WO2020175624A1 - 化合物、発光材料および有機半導体レーザー素子 - Google Patents

化合物、発光材料および有機半導体レーザー素子 Download PDF

Info

Publication number
WO2020175624A1
WO2020175624A1 PCT/JP2020/008043 JP2020008043W WO2020175624A1 WO 2020175624 A1 WO2020175624 A1 WO 2020175624A1 JP 2020008043 W JP2020008043 W JP 2020008043W WO 2020175624 A1 WO2020175624 A1 WO 2020175624A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound
ring
substituted
Prior art date
Application number
PCT/JP2020/008043
Other languages
English (en)
French (fr)
Inventor
正史 儘田
安達 千波矢
裕也 大山
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2021502368A priority Critical patent/JPWO2020175624A1/ja
Publication of WO2020175624A1 publication Critical patent/WO2020175624A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials

Definitions

  • the present invention relates to a compound useful as a light emitting material.
  • Non-Patent Document 1 reports that a bisstilbene derivative (BSB-Cz) represented by the following formula shows an extremely low ASE threshold value and is excellent as an organic laser dye.
  • the present inventors have We have conducted repeated studies with the aim of finding compounds that exhibit excellent luminescence properties equivalent to or better than those of (1) and have high stability. Then, we conducted intensive studies to achieve an organic semiconductor laser device with a low laser oscillation threshold.
  • the present invention has been proposed based on these findings, and specifically has the following configurations.
  • 1 and 2 each independently represent a substituted or unsubstituted diarylamino group, and the two aryl groups constituting the diarylamino group are bonded to each other directly or via a linking group.
  • 1_ represents a conjugated linking group containing a benzofuran structure, and contains 5 or more rings in the linking chain connecting 1 and 2 .
  • the conjugated linking group is a substituted or unsubstituted benzene ring, 20/175624 3 ⁇ (: 171? 2020 /008043
  • each group of the above groups may be substituted. * Indicates a connecting position. At least one group containing a benzofuran structure is selected from the above group. Further, in the group containing a benzofuran structure and the group containing a fluorene structure in the above group, at least one of the ring skeleton-constituting atoms of the benzene ring forming these groups may be substituted with a nitrogen atom. ]
  • the conjugated linking group includes a group represented by the following general formula (2): ⁇ 2020/175 624 4 (:171? 2020/008043
  • each independently represents a hydrogen atom or a substituent. 16 are bonded to each other to form a single bond or a linking group.
  • [8] 1 and 2 are each independently one of the following general formulas (4) to (8) The compound according to any one of [1] to [6], which is a group represented by 2020/175624 5 (:171? 2020/008043).
  • Luminescent material comprising the compound according to any one of [1] to [9] ⁇ 2020/175 624 7 ⁇ (:171? 2020 /008043
  • the compound of the present invention has high quantum yield and low Since it has a threshold value and high stability, it is useful as a light emitting material, and is particularly useful as a light emitting material for organic semiconductor laser devices.
  • An organic semiconductor laser device using the compound of the present invention as a laser material can realize a low laser oscillation threshold.
  • FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of an organic semiconductor laser device of the present invention.
  • 3 is a graph showing the light resistance of the.
  • FIG. 3 A graph showing the dependence of the emission intensity and the full width at half maximum ( ⁇ /! ⁇ 11 ⁇ /1) on the excitation light intensity of a single film of Compound 2.
  • 3 is a graph showing the durability of each of the single films of 3 days oscillation.
  • isotopic species of hydrogen atoms present in the molecule of the compound used in the present invention is not limited especially, for example, hydrogen atoms in the molecule to all may be 1 1-! A, some or all May be 2 ( ⁇ ) (Deuteriu).
  • the compound of the present invention has a structure represented by the following general formula (1).
  • 1 and 2 each independently represent a substituted or unsubstituted diarylamino group, and the two aryl groups constituting the diarylamino group are directly bonded to each other. Or are attached via a linking group.
  • 1_ represents a conjugated linking group containing a benzofuran structure, and contains 5 or more rings in the linking chain connecting 1 and 2 .
  • the conjugated structure can be formed by connecting structures having a double bond such as a benzene ring, a heteroaromatic ring, a furan ring, an ethenylene group, and a benzofuran structure.
  • the heteroaromatic ring referred to here is preferably a 5-membered ring or a 6-membered ring, and examples of the heteroatom constituting the ring skeleton include a nitrogen atom, an oxygen atom and a sulfur atom.
  • More preferable heteroaromatic rings are a 6-membered ring containing a nitrogen atom as a heteroatom constituting the ring skeleton and a 5-membered ring containing an oxygen atom as a heteroatom constituting the ring skeleton, and examples thereof include a pyridine ring, a pyridazine ring, a pyrimidine ring and a pyrazine.
  • a ring and a furan ring can be mentioned.
  • As a conjugated linking group that _ can have, for example, a group having a structure in which two or more benzofuran structures are linked,
  • the benzene ring and furan ring forming the conjugated linking group represented by 1_ may be condensed, or the heteroaromatic ring and furan ring may be condensed.
  • the conjugated linking group represented by 1 preferably has a structure in which one or more groups selected from the following groups are linked.
  • At least one group containing a benzofuran structure is selected from the above group. Further, in the group containing a benzofuran structure and the group containing a fluorene structure in Group 8 above, at least one of the ring skeleton-constituting atoms of the benzene ring forming these groups may be substituted with a nitrogen atom.
  • the number of nitrogen atoms substituted in one ring is preferably 1 or 2, and when it is 2, it is preferable that two nitrogen atoms are substituted at a position where they are not directly bonded (non-adjacent position).
  • the term “including a benzofuran structure” as used in the present application means that another ring is condensed with a benzene ring that constitutes benzofuran, or that another ring is condensed with a furan ring that constitutes benzofuran. Or another ring is fused to both the benzene ring and the furan ring that compose benzofuran. ⁇ 2020/175 624 10 ⁇ (:171? 2020 /008043
  • the condensed ring may be any of an aromatic ring, a heteroaromatic ring, a non-aromatic ring and a hetero-nonaromatic ring, and the number of rings is not particularly limited.
  • the number of rings may be selected, for example, from the range of 2 to 30 or from the range of 2 to 15 or from the range of 2 to 8.
  • the conjugated linking group represented by !_ preferably includes the following benzofuran structure.
  • conjugated linking groups may be selected.
  • the conjugated linking group represented by _ has a structure represented by the following general formula (2). ⁇ 2020/175 624 1 1 ⁇ (: 171? 2020 /008043
  • the connecting group formed by combining 3 and 4 with each other is 101.
  • !_ is Contains one or more rings.
  • the “linking chain” here does not include a branched structure.
  • fused rings count the number of fused rings.
  • benzofuran counts two rings and dibenzofuran counts three rings.
  • the number of rings contained in the connecting chain connecting 1 and 2 can be, for example, 7 or more, 9 or more, and
  • It can be 30 or less, 20 or less, 15 or less.
  • the hydrogen atom in the benzene ring, heteroaromatic ring, furan ring, ethenylene group, benzofuran structure, etc. constituting the conjugated linking group represented by !_ may be substituted with a substituent or may be unsubstituted. preferable.
  • an alkyl group (the carbon number is preferably 1 to 20 and more preferably 1 to 6), an alkenyl group (the carbon number is preferably 2 to 20 and more preferably 2 to 6)
  • An alkynyl group (preferably having a carbon number of 2 to 20 and more preferably 2 to 6), an aryl group (having a carbon number of preferably 6 to 20 and more preferably 6 to 14), a heteroaryl A group (the number of atoms constituting the ring skeleton is preferably 5 to 20, more preferably 5 to 14) and the like can be mentioned.
  • Substituents bonded to a benzene ring, a heteroaromatic ring, a furan ring, or a benzofuran ring may be bonded to each other to form a cyclic structure.
  • Such cyclic structures include aromatic rings, heteroaromatic rings, non-aromatic hydrocarbons. ⁇ 2020/175 624 12 (:171? 2020/008043
  • the substituents of the ethenylene group may combine with each other to form a cyclic structure, but they do not form an aromatic ring or a heteroaromatic ring, and are non-aromatic hydrocarbon rings or non-aromatic heterocycles. May be formed.
  • the cyclic structure formed by combining the substituents is preferably a 5- to 7-membered ring, and more preferably a 5- or 6-membered ring.
  • 1 and 2 in the general formula (1) each independently represent a substituted or unsubstituted diarylamino group, and the two aryl groups constituting the diarylamino group are directly or via a linking group. Are joined together.
  • 1 and 2 may be the same or different, but are preferably the same. Further, 1 and 2 are preferably each independently a group represented by the general formula (3)
  • each independently represents a hydrogen atom or a substituent. 16 are bonded to each other to form a single bond or a linking group. And [3 ⁇ 4 12, [3 ⁇ 4 12 and [3 ⁇ 4 13, [3 ⁇ 4 13 and [3 ⁇ 4 14, [3 ⁇ 4 14 and [3 ⁇ 4 15, [a 3 ⁇ 4 16 [3 ⁇ 4 17, [3 ⁇ 4 17 and [3 ⁇ 4 18, [3 ⁇ 418 and [3 ⁇ 4 19 , [3 ⁇ 4 19 and [3 ⁇ 4 2 . May combine with each other to form a cyclic structure. * Indicates a binding position.
  • the description of the substituents such as the ring forming the conjugated linking group represented by 1_ can be referred to. Further, it is possible to refer to the description of the cyclic structure in the [for the cyclic structure 3 ⁇ 4 1 1 and the [3 ⁇ 4 12 etc. is formed by bonding with a conjugated linking group represented by 1. ⁇ 2020/175 624 13 ⁇ (:171? 2020 /008043
  • [0021] In general formulas (4) to (8), [3 ⁇ 4 21 to [3 ⁇ 4 24 , [3 ⁇ 4 27 to [3 ⁇ 4 38 , [3 ⁇ 4 41 to [3 ⁇ 4 48 , [3 ⁇ 4 51 to [3 ⁇ 4 58 , [3 ⁇ 4 61 ⁇ [3 ⁇ 4 65 , Each independently represents a hydrogen atom or a substituent.
  • Examples of the compound represented by the general formula (1) include, for example, the compound represented by the following general formula (9).
  • a compound that forms 101 in all four groups is also preferable, 2, Compounds that only form -001 are also preferred.
  • 101 is formed. Is preferably a hydrogen atom.
  • the hydrogen atom bonded to the benzene ring of the general formula (9) may be substituted with a substituent.
  • two substituents may be bonded to each other to form a cyclic structure.
  • the substituent refer to the! See the description of the substituents in-.
  • For the ring structure use the general formula (1)! The description regarding the cyclic structure in the conjugated linking group represented by-can be referred to.
  • the compound represented by the general formula (1) is a novel compound.
  • the compound represented by the general formula (1) can be synthesized by combining known reactions.
  • the general formula (1) can be synthesized by combining known reactions.
  • the general formula (1) can be synthesized by combining known reactions.
  • the compound which binds to porphyrin to form 101 can be synthesized by reacting two compounds represented by the following reaction formula (1).
  • the general formula (1) The compound which binds to porphyrin to form 101 can be synthesized by reacting two compounds represented by the following reaction formula (2).
  • X 1 to X 3 represent a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom, a bromine atom and an iodine atom are preferable, and iodine is more preferable.
  • the above reaction is an application of a known coupling reaction, and known reaction conditions can be appropriately selected and used. For details of the above reaction, see Synthesis Example below, Adv. Funct. Mater., 2018, 28, 4., Synthes is ⁇ 2008, 15, 2448., j. New. Chem., 2018, 42, 2446. , J. Org. Chem., 2004, 69, 6832. can be referred to.
  • the compound represented by the general formula (1) can also be synthesized by combining other known synthetic reactions.
  • the luminescent material of the present invention is characterized by comprising a compound represented by the general formula (1).
  • the compound represented by the general formula (1) is useful as a light emitting material because it exhibits excellent light emitting characteristics and high stability, and is particularly useful as a light emitting material for an organic laser device because of its low ASE threshold. high.
  • the compound represented by the general formula (1) of the present invention is Has a structure in which at least one of the ethenylene groups contained in is linked to the benzene ring via _ 0 1, and thus the ethenylene group is incorporated into the furan structure.
  • the furan ring has aromaticity, it is more stable than the ethenylene group, while in particular, the furan ring has lower aromaticity than the benzene ring, so even if the furan ring is incorporated, the stilbene-like It is considered that the physical properties are retained.
  • such a connecting structure completely avoids cis-trans isomerization of the double bond.
  • the compound represented by the general formula (1) is In addition to exhibiting a low 83 threshold, it is also highly stable. Furthermore, the compound represented by the general formula (1) is Quantum yield tends to be higher than. Then, the quantum yield tends to be higher than that of the compound in which at least one of the ethenylene groups contained in 858-0 is linked to the benzene ring via 13_ to form a thiophene ring. Further, the compound represented by the general formula (1) can be synthesized without complicated steps, and can be easily formed into a film by a vacuum vapor deposition method. From these facts, the compound represented by the general formula (1) is extremely useful as a light emitting material, particularly as a light emitting material for an organic semiconductor laser device.
  • the compound represented by the general formula (1) has a high quantum yield, a low 8 3 threshold, and high stability. Therefore, by using the compound represented by the general formula (1) as the material of the organic laser device, it is possible to realize excellent laser characteristics without deteriorating the optical physical properties due to the vapor deposition process during the film formation. ..
  • the organic laser device to which the compound of the present invention is applied may be a photoexcitation type organic laser device which emits laser light when the light emitting layer is irradiated with excitation light, or holes and electrons are emitted in the light emitting layer. It may be a current-excited organic laser element (organic semiconductor laser element) that emits laser light by the energy generated by the injection and recombination of them.
  • the photoexcitation type organic laser device has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic semiconductor laser device has at least an anode, a cathode, and a structure in which an organic layer is formed between the anode and the cathode.
  • the organic layer has at least a light emitting layer, and may be composed of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • examples of such other organic layer include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function.
  • Figure 1 shows a concrete example of the structure of an organic semiconductor laser device. In FIG.
  • 1, 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • the laser light generated in the light emitting layer may be transmitted to the outside through the anode or may be transmitted to the outside through the cathode and may be transmitted through the anode and the cathode. May be taken out to the outside. Further, the laser light generated in the light emitting layer may be extracted to the outside from the end face of the organic layer.
  • the organic semiconductor laser device of the present invention is preferably supported on a substrate.
  • a substrate that is transparent to the laser light is used, and it is made of glass, transparent plastic, quartz, or other transparent material. It is preferable to use a substrate.
  • the substrate is not particularly limited, and in addition to the above transparent substrate, a substrate made of silicon, paper, or cloth can be used. ..
  • anode in the organic semiconductor laser device those having a high work function ( 46 V or more) metal, alloy, electrically conductive compound, or a mixture thereof as an electrode material are preferably used.
  • an electrode material include a metal such as 8 l, a conductive transparent material such as 0 l, indium tin oxide (l d), 3 n 0 2 , n 0, d1 1 and the like.
  • a material such as D D X X ((n 2 0 3 -Z n 0)) that can form an amorphous transparent conductive film may be used.
  • the anode can be formed by depositing these electrode materials by a method such as vapor deposition or sputtering.
  • a pattern having a desired shape may be formed on the formed thin film by a photolithography method to serve as an anode, or when pattern accuracy is not required so much (about 100 or more), vapor deposition of the above electrode material or A pattern may be formed through a mask having a desired shape at the time of sputtering.
  • a coatable material such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can be used.
  • the organic semiconductor laser device when configured to extract the laser light through the anode, the anode needs to have a light-transmitting property with respect to the laser light, and the transmittance of the laser light is 1%. It is preferable to configure so as to be larger than 10%, and it is more preferable to configure so as to be larger than 10%. Specifically, it is preferable to use the above-mentioned conductive transparent material for the anode, or to use for the anode a thin film formed of a metal or alloy with a thickness of 10 to 100 n. ⁇ 2020/175 624 22 ⁇ (: 171? 2020 /008043
  • the sheet resistance of the anode is preferably several hundreds or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 100,000, preferably 10 to 200 n.
  • a metal having a work function smaller than that of the material used for the anode (referred to as an electron-injecting metal), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium/copper mixture, magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (eighth ⁇ 2 0 3) mixture, indium, a lithium / aluminum mixture and rare-earth metals.
  • a magnesium/silver mixture Preferred are magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (eight I 2 O 3 ) mixture, lithium/aluminum mixture, aluminum and the like.
  • the cathode can be formed by depositing these electrode materials by a method such as vapor deposition or sputtering.
  • the organic semiconductor laser device when configured to allow the laser light to pass through the cathode and take out the laser light, the cathode needs to be transparent to the laser light, and the transmittance of the laser light is 1%. It is preferable to configure so as to be larger than 10%, and it is more preferable to configure so as to be larger than 10%. Specifically, it is preferable to use for the cathode a thin film formed of the above electrode material with a thickness of 10 to 100 n.
  • the film thickness is usually 10 It is chosen in the range of 111.
  • the emissive layer is replenished with holes and electrons injected into it from the anode and cathode. 20/175624 23
  • the light emitting layer is preferably composed only of a light emitting material, but may contain a light emitting material and a host material.
