WO2020174643A1 - 成膜装置 - Google Patents
成膜装置 Download PDFInfo
- Publication number
- WO2020174643A1 WO2020174643A1 PCT/JP2019/007750 JP2019007750W WO2020174643A1 WO 2020174643 A1 WO2020174643 A1 WO 2020174643A1 JP 2019007750 W JP2019007750 W JP 2019007750W WO 2020174643 A1 WO2020174643 A1 WO 2020174643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- film forming
- heating
- mist
- chamber
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 378
- 238000010438 heat treatment Methods 0.000 claims abstract description 300
- 239000010408 film Substances 0.000 claims abstract description 231
- 239000003595 mist Substances 0.000 claims abstract description 192
- 239000010409 thin film Substances 0.000 claims abstract description 122
- 238000000034 method Methods 0.000 claims abstract description 96
- 230000008569 process Effects 0.000 claims abstract description 78
- 238000005507 spraying Methods 0.000 claims abstract description 33
- 238000002347 injection Methods 0.000 claims description 83
- 239000007924 injection Substances 0.000 claims description 83
- 230000007246 mechanism Effects 0.000 claims description 52
- 238000012546 transfer Methods 0.000 claims description 51
- 239000002994 raw material Substances 0.000 claims description 31
- 230000008021 deposition Effects 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 36
- 230000000593 degrading effect Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 230000032258 transport Effects 0.000 description 55
- 238000004519 manufacturing process Methods 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4486—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4586—Elements in the interior of the support, e.g. electrodes, heating or cooling devices
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
Definitions
- the present invention relates to a film forming apparatus that is used for manufacturing an electronic device such as a solar cell and forms a film on a substrate.
- CVD chemical vapor deposition
- the chemical vapor deposition method it is often necessary to form a film under vacuum, and it is necessary to use a large vacuum container in addition to a vacuum pump and the like.
- the chemical vapor deposition method has a problem that it is difficult to adopt a large-area substrate as a film-forming substrate from the viewpoint of cost and the like. Therefore, a mist method capable of forming a film under atmospheric pressure is drawing attention.
- Patent Document 1 As a conventional technique related to a film forming apparatus using the mist method, for example, there is a technique according to Patent Document 1.
- the raw material solution ejection port and the reaction material ejection port provided on the bottom surface of the mist ejection head portion including the mist ejection nozzle and the like are used to mist the substrate arranged in the atmosphere.
- the raw material solution and the reaction material are sprayed.
- a film is formed on the substrate by the spraying.
- the reaction material means a material that contributes to the reaction with the raw material solution.
- the conventional film forming apparatus represented by Patent Document 1 forms a thin film on a substrate by simultaneously performing a mist spraying process by a thin film forming nozzle and a heating process by a heating mechanism.
- the heating mechanism is provided inside the substrate loading stage that mounts the substrate that is the base material to be film-formed on the upper surface, and the substrate loading stage is used as a planar heating unit. It was common to use.
- the upper surface of the substrate loading stage and the lower surface of the substrate are brought into contact with each other to transfer heat between the substrate loading stage and the substrate to perform the heating process of the substrate.
- the planar heating means locally contacts the upper surface of the substrate loading stage with the rear surface of the substrate. .. Therefore, there are problems that the heating of the substrate becomes non-uniform when the heating process is performed by the heating mechanism, or the substrate is warped and deformed.
- An object is to provide a film forming apparatus.
- a film forming apparatus is provided in a substrate transporting unit that transports a substrate along a predetermined circumference and a heating chamber arranged along the predetermined circumference, and the substrate in the heating chamber.
- a mist spraying unit that performs a mist spraying process that sprays toward the substrate in the film forming chamber, wherein the heating chamber and the film forming chamber are arranged separately from each other, and the substrate is transferred by the substrate transfer unit. While being transported, after the heating process is performed by the heating mechanism, the mist jetting process is performed by the mist jetting unit to form a thin film on the substrate.
