing an example of how to count the convex portions in (A) and (B). One arrow indicates one convex part. Further, the enlarged view in (C) shows an example of how to measure "the length extending perpendicularly to the line segment connecting the minimum points of the recesses at both ends". It is a figure which shows the coating stability of the solvent type negative electrode material in the Example of this invention. It is a figure which shows the measuring method of the negative electrode material residual ratio in the Example of this invention. 3 is a current image obtained by using an atomic force microscope (AFM) in Examples of the present invention.
  • AFM atomic force microscope
  • the copper foil disclosed in the present specification may be a rolled copper foil, an electrolytic copper foil, or a copper alloy foil. Higher copper content or purity is preferable, 50% or more is preferable, 60% or more is more preferable, 70% or more is more preferable, 80% or more is more preferable. , 90% or more is more preferable, 95% or more is more preferable, 98% or more is more preferable, and 99.5% or more is further preferable.
  • the thickness of the copper foil is not particularly limited, but it is preferably a thickness used for a negative electrode current collector of a lithium ion battery, for example, 5 ⁇ m to 100 ⁇ m, and the thickness of the copper foil depending on the application from the range. Can be selected.
  • the surface roughness of the copper foil is not particularly limited, and it can be used in any roughness of the copper foil, but if the surface roughness is too large, the tensile strength is lowered, or the negative electrode material is filled up to the bottom of the unevenness. Without this, the adhesion may be reduced. Further, when the surface roughness is large and the number of convex portions is small, electricity is concentrated on the convex portions and peeling of the active material causes deterioration of battery characteristics. Therefore, the surface roughness is preferably 2 ⁇ m or less.
  • This copper foil has a convex portion having a height of 5 nm or more on at least a part of the surface in the photographed image of the cross section of the scanning electron microscope, and the density of the convex portion is measured in a direction parallel to the surface.
  • the average number is 15 or more and 100 or less, and more preferably 20 or more and 62 or less per 8 ⁇ m.
  • the number of convex portions is counted as a convex portion when the length extending perpendicularly to the line segment connecting the minimum points of the concave portions at both ends of the convex portion in the photographed image of the cross section of the scanning electron microscope is 5 nm or more, and the number is counted. ..
  • the height of the convex portion can be calculated by Rz defined in JIS B 0601: 2001 using a scanning electron microscope, particularly a confocal scanning electron microscope.
  • the three-point standard deviation ⁇ of the surface roughness Rz of a part of the surface having a convex portion having a height of 5 nm or more is preferably 0.5 or less, and more preferably 0.3 or less.
  • the average Rz is preferably 2 ⁇ m or less, more preferably 1.54 ⁇ m or less. The smaller the average of Rz, the smaller the unevenness.
  • the surface area of the copper foil becomes small when the number of the convex portions is small, so that the adhesion of the copper foil to the negative electrode deteriorates, and as a result, the storage capacity becomes low.
  • the number of convex portions is small, it is necessary to increase Rz in order to increase the surface area.
  • Rz becomes large, current concentrates on the convex portions, so that the copper foil and the active material are easily peeled off to maintain the capacity. The rate becomes smaller. Further, even when the three-point standard deviation of the surface roughness Rz, that is, the variation is large, current concentration is likely to occur when it is used for the negative electrode current collector, and as a result, the capacity retention rate becomes low.
  • the average number of current dispersion numbers per 4 ⁇ m 2 of copper foil is preferably 200 or more, more preferably 400 or more, and further preferably 500 or more. That is, the density of the current dispersion number is preferably 50/ ⁇ m 2 or more, more preferably 100/ ⁇ m 2 or more, and further preferably 125/ ⁇ m 2 or more.
  • the total average area per copper 4 [mu] m 2 that is preferably at 100000 2 or more, more preferably 200000Nm 2 or more, more preferably 300000Nm 2 or more. That is, the ratio of the area where the current flows is preferably 2.5% or more, more preferably 5.0% or more, and 7.5% or more when the threshold value is a certain amount of current or more. It is more preferable that there is.
  • the constant current amount is, for example, preferably ⁇ 1 nA or more, more preferably ⁇ 30 nA or more, and further preferably ⁇ 60 nA or more. In addition, these values can be measured by a known method, for example, the method described in Examples.
  • the negative electrode material contains a small amount of oxygen, and specifically, the oxygen amount at a depth of 5 nm is preferably 50% or less. , 40% or less is more preferable, 35% or less is more preferable, and 25% or less is further preferable.
  • the amount of oxygen can be measured by X-ray photoelectron spectroscopy (XPS).
  • the metal layer other than copper is formed on the surface, the current dispersibility is improved, the current easily flows, and the surface can be prevented from being oxidized, so that the contact angle with water is less likely to change with time. .. Therefore, it is desirable that a metal layer is formed on the surface.
  • metals other than copper tin, silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold, platinum, or various alloys can be used.
  • a plating treatment can be used to form the metal layer.
  • the thickness of the metal layer is preferably 15 nm or more and 200 nm or less, and more preferably 30 nm or more and 200 nm or less. When it is less than 15 nm, it is likely to change with time, and when it exceeds 200 nm, unevenness is filled by leveling, so that the number of current dispersion is reduced and current concentration is likely to occur.
  • the manufacturing method of the copper foil disclosed in the present specification further adjusts the first step of oxidizing the copper surface of the copper foil to form fine projections and the projections formed on the surface of the oxidized copper foil. And a third step of manufacturing a negative electrode current collector of a lithium-ion battery by using a copper foil having a copper surface with a convex portion adjusted. Further, the second step includes at least one step of plating, reducing or dissolving the oxidized copper surface.
  • each step will be described in detail.
  • First step In the first step, first, the copper surface of the copper foil is oxidized with an oxidizing agent to form a layer containing copper oxide and a convex portion is formed on the surface.
  • the oxidizing agent is not particularly limited, and for example, an aqueous solution or buffer solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, potassium persulfate or the like can be used, but sodium chlorite can be used. Alternatively, it is preferable to use an aqueous solution containing sodium hypochlorite. By using these, a suitable surface shape can be formed.
  • Various additives for example, phosphates such as trisodium phosphate dodecahydrate and surface active molecules may be added to the oxidizing agent.
  • Surface-active molecules include porphyrin, macrocycle of porphyrin, expanded porphyrin, ring-reduced porphyrin, linear porphyrin polymer, porphyrin sandwich coordination complex, porphyrin array, silane, tetraorgano-silane, aminoethyl-aminopropyl-trimethoxysilane.
  • (3-aminopropyl)trimethoxysilane (1-[3-(trimethoxysilyl)propyl]urea)((l-[3-(Trimethoxysilyl)propyl]urea)), (3-aminopropyl)triethoxy Silane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propylmethacrylate, Ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride
  • an additive that appropriately suppresses the formation of convex portions on the surface due to oxidation such as a silane coupling agent containing a silicon compound, is preferable, whereby the unevenness of the surface becomes finer. , The height of the convex portion becomes more uniform.
  • the oxidation reaction conditions are not particularly limited, but the liquid temperature of the oxidizing agent is preferably 40 to 95°C, more preferably 45 to 80°C.
  • the reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
  • degreasing by alkaline treatment or cleaning by acid treatment may be performed as a pretreatment.
  • the specific method of the alkali treatment or the acid treatment is not particularly limited, but the alkali treatment is, for example, preferably 30 to 50 g/L, more preferably 40 g/L of an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution, to 30 to 50 g. It can be carried out by treating with water at 0.5° C. for 0.5 to 2 minutes and then washing with water.
  • the acid treatment can be carried out, for example, by immersing the copper surface in sulfuric acid having a liquid temperature of 20 to 50 ° C. and 5 to 20% by weight for 1 to 5 minutes and then washing with water.