  • a light emitting material one kind or two or more kinds selected from the compound group represented by the general formula (1) can be used.
  • the host material it is possible to use an organic compound in which at least one of excited singlet energy and excited triplet energy has a higher value than the compound represented by the general formula (1) used as a light emitting material. ..
  • the compound represented by the general formula (1) used as a light emitting material it becomes possible to confine singlet excitons and triplet excitons generated in the light emitting material in the molecule of the light emitting material, and to lower the threshold current density for causing the emission of the laser light.
  • the singlet excitons and triplet excitons cannot be sufficiently confined, it may contribute to lowering the threshold value and improving the laser characteristics, thus achieving the lower threshold value and improving the laser characteristics.
  • Any host material can be used in the present invention without particular limitation.
  • the laser light is represented by a compound or et radiation in _ general formula (1) contained as a light-emitting material.
  • This laser light may be spontaneous emission amplified light or stimulated emission light that is stimulated and emitted by light emitted from the outside.
  • the light emitted from the light emitting layer may include light emitted from the host material.
  • the compounds represented by _ general formula (1) used in the light emitting material is the amount contained in the light-emitting layer is ⁇ . 1 wt% or more It is preferably 1% by weight or more, more preferably 50% by weight or less, further preferably 25% by weight or less, and further preferably 20% by weight or less. , 15% by weight or less is particularly preferable. ⁇ 2020/175 624 24 (:171? 2020/008043
  • the host material in the light emitting layer is preferably an organic compound having a hole transporting ability and an electron transporting ability, preventing the emission from having a long wavelength and having a high glass transition temperature.
  • the compound represented by the general formula (1) may be used as the host material.
  • the injection layer is a layer provided between the electrode and the organic layer for the purpose of lowering the driving voltage and improving the emission brightness.
  • a hole injection layer and an electron injection layer and between the anode and the light emitting layer or the hole transport layer, And may be present between the cathode and the light emitting layer or the electron transporting layer.
  • the injection layer can be provided if necessary.
  • the blocking layer is a layer capable of blocking diffusion of charges (electrons or holes) and/or excitons existing in the light emitting layer out of the light emitting layer.
  • the electron blocking layer may be disposed between the light emitting layer and the hole transporting layer and blocks electrons from passing through the light emitting layer toward the hole transporting layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer towards the electron transporting layer.
  • Blocking layers can also be used to block excitons from diffusing out of the emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also have a function as an exciton blocking layer.
  • the term "electron blocking layer” or "exciton blocking layer” as used in the present specification is used to include a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer plays a role of blocking the holes from reaching the electron transporting layer while transporting electrons, which can improve the recombination probability of electrons and holes in the light emitting layer. ..
  • As the material of the hole blocking layer the material of the electron transport layer described later can be used if necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense. Electron blocking layer ⁇ 2020/175 624 25 (: 171-1? 2020 /008043
  • the exciton blocking layer is a layer that prevents excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. Can be efficiently confined in the light emitting layer, and the light emitting efficiency of the device can be improved.
  • the exciton blocking layer can be inserted into either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously. That is, when the exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transporting layer and the light emitting layer adjacent to the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode are provided.
  • the layer can be inserted between and adjacent to the light emitting layer.
  • a hole injection layer or an electron blocking layer may be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the cathode and the exciton blocking layer adjacent to the cathode side of the light emitting layer may be provided.
  • An electron injection layer, an electron transport layer, a hole blocking layer and the like can be provided between the child blocking layer and the child blocking layer.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either an organic substance or an inorganic substance.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, aryls. Amine derivative, amino substitution ⁇ 2020/175 624 26
  • Chalcone derivatives oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, especially thiophenene oligomers, but porphyrin compounds, aromatic compounds It is preferable to use a group tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transporting material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the electron-transporting layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazol derivatives. ..
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. It can. Further, a polymer material in which these materials are introduced into a high molecular chain, or a polymer material in which these materials have a polymer main chain can be used.
  • the organic semiconductor laser device of the present invention may further have a resonator structure.
  • the “resonator structure” is a structure for causing light emitted from a light emitting material to reciprocate in a light emitting layer. As a result, the light repeatedly travels in the light emitting layer to cause stimulated emission, so that a higher intensity laser light can be obtained.
  • the resonator structure is composed of a pair of reflecting mirrors, one reflecting mirror preferably having a reflectance of 100%, and the other reflecting mirror having a reflectance of 50 to 95%. Is preferred. To set the reflectance of the other reflector relatively low ⁇ 2020/175 624 27
  • the reflecting mirror on the side where the laser light is extracted is called the “output mirror”.
  • the reflecting mirror and the output mirror may be provided separately from each layer and each part constituting the above-mentioned organic semiconductor laser device, or the anode or the cathode may have the function of the reflecting mirror or the output mirror.
  • the anode when the anode also functions as a reflecting mirror or an output mirror, the anode has a small absorption of visible light, a high reflectance, and a relatively large work function (4.06 or more). ) It is preferable that it is composed of a metal film.
  • a metal film for example, a metal film of 89, 1:, 8 or the like, or an alloy film containing these metals can be mentioned.
  • the reflectance and the transmittance of the anode can be adjusted to desired values by controlling the film thickness of the metal film within a range of, for example, several tens of degrees or more.
  • the cathode When the cathode also functions as a reflecting mirror or an output mirror, it is preferable that the cathode be formed of a metal film that has a small absorption of visible light, a high reflectance, and a relatively small work function.
  • a metal film for example, a metal such as 81, 1 ⁇ / 19 , or an alloy containing these metals can be mentioned.
  • the reflectance and transmittance of the cathode can be adjusted to desired values by controlling the film thickness of the metal film within a range of, for example, several + n or more.
  • a reflecting film is formed between the anode and the organic layer or between the substrate and the anode to form a reflecting mirror or output mirror. It is preferable to make it function.
  • a reflecting mirror or an output mirror When a reflecting mirror or an output mirror is provided between the anode and the organic layer, these materials have small absorption of visible light, high reflectance, and high work function (work function 4. (6 or more) It is preferable to use a conductive material.
  • a metal film made of a metal such as 89, 1: or 8 or an alloy containing these metals can be used as a reflecting mirror or an output mirror.
  • the reflectance and the transmittance of the reflecting mirror or the output mirror can be adjusted to desired values by controlling the film thickness of the metal film within a range of, for example, several + or more. here, ⁇ 2020/175 624 28
  • the material of the anode does not need to have a high work function, and known electrode materials can be widely used.
  • a reflecting mirror or an output mirror is provided between the substrate and the anode, it is preferable to use those materials that have low absorption of visible light and high reflectivity.
  • a dielectric multilayer film in which silicon and titanium oxide are alternately formed can be used as a reflecting mirror or an output mirror.
  • the reflectance and the transmittance of the metal film can be adjusted to desired values by controlling the film thickness within a range of, for example, several +0 or more. Further, the reflectance and transmittance of the dielectric multilayer film can be adjusted to desired values by controlling the film thickness and the number of layers of silicon oxide and titanium oxide.
  • the combination of the reflecting mirror and the output mirror is such that the output mirror is the anode and the reflecting mirror is the negative pole, and the output mirror is a reflective film arranged between the anode and the organic layer or between the substrate and the anode.
  • the reflector is the cathode
  • the reflector is the anode
  • the output mirror is the cathode
  • the reflector is a reflective film placed between the anode and the organic layer or between the substrate and the anode.
  • the combination in which the output mirror is the cathode.
  • the total optical film thickness of the layers interposed between the reflecting mirror and the output mirror (the sum of the film thickness multiplied by the refractive index for each layer) is the half wavelength of the laser light. It is preferable to design the layer structure of the device so that it is an integral multiple of. As a result, a standing wave is formed between the reflecting mirror and the output mirror, the light is amplified, and laser light of higher intensity can be obtained.
  • the resonator structure reciprocates laser light in the direction perpendicular to the main surface of the substrate
  • the resonator structure reciprocates laser light in the direction horizontal to the main surface of the substrate. It may be one.
  • Such a resonator structure utilizes reflection due to the difference in refractive index between the organic layer and air, and the end face of the organic layer is reflected by a mirror or an output. It can be configured as a mirror.
  • a diffraction grating is provided near the light emitting layer with a grating spacing of s /2 n (where s is the wavelength of light, an integer greater than or equal to 1), and the light generated in the light emitting layer is periodically distributed by the grating spacing of the diffraction grating. You may make it reflect.
  • both an aspect of emitting light from the end face of the organic layer and an aspect of emitting light in a direction perpendicular to the organic layer (substrate) can be adopted.
  • a two-dimensional DFB (distributed feedback) diffraction grating structure is formed on a substrate and light is emitted in a direction perpendicular to the substrate.
  • the “AS E threshold” is a function that a target thin film is irradiated with excitation light to measure the dependence of the emission intensity on the excitation light intensity, and the relationship between the excitation light intensity and the emission intensity is defined as a linear function.
  • the target thin film may be a light emitting layer included in a current excitation type organic semiconductor laser element or a light emission layer included in a photoexcitation type organic laser element. Further, the light emitting layer may be composed only of the compound represented by the general formula (1) or may contain the compound represented by the general formula (1) and the host material.
  • ASE threshold refer to the section of Examples.
  • the light emitting layer of the organic semiconductor laser device has this AS E threshold of 2 ”/Cm 2 or less, more preferably 10 J/cm 2 or less, even more preferably 5 J/cm 2 or less, and 1 J/cm 2 or less. Is particularly preferable.
  • full width at half maximum of emission peak at AS E threshold means the emission spectrum of the emission spectrum when the emission layer is irradiated with excitation light at an intensity corresponding to the AS E threshold. Means the full width at half maximum of the emission peak with the highest intensity among the emission peaks appearing in.
  • the description of the thin film at the ASE threshold can be referred to.
  • the light emitting layer of the organic semiconductor laser device has a light emitting peak at this AS E threshold. ⁇ 2020/175 624 30 ⁇ (:171? 2020 /008043
  • Full width at half maximum of 30 Preferably less than 20 Is more preferably less than 15 n It is more preferable that it is less than.
  • the organic semiconductor laser device as described above emits laser light by passing a current having a threshold current density or more between the anode and the cathode. At this time, in the organic semiconductor laser device of the present invention, since the threshold current density is low due to the inclusion of the compound represented by the general formula), laser light can be emitted at a relatively low current density. It is possible to obtain excellent laser characteristics.
  • the compound represented by the general formula (1) may be used not only in the light emitting layer but also in a layer other than the light emitting layer.
  • the compound represented by the general formula (1) used for the light emitting layer and the compound represented by the general formula (1) used for the layers other than the light emitting layer may be the same or different.
  • the compound represented by the general formula (1) may be used in the above-mentioned injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer and the like. ..
  • the method for forming these layers is not particularly limited, and they may be formed by either a dry process or a wet process. Since the compound represented by the general formula (1) is highly stable, the structure can be stably maintained even in the dry process, and the performance exhibited by the structure can be sufficiently exhibited regardless of the film forming method. it can.
  • the compounds 1 and 2 had improved luminescence properties similar to those of BSB-Cz, but improved stability and quantum yield, and were improved as luminescent materials.
  • Compound 1 has a similar oxidation potential and reduction potential, and each energy level from 1 to 10 1 ⁇ /1 ⁇ and 1_111 ⁇ / 10 is similar. It was a close value
  • a thin film (single film) of Compound 2 was formed with a thickness of 100 mm on a quartz substrate by the vacuum evaporation method under the conditions of a vacuum degree of 10 _ 4 to 3 or less.
  • Thin film (single film) was formed with a thickness of 100 nm.
  • the surface roughness was evaluated by an atomic force microscope and the crystallinity was evaluated by an X-ray diffraction analysis. As a result, it was found that the surface roughness was low and it was amorphous.
  • each single film results of measurement of the emission characteristics of 340 n m excitation light of a single film, emission maximum wavelength scan is 480 n, under atmospheric! _ Amount KoOsamuritsu ⁇ 69% air emission lifetime Ding under the 1. 6 n s, the radiation rate constant 4. was 4X 1 0 8 3_ 1.
  • the single film of compound 2 has a maximum emission wavelength of 452 nm, a 1_quantum yield ⁇ of 79% in the atmosphere, a 1-quantum yield of 0% in a nitrogen atmosphere of 87%, and an atmospheric temperature.
  • 1 - emission lifetime Ding is 1. 7 n 3, the emission lifetime Ding under nitrogen Kiri ⁇ mind 1. 8 n 3, the radiation rate constant 1 ⁇ "There 4. 7 X 1 0 8 3 at Rimo? It was found that the 1_ quantum yield and the emission rate constant were high, and the emission characteristics were improved.
  • the emission intensity of the compound 2 single film was kept constant during the excitation light irradiation, whereas the emission intensity of the single film of compound 2 decreased with time. This indicates that compound 2 is more stable in the excited state than ⁇ 2020/175624 43 ⁇ (: 171? 2020 /008043
  • Compound 2 and Omi are co-evaporated from different evaporation sources on a quartz substrate by a vacuum evaporation method under the conditions of a vacuum degree of 10 _ 4 to 3 or less, and the concentration of Compound 2 is 6.0% by weight.
  • a thin film (doped film) was formed with a thickness of 130 n . Also, under the same conditions, on a quartz substrate, 0? And co-deposited from different evaporation sources, For each doped film formed concentration is 0% 6.
  • the doped film has a maximum emission wavelength of 462 n , a quantum yield of 0% in the atmosphere of 87%, an emission lifetime in the atmosphere of 1.1 n 3, and an emission rate constant of 1 ⁇ " 7. a 9X 1 0 8 3_ 1.
  • emission maximum wavelength scan is 445 n
  • 1_ quantum yield ⁇ both 1 hundred percent under air and under nitrogen atmosphere
  • the light emission lifetime in the atmosphere is 1.3 n 3
  • the light emission lifetime in a nitrogen atmosphere is 1.6 n 3
  • the emission rate constant 1 ⁇ is 7.6 X 1 0 8 3 _ 1 ,
  • the compound 2 doped film and the compound 2 prepared under the same conditions as used in the evaluation of the emission characteristics The doped film of 3 was examined for the emission characteristics of three-cavity excited by 337 n excitation light of a nitrogen gas laser.
  • FIG. 3 shows the measurement results of the emission intensity and the excitation intensity dependence of the emission peak full width at half maximum 1 to 1 IV! of the doped film of Compound 2
  • FIG. 4 shows the 1_ spectrum and the 3rd spectrum.
  • 1_ spectrum ⁇ . 7 "/ Rei_rei_1 an emission spectrum measured in 2 of the excitation intensity. Emission intensity and full width at half maximum of emission peak for the doped film
  • Fig. 6 shows the 91_spectrum and the 8 3 Spectra. 1_ spectrum is
  • Vector is 1 5 "/ ⁇ 2 of a luminescence spectrum measured with an excitation strength.
  • the change point threshold value ⁇
  • the slope changes is confirmed in the graph of the emission intensity dependence of the emission intensity, and it depends on the excitation intensity.
  • the correlation that 1 to 1 IV! becomes narrow was recognized.
  • FIGS. 4 and 6 at an excitation intensity equal to or greater than the threshold value, A steep emission peak that could be recognized as a peak was observed.
  • the compound represented by the general formula (1) is Is a compound that can emit 8 3 It was found that it is a superior light emitting material with a high quantum yield and stability.
  • the compound of the present invention has high quantum yield and low It shows a threshold value and is highly stable. Therefore, by using the compound of the present invention as a light emitting material of an organic semiconductor laser device, an Osaka organic semiconductor laser device having a low laser oscillation threshold can be realized. Therefore, the present invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Semiconductor Lasers (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