- the film forming apparatus of the present invention according to claim 1 is provided with a heating mechanism that heats the substrate without contacting the substrate in the heating chamber.
- the substrate can be heated uniformly regardless of the shape.
- the heating mechanism and the mist spraying unit are separately arranged in the heating chamber and the film forming chamber so that the heating process and the mist spraying process are not affected by each other, the mist spraying process adversely affects the heating process. None.
- the film forming apparatus of the present invention performs the mist injection process by the mist injection unit after the heat treatment by the heating mechanism, without lowering the film formation quality or the film formation speed.
- a thin film can be formed on the surface of the substrate.
- a heating chamber provided with a heating mechanism and a film forming chamber provided with a mist injection unit are arranged on a predetermined circumference, and a substrate transfer mechanism is provided. The substrate is transported along the above predetermined circumference.
- the number of heating mechanisms and mist spraying units is reduced to the required minimum by transporting the substrate so that the substrate transporting circuit makes a plurality of turns around a predetermined circumference.
- the throughput of the film forming process including the heat treatment and the mist spraying process can be increased as much as possible.
- FIG. 3 is a cross-sectional view showing a cross-sectional structure of the film forming apparatus according to the first embodiment. It is explanatory drawing which shows typically the planar structure of the film-forming apparatus which is Embodiment 2 of this invention. It is explanatory drawing which shows typically the planar structure of the film-forming apparatus which is Embodiment 3 of this invention. It is explanatory drawing which shows typically the planar structure of the film-forming apparatus which is Embodiment 4 of this invention.
- FIG. 9 is a cross-sectional view showing a cross-sectional structure of a film forming apparatus according to a fourth embodiment.
- FIG. 16 is a plan view (No. 1) showing the planar structure of the first aspect of the substrate holder in the fourth embodiment.
- FIG. 19 is a plan view (No. 2) showing the planar structure of the first aspect of the substrate holder in the fourth embodiment.
- FIG. 9 is a cross-sectional view showing a cross-sectional structure taken along the line CC of FIG. 8.
- FIG. 14 is a plan view (No. 1) showing a planar structure of a second aspect of the substrate holder according to the fourth embodiment.
- FIG. 16 is a plan view (No. 2) showing the planar structure of the second aspect of the substrate holder in the fourth embodiment.
- FIG. 12 is a cross-sectional view showing a cross-sectional structure taken along line DD of FIG. 11.
- FIG. 16 is an explanatory view schematically showing a planar structure of a thin film forming nozzle which is a first modified example of the film forming apparatus of the fifth embodiment.
- FIG. 16 is an explanatory view schematically showing a planar structure of a thin film forming nozzle which is a second modified example of the film forming apparatus of the fifth embodiment. It is explanatory drawing which shows schematic structure of the film-forming apparatus in the premise technique of this invention.
- ⁇ Prerequisite technology> As a heating mechanism, it is conceivable to use an infrared light irradiator instead of the conventional flat type heating means. By using an infrared light irradiator, since it is possible to directly heat with infrared rays which are electromagnetic waves without contacting the substrate, it is possible to uniformly heat the substrate regardless of its shape.
- the raw material mist obtained by forming the raw material solution into a mist absorbs infrared light, and the raw material mist is heated and evaporated, so the film formation quality of the thin film formed on the substrate and the film formation speed in the film formation process. There was a problem of decreasing. Further, there is a problem that the mist spraying process of spraying the raw material mist hinders heating of the substrate.
- a first method is conceivable in which a plurality of heating mechanisms for performing heat treatment and a plurality of mist ejecting units for performing mist ejecting processing are prepared, and a plurality of heating mechanisms and a plurality of mist ejecting portions are alternately arranged. Further, a second method in which the substrate between the single heating mechanism and the single mist spraying unit is reciprocated a plurality of times can be considered.
