WO2020175686A1 - リチウムイオン二次電池用電極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用電極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2020175686A1
WO2020175686A1 PCT/JP2020/008430 JP2020008430W WO2020175686A1 WO 2020175686 A1 WO2020175686 A1 WO 2020175686A1 JP 2020008430 W JP2020008430 W JP 2020008430W WO 2020175686 A1 WO2020175686 A1 WO 2020175686A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
material layer
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2020/008430
Other languages
English (en)
French (fr)
Inventor
利絵 寺西
文 大川
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2020175686A1 publication Critical patent/WO2020175686A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a lithium ion secondary battery and a lithium ion secondary battery.
  • Lithium-ion secondary batteries have been used as large-scale stationary power sources for power storage, power sources for electric vehicles, etc. In recent years, lithium-ion secondary batteries with even higher energy density have been used to further increase the capacity of the batteries. Is desired.
  • a method for obtaining such a lithium-ion secondary battery having a high energy density for example, a method of using a tri-axial material as a negative electrode material can be mentioned.
  • the theoretical capacity density of 3 million is 4 200 , Which is more than 10 times higher than the theoretical capacity density of force-based materials (for example, in the case of graphite, it is 3217/111/9). Therefore, a lithium ion secondary battery with a large capacity can be obtained by using a tri-series material as the negative electrode material.
  • Patent Document 1 Japanese Patent Laid-Open No. 200007—2 2 7 2 3 9
  • the ratio of the force-bon type material must be increased in order to reduce the influence of the expansion and contraction of the 3 type material. I had to do it.
  • the graphite content in the negative electrode for a lithium secondary battery described in Patent Document 1 was 70 to 100% by volume. For this reason, if the mixing ratio of the 3C-based material in the negative electrode material is increased to increase the capacity of the lithium secondary battery, the effect of expansion and contraction of the 3C-based material increases, and the charge/discharge cycle characteristics deteriorate. There was a problem.
  • the present invention provides a lithium ion secondary battery electrode containing a tri-material and a lithium ion secondary battery electrode including the lithium ion secondary battery, which can increase the capacity of the lithium ion secondary battery and improve charge/discharge cycle characteristics.
  • the challenge is to provide an on-secondary battery.
  • the inventors of the present invention have provided a porous insulating layer on the surface of an electrode active material layer containing a 3D-based material, and formed an electrode active material layer containing a 3D-based material and a current collector.
  • an electrode active material layer containing black lead between them it was found that the capacity of the lithium ion secondary battery can be increased and the charge/discharge cycle characteristics can be improved, and the following invention was completed.
  • the gist of the present invention is the following [1] to [12].
  • Electrode active material layer provided on the surface of the current collector, porous insulating layer provided on the surface of the electrode active material layer, the electrode active material layer and the above
  • the thickness of the porous insulating layer is 3 to 150, and the thickness of the electrode active material layer is ⁇ 02020/175686 3 (:171?2020/008430
  • the average particle size of the insulating fine particles in the porous insulating layer is 0.1 to 5.0, and the average particle size of the 3D-based material in the electrode active material layer is 1 to 30.
  • the electrode for a lithium ion secondary battery according to any one of [1] to [3] above.
  • the content of the insulating fine particles in the porous insulating layer is 50 to 99.
  • the content of the insulating layer binder in the porous insulating layer is 0.5 to 50% by volume, and the content of the electrode active material layer binder in the electrode active material layer is 1 to 5
  • a lithium ion secondary battery including a battery electrode as a negative electrode.
  • a lithium ion secondary battery electrode containing a tri-system material and an electrode for the lithium ion secondary battery which can increase the capacity of the lithium ion secondary battery and improve charge/discharge cycle characteristics.
  • a lithium-ion secondary battery can be provided.
  • FIG. 1 is a schematic sectional view showing an embodiment of an electrode for a lithium ion secondary battery of the present invention.
  • the lithium-ion secondary battery electrode 1 includes a current collector 10, an electrode active material layer 20 provided on the surface of the current collector 10, and a surface of the electrode active material layer 20. It has a porous insulating layer 30 provided thereon and an intermediate electrode active material layer 40 provided between the electrode active material layer 20 and the current collector 10.
  • the electrode active material layer 20, the intermediate electrode active material layer 40, and the porous insulating layer 30 may be laminated on both surfaces of the current collector 10.
  • the electrode for a lithium ion secondary battery of the present invention is used as a negative electrode in a lithium ion secondary battery.
  • the electrode active material layer includes a tri-axial material and a binder for the electrode active material layer. As described above, since the 3rd order material has a high theoretical capacity density, the capacity of the lithium ion secondary battery can be increased by using the 3rd order material as the electrode active material of the electrode active material layer.
  • the compound represented by the general formula (3) (where X is a number of 0.5 to 1.5) is preferable because of relatively small expansion and contraction.
  • the compound "3 ⁇ " units the 3 ⁇ is amorphous three is ⁇ , or 3 I: molar ratio of 3 I ⁇ 2 of about 1: 1
  • 3 x 2 around the 3 I of the nanocluster, which is a composite of 3 x and 3 x 2 .
  • 3 I 0 2 has a buffering effect on the expansion and contraction of 3 layers during charging and discharging.
  • the 3 g type material may be a compound of the general formula 3 g (where X is a number from 0.5 to 1.5) covered with a carbon such as nanocarbon. ..
  • the 3 I-based material is preferably in the form of particles.
  • the average particle diameter of the 3D-based material is preferably 1 to 30.
  • the average particle size of the 3rd order material is 1 or more, the binding force between the 3rd order material particles is increased, and the charge/discharge cycle characteristics of the lithium ion secondary battery are improved.
  • the average particle size of the 3rd order material is 30 or less, expansion and contraction of the 3rd order material is suppressed, and the charge/discharge cycle characteristics of the lithium ion secondary battery are improved.
  • the average particle diameter of the three-dimensional material is more preferably 2 to 20 and further preferably 3 to 10.
  • the average particle size means the particle size (0 50) at a volume cumulative 50% in the particle size distribution of the tri-material based on the laser diffraction scattering method.
  • the content of the tri-system material in the electrode active material layer is preferably 95 to 99% by mass.
  • the content of the three-component material in the electrode active material layer is 95% by mass or more, the capacity of the lithium-ion secondary battery can be increased.
  • the binder amount can be set to a certain amount or more, thereby increasing the binding force between the tri-based material particles and increasing the lithium ion nitric acid. Improve the charge/discharge cycle characteristics of the secondary battery. From the above-mentioned viewpoint, it is more preferable that the content of the three-dimensional material in the electrode active material layer is 96 to 98 mass %. ⁇ 02020/175686 6 ⁇ (: 171?2020/008430
  • a part or all of the three-system material may be subjected to pre-doping treatment containing lithium or lithium ions.
  • the pre-doping treatment causes irreversible reaction between silicon dioxide and lithium in the electrode active material layer to produce lithium silicate (!_ ⁇ 4 3 ⁇ 0 4 ).
  • lithium silicate is not generated when lithium is occluded in the electrode active material layer in the initial charging step, reduction in discharge capacity is suppressed.
  • the method of pre-doping the electrode active material layer is not particularly limited, and the pre-doping method applied to conventional lithium ion secondary batteries can be applied.
  • a lithium layer may be formed on the surface of the electrode active material layer by the sputtering method.
  • a lithium foil may be provided on the surface of the electrode active material layer.
  • the amount of lithium to be pre-doped is not particularly limited, and for example, it is preferably 1 to 4 times the molar amount of silicon oxide in the electrode active material layer.
  • the electrode active material layer may contain a conductive auxiliary agent from the viewpoints of imparting conductivity and mitigating expansion and contraction of the tri-axial material.
  • a conductive auxiliary agent from the viewpoints of imparting conductivity and mitigating expansion and contraction of the tri-axial material.
  • the conductive additive a material having higher conductivity than the three-component material is used.
  • the conductive aid include carbon materials such as Ketchen black, acetylene black, carbon nanotube, and rod carbon. These conductive aids may be used alone or in combination of two or more.
  • the content of the conductive auxiliary agent is, based on the total amount of the electrode active material layer, preferably 5% by mass or less, and more preferably 4% by mass or less.
  • the content is preferably 3% by mass or less, more preferably 2% by mass or less.
  • the electrode active material layer is formed by binding three-dimensional materials with an electrode active material layer binder.
  • the binder for the electrode active material layer includes poly(meth)acrylic acid, poly(meth)lithium acrylate, polyvinylidene fluoride (), polyvinylidene fluoride-hexafluoropropylene copolymer , Fluorine-containing resins such as polytetrafluoroethylene (Chomi), polymethylacryl — Acrylic resin such as poly(meth)acrylate (PMA), polymethylmethacrylate (PMMA), polyvinyl acetate, polyimide (P), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), Polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose, polyvinyl alcohol and the like can be mentioned. These binders may be used alone or in combination of two or more. In addition, carb
  • the content of the binder for the electrode active material layer in the electrode active material layer is preferably 1 to 5 mass% based on the total amount of the electrode active material layer.
  • the content of the binder for the electrode active material layer is 1% by mass or more, the binding force between the Si-based material particles is increased, and the charge/discharge cycle characteristics of the lithium ion secondary battery are improved.
  • the content of the binder for the electrode active material layer is 5% by mass or less, the amount of the binder, which is a component having a high resistance in the electrode active material layer, is reduced, so that the output characteristics of the lithium ion secondary battery are improved. ..
  • the content of the binder for the electrode active material layer in the electrode active material layer is more preferably 2 to 4% by mass based on the total amount of the electrode active material layer.
  • the thickness of the electrode active material layer is preferably 10 to 70 Mm per side of the current collector.
  • the Si-based material which has a high capacity component in the electrode, increases, and the capacity of the lithium ion secondary battery improves.
  • the thickness of the electrode active material layer is not more than 70 M m per one surface of the current collector, declined expansion amount of the electrode during charge and discharge of the lithium ion secondary cell is, the charge-discharge cycle characteristics of the lithium ion secondary cell improves.
  • the thickness of the electrode active material layer is more preferably 20 to 40, and further preferably 20 to 38 Mm, per one side of the current collector.
  • the electrode active material layer is a Si-based material within a range that does not impair the effects of the present invention. ⁇ 02020/175686 8 ⁇ (: 171?2020/008430
  • the total mass of the electrode active material layer it is preferable that the total content of the three materials, the conductive additive, and the binder for the electrode active material layer is 96% by mass or more, and 98% by mass or more. The above is more preferable.
  • the porous insulating layer contains insulating fine particles and an insulating layer binder.
  • the porous insulating layer is a layer formed by binding insulating fine particles with a binder for an insulating layer, and has a porous structure.
  • the porosity of the porous insulating layer is 30 to 95%. If the porosity of the porous insulating layer is less than 30%, it is not possible to secure a lithium ion conduction path in the porous insulating layer, and the output of the lithium ion secondary battery decreases. On the other hand, when the porosity of the porous insulating layer is larger than 95%, the ratio of the insulating component in the porous insulating layer becomes low, and the safety of the lithium ion secondary battery decreases. From the viewpoints described above, the porosity of the porous insulating layer is more preferably 30 to 80%, further preferably 40 to 78%, particularly preferably 50 to 75%. The porosity of the porous insulating layer can be measured by the method described in Examples below.
  • the thickness of the porous insulating layer is preferably 3 to 15.
  • the porous insulating layer relieves the expansion and contraction of the electrode, and the charge/discharge cycle characteristics of the lithium ion secondary battery are improved.
  • the thickness of the porous insulating layer is 15 or less, the distance between the positive electrode and the negative electrode becomes small, so that the output of the lithium ion secondary battery is improved. From the above viewpoint, the thickness of the porous insulating layer is ⁇ 02020/175686 9 ⁇ (: 171?2020/008430
  • 3 to 13 are more preferable, and 3 to 10 are still more preferable.
  • the thickness of the electrode active material layer per one surface of the current collector (port 2) with respect to the thickness of the porous insulating layer per one surface of the current collector (port 2) is preferably 1 to 15, more preferably 2 to 10 and even more preferably 3 to 6.
  • the insulating fine particles are not particularly limited as long as they are insulating, and may be either organic particles or inorganic particles.
  • Specific organic particles include, for example, crosslinked polymethylmethacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly(2-acrylicamide 2-methylpropanesulfonic acid). Lithium), a polyacetal resin, an epoxy resin, a polyester resin, a phenol resin, a melamine resin and the like, which are particles composed of an organic compound.
  • Inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (1 ⁇ 1 6 2 5 5 ), tantalum oxide (3 2 2 5 5 ) Particles composed of inorganic compounds such as, fluorination power, lithium fluoride, clay, zeolite, calcium carbonate, and the like. Further, the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide.
  • the insulating fine particles may be particles in which each of the above-mentioned materials is used alone, or particles in which two or more kinds are used in combination. Further, the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound. For example, it may be an inorganic-organic composite particle in which the surface of a particle made of an organic compound is coated with an inorganic oxide.
  • inorganic particles are preferable, and alumina particles are particularly preferable, from the viewpoint of improving the charge/discharge cycle characteristics of the lithium ion secondary battery.
  • the average particle diameter of the insulating fine particles is preferably from 0.1 to 5.0.
  • the average particle size of the insulating fine particles is 0.1 or more, the binding property between the insulating fine particles is improved, and the safety of the lithium ion secondary battery is improved.
  • the average particle size of the particles is 5.0 Mm or less, the reduction of the porosity of the porous insulating layer is suppressed, and the safety of the lithium ion secondary battery is improved.
  • the average particle size of the insulating fine particles is more preferably 0.2 to 3. O ⁇ m, and further preferably 0.3 to 1.0 MID.
  • the average particle size means the particle size (D 50) at a volume cumulative of 50% in the particle size distribution of insulating fine particles determined by the laser diffraction scattering method.
  • the insulating fine particles one kind having an average particle diameter within the above range may be used alone, or two kinds of insulating fine particles having different average particle diameters may be mixed and used.
  • the content of the insulating fine particles contained in the porous insulating layer is preferably 50 to 99.5% by volume based on 100% by volume of the total amount of the insulating fine particles and the binder for the insulating layer. ..
  • the content of the insulating fine particles is 50% by volume or more, the ratio of the insulating fine particles, which is a heat resistant component, in the porous insulating layer is increased, and the safety of the lithium ion secondary battery is improved.
  • the content of the insulating fine particles is 99.5% by volume or less, the ratio of the binder for the insulating layer, which is a binding component, increases, the strength of the porous insulating layer increases, and the lithium ion secondary battery increases.
  • the content of the insulating fine particles contained in the insulating layer is more preferably 50 to 90% by volume with respect to 100% by volume of the total amount of the insulating fine particles and the binder for the insulating layer. More preferably, it is 70 to 85% by volume.
  • the binder for the insulating layer is polyvinylidene fluoride (PV d F), polyvinylidene fluoride-hexafluoropropylene copolymer (PVd F-HFP), fluorine-containing resin such as polytetrafluoroethylene (PT FE), Acrylic resins such as polymethyl acrylate (PMA) and polymethyl methacrylate (PMMA), polyvinyl acetate, polyimide (P), polyamide (PA), polyvinyl chloride (PVC), polyether nitrile (PEN), Polyethylene (PE), Polypropylene (PP), Polyacrylonitrile (PAN), Acrylonitrile-butadiene rubber, Styrene-butadiene rubber, Poly(meth)acrylic acid, Carboxymethylcellulose, Hydroxyethylcellulose ⁇ 0 2020/175686 1 1 ⁇ (: 171? 2020 /008430)
  • binders may be used alone or in combination of two or more.
  • carboxymethyl cellulose and the like may be used in the form of salt such as sodium salt.
  • the content of the insulating layer binder contained in the porous insulating layer is preferably 0.5 to 50% by volume based on 100% by volume of the total of the insulating fine particles and the insulating layer binder. is there.
  • the content of the binder for the insulating layer is 0.5% by volume or more, the ratio of the binder for the insulating layer, which is a binding component, increases, the strength of the porous insulating layer increases, and the safety of the lithium ion secondary battery increases. Is improved.
  • the content of the binder for the insulating layer is 50% by volume or less, the ratio of the insulating fine particles, which is a heat-resistant component, in the porous insulating layer is increased, and the safety of the lithium ion secondary battery is improved.
  • the content of the insulating layer binder contained in the porous insulating layer is more preferably 10 to 50% with respect to 100% by volume of the total of the insulating fine particles and the insulating layer binder. %, and more preferably 15 to 30% by volume.
  • the intermediate electrode active material layer includes graphite and a binder for the intermediate electrode active material layer.
  • Black lead! -Since graphite does not significantly expand even when absorbing ions, the intermediate electrode active material layer has a function as a buffer layer for the electrode active material layer that expands and contracts.
  • Graphite is one of allotropes of carbon and is a thermodynamically stable phase under normal pressure.
  • Graphite is also called graphite.
  • Examples of graphite include natural graphite and artificial graphite.
  • Natural graphite is a naturally occurring graphite. Examples of natural graphite include flake graphite, lump graphite, and earth graphite.
  • artificial graphite is a material in which a graphite structure is developed by further heating a carbon material produced by thermal decomposition and carbonization of an organic compound to a high temperature of 250°C or higher.
  • the average particle diameter of graphite is preferably 1 to 30.
  • the binding force between the graphite particles increases and the lithium ion secondary ⁇ 0 2020/175686 12 12 (:171?2020/008430
  • the average particle size of graphite is 30 or less, the intermediate electrode active material layer can be prevented from being too thick, and the capacity of the lithium ion secondary battery can be improved.
  • the average particle size of black lead is more preferably 2 to 20 and even more preferably 5 to 15.
  • Examples of the method for adjusting the average particle diameter of graphite to a desired value include a method of pulverizing by a known method using a ball mill or the like.
  • the average particle size means the particle size (0 50) at a volume product of 50% in the particle size distribution of graphite obtained by the laser diffraction scattering method.
  • the graphite content in the intermediate electrode active material layer is preferably 95 to 99% by mass.
  • the content of graphite in the intermediate electrode active material layer is 95% by mass or more, the capacity of the lithium ion secondary battery can be increased.
  • the content of graphite in the intermediate electrode active material layer is 99% by mass or less, the amount of the binder can be set to a certain amount or more, thereby increasing the binding force between the graphite particles and charging/discharging the lithium ion secondary battery.
  • the content of graphite in the intermediate electrode active material layer is more preferably 96 to 98 mass %.
  • the intermediate electrode active material layer may contain a conductive auxiliary agent.
  • the conduction aid include carbon materials such as Ketchen black, acetylene black, carbon nanotube, and rod carbon. These conductive aids may be used alone or in combination of two or more.
  • the content of the conductive additive is preferably 5% by mass or less and 4% by mass or less based on the total amount of the electrode active material layer. Is more preferable, 3% by mass or less is more preferable, and 2% by mass or less is particularly preferable.
  • the intermediate electrode active material layer is formed by binding graphite with a binder for the intermediate electrode active material layer.
  • the binder for the intermediate electrode active material layer the same resins as those listed for the binder for the electrode active material layer can be used.
  • the intermediate electrode active material layer ⁇ 02020/175686 13 ((171?2020/008430
  • the binder may be the same as or different from the binder for an electrode active material. However, in order to strengthen the bond between the electrode active material layer and the intermediate electrode active material layer, the binder for the intermediate electrode active material layer is preferably the same as the binder for the electrode active material.
  • the content of the intermediate electrode active material layer binder in the intermediate electrode active material layer is preferably 1 to 5 mass% based on the total amount of the electrode active material layer.
  • the content of the binder for the intermediate electrode active material layer is 1% by mass or more, the binding force between the graphite particles is increased, and the charge/discharge cycle characteristics of the lithium ion secondary battery are improved.
  • the content of the binder for the intermediate electrode active material layer is 5% by mass or less, the amount of the binder, which is a component with high resistance in the intermediate electrode active material layer, decreases, so the output characteristics of the lithium ion secondary battery are improved.
  • the content of the binder for the intermediate electrode active material layer in the intermediate electrode active material layer is based on the total amount of the electrode active material layer,
  • the thickness of the intermediate electrode active material layer is not particularly limited, but may be one surface of the current collector,
  • the thickness of the intermediate electrode active material layer is 5 or more, the adhesion between the electrode active material layer and the intermediate electrode active material layer is enhanced, and the charge/discharge cycle characteristics of the lithium ion secondary battery are improved.
  • the thickness of the intermediate electrode active material layer is 60 or less, the ratio of the electrode active material layer in the electrode increases, and the capacity of the lithium ion secondary battery improves. From the above viewpoint, the thickness of the intermediate electrode active material layer is more preferably 15 to 25 per one surface of the current collector.
  • the ratio (0 1/0 3) of the thickness of the electrode active material layer per one side of the current collector (mouth 1) to the thickness of the intermediate electrode active material layer per one side of the current collector (mouth 3) is It is preferably 0.1 to 100.
  • the ratio (0 1/0 3) of the thickness of the intermediate electrode active material layer per one side of the current collector (mouth 3) to the thickness of the electrode active material layer per one side of the current collector (mouth 1) is 0. 1 If the above is the case, the proportion of the tri-metallic material in the electrode is increased, and the capacity of the lithium-ion secondary battery is improved.
  • the thickness of the electrode active material layer per one side of the current collector with respect to the thickness of the intermediate electrode active material layer per one side of the current collector (mouth 3) ( ⁇ 02020/175686 14 ⁇ (: 171?2020/008430
  • the ratio (0 1/0 3) of 0 1) is 10 or less, the amount of expansion of the electrode during charge/discharge of the lithium ion secondary battery is reduced, and the charge/discharge cycle characteristics of the lithium ion secondary battery are improved.
  • the ratio of the thickness of the electrode active material layer per one side of the current collector (mouth 1) to the thickness of the intermediate electrode active material layer per one side of the current collector (0 3) (0 1/0 3) is more preferably 0.1 to 5, and even more preferably 1.2 to 3.
  • the intermediate electrode active material layer may contain other optional components other than graphite, a conductive additive, and a binder for the intermediate electrode active material layer, as long as the effects of the present invention are not impaired.
  • the total mass of the electrode active material layer the total content of graphite, the conductive additive, and the binder for the intermediate electrode active material layer is preferably 96% by mass or more, and 98% by mass or more. More preferably.
  • Examples of the material constituting the current collector include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, Copper is more preferred.
  • the current collector is generally composed of a metal foil, and the thickness thereof is not particularly limited, but 1 to 50 is preferable.
  • an embodiment of a method for manufacturing an electrode for a lithium ion secondary battery will be described in detail.
  • the method for producing an electrode for a lithium ion secondary battery of the present invention first, an intermediate electrode active material layer is formed, and the composition for an electrode active material layer is applied on the surface of the intermediate electrode active material layer to form an electrode active material layer. Then, the composition for an insulating layer is applied on the surface of the electrode active material layer to form a porous insulating layer.
  • a composition for an intermediate electrode active material layer containing graphite, a binder for the intermediate electrode active material layer, and a solvent is prepared.
  • the composition for an intermediate electrode active material layer may contain other components such as a conductive additive which is blended as necessary.
  • Graphite, binder for intermediate electrode active material layer, conductive aid, etc. ⁇ 02020/175686 15 ((171?2020/008430
  • composition for the intermediate electrode active material layer becomes a slurry
  • Water is preferably used as the solvent in the composition for an intermediate electrode active material layer.
  • the above-mentioned binder for intermediate electrode active material layer can be easily dissolved in the composition for intermediate electrode active material layer.
  • the solid content concentration of the composition for an intermediate electrode active material layer is preferably 5 to 75 mass%, more preferably 20 to 65 mass%.
  • the intermediate electrode active material layer may be formed by a known method using the composition for intermediate electrode active material layer.
  • the composition for intermediate electrode active material layer is applied onto a current collector. It can be formed by drying.
  • the intermediate electrode active material layer may be formed by applying the composition for intermediate electrode active material layer on a substrate other than the current collector and drying it.
  • the base material other than the current collector include known release sheets.
  • the intermediate electrode active material layer formed on the base material may be transferred onto the current collector by peeling off the intermediate electrode active material layer from the base material.
  • the material layer is preferably pressure-pressed. By pressing under pressure, the electrode density can be increased.
  • the pressure press may be a mouth press or the like.
  • a composition for an electrode active material layer that includes a tri-component material, a binder for the electrode active material layer, and a solvent.
  • the composition for an electrode active material layer may contain other components such as a conductive additive which is blended as necessary. 3
  • the base materials, the binder for the electrode active material layer, the conductive additive, etc. are as described above.
  • the composition for electrode active material layer becomes a slurry.
  • the solvent in the composition for an electrode active material layer water is preferably used. By using water, the above-mentioned binder for electrode active material layer can be easily dissolved in the composition for electrode active material layer.
  • the solid content concentration of the composition for electrode active material layer is preferably 5 to 75% by mass, and ⁇ 02020/175686 16 ⁇ (: 171?2020/008430
  • the electrode active material layer may be formed by a known method using the composition for electrode active material layer.
  • the composition for electrode active material layer is applied onto the intermediate electrode active material layer, It can be formed by drying.
  • the electrode active material layer may be formed by applying the composition for electrode active material layer onto a base material other than the intermediate electrode active material layer and the current collector, and drying.
  • a base material other than the intermediate electrode active material layer and the current collector known release sheets can be mentioned.
  • the electrode active material layer formed on the base material may be transferred onto the intermediate electrode active material layer by peeling the electrode active material layer from the base material.
  • the intermediate electrode active material layer or the electrode active material layer formed on the base material is preferably pressure-pressed. By pressing under pressure, the electrode density can be increased.
  • the pressure press may be a mouth press or the like.
  • the insulating layer composition used for forming the porous insulating layer contains insulating fine particles, an insulating layer binder, and a solvent.
  • the composition for an insulating layer may contain other optional components to be blended if necessary. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above.
  • the insulating layer composition becomes a slurry.
  • the solid concentration of the insulating layer composition is preferably 5 to 75% by mass, more preferably 15 to 50% by mass.
  • the viscosity of the insulating layer composition is preferably 100 to 300 000 13 33, more preferably 170 0 to 230 300 13 -. Viscosity is the viscosity measured under the conditions of 60 ", 25° with a Mitsumi-type viscometer.
  • the porous insulating layer can be formed by applying the composition for an insulating layer onto the electrode active material layer and drying.
  • the method of applying the composition for an insulating layer to the surface of the electrode active material layer is not particularly limited, and examples thereof include a dip coating method, a spray coating method, a mouth coating method, a doctor blade method, a bar coating method, a gravure coating method, and a screen. Printing methods and the like can be mentioned. Among these, the insulation layer assembly ⁇ 02020/175686 17 ⁇ (: 171?2020/008430
  • the bar coating method or the gravure coating method is preferable from the viewpoint of uniformly coating the composition and thinning the porous insulating layer.
  • the drying temperature is not particularly limited as long as the solvent can be removed, but is, for example, 40 to 120°°, preferably 50 to 90°°.
  • the drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.
  • the lithium ion secondary battery of the present invention includes the above-mentioned electrode for lithium ion secondary battery as a negative electrode.
  • the lithium ion secondary battery of the present invention comprises a positive electrode and a negative electrode which are arranged so as to face each other, and the negative electrode is the above-mentioned porous insulating layer, electrode active material layer and intermediate electrode active material layer. It becomes an electrode for a lithium-ion secondary battery having.
  • the positive electrode of the lithium ion secondary battery of the present invention is not particularly limited.
  • the positive electrode includes, for example, a positive electrode active material layer and a current collector, and the positive electrode active material layer includes a positive electrode active material and a positive electrode binder.
  • Examples of the positive electrode active material include lithium metal oxide compounds.
  • the metal acid lithium compounds lithium cobalt oxide (! _ ⁇ thousand 2), nickel acid lithium (! _ ⁇ 1 ⁇ 1 ⁇ 2), lithium manganese acid (! _ ⁇ 1 ⁇ / ⁇ 2 ⁇ 4 ) etc. can be illustrated.
  • olivine-type lithium iron phosphate (!_ I 6 0 4 ) or the like may be used.
  • the same binder as described above for the electrode active material layer or the intermediate electrode active material can be used.
  • the material for the current collector is the same as the compound used for the negative electrode current collector, but aluminum or copper is preferably used, and more preferably aluminum is used.
  • the lithium-ion secondary battery of the present invention preferably further includes a separator arranged between the positive electrode and the negative electrode.
  • a separator By providing the separator, a short circuit between the positive electrode and the negative electrode can be prevented more effectively. Further, the separator may hold an electrolyte described later.
  • the porous insulating layer provided on the positive electrode or the negative electrode may or may not be in contact with the separator, but is preferably in contact with it.
  • the separator examples include porous polymer membranes, nonwoven fabrics, glass fibers, and the like. Among these, porous polymer membranes are preferable.
  • the porous polymer film an olefin-based porous film is exemplified.
  • the separator may be heated by the heat generated when the lithium ion secondary battery is driven to cause thermal contraction. However, even when the thermal contraction occurs, the provision of the porous insulating layer makes it easy to suppress a short circuit.
  • the separator may be omitted. Even if the separator is omitted, the porous insulating layer ensures the insulating property between the negative electrode and the positive electrode.
  • the lithium-ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated.
  • the negative electrodes and the positive electrodes may be provided alternately along the stacking direction.
  • the separator may be placed between each negative electrode and each positive electrode.
  • the above-mentioned negative electrode and positive electrode, or the negative electrode, positive electrode, and separator are housed in a battery cell.
  • the battery cell may be a square type, a cylindrical type, a laminated type or the like.
  • the lithium-ion secondary battery includes an electrolyte.
  • the electrolyte is not particularly limited, and a known electrolyte used in lithium ion secondary batteries may be used.
  • an electrolytic solution is used as the electrolyte.
  • Examples of the electrolytic solution include an organic solvent and an electrolytic solution containing an electrolyte salt.
  • Examples of the organic solvent include ethylene carbonate, propylene carbonate, ⁇ 0 2020/175 686 19 ⁇ (: 171? 2020 /008430
  • the electrolyte may be a gel electrolyte containing a polymer compound in the electrolytic solution.
  • the polymer compound include fluorine-based polymers such as polyvinylidene fluoride and polyacrylic polymers such as poly(meth)methyl acrylate.
  • the gel electrolyte may be used as a separator.
  • the electrolyte may be disposed between the negative electrode and the positive electrode, and for example, the electrolyte is filled in the battery cell in which the negative electrode and the positive electrode described above, or the negative electrode, the positive electrode, and the separator are housed inside.
  • the electrolyte may be applied on the negative electrode or the positive electrode and arranged between the negative electrode and the positive electrode.
  • the obtained lithium ion secondary battery was evaluated by the following evaluation methods.
  • the prepared lithium-ion secondary battery was charged and discharged once at 20 ° and the discharge capacity ⁇ 02020/175686 20 units (: 17 2020 /008430
  • the measured discharge capacity was divided by the thickness of the negative electrode to calculate the capacity per thickness.
  • the reason for dividing the measured discharge capacity by the thickness of the negative electrode is as follows.
  • the capacity of a battery is determined by the electrode with the smaller capacity (usually the positive electrode) of the positive and negative electrodes. Therefore, even if the total thickness of the negative electrode is fixed and the thickness of the negative electrode is changed, the capacity of the battery is determined by the positive electrode, so the capacity of the battery does not change. Therefore, the thickness of the negative electrode was redesigned to match the capacity of the positive electrode, and the measured discharge capacity was divided by the thickness of the negative electrode so that the capacity characteristics of the battery due to the negative electrode could be evaluated.
  • the discharge was performed under the following conditions.
  • Charging condition ⁇ ⁇ Charge.
  • the condition was 4.2 V, 1.
  • ⁇ V condition is 4.2, ⁇ .
  • Discharge condition ⁇ discharge.
  • the condition was set to 2.5 V, 1.
  • the calculated capacity per thickness was evaluated as follows.
  • the manufactured lithium-ion secondary battery was repeatedly charged and discharged in an environment of a temperature of 40° with a charge rate of 20 and a discharge rate of 10.
  • the capacity retention rate was calculated by dividing the discharge capacity after 500 cycles by the discharge capacity after 10 cycles.
  • the cycle characteristics were evaluated from the capacity retention rate as follows.
  • Capacity retention rate is 50% or more
  • Mami Capacity retention rate is 45% or more and less than 50%
  • Capacity retention rate is 30% or more and less than 45% ⁇ 0 2020/175686 21 ⁇ (: 171? 2020 /008430
  • Capacity maintenance rate is 20% or more and less than 30%
  • the output characteristics of the manufactured lithium-ion secondary battery were evaluated by determining the discharge capacity as follows.
  • Constant current charging of 10 was performed, and constant voltage charging was performed as soon as the voltage reached 4.2 V. In constant voltage charging, the current was reduced and charging was completed at the time when the voltage reached to 0.0508. After that, a constant current discharge of 10 was performed, the discharge was completed when the voltage reached 2.5 V, and a constant current discharge capacity of 1 ⁇ 3 was calculated. Next, after constant current charging and constant voltage charging similar to the above, constant current discharge of 10 ⁇ 3 was performed, and when the voltage reached 2.5 V, discharge was completed and 10 ⁇ 3 The constant current discharge capacity of was calculated. Based on these discharge capacities, the output characteristics were evaluated according to the following criteria.
  • Constant current discharge capacity of 10 ⁇ 3 is more than 30% compared to constant current discharge capacity of 1 ⁇ 3
  • Constant current discharge capacity of 10 ⁇ 3 is more than 20% and less than 30% compared to constant current discharge capacity of 1 ⁇ 3.
  • constant current discharge capacity of 10 ⁇ 3 is 10% or more and less than 20%
  • the constant current discharge capacity of 10 ⁇ 3 is less than 10% compared to the constant current discharge capacity of 1 ⁇ 3.
  • Constant current charging of 40 was performed, and as soon as the voltage reached 4.2 V, the current was reduced and constant voltage charging was performed. When the current reached 28, charging was completed. After that, nails were inserted into the lithium-ion secondary battery at a speed of 0. 01 01 111/360 until the depth of 101 01 from the surface of the lithium-ion secondary battery. Then, the voltage (!) of the lithium ion secondary battery with the nail inserted was measured.
  • the safety of lithium ion secondary batteries was evaluated based on the following criteria.
  • the physical properties of the obtained lithium-ion secondary battery electrode were measured by the following measuring methods.
  • the cross section of the lithium ion secondary battery electrode was exposed using the ion milling method. Next, the entire cross section of the exposed electrode for the lithium-ion secondary battery can be observed with the __3_ IV! (field emission scanning electron microscope) of the electrode active material layer or the intermediate electrode active material layer. Observation with a magnification gave an image of the electrode active material layer or the intermediate electrode active material layer. The magnification was from 5,000 to 2,500. Next, using the image analysis software " ⁇ ⁇ ! 8 9 ⁇ ", the real part of the electrode active material layer or the intermediate electrode active material layer is displayed in black and the voids are displayed in white. The resulting image was binarized. The image analysis software "I 3 9 6 '" by using to measure the percentage of the area of the white portion. The ratio of the white area is the porosity (%).
  • the cross section of the electrode for a lithium ion secondary battery was exposed by the same method as the above-mentioned method for evaluating the porosity. Then, the thickness of the electrode active material layer was measured using the above-mentioned 3M IV!. In addition, the above-mentioned “01 8 9” was used for the thickness measurement.
  • This composition was applied to both sides of a copper foil having a thickness of 8 as a negative electrode current collector and vacuum dried at 100 ° C. After that, the negative electrode current collector whose both surfaces were coated with the composition for intermediate negative electrode active material layer was applied with a linear pressure of 400 Then, it was pressed under pressure to obtain a first negative electrode layer having an intermediate negative electrode active material layer.
  • the density of the intermediate negative electrode active material layer was 1.2 1 9 / ⁇ . Further, the thickness of the intermediate negative electrode active material layer was 23 3 per side.
  • Silicon monoxide (3 ⁇ ) (average particle size: 50) 97 parts by mass as a negative electrode active material, and styrene-butadiene rubber (3 s [3 ⁇ 4) 1.5 parts by mass, carboxymethyl cellulose ( ⁇ 1 ⁇ /1 1.5 parts by mass of the sodium salt of ⁇ ) and water as a solvent were mixed to adjust the solid content to 50% by mass to obtain a composition for a negative electrode active material layer.
  • This composition was applied to both surfaces of the first negative electrode layer and vacuum dried at 100 ° C. Then, the negative electrode current collector coated with the composition for the negative electrode active material layer on both sides, It was pressed under pressure to obtain a negative electrode.
  • the thickness of the intermediate negative electrode active material layer changed from 2311 to 1801.
  • the density of the intermediate negative electrode active material layer is 1.2 1 9 / ⁇ to 1. Changed to.
  • the thickness of the negative electrode active material layer was 35 5 per side.
  • the density of the negative electrode active material layer was 1.2 1 9 / ⁇ ⁇ .
  • a coating liquid having a mass% was prepared. The viscosity of the coating solution at 25° is 150 Was 3. Then, a bar coater type coating device was used to coat the negative electrode with the coating liquid. After applying the coating liquid on both surfaces of the negative electrode, it was dried at 60 ° for 1 hour to obtain a porous insulating layer-formed negative electrode. The thickness of the porous insulating layer after drying was 8 per side. The porosity of the porous insulating layer was 70%.
  • ⁇ 8-type oxide 100 parts by mass, 4 parts by mass of acetylene black as a conductive additive, 4 parts by mass of polyvinylidene fluoride () as a binder for electrodes, and 1 ⁇ 1_methylpyrrolidone as a solvent. (1 ⁇ /1?) was mixed to obtain a positive electrode active material layer composition having a solid content concentration adjusted to 60% by mass.
  • This composition for a positive electrode active material layer was applied to both sides of an aluminum foil having a thickness of 15 as a positive electrode current collector, preliminarily dried, and then vacuum dried at 120 ° . After that, a positive electrode current collector whose both surfaces were coated with the composition for a positive electrode active material layer Then, it was pressed under pressure to produce a positive electrode. The thickness of the positive electrode active material layer was 50 on each side.
  • a volume ratio of 7 (Minami (3: ⁇ was mixed in a solvent as an electrolyte salt!- 6 was dissolved at 1 mol/liter to prepare an electrolytic solution.
  • one positive electrode was placed between the two negative electrodes, and one microporous membrane separator was placed between the negative electrode and the positive electrode.
  • the laminin type cell was manufactured by injecting the electrolyte solution obtained above from the side that was left unsealed and vacuum-sealing.
  • the area of the negative electrode is 100!
  • Example 2 Same as Example 1 except that the amount of alumina particles mixed with respect to the volume% was changed from 80% by volume to 85% by volume, and the amount of the acrylic resin was changed from 20% by volume to 15% by volume. Carried out.
  • the total amount of alumina particles and acrylic resin in the slurry was changed from 80% by volume to 60% by volume based on 100% by volume, and the amount of acrylic resin was changed from 20% by volume.
  • Example 1 was repeated except that the content was changed to 40% by volume.
  • Example 1 was carried out in the same manner as in Example 1 except that the coating conditions for applying the insulating layer slurry were changed to change the thickness of the porous insulating layer from 8 to 11.
  • Example 1 was carried out in the same manner as in Example 1, except that the coating conditions for applying the insulating layer slurry were changed to change the thickness of the porous insulating layer from 8 to 4.
  • a polyvinylidene fluoride solution made by Kureha Co., Ltd., product name:! It was used. Furthermore, in the formation of the porous insulating layer, the compounding amount of alumina particles was changed from 80% by volume to 99% by volume based on 100% by volume of the total amount of alumina particles and polyvinylidene fluoride in the slurry. The compounding amount of vinylidene fluoride was changed from 20% by volume to 1% by volume. Other than that, it implemented like Example 1.
  • composition for the negative electrode active material layer was not applied, and the coating conditions when applying the composition for the intermediate negative electrode active material layer were changed to change the thickness of the intermediate electrode active material layer from 18 to 70.
  • the same procedure as in Example 1 was performed except for the changes.
  • Example 2 Same as Example 1 except that the amount of alumina particles mixed with respect to the volume% was changed from 80% by volume to 0% by volume, and the amount of the acrylic resin was changed from 20% by volume to 100% by volume. Carried out.
  • the porosity of the porous insulating layer of Comparative Example 2 was evaluated as follows.
  • the coating conditions for applying the composition for the negative electrode active material layer were changed to change the thickness of the negative electrode active material layer from 35 to 53, and the composition for the intermediate negative electrode active material layer was not applied.
  • the same procedure as in Example 1 was performed except for the above points.
  • Table 1 shows the evaluation results of the batteries manufactured in Examples 1 to 6, and Table 2 shows the evaluation results of the batteries manufactured in Comparative Examples 1 to 4, respectively.
  • a porous insulating layer was provided on the surface of a negative electrode active material layer containing a 3D material, and a negative electrode active material layer containing a 3D material and a negative electrode current collector were provided. It was found that the capacity of the lithium-ion secondary battery can be increased and the charge/discharge cycle characteristics can be improved by providing the intermediate negative electrode active material layer between the body and the body. Furthermore, it has been found that the safety and output characteristics of the lithium-ion secondary battery are also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明のリチウムイオン二次電池用電極は、集電体(10)と、集電体(10)の表面上に設けられる電極活物質層(20)と、電極活物質層(20)の表面上に設けられる多孔質絶縁層(30)と、電極活物質層(20)及び集電体(10)の間に設けられる中間電極活物質層(40)とを備え、電極活物質層(20)はSi系材料及び電極活物質層用バインダーを含み、多孔質絶縁層(30)は絶縁性微粒子及び絶縁層用バインダーを含み、中間電極活物質層(40)は黒鉛及び中間電極活物質層用バインダーを含み、多孔質絶縁層(30)の空隙率が30~95体積%である。本発明のリチウムイオン二次電池は本発明のリチウムイオン二次電池用電極を負極として備える。これにより、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできる、Si系材料を含むリチウムイオン二次電池用電極及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池を提供できる。

Description

\¥0 2020/175686 1 ?01/^2020/008430
明 細 書
発明の名称 :
リチウムイオンニ次電池用電極及びリチウムイオンニ次電池
技術分野
[0001 ] 本発明は、 リチウムイオンニ次電池用電極及びリチウムイオンニ次電池に 関する。
背景技術
[0002] リチウムイオンニ次電池は、 電力貯蔵用の大型定置用電源、 電気自動車用 等の電源として利用されており、 近年では電池のさらなる高容量化のため、 エネルギー密度がさらに高いリチウムイオンニ次電池が望まれている。 この ようなエネルギー密度の高いリチウムイオンニ次電池を得る方法として、 例 えば、 負極材料に 3 丨系材料を用いる方法が挙げられる。 3 丨の理論容量密 度は 4 2 0〇
Figure imgf000003_0001
であり、 力ーボン系材料の理論容量密度 (例えば、 黒鉛の場合、 3 7 2〇1 11 / 9) に比べて 1 0倍以上高い。 このため、 負極 材料に 3 丨系材料を用いることによって、 容量の大きなリチウムイオンニ次 電池を得ることができる。
しかし、 3 丨系材料には、 !_ 丨 イオンを吸収すると体積が最大約 4倍に増 えるという問題がある。 このため、 3 丨系材料をそのまま負極材料として使 用するとリチウムイオンニ次電池の充放電サイクル特性が悪くなる。 そこで 、 3 丨系材料の膨張収縮の影響を小さくするために、 3 丨系材料及びカーボ ン系材料を混合して得られた混合物を負極材料として用いたリチウムニ次電 池用負極が従来技術として知られている (例えば、 特許文献 1参照) 。 先行技術文献
特許文献
[0003] 特許文献 1 :特開 2 0 0 7— 2 2 7 2 3 9号公報
発明の概要
発明が解決しようとする課題 \¥02020/175686 2 卩(:171?2020/008430
[0004] しかしながら、 従来の 3 丨系材料及び力ーボン系材料の混合物を使用した 負極材料は、 3 丨系材料の膨張収縮の影響を小さくするために、 力ーボン系 材料の割合を大きく しなければならなかった。 例えば、 特許文献 1 に記載の リチウムニ次電池用負極における黒鉛の含有率は体積比率で 7〇〜 1 0 0 % であった。 このため、 リチウムニ次電池の容量を大きくする目的で、 負極材 料における 3 丨系材料の混合割合を大きくすると、 3 丨系材料の膨張収縮の 影響が大きくなり、 充放電サイクル特性が悪くなるという問題があった。 そこで、 本発明は、 リチウムイオンニ次電池の容量を大きく し、 かつ充放 電サイクル特性を良好にできる、 3 丨系材料を含むリチウムイオンニ次電池 用電極及びそのリチウムイオンニ次電池用電極を備えるリチウムイオンニ次 電池を提供することを課題とする。
課題を解決するための手段
[0005] 本発明者らは、 鋭意検討の結果、 3 丨系材料を含む電極活物質層の表面上 に多孔質絶縁層を設け、 3 丨系材料を含む電極活物質層と集電体との間に黒 鉛を含む電極活物質層をさらに設けることによって、 リチウムイオンニ次電 池の容量を大きく し、 かつ充放電サイクル特性を良好にできることを見出し 、 以下の本発明を完成させた。 本発明の要旨は、 以下の [1] 〜 [1 2] で ある。
[1] 集電体と、 前記集電体の表面上に設けられる電極活物質層と、 前記電 極活物質層の表面上に設けられる多孔質絶縁層と、 前記電極活物質層及び前 記集電体の間に設けられる中間電極活物質層とを備え、 前記電極活物質層は 3 丨系材料及び電極活物質層用バインダーを含み、 前記多孔質絶縁層は絶縁 性微粒子及び絶縁層用バインダーを含み、 前記中間電極活物質層は黒鉛及び 中間電極活物質層用バインダーを含み、 前記多孔質絶縁層の空隙率が 3 0〜 9 5体積%であるリチウムイオンニ次電池用電極。
[2] 前記絶縁性微粒子がアルミナである上記 [1] に記載のリチウムイオ ンニ次電池用電極。
[3] 前記多孔質絶縁層の厚さが 3〜 1 5 〇であり、 前記電極活物質層の \¥02020/175686 3 卩(:171?2020/008430
厚さが 1 〇〜 7〇 である上記 [1] 又は [2] に記載のリチウムイオン 二次電池用電極。
[4] 前記多孔質絶縁層における前記絶縁性微粒子の平均粒子径が 0 . 1〜 5 . 〇 であり、 前記電極活物質層における前記 3 丨系材料の平均粒子径 が 1〜 3〇 である上記 [1] 〜 [3] のいずれか 1つに記載のリチウム イオンニ次電池用電極。
[5] 前記多孔質絶縁層における前記絶縁性微粒子の含有量が 5 0〜 9 9 .
5体積%である上記 [1] 〜 [4] のいずれか 1つに記載のリチウムイオン 二次電池用電極。
[6] 前記電極活物質層における前記 3 丨系材料の含有量が 9 5〜 9 9質量 %である上記 [1] 〜 [5] のいずれか 1つに記載のリチウムイオンニ次電 池用電極。
[7] 前記多孔質絶縁層における前記絶縁層用バインダーの含有量が 0 . 5 〜 5 0体積%であり、 前記電極活物質層における前記電極活物質層用バイン ダーの含有量が 1〜 5質量%である上記 [1] 〜 [6] のいずれか 1つに記 載のリチウムイオンニ次電池用電極。
[ 8] 前記中間電極活物質層の厚さが 5〜 6 0 である上記 [1] 〜 [7 ] のいずれか 1つに記載のリチウムイオンニ次電池用電極。
[9] 前記中間電極活物質層における前記黒鉛の平均粒子径が 1〜 3 0 である上記 [1] 〜 [8] のいずれか 1つに記載のリチウムイオンニ次電池 用電極。
[1 0] 前記中間電極活物質層における前記黒鉛の含有量は 9 5〜 9 9質量 %である上記 [1] 〜 [9] のいずれか 1つに記載のリチウムイオンニ次電 池用電極。
[1 1] 前記中間極活物質層における前記中間電極活物質層用バインダーの 含有量が 1〜 5質量%である上記 [1] 〜 [1 0] のいずれか 1つに記載の リチウムイオンニ次電池用電極。
[1 2] 上記 [ 1] 〜 [ 1 1] のいずれか 1つに記載のリチウムイオンニ次 \¥02020/175686 4 卩(:171?2020/008430
電池用電極を負極として備えるリチウムイオンニ次電池。
発明の効果
[0006] 本発明によれば、 リチウムイオンニ次電池の容量を大きく し、 かつ充放電 サイクル特性を良好にできる、 3 丨系材料を含むリチウムイオンニ次電池用 電極及びそのリチウムイオンニ次電池用電極を備えるリチウムイオンニ次電 池を提供することができる。
図面の簡単な説明
[0007] [図 1 ]本発明のリチウムイオンニ次電池用電極の一実施形態を示す概略断面図 である。
発明を実施するための形態
[0008] <リチウムイオンニ次電池用電極 >
以下、 本発明のリチウムイオンニ次電池用電極について詳細に説明する。 図 1 に示すように、 リチウムイオンニ次電池用電極 1は、 集電体 1 0と、 集電体 1 0の表面上に設けられる電極活物質層 2 0と、 電極活物質層 2 0の 表面上に設けられる多孔質絶縁層 3 0と、 電極活物質層 2 0及び集電体 1 0 の間に設けられる中間電極活物質層 4 0とを備える。 なお、 電極活物質層 2 〇、 中間電極活物質層 4 0及び多孔質絶縁層 3 0は、 集電体 1 〇の両表面に 積層されてもよい。
[0009] 本発明のリチウムイオンニ次電池用電極は、 負極としてリチウムイオンニ 次電池に使用される。
[0010] (電極活物質層)
電極活物質層は、 3 丨系材料及び電極活物質層用バインダーを含む。 上述 したように、 3 丨系材料は理論容量密度が高いので、 電極活物質層の電極活 物質として 3 丨系材料を用いることにより、 リチウムイオンニ次電池の容量 を大きくすることができる。
[001 1 ] 3 I系材料は、 !_ 丨 イオンを吸収すると膨張するものであれば特に限定さ れない。 3 丨系材料には、 例えば、 3 丨、 一般式 3 丨 0 X (式中、 Xは〇.
5〜 1 . 5の数) で表される化合物等が挙げられる。 3 丨系材料の中でも比 \¥02020/175686 5 卩(:171?2020/008430
較的膨張収縮が小さいことから、 これらの中で、 一般式 3 丨 〇父 (式中、 X は〇. 5〜 1 . 5の数) で表される化合物が好ましい。 ここで上記化合物を 「3 丨 〇」 単位で見た場合、 この 3 丨 〇は、 アモルファス状の 3 丨 〇である か、 又は 3 I : 3 I 〇 2のモル比が約 1 : 1 となるように、 ナノクラスターの 3 Iの周囲に 3 丨 〇 2が存在する、 3 丨及び 3 丨 〇 2の複合物である。 3 I 0 2 は、 充放電時における 3 丨の膨張収縮に対して緩衝作用を有すると推測され る。 また、 3 丨系材料は、 一般式 3 丨 〇父 (式中、 Xは〇. 5 ~ 1 . 5の数 ) で表される化合物の粒子をナノカーボン等の力ーボンで被覆したものでも よい。
[0012] 3 I系材料は、 粒子状であることが好ましい。 3 丨系材料の平均粒子径は 、 好ましくは 1〜 3 0 である。 3 丨系材料の平均粒子径が 1 以上で あると、 3 丨系材料粒子間の結着力が高まり、 リチウムイオンニ次電池の充 放電サイクル特性を改善する。 一方、 3 丨系材料の平均粒子径が 3〇 以 下であると、 3 丨系材料の膨張収縮が抑制され、 リチウムイオンニ次電池の 充放電サイクル特性を改善する。 上述の観点から、 3 丨系材料の平均粒子径 は、 より好ましくは 2〜 2 0 であり、 さらに好ましくは 3〜 1 0 で ある。 3 丨系材料の平均粒子径を所望の値に調節する方法として、 ボールミ ル等を用いる公知の手法で粉砕する方法等が挙げられる。 なお、 平均粒子径 は、 レーザー回折散乱法によって求めた 3 丨系材料の粒度分布において、 体 積積算が 5 0 %での粒径 (0 5 0) を意味する。
[0013] 電極活物質層における 3 丨系材料の含有量は、 9 5〜 9 9質量%であるこ とが好ましい。 電極活物質層における 3 丨系材料の含有量が 9 5質量%以上 であると、 リチウムイオンニ次電池の容量を高めることができる。 一方、 電 極活物質層における 3 丨系材料の含有量が 9 9質量%以下であると、 バイン ダー量を一定以上にでき、 それにより 3 丨系材料粒子間の結着力が高まり、 リチウムイオンニ次電池の充放電サイクル特性を改善する。 上述の観点から 、 電極活物質層における 3 丨系材料の含有量は 9 6〜 9 8質量%であること がより好ましい。 \¥02020/175686 6 卩(:171?2020/008430
[0014] 3 丨系材料の一部又は全部に、 リチウム又はリチウムイオンを含ませるプ レドープ処理を施していてもよい。 プレドープ処理により、 電極活物質層中 の二酸化ケイ素とリチウムとが不可逆的に反応し、 リチウムシリケート (!_ 丨 4 3 丨 〇4) が生成される。 この結果、 初期充電工程において電極活物質層 にリチウムが吸蔵されたときにリチウムシリケートの生成が起こらないため 、 放電容量の低下が抑制される。
[0015] 電極活物質層に対するプレドープの方法は特に限定されず、 従来のリチウ ムイオンニ次電池に施されるプレドープ方法が適用可能である。 例えば、 ス パッタリング法により電極活物質層の表面にリチウム層を形成してもよい。 また、 電極活物質層の表面にリチウム箔を設けてもよい。 プレドープするリ チウムの量は特に限定されず、 例えば、 電極活物質層中の酸化ケイ素に対し て、 1〜 4倍モル量であることが好ましい。
[0016] 電極活物質層は、 導電性付与及び 3 丨系材料の膨張収縮に対する緩和の観 点から、 導電助剤を含有してもよい。 導電助剤は、 3 丨系材料よりも導電性 が高い材料が使用される。 具体的には、 導電助剤には、 例えば、 ケッチエン ブラック、 アセチレンブラック、 力ーボンナノチューブ、 棒状力ーボンなど の炭素材料などが挙げられる。 これらの導電助剤は 1種単独で使用してもよ いし、 2種以上を併用してもよい。
電極活物質層において、 導電助剤が含有される場合、 導電助剤の含有量は 、 電極活物質層全量基準で、 5質量%以下であることが好ましく、 4質量% 以下であることがより好ましく、 3質量%以下であることがさらに好ましく 、 2質量%以下であることがとくに好ましい。
[0017] 電極活物質層は、 3 丨系材料が電極活物質層用バインダーによって結着さ れて構成される。
電極活物質層用バインダーは、 ポリ (メタ) アクリル酸、 ポリ (メタ) ア クリル酸リチウム、 ポリフッ化ビニリデン ( ) 、 ポリフッ化ビニリ デンーヘキサフルオロプロピレン共重合体
Figure imgf000008_0001
、 ポリテト ラフルオロエチレン ( 丁 巳) 等のフッ素含有樹脂、 ポリメチルアクリレ —卜 (PMA) 、 ポリメチルメタクリレート (PMMA) などのアクリル系 樹脂、 ポリ酢酸ビニル、 ポリイミ ド (P 丨) 、 ポリアミ ド (PA) 、 ポリ塩 化ビニル (PVC) 、 ポリエーテルニトリル (P E N) 、 ポリエチレン (P E) 、 ポリプロピレン (P P) 、 ポリアクリロニトリル (PAN) 、 アクリ ロニトリル · ブタジエンゴム、 スチレンブタジエンゴム (S B R) 、 カルボ キシメチルセルロース (CMC) 、 ヒドロキシエチルセルロース、 及びポリ ビニルアルコール等が挙げられる。 これらバインダーは、 1種単独で使用さ れてもよいし、 2種以上が併用されてもよい。 また、 カルボキシメチルセル 口ース (CMC) などは、 ナトリウム塩などの塩の態様にて使用されていて もよい。
電極活物質層における電極活物質層用バインダーの含有量は、 電極活物質 層全量基準で、 1〜 5質量%であることが好ましい。 電極活物質層用バイン ダーの含有量が 1質量%以上であると、 S i系材料粒子間の結着力が高まり 、 リチウムイオンニ次電池の充放電サイクル特性を改善する。 一方、 電極活 物質層用バインダーの含有量が 5質量%以下であると、 電極活物質層中の抵 抗の高い成分であるバインダーの量が減るのでリチウムイオンニ次電池の出 力特性が向上する。 上述の観点から、 電極活物質層における電極活物質層用 バインダーの含有量は、 電極活物質層全量基準で、 2〜 4質量%であること がより好ましい。
[0018] 電極活物質層の厚さは、 好ましくは集電体の片面当たり 1 〇〜 7〇Mmで ある。 電極活物質層の厚さが集電体の片面当たり 1 0 Mm以上であると、 電 極において高容量成分である S i系材料が増え、 リチウムイオンニ次電池の 容量が向上する。 一方、 電極活物質層の厚さが集電体の片面当たり 70Mm 以下であると、 リチウムイオンニ次電池の充放電における電極の膨張量が減 少し、 リチウムイオンニ次電池の充放電サイクル特性が向上する。 上述の観 点から、 電極活物質層の厚さは、 集電体の片面当たり、 20〜40 がよ り好ましく、 20〜 38 Mmがさらに好ましい。
[0019] 電極活物質層は、 本発明の効果を損なわない範囲内において、 S i系材料 \¥02020/175686 8 卩(:171?2020/008430
、 導電助剤、 及び電極活物質層用バインダー以外の他の任意成分を含んでも よい。 ただし、 電極活物質層の総質量のうち、 3 丨系材料、 導電助剤、 及び 電極活物質層用バインダーの総含有量は、 9 6質量%以上であることが好ま しく、 9 8質量%以上であることがより好ましい。
[0020] (多孔質絶縁層)
多孔質絶縁層は、 絶縁性微粒子と、 絶縁層用バインダーとを含む。 多孔質 絶縁層は、 絶縁性微粒子が絶縁層用バインダーによって結着されて構成され る層であり、 多孔質構造を有する。 電極活物質層の表面に多孔質絶縁層を設 けることにより、 電極活物質層が膨張により面方向に広がることを抑制する ことができる。 なお、 電極活物質層が膨張により面方向に広がると、 リチウ ムイオンニ次電池の充放電に寄与する電極活物質層の割合が減少し、 リチウ ムイオンニ次電池の充放電サイクル特性が悪くなる。 また、 電極活物質層が 膨張により面方向に広がると、 電極活物質層と集電体との間の歪みが大きく なり、 電極活物質層が集電体から剥がれる場合がある。
[0021 ] 多孔質絶縁層の空隙率は 3 0〜 9 5 %である。 多孔質絶縁層の空隙率が 3 〇%未満であると、 多孔質絶縁層におけるリチウムイオンの伝導経路を確保 することができなくなり、 リチウムイオンニ次電池の出力が低下する。 一方 、 多孔質絶縁層の空隙率が 9 5 %よりも大きいと、 多孔質絶縁層における絶 縁成分の比率が低くなり、 リチウムイオンニ次電池の安全性が低下する。 上 述の観点から、 多孔質絶縁層の空隙率は、 3 0〜 8 0 %がより好ましく、 4 〇〜 7 8 %がさらに好ましく、 5 0〜 7 5 %がとくに好ましい。 なお、 多孔 質絶縁層の空隙率は、 後述の実施例の記載の方法により測定することができ る。
[0022] 多孔質絶縁層の厚さは 3〜 1 5 が好ましい。 多孔質絶縁層の厚さを 3 以上であると、 多孔質絶縁層は電極の膨張収縮を緩和し、 リチウムイオ ンニ次電池の充放電サイクル特性が向上する。 _方、 多孔質絶縁層の厚さが 1 5 以下であると、 正極と負極との間の距離が小さくなるのでリチウム イオンニ次電池の出力が向上する。 上述の観点から、 多孔質絶縁層の厚さは \¥02020/175686 9 卩(:171?2020/008430
、 3〜 1 3 がより好ましく、 3〜 1 0 がさらに好ましい。
[0023] 上述の多孔質絶縁層の厚さと同様の観点から、 集電体片面当たりの多孔質 絶縁層の厚さ (口 2) に対する集電体片面当たりの電極活物質層の厚さ (口 1) の比 ( 0 1 / 0 2) は、 好ましくは 1〜 1 5であり、 より好ましくは 2 〜 1 0であり、 さらに好ましくは 3〜 6である。
[0024] 絶縁性微粒子は、 絶縁性であれば特に限定されず、 有機粒子、 無機粒子の 何れであってもよい。 具体的な有機粒子としては、 例えば、 架橋ポリメタク リル酸メチル、 架橋スチレンーアクリル酸共重合体、 架橋アクリロニトリル 樹脂、 ポリアミ ド樹脂、 ポリイミ ド樹脂、 ポリ ( 2 -アクリルアミ ドー 2 - メチルプロパンスルホン酸リチウム) 、 ポリアセタール樹脂、 エポキシ樹脂 、 ポリエステル樹脂、 フエノール樹脂、 メラミン樹脂等の有機化合物から構 成される粒子が挙げられる。 無機粒子としては二酸化ケイ素、 窒化ケイ素、 アルミナ、 ベーマイ ト、 チタニア、 ジルコニア、 窒化ホウ素、 酸化亜鉛、 二 酸化スズ、 酸化ニオブ (1\1 6 25) 、 酸化タンタル (丁 3 25) 、 フッ化力 リウム、 フッ化リチウム、 クレイ、 ゼオライ ト、 炭酸カルシウム等の無機化 合物から構成される粒子が挙げられる。 また、 無機粒子は、 ニオブータンタ ル複合酸化物、 マグネシウムータンタル複合酸化物等の公知の複合酸化物か ら構成される粒子であってもよい。
絶縁性微粒子は、 上記した各材料が 1種単独で使用される粒子であっても よいし、 2種以上が併用される粒子であってもよい。 また、 絶縁性微粒子は 、 無機化合物と有機化合物の両方を含む微粒子であってもよい。 例えば、 有 機化合物からなる粒子の表面に無機酸化物をコーティングした無機有機複合 粒子であってもよい。
これらの中では、 リチウムイオンニ次電池の充放電サイクル特性を改善す るという観点から、 無機粒子が好ましく、 中でもアルミナ粒子が好ましい。
[0025] 絶縁性微粒子の平均粒子径は、 好ましくは〇. 1〜 5 . 〇 である。 絶 縁性微粒子の平均粒子径が 0 . 1 以上であると、 絶縁性微粒子間の結着 性が向上し、 リチウムイオンニ次電池の安全性が向上する。 一方、 絶縁性微 粒子の平均粒子径が 5. 0 Mm以下であると、 多孔質絶縁層の空隙率低減を 抑制し、 リチウムイオンニ次電池の安全性が向上する。 上述の観点から、 絶 縁性微粒子の平均粒子径は、 より好ましくは 0. 2〜 3. O^mであり、 さ らに好ましくは 0. 3〜 1. 0 MIDである。
なお、 平均粒子径は、 レーザー回折散乱法によって求めた絶縁性微粒子の 粒度分布において、 体積積算が 50 %での粒径 (D 50) を意味する。 また、 絶縁性微粒子は、 平均粒子径が上記範囲内の 1種が単独で使用され てもよいし、 平均粒子径の異なる 2種の絶縁性微粒子が混合されて使用され てもよい。
[0026] 多孔質絶縁層に含有される絶縁性微粒子の含有量は、 絶縁性微粒子及び絶 縁層用バインダーの合計 1 〇〇体積%に対して、 好ましくは 50〜 99. 5 体積%である。 絶縁性微粒子の含有量が 50体積%以上であると、 耐熱成分 である絶縁性微粒子の多孔質絶縁層中の比率が高まり、 リチウムイオンニ次 電池の安全性が向上する。 _方、 絶縁性微粒子の含有量が 99. 5体積%以 下であると、 結着成分である絶縁層用バインダーの比率が高まり、 多孔質絶 縁層の強度が高くなり、 リチウムイオンニ次電池の安全性が向上する。 上述 の観点から、 絶縁層に含有される絶縁性微粒子の含有量は、 絶縁性微粒子及 び絶縁層用バインダーの合計 1 〇〇体積%に対して、 より好ましくは 50〜 90体積%であり、 さらに好ましくは 70〜 85体積%である。
[0027] 絶縁層用バインダーは、 ポリフッ化ビニリデン ( P V d F) 、 ポリフッ化 ビニリデンーヘキサフルオロプロピレン共重合体 (PVd F— H F P) 、 ポ リテトラフルオロエチレン (PT F E) 等のフッ素含有樹脂、 ポリメチルア クリレート (PMA) 、 ポリメチルメタクリレート (PMMA) などのアク リル系樹脂、 ポリ酢酸ビニル、 ポリイミ ド (P 丨) 、 ポリアミ ド (PA) 、 ポリ塩化ビニル (PVC) 、 ポリエーテルニトリル (P E N) 、 ポリエチレ ン (P E) 、 ポリプロピレン (P P) 、 ポリアクリロニトリル (PAN) 、 アクリロニトリル · ブタジエンゴム、 スチレンブタジエンゴム、 ポリ (メタ ) アクリル酸、 カルボキシメチルセルロース、 ヒドロキシエチルセルロース \¥0 2020/175686 1 1 卩(:171? 2020 /008430
、 及びポリビニルアルコール等が挙げられる。 これらバインダーは、 1種単 独で使用されてもよいし、 2種以上が併用されてもよい。 また、 カルボキシ メチルセルロースなどは、 ナトリウム塩などの塩の態様にて使用されていて もよい。
[0028] 多孔質絶縁層に含有される絶縁層用バインダーの含有量は、 絶縁性微粒子 及び絶縁層用バインダーの合計 1 0 0体積%に対して、 好ましくは 0 . 5〜 5 0体積%である。 絶縁層用バインダーの含有量が〇. 5体積%以上である と、 結着成分である絶縁層用バインダーの比率が高まり、 多孔質絶縁層の強 度が高くなり、 リチウムイオンニ次電池の安全性が向上する。 一方、 絶縁層 用バインダーの含有量が 5 0体積%以下であると、 耐熱成分である絶縁性微 粒子の多孔質絶縁層中の比率が高まり、 リチウムイオンニ次電池の安全性が 向上する。 上述の観点から、 多孔質絶縁層に含有される絶縁層用バインダー の含有量は、 絶縁性微粒子及び絶縁層用バインダーの合計 1 〇〇体積%に対 して、 より好ましくは 1 0〜 5 0体積%であり、 さらに好ましくは 1 5〜 3 0体積%である。
[0029] (中間電極活物質層)
中間電極活物質層は、 黒鉛及び中間電極活物質層用バインダーを含む。 黒 鉛が!- 丨 イオンを吸収しても、 黒鉛には大きな膨張が起こらないので、 中間 電極活物質層は、 膨張収縮を起こす電極活物質層に対して緩衝層としての機 能を有する。
[0030] 黒鉛は、 炭素の同素体の一つであり、 常圧下での熱力学的安定相である。
黒鉛はグラファイ トとも呼ばれる。 黒鉛には、 例えば、 天然黒鉛、 人造黒鉛 等が挙げられる。 天然黒鉛は天然に産する黒鉛である。 天然黒鉛には、 例え ば、 鱗片状黒鉛、 塊状黒鉛、 土状黒鉛等が挙げられる。 _方、 人造黒鉛は、 有機化合物の熱分解及び炭素化によって作られた炭素材を、 さらに 2 5 0 0 °〇以上の高温に加熱処理することで黒鉛構造を発達させた材料である。
[0031 ] 黒鉛の平均粒子径は、 好ましくは 1〜 3 0 である。 黒鉛の平均粒子径 が 1 以上であると、 黒鉛粒子間の結着力が高まり、 リチウムイオンニ次 \¥0 2020/175686 12 卩(:171? 2020 /008430
電池の充放電サイクル特性を改善する。 一方、 黒鉛の平均粒子径が 3〇 以下であると、 中間電極活物質層を厚すぎないようにすることができ、 リチ ウムイオンニ次電池の容量を向上させることができる。 上述の観点から、 黒 鉛の平均粒子径は、 より好ましくは 2〜 2〇 であり、 さらに好ましくは 5〜 1 5 である。 黒鉛の平均粒子径を所望の値に調節する方法として、 ボールミル等を用いる公知の手法で粉砕する方法等が挙げられる。 平均粒子 径は、 レーザー回折散乱法によって求めた黒鉛の粒度分布において、 体積積 算が 5 0 %での粒径 (0 5 0) を意味する。