-L-Zで表される化合物は、優れた発光特性を示し、安定性が高い。ZおよびZは各々独立に置換もしくは無置換のジアリールアミノ基を表し、ジアリールアミノ基を構成する2つのアリール基は互いに直接または連結基を介して結合している。Lは、ベンゾフラン構造を含む共役系連結基を表し、ZとZを結ぶ連結鎖中に5つ以上の環を含む。

Description

明 細 書
発明の名称 : 化合物、 発光材料および有機半導体レーザー素子 技術分野
[0001] 本発明は、 発光材料として有用な化合物に関する。
背景技術
[0002] レーザー発振閾値が低い有機半導体レーザー素子の実現に向けた研究が盛 んに行われている。 特に、 そうした有機半導体レーザー素子の実現には、 自 然放出増幅光 (AS E : Amplified Spontaneous Emissiom) を放射する化合 物の開発が必須であることから、 様々な化合物を合成して AS E特性を調査 し、 レーザー材料として有用な化合物を見出す研究が精力的に進められてい る。 その中には、 スチルベン構造を基本構造として分子設計を行うことによ り、 自然放出増幅光放射の閾値 (AS E閾値) が低いレーザー材料を実現し ようとする研究も見受けられる。
例えば、 非特許文献 1 には、 下記式で表されるビススチルベン誘導体 (BSB -Cz) が極めて低い AS E閾値を示し、 有機レーザー色素として優れているこ とが報告されている。
[0003] [化 1]
Figure imgf000002_0001
先行技術文献
非特許文献
[0004] 非特許文献
Figure imgf000002_0002
2005, 86, 071110
発明の概要
発明が解決しようとする課題
[0005] 上記のように、
Figure imgf000002_0003
が優れた有機レーザー色素であることが知られてい 〇 2020/175624 2 卩(:171? 2020 /008043
る。 しかし、 本発明者らが の実用性を評価したところ、 ビススチルべ ン骨格に存在する二重結合が化学的に不安定であるために、
Figure imgf000003_0001
を蒸着し て発光層を形成すると、 その高温での蒸着過程でシスートランス異性化や分 解が生じ、 異性体や分解物等の不純物が生じることが判明した (後掲の実施 例の IV! データ参照) 。 こうした不純物の生成は光学物性の変化や半導体 特性の低下を招く原因になることから、 レーザー性能に優れたレーザー素子 を実現すべく、 より安定性が高いレーザー材料の開発が切望されている。
[0006] このような状況下において本発明者らは、
Figure imgf000003_0002
と同等以上の優れた発光 特性を示し、 且つ、 安定性が高い化合物を見出すことを目指して研究を重ね た。 そして、 レーザー発振閾値が低い有機半導体レーザー素子を実現するこ とを目的として鋭意検討を進めた。
課題を解決するための手段
[0007] 鋭意検討を進めた結果、 本発明者らは、
Figure imgf000003_0003
のスチルベン構造のエテニ レン基
Figure imgf000003_0004
=〇! ! -) を酸素原子でベンゼン環に連結させてフラン環を 形成することにより、 その安定性が顕著に向上し、 高い量子収率と低い八3 巳閾値を示すとともに、 安定性にも優れた化合物を提供できることを見出し た。
本発明は、 これらの知見に基づいて提案されたものであり、 具体的に、 以 下の構成を有する。
[0008] [ 1 ] 下記一般式 (1) で表される化合物。
一般式 ( 1)
2 1 _ 1_ _ 2 2
[一般式 (1) において、 1および 2は各々独立に置換もしくは無置換の ジアリールアミノ基を表し、 前記ジアリールアミノ基を構成する 2つのアリ —ル基は互いに直接または連結基を介して結合している。 1_は、 ベンゾフラ ン構造を含む共役系連結基を表し、 12を結ぶ連結鎖中に 5つ以上の環 を含む。 ]
[ 2 ] 前記共役系連結基が、 置換もしくは無置換のベンゼン環、 置換もし 20/175624 3 卩(:171? 2020 /008043
くは無置換のフラン環、 置換もしくは無置換の複素芳香環、 および置換もし くは無置換のエテニレン基から選択される 2以上が連結した構造を有する ( ここで前記ベンゼン環とフラン環は縮合していてもよく、 また、 前記フラン 環と前記複素芳香環は縮合していてもよい) 、 [1] に記載の化合物。
[3] 前記共役系連結基が置換もしくは無置換のベンゾフランー 2 , 6— ジイル基を含む、 [1] または [2] に記載の化合物。
[4] 前記共役系連結基が、 下記の群 から選択される 1以上の基が連結 した構造を有する、 [1] 〜 [3] のいずれか 1項に記載の化合物。
[化 2]
群八
Figure imgf000004_0001
[上記の群 の各基における水素原子は置換されていてもよい。 *は連結位 置を示す。 上記の群 の中からはベンゾフラン構造を含む基が少なくとも 1 つは選択される。 また、 上記の群 の中のベンゾフラン構造を含む基とフル オレン構造を含む基は、 それらの基を構成するベンゼン環の環骨格構成原子 の少なくとも 1つが窒素原子に置換されていてもよい。 ]
[5] 前記共役系連結基が、 下記の一般式 (2) で表される基を含む、 [ 〇 2020/175624 4 卩(:171? 2020 /008043
1] 〜 [4] のいずれか 1項に記載の化合物。
[化 3]
Figure imgf000005_0001
は互いに結合して一〇一を形成する。
Figure imgf000005_0002
3 および 4は、 各々独立に水素原子または置換基を表すか、 互いに結合して連 結基を形成する。 *は連結位置を示す。 一般式 (2) 中のベンゼン環に結合 している水素原子は置換基で置換されていてもよい。 ]
[6] 前記共役系連結基の鎖長原子数が 1 〇〜 30である、 [1] 〜 [5 ] のいずれか 1項に記載の化合物。
[7] 1および 2が各々独立に下記一般式 (3) で表される基である、 [1] 〜 [6] のいずれか 1項に記載の化合物。
[化 4]
一般式
Figure imgf000005_0003
[一般式 (3) において、
Figure imgf000005_0004
◦は、 各々独立に水素原子または置換基 を表す。
Figure imgf000005_0005
16は互いに結合して単結合または連結基を形成する。
Figure imgf000005_0006
と[¾12、 [¾12と[¾13、 [¾13と[¾14、 [¾14と[¾15、 [¾16と[¾17、 [¾17と[¾18 、 [¾18と[¾19、 [¾19と[¾2。は、 互いに結合して環状構造を形成していてもよ い。 *は結合位置を示す。 ]
[8] 1および 2が各々独立に下記一般式 (4) 〜 (8) のいずれかで 〇 2020/175624 5 卩(:171? 2020 /008043 表される基である、 [1] 〜 [6] のいずれか 1項に記載の化合物。
[化 5-1]
Figure imgf000006_0001
\¥02020/175624 6 卩(:17 2020 /008043
[化 5-2]
Figure imgf000007_0001
[—般式 (4) 〜 (8) において、 [¾21~[¾24、 [¾27~[¾38、 [¾41~[¾48 、 [¾51〜[¾58、 [¾61〜[¾65、 [¾81〜[¾9〇は、 各々独立に水素原子または置 換基を表す。 [¾21と[¾22、 [¾22と[¾23、 [¾23と[¾24、 [¾27と[¾28、 [¾28と 829、 829と 830、 831と 832、 832と 833、 [¾33と 834、 [¾35と 836、 ^36と ^37、 [¾37と ^38、 ^41と ^42、 ^42と ^43、 ^43と ^44、 [¾45と ^46、 ^46と ^47、 ^47と ^48、 ^ 51と ^ 52、 ^ 52と ^ 53、 [¾ 53と ^ 54、 ^55と ^56、 [¾56と ^57、 [¾57と ^58、 ^61と ^62、 ^62と ^63、 [¾63と ^64、 [¾64と ^65、 [¾54と ^61、 ^55と ^65、 ^81と ^82、 ^82と ^83、 ^83と ^84、 ^85と ^86、 [¾86と ^87、 [¾87と ^88、 [¾ 89と ^ 90は、 互い に結合して環状構造を形成していてもよい。 氺は結合位置を示す。 ]
[9] 1および 2が各々独立に前記一般式 (4) で表される基である、 [8] に記載の化合物。
[1 0] [1] 〜 [9] のいずれか 1項に記載の化合物からなる発光材料 〇 2020/175624 7 卩(:171? 2020 /008043
[1 1] 自然放出増幅光を放射する、 [1 0] に記載の発光材料。
[1 2] 有機半導体レーザー素子用の発光材料である、 [1 0] または [ 1 1] に記載の発光材料。
[1 3] 前記一般式 (1) で表される化合物を含む有機半導体レーザー素 子。
発明の効果
[0009] 本発明の化合物は、 高い量子収率と低い
Figure imgf000008_0001
巳閾値を示し、 安定性も高い ため、 発光材料として有用であり、 特に有機半導体レーザー素子用の発光材 料として有用性が高い。 本発明の化合物をレーザー材料に用いた有機半導体 レーザー素子は、 低いレーザー発振閾値を実現しうる。
図面の簡単な説明
[0010] [図 1]本発明の有機半導体レーザー素子の層構成例を示す概略断面図である。
Figure imgf000008_0002
の光耐性を示すグラフである。
[図 3]化合物 2の単独膜の発光強度とピーク半値全幅 ( \^/ !~1 1\/1) の励起光強 度依存性を示すグラフである。
[図 4]化合物 2の単独膜の !_スぺクトルと八 3巳スぺクトルである。
[図 の単独膜の発光強度とピーク半値全幅 ( \^/ !~1 1\/1) の励起光強度 依存性を示すグラフである。
と八 3巳スぺクトルである。
Figure imgf000008_0003
の各単独膜の 3日発振時の耐久性を 示すグラフである。
発明を実施するための形態
[001 1] 以下において、 本発明の内容について詳細に説明する。 以下に記載する構 成要件の説明は、 本発明の代表的な実施態様や具体例に基づいてなされるこ とがあるが、 本発明はそのような実施態様や具体例に限定されるものではな い。 なお、 本明細書において 「〜」 を用いて表される数値範囲は、 「〜」 の 前後に記載される数値を下限値および上限値として含む範囲を意味する。 ま \¥0 2020/175624 8 卩(:17 2020 /008043
た、 本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特 に限定されず、 例えば分子内の水素原子がすべて1 1·!であってもよいし、 一部 または全部が2㈠ (デューテリウ厶 ) であってもよい。
[0012] [一般式 (1) で表される化合物]
本発明の化合物は、 下記一般式 (1) で表される構造を有するものである 一般式 ( 1)
2 1 _ 1_ _ 2 2 一般式 (1) において、 1および 2は各々独立に置換もしくは無置換の ジアリールアミノ基を表し、 そのジアリールアミノ基を構成する 2つのアリ —ル基は互いに直接結合しているか、 または連結基を介して結合している。
1_は、 ベンゾフラン構造を含む共役系連結基を表し、 12を結ぶ連結鎖 中に 5つ以上の環を含む。
[0013] 一般式 (1) の!-は、
Figure imgf000009_0001
ベ ンゾフラン構造を少なくとも 1つ含み、 なおかつ、 連結鎖中に 5つ以上の環 を含む連結基である。 共役構造は、 ベンゼン環、 複素芳香環、 フラン環、 エ テニレン基、 ベンゾフラン構造等の二重結合を有する構造を連結することに より形成することができる。 ここでいう複素芳香環は 5員環または 6員環で あることが好ましく、 環骨格構成へテロ原子としては、 窒素原子、 酸素原子 、 硫黄原子を挙げることができる。 より好ましい複素芳香環は窒素原子を環 骨格構成へテロ原子として含む 6員環および酸素原子を環骨格構成へテロ原 子として含む 5員環であり、 例えばピリジン環、 ピリダジン環、 ピリミジン 環、 ピラジン環、 フラン環を挙げることができる。 !_が採りうる共役連結基 として、 例えば 2つ以上のベンゾフラン構造を連結した構造を有するもの、
1つ以上のベンゾフラン構造と 1つ以上のベンゼン環を連結した構造を有す るもの、 1つ以上のベンゾフラン構造と 1つ以上のエテニレン基を連結した 構造を有するもの、 1つ以上のベンゾフラン構造と 1つ以上のベンゼン環と 1つ以上のエテニレン基を連結した構造を有するものを挙げることができる 〇 2020/175624 9 卩(:171? 2020 /008043
。 1_が表す共役連結基を構成するベンゼン環とフラン環は縮合していてもよ く、 また、 複素芳香環とフラン環も縮合していてもよい。
1 が表す共役連結基は、 下記の群 から選択される 1以上の基が連結した 構造を有するものであることが好ましい。
[化 6]
群八
Figure imgf000010_0001
[0014] *は連結位置を示す。 上記の群 の中からはベンゾフラン構造を含む基が 少なくとも 1つは選択される。 また、 上記の群八の中のベンゾフラン構造を 含む基とフルオレン構造を含む基は、 それらの基を構成するベンゼン環の環 骨格構成原子の少なくとも 1つが窒素原子に置換されていてもよい。 1つの 環に置換される窒素原子の数は 1 または 2であることが好ましく、 2である 場合は 2つの窒素原子が直接結合しない位置 (隣接しない位置) に置換され ていることが好ましい。 本願でいう 「ベンゾフラン構造を含む」 とは、 ベン ゾフランを構成するベンゼン環にさらに別の環が縮合しているものや、 ベン ゾフランを構成するフラン環にさらに別の環が縮合しているものや、 ベンゾ フランを構成するベンゼン環とフラン環の両方にそれぞれ別の環が縮合して 〇 2020/175624 10 卩(:171? 2020 /008043
いるものも含むことを意味する。 縮合する環は、 芳香環、 複素芳香環、 非芳 香環、 複素非芳香環のいずれであってもよく、 また環数は特に制限されない 。 環数は、 例えば 2〜 3 0の範囲内から選択したり、 2〜 1 5の範囲内から 選択したり、 2〜 8の範囲内から選択したりしてもよい。
!_が表す共役連結基は、 上記の構造の中でも特に以下のベンゾフラン構造 を含むものであることが好ましい。
[化 7]
Figure imgf000011_0001
上記の中でも特に以下の共役連結基を選択してもよい。
Figure imgf000011_0002
[0015] また、 !_が表す共役連結基は、 以下の一般式 (2) で表される構造を含む ものであることも好ましい。 〇 2020/175624 1 1 卩(:171? 2020 /008043
[化 8]
Figure imgf000012_0001
[0016] —般式 (2) において、
Figure imgf000012_0003
は互いに結合して一〇一を形成する。
Figure imgf000012_0002
3 および 4は、 各々独立に水素原子または置換基を表すか、 互いに結合して連 結基を形成する。 *は連結位置を示す。 一般式 (2) 中のベンゼン環に結合 している水素原子は置換基で置換されていてもよい。
3および 4が互いに結合して形成する連結基は一〇一であることが特に 好ましい。
[0017] !_は、
Figure imgf000012_0004
つ以上の環を含む。 ここでいう 「連結 鎖」 には、 分枝構造は含まない。 また、 縮合環については、 縮合している環 の数をカウントする。 例えば、 ベンゾフランであれば環は 2つ、 ジベンゾフ ランであれば環は 3つとカウントする。 12を結ぶ連結鎖中に含まれる 環の数は例えば 7つ以上、 9つ以上としたりすることが可能であり、 また、