- FIG. 16 is an explanatory diagram showing a schematic configuration of a film forming apparatus that embodies the first method in the base technology of the present invention.
- FIG. 16 shows the XYZ orthogonal coordinate system.
- the thin film manufacturing apparatus 112 of the base technology includes a combination of heating chambers 801 and 802, film forming chambers 901 and 902, two thin film forming nozzles 101, two sets of infrared light irradiators 102 and 104, and The conveyor 53 is included as a main component.
- the infrared light irradiator 102 is composed of a lamp mounting table 121 and a plurality of infrared light lamps 122, and a plurality of infrared light lamps 122 are attached to the upper part of the lamp mounting table 121. Therefore, the infrared light irradiator 102 can irradiate infrared light upward (+Z direction) from the plurality of infrared light lamps 122.
- the infrared light irradiator 102 it is possible to perform the heat treatment (first direction heat treatment) on the back surfaces of the plurality of substrates 110 placed on the upper surface of the belt 52.
- the infrared light irradiator 104 includes a lamp mounting base 141 and a plurality of infrared light lamps 142, and a plurality of infrared light lamps 142 are attached to the bottom of the lamp mounting base 141. Therefore, the infrared light irradiator 104 can irradiate infrared light downward (-Z direction) from the plurality of infrared light lamps 142.
- the infrared light irradiator 104 By the above-mentioned infrared light irradiation by the infrared light irradiator 104, it is possible to perform the heat treatment (second direction heat treatment) on the surfaces of the plurality of substrates 110 placed on the upper surface of the belt 52.
- the conveyor 53 which is a board transfer unit, transfers the plurality of boards 110 in the transfer direction (X direction) while placing the plurality of boards 110 on the upper surface of the belt 52.
- the conveyor 53 includes a pair of conveying rollers 51 provided at both left and right ends, and an endless conveying belt 52 spanning the pair of rollers 51.
- the conveyor 53 can move the belt 52 on the upper side (+Z direction side) along the transport direction (X direction) by rotationally driving the pair of rollers 51.
- One of the pair of rollers 51 of the conveyor 53 is provided on the left side ( ⁇ X direction) outside the heating chamber 801, and the other is provided on the right side (+X direction) of the film forming chamber 902. Further, the central portion of the belt 52 is provided inside any one of the heating chamber 801, the heating chamber 802, the film forming chamber 901, and the film forming chamber 902.
- the belt 52 is driven by the rotation of the pair of rollers 51, and the pair of openings 88 provided in a part of the left and right (-X direction, +X direction) side surfaces of the heating chambers 801 and 802, and the film formation chamber 901. It is possible to move between the inside of the heating chambers 801 and 802, the inside of the film formation chambers 901 and 902, and the outside through a pair of openings 98 provided in part of the left and right side surfaces of each 902.
- the heating chambers 801 and 802 and the film formation chambers 901 and 902 are provided adjacent to each other in the order of the heating chamber 801, the film formation chamber 901, the heating chamber 802, and the film formation chamber 902 from left to right. Further, the opening 88 on the right side of the heating chamber 801 and the opening 98 on the left side of the film forming chamber 901 are shared, and the opening 98 on the right side of the film forming chamber 901 and the opening 88 on the left side of the heating chamber 802 are shared. The opening 88 on the right side of the heating chamber 802 and the opening 98 of the film forming chamber 902 are shared.
- a part of the conveyor 53 is housed in the heating chambers 801 and 802. Since the heating chambers 801 and 802 have the same internal and peripheral configurations, the heating chamber 801 will be mainly described below.
- the heating chamber 801 includes an upper container 83, a lower container 84, and a pair of openings 88.
- a pair of openings 88 are located between the upper container 83 and the lower container 84 in the height direction that is the Z direction. Therefore, the conveyor 53 provided between the openings 88, 88 in the heating chamber 801 is arranged at a position higher than the lower container 84 and lower than the upper container 83.