[0032] 中間電極活物質層における黒鉛の含有量は、 9 5〜 9 9質量%であること が好ましい。 中間電極活物質層における黒鉛の含有量が 9 5質量%以上であ ると、 リチウムイオンニ次電池の容量を高めることができる。 一方、 中間電 極活物質層における黒鉛の含有量が 9 9質量%以下であると、 バインダー量 を一定量以上にでき、 それにより黒鉛粒子間の結着力が高まり、 リチウムイ オンニ次電池の充放電サイクル特性を改善する。 上述の観点から、 中間電極 活物質層における黒鉛の含有量は、 9 6〜 9 8質量%であることがより好ま しい。
[0033] 中間電極活物質層は、 導電助剤を含有してもよい。 導電助剤には、 例えば 、 ケッチエンブラック、 アセチレンブラック、 力ーボンナノチユーブ、 棒状 力ーボンなどの炭素材料などが挙げられる。 これらの導電助剤は 1種単独で 使用してもよいし、 2種以上を併用してもよい。
中間電極活物質層において、 導電助剤が含有される場合、 導電助剤の含有 量は、 電極活物質層全量基準で、 5質量%以下であることが好ましく、 4質 量%以下であることがより好ましく、 3質量%以下であることがさらに好ま しく、 2質量%以下であることがとくに好ましい。
[0034] 中間電極活物質層は、 黒鉛が中間電極活物質層用バインダーによって結着 されて構成される。
中間電極活物質層用バインダーには、 電極活物質層用バインダーに挙げら れた樹脂と同様のものを使用することができる。 なお、 中間電極活物質層用 \¥02020/175686 13 卩(:171?2020/008430
バインダーは、 電極活物質用バインダーと同じものであってもよいし、 異な るものであってもよい。 しかし、 電極活物質層と中間電極活物質層との間の 接合を強くするために、 中間電極活物質層用バインダーは、 電極活物質用バ インダーと同じものであることが好ましい。
中間電極活物質層における中間電極活物質層用バインダーの含有量は、 電 極活物質層全量基準で、 1〜 5質量%であることが好ましい。 中間電極活物 質層用バインダーの含有量が 1質量%以上であると、 黒鉛粒子間の結着力が 高まり、 リチウムイオンニ次電池の充放電サイクル特性を改善する。 一方、 中間電極活物質層用バインダーの含有量が 5質量%以下であると、 中間電極 活物質層中の抵抗の高い成分であるバインダーの量が減るのでリチウムイオ ンニ次電池の出力特性が向上する。 上述の観点から、 中間電極活物質層にお ける中間電極活物質層用バインダーの含有量は、 電極活物質層全量基準で、
2〜 4質量%であることがより好ましい。
[0035] 中間電極活物質層の厚さは、 特に限定されないが、 集電体の片面当たり、
5〜 6〇 であることが好ましい。 中間電極活物質層の厚さが 5 以上 であると、 電極活物質層と中間電極活物質層との間の密着性が高まり、 リチ ウムイオンニ次電池の充放電サイクル特性が向上する。 一方、 中間電極活物 質層の厚さが 6〇 以下であると、 電極における電極活物質層の比率が増 え、 リチウムイオンニ次電池の容量が向上する。 上述の観点から、 中間電極 活物質層の厚さは、 集電体の片面当たり、 1 5〜 2 5 であることがより 好ましい。
[0036] 集電体片面当たりの中間電極活物質層の厚さ (口 3) に対する集電体片面 当たりの電極活物質層の厚さ (口 1) の比 (0 1 / 0 3) は、 好ましくは 0 . 1〜 1 〇である。 集電体片面当たりの中間電極活物質層の厚さ (口3) に 対する集電体片面当たりの電極活物質層の厚さ (口 1) の比 (0 1 / 0 3) が〇. 1以上であると、 電極における 3 丨系材料の比率が高くなるのでリチ ウムイオンニ次電池の容量が向上する。 一方、 集電体片面当たりの中間電極 活物質層の厚さ (口 3) に対する集電体片面当たりの電極活物質層の厚さ ( \¥02020/175686 14 卩(:171?2020/008430
0 1) の比 (0 1 / 0 3) が 1 0以下であると、 リチウムイオンニ次電池の 充放電における電極の膨張量が減り、 リチウムイオンニ次電池の充放電サイ クル特性が向上する。 上述の観点から、 集電体片面当たりの中間電極活物質 層の厚さ (0 3) に対する集電体片面当たりの電極活物質層の厚さ (口 1) の比 ( 0 1 / 0 3) は、 より好ましくは〇. 1〜 5であり、 さらに好ましく は 1 . 2〜 3である。
[0037] 中間電極活物質層は、 本発明の効果を損なわない範囲内において、 黒鉛、 導電助剤、 及び中間電極活物質層用バインダー以外の他の任意成分を含んで もよい。 ただし、 電極活物質層の総質量のうち、 黒鉛、 導電助剤、 及び中間 電極活物質層用バインダーの総含有量は、 9 6質量%以上であることが好ま しく、 9 8質量%以上であることがより好ましい。
[0038] (集電体)
集電体 (電極集電体) を構成する材料としては、 例えば、 銅、 アルミニウ ム、 チタン、 ニッケル、 ステンレス鋼等の導電性を有する金属が挙げられ、 これらの中ではアルミニウム又は銅が好ましく、 銅がより好ましい。 集電体 は、 一般的に金属箔からなり、 その厚さは、 特に限定されないが、 1〜 5 0 が好ましい。
[0039] <リチウムイオンニ次電池用電極の製造方法 >
次に、 リチウムイオンニ次電池用電極の製造方法の一実施形態について詳 細に説明する。 本発明のリチウムイオンニ次電池用電極の製造方法では、 ま ず、 中間電極活物質層を形成し、 中間電極活物質層の表面上に電極活物質層 用組成物を塗布して電極活物質層を形成し、 電極活物質層の表面上に絶縁層 用組成物を塗布して多孔質絶縁層を形成する。
[0040] (中間電極活物質層の形成)
中間電極活物質層の形成においては、 まず、 黒鉛と、 中間電極活物質層用 バインダーと、 溶媒とを含む中間電極活物質層用組成物を用意する。 中間電 極活物質層用組成物は、 必要に応じて配合される導電助剤などのその他成分 を含んでもよい。 黒鉛、 中間電極活物質層用バインダー、 導電助剤などは上 \¥02020/175686 15 卩(:171?2020/008430
記で説明したとおりである。 中間電極活物質層用組成物は、 スラリーとなる
[0041 ] 中間電極活物質層用組成物における溶媒は、 好ましくは水を使用する。 水 を使用することで、 上記した中間電極活物質層用バインダーを中間電極活物 質層用組成物中に容易に溶解できる。
中間電極活物質層用組成物の固形分濃度は、 好ましくは 5〜 7 5質量%、 より好ましくは 2 0〜 6 5質量%である。
[0042] 中間電極活物質層は、 中間電極活物質層用組成物を使用して公知の方法で 形成すればよく、 例えば、 中間電極活物質層用組成物を集電体の上に塗布し 、 乾燥することによって形成することができる。
また、 中間電極活物質層は、 中間電極活物質層用組成物を、 集電体以外の 基材上に塗布し、 乾燥することにより形成してもよい。 集電体以外の基材と しては、 公知の剥離シートが挙げられる。 基材の上に形成した中間電極活物 質層は、 基材から中間電極活物質層を剥がして集電体の上に転写すればよい 集電体又は基材の上に形成した中間電極活物質層は、 好ましくは加圧プレ スする。 加圧プレスすることで、 電極密度を高めることが可能になる。 加圧 プレスは、 口ールプレスなどにより行えばよい。
[0043] (電極活物質層の形成)
電極活物質層の形成においては、 まず、 3 丨系材料と、 電極活物質層用バ インダーと、 溶媒とを含む電極活物質層用組成物を用意する。 電極活物質層 用組成物は、 必要に応じて配合される導電助剤等のその他成分を含んでもよ い。 3 丨系材料、 電極活物質層用バインダー、 導電助剤等は上記で説明した とおりである。 電極活物質層用組成物は、 スラリーとなる。
[0044] 電極活物質層用組成物における溶媒は、 好ましくは水を使用する。 水を使 用することで、 上記した電極活物質層用バインダーを電極活物質層用組成物 中に容易に溶解できる。
電極活物質層用組成物の固形分濃度は、 好ましくは 5〜 7 5質量%、 より \¥02020/175686 16 卩(:171?2020/008430
好ましくは 2 0〜 6 5質量%である。
[0045] 電極活物質層は、 電極活物質層用組成物を使用して公知の方法で形成すれ ばよく、 例えば、 電極活物質層用組成物を中間電極活物質層の上に塗布し、 乾燥することによって形成することができる。
また、 電極活物質層は、 電極活物質層用組成物を、 中間電極活物質層及び 集電体以外の基材上に塗布し、 乾燥することにより形成してもよい。 中間電 極活物質層及び集電体集電体以外の基材としては、 公知の剥離シートが挙げ られる。 基材の上に形成した電極活物質層は、 基材から電極活物質層を剥が して中間電極活物質層の上に転写すればよい。
中間電極活物質層又は基材の上に形成した電極活物質層は、 好ましくは加 圧プレスする。 加圧プレスすることで、 電極密度を高めることが可能になる 。 加圧プレスは、 口ールプレス等により行えばよい。
[0046] (多孔質絶縁層の形成)
多孔質絶縁層の形成に使用する絶縁層用組成物は、 絶縁性微粒子と、 絶縁 層用バインダーと、 溶媒とを含む。 絶縁層用組成物は、 必要に応じて配合さ れるその他の任意成分を含んでいてもよい。 絶縁性微粒子、 絶縁層用バイン ダーなどの詳細は上記で説明したとおりである。 絶縁層用組成物はスラリー となる。
[0047] 絶縁層用組成物の固形分濃度は、 好ましくは 5〜 7 5質量%、 より好まし くは 1 5〜 5 0質量%である。 また、 絶縁層用組成物の粘度は、 好ましくは 1 0 0 0〜 3 0 0 0〇1 3 3、 より好ましくは 1 7 0 0〜 2 3 0 0〇1 3 - である。 なお、 粘度とは、 巳型粘度計で 6 0 「 、 2 5 °〇の条件で測 定した粘度である。
[0048] 多孔質絶縁層は、 絶縁層用組成物を、 電極活物質層の上に塗布して乾燥す ることによって形成することができる。 絶縁層用組成物を電極活物質層の表 面に塗布する方法は特に限定されず、 例えば、 ディップコート法、 スプレー コート法、 口ールコート法、 ドクターブレード法、 バーコート法、 グラビア コート法、 スクリーン印刷法等が挙げられる。 これらの中では、 絶縁層用組 \¥02020/175686 17 卩(:171?2020/008430
成物を均一に塗布して、 多孔質絶縁層を薄くする観点から、 バーコート法又 はグラビアコート法が好ましい。
また、 乾燥温度は、 上記溶媒を除去できれば特に限定されないが、 例えば 4 0 ~ 1 2 0 °〇、 好ましくは 5 0〜 9 0 °〇である。 また、 乾燥時間は、 特に 限定されないが、 例えば、 3 0秒〜 1 0分間である。
[0049] <リチウムイオンニ次電池 >
本発明のリチウムイオンニ次電池は、 上記したリチウムイオンニ次電池用 電極を負極として備える。 具体的には、 本発明のリチウムイオンニ次電池は 、 互いに対向するように配置された正極、 及び負極を備え、 負極が、 上記し た多孔質絶縁層、 電極活物質層及び中間電極活物質層を有するリチウムイオ ンニ次電池用電極となる。
[0050] (正極)
なお、 本発明のリチウムイオンニ次電池の正極は、 特に限定されない。 正 極は、 例えば、 正極活物質層と集電体とを含み、 正極活物質層は、 正極活物 質と正極用バインダーとを含む。
正極活物質としては、 金属酸リチウム化合物が挙げられる。 金属酸リチウ ム化合物としては、 コバルト酸リチウム (!_ 丨 〇〇〇2) 、 ニッケル酸リチウ ム (!_ 丨 1\1 丨 〇2) 、 マンガン酸リチウム (!_ 丨 1\/^ 24) 等が例示できる。 また、 オリビン型リン酸鉄リチウム (!_ I 6 〇 4) などであってもよい。 さらに、 リチウム以外の金属を複数使用したものでもよく、 三元系と呼ばれ (ニッケルコバルトマンガン) 系酸化物、 1\!〇八 (ニッケルコバル トアルミニウム系) 系酸化物などを使用してもよい。
正極用バインダーとしては、 上述の電極活物質層用バインダー若しくは中 間電極活物質用バインダーと同様のものを使用できる。
また、 集電体となる材料は、 上記負極集電体に使用される化合物と同様で あるが、 好ましくはアルミニウム又は銅、 より好ましくはアルミニウムが使 用される。
[0051 ] (セパレータ) \¥02020/175686 18 卩(:171?2020/008430
本発明のリチウムイオンニ次電池は、 好ましくは正極及び負極の間に配置 されるセパレータをさらに備える。 セパレータが設けられることで、 正極及 び負極の間の短絡がより一層効果的に防止される。 また、 セパレータは、 後 述する電解質を保持してもよい。 正極又は負極に設けられる多孔質絶縁層は 、 セパレータに接触していてもよいし、 接触していなくてもよいが、 接触す ることが好ましい。
セパレータとしては、 多孔性の高分子膜、 不織布、 ガラスファイバー等が 挙げられ、 これらの中では多孔性の高分子膜が好ましい。 多孔性の高分子膜 としては、 オレフイン系多孔質フイルムが例示される。 セパレータは、 リチ ウムイオンニ次電池駆動時の発熱により加熱されて熱収縮などすることがあ るが、 そのような熱収縮時でも、 上記多孔質絶縁層が設けられることで短絡 が抑制しやすくなる。
また、 本発明のリチウムイオンニ次電池では、 セパレータが省略されても よい。 セパレータが省略されても、 多孔質絶縁層により、 負極と正極の間の 絶縁性が確保される。