3 0以下、 2 0以下、 1 5以下としたりすることが可能である。
!_で表される共役連結基を構成するベンゼン環、 複素芳香環、 フラン環、 エテニレン基、 ベンゾフラン構造等における水素原子は、 置換基で置換され ていてもよいし、 無置換であることも好ましい。 置換基として、 例えばアル キル基 (炭素数は、 好ましくは 1〜 2 0、 より好ましくは 1〜 6) 、 アルケ ニル基 (炭素数は、 好ましくは 2〜 2 0、 より好ましくは 2〜 6) 、 アルキ ニル基 (炭素数は、 好ましくは 2〜 2 0、 より好ましくは 2〜 6) 、 アリー ル基 (炭素数は、 好ましくは 6〜 2 0、 より好ましくは 6〜 1 4) 、 ヘテロ アリール基 (環骨格構成原子数は、 好ましくは 5〜 2 0、 より好ましくは 5 〜 1 4) などを挙げることができる。 ベンゼン環、 複素芳香環、 フラン環、 ベンゾフラン環に結合する置換基は、 互いに結合して環状構造を形成しても よい。 そのような環状構造としては、 芳香環、 複素芳香環、 非芳香族炭化水 〇 2020/175624 12 卩(:171? 2020 /008043
素環、 非芳香族複素環などを挙げることができる。 一方、 エテニレン基の置 換基は、 互いに結合して環状構造を形成してもよいが、 芳香環ゃ複素芳香環 は形成せず、 非芳香族炭化水素環、 非芳香族複素環であれば形成してもよい 。 置換基が結合して形成される環状構造は 5〜 7員環であることが好ましく 、 5または 6員環であることがより好ましい。
[0018] —般式 (1) における 1および 2は、 各々独立に置換もしくは無置換の ジアリールアミノ基を表し、 前記ジアリールアミノ基を構成する 2つのアリ —ル基は互いに直接または連結基を介して結合している。 1および 2は同 —であっても異なっていてもよいが、 同一であることが好ましい。 また、 1 および 2は、 各々独立に記一般式 (3) で表される基であることが好ましい
[化 9]
Figure imgf000013_0001
[0019] —般式 (3) において、
Figure imgf000013_0002
◦は、 各々独立に水素原子または置換基 を表す。
Figure imgf000013_0003
16は互いに結合して単結合または連結基を形成する。
Figure imgf000013_0004
と[¾12、 [¾12と[¾13、 [¾13と[¾14、 [¾14と[¾15、 [¾16と[¾17、 [¾17と[¾18 、 [¾18と[¾19、 [¾19と[¾2。は、 互いに結合して環状構造を形成していてもよ い。 *は結合位置を示す。
Figure imgf000013_0005
とりうる置換基については、 1_で表される共役連結基を構成 する環等の置換基に関する説明を参照することができる。 また、 [¾1 1と[¾12 等が互いに結合して形成する環状構造については、 1-で表される共役連結基 における環状構造に関する説明を参照することができる。 〇 2020/175624 13 卩(:171? 2020 /008043
[0020] —般式 (3) で表される基の好ましい例として、 下記一般式 (4) 〜 (8 ) のいずれかで表される基を挙げることができる。
[化 10-1 ]
一般式
Figure imgf000014_0001
一般式
Figure imgf000014_0002
一般式
Figure imgf000014_0003
〇 2020/175624 14 卩(:171? 2020 /008043
[化 10-2]
一般式 (7)
Figure imgf000015_0001
[0021] —般式 (4) 〜 (8) において、 [¾21~[¾24、 [¾27~[¾38、 [¾41~[¾48 、 [¾51~[¾58、 [¾61~[¾65
Figure imgf000015_0002
各々独立に水素原子または置 換基を表す。 [¾21と[¾22、 [¾22と[¾23、 [¾23と[¾24、 [¾27と[¾28、 [¾28と ^29、 ^29と ^30、 ^31と ^32、 ^32と ^33、 [¾33と ^34、 ^35と ^36、 ^36と ^37、 [¾37と ^38、 ^41と ^42、 ^42と ^43、 ^43と ^44、 [¾45と ^46、 ^46と ^47、 ^47と ^48、 ^51と ^52、 ^52と ^53、 [¾53と ^54、 ^55と ^56、 [¾56と ^57、 [¾57と ^58、 ^61と ^62、 ^62と ^63、 [¾63と ^64、 [¾64と ^65、 [¾54と ^61、 ^55と ^65、 ^81と ^82、 ^82と ^83、 ^83と ^84、 ^85と ^86、 [¾86と ^87、 [¾87と ^88、 [¾ 89と ^ 90は、 互い に結合して環状構造を形成していてもよい。 *は結合位置を示す。
ここでいう置換基と環状構造についても、 一般式 (1) の!-に関する置換 基と環状構造の説明を参照することができる。 〇 2020/175624 15 卩(:171? 2020 /008043
—般式 (4) 〜 (8) の中では、 一般式 (4) で表されるものであること が好ましい。
[0022] 一般式 (1) で表される化合物の例として、 例えば下記一般式 (9) で表 される化合物を挙げることができる。
[0023] [化 1 1]
一般式 (9)
Figure imgf000016_0001
[0024] 一般式 (9) において、
Figure imgf000016_0002
は各々独立に水素原子または置換基を表 し、
Figure imgf000016_0003
のうちの少なくとも 1組は、 互いに結合して一〇一を形成する。
一般式 (9) では、 4組とも一〇一を形成する化合物も好ましく、
Figure imgf000016_0004
2、
Figure imgf000016_0005
だけが —〇一を形成する化合物も好ましい。 一般式 (9) において一〇一を形成し
Figure imgf000016_0006
は水素原子であることが好ましい。 一般式 (9) のベンゼン環 に結合している水素原子は置換基で置換されていてもよい。 また、 2つの置 換基が互いに結合して環状構造を形成してもよい。 置換基については、 一般 式 (1) の!-における置換基の説明を参照することができる。 環状構造につ いては、 一般式 (1) の!-で表される共役連結基における環状構造に関する 説明を参照することができる。
[0025] 以下において、 一般式 (1) で表される化合物の具体例を例示する。 ただ し、 本発明において用いることができる一般式 (1) で表される化合物はこ れらの具体例によって限定的に解釈されるべきものではない。
[0026] \¥0 2020/175624 16 卩(:17 2020 /008043
[化 12-1 ]
Figure imgf000017_0001
化合物 7
〇 2020/175624 17 卩(:171? 2020 /008043
[化 12-2]
Figure imgf000018_0001
化合物 1 2 ( =1~1)
化合物 1 3 ( =(31~13)
化合物 1 4 ( = 061~15)
[0027] [一般式 (1) で表される化合物の合成方法]
一般式 (1) で表される化合物は新規化合物である。
—般式 (1) で表される化合物は、 既知の反応を組み合わせることによっ て合成することができる。 例えば、 一般式
Figure imgf000018_0002
いに結合して一〇一を形成している化合物は、 以下の反応式 (1) に示す 2 つの化合物を反応させることにより合成することが可能である。 また、 一般 式 (1)
Figure imgf000018_0003
いに結合して一〇一を形成している化合 物は、 以下の反応式 (2) に示す 2つの化合物を反応させることにより合成 することが可能である。
[0028] [化 13]
反応式 ( 1)
Figure imgf000019_0001
反応式 (2)
Figure imgf000019_0002
[0029] 上記の反応式における R 1〜 R 7の説明については、 一般式 (1) における 対応する記載を参照することができる。 X 1〜 X 3はハロゲン原子を表し、 フ ッ素原子、 塩素原子、 臭素原子、 ヨウ素原子を挙げることができ、 塩素原子 、 臭素原子、 ヨウ素原子が好ましく、 ヨウ素であることがより好ましい。 上記の反応は、 公知のカップリング反応を応用したものであり、 公知の反 応条件を適宜選択して用いることができる。 上記の反応の詳細については、 後述の合成例、 Adv. Funct. Mater. , 2018, 28, 4.、 Synthes i s· , 2008, 15, 2448. , j . New. Chem. , 2018, 42, 2446. , J. Org. Chem. , 2004, 69, 6832 .を参考にすることができる。 また、 一般式 (1) で表される化合物は、 その 他の公知の合成反応を組み合わせることによっても合成することができる。
[0030] [発光材料]
本発明の発光材料は、 一般式 (1) で表される化合物からなることを特徴 とする。
一般式 (1) で表される化合物は、 優れた発光特性と高い安定性を示すた め、 発光材料として有用であり、 特に A S E閾値が低いため、 有機レーザー 素子用の発光材料として有用性が高い。 これは、 一般式 (1) で表される化 合物が BSB-Czと共通の構造を持ちながら、 BSB-Czとは異なり、 エテニレン基 (— C H = C H—) がベンゼン環に連結してフラン環を構成しているという 〇 2020/175624 19 卩(:171? 2020 /008043
、 特徴的な構造を有するためであると推測される。
すなわち、
Figure imgf000020_0001
3巳閾値が低く、 優れた有機レーザー色素であるこ とが知られているが、 反応性が高いエテニレン基 (一 C H = C H _) を分子 内に 2つ有しており、 芳香族化合物に比べて安定性が劣る。 しかし、 安定性 を高めるべく、 仮にスチルベン構造をクリセンのようなベンゼン環の縮合構 造 (芳香族縮合環) に変換した場合には、 芳香族性が大きくなって発光性能 自体が変化してしまう。 また、 エテニレン基をアルキレン基でベンゼン環に 連結すれば、 芳香族性を増大させることなく、 エテニレン基が環状構造に組 み込まれ、 安定性が向上すると考えられる。 しかし、 この場合には、 合成エ 程が煩雑になることや、 蒸着による成膜が困難になる等の問題を生じる。 こ れに対して、 本発明の一般式 (1) で表される化合物は、
Figure imgf000020_0002
が含むエテ ニレン基の少なくとも 1つが、 _〇一を介してベンゼン環に連結した構造を 有しており、 これにより、 エテニレン基がフラン構造に組み込まれた形にな っている。 ここで、 フラン環は芳香族性を有するため、 エテニレン基よりも 安定性が高い一方で、 特にフラン環はベンゼン環に比べれば芳香族性が低い ため、 フラン環が組み込まれてもスチルベン様の物性は保持されると考えら れる。 また、 こうした連結構造により、 二重結合のシストランス異性化は完 全に回避される。
以上のことから、 一般式 (1) で表される化合物は、
Figure imgf000020_0003
と同様に、 低 い八 3巳閾値を示すことに加えて、 安定性が高い。 さらに、 一般式 (1) で 表される化合物は、
Figure imgf000020_0004
よりも量子収率が高い傾向がある。 そして、 858-0 が含むエテニレン基の少なくとも 1 つを一 3 _を介してベンゼン環に連結し てチオフエン環を形成した化合物よりも量子収率が高い傾向がある。 また、 —般式 (1) で表される化合物は、 煩雑な工程を経ずに合成することが可能 であり、 また、 真空蒸着法により容易に成膜することができる。 これらのこ とから、 一般式 (1) で表される化合物は、 発光材料、 特に有機半導体レー ザー素子用の発光材料として有用性が非常に高い。
[0031 ] [有機レーザー素子] 20/175624 20 卩(:171? 2020 /008043
上記のように一般式 (1) で表される化合物は、 高い量子収率と低い八3 巳閾値を示すとともに、 安定性が高い。 そのため、 一般式 (1) で表される 化合物を有機レーザー素子の材料に用いることにより、 その成膜時の蒸着プ ロセスで光学物性を損なうことがなく、 優れたレーザー特性を実現すること ができる。
本発明の化合物が適用される有機レーザー素子は、 発光層に励起光が照射 されることでレーザー光を放射する光励起型の有機レーザー素子であっても よいし、 発光層に正孔と電子が注入され、 それらが再結合して生じたエネル ギーによりレーザー光を放射する電流励起型の有機レーザー素子 (有機半導 体レーザー素子) であってもよい。 光励起型の有機レーザー素子は、 基板上 に少なくとも発光層を形成した構造を有する。 また、 有機半導体レーザー素 子は、 少なくとも陽極、 陰極、 および陽極と陰極の間に有機層を形成した構 造を有する。 有機層は、 少なくとも発光層を有するものであり、 発光層のみ からなるものであってもよいし、 発光層の他に 1層以上の有機層を有するも のであってもよい。 そのような他の有機層として、 正孔輸送層、 正孔注入層 、 電子阻止層、 正孔阻止層、 電子注入層、 電子輸送層、 励起子阻止層などを 挙げることができる。 正孔輸送層は正孔注入機能を有した正孔注入輸送層で もよく、 電子輸送層は電子注入機能を有した電子注入輸送層でもよい。 具体 的な有機半導体レーザー素子の構造例を図 1 に示す。 図 1 において、 1は基 板、 2は陽極、 3は正孔注入層、 4は正孔輸送層、 5は発光層、 6は電子輸 送層、 7は陰極を表わす。 電流励起型の有機半導体レーザー素子において、 発光層で生じたレーザー光は、 陽極を透過して外部に取り出されても、 陰極 を透過して外部に取り出されてもよく、 陽極および陰極を透過して外部に取 り出されてもよい。 また、 発光層で生じたレーザー光は、 有機層の端面から 外部に取り出されてもよい。
以下において、 有機半導体レーザー素子の各部材および各層について説明 する。 なお、 基板と発光層の説明は光励起型の有機レーザー素子と発光層に も該当する。 〇 2020/175624 21 卩(:171? 2020 /008043
[0032] (基板)
本発明の有機半導体レーザー素子は、 基板に支持されていることが好まし い。 基板としては、 有機半導体レーザー素子が基板側からレーザー光を取り 出す構成である場合には、 レーザー光に対して透光性を有する基板が用いら れ、 ガラス、 透明プラスチック、 石英などからなる透明基板を用いることが 好ましい。 一方、 有機半導体レーザー素子が基板と反対側からレーザー光を 取り出す構成である場合には、 基板は特に制限されず、 上記の透明基板の他 、 シリコン、 紙、 布からなる基板も用いることができる。
[0033] (陽極)
有機半導体レーザー素子における陽極としては、 仕事関数の大きい (4 6 V以上) 金属、 合金、 電気伝導性化合物およびこれらの混合物を電極材料と するものが好ましく用いられる。 このような電極材料の具体例としては八リ 等の金属、 〇リ 丨、 インジウムチンオキシド (丨 丁〇) 、 3 n〇2、 n〇、 丁 丨 1\1等の導電性透明材料が挙げられる。 また、 丨 D 丨 X〇 (丨 n 23 - Z n 0) 等の非晶質で透明導電膜を作製可能な材料を用いてもよい。 陽極は、 これらの電極材料を蒸着やスパッタリング等の方法により成膜して形成する ことができる。 また、 形成した薄膜に、 フォトリソグラフィー法で所望の形 状のパターンを形成して陽極としてもよく、 あるいはパターン精度をあまり 必要としない場合は (1 〇〇 以上程度) 、 上記電極材料の蒸着やスパッ タリング時に所望の形状のマスクを介してパターンを形成してもよい。 ある いは、 有機導電性化合物のように塗布可能な材料を用いる場合には、 印刷方 式、 コーティング方式等湿式成膜法を用いることもできる。