  • weaker alkali treatment may be performed in order to reduce treatment unevenness and prevent the acid used in the washing treatment from mixing with the oxidizing agent.
  • This alkaline treatment is not particularly limited, but is preferably 0.1 to 10 g / L, more preferably 1 to 2 g / L alkaline aqueous solution, for example, sodium hydroxide aqueous solution at about 30 to 50 ° C. for about 0.5 to 2 minutes. It can be done by processing.
  • a treatment for physically roughening the copper surface such as etching may be performed, but the shape of the convex portion formed on the copper surface at that time is generally a crystal of copper to be treated. Since it depends on the properties, the physical roughening treatment alone does not result in fine irregularities, and in order to obtain a copper foil having fine irregularities, it is necessary to go through this oxidation step.
  • the second step includes at least one of (2-1) plating treatment step, (2-2) reduction treatment step, and (2-3) dissolution treatment step.
  • the plating treatment step may be performed after the reduction treatment step or may be performed after the dissolution treatment.
  • the copper surface is roughened by the oxidation treatment in the first step so as to have fine projections, the projections formed on the copper surface are further adjusted by the second step of the present invention. Each process of the second step will be described below.
  • the oxidized copper surface is plated with a metal other than copper to adjust the convex portions of the oxidized copper surface.
  • a metal other than copper tin, silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold, platinum, or Various alloys can be used.
  • the plating method is not particularly limited, and plating can be performed by electrolytic plating, electroless plating, vacuum deposition, chemical conversion treatment, or the like. Electrolytic plating is preferred, and metallic copper is more easily reduced than electroless plating and is excellent in current collection.
  • electroless nickel plating it is preferable to perform treatment using a catalyst. It is preferable to use iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and salts thereof as the catalyst.
  • the reducing agent used in the case of electroless nickel plating it is preferable to use a reducing agent in which copper and copper oxide do not have catalytic activity. Examples of the reducing agent in which copper and copper oxide do not have catalytic activity include hypophosphates such as sodium hypophosphite.
  • the thickness of the plating is not particularly limited, but if it is too thick, the RSm becomes small due to the decrease in the number of convex portions due to the leveling, the surface area is reduced, and the battery characteristics are deteriorated due to the reduction of the power collection. ..
  • the plating process it is difficult to make the plating uniform unless the purity of copper is increased and preferably pure copper is used. Therefore, it is common to remove the oxide film on the surface and perform plating.
  • the method of the present disclosure by forming a suitable shape with an oxide film and then performing a plating treatment, it is possible to obtain the adhesion and battery characteristics required for manufacturing a current collector of a lithium ion battery.
  • DMAB dimethylamine borane
  • diborane sodium borohydride
  • hydrazine hydrazine
  • the chemical solution for reduction is a liquid containing a reducing agent, an alkaline compound (sodium hydroxide, potassium hydroxide, etc.), and a solvent (pure water, etc.).
  • (2-3) Dissolution treatment step In this step, the oxidized copper surface is dissolved with a solvent to adjust the convex portions of the oxidized copper surface.
  • the solubilizer used in this step is not particularly limited, and examples thereof include chelating agents and biodegradable chelating agents.
  • EDTA ethylene secondary amine tetraacetic acid
  • DHEG diethanolglycine
  • GLDA L-glutamic acid diacetic acid/tetrasodium
  • EDDS ethylenediamine-N,N'-disuccinic acid
  • HIDS 3-hydroxy) -2,2'-iminodisuccinate sodium
  • MGDA methylglycine diacetate trisodium
  • ASDA aspartic acid diacetate 4Na
  • HIDA N-2-hydroxythyliminodiacetic acid disodium salt
  • sodium gluconate etidronate (hydroxy) Ethanediphosphonic acid
  • the pH of the solubilizer is not particularly limited, but it is preferably alkaline because the amount of dissolution is large under acidic conditions, and it is difficult to control the process and uneven treatment is likely to occur, and the pH is 9.0 to 14.0. Is more preferable, the pH is more preferably 9.0 to 10.5, still more preferably the pH is 9.8 to 10.2.
  • the copper surface is treated until the solubility of copper oxide is 35 to 99%, preferably 50 to 99%, and the thickness of CuO is 4 to 300 nm, preferably 8 to 200 nm.
  • the thickness of CuO can be measured by SERA (manufactured by ECI). Under this condition, the number and length of the surface irregularities are suitable, and the unevenness of treatment is reduced.Therefore, a pilot experiment is conducted in advance, and conditions such as temperature and time are set so that such a copper oxide layer can be obtained. It is preferable to set it.
  • the dissolution rate means the ratio of copper oxide dissolved and removed from the copper surface to the copper oxide on the copper surface.
  • the copper foil manufactured in the second step may be subjected to a coupling treatment using a silane coupling agent or the like, a chromate treatment, or an anticorrosion treatment using a benzotriazole or the like.
  • a negative electrode current collector for a lithium ion battery can be manufactured according to a known method to manufacture a negative electrode.
  • a negative electrode material containing a carbon-based active material is prepared and dispersed in a solvent or water to obtain an active material slurry. After coating the copper foil with this active material slurry, it is dried to evaporate the solvent and water. Then, after pressing and drying again, a negative electrode current collector is formed into a desired shape.
  • the negative electrode material may contain silicon, a silicon compound, germanium, tin, lead, or the like having a theoretical capacity larger than that of the carbon-based active material.
  • an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent but also a polymer using polyethylene oxide, polyvinylidene fluoride or the like may be used as the electrolyte. It can be applied not only to lithium ion batteries but also to lithium ion polymer batteries.
  • Example 1 the surface treatment layer on the matte surface of the commercial copper foil (B-Foil manufactured by Targray) was removed and various surface treatments were performed.
  • Example 4 to 7 the surface treatment layer of the commercially available copper foil (NC-WS manufactured by Furukawa Electric Co., Ltd.) was removed and the surface treatment described below was performed.
  • Comparative Example 1 is a matte surface of a commercial copper foil (B-Foil manufactured by Targray)
  • Comparative Example 2 is a commercial copper foil (NC-WS manufactured by Furukawa Electric Co., Ltd.)
  • Comparative Example 3 is a commercial copper foil. (B-Foil manufactured by Targray) A shiny surface (cathode contact surface) was used.
  • processing conditions in the first step and the second step are summarized in the table in FIG.
  • the pretreatment conditions and the negative electrode material coating conditions were the same in the examples and the comparative examples.
  • Pre-dip processing The acid-washed copper foil was immersed in a predip chemical solution having a solution temperature of 40° C. and sodium hydroxide (NaOH) of 1.2 g/L for 1 minute.
  • Example 2 First step (oxidation treatment)
  • Example 3 First step (oxidation treatment)
  • an alkaline aqueous solution (20 g/L sodium hydroxide, 60 g/L Oxidation treatment was performed with sodium chlorate and 2 g/L 3-glycidyloxypropyltrimethoxysilane).
  • Example 1 was 45° C. for 1 minute
  • Examples 2, 3, 4, and 7 were 73° C. for 2 minutes
  • Example 5 was 73° C. for 3 minutes.
  • the copper foil of Example 6 was oxidized with an alkaline aqueous solution (20 g / L sodium hydroxide, 60 g / L sodium chlorite) at 73 ° C. for 8 minutes.
  • the copper foils of Comparative Examples 1 to 3 are not subjected to surface treatment such as oxidation treatment of the present invention.
  • the surface roughness Rz was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Lasertec Co., Ltd.) and calculated by Rz defined in JIS B 0601:2001.