- the infrared light irradiator 102 which is the first-direction heating unit, is fixed outside the lower container 84 at a position apart from the conveyor 53 on the lower ( ⁇ Z direction) side by a fixing unit (not shown). ..
- the infrared light irradiator 104 which is the second-direction heating unit, is fixed outside the upper container 83 at a position away from the upper (+Z direction) conveyor 53 by a fixing means (not shown). It The infrared light irradiator 102 and the infrared light irradiator 104 constitute a heating mechanism.
- Both the infrared light irradiators 102 and 104 are arranged at positions overlapping with the upper surface area of the belt 52 in the heating chamber 801 (area sandwiched between a pair of linear conveyor chains) in plan view.
- the heating chambers 801 and 802 are made of infrared light transmissive materials having excellent transparency without absorbing infrared light emitted from the infrared light irradiators 102 and 104, respectively. Specifically, each of the heating chambers 801 and 802 employs quartz glass as a constituent material.
- the infrared light irradiator 102 which is a first-direction heating unit, irradiates infrared light from the back surface side (the other main surface side) of the substrate 110 toward the +Z direction (first direction) to expose the substrate 110 to the back surface side.
- the first-direction heat treatment is performed by heating from above.
- the infrared light irradiator 104 which is the second-direction heating unit, emits infrared light from the front surface side (one main surface side) of the substrate 110 toward the ⁇ Z direction (second direction) opposite to the +Z direction. And a second direction heat treatment for heating the substrate 110 from the front side is performed.
- the heating chamber 801 accommodates the substrate 110 therein when performing the heat treatment (first direction heat treatment and second direction heat treatment) of the infrared light irradiators 102 and 104.
- the heating chamber 801 shields the plurality of substrates 110 mounted on the belt 52 from the outside by closing the opening 88 between the upper container 83 and the lower container 84 with the air curtain 107 when performing the heating process. You can
- the thin film manufacturing apparatus 112 of the base technology has the infrared light irradiators 102 and 104 provided outside the heating chamber 801 as the first heating mechanism, and the heating chamber 802 as the second heating mechanism.
- the infrared light irradiators 102 and 104 are provided around the outside of the.
- the infrared light irradiators 102 and 104 perform the first heat treatment on the plurality of substrates 110 in the heating chamber 801, and the infrared light irradiators 102 and 104 are performed on the plurality of substrates 110 in the heating chamber 802.
- the second heat treatment is executed by.
- These first and second heat treatments include the above-mentioned first-direction heat treatment and second-direction heat treatment, respectively.
- the film forming chambers 901 and 902 house a part of the thin film forming nozzle 101 and the conveyor 53, respectively. Since the film forming chambers 901 and 902 have the same internal configuration, the film forming chamber 901 will be mainly described below.
- the film forming chamber 901 includes an upper container 91, a lower container 92, and a pair of openings 98.
- a pair of openings 98 is located between the upper container 91 and the lower container 92 in the height direction which is the Z direction. Therefore, the conveyor 53 provided between the openings 98 in the film forming chamber 901 is arranged at a position higher than the lower container 92 and lower than the upper container 91.
- the thin film forming nozzle 101 which is a mist ejecting unit, is fixedly arranged in the upper container 91 by a fixing means (not shown). At this time, the thin film forming nozzle 101 is arranged in a positional relationship where the ejection surface and the upper surface of the belt 52 face each other.
- the thin film forming nozzle 101 executes a mist injection process of injecting the raw material mist MT downward ( ⁇ Z direction) from the injection port provided on the injection surface.
- the thin film manufacturing apparatus 112 of the base technology has the thin film forming nozzle 101 provided in the film forming chamber 901 as the first mist ejecting unit, and the film forming chamber 902 as the second mist ejecting unit. It has a thin film forming nozzle 101 provided.
- the thin film forming nozzle 101 provided in the film forming chamber 901 executes the first mist spraying process
- the thin film forming nozzle 101 provided in the film forming chamber 902 executes the second heating process. ..