ただし、 有機半導体レーザー素子が、 陽極を透過させてレーザー光を取り 出す構成である場合には、 陽極はレーザー光に対して透光性を有することを 要し、 そのレーザー光の透過率が 1 %より大きくなるように構成することが 好ましく、 1 0 %より大きくなるように構成することがより好ましい。 具体 的には、 上記の導電性透明材料を陽極に用いるか、 金属または合金を 1 0〜 1 0 0 n の厚さで形成した薄膜を陽極に用いることが好ましい。 〇 2020/175624 22 卩(:171? 2020 /008043
陽極としてのシート抵抗は数百 以下が好ましい。 さらに膜厚は材料 にもよるが、 通常 1 0〜 1 0 0 0门 01、 好ましくは 1 0〜 2 0 0 n の範囲 で選ばれる。
[0034] (陰極)
一方、 陰極としては、 陽極に用いる材料よりも仕事関数が小さい金属 (電 子注入性金属と称する) 、 合金、 電気伝導性化合物およびこれらの混合物を 電極材料とするものが用いられる。 このような電極材料の具体例としては、 ナトリウム、 ナトリウムーカリウム合金、 マグネシウム、 リチウム、 マグネ シウム/銅混合物、 マグネシウム/銀混合物、 マグネシウム/アルミニウム 混合物、 マグネシウム/インジウム混合物、 アルミニウム/酸化アルミニウ ム (八 丨 2 0 3) 混合物、 インジウム、 リチウム/アルミニウム混合物、 希土 類金属等が挙げられる。 これらの中で、 電子注入性および酸化等に対する耐 久性の点から、 電子注入性金属とこれより仕事関数の値が大きく安定な金属 である第二金属との混合物、 例えば、 マグネシウム/銀混合物、 マグネシウ ム/アルミニウム混合物、 マグネシウム/インジウム混合物、 アルミニウム /酸化アルミニウム (八 I 2 0 3) 混合物、 リチウム/アルミニウム混合物、 アルミニウム等が好適である。 陰極は、 これらの電極材料を蒸着やスバッタ リング等の方法により成膜して形成することができる。
ただし、 有機半導体レーザー素子が、 陰極を透過させてレーザー光を取り 出す構成である場合には、 陰極はレーザー光に対して透光性を有することを 要し、 そのレーザー光の透過率が 1 %より大きくなるように構成することが 好ましく、 1 0 %より大きくなるように構成することがより好ましい。 具体 的には、 上記の電極材料を 1 〇〜 1 0 0 n の厚さで形成した薄膜を陰極に 用いることが好ましい。
以下が好ましく、 膜厚は通常 1 〇门
Figure imgf000023_0001
111の範囲で選ばれる。
[0035] (発光層)
発光層は、 陽極および陰極のそれそれから注入された正孔および電子が再 20/175624 23 卩(:171? 2020 /008043
結合することにより励起子が生成し、 反転分布が形成された後、 レーザー光 を放射する層である。
発光層は、 発光材料のみで構成されていることが好ましいが、 発光材料と ホスト材料を含んでいてもよい。 発光材料としては、 一般式 (1) で表され る化合物群から選ばれる 1種または 2種以上を用いることができる。 本発明 の有機半導体レーザー素子の閾値電流密度をより低くするためには、 発光材 料に生成した一重項励起子および三重項励起子の少なくとも一方を、 発光材 料中に閉じ込めることが重要である。 従って、 発光層中に発光材料に加えて ホスト材料を用いることが好ましい。 ホスト材料としては、 励起一重項エネ ルギー、 励起三重項エネルギーの少なくとも何れか一方が、 発光材料として 用いる一般式 (1) で表される化合物よりも、 高い値を有する有機化合物を 用いることができる。 その結果、 発光材料に生成した一重項励起子および三 重項励起子を、 発光材料の分子中に閉じ込めることが可能となり、 そのレー ザー光の放射を生ずるための閾値電流密度をより低くすることが可能となる 。 もっとも、 一重項励起子および三重項励起子を十分に閉じ込めることがで きなくても、 低閾値化やレーザー特性の改善に寄与しうる場合もあるため、 低閾値化やレーザー特性の改善を実現しうるホスト材料であれば特に制約な く本発明に用いることができる。 本発明の有機半導体レーザー素子において 、 レーザー光は、 発光材料として含まれる _般式 (1) で表される化合物か ら放射される。 このレーザー光は自然放出増幅光であっても、 外部から照射 された光により誘導放出された誘導放出光であってもよい。 また、 発光層か らの光は、 ホスト材料から放出された光を含んでいてもよい。
_般式 (1) で表されないホスト材料を用いる場合、 発光材料に用いる _ 般式 (1) で表される化合物が発光層中に含有される量は〇. 1重量%以上 であることが好ましく、 1重量%以上であることがより好ましく、 また、 5 0重量%以下であることが好ましく、 2 5重量%以下であることがより好ま しく、 2 0重量%以下であることがさらに好ましく、 1 5重量%以下である ことが特に好ましい。 〇 2020/175624 24 卩(:171? 2020 /008043
発光層におけるホスト材料としては、 正孔輸送能、 電子輸送能を有し、 か つ発光の長波長化を防ぎ、 なおかつ高いガラス転移温度を有する有機化合物 であることが好ましい。 なお、 一般式 (1) で表される化合物をホスト材料 として用いてもよい。
[0036] (注入層)
注入層とは、 駆動電圧低下や発光輝度向上のために電極と有機層間に設け られる層のことで、 正孔注入層と電子注入層があり、 陽極と発光層または正 孔輸送層の間、 および陰極と発光層または電子輸送層との間に存在させても よい。 注入層は必要に応じて設けることができる。
[0037] (阻止層)
阻止層は、 発光層中に存在する電荷 (電子もしくは正孔) および/または 励起子の発光層外への拡散を阻止することができる層である。 電子阻止層は 、 発光層および正孔輸送層の間に配置されることができ、 電子が正孔輸送層 の方に向かって発光層を通過することを阻止する。 同様に、 正孔阻止層は発 光層および電子輸送層の間に配置されることができ、 正孔が電子輸送層の方 に向かって発光層を通過することを阻止する。 阻止層はまた、 励起子が発光 層の外側に拡散することを阻止するために用いることができる。 すなわち電 子阻止層、 正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えるこ とができる。 本明細書でいう電子阻止層または励起子阻止層は、 一つの層で 電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
[0038] (正孔阻止層)
正孔阻止層とは広い意味では電子輸送層の機能を有する。 正孔阻止層は電 子を輸送しつつ、 正孔が電子輸送層へ到達することを阻止する役割があり、 これにより発光層中での電子と正孔の再結合確率を向上させることができる 。 正孔阻止層の材料としては、 後述する電子輸送層の材料を必要に応じて用 いることができる。
[0039] (電子阻止層)
電子阻止層とは、 広い意味では正孔を輸送する機能を有する。 電子阻止層 〇 2020/175624 25 卩(:171? 2020 /008043
は正孔を輸送しつつ、 電子が正孔輸送層へ到達することを阻止する役割があ り、 これにより発光層中での電子と正孔が再結合する確率を向上させること ができる。
[0040] (励起子阻止層)
励起子阻止層とは、 発光層内で正孔と電子が再結合することにより生じた 励起子が電荷輸送層に拡散することを阻止するための層であり、 本層の揷入 により励起子を効率的に発光層内に閉じ込めることが可能となり、 素子の発 光効率を向上させることができる。 励起子阻止層は発光層に隣接して陽極側 、 陰極側のいずれにも揷入することができ、 両方同時に揷入することも可能 である。 すなわち、 励起子阻止層を陽極側に有する場合、 正孔輸送層と発光 層の間に、 発光層に隣接して該層を挿入することができ、 陰極側に挿入する 場合、 発光層と陰極との間に、 発光層に隣接して該層を挿入することができ る。 また、 陽極と、 発光層の陽極側に隣接する励起子阻止層との間には、 正 孔注入層や電子阻止層などを有することができ、 陰極と、 発光層の陰極側に 隣接する励起子阻止層との間には、 電子注入層、 電子輸送層、 正孔阻止層な どを有することができる。 阻止層を配置する場合、 阻止層として用いる材料 の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか 一方は、 発光材料の励起一重項エネルギーおよび励起三重項エネルギーより も高いことが好ましい。
[0041 ] (正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、 正孔 輸送層は単層または複数層設けることができる。
正孔輸送材料としては、 正孔の注入または輸送、 電子の障壁性のいずれか を有するものであり、 有機物、 無機物のいずれであってもよい。 使用できる 公知の正孔輸送材料としては例えば、 トリアゾール誘導体、 オキサジアゾー ル誘導体、 イミダゾール誘導体、 カルバゾール誘導体、 インドロカルバゾー ル誘導体、 ポリアリールアルカン誘導体、 ピラゾリン誘導体およびピラゾロ ン誘導体、 フエニレンジアミン誘導体、 アリールアミン誘導体、 アミノ置換 〇 2020/175624 26 卩(:171? 2020 /008043
カルコン誘導体、 オキサゾール誘導体、 スチリルアントラセン誘導体、 フル オレノン誘導体、 ヒ ドラゾン誘導体、 スチルベン誘導体、 シラザン誘導体、 アニリン系共重合体、 また導電性高分子オリゴマー、 特にチオフエンオリゴ マー等が挙げられるが、 ポルフィリン化合物、 芳香族第 3級アミン化合物お よびスチリルアミン化合物を用いることが好ましく、 芳香族第 3級アミン化 合物を用いることがより好ましい。
[0042] (電子輸送層)
電子輸送層とは電子を輸送する機能を有する材料からなり、 電子輸送層は 単層または複数層設けることができる。
電子輸送材料 (正孔阻止材料を兼ねる場合もある) としては、 陰極より注 入された電子を発光層に伝達する機能を有していればよい。 使用できる電子 輸送層としては例えば、 ニトロ置換フルオレン誘導体、 ジフエニルキノン誘 導体、 チオピランジオキシド誘導体、 カルボジイミ ド、 フレオレニリデンメ タン誘導体、 アントラキノジメタンおよびアントロン誘導体、 オキサジアゾ —ル誘導体等が挙げられる。 さらに、 上記オキサジアゾール誘導体において 、 オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導 体、 電子吸引基として知られているキノキサリン環を有するキノキサリン誘 導体も、 電子輸送材料として用いることができる。 さらにこれらの材料を高 分子鎖に導入した、 またはこれらの材料を高分子の主鎖とした高分子材料を 用いることもできる。
[0043] (共振器構造)
本発明の有機半導体レーザー素子は、 さらに、 共振器構造を有していても よい。 「共振器構造」 とは、 発光材料が放出した光を発光層中で往復させる ための構造である。 これにより、 光が繰り返し発光層中を走行して誘導放出 を引き起こすため、 より高い強度のレーザー光を得ることができる。 共振器 構造は、 具体的には一対の反射鏡により構成され、 一方の反射鏡は 1 〇〇% の反射率を有することが好ましく、 他方の反射鏡は、 反射率が 5 0〜 9 5 % であることが好ましい。 他方の反射鏡の反射率を比較的低く設定することに 〇 2020/175624 27 卩(:171? 2020 /008043
より、 この反射鏡を透過させてレーザー光を外部に取り出すことが可能にな る。 以下では、 レーザー光を取り出す側の反射鏡を 「出力鏡」 という。 反射 鏡および出力鏡は、 上記の有機半導体レーザー素子を構成する各層および各 部とは別に設けてもよいし、 陽極や陰極に反射鏡または出力鏡の機能を兼ね させてもよい。
[0044] 例えば、 陽極に反射鏡または出力鏡の機能を兼ねさせる場合には、 陽極は 、 可視光の吸収が小さく、 反射率が高く、 且つ、 仕事関数が比較的大きい ( 4 . 〇 6 以上) 金属膜により構成することが好ましい。 そのような金属膜 として、 例えば八 9、 1:、 八リ等の金属膜、 または、 これらの金属を含む 合金膜を挙げることができる。 陽極の反射率および透過率は、 例えば数十门 01以上の範囲で、 金属膜の膜厚を制御することにより所望の値に調整するこ とができる。
陰極に反射鏡または出力鏡の機能を兼ねさせる場合には、 陰極は、 可視光 の吸収が小さく、 反射率が高く、 且つ、 仕事関数が比較的小さい金属膜によ り構成することが好ましい。 そのような金属膜として、 例えば八 1、 1\/1 9等 の金属〗旲、 または、 これらの金属を含む合金〗旲を挙けることができる。 陰極 の反射率および透過率は、 例えば数 + n 以上の範囲で、 金属膜の膜厚を制 御することにより所望の値に調整することができる。
反射鏡または出力鏡を、 上記の各層および各部とは別に設ける場合には、 陽極と有機層との間、 または、 基板と陽極の間に反射性の膜を形成して反射 鏡または出力鏡として機能させることが好ましい。
陽極と有機層との間に反射鏡または出力鏡を設ける場合には、 それらの材 料として、 可視光の吸収が小さく、 高い反射率が得られ、 且つ、 仕事関数が 大きい (仕事関数 4 . 〇 6 以上) 導電性材料を用いることが好ましい。 具 体的には、 八 9、 1:、 八リ等の金属、 または、 これらの金属を含む合金か らなる金属膜を反射鏡または出力鏡として用いることができる。 この反射鏡 または出力鏡の反射率および透過率は、 例えば数 +门 以上の範囲で、 金属 膜の膜厚を制御することにより所望の値に調整することができる。 ここで、 〇 2020/175624 28 卩(:171? 2020 /008043
こうした反射鏡または出力鏡を陽極と有機層との間に設ける場合には、 陽極 の材料は、 仕事関数が大きいものである必要はなく、 公知の電極材料を広く 用いることができる。
基板と陽極の間に反射鏡または出力鏡を設ける場合には、 それらの材料と して、 可視光の吸収が小さく、 高い反射率が得られるものを用いることが好 ましい。 具体的には、 八 丨、 八 9、 1:等の金属、 または、 これらの金属を 含む合金からなる金属膜、 八 I と 3 丨の合金膜上に丁 丨膜を積層した積層膜 、 酸化ケイ素と酸化チタンを交互に成膜した誘電体多層膜等を反射鏡または 出力鏡として用いることができる。 このうち、 金属膜の反射率および透過率 は、 例えば数 +〇 以上の範囲で膜厚を制御することにより所望の値に調整 することができる。 また、 誘電体多層膜の反射率および透過率は、 酸化ケイ 素と酸化チタンの膜厚および積層数を制御することによって所望の値に調整 することができる。
反射鏡と出力鏡の組み合わせとしては、 出力鏡が陽極であり、 反射鏡が陰 極である組み合わせ、 出力鏡が陽極と有機層の間または基板と陽極の間に配 された反射性の膜であり、 反射鏡が陰極である組み合わせ、 反射鏡が陽極で あり、 出力鏡が陰極である組み合わせ、 反射鏡が陽極と有機層の間または基 板と陽極の間に配された反射性の膜であり、 出力鏡が陰極である組み合わせ を挙げることができる。
こうした共振器構造では、 反射鏡と出力鏡の間に介在する層の光学膜厚の 合計 (各層のそれぞれについて、 その膜厚に屈折率を乗じた値の合計) がレ —ザー光の半波長の整数倍となるように、 素子の層構造を設計することが好 ましい。 これにより、 反射鏡と出力鏡の間で定在波が形成されて光が増幅さ れ、 より高い強度のレーザー光を得ることができる。
[0045] また、 以上の共振器構造は、 基板の主面に対する垂直方向にレーザー光を 往復させるものであるが、 共振器構造は、 基板の主面に対する水平方向にレ —ザー光を往復させるものであってもよい。 こうした共振器構造は、 有機層 と空気との屈折率差による反射を利用し、 有機層の端面を反射鏡または出力 鏡として構成することができる。 また、 発光層付近に、 ス /2 n (ス :光の 波長、 n : 1以上の整数) の格子間隔で回折格子を設け、 発光層で発生した 光を回折格子の格子間隔によって周期的に反射させるようにしてもよい。 本 発明では、 有機層の端面から発光させる態様と、 有機層 (基板) に垂直な方 向に発光させる態様の両方をとりうる。 例えば、 基板上に 2次元 D F B (dis tributed feedback) 回折格子構造を形成して基板に垂直な方向に発光させる 態様を例示することができる。
[0046] [AS E閾値]
本明細書中における 「AS E閾値」 とは、 対象となる薄膜に励起光を照射 して発光強度の励起光強度依存性を測定し、 その励起光強度と発光強度の関 係を一次関数とみなしたとき、 その傾きが変化するところの励起光強度を意 味する。 ここで対象となる薄膜は、 電流励起型の有機半導体レーザー素子が 有する発光層であっても、 光励起型の有機レーザー素子が有する発光層であ ってもよい。 また、 発光層は、 一般式 (1) で表される化合物のみから構成 されていてもよいし、 一般式 (1) で表される化合物とホスト材料を含んで いてもよい。 「AS E閾値」 の具体的な測定条件については実施例の欄を参 照することができる。
有機半導体レーザー素子が有する発光層は、 この AS E閾値が 2
Figure imgf000030_0001
」/ c m 2以下であることが好ましく、 1 〇 J/c m2以下であることがより好 ましく、 5 J / c m 2以下であることがさらに好ましく、 1 J/c m2以 下であることが特に好ましい。
[0047] [AS E閾値での発光ピークの半値全幅]
本明細書中における 「AS E閾値での発光ピークの半値全幅」 とは、 発光 層に AS E閾値に対応する強度で励起光を照射して発光スぺクトルを観測し たとき、 その発光スペクトルに現れる発光ピークのうち、 最も強度が大きい 発光ピークの半値全幅を意味する。 ここで対象となる薄膜についての説明は 、 AS E閾値における薄膜についての説明を参照することができる。
有機半導体レーザー素子が有する発光層は、 この AS E閾値での発光ピー 〇 2020/175624 30 卩(:171? 2020 /008043
クの半値全幅が 3 0
Figure imgf000031_0001
未満であることが好ましく、 2 0
Figure imgf000031_0002
未満であるこ とがより好ましく、 1 5 n
Figure imgf000031_0003
未満であることがさらに好ましい。
[0048] 以上のような有機半導体レーザー素子は、 陽極と陰極の間に閾値電流密度 以上の電流を流すことによりレーザー光を放射する。 このとき、 本発明の有 機半導体レーザー素子では、 一般式 ) で表される化合物を含むことによ り閾値電流密度が低いため、 比較的低い電流密度でレーザー光を放射させる ことができ、 優れたレーザー特性を得ることができる。
[0049] 本発明の有機半導体レーザー素子を作製する際には、 一般式 (1) で表さ れる化合物を発光層に用いるだけでなく、 発光層以外の層にも用いてもよい 。 その際、 発光層に用いる一般式 (1) で表される化合物と、 発光層以外の 層に用いる一般式 (1) で表される化合物は、 同一であっても異なっていて もよい。 例えば、 上記の注入層、 阻止層、 正孔阻止層、 電子阻止層、 励起子 阻止層、 正孔輸送層、 電子輸送層などにも一般式 (1) で表される化合物を 用いてもよい。 これらの層の製膜方法は特に限定されず、 ドライプロセス、 ウエッ トプロセスのどちらで作製してもよい。 一般式 (1) で表される化合 物は安定性が高いため、 ドライプロセスにおいても構造が安定に保持され、 成膜方法に関わらず、 その構造から奏される性能を十分に発現させることが できる。
実施例
[0050] 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。 以下に示 す材料、 処理内容、 処理手順等は、 本発明の趣旨を逸脱しない限り適宜変更 することができる。 したがって、 本発明の範囲は以下に示す具体例により限 定的に解釈されるべきものではない。 なお、 発光特性の評価は、 蛍光分光光 度計 (日本分光社製: _ 8 6 0 0) 、 絶対 !_量子収率測定装置 (浜松 ホトニクス社製: 〇 1 1 3 4 7 - 0 1) 、 マルチチヤンネル分光器 (浜松ホ トニクス社製: 1\/1八_ 1 2) 、 蛍光寿命測定装置 (浜松ホトニクス社製: 0 て行った。 また、 熱的安定性の評価は、 熱
Figure imgf000031_0004
「社製:
Figure imgf000031_0005
24003八) を用いて行った。 さらに、 核磁気共鳴装置 (Bruker社製: AVANCE III 500 MHz spectrometer) と電気化学測定 (BAS社製: BAS 608D + DPV Electrochemical system) も用 いた。
[0051] [1 ] 化合物の合成
(合成例 1) 化合物 1の合成
[化 14]
Figure imgf000032_0001
中間体 1
[0052] 窒素雰囲気下で、 1\1, 1\1—ジメチルホルムアミ ド (200 1_) と 3—ブ ロモフエノール (30. 09 , 1 74〇1〇1〇 I) を 3ロフラスコに入れ、 氷 浴で 0 °〇に冷却した後、 水素化ナトリウム (1 2. 89, 320〇1〇1〇 1) を加え、 1 —ブロモー2, 2—ジエトキシエタン (3 1. 59 ,
Figure imgf000032_0002
〇 I) を滴下して 1 50°◦で 5時間攪拌した。 反応終了後、 反応液を室温ま で冷却し、 水を加えた後、 ジエチルエーテルで抽出を行った。 その有機層を 硫酸ナトリウムで乾燥し、 溶媒を減圧留去した。 その残留物 (反応生成物) を、 ヘキサン:ジクロロメタン = 1 : 1の混合溶媒を展開溶媒に用いてシリ カゲルカラムクロマトグラフィーにて分離、 精製し、 中間体 1の透明な油状 液体を収量 42. 89、 収率 85. 1 %で得た。
關(¾ (500 1!/1 , 00013): 5 7.07-7.15 ( , 3 , 6.84-6.88 (111, ^), 4.81
Figure imgf000032_0003
3.98-4.00 ( 」 = 5.0 , 2 , 3.72-3.79 (111, 2 , 3.59-3. 63 (111, 2 1.25 ( 」 = 7.1 , 6
[0053] 〇 2020/175624 32 卩(:171? 2020 /008043
[化 15]
Figure imgf000033_0001
中間体 1 中間体 2
[0054] /3すずゼオライ ト (触媒, 4. 1 69) を三ロフラスコに入れて窒素で置 換した後、 中間体 1 (1 2. 09, 4 1.
Figure imgf000033_0002
をベンゼントリフル オライ ド (200 1_) に溶解してフラスコ内に注入し、 1 1 2°〇で72時 間攪拌した。 反応液を濾過し、 残渣をベンゼントリフルオライ ドで洗浄して 得た濾液から溶媒を減圧留去した。 その残留物 (反応生成物) を、 ヘキサン を展開溶媒に用いてシリカゲルカラムクロマトグラフィーにて分離、 精製し 、 中間体 2の透明な油状液体を収量 4. 249、 収率 52. 0%で得た。
(500 1^ , 00013): 5 7.71 ( , ^), 7.62 ( 」 = 2.7 , ^), 7 .49 ( 」 = 9.6 , ^), 7.38 ( 」 = 2.7 , ^), 6.76 ( J = 2.7 H
[0055] [化 16]
Figure imgf000033_0003
中間体 2 中間体 3
[0056] 中間体 2 (4. 1 1 9, 2〇. 9〇1〇1〇 1) 、 カルバゾール (〇 å, 5.
1 29, 3〇. 6〇1111〇 1) 、 酢酸パラジウム (卩〇1(0八(;)2,〇. 1 69, 0.
Figure imgf000033_0004
および炭酸カリウム (3. 589, 25. 9〇1〇1〇 1) を 三ロフラスコに入れて窒素で置換した後、 トルエン (1 50 1_) 、 トリー t 3 r t ブチルフォスフイン (〇. 7329, 3. 62〇1〇1〇 1) を加え て 1 20°〇で 48時間攪拌した。 反応液に水を加え、 酢酸ェチルで抽出を行 〇 2020/175624 33 卩(:171? 2020 /008043
つた後、 得られた有機層を硫酸ナトリウムで乾燥して溶媒を減圧留去した。 その残留物 (反応生成物) を、 ヘキサン:ジクロロメタン = 1 : 1の混合溶 媒を展開溶媒に用いてシリカゲルカラムクロマトグラフィーにて分離、 精製 し、 中間体 3の透明な油状液体を収量 3. 669、 収率 6 1. 6%で得た。
Figure imgf000034_0001
00013): 5 8.17 ( 」 = 7.9 , 2 , 7.80 ( 」= 8.2 , ^), 7.76 ( 」 = 2.2 , ^), 7.73 ($, ^), 7.45 ((^, 」 = 8.2, 1.
9 , ^), 7.41-7.43 (111, ), 7.28-7.32 (111, 2 , 6.91 ((^, 」 = 2.2 , ^); % (¾ (^013): 5 155.3, 146.3, 141.3, 134.2, 126.9, 125.9, 12 3.3, 122.4, 122.0, 120.3, 120.0, 110.6, 109.8, 106.7; 八 1·
Figure imgf000034_0002
干〇「
(:2(^131\10: (:, 84.78; 1 4.62; 1\1, 4.94. ド〇 (:, 84.65; 4.61.
[0057] [化 17]
Figure imgf000034_0003
中間体 3 中間体 4
[0058] 中間体 3 (〇. 4969, 1. 75〇1〇1〇 1) をテトラヒドロフラン (1
0〇11_) に溶解して、 予めアルゴン置換しておいた三ロフラスコに入れ、 一 40°〇に冷却した後、 n—ブチルリチウム (门-81£丨, 1.
Figure imgf000034_0004
1_, 2. 63 〇 丨) を滴下して 1時間攪拌した。 この混合物に、 ヨウ素 (〇. 7249, 2. 85〇1〇1〇 1) をテトラヒドロフラン (1 0 1_) に 溶解させた溶液を滴下した後、 室温に戻し、 さらに 1 2時間攪拌した。 この 反応液に、 飽和したチォ硫酸ナトリウム水溶液 (20〇!!_) を加えた後、 溶 媒を減圧留去し、 酢酸エチルによる抽出を行った。 有機層を硫酸ナトリウム で乾燥し、 さらに溶媒を減圧留去した。 その残留物 (反応生成物) を、 ジク ロロメタンを展開溶媒に用いてシリカゲルカラムクロマトグラフィーにて分 離、 精製し、 中間体 4の透明な油状液体を収量〇. 7349で得た。
Figure imgf000034_0005
7.71 (8, ]\\) 7.69-7.70 (111, 2 , 7.39-7.45 (111, ), 7.28-7.32 (111, 2 , 7.0 9 ( 」 = 0.95 , 1 ; % 關 (^013): 5 158.4, 141.1, 134.2, 128.6, 126.0, 123.4, 122.7, 120.4, 120.3, 120.1, 117.3, 110.0, 110.0, 97.1; 八门81·
Figure imgf000035_0001
。, 58.70; 2.96; 1\1, 3.42. ド〇11门〇1: 。, 58.47
; 2.99; 1\1, 3.25.
[0059] [化 18]
Figure imgf000035_0002
中間体 4 化合物 1
[0060] 4, 4 ,ービフエニルジボロン酸 (0. 1 69 g, 0. 698 mm〇 I ) とテトラキス (トリフエニルフォスフイン) パラジウム (0) (Pd(PPh3)4,
0. 226 g, 0. 1 96 mm〇 丨 ) をニロフラスコに入れて窒素で置換し た後、 中間体 4 (0. 730 g, 1. 78mmo l ) をトルエン (5 OmL ) に溶解して加え、 続いて炭酸カリウム (〇. 436 g , 3. 1 5 m m〇 I ) を水 (5 OmL) に溶解して加え、 40時間還流を行った。 反応液を濾過 し、 残渣をジクロロメタンと塩基水溶液で洗浄した後、 〇 _ジクロロべンゼ ン (3 OmL) に溶解し、 1 80°Cに加熱して溶解させた。 この溶液にメタ ノールを加え、 析出した固体をろ取することにより、 目的の化合物 1の黄色 固体を収量〇. 063 g、 収率 1 2. 2%で得た。
】H NMR (500 MHz, CDCl3): S 8.17 (dd, J = 8.5, 1.0 Hz, 4H), 8.04 (d, J = 8.5 Hz, 4H), 7.82-7.84 (m, 6H), 7.72 (s, 2H), 7.47 (dd, J = 10.1, 1.9 Hz, 6H), 7.42-7.46 (m, 4H) 7.29-7.33 (t, 4H), 7.27 (d, J = 0.95 H z, 2H) ; Anal. Calcd for C52H32N202: C, 87.13; H, 4.50; N, 3.91. Found: C
, 86.86; 4.46; 1\1, 3.83.
[0061] (合成例 2) 化合物 2の合成 〇 2020/175624 35 卩(:171? 2020 /008043
[化 19]
Figure imgf000036_0001
中間体 2 中間体 5
[0062] 合成例 1 と同様の工程で得た中間体 2 (1. 039, 5. 26〇1〇1〇 1) と、 ビス (ピナコラート) ジボロン (82卩_1门2, 〇. 6459, 2. 54〇1111〇 I) 、 ビス (ジフエニルホスフイノ) フエロセン] ジクロロパラジウム(II) 炭酸カリウム (2. 1 3
Figure imgf000036_0002
, 、 素置換した後、 ジメチ ルスルホキシド (30〇11_) を加えて 80°〇で 24時間攪拌した。 この反応 液を室温まで冷却して水を加え、 析出物をろ取した。 この析出物を、 へキサ ン:ジクロロメタン = 9 : 1の混合溶媒を展開溶媒に用いてシリカゲルカラ ムクロマトグラフィーにて分離、 精製し、 中間体 5の無色固体を収量 0. 3 799、 収率 62. 0%で得た。
Figure imgf000036_0003
00013): 5 7.78 ( , 2 , 7.65-7.67 (111, ), 7. 55
6, 」 = 8.2, 1.6 , 2 , 6.81 ((^, 」 = 1.1 , 2 ; % 關 (^013): 5 155.8, 145.6, 138.3, 126.7, 122.8, 121.4, 110.3, 106.6; 八 1· 〇31〇(^ 干〇 〇16^1102:
Figure imgf000036_0004
82.04; 4.30. ド〇11门〇1:
Figure imgf000036_0005
81.97; 4.46.
[0063] [化 20]
Figure imgf000036_0006
中間体 5 中間体 6
[0064] 中間体 5 (〇. 3 1 59, 1. 35〇1111〇 1) をテトラヒドロフラン (1
0〇11_) に溶解して、 予めアルゴン置換しておいた三ロフラスコに入れ、 一 40°〇に冷却した後、 n—ブチルリチウム (n—巳リ 1_ 丨, 1. 6 IV!, 2. 80 !_, 4. 34 〇 丨) を滴下して 1時間攪拌した。 この混合物に、 〇 2020/175624 36 卩(:171? 2020 /008043