  • the scan width was 100 ⁇ m
  • the scan type was an area
  • the Light source was Blue
  • the cutoff value was 1/5.
  • the object lens was set to x100
  • the contact lens was set to x14
  • the digital zoom was set to x1
  • the Z pitch was set to 10 nm. Data at three locations were acquired and the standard deviation was calculated.
  • Rz was set as the average value of three places.
  • the average number of the protrusions having the height of 5 nm or more per 3.8 ⁇ m is 10 or more, the average Rz is 2.00 ⁇ m or less, and the standard deviation thereof is 0.3 or less. there were.
  • Graphite (MTI EQ-Lib-MCMB), acetylene black (Denka Li-400), CMC (carboxymethyl cellulose Daicel Finechem CMC Daicel 2200), SBR (styrene butadiene rubber Nippon Zeon BM-400B), Si (Tekna Advanced) Materials) in a predetermined composition (graphite: 86.5% by weight, acetylene black: 1.5% by weight, CMC: 5.0% by weight, SBR: 2.5% by weight, Si: 4.5% by weight). Weighed so that the viscosity was adjusted using pure water.
  • the coating thickness was set to 150 ⁇ m with a bar coater and applied to the copper foil. After application, the coating was dried at 70° C. for 2 hours to remove water, and pressed using a roll press so that the thickness of the negative electrode material was 30 ⁇ m, and the copper foil and the negative electrode material were brought into close contact with each other. Then, it was dried at 70° C. for 12 hours in a vacuum and vacuum dryer.
  • the graphite, acetylene black, and PVDF were stirred with a planetary stirrer until they became uniform, and the coating thickness was set to 150 ⁇ m with a bar coater and coated on the copper foil.
  • the coating was dried at 80° C. for 2 hours to remove the solvent, and pressed using a roll press so that the thickness of the negative electrode material was 30 ⁇ m, and the copper foil and the negative electrode material were brought into close contact with each other. Then, it was dried at 120° C. for 12 hours in a vacuum and reduced pressure dryer.
  • FIG. 3 is a diagram showing the coating stability of the solvent-based negative electrode agent.
  • Example 4 is shown on the left side of FIG. 3, in which there are many protrusions and thus the adhesion is good, and the negative electrode agent is uniformly applied by capillary action.
  • the right side of FIG. 3 is Comparative Example 1, and since the number of convex portions is small, neither the adhesion force nor the capillary phenomenon can be obtained, and a large amount of peeling occurs partially.
  • the negative electrode material remaining rate was calculated using the copper foil after application of the negative electrode material of (5). First, the weight of the copper foil coated with the negative electrode material is measured. After that, stick the double-sided tape on the plate for fixing, and stick the cellophane tape on it so that the adhesive side of the cellophane tape contacts the negative electrode material, and then put the negative electrode material surface of the copper foil coated with the negative electrode material on the cellophane tape.
  • the test method is shown in FIG.
  • the negative electrode material residual ratio was calculated using the following formula.
  • Negative electrode material residual rate [%] (total weight after test ⁇ copper foil weight)/(total weight before test ⁇ copper foil weight) ⁇ 100
  • Table 2 shows the evaluation results of the water-based negative electrode material.
  • Table 3 shows the evaluation results of the solvent-based negative electrode material.
  • a negative electrode collector for a lithium ion battery is used.
  • the adhesion between the copper foil and the negative electrode and the capacity retention rate are improved.
  • the plating thickness is an average thickness in the vertical direction of the plating. That is, a copper foil was dissolved in 12% nitric acid, and the solution was analyzed using an ICP emission spectrometer 5100 SVDV ICP-OES (manufactured by Agilent Technologies) to measure the concentration of the metal used for plating. Taking the density and the surface area of the metal layer into consideration, the average thickness of the metal layer when it was formed into a layer was calculated and used as the plating thickness.
  • the current image of FIG. 5 was obtained under the following measurement conditions. From the obtained current image, adjustment was made so that only the current value of -60 nA or less was displayed. In this measurement, the bias voltage is set to minus in order to eliminate the influence of oxidation of the copper foil surface on the current image. Therefore, the more negative the current value, the smaller the resistance value, and the more easily the current flows.
  • AFM atomic force microscope
  • AFM5000II Connection model AFM5300E Cantilever: SI-DF3-R Set using the automatic setting function of AFM5000II (amplitude attenuation rate, scanning frequency, I gain, P gain, A gain, S gain) Scanning area: 2 ⁇ m square Number of pixels: 512 x 512 Measurement mode: Current (nano) Measurement field of view: 2 ⁇ m SIS mode: used Scanner: 20 ⁇ m scanner Bias voltage: -0.5V Measurement atmosphere: vacuum
  • the obtained current image was converted into a monochrome image by image processing software (WINROOF2018 manufactured by Mitani Shoji Co., Ltd.) and then binarized to obtain the number of current parts (green part) per 4 ⁇ m 2 of copper foil. , The total area was measured.
  • image processing software WINROOF2018 manufactured by Mitani Shoji Co., Ltd.
  • Quantera SXM manufactured by ULVAC-PHI was used as the measuring device, and monochromatic AlK ⁇ (1486.6 eV) was used as the excitation X-ray.
  • Survey Narrow Spectrum was acquired for all elements detected by Spectrum. In the depth direction, Ar sputtering was performed 12 times at 2.5 minute intervals, and measurement and sputtering were repeated to acquire data.
  • Table 4 shows the results of the number of current dispersions per 4 ⁇ m 2 of copper foil and the oxygen content at the total area and depth of 5 nm.
  • the number of current dispersions per 4 ⁇ m 2 of copper foil is 200 or more, and the total area through which the current flows is 100000 nm 2 or more.
  • the oxygen amount was 25% or less, which was a suitable value.
  • Comparative Examples 1, 2 and 4 5, since the amount of oxygen is large, the total area through which the current flows is small. The fact that the total area through which the current flows is small means that the current does not easily flow and the power collection is poor.
