WO2020175152A1 - プラズマcvd装置、および、プラズマcvd法 - Google Patents

プラズマcvd装置、および、プラズマcvd法 Download PDF

Info

Publication number
WO2020175152A1
WO2020175152A1 PCT/JP2020/005552 JP2020005552W WO2020175152A1 WO 2020175152 A1 WO2020175152 A1 WO 2020175152A1 JP 2020005552 W JP2020005552 W JP 2020005552W WO 2020175152 A1 WO2020175152 A1 WO 2020175152A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
pipe
gas
oxygen
less
Prior art date
Application number
PCT/JP2020/005552
Other languages
English (en)
French (fr)
Inventor
忠正 小林
秀昭 座間
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020207027166A priority Critical patent/KR102402116B1/ko
Priority to CN202080002098.8A priority patent/CN111918982A/zh
Priority to JP2020544973A priority patent/JP6983332B2/ja
Priority to US16/977,275 priority patent/US20210222298A1/en
Publication of WO2020175152A1 publication Critical patent/WO2020175152A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to a plasma device and a plasma device method.
  • a thin film transistor including a semiconductor layer containing an oxide semiconductor as a main component has a structure including a semiconductor layer formed on a gate insulator layer covering a gate electrode and an insulator layer formed on the semiconductor layer.
  • the insulator layer functions as an etching stopper layer when forming the source electrode and the drain electrode from the metal layer formed on the insulator layer and the portion of the semiconductor layer not covered by the insulator layer.
  • Such an insulator layer is formed of, for example, a silicon oxide film (for example, see Patent Document 1).
  • Patent Document 1 International Publication No. 2 0 1 2/1 6 9 3 9 7
  • the silicon oxide film may be formed using the plasma method.
  • any of silane (3 ⁇ 1-1 4) and tetra- ethoxysilane (Chomi Rei_3) are often used as a raw material of the silicon oxide film. Since these materials contain hydrogen, the silicon oxide film formed on the semiconductor layer also contains hydrogen. Hydrogen in the silicon oxide film diffuses toward the semiconductor layer at the interface between the silicon oxide film and the semiconductor layer and restores the semiconductor layer, thereby causing oxygen deficiency in the semiconductor layer. The oxygen deficiency in the semiconductor layer makes the characteristics of the thin film transistor including the semiconductor layer unstable. Therefore, a film formation method capable of reducing the hydrogen content in the silicon oxide film is required. ⁇ 2020/175 152 2 ⁇ (: 170? 2020 /005552
  • An object of the present invention is to provide a plasma device and a plasma device capable of reducing the concentration of hydrogen atoms in a silicon oxide film.
  • the plasma device of the embodiment is a vacuum chamber for partitioning a space for accommodating a film-forming target, and a storage unit for storing isocyanate silane containing no hydrogen, wherein the isocyanate silane is stored in the storage unit.
  • the storage unit which is heated to generate an isocyanate silane gas for supplying to the vacuum chamber, and the storage unit is connected to the vacuum chamber, and the isocyanate silane gas generated by the storage unit is supplied to the vacuum chamber.
  • supplying pipe and a temperature control unit for adjusting the temperature of the pipe in 8 3 ° ⁇ than on 1 8 0 ° ⁇ below, the electrodes disposed in the vacuum chamber, the high-frequency power before Symbol electrodes for And a power supply.
  • the pressure in the vacuum chamber when the silicon oxide film is formed on the film formation target is 50 3 or more and less than 5 03.
  • the plasma ⁇ 30 method of the embodiment is connected to a vacuum tank for accommodating a film formation target and a storage unit, and supplies hydrogen-free isocyanate silane gas generated in the storage unit to the vacuum tank.
  • a vacuum tank for accommodating a film formation target and a storage unit, and supplies hydrogen-free isocyanate silane gas generated in the storage unit to the vacuum tank.
  • an oxygen-containing gas is supplied to the vacuum chamber. ⁇ 2020/175 152 3 (: 170? 2020 /005552
  • An oxygen-containing gas supply unit may be further provided.
  • the oxygen-containing gas may be oxygen gas.
  • the isocyanate silane may be tetraisocyanate silan.
  • the storage section supplies tetraisocyanatesilane gas to the pipe at a first flow rate, and the oxygen-containing gas supply section supplies the oxygen gas at a second flow rate.
  • the ratio of the second flow rate to the first flow rate may be 1 or more and 100 or less. According to the above configuration, the concentration of put that hydrogen atoms in the silicon oxide film is possible you to form a silicon oxide film is less than 1 XI ⁇ 2 1 / ⁇ 3.
  • the ratio of the second flow rate to the first flow rate may be 2 or more and 100 or less.
  • the pressure in the vacuum chamber is 503 or more. According to the above configuration, the certainty that the concentration of hydrogen atoms in the silicon oxide film is 1 X 1 0 2 1 /O 3 or less is increased.
  • the pipe is a first pipe, is connected to an oxygen-containing gas supply unit that supplies an oxygen-containing gas to the empty tank, and is connected to the oxygen-containing gas supply unit, and
  • the first pipe may be further connected to the first pipe on the way to the vacuum chamber, and a second pipe may be provided for supplying the oxygen-containing gas to the first pipe.
  • the isocyanate silane gas and the oxygen-containing gas are mixed in the first pipe, and these mixed gases are supplied into the vacuum chamber. Therefore, variations in oxygen concentration in the vacuum chamber can be suppressed, and as a result, variations in characteristics of the silicon oxide film formed in the vacuum chamber can be suppressed.
  • FIG. 1 is a block diagram schematically showing the structure of a plasma device according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of a thin film transistor including a silicon oxide film formed by using a plasma 0 V 0 device. ⁇ 2020/175 152 4 (: 170? 2020 /005552
  • FIG. 3 A graph showing the relationship between the hydrogen concentration in the silicon oxide film and the pressure in the vacuum chamber for each ratio of the flow rate of oxygen gas to the flow rate of tetraisocyanate silane gas.
  • FIG. 4 A table showing the relationship between the flow rate of oxygen gas, the pressure in the vacuum chamber, and the pressure of the tetriocyanate silane gas in the first pipe.
  • FIG. 7 A graph showing the drain current in the thin film transistor of Test Example 1.
  • FIG. 8 A graph showing the drain current in the thin film transistor of Test Example 2. MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 8. An embodiment of a plasma apparatus and a plasma method will be described with reference to FIGS. 1 to 8. Below, the structure of the plasma device, the plasma device method, and the test example will be described in order.
  • FIG. 1 schematically shows an example of the plasma device.
  • the plasma apparatus 10 includes a vacuum chamber 21, a storage unit 30, a first pipe 11 and a temperature control unit 12.
  • the vacuum chamber 21 defines a space for accommodating the film formation target 3.
  • the storage unit 30 stores hydrogenated isocyanate silane.
  • the isocyanate silane is tetraisocyanate silane (3 I (N00) 4 ).
  • the storage unit 30 heats 3 (N00) 4 in the storage unit 30 to generate ⁇ (N00) 4 gas for supplying to the vacuum chamber 21.
  • the first pipe 11 is a pipe for connecting the storage unit 30 to the vacuum chamber 21 and supplying the 3N (N00) 4 gas generated by the storage unit 30 to the vacuum chamber 21.
  • the temperature control unit 12 adjusts the temperature of the first pipe 11 to 83 ° ⁇ or more and 180 ° ⁇ or less.
  • the pressure in the vacuum chamber 21 when the silicon oxide film is formed on the film formation target 3 is 50 3 or more and less than 500 93. ⁇ 2020/175 152 5 (: 170? 2020 /005552
  • the plasma device 10 it is possible to form a silicon oxide film by using 3 (1 ⁇ ! ⁇ ) 4 gas containing no hydrogen. Therefore, it is possible to lower the concentration of hydrogen atoms in the silicon oxide film as compared with the case where the silicon oxide film is formed using a gas containing hydrogen such as silane or tetraethoxysilane.
  • the plasma device 10 further includes an oxygen-containing gas supply unit 13 and a second pipe 14.
  • the oxygen-containing gas supply unit 13 supplies the oxygen-containing gas to the vacuum chamber 21.
  • the oxygen-containing gas is oxygen (0 2 ) gas.
  • the second pipe 14 is connected to the oxygen-containing gas supply unit 13 and is connected to the first pipe 11 on the way to the vacuum chamber 21.
  • Second pipe 1 4 is a piping for supplying the ⁇ 2 gas into the first pipe 1 1.
  • the plasma apparatus 10 further includes an electrode 22 and a power source 23.
  • the electrode 22 is arranged in the vacuum chamber 21.
  • the electrode 22 is connected to the first pipe 11.
  • the electrode 22 also functions as a diffusing section for diffusing a mixed gas of 3N (N 0 0) 4 gas supplied by the first pipe 11 and oxygen gas.
  • the electrode 22 is, for example, a shower plate made of metal.
  • the first pipe 11 is connected to the vacuum chamber 21 via the electrode 22.
  • the power supply 23 supplies high frequency power to the electrode 22.
  • Power 2 3 is, for example, 1
  • the vacuum chamber 20 includes the above-mentioned vacuum chamber 21, electrode 22 and power supply 2
  • the vacuum chamber 20 further includes a support portion 24 and an exhaust portion 25.
  • the support part 24 is arranged in the vacuum chamber 21 and supports the film formation target 3.
  • the support part 24 is, for example, a stage that supports the film formation target 3. support ⁇ 2020/175 152 6 ⁇ (: 170? 2020/005552
  • the part 24 may have a temperature control part for controlling the temperature of the film formation target 3 inside the support part 24.
  • the supporting part 24 also functions as a counter electrode facing the electrode 22.
  • the plasma device 10 is a parallel plate type plasma device.
  • the exhaust unit 25 is connected to the vacuum chamber 21.
  • the exhaust unit 25 reduces the pressure in the vacuum chamber 21 to a predetermined pressure.
  • the vacuum chamber 21 is equipped with, for example, various pumps and various valves.
  • the storage unit 30 includes a storage tank 31, a constant temperature tank 32, a tank 33, a tank temperature control unit 34, 3 I (N00) 4 gas supply unit 35, and 3 ⁇ (N00) 4 gas pipe 36. ing.
  • the constant temperature bath 32 is located inside the storage bath 31.
  • the constant temperature bath 32 can maintain a predetermined temperature in the space defined by the constant temperature bath 32.
  • 3 I (N00) 4 Gas pipe 36 is located in the constant temperature bath 32.
  • the tank temperature control unit 34 is located outside the tank 33 and heats the tank 33 together with 3 I (N00) 4 stored in the tank 33.
  • the tank 33 can store 3 (00) 4 in a gas-liquid equilibrium state.
  • the tank 33, 3 ⁇ (N (3_Rei) 4 gas supply unit 35, 3 ⁇ (N00) 4 via a gas pipe 36 is connected.
  • 3 I (N00) 4 gas supply unit 35 For example, a mass flow controller.
  • Gas supply unit 35 is connected to the first pipe 1 1.
  • the temperature control unit 12 is located outside the first pipe 11 and heats the first pipe 11.
  • the temperature control unit 12 can heat the first pipe 11 so that the temperature of the first pipe 11 and the temperature of the fluid flowing in the first pipe 11 are substantially the same. Is.
  • the oxygen-containing gas supply unit 13 is, for example, a mass flow controller. Oxygen-containing gas supply unit 1 3 is supplied to the second pipe 1 4 ⁇ 2 gas at a predetermined flow rate. ⁇ 2020/175 152 7 ⁇ (: 170? 2020/005552
  • the second pipe 14 is connected to the first pipe 11. It is preferable that the second pipe 14 is connected closer to the storage unit 30 than at least a part of the heated portion of the first pipe 11.
  • 3 ⁇ (1 ⁇ 1_Rei_rei) 4 gas temperature of the scan is ⁇ 2 gas through the first pipe 1 1, 3 ⁇ (1 ⁇ ! Hundred) 4 gas with oxygen gas It is possible to supply into the vacuum chamber 21.
  • the first pressure gauge 1 can be attached to the vacuum chamber 21.
  • the first pressure gauge 1 can measure the pressure in the vacuum chamber 21.
  • the second pressure gauge 2 can be attached to the.
  • the second pressure gauge 2 can measure the pressure in the first pipe 11.
  • the plasma V 0 method will be described with reference to FIGS. 2 to 5.
  • the temperature of the piping should be set to 8 3 ° ⁇ or more and 1 800 ° ⁇ or less, and the pressure in the vacuum chamber should be set to 5 0 3 or more and less than 5 0 3 Including and.
  • the pipe is connected to a vacuum chamber for accommodating the film-forming target and the storage unit, and supplies the 3 (N 0 0) 4 gas generated by the storage unit to the vacuum chamber.
  • the plasma law will be described in more detail with reference to the drawings.
  • the structure of a thin film transistor in which a silicon oxide film formed by using the plasma ⁇ 30 method is applied as an insulator layer will be described.
  • the structure of the thin film transistor will be described with reference to FIG.
  • the thin film transistor includes a silicon oxide film formed by using the plasma device 10 described above as an insulator layer formed on the semiconductor layer.
  • the thin film transistor 40 includes a semiconductor layer 4 1 and an insulator layer 4
  • the semiconductor layer 4 1 includes the surface 4 13 and the oxide semiconductor is the main component in the semiconductor layer 4 1.
  • 90% by mass or more is an oxide semiconductor.
  • the insulator layer 42 is located on the surface 4 13 of the semiconductor layer 41. Insulator layer 4 ⁇ 2020/175 152 8 ⁇ (: 170? 2020 /005552
  • the silicon oxide is the main component, and the concentration of hydrogen atoms is 1 ⁇ 10 2 1 atoms/O 3 or less.
  • the insulator layer 42 is a silicon oxide film formed by using the plasma device 10 described above. The insulator layer 42 covers the surface 4 13 of the semiconductor layer 41 and the portion of the gate insulator layer 45 not covered by the semiconductor layer 41.
  • the semiconductor layer 4 1 may include at least one layer. That is, the semiconductor layer 41 may include a plurality of layers of two or more layers.
  • the main components of each layer are ⁇ 1 ⁇ 2
  • the thin film transistor 40 includes the film formation target 3 described above.
  • the film formation target 3 includes a substrate 43, a gate electrode 44, a gate insulator layer 45, and a semiconductor layer 41.
  • the gate electrode 44 is located on a part of the surface of the substrate 43.
  • the gate insulator layer 45 covers the entire gate electrode 44 and the surface of the substrate 43 not covered by the gate electrode 44.
  • the substrate 43 may be, for example, a resin substrate formed of various resins or a glass substrate.
  • the material for forming the gate electrode 44 for example, molybdenum or the like can be used.
  • the gate insulator layer 45 for example, a silicon oxide layer, a stacked body of a silicon oxide layer and a silicon nitride layer, or the like can be used.
  • the semiconductor layer 41 is located on the surface of the gate insulator layer 45 at a position overlapping the gate electrode 44 in the stacking direction of the layers forming the thin film transistor 40.
  • the thin film transistor 40 further includes a source electrode 46 and a drain electrode 47.
  • the source electrode 46 and the drain electrode 47 are arranged at a predetermined interval in the arrangement direction along the horizontal section of the thin film transistor 40.
  • the source electrode 46 covers a part of the insulator layer 42.
  • the drain electrode 47 covers the other part of the insulator layer 42.
  • Source electrode 4 6 ⁇ 2020/175 152 9 (: 170? 2020/005552
  • Each of the drain electrode 47 and the drain electrode 47 is electrically connected to the semiconductor layer 41 through a contact hole formed in the insulator layer 42.
  • the material forming the source electrode 46 and the material forming the drain electrode 47 may be, for example, molybdenum or aluminum.
  • the thin film transistor 40 further includes a protective film 48.
  • the protective film 48 covers the part of the insulator layer 42 exposed from both the source electrode 46 and the drain electrode 47, the source electrode 46, and the drain electrode 47.
  • the material forming the protective film 48 may be, for example, silicon oxide.
  • the concentration of hydrogen atoms in the insulator layer 42 which is a silicon oxide film, is set to 1 X 1 0 2 1 it is required number / ⁇ 3 is less than or equal to.
  • the concentration of hydrogen atoms is also called hydrogen concentration.
  • the hydrogen concentration of the silicon oxide film is determined by the pressure in the vacuum chamber 21 when the silicon oxide film is formed and the ratio of the flow rate ⁇ of 2 gas to the flow rate 3 of 3 (N 0 0) 4 gas ( ⁇ / 3) depends on. In the following, the ratio of flow rate ⁇ to flow rate 3 is also called flow rate ratio.
  • FIG. 3 is a graph showing the relationship between the hydrogen concentration in the silicon oxide film and the pressure in the vacuum chamber 21 for each flow rate ratio.
  • the relationship between the hydrogen concentration and the pressure in the vacuum chamber 21 shown in FIG. 3 was obtained by setting the conditions for forming the silicon oxide film as follows.
  • a silicon oxide film having a hydrogen concentration of 3 or less is easily formed. Therefore, it is preferable that the flow rate ratio is set to 1 or more and 100 or less. Further, in forming the silicon oxide film, it is more preferable that the flow rate ratio is 2 or more and 100 or less and the pressure in the vacuum chamber 21 is 503 or more and 3503 or less. Thus, it is possible to increase the certainty that the hydrogen concentration of the silicon oxide film becomes 1 X 1 0 21 atoms / ⁇ 3 below.
  • the pressure in the vacuum chamber 21 is 50 3 or more 500 When the flow rate ratio is less than 1 and less than 100, the deposition rate of the silicon oxide film is
  • FIG. 4 when the flow rate of ⁇ 2 gas supplied to the first pipe 1 1, the pressure in the vacuum chamber 2 in 1, i.e. where the first pressure meter 1 of the pressure is set to each value, 7 is a table showing pressures measured by a second pressure gauge 2.
  • the pressure in the vacuum chamber 2 1 needs to be less than 500 3. is there.
  • FIG. 5 is a saturated vapor pressure curve of 3 (N00) 4 gas.
  • the temperature of the 3 I (N00) 4 gas that is, the temperature of the first pipe 11 to which the 3 N (N00) 4 gas is supplied, must be 83° or higher.
  • the boiling point of 3 (00) 4 is 186 ° ⁇ . Therefore, if the upper limit of the temperature of the first pipe 11 is set to 180 ° ⁇ , which is a value near the boiling point of 3 N (N00) 4 gas, the 3 I (1 ⁇ 100) 4 gas is vacuumed. It is possible to surely supply into the tank 21.
  • the semiconductor layer and the insulator layer were formed under the following conditions.
  • a secondary ion mass spectrometer (80,120, manufactured by ULVAC-PHI, Inc.) was used to measure the concentration of hydrogen atoms in the insulator layer of each thin film transistor. It was confirmed that the hydrogen atom concentration in each insulator layer was the same value as shown in Fig. 3.
  • the carrier concentration was measured in the semiconductor layer included in each laminate.
  • use Hall effect measuring instrument 55001 II, manufactured by Nanometrics Inc. was used.
  • the concentration of hydrogen atoms in the insulator layer is 1 X 1 21 21 /
  • the concentration of carriers in the semiconductor layer 41 was larger than 1 ⁇ 10 16 particles/ ⁇ 01 3 .
  • the concentration of hydrogen atoms in the insulator layer is 1 XI ⁇ 21 pieces/ ⁇ 3 or less, the carrier concentration in the semiconductor layer is smaller than 1 X 10 13 pieces/ ⁇ 3 was confirmed.
  • a thin film transistor of No. 1 was formed. Note that ⁇ 2020/175 152 13 ⁇ (: 170? 2020/005552
  • the semiconductor layer was formed under the above-described conditions, and the insulator layer was formed under the following conditions.
  • concentration of hydrogen atoms in the insulator layer was measured by the method described above, it was 5 x 10 19 pieces/ ⁇ It was confirmed to be 3 .
  • the gate electrode, the source electrode, and the drain electrode were formed of molybdenum, the gate insulator layer was formed of silicon oxide, and the protective layer was formed of silicon oxide.
  • a thin film transistor of Test Example 2 was formed by the same method as Test Example 1 except that the film formation conditions of the insulating layer were as follows. Incidentally, as measured by the method described above the concentration of hydrogen atoms in the insulating layer, 2X 1 ⁇ 21 / ⁇ 3 Dearuko and was observed.
  • transistor characteristics of each of the thin film transistor of Test Example 1 and the thin film transistor of Test Example 2 that is, voltage (V 3) -current () ⁇ Measured 0 characteristics
  • V 3) -current () ⁇ Measured 0 characteristics Set the transistor characteristics measurement conditions as follows. ⁇ 2020/175 152 14 ⁇ (: 170? 2020/005552
  • the thin film transistor of Experimental Example 1 the threshold voltage is 5 is 3 V, a turn-on voltage ⁇ . 66, the electron mobility is 1 0.1 2_Rei_rei_1 2/3, The subthreshold swing value was found to be 0. 3 1/0 16 0 3 ⁇ 16.
  • the ON voltage, the drain current is a gate voltage of 1 0_ 9 eight / Rei_rei_1 2 der Rutoki.
  • the thin film transistor of Test Example 1 is a thin film transistor including an insulator layer having a hydrogen atom concentration of 1 XI 0 21 /O 3 or less, the thin film transistor can operate normally. In other words, it was confirmed that the transistor characteristics were stable.
  • the thin-film transistor of Test Example 2 including the insulator layer in which the concentration of hydrogen atoms was higher than 1 XI ⁇ 21 / ⁇ 3 was normal. It did not work, in other words, it was confirmed that the transistor characteristics were unstable.
  • the water content in the silicon oxide film is ⁇ 2020/175 152 15 ⁇ (: 170? 2020/005552
  • the second pipe 14 may not be connected in the middle of the first pipe 11 but may be directly connected to the vacuum chamber 21.
  • the second pipe 14 may be connected to, for example, the electrode 22 that functions as a diffusion part for diffusing gas, or may be connected to the supply hole formed in the vacuum chamber 21.
  • the electrode 22 may not have a function as a diffusion part.
  • the plasma device 10 may include a diffusion part located in the vacuum chamber 21 separately from the electrodes.
  • the plasma ⁇ 30 device 10 may not have a diffusing section, and the first pipe 11 may be connected to the supply hole formed in the vacuum chamber 21.
  • Isocyanate Silane gas is a gas that contains isocyanate groups and does not contain hydrogen.
  • the isocyanate silane gas may be, for example, 3 ⁇ (N 0 0) 3 0 I gas, 3 ⁇ (0 0) 2 0 I 2 gas, and 3 ⁇ (N 0 0) 0 instead of the tetraisocyanate silane gas. It may be any one selected from I 3 gas.
  • oxygen-containing gas instead of oxygen gas as described above, for example, ozone ( ⁇ 3) gas, nitrous oxide (1 ⁇ 1 2 ⁇ ) gas, carbon monoxide ( ⁇ 3 0) Gas and-carbon dioxide ( ⁇ 2 ) Any one selected from gas may be used. ⁇ 2020/175 152 16 ⁇ (: 170? 2020/005552
  • the silicon oxide film is not limited to the insulator layer included in the thin film transistor, and may be an insulator layer included in, for example, a 3D semiconductor device, a ferroelectric device, a power semiconductor device, a compound semiconductor device, and 3 devices. Good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