ヨウ素 (1. 039, 4. 06〇1111〇 1) をテトラヒドロフラン (1 0〇11_
) に溶解させた溶液を滴下した後、 室温に戻し、 さらに 1 2時間攪拌した。 この反応液に、 飽和したチオ硫酸ナトリウム水溶液 (20 !_) を加えた後 、 溶媒を減圧留去し、 酢酸ェチルによる抽出を行った。 有機層を硫酸ナトリ ウムで乾燥し、 さらに溶媒を減圧留去した。 残留物 (反応生成物) を、 ジク ロロメタンを展開溶媒に用いてシリカゲルカラムクロマトグラフィーにて分 離、 精製し、 中間体 6の無色固体を収量〇. 5069、 収率 77. 5%で得 た。
關 (500 11/1 , 00013): 5 7.70 ( , 2 , 7.57 ( 」 = 8.2, 2 , 7.49 」 = 8.2, 1.6 , 2 , 6.99 ( 」 = 0 95 , 2 ; % (^013): 8 161.6, 140.4, 131.2, 125.7, 122.6, 119.9, 112.3, 99.0.
[0065] [化 21]
Figure imgf000037_0001
[0066] 4 - (91~1 -カルバゾールー 9 -イル) フエニルボロン酸 (1. 069,
3. 69〇1〇1〇 丨) 、 テトラキス (トリフエニルフォスフイン) パラジウム
(0) (卩 卩卩 , 0. 1 249, 0.
Figure imgf000037_0002
をニロフラスコに 入れて窒素で置換した後、 中間体 6 (0. 5 1 09, 1.
Figure imgf000037_0003
を トルエン (50 1_) に溶解して加え、 続いて炭酸カリウム (1. 209, 8. 68〇1〇1〇 丨) を水 (50 1_) に溶解して加え、 48時間還流を行つ た。 反応液を濾過し、 残渣をジクロロメタンと塩基水溶液で洗浄した後、 〇 —ジクロロベンゼン (30 1_) に溶解し、 1 80°〇に加熱して溶解させた 。 この溶液を濾過して触媒を除去し、 メタノールを加えて析出した固体をろ 取することにより、 目的の化合物 2の黄色固体を収量〇. 4649、 収率 6 〇 2020/175624 37 卩(:171? 2020 /008043
2. 2%で得た。
Figure imgf000038_0001
00013): 5 8.17 ( 」 = 8.5, 8 , 7.92 ( , 2 , 7.71-
7.77 (111, 6 , 7.67 ((^, 」 = 8.2, 1.6 , 2 , 7.52 ( 」 = 8.2 , ), 7.43-7.47 (111, ) 7.30-7.33 (111, ), 7.24 ( 」 = 0.63 , 2 ; 】¾ 關 (^013): 5 155.8, 140.6, 138.2, 137.8, 129.3, 128.5, 127.3, 126. 3, 126.0, 123.5, 122.9, 121.3, 120.3, 120.1, 109.8, 109.6, 101.9; 八 1.
Figure imgf000038_0002
87.13; 4.50; 1\1, 3.91. ド〇11门〇1:
Figure imgf000038_0003
86.99;
4.51; 1\1, 3.67.
[0067] [2] 評価
合成した各化合物と下記の
Figure imgf000038_0004
(比較化合物) について、 安定性と発光 特性の評価を行った。
[化 22]
Figure imgf000038_0005
886-0å (比較化合物)
[0068] (安定性の評価)
化合物 1、 2および
Figure imgf000038_0006
について、 それぞれ真空蒸着法にて、 1 〇-4
1 0_5 3の真空度で蒸着膜を形成した後、 溶融させ、 その後、 1\/|[¾分析 を行った。 また、 これとは別に、 化合物 1、 2
Figure imgf000038_0007
をそれぞれ昇華 させた後、 IV! 分析を行った。 ここで、 昇華装置内の圧力は、 真空蒸着装 置内の圧力よりも高くなるため、 昇華温度は真空蒸着法の蒸発温度よりも高 めになる。
Figure imgf000038_0008
スぺクトルにおいて、 真空蒸着前の IV! スぺクトルには見られない小さい ピークが観測され、 不純物の生成が確認された。 また、 昇華後に測定した スペクトルには、 さらに新たな不純物ピークが観測され、 その中には、 フエニルカルバゾールに由来するピークも確認された。 このことから、 858-0 〇 2020/175624 38 卩(:171? 2020 /008043
は、 真空蒸着や昇華などの熱プロセスにより不純物を生じ、 特に昇華の場合 には、 分解がかなり進行することがわかった。 一方、 化合物 1、 2では、 蒸 着膜の溶融後または昇華後に測定した IV! スぺクトルに分解物由来のピー クは認められず、 分解が抑えられていた。
また、 化合物
Figure imgf000039_0001
について、 1 3での熱重量測定 (丁〇 ) および
Figure imgf000039_0002
での熱重量 ·示差熱測定 (丁〇_ 0丁八) を行ったところ
、 昇華温度は同じ程度であったものの、 分解温度は
Figure imgf000039_0003
が 4 7 8 °〇である のに対して、 化合物 1は 5 3 9 °〇、 化合物 2は 5 4 3 °〇であり、 高い分解温 度を示した。
以上の結果から、 化合物 1、 2は、
Figure imgf000039_0004
に比べて熱的安定性が格段に高 いことが確認された。
[0069] (溶液の? !_発光特性および電気化学的特性の評価)
化合物 1、
Figure imgf000039_0005
、 それぞれトルエン、 クロロホルムまたは , 1\1—ジメチルホルムアミ ドに溶解して 9種類の溶液を調製した。 このとき 、 各溶液の濃度は 1 〇_ 5 1\/1とした。
調製した各溶液について、 吸収スぺクトルおよび 3 4 0 n 励起光による 発光特性を調べた。 発光特性の測定結果を表 1 に示す。 ここで、 フォトルミ ネッセンス量子収率 ( し量子収率〇 ) および発光寿命丁については、 大 気下 (_ a \ r) で測定した値と窒素雰囲気下 (_ 1\12) で測定した値の両方を ^した。
[0070]
〔¾二
Figure imgf000040_0001
[0071] 化合物 1、 2および BSB-Czの各溶液は、 吸収スペクトル、 発光寿命 Tおよ び放射速度定数 k rがよく一致していた。 ここで、 放射速度定数 k rは AS E発振閾値と相関があるため、 この結果から、 化合物 1、 2は BSB-Czと同様 に低い AS E発振閾値を示すことが示唆された。 また、 発光ピークについて は、 いずれの化合物も溶媒の極性が大きいもの程 (N, N—ジメチルホルム アミ ド、 クロロホルム、 トルエンの順に) 長波長側にシフトしたが、 そのシ フトの度合は同程度であり、 溶媒が同じもの同士では、 発光極大波長も概ね 同じであった。 一方、 フォトルミネッセンス量子収率は、 化合物 1、 2の溶 液の方が、 BSB-Czの溶液よりも高い値を示した。
このことから、 化合物 1、 2は、 BSB-Czと同様の発光特性を保持しつつ、 安定性と量子収率が向上しており、 発光材料として改善されたものであるこ とがわかった。
[0072] また、 化合物 1および BSB-Czを、 それぞれジクロロメタンに溶解し、 サイ クリックボルタンメ トリー (CV) および微分パルスボルタンメ トリー ( D P V) により電気化学的特性を測定した。 その結果を表 2に示す。 表 2にお ける各値は、 基準物質フエロセンの半波電位を 0として求めたものであり、 HOMO (Highest Occupied Molecular Orbital) および L UMO (Lowest Unoccupied Molecular Orbital) の各エネルギー準位は、 CVにより測定し た酸化電位、 還元電位から算出した。
[0073]
Figure imgf000042_0001
Figure imgf000042_0002
〇 2020/175624 42 卩(:171? 2020 /008043
[0074] 表 2に示すように、 化合物 1 は、 酸化電位、 還元電位がともに類 似しており、 1~1〇1\/1〇ぉょび1_ 111\/1〇の各ェネルギー準位も近ぃ値でぁった
[0075] (単独膜の? 1_発光特性の評価)
石英基板上に真空蒸着法にて、 真空度 1 〇_4? 3以下の条件で化合物 2の 薄膜 (単独膜) を 1 〇〇门 の厚さで形成した。 また、 同様の条件で、 石英 基板上に
Figure imgf000043_0001
の薄膜 (単独膜) を 1 〇〇 n mの厚さで形成した。 形成した 各薄膜について、 原子間力顕微鏡による表面粗さの評価および X線回折分析 による結晶性の評価を行ったところ、 いずれも表面粗さが低く、 アモルファ スであることがわかった。
また、 各単独膜について、 340 n m励起光による発光特性を測定した結 果、 の単独膜は、 発光極大波長ス が 480 n 、 大気下での !_量 子収率〇 が 69%、 大気下での発光寿命丁が 1. 6 n s、 放射速度定数 が 4. 4X 1 083_1であった。 また、 化合物 2の単独膜は、 発光極大波長ス が 452 n m、 大気下での 1_量子収率〇 が 79 %、 窒素雰囲気下での 1-量子収率 0^しが 87%、 大気下での発光寿命丁が 1. 7 n 3、 窒素雰囲 気下での発光寿命丁が 1. 8 n 3、 放射速度定数 1<「が 4. 7 X 1 08 3-1
Figure imgf000043_0002
りも、 ? 1_量子収率および放射速度定数が高く、 発光特性が 改善されていることがわかった。
[0076] (単独膜の光耐久性の評価)
1-発光特性の評価で用いたのと同じ条件で作製した、 化合物 2の単独膜 および
Figure imgf000043_0003
の単独膜に
Figure imgf000043_0004
レーザー光源から強度 1 8 で連続照射し、 その発光強度の経時変化を調べた。 その結果を図 2に示 す。 なお、 ここでは各薄膜で励起子密度が等しくなるように照射強度を調節 した。
図 2に示すように、 化合物 2の単独膜では、 励起光照射の間、 発光強度が 一定に保たれているのに対して、 の単独膜では、 発光強度が経時的に 減少した。 このことから、 化合物 2は、 に比べて励起状態での安定性 〇 2020/175624 43 卩(:171? 2020 /008043
(光耐久性) が高く、 励起子密度が必然的に高くなるレーザー材料用の化合 物として適していることがわかった。
[0077] (ドープ膜の 1_発光特性の評価)
石英基板上に真空蒸着法にて、 真空度 1 〇_4? 3以下の条件で、 化合物 2 と〇巳 とを異なる蒸着源から共蒸着し、 化合物 2の濃度が 6. 0重量%で ある薄膜 (ドープ膜) を 1 30 n の厚さで形成した。 また、 同様の条件で 、 石英基板上に、
Figure imgf000044_0001
0巳?とを異なる蒸着源から共蒸着し、
Figure imgf000044_0002
濃度が 6. 0重量%である薄膜 (ドープ膜) を 1 30 n mの厚さで形成した 各ドープ膜について、 340 n 励起光による発光特性を測定したところ
Figure imgf000044_0003
ドープ膜は、 発光極大波長ス が 462 n 、 大気下での !_量 子収率 0^しが 87%、 大気下での発光寿命丁が 1. 1 n 3, 放射速度定数 1<「 が 7. 9X 1 083_1であった。 また、 化合物 2のドープ膜は、 発光極大波長 ス が 445 n 、 大気下および窒素雰囲気下での 1_量子収率〇 が共に 1 〇〇%、 大気下での発光寿命丁が 1. 3 n 3、 窒素雰囲気下での発光寿命 丁が 1. 6 n 3、 放射速度定数 1<「が 7. 6 X 1 083 _ 1であり、
Figure imgf000044_0004
—プ膜に比べて高い量子収率を示した。
[0078] (ドープ膜の八 3巳発光特性の評価)
1-発光特性の評価で用いたのと同じ条件で作製した、 化合物 2のドープ 膜および
Figure imgf000044_0005
のドープ膜について、 窒素ガスレーザーの 337 n 励起光 による 3巳発光特性を調べた。
化合物 2のドープ膜について、 発光強度と発光ピーク半値全幅 1~1 IV!の 励起強度依存性を測定した結果を図 3に示し、 1_スぺクトルおよび 3巳 スペクトルを図 4に示す。 1_スペクトルは〇. 7 」 /〇〇12の励起強度で 測定した発光スペクトルである。
Figure imgf000044_0006
のドープ膜について、 発光強度と発 光ピーク半値全幅
Figure imgf000044_0007
91_スぺクトルおよび八 3巳スぺクトルを図 6に示す。 1_スぺクトルは、
0.
Figure imgf000044_0008
した発光スペクトルであり、 八 3巳スぺ 〇 2020/175624 44 卩(:171? 2020 /008043
クトルは、 1 5 」/〇 2の励起強度で測定した発光スペクトルである。 図 3、 5に示すように、 いずれのドープ膜も、 発光強度の励起強度依存性 グラフにおいて、 その傾きが変化する変化点 (閾値巳〇) が確認されるとと もに、 励起強度に依存して 1~1 IV!が狭くなる相関関係が認められた。 また 、 図 4、 6に示すように、 閾値巳〇以上の励起強度で、
Figure imgf000045_0001
ピークと認め うる急峻な発光ピークが観測された。 ここで、 これらの測定結果から、 358-0
Figure imgf000045_0002
が 4 4 2 n m、 八3巳閾値巳〇が〇. 9 0 」 /〇 2で、
Figure imgf000045_0003
ドープ膜と 同等であった。
以上の結果から、 一般式 (1) で表される化合物は、
Figure imgf000045_0004
と同様に、 八 3巳を放射しうる化合物であり、 さらに、
Figure imgf000045_0005
りも量子収率と安定性が 高く、 より優れた発光材料であることがわかった。
[0079] (単独膜の 3巳発振時の耐久性の評価)
!_発光特性の評価で用いたのと同じ条件で作製した、 化合物 1の単独膜 および化合物 2の単独膜および
Figure imgf000045_0006
の単独膜に、 3日発光特性の評価で 用いたのと同じ励起光源
Figure imgf000045_0007
パルス幅 0 . 8 1^ 3、 1 0 1~1 2) を 用い、 3巳発振しきい値よりも十分に高い強度 9 5 0 」/〇〇^で照射を 行い、 窒素雰囲気下で、 その発光強度の経時変化を調べた。 その結果を図 7 に示す。 なお、 横軸は測定時間を示す。
図 7に示すように、 化合物 1および化合物 2の単独膜の発光強度の減少は 、 の単独膜の発光強度の減少よりも小さかった。 このことから、 化合 物 1および化合物 2は、
Figure imgf000045_0008
に比べてレーザー発振状態においても安定性 (光耐久性) が高く、 レーザー材料用の化合物として適していることがわか つた。
[0080] \¥0 2020/175624 45 卩(:17 2020 /008043
[化 23]
Figure imgf000046_0001
産業上の利用可能性
[0081 ] 本発明の化合物は、 高い量子収率と低い
Figure imgf000046_0002
巳閾値を示し、 安定性も高い 。 そのため、 本発明の化合物を有機半導体レーザー素子の発光材料として用 いることにより、 レーザー発振閾値が低い阪有機半導体レーザー素子を実現 しうる。 このため、 本発明は産業上の利用可能性が高い。
符号の説明
[0082] 1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 陰極