  • the amount of oxygen is 25% or less, but since the number of current dispersion is small, the negative electrode material is peeled off due to the concentration of current, resulting in poor high-speed charge/discharge characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本発明は、新規な銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法を提供することを目的とする。本発明の一実施形態では、少なくとも表面の一部に高さが5nm以上の凸部があり、凸部の密度が3.8μmあたり15個以上100個以下の銅箔を製造し、この銅箔を用いて、負極集電体を製造する。

Description

銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法
 本発明は銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法に関する。
 リチウムイオン電池(LIB)の負極集電体において、高出力、高エネルギー密度化のため、大容量の活物質を採用すると、充電時と放電時に活物質の体積の膨張率が大きくなる。そのため、充放電を繰り返すと、活物質と集電体をつなぐ結着材が破断したり、活物質界面、集電体界面から結着材が剥離したりして、サイクル特性が劣化する。それを防止するため、銅箔側の結着材量を多くし、銅箔と負極合剤層の密着性を向上させる発明が開示されている(特開平10-284059号公報)。また、銅箔板表面にひげ状の銅酸化物を形成し表面積を増大させることによって、銅箔と活物質との密着性を向上させる発明が開示されている(特開平11-307102号公報)。
 本発明は、新規な銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法を提供することを目的とする。
 本発明の一実施態様は、少なくとも表面の一部に高さ5nm以上の凸部があり、前記一部において、前記凸部の密度が3.8μmあたり平均15個以上100個以下である銅箔である。前記表面がめっき処理されていてもよい。前記一部において、前記凸部の密度が3.8μmあたり平均20個以上62個以下であってもよい。また、前記一部の表面粗さRzの3点標準偏差σが0.5以下であってもよく、0.3以下であってもよい。また、前記一部の表面粗さRzの平均が2μm以下であってもよく、1.54μm以下であってもよい。銅箔4μmあたりの、2値化による電流量の計測個数が平均200個以上または500個以上であってもよい。銅箔4μmあたりの電流総面積が平均100000nm以上または300000nm以上であってもよい。X線光電子分光法(XPS)で測定したとき、表面から深さ方向5nmでの酸素量が50%以下または25%以下であってもよい。表面の少なくとも一部に銅以外の金属層が形成されていてもよい。前記金属層の厚さは、15nm以上200nm以下であってもよい。
 本発明の他の実施態様は、上記いずれかの銅箔を含む、リチウムイオン電池の負極集電体である。
 本発明のさらなる実施形態は、上記いずれかの銅箔を含む、リチウムイオン電池の負極集電体の製造方法であって、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム、過硫酸カリウムから選択される1以上の酸化剤によって銅箔の銅表面を酸化し、凸部を形成する第1の工程と、酸化した前記銅表面をめっき処理する第2の工程と、前記銅表面をめっき処理した前記銅箔を用いて負極集電体を製造する第3の工程と、を含む。前記第2の工程の前に、前記第1の工程で酸化した銅表面を溶解する工程および/または還元する第4の工程をさらに含んでもよい。
 なお、本明細書で、平均値は、ランダムに複数点、例えば3点測定した時の平均とする。
 本発明によって、新規な銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法を提供することができるようになった。
本発明の実施例1~実施例7、比較例1~比較例3における第1の工程及び第2の工程における処理条件をまとめた表である。 本発明の(A)実施例1~実施例7、(B)比較例1~比較例3において、各銅箔の断面を示した走査型電子顕微鏡(SEM)画像である。(C)は、(A)および(B)における凸部の数え方の一例を示した画像である。矢印1個が凸部1個を示す。また、(C)内の拡大図に、「両端の凹部の極小点を結んだ線分と垂直に延ばした長さ」の測り方の一例を示す。 本発明の実施例における溶剤系負極材の塗布安定性を示す図である。 本発明の実施例における負極材残存率の測定方法を示す図である。 本発明の実施例において、原子間力顕微鏡(AFM)を用いて得られた電流像である。
 以下、本発明の実施の形態を、実施例を挙げながら詳細に説明する。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。
==銅箔==
 本明細書に開示される銅箔は、圧延銅箔でも電解銅箔でもよく、銅合金箔でもよい。銅の含有率または純度は高い方が好ましく、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることがより好ましく、95%以上であることがより好ましく、98%以上であることがより好ましく、99.5%以上であることがさらに好ましい。銅箔の厚みは特に限定されないが、リチウムイオン電池の負極集電体用として使用される厚みであることが好ましく、例えば、5μm~100μmが挙げられ、その範囲から用途に応じた銅箔の厚みを選択できる。また、銅箔の表面粗度も特に限定されず、いずれの粗さの銅箔においても使用できるが、表面粗度が大きすぎると引っ張り強度が低下したり、負極材が凹凸の底まで充填されずに密着力が低下したりする。さらに表面粗度が大きく、かつ凸部の数が少ないと凸部に電気が集中し、活物質の剥離により電池特性の劣化が生じるため、表面粗度は2μm以下が好ましい。
 この銅箔は、走査電子顕微鏡の断面の撮影像において、少なくとも表面の一部に、高さ5nm以上の凸部があり、凸部の密度は、表面に平行な方向で測ったときの3.8μmあたり平均15個以上100個以下であることが好ましく、平均20個以上62個以下であることがより好ましい。凸部の数は走査電子顕微鏡の断面の撮影像において凸部の両端の凹部の極小点を結んだ線分と垂直に延ばした長さが5nm以上である場合に凸部として、その個数を数える。凸部の高さは、走査電子顕微鏡、特に共焦点走査電子顕微鏡を用いてJIS B 0601:2001に定められたRzにより算出することができる。
 高さ5nm以上の凸部がある表面の一部の表面粗さRzの3点標準偏差σは、0.5以下であることが好ましく、0.3以下であることがより好ましい。Rzの3点標準偏差σが小さくなるほど、凹凸が均一になる。そして、Rzの平均は、2μm以下であることが好ましく、1.54μm以下であることがより好ましい。Rzの平均が小さくなるほど、凹凸が小さくなる。
 これらの性質は、銅箔を負極集電体に用いるに際し、好ましい構成である。原理について特に拘泥するわけではないが、凸部の個数が少ないと銅箔の表面積が小さくなるため、銅箔の負極に対する密着性が悪くなり、その結果、保持容量が低くなる。凸部の個数が少ない場合に表面積を多くするためにはRzを大きくする必要があり、Rzが大きくなると、凸部に電流が集中するため、銅箔と活物質が剥離しやすくなり、容量維持率が小さくなる。また、表面粗さRzの3点標準偏差、つまりばらつきが大きい場合も、負極集電体に用いたときに電流の集中が生じやすくなり、その結果、容量維持率が低くなる。
 負極集電体としては、例えば、電流分散数が多くなるほど、電流集中が抑制でき、負極材の剥離が生じにくい。従って、高速充放電特性(C-rate)において容量保持率に優れるようになる。電流分散数の銅箔4μmあたりの平均個数は、200個以上であることが好ましく、400個以上であることがより好ましく、500個以上であることがさらに好ましい。すなわち、電流分散数の密度は、50個/μm以上であることが好ましく、100個/μm以上であることがより好ましく、125/μm以上であることがさらに好ましい。また、一定の電流量以上を閾値としたときの電流が流れる面積が大きいほど、電気が流れやすく集電力に優れる。その銅箔4μmあたりの平均総面積は、100000nm以上であることが好ましく、200000nm以上であることがより好ましく、300000nm以上であることがさらに好ましい。すなわち、一定の電流量以上を閾値としたときの電流が流れる面積の割合は、2.5%以上であることが好ましく、5.0%以上であることがより好ましく、7.5%以上であることがさらに好ましい。一定の電流量とは、例えば、-1nA以上であることが好ましく、-30nA以上であることがより好ましく、-60nA以上であることがさらに好ましい。なお、これらの値は、公知の方法、例えば実施例に記載の方法で測定できる。