- the film forming chambers 901 and 902 are placed on the thin film forming nozzle 101 and the belt 52 by closing the opening 98 between the upper container 91 and the lower container 92 by the air curtain 107 when performing the mist spraying process.
- the plurality of substrates 110 can be shielded from the outside.
- the thin film manufacturing apparatus 112 of the base technology closes all the pair of openings 88 of the heating chambers 801 and 802 and the pair of openings 98 of each of the film formation chambers 901 and 902 by the air curtain 107, and the conveyor 53
- the film forming environment can be set by moving the belt 52 along the transport direction (X direction).
- the thin film manufacturing apparatus 112 of the base technology performs heat treatment performed on the substrate 110 in the heating chambers 801 and 802 and mist injection treatment performed on the substrate 110 in the film formation chambers 901 and 902 under the above film formation environment.
- the combination of two sets of infrared light irradiators 102 and 104 and the two thin film forming nozzles 101 are separately arranged.
- the thin film manufacturing apparatus 112 of the base technology executes the first heat treatment by the infrared light irradiation of the infrared light irradiators 102 and 104 on the plurality of substrates 110 in the heating chamber 801 under the above film forming environment. After that, the first mist spraying process by the thin film forming nozzle 101 is executed in the film forming chamber 901.
- the thin film manufacturing apparatus 112 performs the second heat treatment by the infrared light irradiation of the infrared light irradiators 102 and 104 on the plurality of substrates 110 in the heating chamber 802 in the above film forming environment, In the film forming chamber 902, the second mist spraying process by the thin film forming nozzle 101 is executed.
- the thin film manufacturing apparatus 112 of the base technology can finally form a thin film on the surface of the substrate 110 placed on the upper surface of the belt 52 in the film forming chamber 902.
- the thin film manufacturing apparatus 112 of the base technology can heat the substrate 110 by the combination of the two sets of infrared light irradiators 102 and 104 without having a contact relationship with the substrate 110. Uniform heating regardless of the shape can be performed without deforming the substrate 110.
- the thin film manufacturing apparatus 112 of the base technology separates the two sets of infrared light irradiators 102 and 104 and the two thin film forming nozzles 101 from each other so that the heating process and the mist spraying process are not affected by each other. It is arranged. Therefore, the thin film manufacturing apparatus 112 can reliably avoid the occurrence of the raw material mist evaporation phenomenon during the execution of the first and second heat treatments and the first and second mist injection treatments.
- the thin film manufacturing apparatus 112 of the base technology can form a thin film on the surface of the substrate 110 without lowering the film forming quality or the film forming speed.
- the thin film manufacturing apparatus 112 of the base technology includes the first and second heating mechanisms and the first and second heating mechanisms so as not to be affected between the first and second heat treatments and the first and second mist injection treatments.
- the 1st and 2nd mist injection parts are alternately arranged in the 1st and 2nd order.
- the thin film manufacturing apparatus 112 of the base technology is characterized in that the first and second heat treatments and the first and second mist injection treatments are alternately executed in the first and second order.
- the thin film manufacturing apparatus 112 of the base technology increases the film thickness of a thin film to be formed or stacks two films having different film qualities by performing the heating process and the mist spraying process which are alternately repeated twice.
- the structure can form a thin film.
- the above-described extended modification has first to nth heating mechanisms for performing the first to nth heating processes, and first to nth mist spraying units for performing the first to nth mist spraying processes. have.
- the above-described extended modification is such that the first to nth heating mechanisms and the first to nth mist injections are not affected during the first to nth heat treatments and the first to nth mist injection treatments.
- the parts are alternately arranged in the order of 1st to nth.
- the extended modification is characterized in that the first to nth heat treatments and the first to nth mist injection treatments are alternately executed in the first, second,..., Nth order.