Claims

〇 2020/175624 46 卩(:171? 2020 /008043
請求の範囲
[請求項 1 ] 下記一般式 (1) で表される化合物。
一般式 ( 1)
2 1 _ 1_ _ 2 2
[—般式 (1) において、 1および 2は各々独立に置換もしくは 無置換のジアリールアミノ基を表し、 前記ジアリールアミノ基を構成 する 2つのアリール基は互いに直接または連結基を介して結合してい る。 1_は、 ベンゾフラン構造を含む共役系連結基を表し、
Figure imgf000047_0001
2 を結ぶ連結鎖中に 5つ以上の環を含む。 ]
[請求項 2] 前記共役系連結基が、 置換もしくは無置換のベンゼン環、 置換もし くは無置換のフラン環、 置換もしくは無置換の複素芳香環、 および置 換もしくは無置換のエテニレン基から選択される 2以上が連結した構 造を有する (ここで前記ベンゼン環とフラン環は縮合していてもよく 、 また、 前記フラン環と前記複素芳香環は縮合していてもよい) 、 請 求項 1 に記載の化合物。
[請求項 3] 前記共役系連結基が置換もしくは無置換のベンゾフランー 2 , 6 _ ジイル基を含む、 請求項 1 または 2に記載の化合物。
[請求項 4] 前記共役系連結基が、 下記の群 から選択される 1以上の基が連結 した構造を有する、 請求項 1〜 3のいずれか 1項に記載の化合物。
\¥0 2020/175624 47 ?01/1?2020/008043
[化 1]
Figure imgf000048_0001
[上記の群八の各基における水素原子は置換されていてもよい。 *は 連結位置を示す。 上記の群 の中からはベンゾフラン構造を含む基が 少なくとも 1つは選択される。 また、 上記の群八の中のベンゾフラン 構造を含む基とフルオレン構造を含む基は、 それらの基を構成するべ ンゼン環の環骨格構成原子の少なくとも 1つが窒素原子に置換されて いてもよい。 ]
[請求項 5] 前記共役系連結基が、 下記の一般式 (2) で表される基を含む、 請 求項 1〜 4のいずれか 1項に記載の化合物。
[化 2]
Figure imgf000048_0002
は互いに結合して一〇一を形成 する。
Figure imgf000048_0003
および は、 各々独立に水素原子または置換基を表すか 、 互いに結合して連結基を形成する。 *は連結位置を す。 _般式 ( 〇 2020/175624 48 卩(:171? 2020 /008043
2) 中のベンゼン環に結合している水素原子は置換基で置換されてい てもよい。 ]
[請求項 6] 前記共役系連結基の鎖長原子数が 1 〇〜 30である、 請求項 1〜 5 のいずれか 1項に記載の化合物。
[請求項 7] 1および 2が各々独立に下記一般式 (3) で表される基である 、 請求項 1〜 6のいずれか 1項に記載の化合物。
[化 3]
Figure imgf000049_0001
、 。は、 各々独立に水素原子また は置換基を表す。
Figure imgf000049_0002
を形成する。
Figure imgf000049_0003
、 [¾16と[¾17、 [¾17と[¾18、 [¾18と[¾19、 [¾19と[¾20は、 互いに 結合して環状構造を形成していてもよい。 氺は結合位置を示す。 ]
[請求項 8] 1および 2が各々独立に下記一般式 (4) 〜 (8) のいずれか で表される基である、 請求項 1〜 6のいずれか 1項に記載の化合物。
〇 2020/175624 49 卩(:171? 2020 /008043
[化 4-1]
Figure imgf000050_0001
〇 2020/175624 50 卩(:171? 2020 /008043
[化 4-2]
Figure imgf000051_0001
[—般式 (4) 〜 (8) において、 [¾21~[¾24、 [¾27~[¾38、 [¾41 〜848、 851〜858、 861〜865、
Figure imgf000051_0002
各々独立に水 素原子または置換基を表す。 [¾21と[¾22、 [¾22と[¾23
Figure imgf000051_0003
、 [¾27と[¾28、 [¾28と[¾29、 [¾29と[¾30、 [¾31と[¾32、 [¾32と 3、 [¾33と[¾34、 [¾35と 836、 [¾36と 837、 [¾37と 838、 [¾41と 8
42、 [¾42と[¾43、 [¾43と[¾44、 [¾45と[¾46、 [¾46と[¾47、 [¾47と 848、 851と 852、 852と 853、 [¾53と 854、 [¾55と 856、 856 と 857、 [¾57と 858、 861と 862、 862と 863、 [¾63と 864、 86 4と ^65、 [¾54と ^61、 ^55と ^65、 ^81と ^82、 [¾82と ^83、 ^
83と[¾84、 [¾85と[¾86、 [¾86と[¾87、 [¾87と[¾88、 [¾89と[¾90は 、 互いに結合して環状構造を形成していてもよい。 氺は結合位置を示 す。 ]
[請求項 9] 1および 2が各々独立に前記一般式 (4) で表される基である
、 請求項 8に記載の化合物。
[請求項 10] 請求項 1〜 9のいずれか 1項に記載の化合物からなる発光材料。 〇 2020/175624 51 卩(:171? 2020 /008043
[請求項 1 1 ] 自然放出増幅光を放射する、 請求項 1 0に記載の発光材料。
[請求項 12] 有機半導体レーザー素子用の発光材料である、 請求項 1 0または 1
1 に記載の発光材料。
[請求項 13] 下記一般式 (1) で表される化合物を含む有機半導体レーザー素子 一般式 ( 1)
2 1 _ 1_ _ 2 2
[—般式 (1) において、 1および 2は各々独立に置換もしくは 無置換のジアリールアミノ基を表し、 前記ジアリールアミノ基を構成 する 2つのアリール基は互いに直接または連結基を介して結合してい る。 1_は、 ベンゾフラン構造を含む共役系連結基を表す。 ]
PCT/JP2020/008043 2019-02-27 2020-02-27 化合物、発光材料および有機半導体レーザー素子 WO2020175624A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502368A JPWO2020175624A1 (ja) 2019-02-27 2020-02-27 化合物、発光材料および有機半導体レーザー素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-034969 2019-02-27
JP2019034969 2019-02-27
JP2019228277 2019-12-18
JP2019-228277 2019-12-18

Publications (1)

Publication Number Publication Date
WO2020175624A1 true WO2020175624A1 (ja) 2020-09-03

Family

ID=72239673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008043 WO2020175624A1 (ja) 2019-02-27 2020-02-27 化合物、発光材料および有機半導体レーザー素子

Country Status (3)

Country Link
JP (1) JPWO2020175624A1 (ja)
TW (1) TW202043216A (ja)
WO (1) WO2020175624A1 (ja)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142263A (ja) * 2001-10-30 2003-05-16 Matsushita Electric Ind Co Ltd 発光素子およびこれを用いた装置
JP2006265172A (ja) * 2005-03-24 2006-10-05 Japan Science & Technology Agency 新規カルバゾール誘導体並びにそれを用いた有機エレクトロルミネッセンス素子および有機半導体レーザー素子
JP2008098433A (ja) * 2006-10-12 2008-04-24 Kyushu Univ カルバゾール誘導体及びこれを用いた有機固体レーザー材料
JP2008106032A (ja) * 2006-09-25 2008-05-08 Kyushu Univ カルバゾール誘導体及びこれを用いた有機固体レーザー材料
JP2008163190A (ja) * 2006-12-28 2008-07-17 Kyushu Univ ジフェニルエテン誘導体およびそれを用いた有機固体レーザー材料
JP2010059147A (ja) * 2008-07-14 2010-03-18 Gracel Display Inc 新規の有機電界発光化合物およびこれを使用する有機電界発光素子
WO2012050001A1 (ja) * 2010-10-12 2012-04-19 新日鐵化学株式会社 含カルコゲン芳香族化合物、有機半導体材料及び有機電子デバイス
JP2015536567A (ja) * 2012-10-31 2015-12-21 メルク パテント ゲーエムベーハー 電子素子
JP2017175128A (ja) * 2016-03-18 2017-09-28 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
CN107573307A (zh) * 2017-10-25 2018-01-12 长春海谱润斯科技有限公司 一种有机电致发光材料及有机发光器件
CN107602336A (zh) * 2017-09-12 2018-01-19 长春海谱润斯科技有限公司 一种蒽类衍生物及其合成方法和有机发光器件
JP2018503622A (ja) * 2014-12-23 2018-02-08 メルク パテント ゲーエムベーハー 2個のジベンゾフランまたはジベンゾチオフェン置換基を有するカルバゾール
CN107698601A (zh) * 2016-08-09 2018-02-16 株式会社Lg化学 杂环化合物及包含其的有机电致发光元件
WO2018060307A1 (de) * 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
US20180105534A1 (en) * 2016-09-30 2018-04-19 Nanjing Topto Materials Co.,Ltd. Organic electroluminescent compound and organic electroluminescent device
CN108424411A (zh) * 2017-09-30 2018-08-21 北京绿人科技有限责任公司 具有对称结构的三嗪化合物及其应用和有机电致发光器件
JP2018524803A (ja) * 2015-06-03 2018-08-30 ユー・ディー・シー アイルランド リミテッド 減衰時間がきわめて短く高度に効率的なoledデバイス
CN108892674A (zh) * 2018-08-12 2018-11-27 瑞声科技(南京)有限公司 一种热延迟荧光化合物及其应用
WO2018221173A1 (ja) * 2017-06-02 2018-12-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142263A (ja) * 2001-10-30 2003-05-16 Matsushita Electric Ind Co Ltd 発光素子およびこれを用いた装置
JP2006265172A (ja) * 2005-03-24 2006-10-05 Japan Science & Technology Agency 新規カルバゾール誘導体並びにそれを用いた有機エレクトロルミネッセンス素子および有機半導体レーザー素子
JP2008106032A (ja) * 2006-09-25 2008-05-08 Kyushu Univ カルバゾール誘導体及びこれを用いた有機固体レーザー材料
JP2008098433A (ja) * 2006-10-12 2008-04-24 Kyushu Univ カルバゾール誘導体及びこれを用いた有機固体レーザー材料
JP2008163190A (ja) * 2006-12-28 2008-07-17 Kyushu Univ ジフェニルエテン誘導体およびそれを用いた有機固体レーザー材料
JP2010059147A (ja) * 2008-07-14 2010-03-18 Gracel Display Inc 新規の有機電界発光化合物およびこれを使用する有機電界発光素子
WO2012050001A1 (ja) * 2010-10-12 2012-04-19 新日鐵化学株式会社 含カルコゲン芳香族化合物、有機半導体材料及び有機電子デバイス
JP2015536567A (ja) * 2012-10-31 2015-12-21 メルク パテント ゲーエムベーハー 電子素子
JP2018503622A (ja) * 2014-12-23 2018-02-08 メルク パテント ゲーエムベーハー 2個のジベンゾフランまたはジベンゾチオフェン置換基を有するカルバゾール
JP2018524803A (ja) * 2015-06-03 2018-08-30 ユー・ディー・シー アイルランド リミテッド 減衰時間がきわめて短く高度に効率的なoledデバイス
JP2017175128A (ja) * 2016-03-18 2017-09-28 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
CN107698601A (zh) * 2016-08-09 2018-02-16 株式会社Lg化学 杂环化合物及包含其的有机电致发光元件
WO2018060307A1 (de) * 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
US20180105534A1 (en) * 2016-09-30 2018-04-19 Nanjing Topto Materials Co.,Ltd. Organic electroluminescent compound and organic electroluminescent device
WO2018221173A1 (ja) * 2017-06-02 2018-12-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN107602336A (zh) * 2017-09-12 2018-01-19 长春海谱润斯科技有限公司 一种蒽类衍生物及其合成方法和有机发光器件
CN108424411A (zh) * 2017-09-30 2018-08-21 北京绿人科技有限责任公司 具有对称结构的三嗪化合物及其应用和有机电致发光器件
CN107573307A (zh) * 2017-10-25 2018-01-12 长春海谱润斯科技有限公司 一种有机电致发光材料及有机发光器件
CN108892674A (zh) * 2018-08-12 2018-11-27 瑞声科技(南京)有限公司 一种热延迟荧光化合物及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A IMONO, TAKANORI: "100% fluorescene efficiency of 4, 4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold", APPLIED PHYSICS LETTERS, vol. 86, 2005, pages 071110, XP012066316 *
MITSUI, C.: "Bis(carbazolyl)benzodifuran has a high triplet energy level for application in blue phosphorescent OLED, Chemistry", AN ASIAN JOURNAL, vol. 6, 2011, pages 22 96 - 2300, XP055734608 *
TSUJI, H.: "Bis(carbazolyl)benzodifuran: a high-mobility ambipolar material for homojunction organic light-emitting diode devices", ADVANCED MATERIALS, vol. 21, 2009, pages 3776 - 3779, XP055734437 *
TSUJI, H.: "Modular synthesis and photophysical and electrochemical properties of 2, 3, 5, 6-tetraaryl substituted benzo[l, 2-b:5, 4-b']difurans", HETEROATOM CHEMISTRY, vol. 22, no. 3/4, 2011, pages 316 - 324, XP055629683, DOI: 10.1002/hc.20682 *

Also Published As

Publication number Publication date
TW202043216A (zh) 2020-12-01
JPWO2020175624A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6493220B2 (ja) 発光材料、有機発光素子および化合物
JP5594750B2 (ja) 化合物、発光材料および有機発光素子
JP6530318B2 (ja) 発光材料、有機発光素子および化合物
JP6284370B2 (ja) 発光材料、有機発光素子および化合物
JP5679496B2 (ja) 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6542122B2 (ja) 有機金属錯体、発光材料、遅延蛍光体および有機発光素子
JP5281270B2 (ja) イリジウム錯体化合物、それを用いた有機エレクトロルミネッセンス素子およびその用途
JP6600298B2 (ja) 発光材料、有機発光素子および化合物
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
JP6466913B2 (ja) 発光材料、有機発光素子および化合物
JP6383538B2 (ja) 発光材料、有機発光素子および化合物
WO2014034535A1 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
WO2010113761A1 (ja) 有機電界発光素子
JP7410571B2 (ja) 化合物、発光材料、遅延蛍光体、有機発光素子、酸素センサー、分子の設計方法およびプログラム
WO2018047948A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2019176971A1 (ja) 電荷輸送材料、化合物および有機発光素子
KR102503744B1 (ko) 지연 형광 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치
WO2020175624A1 (ja) 化合物、発光材料および有機半導体レーザー素子
CN114450814A (zh) 激光元件、化合物、化合物的制造方法、激光增感剂
KR102454043B1 (ko) 지연 형광 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치
WO2018008673A1 (ja) 有機エレクトロルミネッセンス材料及びこれを用いた有機エレクトロルミネッセンス素子
WO2023120277A1 (ja) 有機エレクトロルミネッセンス素子、薄膜、化合物、遅延蛍光発光体および有機半導体レーザー
JP2018111751A (ja) 発光材料、化合物および有機発光素子
JP2006108369A (ja) 燐光を利用した有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763298

Country of ref document: EP

Kind code of ref document: A1