 負極材に含まれる酸素量が多いと抵抗が大きくなるため、電流が流れにくくなる。従って、電流が流れる面積が10000nm以上となるためには、負極材に含まれる酸素量が少ない方が好ましく、具体的には、深さ5nmでの酸素量が50%以下であることが好ましく、40%以下であることがより好ましく、35%以下であることがより好ましく、25%以下であることがさらに好ましい。なお、この酸素量はX線光電子分光法(XPS)で測定することができる。
 また、表面に銅以外の金属層が形成されていることにより、電流分散性が良好になり、電流は流れやすくなり、さらに表面の酸化を防止できるため水に対する接触角の経時変化が生じにくくなる。そのため、表面に金属層が形成されていることが望ましい。銅以外の金属として、スズ、銀、亜鉛、アルミニウム、チタン、ビスマス、クロム、鉄、コバルト、ニッケル、パラジウム、金、プラチナ、あるいは様々な合金を用いることができる。この金属層の形成には、例えばめっき処理を用いることができる。金属層の厚さは、15nm以上200nm以下であることが好ましく、30nm以上200nm以下であることがより好ましい。15nm未満になると、経時変化が生じやすくなり、200nmを超えると、レベリングにより凹凸が埋まるため、電流分散数も少なくなり、電流集中が生じやすくなる。
==銅箔及びリチウムイオン電池の負極集電体の製造方法==
 本明細書に開示される銅箔の製造方法は、銅箔の銅表面を酸化し微細な凸部を形成する第1の工程と、酸化した銅箔の表面に形成された凸部をさらに調整する第2の工程と、銅表面の凸部を調整した銅箔を用いて、リチウムイオン電池の負極集電体を製造する第3の工程と、を含む。また、第2の工程は、酸化した銅表面を、めっき処理、還元処理または溶解処理の少なくとも1つの工程を含む。以下、各工程について、詳細に説明する。
(1)第1の工程(酸化工程)
 第1の工程では、まず、酸化剤を用いて銅箔の銅表面を酸化して、酸化銅を含む層を形成するとともに、表面に凸部を形成する。
 酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム、過硫酸カリウム等の水溶液や緩衝液を用いることができるが、亜塩素酸ナトリウムまたは次亜塩素酸ナトリウムを含む水溶液を用いることが好ましい。これらを用いると好適な表面形状を形成することができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩や表面活性分子)を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピルートリメトキシシラン、(3‐アミノプロピル)トリメトキシシラン、(1‐[3‐(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3‐アミノプロピル)トリエトキシシラン、((3‐グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。また、酸化剤以外に、水酸化ナトリウム、水酸化カリウム等のアルカリ性化合物を含有してもよい。
 この酸化工程において用いる添加剤としては、ケイ素化合物を含むシランカップリング剤のように、酸化による表面の凸部の形成を適度に抑制するものが好ましく、それによって、表面の凹凸がより微細になり、凸部の高さがより均一となる。表面の凸部の高さが均一な銅箔を用いてリチウムイオン電池の集電体を製造することで、凹凸に対する負極材の塗布量の部分的なばらつきを低減することが可能となる。これにより、電流の流れ方にムラがなくなり、電池特性も向上する。そして、生産性も向上する。
 酸化反応条件は特に限定されないが、酸化剤の液温は40~95℃であることが好ましく、45~80℃であることがより好ましい。反応時間は0.5~30分であることが好ましく、1~10分であることがより好ましい。
 なお、この酸化工程以前に、前処理としてアルカリ処理による脱脂や酸処理による洗浄を行ってもよい。アルカリ処理や酸処理の具体的な方法は特に限定されないが、アルカリ処理は、たとえば、好ましくは30~50g/L、より好ましくは40g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理をした後、水洗することにより行うことができる。また、酸処理は、たとえば、銅表面を液温20~50℃、5~20重量%の硫酸に1~5分間浸漬した後、水洗することにより行うことができる。酸処理の後、処理ムラを軽減し、洗浄処理に用いた酸の酸化剤への混入を防ぐため、さらに弱いアルカリ処理を行なってもよい。このアルカリ処理は特に限定されないが、好ましくは0.1~10g/L、より好ましくは1~2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理することで行うことができる。また、前処理としてエッチングなどの物理的に銅表面を粗面化する処理を行なってもよいが、その時に銅表面に形成される凸部の形状は、一般的に処理対象である銅の結晶性に依存するため、物理的な粗面化処理だけでは微細な凹凸にはならず、微細な凹凸を有する銅箔を得るためには、本酸化工程を経る必要がある。
(2)第2の工程
 第2の工程は、(2-1)めっき処理工程、(2-2)還元処理工程、(2-3)溶解処理工程の少なくとも1つの工程を含む。めっき処理工程は、還元処理工程の後に行ってもよいし、溶解処理の後に行ってもよい。第1の工程における酸化処理によって、銅表面は微細な凸部を有するように粗面化されているが、本発明の第2の工程により、銅表面に形成された凸部をさらに調整する。第2の工程の各処理について以下に説明する。
(2-1)めっき処理工程
 本工程では、酸化した銅表面を銅以外の金属によりめっき処理して、酸化された銅表面の凸部を調整する。めっき処理方法は、公知の技術を使うことができるが、例えば、銅以外の金属として、スズ、銀、亜鉛、アルミニウム、チタン、ビスマス、クロム、鉄、コバルト、ニッケル、パラジウム、金、プラチナ、あるいは様々な合金を用いることができる。めっき方法も特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などによってめっきすることができる。好ましくは電解めっきであり、無電解めっきと比較し金属銅まで還元されやすく、集電力に優れる。
 無電解ニッケルめっきの場合は触媒を用いた処理を行うことが好ましい。触媒としては鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムおよびそれらの塩を用いることが好ましい。無電解ニッケルめっきの場合に使用する還元剤として、銅および酸化銅が触媒活性を有しない還元剤を用いることが好ましい。銅および酸化銅が触媒活性を有しない還元剤としては、次亜リン酸ナトリウムなどの次亜リン酸塩が挙げられる。
 このようにして、第1の工程で形成した微細な凹凸を維持した金属層を得ることで、表面が保護され、複合銅箔の経時安定性が向上する。めっきの厚みは特に限定されないが、厚すぎるとレベリングにより凸部の数が減少することでRSmが小さくなり、表面積が減少し、かつ集電力の低下により電池特性が悪化するため、1μm以下が望ましい。
 めっき処理工程では、銅の純度を上げ、好ましくは純銅にしなければめっきを均一にすることが難しい。そのため表面の酸化膜を除去してめっき処理することが一般的である。本開示の方法では、酸化膜により好適な形状を形成し、その後めっき処理を行うことで、リチウムイオン電池の集電体を製造する際に必要な密着性や電池特性を得ることができる。
(2-2)還元処理工程
 本工程では、還元剤を含有する薬液(還元用薬液)を用いて銅箔に形成された酸化銅を還元させ、凹凸の数や長さを調整する。
 還元剤としては、DMAB(ジメチルアミンボラン)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等を用いることができる。また、還元用薬液は、還元剤、アルカリ性化合物(水酸化ナトリウム、水酸化カリウム等)、及び溶媒(純水等)を含む液体である。
(2-3)溶解処理工程
 本工程では、酸化した銅表面を溶解剤で溶解して、酸化された銅表面の凸部を調整する。本工程で用いる溶解剤は特に限定されないが、キレート剤、生分解性キレート剤などが例示できる。具体的には、EDTA(エチレン次アミン四酢酸)、DHEG(ジエタノールグリシン)、GLDA(L-グルタミン酸二酢酸・四ナトリウム)、EDDS(エチレンジアミン-N,N’-ジコハク酸)、HIDS(3-ヒドロキシ-2,2’-イミノジコハク酸ナトリウム)、MGDA(メチルグリシン2酢酸3ナトリウム)、ASDA(アスパラギン酸ジ酢酸4Na)、HIDA(N-2-hydroxyethyliminodiacetic acid disodium salt)、グルコン酸ナトリウム、エチドロン酸(ヒドロキシエタンジホスホン酸)などである。
 溶解剤のpHは特に限定されないが、酸性では溶解量が大きいため、処理のコントロールが難しいこと、処理ムラが生じやすいことなどからアルカリ性であることが好ましく、pH9.0~14.0であることがより好ましく、pH9.0~10.5であることがさらに好ましく、pH9.8~10.2であることがさらに好ましい。
