TWI786372B - 電漿化學氣相沉積(cvd)裝置及電漿cvd方法 - Google Patents

電漿化學氣相沉積(cvd)裝置及電漿cvd方法 Download PDF

Info

Publication number
TWI786372B
TWI786372B TW109104638A TW109104638A TWI786372B TW I786372 B TWI786372 B TW I786372B TW 109104638 A TW109104638 A TW 109104638A TW 109104638 A TW109104638 A TW 109104638A TW I786372 B TWI786372 B TW I786372B
Authority
TW
Taiwan
Prior art keywords
pipeline
flow rate
gas
plasma cvd
oxygen
Prior art date
Application number
TW109104638A
Other languages
English (en)
Other versions
TW202033825A (zh
Inventor
小林忠正
座間秀昭
Original Assignee
日商愛發科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商愛發科股份有限公司 filed Critical 日商愛發科股份有限公司
Publication of TW202033825A publication Critical patent/TW202033825A/zh
Application granted granted Critical
Publication of TWI786372B publication Critical patent/TWI786372B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

電漿CVD裝置(10)具備:真空槽(21),劃分出容納成膜對象(S)的空間;儲存部(30),儲存不含氫之異氰酸酯矽烷,在儲存部(30)內將異氰酸酯矽烷加熱,以生成用以供給至真空槽(21)的異氰酸酯矽烷氣體;管路(11),將儲存部(30)與真空槽(21)連接,並將儲存部(30)所生成的異氰酸酯矽烷氣體供給至真空槽(21);溫控部(12),將管路(11)的溫度調節成83℃以上180℃以下;電極(22),配置於真空槽(21)內,及電源(23),對電極(22)供給高頻電力。在真空槽(21)中,對成膜對象(S)形成矽氧化物膜時真空槽(21)內的壓力為50Pa以上且小於500Pa。