[0052] リチウムイオンニ次電池は、 負極、 正極がそれぞれ複数積層された多層構 造であってもよい。 この場合、 負極及び正極は、 積層方向に沿って交互に設 けられればよい。 また、 セパレータが使用される場合、 セパレータは各負極 と各正極の間に配置されればよい。
リチウムイオンニ次電池において、 上記した負極及び正極、 又は負極、 正 極、 及びセパレータは、 バッテリーセル内に収納される。 バッテリーセルは 、 角型、 円筒型、 ラミネート型などのいずれでもよい。
[0053] (電解質)
リチウムイオンニ次電池は、 電解質を備える。 電解質は特に限定されず、 リチウムイオンニ次電池で使用される公知の電解質を使用すればよい。 電解 質としては例えば電解液を使用する。
電解液としては、 有機溶媒と、 電解質塩を含む電解液が例示できる。 有機 溶媒としては、 例えば、 エチレンカーボネート、 プロピレンカーボネート、 \¥0 2020/175686 19 卩(:171? 2020 /008430
ジメチルカーボネート、 ジエチルカーボネート、 エチルメチルカーボネート 、 アーブチロラクトン、 スルホラン、 ジメチルスルホキシド、 アセトニトリ ル、 ジメチルホルムアミ ド、 ジメチルアセトアミ ド、 1 , 2—ジメ トキシエ タン、 1 , 2 -ジエトキシエタン、 テトラヒドロフラン、 2 -メチルテトラ ヒドロフラン、 1 , 3 -ジオキソラン、 メチルアセテートなどの極性溶媒、 又はこれら溶媒の 2種類以上の混合物が挙げられる。 電解質塩としては、 !_
Figure imgf000021_0001
〇〇2、 1_ 丨 6 3〇 3、 1_ 丨 (3〇232、 1_ 丨 (3〇22〇 3) 2、 1_ 1 (〇〇〇 32及び 1_ 1 (〇〇〇 232、 リチウムビ スオキサレートボラート (1_ 1 巳 (〇242) 等のリチウムを含む塩が挙げ られる。 また、 有機酸リチウム塩一三フッ化ホウ素錯体、 1_ 丨 巳1~1 4等の錯体 水素化物等の錯体が挙げられる。 これらの塩又は錯体は、 1種単独で使用し てもよいが、 2種以上の混合物であってもよい。
また、 電解質は、 上記電解液にさらに高分子化合物を含むゲル状電解質で あってもよい。 高分子化合物としては、 例えば、 ポリフッ化ビニリデン等の フッ素系ポリマー、 ポリ (メタ) アクリル酸メチル等のポリアクリル系ポリ マーが挙げられる。 なお、 ゲル状電解質は、 セパレータとして使用されても よい。
電解質は、 負極及び正極間に配置されればよく、 例えば、 電解質は、 上記 した負極及び正極、 又は負極、 正極、 及びセパレータが内部に収納されたバ ッテリーセル内に充填される。 また、 電解質は、 例えば、 負極又は正極上に 塗布されて負極及び正極間に配置されてもよい。
実施例
[0054] 以下に実施例を用いて本発明をさらに詳しく説明するが、 本発明はこれら 実施例に限定されるものではない。
[0055] 得られたリチウムイオンニ次電池は、 以下の評価方法により評価した。
(容量)
作製したリチウムイオンニ次電池を 2 0 °〇で充放電を一度行い、 放電容量 \¥02020/175686 20 卩(:17 2020 /008430
を測定した。
測定した放電容量を、 負極の厚みで割り、 厚み当たりの容量を算出した。 なお、 測定した放電容量を、 負極の厚みで割り算したのは以下の理由によ る。
一般的に電池の容量は正極及び負極のうちの容量の小さい電極 (通常、 正 極) で決まる。 このため、 負極の総厚みを一定にして負極の厚みを変更して も、 電池の容量は正極で決まるため、 電池の容量は変わらない。 そこで、 正 極の容量に見合うように負極の厚みを設計し直し、 測定した放電容量を、 負 極の厚みで割り算することによって、 負極に起因する電池の容量特性を評価 できるようにした。
放充電は以下の条件で行った。
充電条件: 〇〇〇 充電。 〇〇条件は、 4. 2 V, 1. 〇〇とした。 〇 V条件は、 4. 2 、 〇. 05〇終止とした。
放電条件: 〇〇放電。 〇〇条件は、 2. 5 V, 1. 〇〇とした。
算出した厚み当たりの容量について以下のように評価した。
八 : 3. 5 1"1/9/ 111以上
6 : 3.
Figure imgf000022_0001
以上、 3. 5 11/9/ 111未満 0 : 2. 9八 11/9/ 111以上、 3. 1 八 11/9/ 111未満 0 : 2. 9 11/9/ 111未満
[0056] (サイクル特性)
作製したリチウムイオンニ次電池を 40°〇の温度の環境下、 充電レートを 2〇、 放電レートを 1 〇として充放電サイクルを繰り返した。
500サイクル後の放電容量を 1 0サイクル後の放電容量で割り算して、 容量維持率を算出した。 容量維持率からサイクル特性を以下のように評価し た。
八 :容量維持率が 50%以上
巳 :容量維持率が 45%以上 50%未満
0 :容量維持率が 30%以上 45%未満 \¥0 2020/175686 21 卩(:171? 2020 /008430
0 :容量維持率が 2 0 %以上 3 0 %未満
巳 :容量維持率が 2 0 %未満
[0057] (出力特性評価)
以下のように放電容量を求めることで、 作製したリチウムイオンニ次電池 の出力特性を評価した。
1 〇の定電流充電を行い、 電圧が 4 . 2 Vに到達次第、 定電圧充電を行っ た。 定電圧充電では、 電流を減少させ、 〇. 0 5〇八となった時点で充電を 完了した。 その後、 1 〇の定電流放電を行い、 電圧が 2 . 5 Vとなった時点 で放電を完了し、 1 <3の定電流放電容量を計算した。 次に、 上記と同様の定 電流充電及び定電圧充電を行った後、 1 〇<3の定電流放電を行い、 電圧が 2 . 5 Vとなった時点で放電を完了し、 1 0 <3の定電流放電容量を計算した。 これらの放電容量に基づいて、 以下の基準で出力特性を評価した。
八 : 1 <3の定電流放電容量に比べて 1 0 <3の定電流放電容量が 3 0 %以 上
巳 : 1 <3の定電流放電容量に比べて 1 0 <3の定電流放電容量が 2 0 %以 上 3 0 %未満
0 : 1 <3の定電流放電容量に比べて 1 0 <3の定電流放電容量が 1 0 %以 上 2 0 %未満
0 : 1 <3の定電流放電容量に比べて 1 0 <3の定電流放電容量が 1 0 %未 満
[0058] (安全性評価)
4 0 の定電流充電を行い、 電圧が 4 . 2 Vに到達次第、 電流を減少させ て定電圧充電を行い、 電流が 2八となった時点で充電を完了した。 その後、 〇. 1 01 111 / 3 6 0の速度で、 リチウムイオンニ次電池の表面から 1 01 01の 深さになるまで、 釘をリチウムイオンニ次電池に差し込んだ。 そして、 釘を 差し込んだリチウムイオンニ次電池の電圧 ( !·!) を測定した。
充電完了時のリチウムイオンニ次電池の電圧 (4 . 2 V) と釘を差し込ん だときのリチウムイオンニ次電池の電圧 ( !·!) との間の電圧差に基づき、 \¥0 2020/175686 22 卩(:171? 2020 /008430
以下の基準で、 リチウムイオンニ次電池の安全性を評価した。
八 :電圧差、
Figure imgf000024_0001
巳 :電圧差、
Figure imgf000024_0002
V未満
0 :電圧差、 1 0 0 01 V以上 1 0 0 0 01 V未満
0 :電圧差、 1 0 0 0 01 V以上
[0059] 得られたリチウムイオンニ次電池用電極の物性は、 以下の測定方法により 測定した。
(空隙率)
イオンミリング方式で、 リチウムイオンニ次電池用電極の断面を露出させ た。 次に、 露出させたリチウムイオンニ次電池用電極の断面を、 巳_ 3巳 IV! (電界放出型走査型電子顕微鏡) を用いて、 電極活物質層又は中間電極活 物質層の全体が観察できる倍率で観察し、 電極活物質層又は中間電極活物質 層の画像を得た。 なお、 倍率は 5 0 0 0〜 2 5 0 0 0倍であった。 次に、 画 像解析ソフト 「丨 〇! 8 9㊀ 」」 を使用して、 電極活物質層又は中間電極活 物質層の実部分が黒く表示され、 空隙部分が白く表示されるように、 得られ た画像を 2値化処理した。 そして、 画像解析ソフト 「 I 3 9 6 」」 を使 用して、 白部分の面積の割合を測定した。 この白部分の面積の割合が空間率 (%) となる。
[0060] (厚さ)
上述の空隙率の評価方法と同じ方法でリチウムイオンニ次電池用電極の断 面を露出させた。 そして、 上述の 3巳 IV!を用いて電極活物質層の厚さを測定 した。 なお、 厚さの測定には、 上述の丨 01 8 9㊀」を使用した。
[0061 ] [実施例 1 ]
(中間負極活物質層の作製)
負極活物質として黒鉛 (平均粒子径 1 〇 ) 9 7質量部と、 バインダー としてスチレンブタジエンゴム (3巳 [¾) 1 . 5質量部、 カルボキシメチル セルロース
Figure imgf000024_0003
のナトリウム塩を 1 . 5質量部と、 溶媒として水とを 混合して、 固形分 5 0質量%に調整し、 中間負極活物質層用組成物を得た。 \¥02020/175686 23 卩(:171?2020/008430
この組成物を、 負極集電体としての厚さ 8 の銅箔の両面に塗布して 1 0 0 °◦で真空乾燥した。 その後、 両面に中間負極活物質層用組成物を塗布した 負極集電体を、 線圧 4 0 0
Figure imgf000025_0001
で加圧プレスして、 中間負極活物質層を 有する負極 1層目電極とした。 中間負極活物質層の密度は 1 . 2 1 9 /〇〇 であった。 また、 中間負極活物質層の厚さは片面当たり 2 3仰 であった。
[0062] (負極活物質層の作製)
負極活物質として一酸化ケイ素 (3 丨 〇) (平均粒子径5 〇) 9 7質量 部と、 バインダーとしてスチレンブタジエンゴム (3巳[¾) 1 . 5質量部、 カルボキシメチルセルロース (〇1\/1〇) のナトリウム塩を 1 . 5質量部と、 溶媒として水とを混合して固形分 5 0質量%に調整し、 負極活物質層用組成 物を得た。 この組成物を、 負極 1層目電極の両面に塗布して 1 0 0 °〇で真空 乾燥した。 その後、 両面に負極活物質層用組成物を塗布した負極集電体を、
Figure imgf000025_0002
で加圧プレスし負極電極とした。
中間負極活物質層の厚さは 2 3 111から 1 8 〇1に変わった。 中間負極活 物質層の密度は 1 . 2 1 9 /〇〇から 1 .
Figure imgf000025_0003
に変わった。 負極活 物質層の厚さは片面当たり 3 5仰 であった。 負極活物質層の密度は 1 . 2 1 9 /〇〇であった。
[0063] (多孔質絶縁層の形成)
平均粒子径 5 0 0 n mのアルミナを固形分当たり 8 0体積%と、 アクリル 系樹脂 2 0体積%とを含み、 溶剤 !\1 _メチルー 2 -ピロリ ドンで希釈した、 固形分濃度が 4 0質量%である塗工液を用意した。 塗工液の 2 5 °〇における 粘度は 1 5 0 0
Figure imgf000025_0004
3であった。 そして、 バーコーター式塗工装置を用 いて、 塗工液の負極電極に対する塗工を実施した。 塗工液を負極電極の両面 に塗工した後、 6 0 °◦で 1時間乾燥し、 多孔質絶縁層形成負極とした。 乾燥 後の多孔質絶縁層の厚みは、 片面当たり 8 であった。 多孔質絶縁層の空 隙率は 7 0 %であった。
[0064] (正極の作製)
正極活物質として平均粒子径 1 0 の !_ 丨 (!\! 丨 _〇〇 _八 I) 〇2 ( \¥0 2020/175686 24 卩(:171? 2020 /008430
〇八系酸化物) を 1 0 0質量部と、 導電助剤としてアセチレンブラックを 4 質量部と、 電極用バインダーとしてポリフッ化ビニリデン ( ) 4質 量部と、 溶媒としての 1\1 _メチルピロリ ドン( 1\/1 ?)とを混合し、 固形分濃 度 6 0質量%に調整した正極活物質層用組成物を得た。 この正極活物質層用 組成物を、 正極集電体としての厚さ 1 5 のアルミニウム箔の両面に塗布 し、 予備乾燥後、 1 2 0 °〇で真空乾燥した。 その後、 両面に正極活物質層用 組成物を塗布した正極集電体を、 4 0 0 1<
Figure imgf000026_0001
で加圧プレスし、 正極を作 製した。 正極活物質層の厚さは、 片面あたり 5〇 であった。
[0065] (電解液の調製)
エチレンカーボネート (巳〇) とジエチルカーボネート (口巳〇) を 3 :
7の体積比 (巳(3 : 〇巳〇 で混合した溶媒に、 電解質塩として!- 丨 6を 1モル/リッ トルとなるように溶解して、 電解液を調製した。
[0066] (電池の製造)
上記で得た負極 2 1枚と、 巳製の微多孔膜セパレータ 3 8枚、 及び正極 1 9枚を積層し仮積層体を得た。 ここで、 2枚の負極の間に 1枚の正極を配 置し、 負極及び正極の間に 1枚の微多孔膜セパレータを配置した。
各正極の正極集電体の露出部の端部を纏めて超音波融着で接合するととも に、 外部に突出する端子用タブを接合した。 同様に、 各負極の負極集電体の 露出部の端部を纏めて超音波融着で接合するとともに、 外部に突出する端子 用タブを接合した。
次いで、 アルミラミネートフィルムで上記積層体を挟み、 端子用タブを外 部に突出させ、 三辺をラミネート加工によって封止した。 封止せずに残した —辺から、 上記で得た電解液を注入し、 真空封止することによってラミネー 卜型のセルを製造した。
負極の面積は 1 0 0 〇!
Figure imgf000026_0002
[0067] [実施例 2 ]
スラリーにおけるアルミナ粒子及びアクリル系樹脂の配合量の合計 1 〇〇 \¥02020/175686 25 卩(:171?2020/008430
体積%に対するアルミナ粒子の配合量を 8 0体積%から 8 5体積%に変更し 、 アクリル系樹脂の配合量を 2 0体積%から 1 5体積%に変更した以外は、 実施例 1 と同様に実施した。
[0068] [実施例 3 ]
スラリーにおけるアルミナ粒子及びアクリル系樹脂の配合量の合計 1 〇〇 体積%に対するアルミナ粒子の配合量を 8 0体積%から 6 0体積%に変更し 、 アクリル系樹脂の配合量を 2 0体積%から 4 0体積%に変更した以外は、 実施例 1 と同様に実施した。
[0069] [実施例 4 ]
絶縁層用スラリーを塗布するときの塗工条件を変更して多孔質絶縁層の厚 さを 8 から 1 1 に変更した以外は、 実施例 1 と同様に実施した。
[0070] [実施例 5 ]
絶縁層用スラリーを塗布するときの塗工条件を変更して多孔質絶縁層の厚 さを 8 から 4 に変更した以外は、 実施例 1 と同様に実施した。
[0071 ] [実施例 6 ]
多孔質絶縁層の形成で、 アクリル系樹脂の代わりにポリフッ化ビニリデン 溶液 (株式会社クレハ製、 製品名 : !- # 9 3 0 5、 5質量%溶液、 粘度: 2 1 〇〇 ? 3 3) を使用した。 さらに、 多孔質絶縁層の形成で、 スラリーに おけるアルミナ粒子及びポリフッ化ビニリデンの配合量の合計 1 〇〇体積% に対するアルミナ粒子の配合量を 8 0体積%から 9 9体積%に変更し、 ポリ フッ化ビニリデンの配合量を 2 0体積%から 1体積%に変更した。 それ以外 は、 実施例 1 と同様に実施した。
[0072] [比較例 1 ]
負極活物質層用組成物を塗布しなかった点、 及び中間負極活物質層用組成 物を塗布するときの塗工条件を変更して中間電極活物質層の厚さを 1 8 から 7〇 に変更した点以外は、 実施例 1 と同様に実施した。
[0073] [比較例 2 ]
スラリーにおけるアルミナ粒子及びアクリル系樹脂の配合量の合計 1 〇〇 \¥02020/175686 26 卩(:171?2020/008430
体積%に対するアルミナ粒子の配合量を 8 0体積%から 0体積%に変更し、 アクリル系樹脂の配合量を 2 0体積%から 1 0 0体積%に変更した以外は、 実施例 1 と同様に実施した。
なお、 比較例 2の多孔質絶縁層は、 アルミナ粒子を含有していないので、 巳一 3巳 IV!では多孔質絶縁層の空隙を観察できず、 上述の方法では多孔質 絶縁層の空隙率を測定することができなかった。 そこで、 以下のようにして 、 比較例 2の多孔質絶縁層の空隙率を評価した。
実施例で使用しているセパレータ (ポリエチレン製) の上に絶縁層用スラ リーを塗布し、 多孔質絶縁層付きセパレータを作製した。 そして、 ガーレ式 デンソーメータ (株式会社東洋精機製作所製) を使用して多孔質絶縁層付き のセパレータの透気度を測定した。 しかし、 多孔質縁層付きセパレータは空 気を通さなかったため、 測定できなかった。 このように、 セパレータは空気 を通すにもかかわらず、 多孔質絶縁層付きセパレータは空気を通さなかった ことから、 多孔質絶縁層には空隙がないことがわかった。 この結果から、 比 較例 2の多孔質絶縁層の空隙率を 0 %とした。
[0074] [比較例 3 ]
負極活物質層用組成物を塗布するときの塗工条件を変更して負極活物質層 の厚さを 3 5 から 5 3 に変更した点、 及び中間負極活物質層用組成 物を塗布しなかった点以外は、 実施例 1 と同様に実施した。
[0075] [比較例 4 ]
多孔質絶縁層を設けなかった点以外は、 比較例 3と同様に実施した。
[0076] 実施例 1〜 6で製造した電池の評価結果を表 1 に、 比較例 1〜 4で製造し た電池の評価結果を表 2にそれぞれ示す。
[0077] \¥0 2020/175686 27 卩(:17 2020 /008430
[表 1 ]
¾1
Figure imgf000029_0001
[0078] \¥0 2020/175686 28 卩(:17 2020 /008430
[表 2]
表 2
Figure imgf000030_0001
\¥0 2020/175686 29 卩(:171? 2020 /008430
[0079] 以上の実施例 1〜 6に示すように、 3 丨系材料を含む負極活物質層の表面 上に多孔質絶縁層を設け、 3 丨系材料を含む負極活物質層と負極集電体との 間に中間負極活物質層を設けることにより、 リチウムイオンニ次電池の容量 を大きく し、 かつ充放電サイクル特性を良好にできることがわかった。 さら に、 リチウムイオンニ次電池の安全性及び出力特性も改善されることがわか った。
比較例 1 より、 3 丨系材料を含む負極活物質層を設けないと、 リチウムイ オンニ次電池の容量を大きくできないことがわかった。
比較例 2より、 3 丨系材料を含む負極活物質層の表面上に多孔質絶縁層を 設けても、 多孔質絶縁層の空隙率を 3 0〜 9 5 %の範囲内にしないと、 リチ ウムイオンニ次電池の容量が小さくなり、 リチウムイオンニ次電池の充放電 サイクル特性が悪くなることがわかった。 また、 リチウムイオンニ次電池の 安全性及び出力特性が著しく低下することがわかった。
比較例 3及び 4より、 3 丨系材料を含む負極活物質層と負極集電体との間 に中間負極活物質層を設けないと、 リチウムイオンニ次電池の充放電サイク ル特性が悪くなることがわかった。
比較例 3と比較例 4とを比較することにより、 多孔質絶縁層を設けないと 、 リチウムイオンニ次電池の充放電サイクル特性及び安全性が低減すること がわかった。
符号の説明
[0080] 1 リチウムイオンニ次電池用電極
1 0 集電体
2 0 電極活物質層
3 0 多孔質絶縁層
4 0 中間電極活物質層

Claims

\¥0 2020/175686 30 卩(:17 2020 /008430 請求の範囲
[請求項 1 ] 集電体と、 前記集電体の表面上に設けられる電極活物質層と、 前記 電極活物質層の表面上に設けられる多孔質絶縁層と、 前記電極活物質 層及び前記集電体の間に設けられる中間電極活物質層とを備え、 前記電極活物質層は 3 丨系材料及び電極活物質層用バインダーを含 み、
前記多孔質絶縁層は絶縁性微粒子及び絶縁層用バインダーを含み、 前記中間電極活物質層は黒鉛及び中間電極活物質層用バインダーを 含み、
前記多孔質絶縁層の空隙率が 3 0〜 9 5体積%であるリチウムイオ ンニ次電池用電極。
[請求項 2] 前記絶縁性微粒子がアルミナである請求項 1 に記載のリチウムイオ ンニ次電池用電極。
[請求項 3] 前記多孔質絶縁層の厚さが 3〜 1 5 〇であり、 前記電極活物質層 の厚さが 1 〇〜 7〇 である請求項 1又は 2に記載のリチウムイオ ンニ次電池用電極。
[請求項 4] 前記多孔質絶縁層における前記絶縁性微粒子の平均粒子径が 0 . 1
〜 5 . 〇 であり、 前記電極活物質層における前記 3 丨系材料の平 均粒子径が 1〜 3 0 である請求項 1〜 3のいずれか 1項に記載の リチウムイオンニ次電池用電極。
[請求項 5] 前記多孔質絶縁層における前記絶縁性微粒子の含有量が 5 0〜 9 9
. 5体積%である請求項 1〜 4のいずれか 1項に記載のリチウムイオ ンニ次電池用電極。
[請求項 6] 前記電極活物質層における前記 3 丨系材料の含有量が 9 5〜 9 9質 量%である請求項 1〜 5のいずれか 1項に記載のリチウムイオンニ次 電池用電極。
[請求項 7] 前記多孔質絶縁層における前記絶縁層用バインダーの含有量が〇.
5〜 5 0体積%であり、 前記電極活物質層における前記電極活物質層 \¥02020/175686 31 卩(:171?2020/008430
用バインダーの含有量が 1〜 5質量%である請求項 1〜 6のいずれか 1項に記載のリチウムイオンニ次電池用電極。
[請求項 8] 前記中間電極活物質層の厚さが 5〜 6 0 である請求項 1〜 7の いずれか 1項に記載のリチウムイオンニ次電池用電極。
[請求項 9] 前記中間電極活物質層における前記黒鉛の平均粒子径が 1〜 3 0 である請求項 1〜 8のいずれか 1項に記載のリチウムイオンニ次電 池用電極。
[請求項 10] 前記中間電極活物質層における前記黒鉛の含有量は 9 5〜 9 9質量
%である請求項 1〜 9のいずれか 1項に記載のリチウムイオンニ次電 池用電極。
[請求項 1 1 ] 前記中間極活物質層における前記中間電極活物質層用バインダーの 含有量が 1〜 5質量%である請求項 1〜 1 0のいずれか 1項に記載の リチウムイオンニ次電池用電極。
[請求項 12] 請求項 1〜 1 1のいずれか 1項に記載のリチウムイオンニ次電池用 電極を負極として備えるリチウムイオンニ次電池。
PCT/JP2020/008430 2019-02-28 2020-02-28 リチウムイオン二次電池用電極及びリチウムイオン二次電池 WO2020175686A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019036697A JP2020140896A (ja) 2019-02-28 2019-02-28 リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2019-036697 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175686A1 true WO2020175686A1 (ja) 2020-09-03

Family

ID=72238550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008430 WO2020175686A1 (ja) 2019-02-28 2020-02-28 リチウムイオン二次電池用電極及びリチウムイオン二次電池

Country Status (2)

Country Link
JP (1) JP2020140896A (ja)
WO (1) WO2020175686A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452548B2 (ja) 2019-09-30 2024-03-19 株式会社村田製作所 二次電池用負極および二次電池
JP2023026832A (ja) * 2021-08-16 2023-03-01 信越化学工業株式会社 負極及び負極の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092820A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp リチウム二次電池およびその製造方法
JP2012099385A (ja) * 2010-11-04 2012-05-24 Konica Minolta Holdings Inc 耐熱性多孔質層付き電極とその製造方法及び二次電池
JP2015072758A (ja) * 2013-10-02 2015-04-16 日立マクセル株式会社 リチウムイオン二次電池用電極、その製造方法、およびリチウムイオン二次電池
JP2015179575A (ja) * 2014-03-18 2015-10-08 凸版印刷株式会社 非水電解液二次電池用負極、その製造方法、及び非水電解液二次電池
JP2016009651A (ja) * 2014-06-26 2016-01-18 株式会社豊田自動織機 蓄電装置用電極、蓄電装置及び蓄電装置用電極の製造方法
JP2018060735A (ja) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 リチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092820A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp リチウム二次電池およびその製造方法
JP2012099385A (ja) * 2010-11-04 2012-05-24 Konica Minolta Holdings Inc 耐熱性多孔質層付き電極とその製造方法及び二次電池
JP2015072758A (ja) * 2013-10-02 2015-04-16 日立マクセル株式会社 リチウムイオン二次電池用電極、その製造方法、およびリチウムイオン二次電池
JP2015179575A (ja) * 2014-03-18 2015-10-08 凸版印刷株式会社 非水電解液二次電池用負極、その製造方法、及び非水電解液二次電池
JP2016009651A (ja) * 2014-06-26 2016-01-18 株式会社豊田自動織機 蓄電装置用電極、蓄電装置及び蓄電装置用電極の製造方法
JP2018060735A (ja) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
JP2020140896A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
JP7067118B2 (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
JP7027955B2 (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
JP5977236B2 (ja) プライマーでコーティングされたカソード集電体及びそれを備えたマグネシウム二次電池
TWI603523B (zh) 非水系蓄電池用隔離板、該製造方法及非水系蓄電池
JP6048070B2 (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP5873605B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP6399921B2 (ja) 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法
JP6273956B2 (ja) 二次電池多孔膜用バインダー、二次電池多孔膜用スラリー組成物、二次電池用多孔膜及び二次電池
JP6901234B2 (ja) 二次電池用セパレータ(separator)及び二次電池
TW201036234A (en) Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
JP6494273B2 (ja) 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法
JP6805374B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JPWO2011078263A1 (ja) 二次電池用電極及び二次電池
JP2014203771A (ja) 二次電池用電極積層体及び二次電池
TW201939798A (zh) 鋰離子二次電池用正極材料、正極活性物質層、及鋰離子二次電池
JP2018537813A (ja) 全固体リチウム再充電可能セル
JP2014032758A (ja) リチウムイオン二次電池用電極の製造方法、及びリチウムイオン二次電池
JP6233404B2 (ja) 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JP6849863B2 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極
WO2020175686A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6436101B2 (ja) 電気化学素子用電極及び電気化学素子
JP6399922B2 (ja) 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法
JP7475768B2 (ja) 負極及び前記負極を含む二次電池
JP7160573B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015041570A (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用多孔膜、リチウムイオン二次電池、およびリチウムイオン二次電池用多孔膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762460

Country of ref document: EP

Kind code of ref document: A1