 この工程において、酸化銅の溶解率が35~99%、好ましくは50~99%かつCuOの厚さが4~300nm、好ましくは8~200nmになるまで、銅表面を処理する。なお、ここでCuOの厚さはSERA(ECI社製)で測定することができる。この条件において、表面凹凸の数や長さが好適になり、処理ムラが低減されるため、予めパイロット実験を行い、このような酸化銅の層が得られるように、温度、時間などの条件を設定するのが好ましい。なお、溶解率とは、銅表面の酸化銅のうち、溶解して銅表面から除去された酸化銅の割合を意味する。
 このように、銅箔に対して、第2の工程を行うことによって、表面の凸部が調整されたリチウムイオン電池の負極集電体に適した複合銅箔を製造することができる。
 これらの第2の工程で製造した銅箔に、シランカップリング剤などを用いたカップリング処理やクロメート処理、ベンゾトリアゾール類などを用いた防錆処理を行ってもよい。
(3)第3の工程(負極集電体の製造工程)
 上述のように処理した銅箔を用い、公知の方法に従ってリチウムイオン電池用の負極集電体を製造し負極を製造することができる。例えば、カーボン系活物質を含有する負極材料を調製し、溶剤もしくは水に分散させて活物質スラリーとする。この活物質スラリーを銅箔に塗布した後、溶剤や水を蒸発させるため乾燥させる。その後、プレスし、再度乾燥した後に所望の形になるよう負極集電体を成形する。なお、負極材には、カーボン系活物質よりも理論容量の大きいシリコンやシリコン化合物、ゲルマニウム、スズ、鉛などを含んでもよい。また、電解質として有機溶媒にリチウム塩を溶解させた有機電解液だけでなく、ポリエチレンオキシドやポリフッ化ビニリデンなどからなるポリマーを用いたものであってもよい。リチウムイオン電池だけでなく、リチウムイオンポリマー電池にも適用できる。
〔評価銅箔および銅箔の表面の粗面化処理〕
 実施例及び比較例として、以下の銅箔を用い、記載の処理を行った。
実施例1~実施例3では、市販銅箔(Targray製 B-Foil)マット面の表面処理層を除去し、各種表面処理を施した。実施例4~実施例7では、市販銅箔(古河電気工業(株)製 NC-WS)の表面処理層を除去し、後述する表面処理を施した。比較例1は、市販銅箔(Targray製 B-Foil)のマット面を、比較例2は、市販銅箔(古河電気工業(株)製 NC-WS)を、比較例3は、市販銅箔(Targray製 B-Foil)シャイニー面(カソード接触面)を用いた。
 なお、第1の工程及び第2の工程における処理条件は、図1の表にまとめた。前処理条件および負極材料の塗布条件は、実施例と比較例で同じ条件を用いた。
(1)前処理
 [アルカリ脱脂処理]
 銅箔を、液温50℃、40g/Lの水酸化ナトリウム水溶液に1分間浸漬した後、水洗を行った。
 [酸洗浄処理]
 アルカリ脱脂処理を行った銅箔を、液温25℃、10重量%の硫酸水溶液に2分間浸漬した後、水洗を行った。
 [プレディップ処理]
 酸洗浄処理を行った銅箔を、液温40℃、水酸化ナトリウム(NaOH)1.2g/Lのプレディップ用薬液に1分間浸漬した。
(2)第1の工程(酸化処理)
 まず、第1の工程として実施例1、実施例2、実施例3、実施例4、実施例5、実施例7の銅箔に対し、アルカリ水溶液(20g/L水酸化ナトリウム、60g/L亜塩素酸ナトリウム、2g/L 3-グリシジルオキシプロピルトリメトキシシラン)で、酸化処理を行った。処理温度と処理時間は、実施例1が45℃で1分、実施例2、3,4,7が73℃で2分、実施例5が73℃で3分であった。
 実施例6の銅箔に対しては、アルカリ水溶液(20g/L水酸化ナトリウム、60g/L亜塩素酸ナトリウム)で73℃、8分酸化処理を行った。なお、比較例1~比較例3の銅箔には、本発明の酸化処理などの表面処理は行っていない。
(3)第2の工程
 次に、第2の工程として、第1の工程の酸化処理を行った銅箔に対して、(3-1)溶解処理、(3-2)めっき処理、(3-3)還元処理をそれぞれ1種以上の処理を行った。
(3-1)溶解処理
 実施例2、実施例3、実施例7の銅箔に対しては、(2)の酸化処理後、溶剤L-グルタミン酸二酢酸四ナトリウム(38g/L)を用いて、55℃で溶解処理を行った。処理時間は、実施例2が1分、実施例3が2分、実施例7が3分であった。
(3-2)めっき処理
 実施例1、実施例4の銅箔に対しては(2)の酸化処理後に、実施例2、実施例3の銅箔に対しては(3-1)の溶解処理後に、ニッケルめっき用電解液(450g/Lスルファミン酸ニッケル、40g/Lホウ酸)を用いて電解めっきを施した。電流密度は1(Å/dm2)、時間は15(秒)で行った。その他の銅箔には、めっき処理を行わなかった。
(3-3)還元処理
 実施例5、実施例6の銅箔に対しては、(2)の酸化処理後、溶剤(5g/Lジメチルアミンボラン、5g/L水酸化ナトリウム)を用いて室温で3分間静置することで、還元処理を行った。
(4)凸部の高さ及び数、並びに表面粗さの測定
 (1)~(3)の処理をした銅箔に対して、その断面を走査型顕微鏡(SEM)で観察したところ、図2(A)、図2(B)の写真が得られた。この撮影像を用いて、断面の凸部の数を測定した。凸の数は走査電子顕微鏡の断面の撮影像において凸部の両端の凹部の極小点を結んだ線分と垂直に延ばした長さが5nm以上である場合に凸部として、その個数を数えた。数え方の一例(実施例5を数えたもの)を図2(C)に示す。
 また、表面粗さRzを共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて測定し、JIS B 0601:2001に定められたRzにより算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、標準偏差を計算した。また、Rzは3箇所の平均値とした。
Figure JPOXMLDOC01-appb-T000001
 このように、実施例のサンプルはいずれも、高さ5nm以上の凸部が3.8μm当たり平均10個以上であり、平均Rzが2.00μm以下で、その標準偏差は、0.3以下であった。
(5)負極材料の塗布
(5-1)水系負極材の塗布
 評価には、実施例1、実施例2、実施例3および比較例1の銅箔を用いた。
 グラファイト(MTI製 EQ-Lib-MCMB)、アセチレンブラック(デンカ製 Li-400)、CMC(カルボキシメチルセルロース ダイセルファインケム製 CMCダイセル2200)、SBR(スチレンブタジエンゴム 日本ゼオン製 BM-400B)、Si(Tekna Advanced Materials製)を所定の配合(グラファイト:86.5重量%、アセチレンブラック:1.5重量%、CMC:5.0重量%、SBR:2.5重量%、Si:4.5重量%)になるように秤量し、純水を用いて粘度を調整した。
 その後、遊星式攪拌装置にてグラファイト、アセチレンブラック、CMC、Siが均一になるまで攪拌し、最後にSBRを添加し、さらに攪拌を行った。バーコーターで塗布厚が150μm厚となるように設定し銅箔に塗布した。塗布後、水分を除去するため70℃で2時間乾燥させ、ロールプレスを用いて負極材の厚みが30μmとなるようにプレスを行い銅箔と負極材を密着させた。その後、真空、減圧した乾燥機で70℃12時間乾燥を行った。
(5-2)溶剤系負極材の塗布
 評価には、実施例4、実施例5、実施例6、比較例1、比較例2および比較例3の銅箔を用いた。
 グラファイト(日本黒鉛製)、アセチレンブラック(デンカ製 Li-400)、PVDF(ポリフッ化ビニリデン クレハ製 L#1120)、を使用し、所定の配合(グラファイト:85重量%、アセチレンブラック:5重量%、PDVF:10重量%)となるように秤量した。溶媒としてNMPを用いて粘度を調整した。
 その後、遊星式攪拌装置にてグラファイト、アセチレンブラック、PVDFが均一になるまで攪拌し、バーコーターで塗布厚が150μm厚となるように設定し銅箔に塗布した。塗布後、溶媒を除去するため80℃で2時間乾燥させ、ロールプレスを用いて負極材の厚みが30μmとなるようにプレスを行い銅箔と負極材を密着させた。その後、真空、減圧した乾燥機で120℃、12時間乾燥を行った。
 図3は溶剤系負極剤の塗布安定性を示す図である。図3の左側が実施例4であり、凸部が多いため密着性が良好でかつ、毛管現象により均一に負極剤が塗布されている。一方、図3の右側は比較例1であり、凸部の数が少ないため密着力も毛管現象も得られず、部分的に剥離が多く生じている。
(6)コインセル作製
 コインセルの作製については負極には(5)負極材料の塗布で作製したサンプルを用いた。コインセルに電解液として1M LiPF6/EC-DEC(1:1)を使用し、負極、セパレーター、リチウム箔を用いてコインセルを作製した。
(7)充放電特性の測定
 0.2C、1サイクルで電解液の還元分解により負極表面上に形成される薄膜であるSEI(SolidElectrolyte Interphase)を作製後、ディスチャージはCC-CV(電圧10mV、電流0.1Cまで)モード、チャージはCC(電圧1500mVまで)モードで30℃で1C⇒3C⇒5C⇒1Cをそれぞれ3サイクルずつ繰り返した後、50℃で同様に1C⇒3C⇒5C⇒1Cをそれぞれ3サイクルずつ繰り返し、50℃の5Cの3サイクル目の特性を評価した。
(8)負極材残存率の測定