Description

電漿化學氣相沉積(CVD)裝置及電漿CVD方法
本發明係關於一種電漿CVD裝置及電漿CVD方法。
作為具備以氧化物半導體為主要成分之半導體層的薄膜電晶體,已知一種結構,具備:半導體層,形成於覆蓋閘極電極之閘極絕緣體層上;及絕緣體層,形成於半導體層上。在絕緣體層與半導體層上未被絕緣體層覆蓋的部分形成有金屬層,從該金屬層形成源極電極與汲極電極時,絕緣體層發揮作為蝕刻阻止層的功能。此種絕緣體層係由例如矽氧化物膜所形成(例如參照專利文獻1)。 [先行技術文獻] [專利文獻]
[專利文獻1]國際公開第2012/169397號
[發明所欲解決之問題]
另外,矽氧化物膜有時係使用電漿CVD方法所形成。形成矽氧化物膜時,大多使用甲矽烷(SiH4 )及四乙氧基矽烷(TEOS)的任一種作為矽氧化物膜的原料。由於該等材料含有氫,因此形成於半導體層上之矽氧化物膜亦含有氫。由於矽氧化物膜中的氫在矽氧化物膜與半導體層的界面朝向半導體層擴散並將半導體層還原,而導致半導體層中氧空缺。此種半導體層中的氧空缺會使包含半導體層之薄膜電晶體的特性不穩定化。因此,尋求一種可減少矽氧化物膜中之氫含量的成膜方法。
此外,此情況並不僅限形成於半導體層上之絕緣體層,該絕緣體層亦即矽氧化物膜,在尋求抑制氫擴散至與矽氧化物膜接觸之層的情況中亦為共通。
本發明之目的在於提供一種可降低矽氧化物膜中之氫原子濃度的電漿CVD裝置及電漿CVD方法。 [解決問題之手段]
一實施型態之電漿CVD裝置具備:真空槽,劃分出容納成膜對象的空間;儲存部,其係儲存不含氫之異氰酸酯矽烷的儲存部,在該儲存部內將該異氰酸酯矽烷加熱,以生成用以供給至該真空槽的異氰酸酯矽烷氣體;管路,用以將該儲存部與該真空槽連接,並將該儲存部所生成的該異氰酸酯矽烷氣體供給至該真空槽;溫控部,將該管路的溫度調節成83℃以上180℃以下;電極,配置於該真空槽內;及電源,對該電極供給高頻電力;在該真空槽中,對該成膜對象形成矽氧化物膜時該真空槽內的壓力為50Pa以上且小於500Pa。
一實施型態之電漿CVD方法包含:將管路之溫度設定為83℃以上180℃以下的步驟,其中該管路連接於容納成膜對象之真空槽與儲存部,並用以將該儲存部所生成的不含氫之異氰酸酯矽烷氣體供給至該真空槽;及將該真空槽內的壓力設定為50Pa以上且小於500Pa的步驟。
根據上述各構成,可使用不含氫之異氰酸酯矽烷氣體來形成矽氧化物膜。因此,相較於使用甲矽烷或四乙氧基矽烷等含氫氣體來形成矽氧化物膜的情況,可降低矽氧化物膜中的氫原子濃度。
在上述電漿CVD裝置中,可進一步具備將含氧氣體供給至該真空槽的含氧氣體供給部。該含氧氣體可為氧氣。該異氰酸酯矽烷可為四異氰酸酯矽烷。該儲存部將四異氰酸酯矽烷氣體以第1流量供給至該管路,該含氧氣體供給部以第2流量供給該氧氣。此情況下,該第2流量相對於該第1流量的比值可為1以上100以下。根據上述構成,可形成矽氧化物膜中的氫原子濃度為1×1021 個/cm3 以下的矽氧化物膜。
在上述電漿CVD裝置中,該第2流量相對於該第1流量的比值可為2以上100以下。該真空槽內的該壓力可為50Pa以上350Pa以下。根據上述構成,可更確實地使矽氧化物膜中的氫原子濃度為1×1021 個/cm3 以下。
在上述電漿CVD裝置中,該管路為第1管路,該電漿CVD裝置可進一步具備:含氧氣體供給部,將含氧氣體供給至該真空槽;第2管路,用以與該含氧氣體供給部連接,且在該第1管路通往該真空槽的中途與該第1管路連接,將該含氧氣體供給至該第1管路。 [發明之效果]
根據上述構成,異氰酸酯矽烷氣體與含氧氣體在第1管路內混合,將該等的混合氣體供給至真空槽內。因此,可抑制真空槽內的氧濃度不均,結果,可抑制真空槽內所形成之矽氧化物膜中的特性不均。
參照圖1至圖8說明電漿CVD裝置及電漿CVD方法之一實施型態。以下依照電漿CVD裝置的結構、電漿CVD方法及試驗例的順序進行說明。 [電漿CVD裝置的結構]
參照圖1說明電漿CVD裝置的結構。圖1示意性地顯示了電漿CVD裝置之一例。
如圖1所示,電漿CVD裝置10具備真空槽21、儲存部30、第1管路11及溫控部12。真空槽21劃分出容納成膜對象S的空間。儲存部30儲存不含氫之異氰酸酯矽烷。在本實施型態中,異氰酸酯矽烷為四異氰酸酯矽烷(Si(NCO)4 )。儲存部30係在儲存部30內加熱Si(NCO)4 ,生成用以供給至真空槽21的Si(NCO)4 氣體。第1管路11係用以將儲存部30與真空槽21連接,以將儲存部30所生成的Si(NCO)4 氣體供給至真空槽21的管路。溫控部12將第1管路11的溫度調節成83℃以上180℃以下。在真空槽21中,對於成膜對象S形成矽氧化物膜時真空槽21內的壓力為50Pa以上且小於500Pa。
根據電漿CVD裝置10,可使用不含氫之Si(NCO)4 氣體來形成矽氧化物膜。因此,相較於使用甲矽烷或四乙氧基矽烷等含氫氣體來形成矽氧化物膜的情況,可降低矽氧化物膜中的氫原子濃度。
電漿CVD裝置10進一步具備含氧氣體供給部13及第2管路14。含氧氣體供給部13對真空槽21供給含氧氣體。在本實施型態中,含氧氣體為氧氣(O2 )。第2管路14與含氧氣體供給部13連接,且在第1管路11通往真空槽21的中途與第1管路11連接。第2管路14係用以對第1管路11供給O2 氣體的管路。
Si(NCO)4 氣體與O2 氣體在第1管路11內混合,將該等的混合氣體供給至真空槽21內。因此,可抑制真空槽21內的氧濃度不均,結果,可抑制真空槽21內所形成之矽氧化物膜中的特性不均。
電漿CVD裝置10進一步具備電極22及電源23。電極22配置於真空槽21內。本實施型態中,電極22與第1管路11連接。電極22亦發揮作為擴散部的功能,該擴散部使由第1管路11供給之Si(NCO)4 氣體與氧氣的混合氣體擴散。電極22例如為金屬製的噴淋板(shower plate)。第1管路11透過電極22與真空槽21連接。
電源23對電極22供給高頻電力。電源23將例如具有13MHz之頻率的高頻電力或具有27MHz之頻率的高頻電力供給至電極22。
真空腔室20具備上述真空槽21、電極22及電源23。真空腔室20進一步具備支持部24及排氣部25。支持部24配置於真空槽21內並支撐成膜對象S。支持部24例如為支撐成膜對象S的載台。支持部24,亦可於支持部24的內部具有用以調節成膜對象S之溫度的溫控部。此外,在電漿CVD裝置10中,支持部24亦發揮作為與電極22相對之相對電極的功能。電漿CVD裝置10係平行平板型的電漿CVD裝置。
排氣部25與真空槽21連接。排氣部25將真空槽21內的壓力減壓至預定的壓力。真空槽21例如具備各種泵及各種閥。
儲存部30具備容納槽31、恆溫槽32、儲槽33、儲槽溫控部34、Si(NCO)4 氣體供給部35及Si(NCO)4 氣體管路36。恆溫槽32位於容納槽31內。恆溫槽32可將恆溫槽32所劃分之空間內維持在預定的溫度。儲槽33、儲槽溫控部34、Si(NCO)4 氣體供給部35及Si(NCO)4 氣體管路36位於恆溫槽32內。儲槽溫控部34位於儲槽33的外部,將儲槽33連同儲槽33所儲存的Si(NCO)4 一起加熱。儲槽33可儲存氣液平衡狀態的Si(NCO)4 。Si(NCO)4 氣體供給部35透過Si(NCO)4 氣體管路36與儲槽33連接。Si(NCO)4 氣體供給部35例如為質流控制器。Si(NCO)4 氣體供給部35與第1管路11連接。Si(NCO)4 氣體供給部35將通過Si(NCO)4 氣體管路36從儲槽33供給的Si(NCO)4 氣體以預定的流量供給至第1管路11。
溫控部12位於第1管路11的外部並將第1管路11加熱。溫控部12可藉由將第1管路11加熱而使第1管路11的溫度與在第1管路11內流動之流體的溫度幾乎為相同溫度。
含氧氣體供給部13例如為質流控制器。含氧氣體供給部13將O2 氣體以預定的流量供給至第2管路14。第2管路14與第1管路11連接。第2管路14較佳係以比第1管路11中的被加熱部之至少一部分更靠近儲存部30的方式連接。藉此,可在通過第1管路11之Si(NCO)4 氣體的溫度不易因O2 氣體而下降的狀態下,將Si(NCO)4 氣體連同氧氣一起供給至真空槽21內。
可於真空槽21中安裝第1壓力計P1。第1壓力計P1可測量真空槽21內的壓力。在Si(NCO)4 氣體流動於第1管路11的方向上,可於比儲存部30更下游且比溫控部12更上游的位置,在第1管路11的中途安裝第2壓力計P2。第2壓力計P2可測量第1管路11內的壓力。 [電漿CVD方法]
參照圖2至圖5說明電漿CVD方法。 電漿CVD方法包含:將管路的溫度設定成83℃以上180℃以下的步驟;及將真空槽內的壓力設定成50Pa以上且小於500Pa的步驟。管路連接於容納成膜對象之真空槽及儲存部,並將儲存部所生成的Si(NCO)4 氣體供給至真空槽。以下,參照圖式更詳細地說明電漿CVD方法。又,在說明電漿CVD方法之前,先說明將使用電漿CVD方法所形成之矽氧化物膜用作絕緣體層的薄膜電晶體的結構。
參照圖2說明薄膜電晶體的結構。薄膜電晶體具備使用上述電漿CVD裝置10所形成之矽氧化物膜,作為形成於半導體層上之絕緣體層。
如圖2所示,薄膜電晶體40具備半導體層41及絕緣體層42。半導體層41包含表面41s,且在半導體層41中,主要成分為氧化物半導體。半導體層41中,90質量%以上為氧化物半導體。
絕緣體層42位於半導體層41的表面41s。在絕緣體層42中,主要成分為矽氧化物,氫原子的濃度為1×1021 個/cm3 以下。絕緣體層42係使用上述電漿CVD裝置10所形成的矽氧化物膜。絕緣體層42覆蓋半導體層41的表面41s及閘極絕緣體層45上未被半導體層41覆蓋的部分。
雖然本實施型態中係說明半導體層41由單一層所形成的例子,但半導體層41只要至少包含1層即可。亦即,半導體層41亦可具備2層以上的多層。各層的主要成分較佳為選自InGaZnO、GaZnO、InZnO、InTiZnO、InAlZnO、ZnTiO、ZnO、ZnAlO及ZnCuO所構成之群組的任一種。
薄膜電晶體40包含上述成膜對象S。成膜對象S具備基板43、閘極電極44、閘極絕緣體層45及半導體層41。閘極電極44位於基板43上的表面之一部分。閘極絕緣體層45覆蓋整個閘極電極44及未被閘極電極44覆蓋的基板43之表面。基板43可為由例如各種樹脂所形成之樹脂基板及玻璃基板的任一種。閘極電極44的形成材料可使用例如鉬等。閘極絕緣體層45可使用例如矽氧化物層、或矽氧化物層與矽氮化物層的積層體等。
半導體層41係在構成薄膜電晶體40之各層的積層方向上與閘極電極44重疊的位置,位於閘極絕緣體層45的表面。薄膜電晶體40進一步具備源極電極46及汲極電極47。源極電極46及汲極電極47係在沿著薄膜電晶體40之水平剖面的排列方向上隔著預定的間隔並排。源極電極46覆蓋絕緣體層42的一部分。汲極電極47覆蓋絕緣體層42上的另一部分。源極電極46及汲極電極47分別透過形成於絕緣體層42之接觸孔(contact hole)而與半導體層41電性連接。源極電極46的形成材料及汲極電極47的形成材料可為例如鉬或鋁等。
薄膜電晶體40進一步具備保護膜48。保護膜48覆蓋絕緣體層42從源極電極46及汲極電極47兩者露出的部分、源極電極46及汲極電極47。保護膜48的形成材料可為例如矽氧化物等。
如上所述,薄膜電晶體40中,除了使薄膜電晶體40的特性穩定化以外,更要求使矽氧化物膜的絕緣體層42中的氫原子濃度為1×1021 個/cm3 以下。此外,以下亦將氫原子的濃度稱為氫濃度。矽氧化物膜的氫濃度係與形成矽氧化物膜時真空槽21內的壓力及O2 氣體之流量FO相對於Si(NCO)4 氣體之流量FS的比值(FO/FS)相依。此外,以下亦將流量FO相對於流量FS的比值稱為流量比。
圖3係針對每一個流量比顯示矽氧化物膜之氫濃度與真空槽21內之壓力的關係的圖表。此外,圖3所示的氫濃度與真空槽21內之壓力的關係,係藉由將形成矽氧化物膜時的各條件設定如下而得。
・Si(NCO)4 氣體流量               55sccm ・高頻電力         4000W ・電極面積         2700cm2
如圖3所示,真空槽21內的壓力為50Pa的情況下,可形成具有1×1021 個/cm3 以下之氫濃度的矽氧化物膜。又,真空槽21內的壓力為175Pa或350Pa的情況下,亦可形成具有1×1021 個/cm3 以下之氫濃度的矽氧化物膜。為了形成具有1×1021 個/cm3 以下之氫濃度的矽氧化物膜,流量比的值具有隨著真空槽21內的壓力越高而變大的傾向。接著,真空槽21內的壓力為500Pa的情況下,即使流量比為100,也難以形成具有1×1021 個/cm3 以下之氫濃度的矽氧化物膜。此處,鑒於含氧氣體供給部13及Si(NCO)4 氣體供給部35供給的實用性氣體之流量,使流量比大於100並不實用。因此,為了形成具有1×1021 個/cm3 以下之氫濃度的矽氧化物膜,真空槽21內的壓力必須為50Pa以上且小於500Pa。
又,藉由將流量比設定為1以上100以下,容易形成具有1×1021 個/cm3 以下之氫濃度的矽氧化物膜。由此,流量比較佳為設定成1以上100以下。又,在形成矽氧化物膜時,流量比為2以上100以下且真空槽21內的壓力為50Pa以上350Pa以下更佳。藉此,可更確實地使矽氧化物膜的氫濃度為1×1021 個/cm3 以下。
此外,真空槽21內的壓力為50Pa以上且小於500Pa、且流量比為1以上100以下的情況下,矽氧化物膜的成膜率亦為100nm/min以上200nm/min以下左右的實用值。
圖4係在將供給至第1管路11的O2 氣體之流量、真空槽21內之壓力即第1壓力計P1之壓力設定成各值時,顯示第2壓力計P2中所測量之壓力的表。如上所述,為了形成具有1×1021 個/cm3 以下之氫濃度的矽氧化物膜,真空槽21內的壓力必須小於500Pa。又,由於流量比最大只到100,因此將Si(NCO)4 氣體的流量設定為55sccm的情況下,O2 氣體的流量中的最大值為5500sccm。因此,若第1管路11內的壓力最低為1500Pa,換言之,若Si(NCO)4 氣體的蒸氣壓為1500Pa,則與O2 氣體的流量及真空槽21內的流量無關,皆可在使Si(NCO)4 氣體氣化的狀態下將Si(NCO)4 氣體供給至真空槽21。
圖5係Si(NCO)4 氣體的飽和蒸氣壓曲線。 如圖5所示,藉由使Si(NCO)4 氣體的溫度為83℃,Si(NCO)4 氣體的飽和蒸氣壓達到1500Pa。因此,Si(NCO)4 氣體的溫度、亦即供給Si(NCO)4 氣體之第1管路11的溫度必須為83℃以上。又,Si(NCO)4 的沸點為186℃。因此,第1管路11的溫度中的上限值若設定成Si(NCO)4 氣體之沸點附近的值、即180℃,則可確實地將Si(NCO)4 氣體供給至真空槽21內。 [試驗例]
參照圖6至圖8說明試驗例。 [成膜條件] 在參照圖2而於先前說明的薄膜電晶體所具備之層體之中,係在以下條件下形成半導體層與絕緣體層。
[半導體層] ・靶材                           InGaZnO ・濺射氣體     氬(Ar)氣體/氧(O2 )氣體 ・濺射氣體的流量  80sccm(Ar)/6sccm(O2 ) ・成膜空間的壓力     0.3Pa ・施加至靶材的電力    240W ・靶材的面積         81cm2 (直徑4英吋)
[絕緣體層] ・Si(NCO)4 氣體的流量          55sccm ・氧氣的流量              16.5sccm以上5500sccm以下 ・真空槽內的壓力      50Pa以上500Pa以下 ・高頻電力         4000W以下 ・電極的面積        2700cm2 [評價] [氫原子的濃度]
各薄膜電晶體所具備之絕緣體層中的氫原子濃度的測量係使用二次離子質量分析裝置(ADEPT1010、ULVAC-PHI, Inc.製)。確認各絕緣體層中的氫原子濃度為如圖3所示的值。 [載體濃度]
在各積層體所具備之半導體層中測量載體濃度。載體濃度的測量係使用霍爾效應測量儀(HL55001U,nanometrics公司製)。
如圖6所示,確認絕緣體層中的氫原子濃度大於1×1021 個/cm3 時,半導體層41中的載體濃度大於1×1016 個/cm3 。相對於此,確認絕緣體層中的氫原子濃度為1×1021 個/cm3 以下時,半導體層中的載體濃度小於1×1013 個/cm3
亦即,確認藉由使絕緣體層中的氫原子濃度為1×1021 個/cm3 以下,相較於氫原子的濃度大於1×1021 個/cm3 的絕緣體層,半導體層中的載體濃度明顯變小。據認為藉由使絕緣體層中的氫原子濃度為1×1021 個/cm3 以下,可明顯抑制絕緣體層的下層、即半導體層的還原所導致的氧空缺,故可得到此結果。 [試驗例1]
形成試驗例1的薄膜電晶體,其係具有參考圖2而於先前說明之結構的薄膜電晶體,具備閘極電極、閘極絕緣體層、半導體層、絕緣體層、源極電極、汲極電極及保護膜。此外,試驗例1的薄膜電晶體中,將半導體層的成膜條件設為上述條件,並將絕緣體層的成膜條件設為以下條件。確認藉由上述方法測量絕緣體層中的氫原子濃度結果為5x1019 個/cm3
・Si(NCO)4 氣體流量                  55sccm ・氧氣的流量           2500sccm ・真空槽內的壓力         175Pa ・高頻電力            4000W ・電極面積            2700cm2
又,試驗例1的薄膜電晶體中,以鉬作為閘極電極、源極電極及汲極電極的形成材料,以矽氧化物作為閘極絕緣體層的形成材料,並以矽氧化物作為保護層的形成材料。 [試驗例2]
除了將絕緣體層的成膜條件設為以下條件以外,以與試驗例1相同的方法形成試驗例2的薄膜電晶體。此外,確認藉由上述方法測量絕緣體層中的氫原子濃度結果為2×1021 個/cm3
・成膜氣體        甲矽烷(SiH4 ) ・成膜氣體的流量     70sccm ・N2 O氣體的流量   3500sccm ・成膜空間的壓力  200Pa ・高頻電力        800W ・電極的面積         2700cm2 [評價]
使用半導體參數分析儀(4155C,Agilent Technologies公司製),分別測量試驗例1的薄膜電晶體及試驗例2的薄膜電晶體中的電晶體特性、亦即電壓(Vg)‐電流(Id)特性。電晶體特性的測量條件設定如下。
・源極電壓        0V ・汲極電壓        5V ・閘極電壓        -15V至20V ・玻璃基板的溫度     室溫
如圖7所示,確認試驗例1的薄膜電晶體中,閾值電壓為5.3V,通態電壓(on-state voltage)為0.66V,電子移動率為10.2cm2 /Vs,次臨限擺幅(Subthreshold Swing)值為0.31V/decade。此外,通態電壓係汲極電流為10-9 A/cm2 時的閘極電壓。如此,確認若為試驗例1的薄膜電晶體、亦即具備氫原子的濃度為1×1021 個/cm3 以下之絕緣體層的薄膜電晶體,則薄膜電晶體正常運作,換言之,電晶體特性穩定。
相對於此,如圖8所示,確認試驗例2的薄膜電晶體,即具有氫原子的濃度大於1×1021 個/cm3 之絕緣體層的薄膜電晶體未正常運作,換言之,電晶體特性不穩定。
如以上所說明,根據電漿CVD裝置及電漿CVD方法之一實施型態,可得到以下所記載的效果。 (1)可使用不含氫之Si(NCO)4 氣體來形成矽氧化物膜。因此,相較於使用甲矽烷或四乙氧基矽烷等含氫氣體來形成矽氧化物膜的情況,可降低矽氧化物膜中的氫原子濃度。
(2)藉由使流量比為1以上100以下,可形成矽氧化物膜中的氫原子濃度為1×1021 個/cm3 以下的矽氧化物膜。
(3)藉由使流量比為2以上100以下且真空槽21內的壓力為50Pa以上350Pa以下,可更確實地使矽氧化物膜中的氫原子濃度為1×1021 個/cm3 以下。
(4)Si(NCO)4 氣體與O2 氣體在第1管路11內混合,將該等氣體的混合氣體供給至真空槽21內。因此,可抑制真空槽21內的氧濃度不均,結果,可抑制真空槽21內所形成之矽氧化物膜中的特性不均。
此外,上述實施型態可按照以下方式變更而實施。 [第2管路] ・第2管路14亦可不在第1管路11的中途與其連接,而直接與真空槽21連接。此情況下,第2管路14可與例如發揮使氣體擴散之擴散部之功能的電極22連接,亦可與形成於真空槽21之供給孔連接。 [電極]
・電極22亦可不具備作為擴散部的功能。此情況下,例如,電漿CVD裝置10亦可具備與電極分開而位於真空槽21內的擴散部。或是電漿CVD裝置10亦可不具備擴散部,且第1管路11與形成於真空槽21之供給孔連接。 [異氰酸酯矽烷]
・異氰酸酯矽烷氣體係包含異氰酸酯基且不含氫的氣體。異氰酸酯矽烷氣體亦可為例如選自Si(NCO)3 Cl氣體、Si(NCO)2 Cl2 氣體及Si(NCO)Cl3 氣體的任一種,而代替上述四異氰酸酯矽烷氣體。 [含氧氣體]
・含氧氣體亦可為例如選自臭氧(O3 )氣體、一氧化二氮(N2 O)氣體、一氧化碳(CO)氣體及二氧化碳(CO2 )氣體的任一種,而代替上述氧氣。 [矽氧化物膜]
・矽氧化物膜並不限於薄膜電晶體所具備之絕緣體層,亦可為例如Si半導體元件、鐵電體元件、功率半導體元件、化合物半導體元件及SAW(表面聲波)元件等所具備之絕緣體層。
10:電漿CVD裝置 11:第1管路 12:溫控部 13:含氧氣體供給部 14:第2管路 20:真空腔室 21:真空槽 22:電極 23:電源 24:支持部 25:排氣部 30:儲存部 31:容納槽 32:恆溫槽 33:儲槽 34:儲槽溫控部 35:Si(NCO)4氣體供給部 36:Si(NCO)4氣體管路 40:薄膜電晶體 41:半導體層 41s:表面 42:絕緣體層 43:基板 44:閘極電極 45:閘極絕緣體層 46:源極電極 47:汲極電極 48:保護膜 P1:第1壓力計 P2:第2壓力計 S:成膜對象
圖1係示意性地顯示一實施型態中的電漿CVD裝置之結構的方塊圖。 圖2係顯示具備使用電漿CVD裝置所形成之矽氧化物膜的薄膜電晶體之結構的剖面圖。 圖3係針對每一個氧氣之流量相對於四異氰酸酯矽烷氣體之流量的比值,顯示矽氧化物膜之氫濃度與真空槽內之壓力的關係的圖表。 圖4係顯示氧氣之流量、真空槽內之壓力及第1管路中的四異氰酸酯矽烷氣體之壓力的關係的表。 圖5係四異氰酸酯矽烷的蒸氣壓曲線。 圖6係顯示半導體層之載體濃度與矽氧化物膜之氫濃度的關係的圖表。 圖7係顯示試驗例1之薄膜電晶體中的汲極電流的圖表。 圖8係顯示試驗例2之薄膜電晶體中的汲極電流的圖表。
10:電漿CVD裝置
11:第1管路
12:溫控部
13:含氧氣體供給部
14:第2管路
20:真空腔室
21:真空槽
22:電極
23:電源
24:支持部
25:排氣部
30:儲存部
31:容納槽
32:恆溫槽
33:儲槽
34:儲槽溫控部
35:Si(NCO)4氣體供給部
36:Si(NCO)4氣體管路
P1:第1壓力計
P2:第2壓力計
S:成膜對象

Claims (5)

  1. 一種電漿CVD裝置,具備:真空槽,劃分出容納成膜對象的空間;儲存部,其係儲存不含氫之異氰酸酯矽烷的儲存部,在該儲存部內將該異氰酸酯矽烷加熱,以生成用以供給至該真空槽的異氰酸酯矽烷氣體;管路,用以將該儲存部與該真空槽連接,並將該儲存部所生成的該異氰酸酯矽烷氣體供給至該真空槽;溫控部,將該管路的溫度調節成83℃以上180℃以下;電極,配置於該真空槽內;電源,對該電極供給高頻電力;及含氧氣體供給部,對該真空槽供給含氧氣體;在該真空槽中,對該成膜對象形成矽氧化物膜時該真空槽內的壓力為50Pa以上且小於500Pa;該儲存部將該異氰酸酯矽烷氣體以第1流量供給至該管路;該含氧氣體供給部以第2流量供給該含氧氣體,且該第2流量相對於該第1流量的比值為1以上100以下;該矽氧化物膜中的氫原子的濃度為1×1021個/cm3以下。
  2. 如請求項1所述之電漿CVD裝置,其中,該含氧氣體為氧氣,該異氰酸酯矽烷為四異氰酸酯矽烷。
  3. 如請求項2所述之電漿CVD裝置,其中,該第2流量相對於該第1流量的比值為2以上100以下, 該真空槽內的該壓力為50Pa以上350Pa以下。
  4. 如請求項1所述之電漿CVD裝置,其中,該管路為第1管路,該電漿CVD裝置進一步具備:第2管路,與該含氧氣體供給部連接,且在該第1管路通往該真空槽中途與該第1管路連接,用以將該含氧氣體供給至該第1管路。
  5. 一種電漿CVD方法,包含:將管路之溫度設定為83℃以上180℃以下的步驟,其中該管路連接於容納成膜對象之真空槽與儲存部,並用以將該儲存部所生成的不含氫之異氰酸酯矽烷氣體供給至該真空槽;將該異氰酸酯矽烷氣體以第1流量供給至該管路;對該真空槽以第2流量供給含氧氣體;及將該真空槽內的壓力設定為50Pa以上且小於500Pa,在該成膜對象形成矽氧化物膜的步驟;該第2流量相對於該第1流量的比值為1以上100以下;該矽氧化物膜中的氫原子的濃度為1×1021個/cm3以下。
TW109104638A 2019-02-25 2020-02-14 電漿化學氣相沉積(cvd)裝置及電漿cvd方法 TWI786372B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019031620 2019-02-25
JP2019-031620 2019-02-25