- the heat treatment and the mist injection treatment are repeatedly performed n ( ⁇ 2) times alternately to increase the thickness of the thin film to be formed or to form n layers of different film quality. It is possible to form a thin film with a laminated structure of.
- the thin-film manufacturing apparatus 112 of the base technology uses the infrared light irradiator 102 for the first direction heat treatment and the infrared heat treatment as the first and second heat treatments performed on the substrates 110 in the heating chambers 801 and 802.
- the second direction heat treatment by the light irradiator 104 is simultaneously performed.
- the thin film manufacturing apparatus 112 of the base technology can heat the substrate 110 more uniformly in each of the heating chambers 801 and 802.
- FIG. 1 is an explanatory view schematically showing a planar structure of a film forming apparatus 71 which is Embodiment 1 of the present invention.
- FIG. 2 is a sectional view showing a sectional structure of the film forming apparatus 71 according to the first embodiment.
- FIG. 2 shows a cross section taken along the line AA of FIG. 1, and shows an XYZ orthogonal coordinate system in each of FIG. 1 and FIG.
- a circumference M1 (predetermined circumference) for the substrate transfer path which is a circumference with a radius d1 centered on the center point C1, is set.
- the heating chamber H10 and the film forming chamber F10 are arranged separately from each other in an arc shape along the circumference M1 for the substrate transfer path.
- the heating chamber H10 and the film forming chamber F10 are arranged adjacent to each other and provided without creating a substantially empty space on the substrate transport path circumference M1.
- a plurality of substrates 10 are simultaneously transported by the substrate transport device 8 described in detail later along the circumference M1 of the substrate transport path with the substrate rotation direction R1 as the moving direction.
- Each of the plurality of substrates 10 has a rectangular shape in plan view.
- the plurality of substrates 10 are transported so that their centers are always located on the substrate transport path circumference M1.
- the infrared light irradiator 2 which is the first direction heating unit is fixed by a fixing means (not shown) at a position apart from the substrate 10 in the heating chamber H10.
- a combination of the infrared light irradiator 2 and the infrared light irradiator 4 constitutes a heating mechanism.
- the heating chamber H10 does not have an opening area that communicates with the outside, other than the rotation side opening area described below.
- a plurality of infrared light irradiators 2 and 4 are discretely arranged in a rectangular shape in a plan view inside the heating chamber H10.
- the plurality of infrared light irradiators 2 and 4 are discretely arranged at positions corresponding to the plurality of substrates 10 (15 substrates 10) shown in FIG.
- the infrared light irradiators 2 and 4 are provided in a shape slightly wider than the substrate 10 so as to include the entire substrate 10 in a plan view when the substrate 10 is transported along the substrate transport path circumference M1. ..
- infrared light irradiators 2 and 4 are discretely provided in the heating chamber H10, but in the following, for convenience of description, a set of infrared light irradiators 2 and 4 is representatively shown. explain.
- the infrared light irradiator 2 is composed of a lamp mount 31 and an infrared lamp 32, and the infrared lamp 32 is attached to the upper part of the lamp mount 31. Therefore, the infrared light irradiator 2 can irradiate the infrared light LR upward from the infrared light lamp 32 (+Z direction (first direction)).
- the heat treatment first direction heat treatment
- the infrared light irradiator 4 is composed of a lamp mounting base 41 and an infrared light lamp 42, and the infrared light lamp 42 is attached to the lower part of the lamp mounting base 41. Therefore, the infrared light irradiator 4 can irradiate the infrared light LR downward (in the ⁇ Z direction) from the infrared light lamp 42.
- the heat treatment (second direction heat treatment) on the substrate 10 can be executed.
- the infrared light irradiator 2 serving as the first-direction heating unit irradiates the infrared light LR in the +Z direction (first direction), so that the substrate 10 is not contacted with the substrate 10.
- a first-direction heat treatment for heating is performed.
- the +Z direction is the direction from the back surface to the front surface of the substrate 10.