 密着性の評価として、(5)の負極材の塗布後の銅箔を使用して負極材残存率を算出した。まず、負極材が塗布してある銅箔の重さを測定する。その後、固定するための板に両面テープを貼り、その上にセロハンテープの粘着面が負極材に接するようにセロハンテープを貼り、その後、負極材を塗布した銅箔の負極材面をセロハンテープに接するように貼り、5kN/inch2の圧力を負荷後、ピール強度試験機(Imada製)で90°ピール強度試験条件(JIS 0237:2009)で剥離し、銅箔側に残存している負極材量を測定した。試験方法を図4に示す。
 負極材残存率は以下の式を用いて算出した。
負極材残存率[%]=(試験後の全重量-銅箔の重さ)/(試験前の全重量-銅箔の重さ)×100
 水系負極材との評価結果を表2に示す。溶剤系負極材との評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 このように、少なくとも表面の一部に高さ5nm以上の凸部を有し、凸部の密度が3.8μmあたり平均15個以上100個以下の銅箔を用いて、リチウムイオン電池の負極集電体を製造することによって、銅箔と負極との密着性や容量維持率が改善される。
(9)電流分散数および面積の測定
 サンプル銅箔は、実施例として、上記実施例3~6に加え、実施例1と同じ条件で、めっき処理時間だけを長くして、めっき時のクーロン量を調整することによってめっき厚を100nm(実施例8)、200nm(実施例9)にした銅箔を用い、比較例として、上記比較例1~3に加え、市販銅箔(古河電気工業(株)製 NC-WS)に実施例1と同じ酸化処理だけを施したもの(めっき処理なし)(比較例4)、実施例1と同じ条件で、めっき処理時間だけを短くして、めっき厚を10nmにしたもの(比較例5)を用いた。なお、ここでは、めっき厚として、めっきの垂直方向の平均の厚さとした。すなわち、12%硝酸に銅箔を溶解し、溶解液をICP発光分析装置5100 SVDV ICP-OES(アジレント・テクノロジー社製)を用いて解析してめっきに用いた金属の濃度を測定し、金属の密度及び金属層の表面積を考慮することで層状とした時の金属層の平均の厚さを算出し、めっき厚とした。
 これらのサンプル銅箔に対し、原子間力顕微鏡(AFM)を用い、以下の測定条件で図5の電流像を得た。得られた電流像より、電流値-60nA以下のみ表示するように調整した。なお、本測定では銅箔表面の酸化による電流像への影響を除去するため、バイアス電圧はマイナスとしている。そのため、電流値はマイナスであるほど、抵抗値は小さく、より電流が流れやすいことを意味している。
装置:日立ハイテクサイエンス製
      プローブステーション AFM5000II 
      接続機種:AFM5300E
      カンチレバー:SI-DF3-R 
      AFM5000IIにおける自動設定機能を使用して設定
      (振幅減衰率、走査周波数、Iゲイン、Pゲイン、Aゲイン、Sゲイン)
       走査領域:2μm角
      画素数:512 x 512
      測定モード:Current(nano)
      測定視野:2μm
      SISモード:使用
            スキャナ:20μmスキャナ
            バイアス電圧:-0.5V
      測定雰囲気:真空
 得られた電流像を、画像処理ソフト(三谷商事(株)製WINROOF2018)を用いて、モノクロ画像に変換後2値化処理を行い、銅箔4μmあたりの電流部(緑色の部分)の個数、総面積を計測した。
(10)深さ5nmにおける酸素割合
 X線光電子分光法(XPS)で、負極体の表面から深さ5nmにおける酸素割合を測定した。
 測定装置としてQuantera SXM(ULVAC-PHI社製)、および励起X線として単色化AlKα(1486.6eV)を用いた。Survey Spectrumで検出されたすべての元素について、Narrow Spectrumを取得した。深さ方向には、Arスパッタを2.5分間隔で12回行い、測定とスパッタを繰り返してデータを取得した。
なお、各測定は、以下の条件で行った。
<Survey spectrum>
X線ビーム径: 100μm(25w15kV)
パスエネルギー: 280eV, 1eVステップ
ライン分析: φ100μm*1200um
積算回数 6回
<Narrow spectrum>
X線ビーム径: 100μm(25w15kV)
パスエネルギー: 112eV, 0.1eVステップ
ライン分析: φ100μm*1200um
<Arスパッタ条件>
加速電圧 1kV
照射面積 2x2mm
スパッタ速度 2.29nm/min(SiO2換算)
銅箔4μmあたりの電流分散数および総面積、5nmの深さにおける酸素の含有率の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 このように、実施例の銅箔では、銅箔4μmあたりの電流分散数が200以上であり、電流が流れる総面積は100000nm以上になっている。また、実施例のいずれの場合も、酸素量は25%以下であり、好適な値であった。比較例1、2および4,5の場合、酸素量が多いため、電流が流れる総面積が小さい。電流が流れる総面積が小さいことは、すなわち、電流が流れにくく、集電力に劣ることを意味している。比較例3の場合、酸素量は25%以下ではあるが、電流分散数が少ないため、電流が集中するために負極材が剥離し、高速充放電特性が劣ることになる。

Claims (19)

  1.  少なくとも表面の一部に高さ5nm以上の凸部があり、
     前記一部において、前記凸部の密度が3.8μmあたり平均15個以上100個以下である銅箔。
  2.  前記表面がめっき処理されている、請求項1に記載の銅箔。
  3.  前記一部において、前記凸部の密度が3.8μmあたり平均20個以上62個以下である、請求項1または2に記載の銅箔。
  4.  前記一部の表面粗さRzの3点標準偏差σが0.5以下である、請求項1~3のいずれか1項に記載の銅箔。
  5.  前記一部の表面粗さRzの3点標準偏差σが0.3以下である、請求項1~3のいずれか1項に記載の銅箔。
  6.  前記一部の表面粗さRzの平均が2μm以下である、請求項1~4のいずれか1項に記載の銅箔。
  7.  前記一部の表面粗さRzの平均が1.54μm以下である、請求項1~4のいずれか1項に記載の銅箔。
  8.  銅箔4μmあたりの、2値化による電流量の計測個数が平均200個以上である、請求項1~7のいずれか1項に記載の銅箔。
  9.  銅箔4μmあたりの、2値化による電流量の計測個数が平均500個以上である、請求項1~7のいずれか1項に記載の銅箔。
  10.  銅箔4μmあたりの電流総面積が平均100000nm以上である、請求項1~9のいずれか1項に記載の銅箔。
  11.  銅箔4μmあたりの電流総面積が平均300000nm以上である、請求項1~9のいずれか1項に記載の銅箔。
  12.  X線光電子分光法(XPS)で測定したとき、表面から深さ方向5nmでの酸素量が50%以下である、請求項1~11のいずれか1項に記載の銅箔。
  13.  X線光電子分光法(XPS)で測定したとき、表面から深さ5nmでの酸素量が25%以下である、請求項1~11のいずれか1項に記載の銅箔。
  14.  表面の少なくとも一部に銅以外の金属層が形成されている、請求項1~13のいずれか1項に記載の銅箔。
  15.  前記金属層の厚さは、15nm以上200nm以下である、請求項14に記載の負極集電体。
  16.  請求項1~7のいずれか1項に記載の銅箔を含む、リチウムイオン電池の負極集電体。
  17.  請求項8~15のいずれか1項に記載の銅箔を含む、リチウムイオン電池の負極集電体。
  18.  請求項7に記載のリチウムイオン電池の負極集電体の製造方法であって、
     銅箔の銅表面を亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウムから選択される1以上の酸化剤によって酸化し、凸部を形成する第1の工程と、
     酸化した前記銅表面をめっき処理する第2の工程と、
     前記銅表面をめっき処理した前記銅箔を用いて負極集電体を製造する第3の工程と、
    を含む、製造方法。
  19.  前記第2の工程の前に、前記第1の工程で酸化した銅表面を溶解する工程および/または還元する第4の工程をさらに含む、請求項18に記載の製造方法。
PCT/JP2019/049161 2019-03-04 2019-12-16 銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法 WO2020179181A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980088858.9A CN113330611B (zh) 2019-03-04 2019-12-16 铜箔和包含它的锂离子电池的负极集电体及其制造方法
KR1020217021939A KR20220002243A (ko) 2019-03-04 2019-12-16 구리박 및 이를 포함하는 리튬 이온 전지의 음극 집전체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019038914A JP6778291B1 (ja) 2019-03-04 2019-03-04 銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法