プラズマCVD装置(10)は、成膜対象(S)を収容する空間を区画する真空槽(21)と、水素を含まないイソシアネートシランを貯蔵する貯蔵部(30)であって、貯蔵部(30)内においてイソシアネートシランを加熱して、真空槽(21)に供給するためのイソシアネートシランガスを生成する貯蔵部(30)と、貯蔵部(30)を真空槽(21)に接続し、貯蔵部(30)が生成したイソシアネートシランガスを真空槽(21)に供給するための配管(11)と、配管(11)の温度を83℃以上180℃以下に調節する温調部(12)と、真空槽(21)内に配置される電極(22)と、電極(22)に高周波電力を供給する電源(23)とを備える。真空槽(21)において、成膜対象(S)に対してシリコン酸化膜が形成される際における真空槽(21)内の圧力が50Pa以上500Pa未満である。

Description

\¥02020/175152 1 卩(:17 2020/005552
明 細 書
発明の名称 : プラズマ〇 ロ装置、 および、 プラズマ〇 ロ法 技術分野
[0001 ] 本発明は、 プラズマ〇 〇装置、 および、 プラズマ〇 〇法に関する。
背景技術
[0002] 酸化物半導体を主成分とする半導体層を備える薄膜トランジスタとして、 ゲート電極を覆うゲート絶縁体層上に形成された半導体層と、 半導体層上に 形成された絶縁体層とを備える構造が知られている。 絶縁体層は、 絶縁体層 と、 絶縁体層によって覆われていない半導体層の部分とに形成された金属層 から、 ソース電極とドレイン電極とを形成するときに、 エッチングストッパ 層として機能する。 こうした絶縁体層は、 例えばシリコン酸化膜によって形 成される (例えば、 特許文献 1 を参照) 。
先行技術文献
特許文献
[0003] 特許文献 1 :国際公開第 2 0 1 2 / 1 6 9 3 9 7号
発明の概要
発明が解決しようとする課題
[0004] ところで、 シリコン酸化膜は、 プラズマ〇 0法を用いて形成されること がある。 シリコン酸化膜を形成するときには、 シラン (3 丨 1~1 4) およびテト ラエトキシシラン (丁巳〇3) のいずれかが、 シリコン酸化膜の原料として 用いられることが多い。 これらの材料は水素を含むため、 半導体層上に形成 されたシリコン酸化膜も水素を含む。 シリコン酸化膜中の水素は、 シリコン 酸化膜と半導体層との界面において半導体層に向けて拡散し、 半導体層を還 元することによって、 半導体層中に酸素の欠損を生じさせる。 こうした半導 体層での酸素の欠損は、 半導体層を含む薄膜トランジスタの特性を不安定化 させる。 そのため、 シリコン酸化膜における水素の含有量を減らすことが可 能な成膜方法が求められている。 〇 2020/175152 2 卩(:170? 2020 /005552
[0005] なお、 こうした事情は、 半導体層上に形成された絶縁体層であるシリコン 酸化膜に限らず、 シリコン酸化膜に接する層に対する水素の拡散を抑えるこ とを求められる状況において共通している。
[0006] 本発明は、 シリコン酸化膜における水素原子の濃度を低くすることを可能 としたプラズマ〇 〇装置、 および、 プラズマ〇 〇法を提供することを目 的とする。
課題を解決するための手段
[0007] —実施形態のプラズマ〇 〇装置は、 成膜対象を収容する空間を区画する 真空槽と、 水素を含まないイソシアネートシランを貯蔵する貯蔵部であって 、 前記貯蔵部内において前記イソシアネートシランを加熱して、 前記真空槽 に供給するためのイソシアネートシランガスを生成する前記貯蔵部と、 前記 貯蔵部を前記真空槽に接続し、 前記貯蔵部が生成した前記イソシアネートシ ランガスを前記真空槽に供給するための配管と、 前記配管の温度を 8 3 °〇以 上 1 8 0 °〇以下に調節する温調部と、 前記真空槽内に配置される電極と、 前 記電極に高周波電力を供給する電源と、 を備える。 前記真空槽において、 前 記成膜対象に対してシリコン酸化膜が形成される際における前記真空槽内の 圧力が 5 0 3以上 5 0 0 3未満である。
[0008] _実施形態のプラズマ<3 〇法は、 成膜対象を収容する真空槽と貯蔵部と に接続され、 前記貯蔵部が生成した水素を含まないイソシアネートシランガ スを前記真空槽に供給するための配管の温度を 8 3 °〇以上 1 8 0 °〇以下に設 定することと、 前記真空槽内の圧力を 5 0 3以上 5 0 0 3未満に設定す ることと、 を含む。
[0009] 上記各構成によれば、 水素を含まないイソシアネートシランガスを用いて シリコン酸化膜を形成することが可能である。 そのため、 シランやテトラエ トキシシランなどの水素を含むガスを用いてシリコン酸化膜を形成する場合 に比べて、 シリコン酸化膜における水素原子の濃度を低くすることが可能で ある。
[0010] 上記プラズマ〇 〇装置において、 前記真空槽に酸素含有ガスを供給する 〇 2020/175152 3 卩(:170? 2020 /005552
酸素含有ガス供給部をさらに備えてもよい。 前記酸素含有ガスは、 酸素ガス であってもよい。 前記イソシアネートシランは、 テトライソシアネートシラ ンであってもよい。 前記貯蔵部は、 テトライソシアネートシランガスを第 1 流量で前記配管に供給し、 前記酸素含有ガス供給部は、 前記酸素ガスを第 2 流量で供給する。 この場合、 前記第 1流量に対する前記第 2流量の比は、 1 以上 1 0 0以下であってもよい。 上記構成によれば、 シリコン酸化膜におけ る水素原子の濃度が 1 X I 〇 2 1個/〇 3以下であるシリコン酸化膜を形成す ることが可能である。
[001 1 ] 上記プラズマ(3 〇装置において、 前記第 1流量に対する前記第 2流量の 比が、 2以上 1 0 0以下であってもよい。 前記真空槽内の前記圧力が、 5 0 3以上 3 5 0 3以下であってもよい。 上記構成によれば、 シリコン酸化 膜における水素原子の濃度が 1 X 1 〇2 1個/〇 3以下である確実性が高まる
[0012] 上記プラズマ〇 〇装置において、 前記配管は、 第 1配管であり、 前記真 空槽に酸素含有ガスを供給する酸素含有ガス供給部と、 前記酸素含有ガス供 給部に接続され、 かつ、 前記第 1配管が前記真空槽に向かう途中で前記第 1 配管に接続され、 前記第 1配管に前記酸素含有ガスを供給するための第 2配 管と、 をさらに備えてもよい。
[0013] 上記構成によれば、 イソシアネートシランガスと酸素含有ガスとが第 1配 管内で混合され、 これらの混合ガスが真空槽内に供給される。 そのため、 真 空槽内における酸素濃度のばらつきが抑えられ、 結果として、 真空槽内で形 成されたシリコン酸化膜における特性のばらつきを抑えることが可能である
図面の簡単な説明
[0014] [図 1 ]_実施形態におけるプラズマ〇 〇装置の構造を模式的に示すブロック 図。
[図 2]プラズマ 0 V 0装置を用いて形成されるシリコン酸化膜を備えた薄膜卜 ランジスタの構造を示す断面図。 〇 2020/175152 4 卩(:170? 2020 /005552
[図 3]シリコン酸化膜の水素濃度と真空槽内の圧力との関係をテトライソシア ネートシランガスの流量に対する酸素ガスの流量の比ごとに示すグラフ。
[図 4]酸素ガスの流量、 真空槽内の圧力、 および、 第 1配管におけるテトライ ソシアネートシランガスの圧力の関係を示す表。
[図 5]テトライソシアネートシランの蒸気圧曲線。
[図 6]半導体層のキヤリア濃度とシリコン酸化膜の水素濃度との関係を示すグ ラフ。
[図 7]試験例 1の薄膜トランジスタにおけるドレイン電流を示すグラフ。
[図 8]試験例 2の薄膜トランジスタにおけるドレイン電流を示すグラフ。 発明を実施するための形態
[0015] 図 1から図 8を参照して、 プラズマ〇 〇装置、 および、 プラズマ〇 〇 法の一実施形態を説明する。 以下では、 プラズマ〇 〇装置の構造、 プラズ マ〇 〇法、 および、 試験例を順に説明する。
[0016] [プラズマ〇 0装置の構造]
図 1 を参照して、 プラズマ〇 〇装置の構造を説明する。 図 1は、 プラズ マ〇 0装置の一例を模式的に示している。
[0017] 図 1が示すように、 プラズマ〇 〇装置 1 0は、 真空槽 2 1、 貯蔵部 30 、 第 1配管 1 1、 および、 温調部 1 2を備えている。 真空槽 2 1は、 成膜対 象 3を収容する空間を区画している。 貯蔵部 30は、 水素を含まないイソシ アネートシランを貯蔵する。 本実施形態において、 イソシアネートシランは 、 テトライソシアネートシラン (3 I (N00) 4) である。 貯蔵部 30は、 貯蔵部 30内において 3 丨 (N00) 4を加熱して、 真空槽 2 1 に供給するた めの \ (N00) 4ガスを生成する。 第 1配管 1 1は、 貯蔵部 30を真空槽 2 1 に接続し、 貯蔵部 30が生成した 3 丨 (N00) 4ガスを真空槽 2 1 に供 給するための配管である。 温調部 1 2は、 第 1配管 1 1の温度を 83°〇以上 1 80°〇以下に調節する。 真空槽 2 1 において、 成膜対象 3に対してシリコ ン酸化膜が形成される際における真空槽 2 1内の圧力が 50 3以上 500 93未満である。 〇 2020/175152 5 卩(:170? 2020 /005552
[0018] プラズマ〇 〇装置 1 0によれば、 水素を含まない 3 丨 (1\!〇〇) 4ガスを 用いてシリコン酸化膜を形成することが可能である。 そのため、 シランやテ トラエトキシシランなどの水素を含むガスを用いてシリコン酸化膜を形成す る場合に比べて、 シリコン酸化膜における水素原子の濃度を低くすることが 可能である。
[0019] プラズマ〇 〇装置 1 0は、 酸素含有ガス供給部 1 3と、 第 2配管 1 4と をさらに備えている。 酸素含有ガス供給部 1 3は、 真空槽 2 1 に酸素含有ガ スを供給する。 本実施形態において、 酸素含有ガスは酸素 (0 2) ガスである 。 第 2配管 1 4は、 酸素含有ガス供給部 1 3に接続され、 かつ、 第 1配管 1 1が真空槽 2 1 に向かう途中で第 1配管 1 1 に接続されている。 第 2配管 1 4は、 第 1配管 1 1 に〇2ガスを供給するための配管である。
[0020] 3 I (1\!〇〇) 4ガスと〇2ガスとが第 1配管 1 1内で混合され、 これらの 混合ガスが真空槽 2 1内に供給される。 そのため、 真空槽 2 1内における酸 素濃度のばらつきが抑えられ、 結果として、 真空槽 2 1内で形成されたシリ コン酸化膜における特性のばらつきを抑えることが可能である。
[0021 ] プラズマ〇 〇装置 1 0は、 電極 2 2と電源 2 3とをさらに備えている。
電極 2 2は、 真空槽 2 1内に配置されている。 本実施形態では、 電極 2 2は 、 第 1配管 1 1 に接続されている。 電極 2 2は、 第 1配管 1 1 によって供給 された 3 丨 (N 0 0) 4ガスと酸素ガスとの混合ガスを拡散する拡散部として も機能する。 電極 2 2は、 例えば、 金属製のシャワープレートである。 第 1 配管 1 1は、 電極 2 2を介して真空槽 2 1 に接続されている。
[0022] 電源 2 3は、 電極 2 2に高周波電力を供給する。 電源 2 3は、 例えば、 1
3
Figure imgf000007_0001
、 、 の周波数を有し た高周波電力を電極 2 2に供給する。
[0023] 真空チャンバー2 0が、 上述した真空槽 2 1、 電極 2 2、 および、 電源 2
3を備えている。 真空チャンバー2 0は、 支持部 2 4および排気部 2 5をさ らに備えている。 支持部 2 4は、 真空槽 2 1内に配置されて成膜対象 3を支 持する。 支持部 2 4は、 例えば成膜対象 3を支持するステージである。 支持 〇 2020/175152 6 卩(:170? 2020 /005552
部 24は、 成膜対象 3の温度を調節するための温調部を支持部 24の内部に 有してもよい。 なお、 プラズマ〇 〇装置 1 0において、 支持部 24は、 電 極 22と対向する対向電極としても機能する。 プラズマ〇 〇装置 1 0は、 平行平板型のブラズマ〇 V 0装置である。
[0024] 排気部 25は、 真空槽 2 1 に接続されている。 排気部 25は、 真空槽 2 1 内の圧力を所定の圧力まで減圧する。 真空槽 2 1は、 例えば、 各種のポンプ 、 および、 各種のバルブを備えている。
[0025] 貯蔵部 30は、 収容槽 3 1、 恒温槽 32、 タンク 33、 タンク温調部 34 , 3 I (N00) 4ガス供給部 35、 および、 3 丨 (N00) 4ガス配管 36 を備えている。 恒温槽 32は、 収容槽 3 1内に位置している。 恒温槽 32は 、 恒温槽 32が区画する空間内を所定の温度に維持することが可能である。 タンク 33、 タンク温調部 34、 3 丨 (N00) 4ガス供給部 35、 および、
3 I (N00) 4ガス配管 36は、 恒温槽 32内に位置している。 タンク温調 部 34は、 タンク 33の外部に位置し、 タンク 33をタンク 33が貯蔵する 3 I (N00) 4とともに加熱する。 タンク 33は、 気液平衡状態の 3 丨 ( 00) 4を貯蔵することが可能である。 タンク 33には、 3 丨 (N(3〇 ) 4ガ ス供給部 35が、 3 丨 (N00) 4ガス配管 36を介して接続されている。 3 I (N00) 4ガス供給部 35は、 例えばマスフローコントローラーである。
3 I (N00) 4ガス供給部 35は、 第 1配管 1 1 に接続されている。 3 丨 ( N00) 4ガス供給部 35は、 3 丨 (N00) 4ガス配管 36を通じてタンク 33から供給された 3 丨 (1\!〇〇) 4ガスを、 所定の流量で第 1配管 1 1 に供 給する。
[0026] 温調部 1 2は、 第 1配管 1 1の外部に位置して第 1配管 1 1 を加熱する。
温調部 1 2は、 第 1配管 1 1 を加熱することによって、 第 1配管 1 1の温度 と、 第 1配管 1 1内を流れる流体の温度とをほぼ同一の温度にすることが可 能である。
[0027] 酸素含有ガス供給部 1 3は、 例えばマスフローコントローラーである。 酸 素含有ガス供給部 1 3は、 〇2ガスを所定の流量で第 2配管 1 4に供給する。 〇 2020/175152 7 卩(:170? 2020 /005552
第 2配管 1 4は、 第 1配管 1 1 に接続されている。 第 2配管 1 4は、 第 1配 管 1 1 における被加熱部の少なくとも一部よりも貯蔵部 3 0寄りに接続され ていることが好ましい。 これにより、 第 1配管 1 1 を通る 3 丨 ( 1\1〇〇) 4ガ スの温度が〇2ガスによって下げられにくい状態で、 3 丨 ( 1\!〇〇) 4ガスを 酸素ガスとともに真空槽 2 1内に供給することが可能である。
[0028] 真空槽 2 1 には、 第 1圧力計 1 を取り付けることが可能である。 第 1圧 力計 1は、 真空槽 2 1内の圧力を測定することが可能である。 第 1配管 1 1 を 3 丨 ( N 0 0 ) 4ガスが流れる方向において、 貯蔵部 3 0よりも下流、 か つ、 温調部 1 2よりも上流の位置で、 第 1配管 1 1の途中に第 2圧力計 2 を取り付けることができる。 第 2圧力計 2は、 第 1配管 1 1内の圧力を測 定することが可能である。
[0029] [プラズマ〇 〇法]
図 2から図 5を参照して、 プラズマ〇 V 0法を説明する。
[0030] プラズマ〇 〇法は、 配管の温度を 8 3 °〇以上 1 8 0 °〇以下に設定するこ とと、 真空槽内の圧力を 5 0 3以上 5 0 0 3未満に設定することとを含 む。 配管は、 成膜対象を収容する真空槽と貯蔵部とに接続され、 貯蔵部が生 成した 3 丨 ( N 0 0 ) 4ガスを真空槽に供給する。 以下、 図面を参照してブラ ズマ〇 〇法をより詳しく説明する。 また、 プラズマ〇 〇法の説明に先立 ち、 プラズマ<3 〇法を用いて形成されるシリコン酸化膜が絶縁体層として 適用される薄膜トランジスタの構造を説明する。
[0031 ] 図 2を参照して、 薄膜トランジスタの構造を説明する。 薄膜トランジスタ は、 上述したプラズマ〇 〇装置 1 0を用いて形成されたシリコン酸化膜を 半導体層上に形成された絶縁体層として備える。
[0032] 図 2が示すように、 薄膜トランジスタ 4 0は、 半導体層 4 1 と絶縁体層 4
2とを備えている。 半導体層 4 1は表面 4 1 3を含み、 かつ、 半導体層 4 1 において、 酸化物半導体が主成分である。 半導体層 4 1では、 9 0質量%以 上が酸化物半導体である。
[0033] 絶縁体層 4 2は、 半導体層 4 1の表面 4 1 3に位置している。 絶縁体層 4 〇 2020/175152 8 卩(:170? 2020 /005552
2において、 シリコン酸化物が主成分であり、 水素原子の濃度が 1 X 1 0 2 1 個/〇 3以下である。 絶縁体層 4 2は、 上述したプラズマ〇 〇装置 1 0を 用いて形成されたシリコン酸化膜である。 絶縁体層 4 2は、 半導体層 4 1の 表面 4 1 3と、 半導体層 4 1 によって覆われていないゲート絶縁体層 4 5の 部分とを覆っている。
[0034] 本実施形態では、 半導体層 4 1が単一の層から形成される例を説明してい るが、 半導体層 4 1は、 少なくとも 1つの層を含んでいればよい。 すなわち 、 半導体層 4 1は、 2層以上の複数の層を備えてもよい。 各層の主成分は、
Figure imgf000010_0001
丨 1^ 2 |^〇、 丨 1^丁 丨 2 |^〇、 丨 1^八 丨 2 |·!
〇、 Z n T \ 0% Z n O s 门八 I 〇、 および、 门〇リ〇から構成される 群から選択されるいずれか 1つであることが好ましい。
[0035] 薄膜トランジスタ 4 0は、 上述した成膜対象 3を含んでいる。 成膜対象 3 は、 基板 4 3、 ゲート電極 4 4、 ゲート絶縁体層 4 5、 および、 半導体層 4 1 を備えている。 ゲート電極 4 4は、 基板 4 3における表面の一部に位置し ている。 ゲート絶縁体層 4 5は、 ゲート電極 4 4の全体と、 ゲート電極 4 4 によって覆われていない基板 4 3の表面とを覆っている。 基板 4 3は、 例え ば各種の樹脂から形成された樹脂基板、 および、 ガラス基板のいずれかであ ればよい。 ゲート電極 4 4の形成材料には、 例えばモリブデンなどを用いる ことができる。 ゲート絶縁体層 4 5には、 例えばシリコン酸化物層、 または 、 シリコン酸化物層とシリコン窒化物層との積層体などを用いることができ る。
[0036] 半導体層 4 1は、 薄膜トランジスタ 4 0を構成する各層の積み重なる方向 においてゲート電極 4 4と重なる位置で、 ゲート絶縁体層 4 5の表面に位置 している。 薄膜トランジスタ 4 0は、 ソース電極 4 6およびドレイン電極 4 7をさらに備えている。 ソース電極 4 6およびドレイン電極 4 7は、 薄膜卜 ランジスタ 4 0の水平断面に沿う配列方向において、 所定の間隔を空けて並 んでいる。 ソース電極 4 6は、 絶縁体層 4 2の一部を覆っている。 ドレイン 電極 4 7は、 絶縁体層 4 2における他の一部を覆っている。 ソース電極 4 6 〇 2020/175152 9 卩(:170? 2020 /005552
およびドレイン電極 4 7の各々は、 絶縁体層 4 2に形成されたコンタクトホ —ルを介して半導体層 4 1 と電気的に接続している。 ソース電極 4 6の形成 材料、 および、 ドレイン電極 4 7の形成材料は、 例えば、 モリブデンまたは アルミニウムなどであってよい。
[0037] 薄膜トランジスタ 4 0は、 保護膜 4 8をさらに備えている。 保護膜 4 8は 、 ソース電極 4 6およびドレイン電極 4 7の両方から露出する絶縁体層 4 2 の部分、 ソース電極 4 6、 および、 ドレイン電極 4 7を覆っている。 保護膜 4 8の形成材料は、 例えばシリコン酸化物などであってよい。
[0038] 上述したように、 薄膜トランジスタ 4 0では、 薄膜トランジスタ 4 0の特 性を安定化させる上で、 シリコン酸化膜である絶縁体層 4 2における水素原 子の濃度が、 1 X 1 〇2 1個/〇 3以下であることが求められる。 なお、 以下 では、 水素原子の濃度を水素濃度とも言う。 シリコン酸化膜の水素濃度は、 シリコン酸化膜を形成する際の真空槽 2 1内の圧力、 および、 3 丨 (N 0 0 ) 4ガスの流量 3に対する〇 2ガスの流量 〇の比 ( 〇/ 3) に依存す る。 なお、 以下では、 流量 3に対する流量 〇の比を流量比とも言う。
[0039] 図 3は、 シリコン酸化膜の水素濃度と、 真空槽 2 1内の圧力との関係を流 量比ごとに示すグラフである。 なお、 図 3が示す水素濃度と真空槽 2 1内の 圧力との関係は、 シリコン酸化物膜の形成における各条件が、 以下のように 設定されることによって得られたものである。
Figure imgf000011_0001
-高周波電力 4 0 0 0
-電極面積 2 7 0 0〇〇! 2
図 3が示すように、 真空槽 2 1内の圧力が 5 0 3である場合に、 1 X 1 〇 2 1個/〇 3以下の水素濃度を有したシリコン酸化膜を形成することが可能 である。 また、 真空槽 2 1内の圧力が 1 7 5 3または 3 5 0 3である場 合にも、 1 X I 0 2 1個/〇 3以下の水素濃度を有したシリコン酸化膜を形成 することが可能である。 1 X 1 0 2 1個/〇 01 3以下の水素濃度を有したシリコ ン酸化膜を形成するためには、 流量比の値は、 真空槽 2 1内の圧力が高くな 〇 2020/175152 10 卩(:170? 2020 /005552
るほど大きくなる傾向を有する。 そして、 真空槽 2 1内の圧力が 500 3 である場合には、 流量比が 1 00であっても、 1 X I 〇21個/〇 3以下の水 素濃度を有したシリコン酸化膜を形成することが難しい。 ここで、 酸素含有 ガス供給部 1 3、 および、 3 丨 (N00) 4ガス供給部 35が供給する実用的 なガスの流量に鑑みれば、 流量比を 1 00よりも大きくすることは実用的で ない。 そのため、 真空槽 2 1内の圧力は、 1 X 1 021
Figure imgf000012_0001
度を有したシリコン酸化膜を形成するためには、 50 3以上 500
Figure imgf000012_0002
未 満であることが必要である。
[0041] また、 流量比を 1以上 1 00以下に設定することによって、 1 X 1 〇21
3以下の水素濃度を有したシリコン酸化膜が形成されやすくなる。 それ ゆえに、 流量比は 1以上 1 00以下に設定されることが好ましい。 また、 シ リコン酸化膜の形成において、 流量比が、 2以上 1 00以下であり、 かつ、 真空槽 2 1内の圧力が、 50 3以上 350 3以下であることがより好ま しい。 これにより、 シリコン酸化膜の水素濃度が 1 X 1 021個/〇 3以下と なる確実性を高めることができる。
[0042] なお、 真空槽 2 1内の圧力が 50 3以上 500
Figure imgf000012_0003
未満であり、 かつ、 流量比が 1以上 1 00以下である場合には、 シリコン酸化膜の成膜レートが
Figure imgf000012_0004
[0043] 図 4は、 第 1配管 1 1 に供給される〇2ガスの流量と、 真空槽 2 1内の圧力 、 すなわち第 1圧力計 1の圧力とが各値に設定された場合に、 第 2圧力計 2において測定された圧力を示す表である。 上述したように、 1 X I 021 個/〇〇!3以下の水素濃度を有したシリコン酸化膜を形成するためには、 真空 槽 2 1内の圧力は、 500 3未満であることが必要である。 また、 流量比 は最大でも 1 00であることから、 3 丨 (N(3〇 ) 4ガスの流量が 553〇〇 に設定された場合には、 〇 2ガスの流量における最大値は 55003〇〇 である。 そのため、 第 1配管 1 1内の圧力は、 最低でも 1 500 3であれ ば、 言い換えれば、 3 丨 (N00) 4ガスの蒸気圧が 1 500 3であれば、 〇 2020/175152 11 卩(:170? 2020 /005552
2ガスの流量、 および、 真空槽 2 1内の流量に関わらず、 3 丨 (N00) 4 ガスを気化させた状態で 3 丨 (N00) 4ガスを真空槽 2 1 に供給することが 可能である。
[0044] 図 5は、 3 丨 (N00) 4ガスの飽和蒸気圧曲線である。
[0045] 図 5が示すように、 3 丨 (N(3〇) 4ガスの温度が 83°〇であることによっ て、 3 丨 (N00) 4ガスの飽和蒸気圧が 1 500 3に達する。 そのため、
3 I (N00) 4ガスの温度、 すなわち 3 丨 (N00) 4ガスが供給される第 1配管 1 1の温度は、 83°〇以上であることが必要である。 また、 3 丨 ( 00) 4の沸点は、 1 86°〇である。 そのため、 第 1配管 1 1の温度における 上限値は、 3 丨 (N00) 4ガスの沸点近傍の値である 1 80°〇に設定すれば . 3 I (1\1〇〇) 4ガスを真空槽 2 1内に確実に供給することが可能である。
[0046] [試験例]
図 6から図 8を参照して、 試験例を説明する。
[0047] [成膜条件]
図 2を参照して先に説明した薄膜トランジスタが備える層のうち、 半導体 層と絶縁体層とを以下の条件で形成した。
[0048] [半導体層]
夕ーゲッ ト
Figure imgf000013_0001
スパッタガス アルゴン (八 〇 ガス/酸素 (〇 2) ガス
-スパッタガスの流量 803〇〇〇! (八 「) /63〇〇 01 ( 02 成膜空間の圧力 0. 3 £
ターゲッ トに印加される電力 240\^/
-夕ーゲッ トの面積 81 〇〇! 2 (直径 4インチ)
[絶縁体層]
- 3 I (1\1〇〇) 4ガスの流量 553〇〇 01
-酸素ガスの流量 1 6.
Figure imgf000013_0002
以下 \¥02020/175152 2 ?<:17 2020 /005552
-真空槽内の圧力 509 a以上 5009 a以下 -高周波電力 4000\/\/以下
-電極の面積 2700〇 1112
[評価]
[水素原子の濃度]
各薄膜トランジスタが備える絶縁体層における水素原子の濃度の測定には 、 二次イオン質量分析装置 (八〇巳 丁 1 01 0、 アルバック · ファイ (株 ) 製) を用いた。 各絶縁体層における水素原子の濃度は、 図 3に示される通 りの値であることが認められた。
[0049] [キャリア濃度]
各積層体が備える半導体層においてキャリア濃度を測定した。 キャリア濃 度の測定には、 ホール効果測定器
Figure imgf000014_0001
55001 II、 ナノメ トリクス社製 ) を用いた。
[0050] 図 6が示すように、 絶縁体層における水素原子の濃度が 1 X 1 〇21個/〇
3よりも大きいときには、 半導体層 4 1 におけるキャリアの濃度が 1 X 1 0 16個/〇 013よりも大きいことが認められた。 これに対して、 絶縁体層におけ る水素原子の濃度が 1 X I 〇21個/〇 3以下であるときには、 半導体層にお けるキャリアの濃度が 1 X 1 013個/〇 3よりも小さいことが認められた。
[0051] すなわち、 絶縁体層における水素原子の濃度が 1 X 1 〇21個/〇 3以下で あることによって、 水素原子の濃度が 1 X 1 〇21個/〇 3よりも大きい絶縁 体層と比べて、 半導体層におけるキャリアの濃度が顕著に小さくなることが 認められた。 絶縁体層における水素原子の濃度が 1 X 1 〇21個/〇 3以下で あることによって、 絶縁体層の下層である半導体層の還元による酸素の欠損 が顕著に抑えられたため、 こうした結果が得られたと考えられる。
[0052] [試験例 1 ]
図 2を参照して先に説明した構造を有する薄膜トランジスタであって、 ゲ —卜電極、 ゲート絶縁体層、 半導体層、 絶縁体層、 ソース電極、 ドレイン電 極、 および、 保護膜を備える試験例 1の薄膜トランジスタを形成した。 なお 〇 2020/175152 13 卩(:170? 2020 /005552
、 試験例 1の薄膜トランジスタでは、 半導体層の成膜条件を上述した条件と し、 絶縁体層の成膜条件を以下の条件とした。 絶縁体層における水素原子の 濃度を上述した方法によって測定したところ、 5 x 1 019個/〇
Figure imgf000015_0001
3であるこ とが認められた。
Figure imgf000015_0002
酸素ガスの流量 25003〇〇〇!
真空槽内の圧力 ^ 759 a
高周波電力 400〇
電極面積 2700〇〇! 2
また、 試験例 1の薄膜トランジスタでは、 ゲート電極、 ソース電極、 およ び、 ドレイン電極の形成材料をモリブデンとし、 ゲート絶縁体層の形成材料 をシリコン酸化物とし、 保護層の形成材料をシリコン酸化物とした。
[0054] [試験例 2 ]
絶縁体層の成膜条件を以下の条件とした以外は、 試験例 1 と同じ方法で試 験例 2の薄膜トランジスタを形成した。 なお、 絶縁体層における水素原子の 濃度を上述した方法によって測定したところ、 2X 1 〇21個/〇 3であるこ とが認められた。
[0055] 成膜ガス シラン (3 丨 1~14
-成膜ガスの流量 / 0 3 〇 〇〇!
- 1\12〇ガスの流量 3 5 0 0 3 〇 〇 111
-成膜空間の圧力 2009 a
-高周波電力 80〇
-電極の面積 2700〇〇! 2
[評価]
半導体パラメータアナライザ (4 1 55〇、 アジレント ·テクノロジー社 製) を用いて、 試験例 1の薄膜トランジスタ、 および、 試験例 2の薄膜トラ ンジスタの各々におけるトランジスタ特性、 すなわち電圧 (V 3) -電流 ( 丨 ¢0 特性を測定した。 トランジスタ特性の測定条件を以下のように設定し 〇 2020/175152 14 卩(:170? 2020 /005552
た。
[0056] ソース電圧 0 V
- ドレイン電圧 5 V
-ゲート電圧 - 1 5 から 20
-ガラス基板の温度 室温
図 7が示すように、 試験例 1の薄膜トランジスタでは、 閾値電圧が 5. 3 Vであり、 オン電圧が〇. 66 であり、 電子移動度が 1 0. 2〇〇12/ 3 であり、 サブスレツシヨルドスイング値が〇. 3 1 /〇16〇 3 ¢16である ことが認められた。 なお、 オン電圧は、 ドレイン電流が 1 0_9八/〇〇12であ るときのゲート電圧である。 このように、 試験例 1の薄膜トランジスタであ れば、 すなわち、 水素原子の濃度が 1 X I 021個/〇 3以下である絶縁体層 を備える薄膜トランジスタであれば、 薄膜トランジスタが正常に動作するこ と、 言い換えれば、 トランジスタ特性が安定であることが認められた。
[0057] これに対して、 図 8が示すように、 試験例 2の薄膜トランジスタであって 、 水素原子の濃度が 1 X I 〇 21個/〇 3よりも大きい絶縁体層を備える薄膜 トランジスタは正常に動作しない、 言い換えれば、 トランジスタ特性が不安 定であることが認められた。
[0058] 以上説明したように、 プラズマ〇 〇装置、 および、 プラズマ〇 〇法の —実施形態によれば、 以下に記載の効果を得ることができる。
[0059] (1 ) 水素を含まない 3 丨 (N00) 4ガスを用いてシリコン酸化膜を形成 することが可能である。 そのため、 シランやテトラエトキシシランなどの水 素を含むガスを用いてシリコン酸化膜を形成する場合に比べて、 シリコン酸 化膜における水素原子の濃度を低くすることが可能である。
[0060] (2) 流量比が 1以上 1 00以下であることによって、 シリコン酸化膜に おける水素原子の濃度が 1 X 1 021個/〇 3以下であるシリコン酸化膜を形 成することが可能である。
[0061] (3) 流量比が 2以上 1 00以下であり、 かつ、 真空槽 2 1内の圧力が 5
0 3以上 350 3以下であることによって、 シリコン酸化膜における水 〇 2020/175152 15 卩(:170? 2020 /005552
素原子の濃度が 1 X I 〇2 1個/〇 以下である確実性が高まる。
[0062] (4) 3 I (N 0 0) 4ガスと〇 2ガスとが第 1配管 1 1内で混合され、 こ れらの混合ガスが真空槽 2 1内に供給される。 そのため、 真空槽 2 1内にお ける酸素濃度のばらつきが抑えられ、 結果として、 真空槽 2 1内で形成され たシリコン酸化膜における特性のばらつきを抑えることが可能である。
[0063] なお、 上述した実施形態は、 以下のように変更して実施することができる
[0064] [第 2配管]
第 2配管 1 4は、 第 1配管 1 1の途中に接続されるのではなく、 真空槽 2 1 に直接接続されてもよい。 この場合には、 第 2配管 1 4は、 例えばガス を拡散させる拡散部として機能する電極 2 2に接続されてもよいし、 真空槽 2 1 に形成された供給孔に接続されてもよい。
[0065] [電極]
電極 2 2は、 拡散部としての機能を有しなくてもよい。 この場合には、 例えば、 プラズマ〇 〇装置 1 0は、 真空槽 2 1内に位置する拡散部を電極 とは別に備えてもよい。 あるいは、 プラズマ <3 0装置 1 0が拡散部を備え ず、 かつ、 第 1配管 1 1が真空槽 2 1 に形成された供給孔に接続されてもよ い。
[0066] [イソシアネートシラン]
イソシアネートシランガスは、 イソシアネート基を含み、 かつ、 水素を 含まないガスである。 イソシアネートシランガスは、 上述したテトライソシ アネートシランガスに代えて、 例えば、 3 丨 (N 0 0) 3〇 I ガス、 3 丨 ( 0 0) 2 0 I 2ガス、 および、 3 丨 (N 0 0) 0 I 3ガスから選択されるいずれ か 1つであってもよい。
[0067] [酸素含有ガス]
酸素含有ガスは、 上述した酸素ガスに代えて、 例えば、 オゾン (〇3) ガ ス、 酸化二窒素 (1\1 2〇) ガス、 一酸化炭素 (<3 0) ガス、 および、 二酸化炭 素 (〇〇2) ガスから選択されるいずれか 1つであってもよい。 〇 2020/175152 16 卩(:170? 2020 /005552
[0068] [シリコン酸化膜]
シリコン酸化膜は、 薄膜トランジスタが備える絶縁体層に限らず、 例え ば、 3 丨半導体デバイス、 強誘電体デバイス、 パワー半導体デバイス、 化合 物半導体デバイス、 および、 3 デバイスなどが備える絶縁体層であって もよい。
符号の説明
[0069] 1 0 プラズマ〇 〇装置、 1 1 第 1配管、 1 2 温調部、 1 3 酸素 含有ガス供給部、 1 4 第 2配管、 20 真空チャンバー、 2 1 真空槽、
22 電極、 23 電源、 24 支持部、 25 排気部、 30 貯蔵部、 3 1 収容槽、 32 恒温槽、 33 タンク、 34 タンク温調部、 35— 3 I (N00) 4ガス供給部、 36— 3 丨 (N00) 4ガス配管、 40 薄膜卜 ランジスタ、 4 1 半導体層、 4 1 3 表面、 42 絶縁体層、 43 基板 、 44 ゲート電極、 45 ゲート絶縁体層、 46 ソース電極、 47 ド レイン電極、 48 保護膜、 1 第 1圧力計、 2 第 2圧力計、 3 成 膜対象。

Claims

〇 2020/175152 17 卩(:170? 2020 /005552 請求の範囲
[請求項 1 ] 成膜対象を収容する空間を区画する真空槽と、
水素を含まないイソシアネートシランを貯蔵する貯蔵部であって、 前記貯蔵部内において前記イソシアネートシランを加熱して、 前記真 空槽に供給するためのイソシアネートシランガスを生成する前記貯蔵 部と、
前記貯蔵部を前記真空槽に接続し、 前記貯蔵部が生成した前記イソ シアネートシランガスを前記真空槽に供給するための配管と、 前記配管の温度を 8 3 °〇以上 1 8 0 °〇以下に調節する温調部と、 前記真空槽内に配置される電極と、
前記電極に高周波電力を供給する電源と、 を備え、
前記真空槽において、 前記成膜対象に対してシリコン酸化膜が形成 される際における前記真空槽内の圧力が 5 0 3以上 5 0 0 3未満 である
プラズマ〇 〇装置。
[請求項 2] 前記真空槽に酸素含有ガスを供給する酸素含有ガス供給部をさらに 備え、
前記酸素含有ガスは、 酸素ガスであり、
前記イソシアネートシランは、 テトライソシアネートシランであり 前記貯蔵部は、 テトライソシアネートシランガスを第 1流量で前記 配管に供給し、
前記酸素含有ガス供給部は、 前記酸素ガスを第 2流量で供給し、 前 記第 1流量に対する前記第 2流量の比は、 1以上 1 0 0以下である 請求項 1 に記載のプラズマ<3 〇装置。
[請求項 3] 前記第 1流量に対する前記第 2流量の比が、 2以上 1 0 0以下であ り、
前記真空槽内の前記圧力が、 5 0 3以上 3 5 0 3以下である \¥02020/175152 18 卩(:171?2020/005552
請求項 2に記載のブラズマ(3 V 0装置。
[請求項 4] 前記配管は、 第 1配管であり、
前記真空槽に酸素含有ガスを供給する酸素含有ガス供給部と、 前記酸素含有ガス供給部に接続され、 かつ、 前記第 1配管が前記真 空槽に向かう途中で前記第 1配管に接続され、 前記第 1配管に前記酸 素含有ガスを供給するための第 2配管と、 をさらに備える
請求項 1 に記載のプラズマ <3 〇装置。
[請求項 5] 成膜対象を収容する真空槽と貯蔵部とに接続され、 前記貯蔵部が生 成した水素を含まないイソシアネートシランガスを前記真空槽に供給 するための配管の温度を 8 3 °〇以上 1 8 0 °〇以下に設定することと、 前記真空槽内の圧力を 5 0 3以上 5 0 0 3未満に設定すること と、 を含む
プラズマ <3 V 法。
PCT/JP2020/005552 2019-02-25 2020-02-13 プラズマcvd装置、および、プラズマcvd法 WO2020175152A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207027166A KR102402116B1 (ko) 2019-02-25 2020-02-13 플라즈마 cvd 장치 및 플라즈마 cvd 방법
CN202080002098.8A CN111918982A (zh) 2019-02-25 2020-02-13 等离子体cvd装置和等离子体cvd法
JP2020544973A JP6983332B2 (ja) 2019-02-25 2020-02-13 プラズマcvd装置、および、プラズマcvd法
US16/977,275 US20210222298A1 (en) 2019-02-25 2020-02-13 Plasma cvd device and plasma cvd method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-031620 2019-02-25
JP2019031620 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020175152A1 true WO2020175152A1 (ja) 2020-09-03

Family

ID=72238303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005552 WO2020175152A1 (ja) 2019-02-25 2020-02-13 プラズマcvd装置、および、プラズマcvd法

Country Status (6)

Country Link
US (1) US20210222298A1 (ja)
JP (1) JP6983332B2 (ja)
KR (1) KR102402116B1 (ja)
CN (1) CN111918982A (ja)
TW (1) TWI786372B (ja)
WO (1) WO2020175152A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191716A1 (ja) * 2020-03-26 2021-09-30 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766196A (ja) * 1993-08-23 1995-03-10 Res Dev Corp Of Japan 二酸化シリコン膜の化学気相堆積方法
JP2003257967A (ja) * 2002-03-05 2003-09-12 Tri Chemical Laboratory Inc 膜形成材料、膜形成方法、及び素子
WO2011043139A1 (ja) * 2009-10-06 2011-04-14 株式会社Adeka 化学気相成長用原料及びこれを用いたケイ素含有薄膜形成方法
JP2015206076A (ja) * 2014-04-21 2015-11-19 東京エレクトロン株式会社 封止膜の形成方法及び封止膜製造装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196419A (ja) * 1992-12-24 1994-07-15 Canon Inc 化学気相堆積装置及びそれによる半導体装置の製造方法
US6716770B2 (en) * 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US6474077B1 (en) * 2001-12-12 2002-11-05 Air Products And Chemicals, Inc. Vapor delivery from a low vapor pressure liquefied compressed gas
US8491967B2 (en) * 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
JP5747187B2 (ja) * 2009-07-24 2015-07-08 株式会社ユーテック 熱CVD装置、SiO2膜又はSiOF膜及びその成膜方法
JP5747186B2 (ja) * 2009-07-24 2015-07-08 株式会社ユーテック プラズマCVD装置、SiO2膜又はSiOF膜及びその成膜方法
TWI512981B (zh) * 2010-04-27 2015-12-11 Semiconductor Energy Lab 微晶半導體膜的製造方法及半導體裝置的製造方法
JP5693348B2 (ja) * 2010-05-28 2015-04-01 東京エレクトロン株式会社 成膜方法および成膜装置
KR101525813B1 (ko) * 2010-12-09 2015-06-05 울박, 인크 유기 박막 형성 장치
WO2012169397A1 (ja) 2011-06-07 2012-12-13 シャープ株式会社 薄膜トランジスタ、その製造方法、および表示素子
US9607825B2 (en) * 2014-04-08 2017-03-28 International Business Machines Corporation Hydrogen-free silicon-based deposited dielectric films for nano device fabrication
US10655221B2 (en) * 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766196A (ja) * 1993-08-23 1995-03-10 Res Dev Corp Of Japan 二酸化シリコン膜の化学気相堆積方法
JP2003257967A (ja) * 2002-03-05 2003-09-12 Tri Chemical Laboratory Inc 膜形成材料、膜形成方法、及び素子
WO2011043139A1 (ja) * 2009-10-06 2011-04-14 株式会社Adeka 化学気相成長用原料及びこれを用いたケイ素含有薄膜形成方法
JP2015206076A (ja) * 2014-04-21 2015-11-19 東京エレクトロン株式会社 封止膜の形成方法及び封止膜製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191716A1 (ja) * 2020-03-26 2021-09-30 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法

Also Published As

Publication number Publication date
US20210222298A1 (en) 2021-07-22
KR20200123207A (ko) 2020-10-28
JP6983332B2 (ja) 2021-12-17
KR102402116B1 (ko) 2022-05-25
TWI786372B (zh) 2022-12-11
TW202033825A (zh) 2020-09-16
CN111918982A (zh) 2020-11-10
JPWO2020175152A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
US7125812B2 (en) CVD method and device for forming silicon-containing insulation film
US11848201B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing method
US20080056975A1 (en) Method of Forming Metal Oxide and Apparatus for Performing the Same
TW200532848A (en) Deposition of low dielectric constant films by N2O addition
KR101552856B1 (ko) 성막 방법 및 성막 장치
US9711348B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
EP1168427A1 (en) Method of plasma depositing silicon nitride
US10134586B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2020175152A1 (ja) プラズマcvd装置、および、プラズマcvd法
US11072859B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
US20220364235A1 (en) Atomic layer deposition method and atomic layer deposition device
JP5646984B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
US10340134B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP7051617B2 (ja) 半導体装置の製造方法
CN109891559B (zh) 半导体装置的制造方法
JP6087023B2 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
TW201435139A (zh) 增強低介電常數阻障膜之uv相容性
US20180090311A1 (en) Boron film, boron film forming method, hard mask, and hard mask manufacturing method
KR20230055964A (ko) 펄스형 화학 기상 증착을 사용하여 질화붕소를 증착하기 위한 방법 및 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020544973

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207027166

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762802

Country of ref document: EP

Kind code of ref document: A1