- the infrared light irradiator 4 which is the second-direction heating unit, contacts the substrate 10 by irradiating the infrared light LR in the ⁇ Z direction (second direction), which is the opposite direction to the +Z direction.
- the second direction heat treatment for heating the substrate 10 is performed without performing the heat treatment.
- the ⁇ Z direction is the direction from the front surface to the back surface of the substrate 10.
- the infrared light irradiators 2 and 4 are provided in the heating chamber H10 and execute the heating process (first direction heating process+second direction heating process) for heating the substrate 10 in the heating chamber H10. Functions as a heating mechanism.
- the thin film forming nozzle 1L which is the first direction mist ejecting unit, is fixedly arranged in the film forming chamber F10 by a fixing means (not shown) so as to be located below the substrate 10. At this time, the thin film forming nozzle 1L is arranged such that the mist injection port faces the back surface of the substrate 10.
- the thin film forming nozzle 1H which is the second direction mist ejecting unit, is fixedly arranged in the film forming chamber F10 by a fixing means (not shown). At this time, the thin film forming nozzle 1H is arranged in a positional relationship in which the mist ejection port and the surface of the substrate 10 face each other.
- the film forming chamber F10 does not have an opening area that communicates with the outside, other than the rotation side opening area described below.
- the thin film forming nozzle 1L executes a first direction mist injection process of injecting the raw material mist MT upward (+Z direction; first direction) from the mist injection port.
- the thin film forming nozzle 1H executes a second-direction mist injection process of injecting the raw material mist MT downward ( ⁇ Z direction; second direction) from the mist injection port.
- the film forming apparatus 71 according to the first embodiment has the thin film forming nozzle 1L as the first direction mist ejecting section and the thin film forming nozzle 1H as the second direction mist ejecting section. Therefore, the film forming apparatus 71 according to the first embodiment constitutes a mist ejecting unit by a combination of the thin film forming nozzles 1L and 1H, and the mist ejecting unit uses a combination of the first direction mist ejecting process and the second direction mist ejecting process. The mist injection process is being executed.
- the thin film forming nozzles 1L and 1H are provided in the film forming chamber F10 arranged along the circumference M1 for the substrate transport path, and form the raw material mist MT obtained by forming the raw material solution into mist. It functions as a mist ejecting unit that executes a mist ejecting process of ejecting toward the substrate 10 of the chamber F10.
- a plurality of substrates 10 (16 substrates 10 in FIG. 1) are moved by the substrate transfer device 8 (not shown) along the circumference M1 for the substrate transfer path. It is conveyed in the substrate rotation direction R1. Then, after the heating process by the infrared light irradiators 2 and 4 (heating mechanism) in the heating chamber H10, the mist spraying process by the thin film forming nozzles 1L and 1H (mist spraying unit) in the film forming chamber F10 is performed. A thin film is formed on each of the front surface and the back surface of the plurality of substrates 10.
- the film forming apparatus 71 of the first embodiment includes the heating mechanism (the infrared light irradiators 2 and 4) that performs the heating process for heating the substrate 10 without contacting the substrate 10 in the heating chamber H10. By performing the heating process by the heating mechanism, the substrate can be uniformly heated regardless of the shape of the substrate 10.
- the heating mechanism the infrared light irradiators 2 and 4
- the heating mechanism and the mist spraying unit are separately arranged in the heating chamber H10 and the film forming chamber F10 so that the heating process and the mist spraying process are not affected by each other, the mist spraying process adversely affects the heating process. Also does not give.
- the film forming apparatus 71 executes the heat treatment by the heating mechanism and then executes the mist jetting process by the mist jetting unit, without lowering the film forming quality or the film forming speed.
- a thin film can be deposited on top.
- the film forming apparatus 71 includes a heating chamber H10 in which the infrared light irradiators 2 and 4 (heating mechanism) are provided on the circumference M1 (predetermined circumference) for the substrate transport path, and the thin film forming nozzle 1L. And a film forming chamber F10 provided with 1H (mist injection unit), and a plurality of substrates 10 are simultaneously transferred by the substrate transfer device 8 (substrate transfer unit) along the circumference M1 of the substrate transfer path. Has been done.