JP2019-038914 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020179181A1 true WO2020179181A1 (ja) 2020-09-10

Family

ID=72338548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049161 WO2020179181A1 (ja) 2019-03-04 2019-12-16 銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法

Country Status (5)

Country Link
JP (1) JP6778291B1 (ja)
KR (1) KR20220002243A (ja)
CN (1) CN113330611B (ja)
TW (1) TWI821504B (ja)
WO (1) WO2020179181A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167922A (ja) * 1997-12-05 1999-06-22 Mitsubishi Materials Corp 表面処理銅箔及びこれを用いた電池用電極
JPH11307102A (ja) * 1998-04-24 1999-11-05 Hitachi Ltd リチウム二次電池とその製造法
JP2008305781A (ja) * 2007-05-09 2008-12-18 Mitsubishi Chemicals Corp 電極及びその製造方法、並びに非水電解質二次電池
JP2010205507A (ja) * 2009-03-02 2010-09-16 Kobe Steel Ltd リチウム電池又はキャパシタ用銅合金集電体及びその製造方法
JP2011108362A (ja) * 2009-11-12 2011-06-02 Kobe Steel Ltd リチウムイオン二次電池用負極、その製造方法およびリチウムイオン二次電池
WO2019093494A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 複合銅箔
WO2019093077A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 粗面化処理された銅表面を有する物体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228536B1 (en) * 1999-07-13 2001-05-08 Hughes Electronics Corporation Lithium-ion battery cell having an oxidized/reduced negative current collector
JP6281154B2 (ja) * 2013-09-30 2018-02-21 株式会社クラレ リチウムイオン二次電池の負極シートおよびリチウムイオン二次電池
JP2017014608A (ja) * 2015-07-06 2017-01-19 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池、プリント配線板並びに電磁波シールド材
KR20170085425A (ko) * 2016-01-13 2017-07-24 엘에스엠트론 주식회사 동박, 그 제조방법, 그것을 포함하는 전극, 및 그것을 포함하는 이차전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167922A (ja) * 1997-12-05 1999-06-22 Mitsubishi Materials Corp 表面処理銅箔及びこれを用いた電池用電極
JPH11307102A (ja) * 1998-04-24 1999-11-05 Hitachi Ltd リチウム二次電池とその製造法
JP2008305781A (ja) * 2007-05-09 2008-12-18 Mitsubishi Chemicals Corp 電極及びその製造方法、並びに非水電解質二次電池
JP2010205507A (ja) * 2009-03-02 2010-09-16 Kobe Steel Ltd リチウム電池又はキャパシタ用銅合金集電体及びその製造方法
JP2011108362A (ja) * 2009-11-12 2011-06-02 Kobe Steel Ltd リチウムイオン二次電池用負極、その製造方法およびリチウムイオン二次電池
WO2019093494A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 複合銅箔
WO2019093077A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 粗面化処理された銅表面を有する物体

Also Published As

Publication number Publication date
CN113330611B (zh) 2024-07-09
KR20220002243A (ko) 2022-01-06
TWI821504B (zh) 2023-11-11
TW202034563A (zh) 2020-09-16
JP6778291B1 (ja) 2020-10-28
JP2020194615A (ja) 2020-12-03
CN113330611A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
KR101103841B1 (ko) 금속이온 이용 무전해 에칭법에 의한 다발구조의 실리콘 나노로드 제조방법 및 이를 함유하는 리튬이차전지용 음극 활물질
JP5666839B2 (ja) 2次電池用負極、負極集電体、2次電池及びこれらの製造方法
CN103053063B (zh) 涂布有底漆的正极集电体和包含所述正极集电体的镁二次电池
US8951670B2 (en) Adhesion of active electrode materials to metal electrode substrates
JP2009525568A5 (ja)
JPWO2016056557A1 (ja) グラフェン粉末、リチウムイオン電池用電極ペーストおよびリチウムイオン電池用電極
WO2020179183A1 (ja) 銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法
WO2013018898A1 (ja) リチウムイオン二次電池の負極材製造方法及びリチウムイオン二次電池用負極材
US20130220821A1 (en) Article comprising silicon nanowires on a metal substrate
EP4350809A1 (en) Composite particles, negative electrode mixture layer and lithium ion seconary battery
JP2009230976A (ja) 非水電解質二次電池及びその製造方法
JP6495009B2 (ja) 二次電池用正極、二次電池および二次電池用正極の製造方法
WO2020179181A1 (ja) 銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法
JP2009009778A (ja) リチウムイオン電池の正極板及びその製造方法、ならびに、それを用いたリチウムイオン電池
CN117501476A (zh) 复合体粒子、负极活性物质和锂离子二次电池
JP2012178309A (ja) リチウムイオン二次電池用負極と、これを用いたリチウムイオン二次電池
JP2951940B2 (ja) アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池
JP2005197096A (ja) 非水電解液二次電池用負極及びその製造方法
TWI843830B (zh) 複合銅構件及電子零件
US20230307613A1 (en) Novel composites for anode electrodes
CN118355516A (zh) 锂金属电极、制造锂离子电极的方法及锂离子电池
CN118538857A (zh) 改性集流体及其制备方法、极片及其制备方法与应用
CN113614284A (zh) 具有金属层的金属材料的制造方法
Guo et al. Ultrasonically carbon coated si nanoparticles for lithium ion batteries
Choi et al. Gas-Solid Reaction for Surface Modification of Lithium Metal Anodes: Formation of a Fluorine-Rich Silane Layer for Improved Stability of Lithium Metal Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP