WO2020175593A1 - 膜ろ過ユニットの運転方法および膜ろ過ユニット - Google Patents

膜ろ過ユニットの運転方法および膜ろ過ユニット Download PDF

Info

Publication number
WO2020175593A1
WO2020175593A1 PCT/JP2020/007878 JP2020007878W WO2020175593A1 WO 2020175593 A1 WO2020175593 A1 WO 2020175593A1 JP 2020007878 W JP2020007878 W JP 2020007878W WO 2020175593 A1 WO2020175593 A1 WO 2020175593A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
filtrate
fiber membrane
liquid
valve
Prior art date
Application number
PCT/JP2020/007878
Other languages
English (en)
French (fr)
Inventor
憲太郎 小林
小林 敦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US17/432,675 priority Critical patent/US20220032234A1/en
Priority to CN202080017064.6A priority patent/CN113453789B/zh
Priority to JP2020523467A priority patent/JP6791457B1/ja
Priority to EP20762959.3A priority patent/EP3932527A4/en
Publication of WO2020175593A1 publication Critical patent/WO2020175593A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/046Hollow fibre modules comprising multiple hollow fibre assemblies in separate housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2221/00Applications of separation devices
    • B01D2221/06Separation devices for industrial food processing or agriculture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/20Operation control schemes defined by a periodically repeated sequence comprising filtration cycles combined with cleaning or gas supply, e.g. aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for operating a membrane filtration unit and a membrane filtration unit.
  • Membrane filtration using a separation membrane is used in various fields such as drinking water production, water treatment fields such as water purification or wastewater treatment, fermentation fields involving culturing of microorganisms and cultured cells, or the food industry field. Has been done. Among them, membrane filtration using a hollow fiber membrane module is used in many fields because of the large amount of treated water and the ease of cleaning.
  • the turbidity of the undiluted solution is often higher than that of the undiluted solution in the water treatment field.
  • the separation membrane is clogged rapidly. proceed. Therefore, in this application, a cross-flow filtration operation that can further suppress the clogging of the separation membrane is performed.
  • the cross-flow filtration operation is a method in which the flow of the stock solution parallel to the surface of the separation membrane is always applied, and a part of it is filtered. In this method, it is possible to operate while preventing the accumulation of suspended matter on the surface of the separation membrane due to the action of the flow parallel to the surface of the separation membrane, so that it is possible to significantly reduce the clogging of the separation membrane.
  • Patent Document 1 discloses a method in which a pressurized gas is introduced into the undiluted solution side in a tank equipped with a filtration element, and all undiluted solution remaining in the tank is recovered in the filtered solution side. Even in a filtration unit that uses a separation membrane, add it to the stock solution side. ⁇ 0 2020/175593 2 (: 17 2020 /007878
  • Patent Document 2 in a membrane filtration unit including a plurality of hollow fiber membrane modules, the raw solution remaining in the hollow fiber membrane modules and pipes is collected in one hollow fiber membrane module. , A method of membrane filtration is disclosed
  • Patent Document 1 Japanese Patent Laid-Open No. 08-006660
  • Patent Document 2 International Publication No. 2000/0 1 8 4 9 7 Summary of Invention
  • Patent Document 2 Even the method described in Patent Document 2 has not been able to reduce the amount of residual liquid on the filtrate side of the separation membrane.
  • the present invention is a membrane filtration unit for reducing the amount of residual liquid on the filtrate side in a membrane filtration unit even when a resin having a high hydrophobicity is used as a separation membrane. It is intended to provide an operating method and a membrane filtration unit. Means for solving the problem
  • the present invention provides the following method for operating a membrane filtration unit. ⁇ 02020/175593 3 ⁇ (: 170? 2020 /007878
  • a container having a raw liquid inlet, a filtrate outlet, and a raw liquid outlet is provided with a plurality of hollow fiber membrane modules filled with hollow fiber membranes, and a plurality of the hollow fiber membranes are provided.
  • a method for operating a membrane filtration unit in which modules are connected in parallel in which a stock solution is introduced into the container from the stock solution inlet, and the hollow fiber membrane is filtered from a primary side to a secondary side. Then, the obtained filtrate is discharged from the filtrate outlet to the outside of the container, a filtration step, and the filtrate existing in the container is backflowed from the secondary side to the primary side of the hollow fiber membrane.
  • the obtained backflow liquid is discharged to the outside of the container from at least one of the stock solution inlet port and the stock solution outlet port, and an aggregation step, and the backflow liquid is at least the stock solution inlet port and the stock solution outlet port.
  • a method for operating a membrane filtration unit wherein the relationship of n 1 3 n 2 >n 3 is satisfied, where the number of hollow fiber membrane modules that simultaneously perform the recovery step is 0 3 .
  • the undiluted solution inlet of the hollow fiber membrane module for performing the recovery step is arranged below the undiluted solution inlet of the hollow fiber membrane module for which the recovery step is not performed.
  • the present invention provides the following membrane filtration unit.
  • a container having a stock solution inlet, a filtered solution outlet, and a stock solution outlet is provided with a plurality of hollow fiber membrane modules filled with a hollow fiber membrane, and a plurality of the hollow fiber membranes are provided.
  • the second pressurized gas introduction pipe for introducing a pressurized gas is connected to the pipe connected to the filtrate outlet, and the hollow fiber membrane module of _ part is the filtrate outlet and the Membrane filtration unit, which is provided with a valve on the pipe that connects with the second pressurized gas introduction pipe.
  • a part of the hollow fiber membrane module further includes a bypass pipe connecting the filtrate outlet port and a filtrate recovery pipe or a filtrate tank, wherein the bypass pipe is the second pressurization pipe.
  • the present invention even when a resin having a high degree of hydrophobicity is used as the separation membrane, it is possible to significantly reduce the residual liquid amount on the filtrate side in the membrane filtration unit. Improved recovery of the stock solution is achieved. Furthermore, it is possible to reduce the time required to collect the residual liquid on the filtrate side of the membrane filtration unit, and it is possible to significantly improve the operating rate of the device.
  • Fig. 1 shows a hollow structure of a membrane filtration unit to which the operation method of the present invention is applied. ⁇ 0 2020/175593 5 ⁇ (: 170? 2020 /007878
  • FIG. 2 is a schematic flow chart showing one embodiment of a membrane filtration unit to which the operating method of the present invention is applied.
  • FIG. 3 is a schematic flow chart showing another embodiment of the membrane filtration unit to which the operation method of the present invention is applied.
  • FIG. 4 is a schematic flow chart showing another embodiment of the membrane filtration unit to which the operating method of the present invention is applied.
  • the membrane filtration unit to which the operation method of the present embodiment is applied has a hollow fiber membrane filled in a container having a stock solution inlet, a filtered solution outlet, and a stock solution outlet. It is necessary to provide a plurality of empty fiber membrane modules.
  • FIG. 1 is a schematic view showing one form of a hollow fiber membrane module included in a membrane filtration unit to which the operation method of the present embodiment is applied.
  • FIG. 2 is a schematic flow chart showing one form of a membrane filtration unit to which the operation method of the present embodiment is applied.
  • a plurality of hollow fiber membrane modules 31 to 36 each have a hollow fiber membrane 5 in a container 1 having a stock solution inlet 2, a filtrate outlet 3, and a stock outlet 4 as shown in Fig. 1. It is filled.
  • the hollow fiber membrane modules 3 1 to 3 6 have a hollow fiber membrane 5 filled in the container 1 so that the raw liquid side space 6 (hereinafter referred to as the primary side) and the filtrate side space 7 (hereinafter referred to as the secondary side). ), the raw liquid inlet 2 is located on the primary side, and the filtrate outlet 3 is located on the secondary side.
  • the hollow fiber membrane module 3 1-3 6 _ are arranged next to the side, to derive the introduced stock in the container 1, has a stock outlet 4.
  • the liquid drawn from the hollow fiber membrane module is collected in a single pipe, which is the state of connection.
  • the operating method of the membrane filtration unit of the present embodiment includes the following three steps.
  • a stock solution is introduced into the container from the stock solution inlet, and the hollow fiber membrane is filtered from the primary side to the secondary side, and the obtained filtrate is used as the filtrate. This is a step of leading out of the container from the outlet.
  • the undiluted solution is introduced into the container 1 through the undiluted solution inlet 2 and filtered from the primary side to the secondary side of the hollow fiber membrane 5 to obtain the filtrate. Is drawn out of the container 1 through the filtrate outlet 3.
  • the filtration from the primary side to the secondary side of the hollow fiber membrane is preferably pressure filtration.
  • the filtrate present in the container is allowed to flow back from the secondary side of the hollow fiber membrane to the primary side, and the resulting backflow solution is fed to the stock solution inlet and the stock solution. It is a step of leading out of the container from at least one of the outlets.
  • the filtrate existing on the secondary side in the container 1 is made to flow back from the secondary side of the hollow fiber membrane 5 to the primary side, and the obtained backflow liquid is obtained. Is discharged out of the container 1 through the stock solution inlet 2 and/or the stock solution outlet 4.
  • the backflow liquid is introduced into the container again from at least one of the stock solution inlet and the stock solution outlet, and filtered from the primary side to the secondary side of the hollow fiber membrane. Then, the obtained recovered liquid is discharged from the filtrate outlet to the outside of the container.
  • the backflow liquid is introduced into the container 1 through the raw liquid inlet 2 and/or the raw liquid outlet 4, and the hollow fiber membrane 5 from the primary side to the secondary side.
  • the recovered liquid obtained by filtration is discharged to the outside of the container 1 through the filtered liquid outlet.
  • the filtration from the primary side to the secondary side of the hollow fiber membrane is preferably pressure filtration.
  • step ⁇ When the number of hollow fiber membrane modules to be performed in step ⁇ is the number of hollow fiber membrane modules to perform the above aggregation step at the same time 2 , and the number of hollow fiber membrane modules to perform the above recovery step at the same time is 1 ⁇ 3 . , 1 ⁇ , 1 ⁇ 2 , and 3 must satisfy the relation of the following expression 1.
  • each hollow fiber membrane module has a stock solution inlet, a filtrate outlet, and a stock outlet.
  • the container is filled with a hollow fiber membrane.
  • the first pressurized gas introduction pipe for introducing pressurized gas is connected to the pipe or tank connected to the raw liquid inlet or the raw liquid outlet.
  • a second pressurized gas introduction pipe for introducing pressurized gas is connected to the pipe connected to the filtrate outlet.
  • a part of the hollow fiber membrane module is provided with a valve on a pipe connecting the filtrate outlet and the second pressurized gas introducing pipe. It is preferable that some of the hollow fiber membrane modules further include a bypass pipe that connects the filtrate outlet port to the filtrate recovery pipe or the filtered liquid tank, and the bypass pipe is the second pressurized gas inlet pipe. It is preferable not to connect with.
  • the stock solution tank 11 and the stock solution inlets of the hollow fiber membrane modules 31 to 36 are connected by a supply solution pipe 21. ..
  • the supply liquid pipe 21 is branched at a stage subsequent to the supply pump 13 and the supply liquid valve 4 1 arranged in the middle of the supply liquid pipe 21 and connected in parallel to the hollow fiber membrane modules 3 1 to 3 6. ..
  • the filtrate outlet ports of the hollow fiber membrane modules 31 to 36 are connected in parallel with the filtrate tank 12 by a filtrate pipe 22.
  • the stock solution outlets of the hollow fiber membrane modules 31 to 36 are connected in parallel with the stock solution tank 11 by a concentrated solution piping 23.
  • a filtrate valve 42 is provided in the middle of the filtrate pipe 22 and a concentrate valve 43 is provided in the middle of the concentrate pipe 23.
  • the filtered liquid derived from the hollow fiber membrane modules 31 to 35 is contacted with the filtered liquid derived from the hollow fiber membrane module 36. ⁇ 0 2020/175593 8 ⁇ (: 170? 2020 /007878
  • a filtrate dividing valve 4 4 is arranged to prevent the fractionation.
  • a filtrate gas introducing valve 49 is arranged in the middle of the filtrate pipe 42 before the filtrate valve 42, and a second pressurized gas introducing pipe 26 for introducing gas is connected. Has been continued.
  • the first pressurized gas introduction pipe 25 for introducing gas, in which the concentrated liquid gas introduction valve 48 is arranged, is connected. There is.
  • the filtrate tank 12 is further connected to the filtrate pipe 22 by a backwash pipe 27, and in the middle of the backwash pipe 27, the filtrate tank 12 to the hollow fiber membrane module 3 are connected.
  • a backwash pump 14 and a backwash valve 46 are provided to feed the filtrate to 1 to 36.
  • a filtrate bypass pipe 24 is connected between the filtrate outlet of the hollow fiber membrane module 36 and the filtrate division valve 44 in the filtrate pipe 22.
  • the other end of the pipe 24 is connected to a filtrate recovery pipe 28 between the filtrate valve 4 2 and the filtrate tank 12 in the filtrate pipe 22.
  • a filtrate bypass valve 45 is arranged in the middle of the filtrate bypass pipe 24.
  • the feed pump 13 supplies the stock solution to the hollow fiber membrane modules 31 to 36, and the cross-flow filtration operation is performed.
  • the undiluted solution is introduced from the undiluted solution inlet 2 of the hollow fiber membrane modules 31 to 36 to the primary side (undiluted solution side space 6) in the container 1 and flows in parallel to the surface of the hollow fiber membrane 5. While moving on the primary side in container 1, preferably under pressure, part of it is ⁇ 0 2020/175593 9 ⁇ (: 170? 2020 /007878
  • the filtrate is discharged from the filtrate outlet 3 to the outside of the container 1, and is sent to the filtrate tank 12 via the filtrate pipe 22.
  • the unfiltered undiluted solution is discharged as undiluted solution from undiluted solution outlet 4 and is sent to undiluted solution tank 11 via concentrated solution pipe 23.
  • feed liquid valve 41 is open
  • filtrate valve 42 is open
  • concentrate valve 43 is open
  • filtrate dividing valve 44 is open
  • filtrate bypass valve 45 is closed
  • backwash valve 46 Is closed, the backwash bypass valve 47 is open, the concentrate gas introduction valve 48 is closed, and the filtrate gas introduction valve 4 9 is closed.
  • the stock solution tank is filtered for a predetermined time or a predetermined amount of liquid.
  • the concentrated liquid pipe 23 and the primary side of the hollow fiber membrane modules 31 to 36 in the container 1 are emptied.
  • the filtrate is drawn out of the container 1 through the filtrate outlet 3 and is sent to the filtrate tank 12 through the filtrate pipe 22.
  • residual liquid exists in the supply liquid pipe 21, the secondary side of the hollow fiber membrane modules 31 to 36 in the container 1 and the filtered liquid pipe 22.
  • a total volume filtration operation may be performed in addition to the cross flow filtration operation.
  • the stock solution is fed from the filtrate outlet 3 of the hollow fiber membrane module. ⁇ 0 2020/175593 10 ⁇ (: 170? 2020 /007878
  • the undiluted solution introduced to the primary side in Container 1 is not filtered out from undiluted solution outlet 4, but is all filtered from the primary side to the secondary side under pressure.
  • the filtrate is drawn out of the container 1 through the filtrate outlet 3 and sent to the filtrate tank 12 via the filtrate pipe 22.
  • the feed liquid valve 41 is open
  • the filtrate valve 4 2 is open
  • the concentrate valve 4 3 is closed
  • the filtrate dividing valve 4 4 is open
  • the filtrate bypass valve 4 5 is closed
  • the backwash valve 4 6 Is closed
  • the backwash bypass valve 47 is open
  • the concentrate gas introduction valve 48 is closed
  • the filtrate gas introduction valve 4 9 is closed.
  • the concentrated solution is often sent to the stock solution tank 11, but part or all of the concentrated solution is supplied to the feed pump 13
  • the solution may be sent to the latter stage.
  • a circulation pump is provided at the subsequent stage of the supply pump 13 and the concentrated liquid is sent between the supply pump 13 and the circulation pump.
  • a supply pump 1 as shown in Fig. 2 is used as a method for pressurizing the membrane filtration unit.
  • pressurized gas may be introduced into the stock solution tank 11, the supply solution pipe 21 or the concentrated solution pipe 23 for gas pressure filtration.
  • pressurized gas for example, nitrogen gas or carbon dioxide gas is preferable as the pressurized gas, and sterilized gas is more preferable.
  • the above-described cross-flow filtration operation or total-volume filtration operation may be performed alone or in combination. Furthermore, instead of pressurizing the primary side of the container 1, it is possible to filter by suctioning the secondary side of the container 1. In this case, for example, a suction pump may be arranged in the middle of the filtrate pipe 22.
  • the hollow fiber membrane 5 When the filtration step is continued for a long time, the hollow fiber membrane 5 may be clogged and the membrane filtration amount may decrease, or the pressure required for filtration may increase. In order to avoid such a situation, it is also preferable to wash the hollow fiber membrane modules 31 to 36 regularly. ⁇ 0 2020/175593 1 1 ⁇ (: 170? 2020 /007878
  • the hollow fiber membrane modules 31 to 36 are washed by a backwash pump of the filtrate.
  • the liquid is fed to the hollow fiber membrane modules 3 1 to 3 6 at 1 4 and the filtrate is pressurized from the secondary side in the container 1 to the primary side and back-filtered to accumulate inside or on the surface of the hollow fiber membrane 5.
  • Backwashing to wash out the suspended matter is preferable.
  • the feed liquid valve 4 1 is closed, the filtrate liquid valve 4 2 is closed, the concentrate liquid valve 4 3 is open, the filtrate liquid dividing valve 4 4 is open, the filtrate liquid bypass valve 4 5 is closed, and the backwash valve 4 6 Is open, the backwash bypass valve 47 is open, the concentrate gas introduction valve 4 8 is closed, and the filtrate gas introduction valve 4 9 is closed.
  • the number n 1 of hollow fiber membrane modules for performing the filtration step at the same time is not limited, but it is preferable to use all of the plurality of hollow fiber membrane modules connected in parallel.
  • the filtrate existing on the secondary side in the container 1 of the hollow fiber membrane modules 31 to 36 that is, the residual liquid is allowed to flow back to the primary side of the hollow fiber membrane to obtain a reflux liquid.
  • the pressurized gas is introduced from the second pressurized gas introduction pipe 26, and the secondary side in the container 1 of the hollow fiber membrane modules 31 to 36 is pressurized, thereby On the secondary side of the hollow fiber membrane modules 31 to 36, the filtrate outlet port 3, the filtrate valve 42 and the backwash valve 46, and the filtrate present in the filtrate pipe 22. Backflow to the primary side in container 1.
  • the feed liquid valve 4 1 is closed, the filtrate liquid valve 4 2 is closed, the concentrated liquid valve 4 3 is open, the filtered liquid dividing valve 4 4 is open, the filtered liquid bypass valve 4 5 is closed, and the backwash valve 4 is used. 6 is closed, the backwash bypass valve 47 is open, the concentrate gas introduction valve 48 is closed, and the filtrate gas introduction valve 4 9 is open.
  • the backflow liquid is accumulated on the primary side in the container 1, or is discharged from the undiluted solution inlet 2 and is accumulated in the pipe to which the undiluted solution inlet 2 is connected. Also, depending on the secondary side in the container 1 and the volume of the filtered liquid pipe 22, not all of the backflow liquid is stored in the primary side of the container 1, and some of it overflows from the stock solution outlet 4, In some cases, it may be led to the concentrated liquid pipe 23. Derivation of the backflow liquid from the stock solution inlet 2 ⁇ 0 2020/175593 12 ⁇ (: 170? 2020 /007878
  • Derivation from the liquid outlet 4 4 may occur simultaneously.
  • the back flow liquid existing on the primary side in the container 1 of the hollow fiber membrane modules 31 to 35 is introduced into the stock solution by introducing the pressurization gas from the first pressurization gas introduction pipe 25.
  • the feed liquid valve 4 1 is closed, the filtrate liquid valve 4 2 is closed, the concentrate liquid valve 4 3 is closed, the filtrate liquid dividing valve 4 4 is closed, the filtrate liquid bypass valve 4 5 is open, and the backwash valve 4 6 Is closed, the backwash bypass valve 47 is closed, the concentrate gas introduction valve 48 is open, and the filtrate gas introduction valve 4 9 is closed.
  • the backflow liquid may be led out of the container 1 from the stock solution outlet 4 at the same time as or instead of leading the backflow liquid out of the container 1 out of the container 1.
  • the backflow liquid When the backflow liquid is discharged from the stock solution outlet 4 to the outside of the container 1, introduce pressurized gas from the pipe connected to the stock solution inlet 2.
  • pressurized gas is introduced from the second pressurized gas inlet pipe 26 connected to the filtrate outlet 3. .
  • the backwash bypass valve 47 Since the backwash bypass valve 47 is closed, even if the pressurized gas is introduced from the first pressurized gas introduction pipe 25, the inside of the container 1 of the hollow fiber membrane modules 31 to 35 is The back-flow liquid on the primary side is hardly filtered to the secondary side, is discharged from the undiluted solution inlet port 2 to the outside of the container 1, and is sent to the hollow fiber membrane module 36 via the supply liquid pipe 2 1 and concentrated. ..
  • the hollow fiber membrane modules 3 1 to 3 6 are connected to the secondary side in the container 1, the hollow fiber membrane modules 3 1 to 3 6 are provided with a filtrate outlet 3, and a filter.
  • the filtered liquid pipe 22 between the liquid valve 42 and the backwash valve 46 is empty, but the feed liquid pipe 21 and the primary side of the hollow fiber membrane module 31 to 36 in the container 1 are concentrated.
  • Liquid pipe 23 contains residual liquid.
  • filtrate liquid pipe 22 In addition to the method of introducing the pressurized gas from 6, it is also possible to open the filtrate liquid pipe 22 to atmospheric pressure and allow the filtrate to flow back from the secondary side to the primary side in the container 1.
  • feed liquid valve 41 is closed
  • filtrate valve 42 is open
  • concentrate valve 43 is open
  • filtrate dividing valve 44 is open
  • filtrate bypass valve 45 is closed
  • backwash valve. 4 6 closed, backwash ⁇ 0 2020/175593 13 ⁇ (: 170? 2020 /007878
  • the bypass valve 47 can be opened, the concentrate gas introduction valve 48 can be closed, and the filtrate gas introduction valve 4 9 can be closed. If the filtrate tank 12 is opened to the atmospheric pressure, the filtrate pipe 22 is also opened to the atmospheric pressure, and the filtrate in the filtrate pipe 2 2 can flow back. Alternatively, the method of opening the filtrate gas introduction valve 49 at atmospheric pressure may be used.
  • the number 2 of hollow fiber membrane modules for simultaneously performing the aggregation step may be the same as the number n 1 of hollow fiber membrane modules for performing the filtration step.
  • the aggregation process is also performed in the hollow fiber membrane module that performs the recovery process in the latter stage, the amount of the backflow liquid that is filtered in the recovery process is returned to the primary side in the container 1 as the backflow liquid that is to be recovered. And the recovery process will take longer. Therefore, it is preferable to carry out the aggregation step in the hollow fiber membrane module that is subjected to the filtration step and is not subjected to the recovery step.
  • the feed liquid valve 41 is closed, the filtrate valve 4 2 is closed, the concentrate valve 4 3 is open, Filtrate split valve 4 4 is closed, filtrate bypass valve 45 is closed, backwash valve 4 6 is closed, backwash bypass valve 4 7 is open, concentrate gas inlet valve 4 8 is closed, filtrate gas inlet valve 4 9 is open, and the number 2 of hollow fiber membrane modules that perform the aggregation process at the same time is smaller than the number 1 of hollow fiber membrane modules that perform the filtration process. That is, the relationship of 1 ⁇ ! 1 3 2 is satisfied.
  • the backflow liquid is introduced into the container 1 again from at least one of the stock solution inlet 2 and the stock solution outlet 4, and the hollow fiber membrane 5 is filtered from the primary side to the secondary side.
  • the backflow liquid is collected in the hollow fiber membrane module 36 together with the remaining backflow liquid, and Pressurized gas is introduced from the pressurized gas introduction pipe 25, and pressure filtration is performed.
  • the aggregated backflow liquid and stock solution are introduced from the stock solution inlet 2 to the primary side in the container 1 and filtered to the secondary side in the container 1 by gas pressure filtration. ..
  • the recovered liquid obtained by filtration is led out of the container through the filtered liquid outlet 3 and sent to the filtered liquid tank 12 via the filtered liquid bypass valve 45. Gas pressure filtration is continued until the filtrate cannot be discharged from the container 1 through the filtrate outlet 3 of the hollow fiber membrane module 36.
  • the filtrate pipe 22 between the dividing valve 4 4, the filtrate valve 4 2 and the backwash valve 4 6 becomes empty, and the feed liquid pipe 2 1, the hollow fiber membrane module 3 6 secondary side in the container 1, The filtrate only remains in the filtrate bypass pipe 24.
  • the number of hollow fiber membrane modules n 3 for simultaneously performing the recovery step is set to be smaller than the number of hollow fiber membrane modules 1 and 2 at which the aggregation step is simultaneously performed, so that the number of hollow fiber membrane modules n
  • the residual liquid existing on the secondary side or in the filtrate pipe 22 can be recovered through the hollow fiber membrane module that carries out the recovery step.
  • 3 is the number of hollow fiber membrane modules for implementing the recovery step limits especially not, be properly determined and the residual fluid volume of the membrane filtration unit in bets, from the time or the like in the recovery step
  • it is preferable to have one hollow fiber membrane module (1 ⁇ 3 1) perform the recovery process.
  • the hollow fiber membrane 5 may be clogged and the membrane filtration rate may be reduced. In order to avoid such a situation, it is also preferable to regularly wash the hollow fiber membrane module.
  • the feed liquid valve 41 is closed, the filtrate valve 4 2 is closed, the concentrate valve 4 3 is open, and the filtrate division valve. 4 4 is open, filtrate bypass valve 4 5 is closed, backwash valve 4 6 is open, backwash bypass valve 4 7 is closed, concentrate gas introduction valve 4 8 ⁇ 0 2020/175593 15 ⁇ (: 170? 2020 /007878
  • the feed valve 41 is closed, the filtrate valve 42 is closed, the concentrate valve 43 is closed, and the filtrate dividing valve 44 is open.
  • the filtrate bypass valve 45 is open, the backwash valve 46 is closed, the backwash bypass valve 47 is open, the concentrate gas introduction valve 48 is closed, and the filtrate gas introduction valve 49 is open.
  • the feed liquid valve 4 1 is closed, the filtrate valve 4 2 is open, the concentrate valve 4 3 is closed, the filtrate dividing valve 4 4 is closed, and filtration is performed.
  • the liquid bypass valve 45 is closed, the backwash valve 46 is closed, the backwash bypass valve 47 is closed, the concentrate gas introduction valve 48 is closed, and the filtrate gas introduction valve 49 is open.
  • the concentration step and the recovery step may be repeated multiple times. I do not care.
  • the hollow fiber membrane module that performs the aggregation process and the hollow fiber membrane module that performs the recovery process are different. In such a case, the aggregation process and the recovery process are performed in parallel. It is also possible to let. More specifically, for example, by introducing the pressurized gas from the second pressurized gas introduction pipe 26 and the first pressurized gas introduction pipe 25 at the same time, the aggregation process and the recovery process are performed in parallel. Can be carried out. In this case, the feed liquid valve 4 1 is closed, the filtrate liquid valve 4 2 is closed, the concentrated liquid valve 4 3 is closed, the filtered liquid dividing valve 4 4 is closed, the filtered liquid bypass valve 4 5 is open, and the backwash valve 4 is used.
  • the pressurized gas introduced from the second pressurized gas introducing pipe 26 causes the hollow fiber membrane modules 31 to 35 to Filtration between the secondary side in the container 1 and the filtrate outlet port 3 of the hollow fiber membrane modules 31 to 35 and the filtrate dividing valve 44, the filtrate valve 42 and the backwash valve 46.
  • the filtrate existing in the liquid pipe 22 flows back to the primary side in the container 1 of the hollow fiber membrane modules 31 to 35, and a backflow liquid is obtained.
  • the pressurized gas introduced from the first pressurized gas introduction pipe 25 causes the backflow liquid on the primary side in the container 1 of the hollow fiber membrane modules 31 to 35 to be discharged from the stock solution inlet 2 and supplied.
  • Liquid is fed to the hollow fiber membrane module 36 via the liquid pipe 21 and concentrated.
  • the concentrated backflow liquid is introduced into the primary side of the container 1 through the undiluted solution inlet 2 and is filtered to the secondary side of the container 1 by gas pressure filtration.
  • the filtered collected liquid is sent to the tank through the filtered liquid bypass pipe 24 and collected because the filtered liquid dividing valve 44 is closed and the filtered liquid bypass valve 45 is opened.
  • the aggregation process and the collection process can be performed in parallel by the method as described above, the time required for the aggregation process and the collection process can be reduced, and the operation rate of the membrane filtration unit can be reduced. Can be improved.
  • the undiluted solution inlet 2 of the hollow fiber membrane module 36 for performing the recovery step is set to the hollow fiber membrane for which the recovery step is not performed.
  • the pressurized gas is introduced from the first pressurized gas introduction pipe 25 to the hollow fiber membrane module 36, and the backflow solution and the stock solution are introduced. Are collected, and the backflow liquid and the stock liquid are subjected to gas pressure filtration in the hollow fiber membrane module 36.
  • the hollow fiber membrane modules 3 1 to 3 5 The backflow liquid existing below the lower end of the hollow fiber membrane 5 on the primary side in 1 and the stock solution existing in the supply liquid pipe 21 converge to the same liquid level height in the vertical direction.
  • the liquid level height on the primary side in the container 1 tends to become relatively higher than that of the hollow fiber membrane modules 31 to 35, and The range in which the hollow fiber membrane 5 of FIG.
  • the pressurized gas is being introduced from the first pressurized gas introduction pipe 25
  • the backflow liquid contacting the hollow fiber membrane 5 of the hollow fiber membrane module 36 will flow to the secondary side in the container 1. It is filtered and collected.
  • the stock solution inlet port 2 of the hollow fiber membrane module 36 is arranged below the lower end of the supply liquid pipe 21 in the vertical direction. It is preferable to arrange the lower end of the hollow fiber membrane 5 of the hollow fiber membrane module 36 below the lower end of the feed liquid pipe 21. In this case, most of the residual liquid existing in the supply liquid pipe 21 can be sent to the hollow fiber membrane module 36.
  • the operating method of the membrane filtration unit of the present embodiment can be applied to another type of membrane filtration unit as shown in FIG.
  • the membrane filtration unit of the form illustrated in Fig. 4 the stock solution tank 11 and the hollow fiber membrane modules 3 1 to 3 6 ⁇ 0 2020/175593 18 ⁇ (: 170? 2020 /007878
  • the liquid inlet 2 is connected by the supply liquid pipe 21.
  • the supply liquid pipe 21 is branched at the latter stage of the supply pump 13 arranged in the middle of the supply liquid pipe 21 and is connected in parallel to the hollow fiber membrane modules 31 to 36.
  • the filtrate outlet port 3 of the hollow fiber membrane modules 31 to 36 is connected in parallel with the filtrate tank 12 by a filtrate pipe 22.
  • the stock solution outlets 4 of the hollow fiber membrane modules 31 to 36 are connected in parallel to the stock solution tank 11 by a concentrated solution piping 23.
  • a supply liquid valve 4 1 is arranged in the middle of the supply liquid pipe 21 and a concentrate liquid valve 4 3 is arranged in the middle of the concentrate liquid pipe 23.
  • the filtrate drawn out from the hollow fiber membrane modules 3 1 to 35 and the filtrate drawn out from the hollow fiber membrane module 36 are not brought into contact with each other on the filtrate pipe 22.
  • the filtrate dividing valve 4 4 is arranged so as to fractionate.
  • a second pressurized gas introducing pipe 26 for introducing a gas is connected between the filtered liquid outlet 3 and the filtered liquid outlet port 3 of 5, and the filtrate gas is introduced in the middle of the second pressurized gas introducing pipe 26.
  • the inlet valve 4 9 is arranged.
  • the first pressurized gas introduction pipe 25 for introducing gas is also connected between the concentrated liquid valve 43 in the concentrated liquid pipe 23 and the raw liquid outlet 4 of the hollow fiber membrane modules 31 to 35.
  • a filtrate gas introduction valve 48 is arranged in the middle of the first pressurized gas introduction pipe 25.
  • a backwash pipe 27 for connecting the filtrate tank 12 and the filtrate pipe 22 is provided, and in the middle of the backwash pipe 27, there is a hollow fiber from the filtrate tank 12.
  • a backwash pump 14 and a backwash valve 46 that feed the filtrate to the membrane modules 31 to 36 are arranged.
  • another hollow fiber membrane module is provided after the stock solution outlet 4 of the hollow fiber membrane modules connected in parallel. ⁇ 0 2020/175593 19 ⁇ (: 170? 2020 /007878
  • connection in series means that at least a part of the undiluted solution introduced into one hollow fiber membrane module is extracted from the hollow fiber membrane module and introduced into another hollow fiber membrane module connected to the subsequent stage. This is the mode of connection.
  • the stock solution inlet 2 is located at the upper part in the vertical direction
  • the stock solution outlet port 4 is located at the lower part in the vertical direction. It may be done.
  • the backflow liquid is discharged from the stock solution discharge port 4 of the hollow fiber membrane module in the aggregation process, In the recovery process, the backflow liquid is introduced from the stock solution outlet 4 of the hollow fiber membrane module.
  • the material of the hollow fiber membrane to which the operating method of the membrane filtration unit of the present embodiment is applied it is preferable to use a hydrophobic resin.
  • a membrane made of hydrophilic resin the membrane is completely wetted by re-passing the liquid even when the gas is aerated from the undiluted solution side to the filtered solution side by pressure and dried. Therefore, the water permeability does not deteriorate, and it is not necessary to apply the operating method of the membrane filtration unit of the present embodiment in the first place.
  • the present embodiment is an operation method suitable for a membrane filtration unit using a separation membrane that cannot dry such a membrane.
  • hydrophobic resin examples include a fluorine resin and an olefin resin, but a resin having a contact angle of 80 ° or more is preferable, and a resin having a contact angle of 90 ° or more is more preferable. A plurality of resins may be contained within this range.
  • the hydrophobic resin is preferably a fluororesin, more preferably polyvinylidene fluoride.
  • the contact angle is measured by thoroughly washing the separation membrane formed in the shape of a hollow fiber membrane with ethanol or pure water, then thoroughly vacuum-drying the surface of the separation membrane to flatten it, and separating the pure water droplets. ⁇ 0 2020/175593 20 ⁇ (: 170? 2020 /007878
  • the average contact angle measured from 2 to 5 seconds after dropping on the surface of the membrane is taken as the contact angle.
  • the contact angle is obtained by the 0/2 method.
  • the 0/2 method is a method to obtain the contact angle 0 from the angle ( ⁇ /2) of the straight line connecting the left or right end point and the vertex of the water drop with respect to the film surface.
  • the pressure at which the pressurized gas is introduced is preferably equal to or lower than the bubble point pressure.
  • the bubble point pressure is, for example, after the hollow fiber membrane is moistened with ethanol or the like, the pores of the hollow fiber membrane are filled with a predetermined liquid, and a pressurized gas is introduced from one end side of the hollow fiber membrane to gradually increase the pressure. It is the minimum pressure at which the generation of bubbles is detected from the surface at the other end as the pressure is increased.
  • a force-ridge type hollow fiber membrane module as shown in Fig. 1 was prepared. Both ends of the hollow fiber membrane 5 were fixed by a potting portion 8 formed by centrifugal potting, while one end of which was slightly stopped. The inner diameter of the container 1 was 15911111. The contact angle of the hollow fiber membrane is 95° and the bubble point pressure is 180°. Was 3.
  • the stock solution was fed from the stock solution tank 11 to the hollow fiber membrane modules 31 to 36 by the supply pump 13 and the filtration step was performed by the cross flow filtration operation.
  • the feed liquid valve 41 is opened, the filtrate valve 42 is opened, the concentrate valve 43 is opened, the filtrate dividing valve 44 is opened, the filtrate bypass valve 45 is closed, and the backwash valve 46.
  • the backwash bypass valve 47 was opened, the concentrate gas introduction valve 48 was closed, and the filtrate gas introduction valve 4 9 was closed.
  • the cross flow rate is 1 0 3 3 / ", and the filtration flow rate is 7.7. ⁇ 0 2020/175593 21 ⁇ (: 170? 2020 /007878
  • the backwash pump 14 sent the filtrate from the filtrate tank 12 to the hollow fiber membrane modules 31 to 36.
  • the feed liquid valve 4 1 is closed
  • the filtrate liquid valve 4 2 is closed
  • the concentrate liquid valve 4 3 is open
  • the filtrate liquid dividing valve 4 4 is open
  • the filtrate liquid bypass valve 4 5 is closed
  • the backwash valve 4 6 was opened
  • the backwash bypass valve 47 was opened
  • the concentrate gas introduction valve 48 was closed
  • the filtrate gas introduction valve 4 9 was closed.
  • Backwash flow rate was 1 0. 4 3 / "and.
  • the bypass valve 47 was closed, the concentrate gas introduction valve 48 was open, and the filtrate gas introduction valve 49 was closed. As a result, the backflow liquid existing on the primary side in the container 1 of the hollow fiber membrane modules 31 to 35 was led out of the container 1 from the stock solution inlet.
  • the above-mentioned backflow liquid was introduced into the container 1 of the hollow fiber membrane module 36 via the supply liquid pipe 21. Then, the nitrogen gas of 103 was introduced from the first pressurized gas introduction pipe 25 and pressure filtration was performed. At this time, the supply liquid valve 41 is closed.
  • the residual liquid finally present inside the membranes of the membrane filtration unit was 3 1 !_.
  • the time required for the aggregation process and the collection process was 9 minutes.
  • Example 2 The same operation method of the membrane filtration unit as in Example 1 was carried out except that the consolidating step and the collecting step were carried out in parallel.
  • nitrogen gas of 1 was introduced and made to flow backward, at the same time, nitrogen gas of 100 1 ⁇ 3 was introduced from the first pressurized gas introduction pipe 25 and pressure-filtered.
  • the time required for the aggregation process and the recovery process was 6 minutes.
  • a method of operating a membrane filtration unit similar to that of Example 1 was carried out, except that the produced 6 hollow fiber membrane modules were used to form the membrane filtration unit illustrated in FIG. In the vertical direction, only the undiluted solution inlet 2 of the hollow fiber membrane module 36 was placed 300 below the lower end of the feed solution pipe 21.
  • the stock solution was fed from the stock solution tank 11 to the hollow fiber membrane modules 31 to 36 by the supply pump 13 and the filtration step was performed by the cross-flow filtration operation.
  • the feed liquid valve 41 is opened, the filtrate valve 42 is opened, the concentrate valve 43 is opened, the filtrate dividing valve 44 is opened, the filtrate bypass valve 45 is closed, and the backwash valve 46.
  • the backwash bypass valve 47 was opened, the concentrate gas introduction valve 48 was closed, and the filtrate gas introduction valve 4 9 was closed.
  • the cross flow rate is 1 0 3 3 / ", filtration flow 7. 7 3/11" and the.
  • the backwash was carried out in order to clean the blockage of the hollow fiber membranes 5.
  • the backwash pump 14 sent the filtrate from the filtrate tank 12 to the hollow fiber membrane modules 31 to 36.
  • the feed valve 41 was closed and the filtrate valve 4 2 was used. Is closed, concentrate valve 4 3 is open, filtrate split valve 4 4 is open, filtrate bypass valve 45 is closed, backwash valve 4 6 is open, backwash bypass valve 4 7 is open, concentrate gas The inlet valve 4 8 was closed, and the filtrate gas inlet valve 4 9 was closed.
  • the backwash flow rate was 10.
  • the collecting step was carried out as it was without carrying out the aggregation step.
  • Nitrogen gas was introduced and pressure filtration was performed.
  • the feed liquid valve 4 1 is closed
  • the filtrate liquid valve 4 2 is closed
  • the concentrate liquid valve 4 3 is closed
  • the filtrate liquid dividing valve 4 4 is closed
  • the filtrate liquid bypass valve 4 5 is open
  • the backwash valve 4 6 was closed
  • the backwash bypass valve 47 was closed
  • the concentrate gas introduction valve 48 was open
  • the filtrate gas introduction valve 49 was closed.
  • Only the hollow fiber membrane module 36 was used for filtration.
  • the obtained recovered liquid was sent to the filtrate tank 12 via the filtrate bypass pipe 24 and collected. Pressure filtration was performed until the collected liquid was not discharged from the filtrate discharge port 3 of the hollow fiber membrane module 36, and the collection process was completed.
  • the operation method of the membrane filtration unit of the present invention is a raw solution membrane in the field of water treatment such as drinking water production, water purification treatment or wastewater treatment, the fermentation field involving the culture of microorganisms and cultured cells, and the food industry field. It is preferably applied to filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、複数の中空糸膜モジュールが並列に接続されている、膜ろ過ユニットの運転方法であって、原液を中空糸膜の一次側から二次側へろ過してろ過液導出口から容器外に導出するろ過工程と、容器内に存在するろ過液を、中空糸膜の二次側から一次側へ逆流させ、得られた逆流液を、原液導入口及び/又は原液導出口から容器外へ導出する集約工程と、前記逆流液を中空糸膜の一次側から二次側へ再度ろ過してろ過液導出口から容器外に導出する回収工程とを備え、ろ過工程、集約工程及び回収工程を、各々同時に実施させる中空糸膜モジュールの数をそれぞれn、n及びnとしたとき、n≧n>nの関係を満たす、膜ろ過ユニットの運転方法に関する。

Description

\¥0 2020/175593 1 卩(:17 2020 /007878 明 細 書
発明の名称 : 膜ろ過ユニットの運転方法および膜ろ過ユニット 技術分野
[0001 ] 本発明は、 膜ろ過ユニッ トの運転方法および膜ろ過ユニッ トに関する。
背景技術
[0002] 分離膜を用いた膜ろ過は、 飲料水製造、 浄水処理若しくは排水処理等の水 処理分野、 微生物や培養細胞の培養を伴う発酵分野、 又は、 食品工業分野等 、 様々な方面で利用されている。 中でも中空糸膜モジュールを用いた膜ろ過 は、 処理水量の大きさ、 洗浄の容易さ等から、 多くの分野で用いられている
[0003] 食品工業分野においては、 水処理分野の原液と比較して原液の濁度が高い 場合が多く、 水処理分野で採用されることの多い全量ろ過運転では、 分離膜 の閉塞が急速に進行する。 そのため、 本用途では、 分離膜の閉塞をより抑制 可能な、 クロスフローろ過運転が行われる。 クロスフローろ過運転とは、 分 離膜表面に平行な原液の流れを常に作用させ、 その内の一部をろ過するとい う方法である。 この方法では、 分離膜表面に平行な流れの作用により分離膜 表面への濁質蓄積を予防しながら運転できるため、 分離膜の閉塞を大幅に低 減することが可能となる。
[0004] 一方、 クロスフローろ過運転では、 全量ろ過運転と比較した場合において 濃縮液配管等、 追加で必要となる設備が増えることから、 膜ろ過ユニッ トの 中空糸膜モジュール内や配管内に残存する原液量が多くなる。 食品工業分野 では回収率向上の観点から、 原液の残存量を極力削減することが重要となる ため、 残存原液を最小限に抑える膜ろ過ユニッ トや、 その運転方法が要求さ れている。
[0005] これに対し特許文献 1では、 ろ過エレメントを備えるタンク内の原液側に 加圧気体を導入し、 タンク内に残存した原液をすべてろ過液側に回収する方 法が開示されている。 分離膜を用いたろ過ユニッ トにおいても、 原液側に加 \¥0 2020/175593 2 卩(:17 2020 /007878
圧期待を導入して原液側の残液をろ過液側に押し出し、 さらに分離膜を通気 させてろ過液側配管の残液を押し出すという回収方法を実施することができ る。
[0006] その他の回収方法として、 特許文献 2では、 複数の中空糸膜モジュールを 備える膜ろ過ユニッ トにおいて、 中空糸膜モジュールや配管内に残存した原 液を一つの中空糸膜モジュールに集約し、 膜ろ過する方法が開示されている
先行技術文献
特許文献
[0007] 特許文献 1 : 日本国特開平 0 8— 0 6 6 6 0 8号公報
特許文献 2 :国際公開第 2 0 0 0 / 0 1 8 4 9 7号 発明の概要
発明が解決しようとする課題
[0008] しかしながら、 特許文献 1 に記載の方法は、 疎水性度の高いポリマーを使 用した分離膜を用いる場合、 加圧気体で膜の原液側からろ過液側にまで通気 して押し込むような方法を用いると、 膜が乾燥し、 再度液体をろ過する場合 、 当初の純水透水性よりも悪化して得られるろ過液量が低下するという課題 がある。 一方、 膜を乾燥させないよう原液側のみに加圧気体を導入する場合 には、 分離膜のろ過液側の残液が回収できないという課題が生じることとな る。
また、 特許文献 2に記載の方法でも、 分離膜のろ過液側の残液量を削減す るには至っていない。
[0009] そこで本発明は、 分離膜として疎水性度の高い樹脂を使用した場合であっ ても、 膜ろ過ユニッ トにおいて、 ろ過液側の残液量を削減するための、 膜ろ 過ユニッ トの運転方法及び膜ろ過ユニッ トを提供することを目的とする。 課題を解決するための手段
[0010] 上記目的を達成するため、 本発明は、 以下の膜ろ過ユニッ トの運転方法を \¥02020/175593 3 卩(:170? 2020 /007878
提供する。
(1 ) 原液導入口と、 ろ過液導出口と、 原液導出口と、 を有する容器に、 中 空糸膜が充填された、 中空糸膜モジュールを複数備え、 かつ、 複数の前記中 空糸膜モジュールが、 並列に接続されている、 膜ろ過ユニッ トの運転方法で あって、 原液を前記原液導入口から前記容器内に導入し、 前記中空糸膜の一 次側から二次側へろ過して、 得られたろ過液を、 前記ろ過液導出口から前記 容器外に導出する、 ろ過工程と、 前記容器内に存在する前記ろ過液を、 前記 中空糸膜の二次側から一次側へ逆流させ、 得られた逆流液を、 前記原液導入 口及び前記原液導出口の少なくとも一方から前記容器外に導出する、 集約エ 程と、 前記逆流液を、 前記原液導入口及び前記原液導出口の少なくとも一方 から再度前記容器内に導入し、 前記中空糸膜の一次側から二次側へろ過して 、 得られた回収液を前記ろ過液導出口から前記容器外に導出する、 回収工程 と、 を備え、 前記ろ過工程を同時に実施させる前記中空糸膜モジュールの数 を门 前記集約工程を同時に実施させる前記中空糸膜モジュールの数を 1·! 2
、 前記回収工程を同時に実施させる前記中空糸膜モジュールの数を〇 3、 とし たとき、 n 1³n 2>n3の関係を満たす、 膜ろ過ユニッ トの運転方法。
(2) 前記回収工程を実施させる前記中空糸膜モジュールと、 前記集約工程 を実施させる前記中空糸膜モジュールとが異なる、 前記 (1 ) 記載の膜ろ過 ユニッ トの運転方法。
(3) 前記集約工程と前記回収工程とを、 並行して実施させる、 前記 (2) 記載の膜ろ過ユニッ トの運転方法。
(4) 前記集約工程と前記回収工程が加圧気体により実施され、 かつ前記集 約工程を実施する前記加圧気体の圧力? 2と、 前記回収工程を実施する前記 加圧気体の圧力 3が、 3< 2の関係を満たす、 前記 (3) 記載の膜ろ 過ユニッ トの運転方法。
(5) 鉛直方向において、 前記回収工程を実施させる前記中空糸膜モジュー ルの前記原液導入口を、 前記回収工程を実施させない前記中空糸膜モジュー ルの前記原液導入口よりも、 下方に配置する、 前記 (1 ) 〜 (4) のいずれ \¥02020/175593 4 卩(:170? 2020 /007878
か 1記載の膜ろ過ユニッ トの運転方法。
(6) 前記中空糸膜が疎水性の樹脂より形成された膜である、 前記 (1 ) 〜 (5) のいずれか 1記載の膜ろ過ユニッ トの運転方法。
(7) 前記疎水性の樹脂がポリフッ化ビニリデンより構成される、 前記 (6 ) 記載の膜ろ過ユニッ トの運転方法。
[0011] 上記目的を達成するため、 本発明は、 以下の膜ろ過ユニッ トを提供する。
(8) 原液導入口と、 ろ過液導出口と、 原液導出口と、 を有する容器に、 中 空糸膜が充填された、 中空糸膜モジュールを複数備え、 かつ、 複数の前記中 空糸膜モジュールが、 並列に接続されている、 膜ろ過ユニッ トであって、 前 記原液導入口または前記原液導出口と接続する配管またはタンクに、 加圧気 体を導入する第 1の加圧気体導入配管が接続され、 前記ろ過液導出口と接続 する配管に、 加圧気体を導入する第 2の加圧気体導入配管が接続され、 _部 の前記中空糸膜モジュールが、 前記ろ過液導出口と前記第 2の加圧気体導入 配管とを接続する前記配管上に弁を備える、 膜ろ過ユニッ ト。
(9) 一部の前記中空糸膜モジュールが、 前記ろ過液導出口と、 ろ過液回収 配管またはろ過液タンクと、 を接続するバイパス配管をさらに備え、 前記バ イパス配管は前記第 2の加圧気体導入配管とは接続しない、 前記 (8) 記載 の膜ろ過ユニッ ト。
(1 0) 前記バイパス配管の管径が、 前記ろ過液回収配管の管径より小さい 、 前記 (9) 記載の膜ろ過ユニッ ト。
発明の効果
[0012] 本発明によれば、 分離膜として疎水性度の高い樹脂を使用した場合であっ ても、 膜ろ過ユニッ トにおいて、 ろ過液側の残液量の大幅な削減が可能であ り、 原液の回収率向上が達成される。 さらには、 膜ろ過ユニッ トのろ過液側 での残液回収にかかる時間を低減することができ、 装置の稼働率を顕著に向 上させることができる。
図面の簡単な説明
[0013] [図 1]図 1は、 本発明の運転方法が適用される膜ろ過ユニッ トが備える、 中空 \¥0 2020/175593 5 卩(:170? 2020 /007878
糸膜モジュールの一形態を示す、 概略図である。
[図 2]図 2は、 本発明の運転方法が適用される膜ろ過ユニッ トの一形態を示す 、 概略フロー図である。
[図 3]図 3は、 本発明の運転方法が適用される膜ろ過ユニッ トの別の一形態を 示す、 概略フロー図である。
[図 4]図 4は、 本発明の運転方法が適用される膜ろ過ユニッ トの別の一形態を 示す、 概略フロー図である。
発明を実施するための形態
[0014] 以下に、 本発明の実施形態について図面を参照しながら詳細に説明するが 、 本発明はこれらによって何ら限定されるものではない。
[0015] 本実施形態の運転方法が適用される膜ろ過ユニッ トは、 原液導入口と、 ろ 過液導出口と、 原液導出口と、 を有する容器に、 中空糸膜が充填された、 中 空糸膜モジュールを複数備えることを必要とする。
[0016] 図 1は、 本実施形態の運転方法が適用される膜ろ過ユニッ トが備える、 中 空糸膜モジュールの一形態を示す、 概略図である。 図 2は、 本実施形態の運 転方法が適用される膜ろ過ユニッ トの一形態を示す、 概略フロー図である。 複数の中空糸膜モジュール 3 1〜 3 6は、 それぞれ図 1 に示すような原液導 入口 2と、 ろ過液導出口 3と、 原液導出口 4と、 を有する容器 1 に、 中空糸 膜 5が充填されている。
[0017] 中空糸膜モジュール 3 1〜 3 6は、 容器 1内に充填された中空糸膜 5によ って、 原液側空間 6 (以下一次側) とろ過液側空間 7 (以下二次側) とに隔 てられ、 原液導入口 2は一次側に、 ろ過液導出口 3は二次側に配置されてい る。 また中空糸膜モジュール 3 1〜 3 6は、 _次側に配置され、 容器 1内に 導入された原液を導出する、 原液導出口 4を有している。
[0018] 本実施形態の運転方法が適用される膜ろ過ユニッ トにおいては、 複数の上 記中空糸膜モジュールが、 並列に接続されていることを必要とする。 ここで 「並列に接続」 とは、 液が一つの配管から分割され、 隣接する複数の中空糸 膜モジュールに同質の液としてそれぞれ導入される、 又は、 隣接する複数の \¥0 2020/175593 6 卩(:17 2020 /007878
中空糸膜モジュールから導出された液が一つの配管に集約される、 接続の態 様をいい、 配管により接続される。
[0019] 本実施形態の膜ろ過ュニッ トの運転方法は、 以下に示す 3つの工程を備え る。
[0020] ( 1 ) ろ過工程は、 原液を上記原液導入口から上記容器内に導入し、 上記 中空糸膜の一次側から二次側へろ過して、 得られたろ過液を、 上記ろ過液導 出口から上記容器外に導出する工程である。
図 1 に例示される形態の中空糸膜モジュールにおいては、 原液は原液導入 口 2から容器 1内に導入され、 中空糸膜 5の一次側から二次側へろ過されて 、 得られたろ過液は、 ろ過液導出口 3から容器 1外に導出される。 なお、 中 空糸膜の一次側から二次側へのろ過は、 加圧ろ過が好ましい。
[0021 ] ( 2 ) 集約工程は、 上記容器内に存在する上記ろ過液を、 上記中空糸膜の 二次側から一次側へ逆流させ、 得られた逆流液を、 上記原液導入口及び上記 原液導出口の少なくとも一方から上記容器外へ導出する工程である。
図 1 に例示される形態の中空糸膜モジュールにおいては、 容器 1内の二次 側に存在するろ過液は、 中空糸膜 5の二次側から一次側へ逆流させられ、 得 られた逆流液は、 原液導入口 2及び/又は原液導出口 4から容器 1外へ導出 される。
[0022] ( 3 ) 回収工程は、 上記逆流液を、 上記原液導入口及び上記原液導出口の 少なくとも一方から再度上記容器内に導入し、 上記中空糸膜の一次側から二 次側へろ過して、 得られた回収液を上記ろ過液導出口から上記容器外に導出 する工程である。
図 1 に例示される形態の中空糸膜モジュールにおいては、 逆流液は、 原液 導入口 2及び/又は原液導出口 4から容器 1内に導入され、 中空糸膜 5の一 次側から二次側へろ過されて、 得られた回収液は、 ろ過液導出口から容器 1 外に導出される。 なお、 中空糸膜の一次側から二次側へのろ過は、 加圧ろ過 が好ましい。
[0023] 本実施形態の膜ろ過ュニッ トの運転方法においては、 上記ろ過工程を同時 \¥0 2020/175593 7 卩(:170? 2020 /007878
に実施させる中空糸膜モジュールの数を〇 上記集約工程を同時に実施させ る中空糸膜モジュールの数を门 2、 上記回収工程を同時に実施させる中空糸膜 モジュールの数を 1^ 3、 としたとき、 1·^、 1^ 2、 及び 3が、 下記式 1 の関係 を満たす必要がある。
1 ³门 2 > 3 . (式 1)
[0024] (膜ろ過ユニッ ト)
本実施形態にかかる膜ろ過ユニッ トは、 複数の中空糸膜モジュールは並列 に接続されており、 各中空糸膜モジュールは、 原液導入口と、 ろ過液導出口 と、 原液導出口と、 を有する容器に、 中空糸膜が充填されている。
中空糸膜モジュールは、 原液導入口または原液導出口と接続する配管また はタンクには、 加圧気体を導入する第 1の加圧気体導入配管が接続されてい る。 また、 ろ過液導出口と接続する配管には、 加圧気体を導入する第 2の加 圧気体導入配管が接続されている。 そして、 中空糸膜モジュールの一部は、 ろ過液導出口と第 2の加圧気体導入配管とを接続する配管上に弁を備える。 一部の中空糸膜モジュールは、 ろ過液導出口と、 ろ過液回収配管またはろ 過液タンクと、 を接続するバイパス配管をさらに備えることが好ましく、 バ イパス配管は第 2の加圧気体導入配管とは接続しないことが好ましい。
[0025] 図 2に例示される膜ろ過ユニッ トの一形態においては、 原液タンク 1 1 と 、 中空糸膜モジュール 3 1〜 3 6の原液導入口とが、 供給液配管 2 1 により 接続される。 供給液配管 2 1は、 供給液配管 2 1の途中に配置された供給ポ ンプ 1 3及び供給液弁 4 1の後段で分岐され、 中空糸膜モジュール 3 1〜 3 6に並列に接続される。 中空糸膜モジュール 3 1〜 3 6のろ過液導出口は、 ろ過液配管 2 2によりろ過液タンク 1 2と並列に接続される。 また、 中空糸 膜モジュール 3 1〜 3 6の原液導出口は、 濃縮液配管 2 3により原液タンク 1 1 と並列に接続される。 ろ過液配管 2 2の途中にはろ過液弁 4 2が、 濃縮 液配管 2 3の途中には濃縮液弁 4 3が、 それぞれ配置されている。
[0026] さらにろ過液配管 2 2の途中には、 中空糸膜モジュール 3 1〜 3 5から導 出されたろ過液と、 中空糸膜モジュール 3 6から導出されたろ過液とを接触 \¥0 2020/175593 8 卩(:170? 2020 /007878
させないように分画する、 ろ過液分割弁 4 4が配置されている。
[0027] ろ過液配管 2 2におけるろ過液弁 4 2の前段には、 その途中にろ過液気体 導入弁 4 9が配置された、 気体を導入する第 2の加圧気体導入配管 2 6が接 続されている。 また濃縮液配管 2 3における濃縮液弁 4 3の前段にも、 その 途中に濃縮液気体導入弁 4 8が配置された、 気体を導入する第 1の加圧気体 導入配管 2 5が接続されている。
[0028] ろ過液タンク 1 2はさらに、 逆洗配管 2 7によってろ過液配管 2 2に接続 されており、 逆洗配管 2 7の途中には、 ろ過液タンク 1 2から中空糸膜モジ ュール 3 1〜 3 6にろ過液を送液するための、 逆洗ポンプ 1 4及び逆洗弁 4 6が配置されている。
[0029] さらに、 ろ過液配管 2 2における中空糸膜モジュール 3 6のろ過液導出口 とろ過液分割弁 4 4との間には、 ろ過液バイパス配管 2 4が接続されており 、 ろ過液バイパス配管 2 4の他端は、 ろ過液配管 2 2におけるろ過液弁 4 2 とろ過液タンク 1 2との間のろ過液回収用配管 2 8に接続される。 ろ過液バ イパス配管 2 4の途中には、 ろ過液バイパス弁 4 5が配置されている。 ここ で残液量をさらに削減するためには、 ろ過液バイパス配管 2 4を、 ろ過液配 管 2 2よりも細くすることが好ましい。
[0030] さらにろ過液配管 2 2の途中には、 ろ過液タンク 1 2から逆洗ポンプ 1 4 を用いて送液されたろ過液が、 中空糸膜モジュール 3 1〜 3 5に導入されな いよう分画する、 逆洗バイパス弁 4 7が配置されている。
[0031 ] 本実施形態の膜ろ過ュニッ トの運転方法について、 主に図 2を参照しなが ら、 以下に具体例を挙げて説明する。
[0032] (膜ろ過ュニッ トの運転方法: ろ過工程)
ろ過工程では、 例えば、 供給ポンプ 1 3により原液を中空糸膜モジュール 3 1〜 3 6に供給し、 クロスフローろ過運転を行う。 クロスフローろ過運転 では、 原液は中空糸膜モジュール 3 1〜 3 6の原液導入口 2から容器 1内の 一次側 (原液側空間 6) に導入され、 中空糸膜 5の表面に平行な流れで容器 1内の一次側を移動するとともに、 好ましくは加圧下にて、 その一部が容器 \¥0 2020/175593 9 卩(:170? 2020 /007878
1内の二次側 (ろ過液側空間 7) にろ過される。 ろ過液はろ過液導出口 3か ら容器 1外に導出され、 ろ過液配管 2 2を介してろ過液タンク 1 2に送液さ れる。 一方で、 ろ過されなかった原液は、 濃縮液として原液導出口 4から導 出され、 濃縮液配管 2 3を介して原液タンク 1 1 に送液される。 この場合、 供給液弁 4 1は開、 ろ過液弁 4 2は開、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆洗バイパス弁 4 7 は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は閉である。
[0033] クロスフローろ過運転では、 所定時間又は所定液量をろ過し、 原液タンク
1 1の液量が少なくなって、 供給ポンプ 1 3の稼働が困難となるまで実施さ れることが多い。 この場合において、 供給液配管 2 1、 中空糸膜モジュール 3 1〜 3 6の容器 1内の一次側及び二次側、 ろ過液配管 2 2、 濃縮液配管 2 3には残液が存在するので、 回収率向上のためにはこれらを極力、 ろ過液夕 ンク 1 2に回収することが求められる。
[0034] そのため、 供給ポンプ 1 3の稼動が困難となった後は、 第 1の加圧気体導 入配管 2 5から加圧気体を導入し、 中空糸膜モジュールの容器 1内の一次側 、 及び、 中空糸膜モジュール 3 1〜 3 6の原液導出口 4と濃縮液弁 4 3との 間の濃縮液配管 2 3に存在する残液を、 ガス加圧ろ過することが好ましい。 この場合、 供給液弁 4 1は閉、 ろ過液弁 4 2は開、 濃縮液弁 4 3は閉、 ろ過 液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆洗バイ パス弁 4 7は開、 濃縮液気体導入弁 4 8は開、 ろ過液気体導入弁 4 9は閉で ある。
[0035] ガス加圧ろ過により、 濃縮液配管 2 3と、 中空糸膜モジュール 3 1〜 3 6 の容器 1内の一次側とは空となる。 ろ過液はろ過液導出口 3から容器 1外に 導出され、 ろ過液配管 2 2を介してろ過液タンク 1 2に送液される。 一方で 、 供給液配管 2 1、 中空糸膜モジュール 3 1〜 3 6の容器 1内の二次側、 ろ 過液配管 2 2には残液が存在する。
[0036] ろ過工程は、 クロスフローろ過運転の他に、 全量ろ過運転を行っても構わ ない。 全量ろ過運転では、 原液が中空糸膜モジュールのろ過液導出口 3から \¥0 2020/175593 10 卩(:170? 2020 /007878
容器 1内の一次側に導入されるが、 容器 1内の一次側に導入された原液は、 原液導出口 4から導出されることなく、 加圧下にて全て一次側から二次側に ろ過される。 ろ過液はクロスフローろ過運転と同様に、 ろ過液導出口 3から 容器 1外に導出され、 ろ過液配管 2 2を介してろ過液タンク 1 2に送液され る。 この場合、 供給液弁 4 1は開、 ろ過液弁 4 2は開、 濃縮液弁 4 3は閉、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆洗 バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は 閉である。
[0037] 図 2に例示される膜ろ過ユニッ トの一形態においては、 濃縮液は原液タン ク 1 1 に送液されることが多いが、 濃縮液の一部又は全てを、 供給ポンプ 1 3の後段に送液しても構わない。 そのような構成を採ることにより、 供給ポ ンプ 1 3の消費動力を低減することが可能である。 この場合には、 供給ボン プ 1 3の後段に循環ポンプを設け、 供給ポンプ 1 3と循環ポンプとの間に濃 縮液を送液させるのが好ましい。
[0038] 膜ろ過ユニッ トを加圧する方法としては、 図 2に示すような供給ポンプ 1
3を用いる方法が一般的であるが、 加圧気体を、 原液タンク 1 1、 供給液配 管 2 1又は濃縮液配管 2 3に導入して、 ガス加圧ろ過をしても構わない。 加 圧気体としては、 食品工業分野においては、 例えば、 窒素ガス又は二酸化炭 素ガスが好ましく、 滅菌されたガスがより好ましい。
[0039] ろ過工程では、 上記のクロスフローろ過運転又は全量ろ過運転を単独で又 は組み合わせて行っても構わない。 さらには、 容器 1内の一次側を加圧する のではなく、 容器 1内の二次側を吸引することでろ過することも可能である 。 この場合には、 例えば、 ろ過液配管 2 2の途中に吸引ポンプを配置すれば よい。
[0040] ろ過工程を長時間継続すると、 中空糸膜 5の閉塞が進行し、 膜ろ過量が低 減する、 又は、 ろ過に必要な圧力が増加する場合がある。 そのような状況を 回避するため、 定期的に中空糸膜モジュール 3 1〜 3 6を洗浄することも好 ましい。 \¥0 2020/175593 1 1 卩(:170? 2020 /007878
[0041 ] 中空糸膜モジュール 3 1〜 3 6の洗浄方法としては、 ろ過液を逆洗ポンプ
1 4で中空糸膜モジュール 3 1〜 3 6に送液し、 ろ過液を容器 1内の二次側 から一次側に加圧して逆ろ過することで、 中空糸膜 5の内部や表面に蓄積し た濁質を洗い出す逆洗が好ましい。 この場合、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は開、 逆洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8 は閉、 ろ過液気体導入弁 4 9は閉である。 なお供給液弁 4 1 を開とし、 供給 ポンプ 1 3を稼働させ、 原液を中空糸膜モジュールに供給しながら逆洗を行 っても構わない。
[0042] ろ過工程を同時に実施させる中空糸膜モジュールの数 n 1に制限はないが、 並列に接続された複数の中空糸膜モジュールを、 全て使用することが好まし い。
[0043] (膜ろ過ュニッ トの運転方法:集約工程)
集約工程では、 例えば、 まず中空糸膜モジュール 3 1〜 3 6の容器 1内の 二次側に存在するろ過液、 すなわち残液を中空糸膜の一次側に逆流させ、 逆 流液を得る操作を行う。 より具体的には、 第 2の加圧気体導入配管 2 6から 加圧気体を導入し、 中空糸膜モジュール 3 1〜 3 6の容器 1内の二次側を加 圧することで、 容器 1内の二次側、 並びに、 中空糸膜モジュール 3 1〜 3 6 のろ過液導出口 3、 ろ過液弁 4 2及び逆洗弁 4 6との間のろ過液配管 2 2に 存在するろ過液を、 容器 1内の一次側に逆流させる。 この場合、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は開、 ろ 過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆洗バイパス弁 4 7は開、 濃縮 液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は開である。
[0044] 逆流液は、 容器 1内の一次側に蓄積、 もしくは原液導入口 2から導出され 、 原液導入口 2が接続している配管に蓄積される。 また、 容器 1内の二次側 や、 ろ過液配管 2 2の容積によっては、 逆流液の全てが容器 1内の一次側に 収容されず、 その一部が原液導出口 4からオーバーフローして、 濃縮液配管 2 3に導出される場合もあり得る。 逆流液の原液導入口 2からの導出と、 原 \¥0 2020/175593 12 卩(:170? 2020 /007878
液導出口 4 4からの導出は同時に起こってもよい。
[0045] 次に、 中空糸膜モジュール 3 1〜 3 5の容器 1内の一次側に存在する逆流 液を、 第 1の加圧気体導入配管 2 5から加圧気体を導入して、 原液導入口 2 から容器 1外へ導出する操作を行う。 この場合、 供給液弁 4 1は閉、 ろ過液 弁 4 2は閉、 濃縮液弁 4 3は閉、 ろ過液分割弁 4 4は閉、 ろ過液バイパス弁 4 5は開、 逆洗弁 4 6は閉、 逆洗バイパス弁 4 7は閉、 濃縮液気体導入弁 4 8は開、 ろ過液気体導入弁 4 9は閉である。
なお、 逆流液の原液導入口 2から容器 1外への導出と同時に、 又はそれに 代えて、 逆流液を、 原液導出口 4から容器 1外へ導出してもよい。 逆流液を 原液導出口 4から容器 1外へ導出する場合には、 原液導入口 2が接続してい る配管から加圧気体を導入する。 逆流液を原液導入口 2及び原液導出口 4の 双方から容器 1外へ導出する場合には、 ろ過液導出口 3に接続する第 2の加 圧気体導入配管 2 6から加圧気体を導入する。
[0046] 逆洗バイパス弁 4 7が閉となっているため、 第 1の加圧気体導入配管 2 5 から加圧気体を導入しても、 中空糸膜モジュール 3 1〜 3 5の容器 1内の一 次側の逆流液はほとんど二次側にろ過されず、 原液導入口 2から容器 1外へ 導出され、 供給液配管 2 1 を介して中空糸膜モジュール 3 6に送液され集約 される。
[0047] ここで例示した集約工程の終了時には、 中空糸膜モジュール 3 1〜 3 6の 容器 1内の二次側と、 中空糸膜モジュール 3 1〜 3 6のろ過液導出口 3、 ろ 過液弁 4 2及び逆洗弁 4 6との間のろ過液配管 2 2は空となるが、 供給液配 管 2 1、 中空糸膜モジュール 3 1〜 3 6の容器 1内の一次側、 濃縮液配管 2 3には残液がある。
[0048] 逆流液を得る操作では、 上記に例示したような第 2の加圧気体導入配管 2
6から加圧気体を導入する方法の他に、 ろ過液配管 2 2を大気圧開放して、 ろ過液を容器 1内の二次側から一次側へ逆流させることも可能である。 この 場合、 例えば、 供給液弁 4 1は閉、 ろ過液弁 4 2は開、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆洗 \¥0 2020/175593 13 卩(:170? 2020 /007878
バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は 閉とすることができる。 ろ過液タンク 1 2が大気圧開放されていれば、 ろ過 液配管 2 2も大気圧開放され、 ろ過液配管 2 2中のろ過液を逆流させること ができる。 あるいは、 ろ過液気体導入弁 4 9を大気圧開放する方法でも構わ ない。
[0049] 集約工程を同時に実施させる中空糸膜モジュールの数 2は、 ろ過工程を実 施させる中空糸膜モジュール本数 n 1と同数でも構わない。 他方、 後段の回収 工程を実施させる中空糸膜モジュールで集約工程をも実施させる場合、 回収 すべきろ過液を逆流液として容器 1内の一次側に戻すため、 回収工程でろ過 する逆流液の量が増加し、 回収工程の時間が長くなる。 そのため、 ろ過工程 を実施させ、 かつ、 回収工程を実施させない中空糸膜モジュールで、 集約エ 程を実施させることが好ましい。 この場合、 第 2の加圧気体導入配管 2 6か ら加圧気体を導入する方法を使用すると、 供給液弁 4 1は閉、 ろ過液弁 4 2 は閉、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は閉、 ろ過液バイパス弁 4 5は 閉、 逆洗弁 4 6は閉、 逆洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉 、 ろ過液気体導入弁 4 9は開となり、 集約工程を同時に実施させる中空糸膜 モジュールの数 2は、 ろ過工程を実施させる中空糸膜モジュールの数 1よ りも小さくなる。 すなわち、 1·! 1 ³ 2の関係を満たす。
[0050] (膜ろ過ュニッ トの運転方法:回収工程)
回収工程では、 逆流液を、 原液導入口 2及び原液導出口 4の少なくとも一 方から再度容器 1内に導入し、 中空糸膜 5の一次側から二次側へのろ過を行 う。 例えば、 容器 1外に導出された逆流液を、 逆流液が一部容器 1内に残っ ている場合には、 その残っている逆流液と共に、 中空糸膜モジュール 3 6に 集約し、 第 1の加圧気体導入配管 2 5から加圧気体を導入して、 加圧ろ過を 行う。 この場合、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は閉 、 ろ過液分割弁 4 4は閉、 ろ過液バイパス弁 4 5は開、 逆洗弁 4 6は閉、 逆 洗バイパス弁 4 7は閉、 濃縮液気体導入弁 4 8は開、 ろ過液気体導入弁 4 9 は閉である。 \¥0 2020/175593 14 卩(:170? 2020 /007878
[0051 ] 中空糸膜モジュール 3 6では、 集約された逆流液及び原液が原液導入口 2 から容器 1内の一次側に導入され、 ガス加圧ろ過により容器 1内の二次側に ろ過される。 ろ過により得られた回収液は、 ろ過液導出口 3から容器外に導 出され、 ろ過液バイパス弁 4 5を介してろ過液タンク 1 2に送液される。 ガ ス加圧ろ過は、 中空糸膜モジュール 3 6のろ過液導出口 3からろ過液が容器 1外に導出されなくなるまで継続される。
[0052] ここで例示した回収工程の終了時には、 第 1の加圧気体導入配管 2 5と中 空糸膜モジュール 3 1〜 3 6のとの間の濃縮液配管 2 3、 中空糸膜モジュー ル 3 1〜 3 6の容器 1内の一次側、 中空糸膜モジュール 3 1〜 3 5の容器 1 内の二次側、 中空糸膜モジュール 3 1〜 3 6のろ過液導出口 3と、 ろ過液分 割弁 4 4、 ろ過液弁 4 2及び逆洗弁 4 6との間のろ過液配管 2 2は空となり 、 供給液配管 2 1、 中空糸膜モジュール 3 6容器 1内の二次側、 ろ過液バイ パス配管 2 4にろ過液が残存するのみとなる。
[0053] 上記のように、 回収工程を同時に実施させる中空糸膜モジュール本数 n 3を 、 集約工程を同時に実施させる中空糸膜モジュール本数 1·! 2よりも少なくする ことで、 容器 1内の二次側やろ過液配管 2 2中に存在する残液を、 回収工程 を実施させる中空糸膜モジュールを介して回収することが可能である。 门 3 < 2であれば、 回収工程を実施させる中空糸膜モジュールの数である 3に特 に制限はなく、 膜ろ過ユニッ ト内の残液量や、 回収工程にかかる時間等から 適宜決定すればよいが、 膜ろ過ユニッ ト内の残液量をより削減するためには 、 一つの中空糸膜モジュール (1^ 3 = 1) に回収工程を実施させることが好ま しい。
[0054] 回収工程を長時間継続すると、 中空糸膜 5の閉塞が進行し、 膜ろ過速度が 低減する場合がある。 そのような状況を回避するため、 定期的に中空糸膜モ ジュールを洗浄することも好ましい。 回収工程を実施させる中空糸膜モジュ —ル 3 6のみの洗浄方法としては、 例えば、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5 は閉、 逆洗弁 4 6は開、 逆洗バイパス弁 4 7は閉、 濃縮液気体導入弁 4 8は \¥0 2020/175593 15 卩(:170? 2020 /007878
閉、 ろ過液気体導入弁 4 9は閉とし、 逆洗ポンプ 1 4を稼働させ、 逆洗する 方法が挙げられる。
[0055] また、 ろ過液配管 2 2や、 ろ過液バイパス配管 2 4に残存する回収液を最 後に押し出すため、 第 2の加圧気体導入配管 2 6から加圧気体を導入し、 当 該配管中の残液をろ過液タンク 1 2に送液することも好ましい。 当該配管に 存在する残液はわずかな量ではあるが、 さらに原液の回収率を高めることが 可能である。 ろ過液バイパス配管 2 4内の残液を回収する場合には、 供給液 弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は閉、 ろ過液分割弁 4 4は開 、 ろ過液バイパス弁 4 5は開、 逆洗弁 4 6は閉、 逆洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は開である。 ろ過液配管 2 2内の残液を回収する場合には、 供給液弁 4 1は閉、 ろ過液弁 4 2は開、 濃縮液弁 4 3は閉、 ろ過液分割弁 4 4は閉、 ろ過液バイパス弁 4 5は閉、 逆 洗弁 4 6は閉、 逆洗バイパス弁 4 7は閉、 濃縮液気体導入弁 4 8は閉、 ろ過 液気体導入弁 4 9は開である。
[0056] なお、 _度の集約工程で中空糸膜の二次側に残存するろ過液を全て一次側 に逆流させることが難しい場合には、 集約工程及び回収工程を、 複数回繰り 返しても構わない。
[0057] さらに、 集約工程を実施させる中空糸膜モジュールと回収工程を実施させ る中空糸膜モジュールとが異なることも好ましく、 かかる場合には、 集約エ 程と回収工程とを、 並行して実施させることも可能である。 より具体的には 、 例えば、 第 2の加圧気体導入配管 2 6と第 1の加圧気体導入配管 2 5とか ら同時に加圧気体を導入することで、 集約工程と回収工程とを並行して実施 させることができる。 この場合、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃 縮液弁 4 3は閉、 ろ過液分割弁 4 4は閉、 ろ過液バイパス弁 4 5は開、 逆洗 弁 4 6は閉、 逆洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は開、 ろ過液 気体導入弁 4 9は開である。 なお、 逆流液が容器 1内の二次側に再度ろ過さ れることを防ぐため、 第 1の加圧気体導入配管 2 5から導入する回収工程を 実施する加圧気体の圧力? 3よりも、 第 2の加圧気体導入配管 2 6から導入 \¥0 2020/175593 16 卩(:170? 2020 /007878
する集約工程を実施する加圧気体の圧力 2を高くすることが好ましい。
[0058] ここで例示した場合ではろ過液分割弁 4 4が閉であるため、 第 2の加圧気 体導入配管 2 6から導入された加圧気体により、 中空糸膜モジュール 3 1〜 3 5の容器 1内の二次側、 並びに、 中空糸膜モジュール 3 1〜 3 5のろ過液 導出口 3と、 ろ過液分割弁 4 4、 ろ過液弁 4 2及び逆洗弁 4 6との間のろ過 液配管 2 2に存在するろ過液は、 中空糸膜モジュール 3 1〜 3 5の容器 1内 の一次側に逆流し、 逆流液が得られる。 同時に、 第 1の加圧気体導入配管 2 5から導入された加圧気体により、 中空糸膜モジュール 3 1〜 3 5の容器 1 内の一次側の逆流液が原液導入口 2から導出され、 供給液配管 2 1 を介して 中空糸膜モジュール 3 6に送液され集約される。 中空糸膜モジュール 3 6で は、 集約された逆流液が原液導入口 2から容器 1内の一次側に導入され、 ガ ス加圧ろ過により容器 1内の二次側にろ過される。 ろ過された回収液は、 ろ 過液分割弁 4 4が閉、 ろ過液バイパス弁 4 5が開であるため、 ろ過液バイパ ス配管 2 4を介してタンクに送液され回収される。 このとき、 3よりも 2を高くすることで、 中空糸膜モジュール 3 1〜 3 5において再ろ過される ことなく、 回収用モジュールである中空糸膜モジュール 3 6においてのみろ 過されるため好ましい。 より好ましくは ( 2 _ 3) > 1 0
Figure imgf000018_0001
3であり
、 さらに好ましくは ( 2— 3) > 2 0 1< 3である。
[0059] 上記のような方法により集約工程と回収工程とを並行して実施することが 可能となるため、 集約工程と回収工程とにかかる時間を低減でき、 膜ろ過ユ ニッ トの稼働率を向上させることができる。
[0060] ここまでは、 容器 1内の二次側やろ過液配管 2 2内に存在する残液量を削 減する方法を説明したが、 加圧気体によるガス加圧ろ過では、 原液と接触し 得る中空糸膜 5の下端より下側の原液は、 ろ過できない。 従って、 図 2に示 すように並列に接続される全ての中空糸膜モジュール 3 1〜 3 6が、 鉛直方 向において、 供給液配管 2 1 よりも上方に配置される膜ろ過ユニッ トにおい ては、 中空糸膜モジュール 3 1〜 3 6の容器 1内の一次側の、 中空糸膜 5の 下端より下側に存在する原液や、 供給液配管 2 1内に存在する原液は、 ろ過 \¥0 2020/175593 17 卩(:170? 2020 /007878
されず残液となる。
[0061 ] 本実施形態の膜ろ過ユニッ トの運転方法においては、 図 3に示すように、 回収工程を実施させる中空糸膜モジュール 3 6の原液導入口 2を、 回収工程 を実施させない中空糸膜モジュール 3 1〜 3 5の原液導入口 2よりも鉛直方 向において下方に配置することで、 供給液配管 2 1内の残液量の削減が可能 となる。
[0062] 図 3に示す膜ろ過ユニッ トを用いた回収工程では、 例えば、 第 1の加圧気 体導入配管 2 5から加圧気体を導入して中空糸膜モジュール 3 6に逆流液及 び原液を集約し、 中空糸膜モジュール 3 6で逆流液及び原液をガス加圧ろ過 する。 この場合においては、 中空糸膜モジュール 3 6の原液導入口 2が中空 糸膜モジュール 3 1〜 3 5の原液導入口 2よりも鉛直方向において低いため 、 中空糸膜モジュール 3 1〜 3 5の容器 1内の一次側の、 中空糸膜 5の下端 より下側に存在する逆流液や、 供給液配管 2 1内に存在する原液は、 鉛直方 向において同等の液面高さに収束する。 そのため、 中空糸膜モジュール 3 6 では容器 1内の一次側の液面高さが、 中空糸膜モジュール 3 1〜 3 5と比較 して相対的に高くなろうとし、 中空糸膜モジュール 3 6内の中空糸膜 5が逆 流液に浸潰する範囲が広くなる。 同時に、 第 1の加圧気体導入配管 2 5から 加圧気体が導入されているので、 中空糸膜モジュール 3 6の中空糸膜 5に接 触した逆流液は、 容器 1内の二次側にろ過されて回収される。
[0063] 上記のような例示における効果をより大きくするためには、 鉛直方向にお いて、 中空糸膜モジュール 3 6の原液導入口 2を、 供給液配管 2 1の下端よ りも下方に配置することが好ましく、 中空糸膜モジュール 3 6の中空糸膜 5 の下端を、 供給液配管 2 1の下端よりも下方に配置することがより好ましい 。 この場合、 供給液配管 2 1中に存在する残液の大部分を、 中空糸膜モジュ —ル 3 6に送液することが可能となる。
[0064] 本実施形態の膜ろ過ユニッ トの運転方法は、 図 4に示すような別の一形態 の膜ろ過ユニッ トに適用することも可能である。 図 4に例示される形態の膜 ろ過ユニッ トでは、 原液タンク 1 1 と、 中空糸膜モジュール 3 1〜 3 6の原 \¥0 2020/175593 18 卩(:170? 2020 /007878
液導入口 2とが、 供給液配管 2 1 により接続される。 供給液配管 2 1は、 供 給液配管 2 1の途中に配置された供給ポンプ 1 3の後段で分岐され、 中空糸 膜モジュール 3 1〜 3 6に並列に接続される。 中空糸膜モジュール 3 1〜 3 6のろ過液導出口 3は、 ろ過液配管 2 2によりろ過液タンク 1 2と並列に接 続される。 また、 中空糸膜モジュール 3 1〜 3 6の原液導出口 4は、 濃縮液 配管 2 3により原液タンク 1 1 に並列に接続される。 供給液配管 2 1の途中 には供給液弁 4 1が、 濃縮液配管 2 3の途中には濃縮液弁 4 3が、 それぞれ 配置されている。
[0065] さらにろ過液配管 2 2上には、 中空糸膜モジュール 3 1〜 3 5から導出さ れたろ過液と、 中空糸膜モジュール 3 6から導出されたろ過液とを、 接触さ せないように分画する、 ろ過液分割弁 4 4が配置されている。
[0066] ろ過液配管 2 2におけるろ過液分割弁 4 4と中空糸膜モジュール 3 1〜 3
5のろ過液導出口 3との間には、 気体を導入する第 2の加圧気体導入配管 2 6が接続されており、 第 2の加圧気体導入配管 2 6の途中にはろ過液気体導 入弁 4 9が配置されている。 また濃縮液配管 2 3における濃縮液弁 4 3と中 空糸膜モジュール 3 1〜 3 5の原液導出口 4との間にも、 気体を導入する第 1の加圧気体導入配管 2 5が接続されており、 第 1の加圧気体導入配管 2 5 の途中にはろ過液気体導入弁 4 8が配置されている。
[0067] また、 ろ過液タンク 1 2と、 ろ過液配管 2 2とを接続する逆洗配管 2 7が 備えられており、 逆洗配管 2 7の途中には、 ろ過液タンク 1 2から中空糸膜 モジュール 3 1〜 3 6にろ過液を送液する、 逆洗ポンプ 1 4及び逆洗弁 4 6 が配置される。
[0068] 図 4に例示される膜ろ過ユニッ トを用いた場合、 図 2に例示される膜ろ過 ユニッ トと比較してろ過液バイパス配管 2 4を有しないため、 回収工程終了 時にろ過液配管 2 2内に存在する残液量が、 多くなる場合があるが、 ろ過ユ ニッ トの構造はより単純なものとなる。
[0069] また、 本実施形態の膜ろ過ユニッ トの別の一形態として、 並列に接続され た中空糸膜モジュールの原液導出口 4の後段に、 別の中空糸膜モジュールが \¥0 2020/175593 19 卩(:170? 2020 /007878
直列に接続されていても構わない。 ここで 「直列に接続」 とは、 一つの中空 糸膜モジュールに導入された原液の少なくとも一部が当該中空糸膜モジュー ルから導出され、 後段に接続する別の中空糸膜モジュールに導入される接続 の様態をいう。 この場合、 例えば、 直列に 2本接続された中空糸膜モジュー ルの内、 後段の中空糸膜モジュールでは、 原液導入口 2が鉛直方向における 上部に、 原液導出口 4が鉛直方向における下部に配置される場合もあり得る 。 従って、 そのような実施形態の膜ろ過ユニッ トにおいては、 直列に接続さ れた中空糸膜モジュールの後段では、 集約工程においては中空糸膜モジュー ルの原液導出口 4から逆流液が導出され、 回収工程においては中空糸膜モジ ュールの原液導出口 4から逆流液が導入されることとなる。
[0070] 本実施形態の膜ろ過ユニッ トの運転方法が適用される中空糸膜の材質につ いては、 疎水性の樹脂を使用したものが好ましい。 親水性の樹脂より形成さ れた膜を使用した場合、 加圧気体により原液側からろ過液側に気体を通気し て乾燥させた場合でも、 再び液体を通液することで膜が完全に湿潤化するた め、 透水性能の低下はなく、 そもそも本実施形態の膜ろ過ユニッ トの運転方 法を適用する必要がない。
[0071 ] 一方疎水性の樹脂より形成された膜を使用した場合、 加圧気体により原液 側からろ過液側に気体を通気して乾燥させると、 再び液体を通液しても膜が 完全に湿潤化しないため、 透水性能が低下する。 本実施形態は、 このような 膜を乾燥させることができない分離膜を使用した膜ろ過ユニッ トに好適な運 転方法である。
[0072] 疎水性の樹脂としては、 例えばフッ素系樹脂、 オレフィン系樹脂などが挙 げられるが、 接触角が 8 0 ° 以上の樹脂が好ましく、 9 0 ° 以上の樹脂がよ り好ましい。 この範囲内であれば複数の樹脂を含有してもよい。
疎水性の樹脂は強度の観点からフッ素系樹脂が好ましく、 ポリフッ化ビニ リデンがより好ましい。
[0073] 接触角の測定は、 中空糸膜状に成形した分離膜をエタノールや純水で十分 洗浄したのち、 十分真空乾燥した分離膜の表面を平坦にし、 純水の液滴を分 \¥0 2020/175593 20 卩(:170? 2020 /007878
離膜表面に滴下後、 2秒から 5秒までに測定された接触角の平均値を接触角 とする。 接触角は 0 / 2法によって求められるものである。 0 / 2法とは、 水滴の左もしくは右の端点と頂点を結ぶ直線の、 膜表面に対する角度 (㊀/ 2) から接触角 0を得る方法である。
[0074] また、 中空糸膜の乾燥を防ぐため、 加圧気体を導入する圧力はバブルボイ ント圧力以下にすることが好ましい。 バブルポイント圧力とは、 例えば中空 糸膜をエタノール等で湿潤化した後、 中空糸膜の細孔内を所定の液体で満た し、 中空糸膜の一端側から加圧気体を導入して徐々に圧力を上げていき、 他 端側の表面から気泡の発生が検出される最小圧力のことである。 バブルボイ ント圧力の測定時に、 中空糸膜を湿潤化させる液体としては、 実際にろ過を 行う原液と同じ液体、 もしくは同等の表面張力を有する液体でバブルポイン 卜圧力を測定することが好ましい。
実施例
[0075] (中空糸膜モジュールの作製)
東レ社製の? 0 中空糸膜 (1~1 1\/1膜) を 7 0 0 0本使用し、 図 1 に例 示される力ートリツジ式中空糸膜モジュールを作製した。 中空糸膜 5の両端 は、 遠心ポツティングにより形成したポツティング部 8で固定しつつ、 その うちの一端は圭寸止した。 容器 1の内径は、 1 5 9〇1 111であった。 また、 中空 糸膜の接触角は 9 5 ° 、 バブルポイント圧力は 1 8 0
Figure imgf000022_0001
3であった。
[0076] (実施例 1)
作製した中空糸膜モジュール 6本を使用し、 それらの長手方向と鉛直方向 とを一致させて立て、 図 2に例示される膜ろ過ユニツ トを構成した。
[0077] ろ過工程では、 原液タンク 1 1から原液を供給ポンプ 1 3により中空糸膜 モジュール 3 1〜 3 6に送液し、 クロスフローろ過運転によりろ過工程を実 施した。 この時、 供給液弁 4 1は開、 ろ過液弁 4 2は開、 濃縮液弁 4 3は開 、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆 洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9 は閉であった。 またクロスフロー流量は 1 0 3 3 / 「、 ろ過流量は 7 . 7 \¥0 2020/175593 21 卩(:170? 2020 /007878
01 3 / 11 「とした。
[0078] ろ過工程の途中に、 中空糸膜 5の閉塞を洗浄するために逆洗を実施した。
より具体的には、 逆洗ポンプ 1 4によりろ過液タンク 1 2から中空糸膜モジ ユール 3 1〜 3 6にろ過液を送液した。 この時、 供給液弁 4 1は閉、 ろ過液 弁 4 2は閉、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は開、 逆洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は閉であった。 逆洗流量は 1 0 . 4 3 / 「 とした。
[0079] ろ過工程では、 上記のクロスフローろ過運転を 9分、 上記の逆洗を 1分、 それぞれ行うサイクルを繰り返した。 原液量が少なくなり、 原液タンク 1 1 の下限値まで送液を終えたところで、 クロスフローろ過運転を停止し、 第 1 の加圧気体導入配管 2 5から 1 0 0
Figure imgf000023_0001
3の窒素ガスを導入してガス加圧ろ 過した。 この時、 供給液弁 4 1は閉、 ろ過液弁 4 2は開、 濃縮液弁 4 3は閉 、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆 洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は開、 ろ過液気体導入弁 4 9 は閉であった。 ガス加圧ろ過は、 それぞれの中空糸膜モジユールのろ過液導 出口 3からろ過液の導出がなくなるまで行った。 その後、 第 1の加圧気体導 入配管 2 5を大気圧開放して、 濃縮液配管 2 3内を常圧とし、 ろ過工程を終 了した。
[0080] 集約工程では、
Figure imgf000023_0002
の窒素ガス を導入して、 容器内に存在するろ過液を二次側から一次側へと逆流させ、 逆 流液を得た。 この時、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3 は開、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉 、 逆洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は開であり、 1分間加圧を継続した。
[0081 ] その後、
Figure imgf000023_0003
の窒素ガスを導入 した。 この時、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は閉、 ろ過液分割弁 4 4は閉、 ろ過液バイパス弁 4 5は開、 逆洗弁 4 6は閉、 逆洗 \¥0 2020/175593 22 卩(:170? 2020 /007878
バイパス弁 4 7は閉、 濃縮液気体導入弁 4 8は開、 ろ過液気体導入弁 4 9は 閉であった。 これにより、 中空糸膜モジュール 3 1〜 3 5の容器 1内の一次 側に存在する逆流液を原液導入口から容器 1外に導出した。
[0082] 回収工程では、 上記逆流液を、 供給液配管 2 1 を介して、 中空糸膜モジュ —ル 3 6の容器 1内に導入した。 そして第 1の加圧気体導入配管 2 5から 1 0 0 3の窒素ガスを導入して加圧ろ過した。 この時、 供給液弁 4 1は閉
、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は閉、 ろ過液分割弁 4 4は閉、 ろ過液バ イパス弁 4 5は開、 逆洗弁 4 6は閉、 逆洗バイパス弁 4 7は閉、 濃縮液気体 導入弁 4 8は開、 ろ過液気体導入弁 4 9は閉であり、 中空糸膜モジュール 3 6でのみろ過をした。 得られた回収液はろ過液導出口 3から容器 1外に導出 され、 ろ過液バイパス配管 2 4を介して、 ろ過液タンク 1 2に送液し回収し た。 中空糸膜モジュール 3 6のろ過液導出口 3から回収液の導出がなくなる まで加圧ろ過を行い、 回収工程を終了した。
[0083] 本運転により、 膜ろ過ュニッ トの配管等の内部に最終的に存在した残液は 、 3 1 !_であった。 集約工程と回収工程とに要した時間は 9分であった。
[0084] (実施例 2)
集約工程で、 中空糸膜の二次側から一次側へろ過液を逆流させた際、 ろ過 液分割弁 4 4を閉とし、 中空糸膜モジュール 3 1〜 3 5で逆流させた以外は 、 実施例 1 と同様の膜ろ過ュニッ トの運転方法を実施した。
[0085] 本運転により、 膜ろ過ュニッ トの配管等の内部に最終的に存在した残液は 、 3 1 !_であった。 集約工程と回収工程とに要した時間は 7分であった。
[0086] (実施例 3)
集約工程と、 回収工程とを並行して実施した以外は、 実施例 1 と同様の膜 ろ過ユニッ トの運転方法を実施した。 集約工程と回収工程とを並行して実施 するため、
Figure imgf000024_0001
の窒素ガスを導入 して逆流させると同時に、 第 1の加圧気体導入配管 2 5から 1 0 0 1< 3の 窒素ガスを導入して加圧ろ過した。
[0087] 本運転により、 膜ろ過ュニッ トの配管等の内部に最終的に存在した残液は \¥0 2020/175593 23 卩(:170? 2020 /007878
、 3 1 !_であった。 集約工程と回収工程とに要した時間は 6分であった。
[0088] (実施例 4)
作製した中空糸膜モジュール 6本を使用し、 図 3に例示される膜ろ過ュニ ッ トを構成した以外は、 実施例 1 と同様の膜ろ過ュニッ トの運転方法を実施 した。 鉛直方向において、 中空糸膜モジュール 3 6の原液導入口 2のみを、 供給液配管 2 1の下端より 3 0〇 下方に配置した。
[0089] 本運転により、 膜ろ過ュニッ トの配管等の内部に最終的に存在した残液は 、 9 !_であった。 集約工程と回収工程とに要した時間は 1 4分であった。
[0090] (比較例 1)
作製した中空糸膜モジュール 6本を使用し、 それらの長手方向と鉛直方向 とを一致させて立て、 図 2に例示される膜ろ過ユニッ トを構成した。
[0091 ] ろ過工程では、 原液タンク 1 1から原液を供給ポンプ 1 3により中空糸膜 モジュール 3 1〜 3 6に送液し、 クロスフローろ過運転によりろ過工程を実 施した。 この時、 供給液弁 4 1は開、 ろ過液弁 4 2は開、 濃縮液弁 4 3は開 、 ろ過液分割弁 4 4は開、 ろ過液バイパス弁 4 5は閉、 逆洗弁 4 6は閉、 逆 洗バイパス弁 4 7は開、 濃縮液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9 は閉であった。 またクロスフロー流量は 1 0 3 3 / 「、 ろ過流量は 7 . 7 3 / 11 「とした。 ろ過工程の途中に、 中空糸膜 5の閉塞を洗浄するために逆 洗を実施した。 より具体的には、 逆洗ポンプ 1 4によりろ過液タンク 1 2か ら中空糸膜モジュール 3 1〜 3 6にろ過液を送液した。 この時、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3は開、 ろ過液分割弁 4 4は開、 ろ 過液バイパス弁 4 5は閉、 逆洗弁 4 6は開、 逆洗バイパス弁 4 7は開、 濃縮 液気体導入弁 4 8は閉、 ろ過液気体導入弁 4 9は閉であった。 逆洗流量は 1 〇.
Figure imgf000025_0001
とした。
[0092] ろ過工程では上記のクロスフローろ過を 9分、 上記の逆洗を 1分、 それぞ れ行うサイクルを繰り返した。 原液量が少なくなり、 原液タンク 1 1の下限 値まで送液を終えたところで、 クロスフローろ過運転を停止し、 ろ過工程を 終了した。 \¥0 2020/175593 24 卩(:170? 2020 /007878
[0093] その後、 集約工程を実施せず、 そのまま回収工程を実施した。 回収工程で は、
Figure imgf000026_0001
の窒素ガスを導入して加 圧ろ過した。 この時、 供給液弁 4 1は閉、 ろ過液弁 4 2は閉、 濃縮液弁 4 3 は閉、 ろ過液分割弁 4 4は閉、 ろ過液バイパス弁 4 5は開、 逆洗弁 4 6は閉 、 逆洗バイパス弁 4 7は閉、 濃縮液気体導入弁 4 8は開、 ろ過液気体導入弁 4 9は閉であり、 中空糸膜モジュール 3 6でのみろ過をした。 得られた回収 液はろ過液バイパス配管 2 4を介して、 ろ過液タンク 1 2に送液し回収した 。 中空糸膜モジュール 3 6のろ過液導出口 3から回収液の導出がなくなるま で加圧ろ過を行い、 回収工程を終了した。
[0094] 本運転により、 膜ろ過ュニッ トの配管等の内部に最終的に存在した残液は 、 5 5 !_であった。 回収工程に要した時間は 2 4分であった。
[0095] 本発明を詳細に、 また特定の実施態様を参照して説明したが、 本発明の精 神と範囲を逸脱することなく様々な変更や修正を加えることができることは 当業者にとって明らかである。 本出願は 2 0 1 9年 2月 2 6日出願の日本特 許出願 (特願 2 0 1 9— 3 2 3 1 1) に基づくものであり、 その内容はここ に参照として取り込まれる。
産業上の利用可能性
[0096] 本発明の膜ろ過ュニッ トの運転方法は、 飲料水製造、 浄水処理若しくは排 水処理等の水処理分野、 微生物や培養細胞の培養を伴う発酵分野、 食品工業 分野等における原液の膜ろ過に、 好ましく適用される。 符号の説明
[0097] 1 容器
2 原液導入口
3 ろ過液導出口
4 原液導出口
5 中空糸膜
6 原液側空間 (一次側)
7 ろ過液側空間 (二次側) \¥02020/175593 25 卩(:170? 2020 /007878
8 ポッティング部
1 1 原液タンク
1 2 ろ過液タンク
1 3 供給ポンプ
1 4 逆洗ポンプ
2 1 供給液配管
22 ろ過液配管
23 濃縮液配管
24 ろ過液バイパス配管
25 第 1の加圧気体導入配管
26 第 2の加圧気体導入配管
27 逆洗配管
28 ろ過液回収用配管
3 1〜 36 中空糸膜モジュール
4 1 供給液弁
42 ろ過液弁
43 濃縮液弁
44 ろ過液分割弁
45 ろ過液バイパス弁
46 逆洗弁
47 逆洗バイパス弁
48 濃縮液気体導入弁
49 ろ過液気体導入弁

Claims

\¥0 2020/175593 26 卩(:170? 2020 /007878 請求の範囲 [請求項 1 ] 原液導入口と、 ろ過液導出口と、 原液導出口と、 を有する容器に、 中空糸膜が充填された、 中空糸膜モジュールを複数備え、 かつ、 複数の前記中空糸膜モジュールが、 並列に接続されている、 膜ろ過 ユニッ トの運転方法であって、 原液を前記原液導入口から前記容器内に導入し、 前記中空糸膜の一 次側から二次側へろ過して、 得られたろ過液を、 前記ろ過液導出口か ら前記容器外に導出する、 ろ過工程と、 前記容器内に存在する前記ろ過液を、 前記中空糸膜の二次側から一 次側へ逆流させ、 得られた逆流液を、 前記原液導入口及び前記原液導 出口の少なくとも一方から前記容器外に導出する、 集約工程と、 前記逆流液を、 前記原液導入口及び前記原液導出口の少なくとも一 方から再度前記容器内に導入し、 前記中空糸膜の一次側から二次側へ ろ過して、 得られた回収液を前記ろ過液導出口から前記容器外に導出 する、 回収工程と、 を備え、 前記ろ過工程を同時に実施させる前記中空糸膜モジュールの数を门
1、
前記集約工程を同時に実施させる前記中空糸膜モジュールの数を门
2
前記回収工程を同時に実施させる前記中空糸膜モジュールの数を门 3、 としたとき、
Figure imgf000028_0001
膜ろ過ユニッ トの運転方法。
[請求項 2] 前記回収工程を実施させる前記中空糸膜モジュールと、 前記集約エ 程を実施させる前記中空糸膜モジュールとが異なる、 請求項 1記載の 膜ろ過ユニッ トの運転方法。
[請求項 3] 前記集約工程と前記回収工程とを、 並行して実施させる、 請求項 2 記載の膜ろ過ユニッ トの運転方法。
[請求項 4] 前記集約工程と前記回収工程が加圧気体により実施され、 かつ前記 \¥0 2020/175593 27 卩(:170? 2020 /007878
集約工程を実施する前記加圧気体の圧力? 2と、 前記回収工程を実施 する前記加圧気体の圧力 3が、 3< 2の関係を満たす、 請求項 3記載の膜ろ過ユニッ トの運転方法。
[請求項 5] 鉛直方向において、 前記回収工程を実施させる前記中空糸膜モジュ
—ルの前記原液導入口を、 前記回収工程を実施させない前記中空糸膜 モジュールの前記原液導入口よりも、 下方に配置する、 請求項 1〜 4 のいずれか 1項記載の膜ろ過ユニッ トの運転方法。
[請求項 6] 前記中空糸膜が疎水性の樹脂より形成された膜である、 請求項 1〜
5のいずれか 1項記載の膜ろ過ユニッ トの運転方法。
[請求項 7] 前記疎水性の樹脂がポリフッ化ビニリデンより構成される、 請求項
6記載の膜ろ過ユニッ トの運転方法。
[請求項 8] 原液導入口と、 ろ過液導出口と、 原液導出口と、 を有する容器に、 中空糸膜が充填された、 中空糸膜モジュールを複数備え、 かつ、 複数の前記中空糸膜モジュールが、 並列に接続されている、 膜ろ過 ユニッ トであって、
前記原液導入口または前記原液導出口と接続する配管またはタンク に、 加圧気体を導入する第 1の加圧気体導入配管が接続され、 前記ろ過液導出口と接続する配管に、 加圧気体を導入する第 2の加 圧気体導入配管が接続され、
一部の前記中空糸膜モジュールが、 前記ろ過液導出口と前記第 2の 加圧気体導入配管とを接続する前記配管上に弁を備える、 膜ろ過ユニ ッ ト。
[請求項 9] 一部の前記中空糸膜モジュールが、 前記ろ過液導出口と、 ろ過液回 収配管またはろ過液タンクと、 を接続するバイパス配管をさらに備え 前記バイパス配管は前記第 2の加圧気体導入配管とは接続しない、 請求項 8記載の膜ろ過ユニッ ト。
[請求項 10] 前記バイパス配管の管径が、 前記ろ過液回収配管の管径より小さい \¥0 2020/175593 28 卩(:17 2020 /007878
、 請求項 9記載の膜ろ過ユニッ ト。
PCT/JP2020/007878 2019-02-26 2020-02-26 膜ろ過ユニットの運転方法および膜ろ過ユニット WO2020175593A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/432,675 US20220032234A1 (en) 2019-02-26 2020-02-26 Method for operating membrane filtration unit and membrane filtration unit
CN202080017064.6A CN113453789B (zh) 2019-02-26 2020-02-26 膜过滤单元的运转方法及膜过滤单元
JP2020523467A JP6791457B1 (ja) 2019-02-26 2020-02-26 膜ろ過ユニットの運転方法および膜ろ過ユニット
EP20762959.3A EP3932527A4 (en) 2019-02-26 2020-02-26 PROCEDURE FOR OPERATING A MEMBRANE FILTRATION UNIT AND MEMBRANE FILTRATION UNIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019032311 2019-02-26
JP2019-032311 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020175593A1 true WO2020175593A1 (ja) 2020-09-03

Family

ID=72240094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007878 WO2020175593A1 (ja) 2019-02-26 2020-02-26 膜ろ過ユニットの運転方法および膜ろ過ユニット

Country Status (5)

Country Link
US (1) US20220032234A1 (ja)
EP (1) EP3932527A4 (ja)
JP (1) JP6791457B1 (ja)
CN (1) CN113453789B (ja)
WO (1) WO2020175593A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285340A (ja) * 1993-04-07 1994-10-11 Toto Ltd 複合膜分離方法及び装置
JPH0866608A (ja) 1994-06-24 1996-03-12 Sapporo Breweries Ltd 濾過液回収装置付き濾過装置
JPH09234350A (ja) * 1996-02-29 1997-09-09 Nkk Corp 膜濾過装置
WO2000018497A1 (en) 1998-09-25 2000-04-06 Pall Corporation Filtration systems and methods
JP2013075291A (ja) * 2011-09-16 2013-04-25 Metawater Co Ltd 膜ろ過システムおよびその運転制御方法
US20180021734A1 (en) * 2014-12-22 2018-01-25 Veder Waterbox Gmbh Water treatment system and method for treating water located in a water reservoir
JP2018158297A (ja) * 2017-03-23 2018-10-11 株式会社ウェルシィ 膜濾過装置の運転方法及び膜濾過装置
JP2019032311A (ja) 2017-08-04 2019-02-28 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 電磁変換器を備えた時計ムーブメント

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005011219U1 (de) * 2005-07-16 2005-09-29 Bödrich & Strecker Anlagenbau GmbH Filteranlage zum Filtern von Rohwasser
FI20051121L (fi) * 2005-11-04 2007-05-05 Keskuslaboratorio Menetelmä ja laite kiintoainepitoisten vesisuspensioiden suodattamiseksi
FR2909291B1 (fr) * 2006-12-01 2009-10-23 Aquasource Sa Procede de lavage de membranes d'une installation de filtration,et dispositif pour la mise en oeuvre de ce procede.
US20080179244A1 (en) * 2007-01-26 2008-07-31 Parkson Corporation Drain-flush sequence and system for filter module
JP5232393B2 (ja) * 2007-02-28 2013-07-10 三菱レイヨン・クリンスイ株式会社 浄水装置
WO2009008386A1 (ja) * 2007-07-06 2009-01-15 Mitsubishi Rayon Engineering Co., Ltd. 浄水装置の運転方法
US7871520B2 (en) * 2007-12-18 2011-01-18 Milton Roy Company High-temperature membrane distillation
WO2013047466A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 膜モジュールの洗浄方法
CN104556437A (zh) * 2013-10-11 2015-04-29 中国石油化工股份有限公司 一种膜技术用于城市污水深度处理回用的方法
DE102015114004B4 (de) * 2015-08-24 2020-07-02 Sartorius Stedim Biotech Gmbh Einweg-Filtrationsvorrichtung
US10576428B2 (en) * 2016-01-25 2020-03-03 The Regents Of The University Of California Self-adaptive control and optimization of membrane filtration
AT519272A1 (de) * 2016-10-27 2018-05-15 Red Bull Gmbh Pasteurisierungsanlage und Verfahren zum Betreiben einer Pasteurisierungsanlage

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285340A (ja) * 1993-04-07 1994-10-11 Toto Ltd 複合膜分離方法及び装置
JPH0866608A (ja) 1994-06-24 1996-03-12 Sapporo Breweries Ltd 濾過液回収装置付き濾過装置
JPH09234350A (ja) * 1996-02-29 1997-09-09 Nkk Corp 膜濾過装置
WO2000018497A1 (en) 1998-09-25 2000-04-06 Pall Corporation Filtration systems and methods
JP2002525196A (ja) * 1998-09-25 2002-08-13 ポール・コーポレーション 濾過システム及び方法
JP2013075291A (ja) * 2011-09-16 2013-04-25 Metawater Co Ltd 膜ろ過システムおよびその運転制御方法
US20180021734A1 (en) * 2014-12-22 2018-01-25 Veder Waterbox Gmbh Water treatment system and method for treating water located in a water reservoir
JP2018158297A (ja) * 2017-03-23 2018-10-11 株式会社ウェルシィ 膜濾過装置の運転方法及び膜濾過装置
JP2019032311A (ja) 2017-08-04 2019-02-28 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 電磁変換器を備えた時計ムーブメント

Also Published As

Publication number Publication date
CN113453789B (zh) 2023-06-20
CN113453789A (zh) 2021-09-28
EP3932527A1 (en) 2022-01-05
JP6791457B1 (ja) 2020-11-25
JPWO2020175593A1 (ja) 2021-03-11
EP3932527A4 (en) 2022-12-14
US20220032234A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US20220176278A1 (en) Processes for Filtering Liquids Using Single Pass Tangential Flow Filtration Systems And Tangential Flow Filtration Systems With Recirculation of Retentate
KR20160045800A (ko) 잔류물의 재순환을 이용한 싱글 패스 접선 유동 여과 시스템 및 접선 유동 여과 시스템
JPH07112185A (ja) 排水処理装置およびその洗浄方法
JPH03154620A (ja) 膜分離装置
JP2003266072A (ja) 膜ろ過方法
US20110263009A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JPH11128692A (ja) 中空糸膜モジュール
JP5324117B2 (ja) 散気装置及び散気装置を備えた膜濃縮装置を有する水処理施設
WO2020175593A1 (ja) 膜ろ過ユニットの運転方法および膜ろ過ユニット
JP2018143970A (ja) 濃縮システムおよび濃縮方法
CN211988043U (zh) 可更换滤芯式中空纤维纳滤膜组器
JP5874866B1 (ja) 除濁膜モジュールの運転方法
CN210964231U (zh) 纳滤装置
JP7075751B2 (ja) ろ過膜の洗浄方法
CN203002094U (zh) 啤酒陶瓷膜过滤系统装置
JP3953673B2 (ja) 膜分離装置
JP2010188250A (ja) 水処理方法
KR101685356B1 (ko) 수직형 중공사막 모듈 및 이를 이용한 여과 시스템
JP3572267B2 (ja) 管状膜分離装置
CN210193719U (zh) 一种胎盘蛋白粗提液超滤装置
CN210993306U (zh) 一种适用于工业清洗剂的回收处理装置
JP2015123436A (ja) 水処理方法
CN108031291A (zh) 一种多功能膜过滤系统
CN215085455U (zh) 一种对环糊精母液提纯处理的组合过滤装置
CN211328457U (zh) 一种陶瓷过滤机清洗水循环系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020523467

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020762959

Country of ref document: EP

Effective date: 20210927