Publications (2)

Publication Number Publication Date
TW202033825A TW202033825A (zh) 2020-09-16
TWI786372B true TWI786372B (zh) 2022-12-11

Family

ID=72238303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109104638A TWI786372B (zh) 2019-02-25 2020-02-14 電漿化學氣相沉積(cvd)裝置及電漿cvd方法

Country Status (6)

Country Link
US (1) US20210222298A1 (zh)
JP (1) JP6983332B2 (zh)
KR (1) KR102402116B1 (zh)
CN (1) CN111918982A (zh)
TW (1) TWI786372B (zh)
WO (1) WO2020175152A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191716A1 (ja) * 2020-03-26 2021-09-30 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201113392A (en) * 2009-10-06 2011-04-16 Adeka Corp Raw material for chemical vapor deposition and method for forming silicon-containing thin film using the raw material
TW201835381A (zh) * 2017-02-09 2018-10-01 美商Asm Ip控股公司 藉由熱ald及peald沉積氧化物膜之方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196419A (ja) * 1992-12-24 1994-07-15 Canon Inc 化学気相堆積装置及びそれによる半導体装置の製造方法
JP3305826B2 (ja) * 1993-08-23 2002-07-24 科学技術振興事業団 二酸化シリコン膜の化学気相堆積方法
US6716770B2 (en) * 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US6474077B1 (en) * 2001-12-12 2002-11-05 Air Products And Chemicals, Inc. Vapor delivery from a low vapor pressure liquefied compressed gas
JP3915054B2 (ja) 2002-03-05 2007-05-16 株式会社トリケミカル研究所 膜形成材料、膜形成方法、及び素子
US8491967B2 (en) * 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
WO2011010726A1 (ja) * 2009-07-24 2011-01-27 株式会社ユーテック プラズマCVD装置、SiO2膜又はSiOF膜及びその成膜方法
JP5747187B2 (ja) * 2009-07-24 2015-07-08 株式会社ユーテック 熱CVD装置、SiO2膜又はSiOF膜及びその成膜方法
TWI512981B (zh) * 2010-04-27 2015-12-11 Semiconductor Energy Lab 微晶半導體膜的製造方法及半導體裝置的製造方法
JP5693348B2 (ja) * 2010-05-28 2015-04-01 東京エレクトロン株式会社 成膜方法および成膜装置
KR101525813B1 (ko) * 2010-12-09 2015-06-05 울박, 인크 유기 박막 형성 장치
WO2012169397A1 (ja) 2011-06-07 2012-12-13 シャープ株式会社 薄膜トランジスタ、その製造方法、および表示素子
US9607825B2 (en) * 2014-04-08 2017-03-28 International Business Machines Corporation Hydrogen-free silicon-based deposited dielectric films for nano device fabrication
JP6363385B2 (ja) 2014-04-21 2018-07-25 東京エレクトロン株式会社 封止膜の形成方法及び封止膜製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201113392A (en) * 2009-10-06 2011-04-16 Adeka Corp Raw material for chemical vapor deposition and method for forming silicon-containing thin film using the raw material
TW201835381A (zh) * 2017-02-09 2018-10-01 美商Asm Ip控股公司 藉由熱ald及peald沉積氧化物膜之方法

Also Published As

Publication number Publication date
WO2020175152A1 (ja) 2020-09-03
US20210222298A1 (en) 2021-07-22
JPWO2020175152A1 (ja) 2021-03-11
CN111918982A (zh) 2020-11-10
JP6983332B2 (ja) 2021-12-17
TW202033825A (zh) 2020-09-16
KR102402116B1 (ko) 2022-05-25
KR20200123207A (ko) 2020-10-28

Similar Documents

Publication Publication Date Title
CN102007597B (zh) 低温薄膜晶体管工艺、装置特性和装置稳定性改进
JP5654862B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
US11251039B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing method
WO2007043709A9 (ja) 半導体装置の製造方法およびその製造装置
JP2011023718A (ja) PEALDによってSi−N結合を有するストレス調節された誘電体膜を形成する方法
US7638443B2 (en) Method of forming ultra-thin SiN film by plasma CVD
JP6154547B2 (ja) エキシマレーザアニーリング後にポリシリコン品質を向上させる方法
TWI786372B (zh) 電漿化學氣相沉積(cvd)裝置及電漿cvd方法
TWI567828B (zh) 製造閘極絕緣層的方法
KR102616238B1 (ko) 박막 트랜지스터들을 위한 질소 풍부 실리콘 질화물 막들
JP2016058489A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US10340134B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP5841222B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
JP7051617B2 (ja) 半導体装置の製造方法
JP6763093B2 (ja) 半導体装置の製造方法
JP2016176091A (ja) 有機シラン化合物を用いて作製したガスバリア膜およびその製造方法
JP2018129354A (ja) ゲート絶縁膜の形成方法、および、ゲート絶縁膜
TW200409208A (en) Manufacturing method for semiconductor device
WO1998037578A1 (fr) Procede de protection d'un dispostif a semiconducteur