- the substrate transfer device 8 transfers the plurality of substrates 10 so as to make a plurality of turns on the circumference M1 for the substrate transfer path, and thus the infrared light irradiator. It is possible to suppress the number of the nozzles 2 and 4 and the thin film forming nozzles 1L and 1H to the necessary minimum, and increase the throughput of the film forming process including the heating process and the mist spraying process.
- both the heating chamber H10 and the film forming chamber F10 are arranged along the circumference M1 for the substrate transfer path, so that by repeatedly circulating each of the plurality of substrates 10 along the circumference M1 for the substrate transfer path. Since the infrared light irradiators 2 and 4 provided in the heating chamber H10 and the thin film forming nozzles 1L and 1H provided in the film forming chamber F10 can be used multiple times for the heat treatment and the mist injection treatment. is there.
- the film forming apparatus 71 according to the first embodiment can further improve the throughput in the thin film forming process.
- the film forming apparatus 71 according to the first embodiment can further improve the throughput in the film forming process because the plurality of substrates are simultaneously circulated along the circumference M1 for the substrate conveyance path.
- the heat treatment performed in the heating chamber H10 includes a first direction heat treatment by the infrared light irradiator 2 and a second direction heat treatment by the infrared light irradiator 4. Are doing at the same time. Therefore, the back surface of the substrate 10 can be heated by the first direction heat treatment, and the front surface of the substrate 10 can be heated by the second direction heat treatment.
- the film forming apparatus 71 of the first embodiment can heat the substrate 10 more uniformly in the heating chamber H10.
- the film forming apparatus 71 simultaneously performs the first direction mist spraying process by the thin film forming nozzle 1L and the second direction mist spraying process by the thin film forming nozzle 1H, so that the back surface and the front surface of the substrate are respectively processed.
- a thin film can be formed.
- FIG. 3 is an explanatory view schematically showing a planar structure of a film forming apparatus 72 which is Embodiment 2 of the present invention.
- FIG. 3 shows an XYZ rectangular coordinate system.
- the characteristic features of the film forming apparatus 72 of the second embodiment will be mainly described, and the description of the same features as those of the film forming apparatus 71 of the first embodiment will be appropriately omitted.
- the circumference M2 predetermined circumference for the substrate transfer path, which is the circumference of the center point C2 and the radius d2, is set.
- the heating chambers H21 and H22 and the film forming chambers F21 and F22 are arranged separately from each other in an arc shape along the circumference M2 for the substrate transfer path.
- the heating chambers H21 and H22 and the film forming chambers F21 and F22 are arranged adjacent to each other in the order of the heating chamber H21, the film forming chamber F21, the heating chamber H22, and the film forming chamber F22 along the substrate rotation direction R2. It is provided without creating a substantially empty space on the circumference M2 for use.
- a plurality of substrates 10 are simultaneously transported by the substrate transport device 8 described in detail later along the circumference M2 for the substrate transport path with the substrate rotation direction R2 as the movement direction.
- the infrared light irradiators 2 and 4 which are the first and second direction heating units, are the same as the infrared light irradiators 2 and 4 of the first embodiment installed in the heating chamber H10 in the heating chambers H21 and H22, respectively. Attached in the same way.
- Each of the heating chambers H21 and H22 is provided without having an opening area communicating with the outside, other than the rotation side opening area described below.
- a plurality of infrared light irradiators 2 and 4 are discretely arranged in a rectangular shape in a plan view in each of the heating chambers H21 and H22.
- a plurality of infrared light irradiators 2 and 4 are provided at positions corresponding to the plurality of substrates 10 (seven substrates 10) shown in FIG. 2 and 4) are discretely arranged.
- the infrared light irradiators 2 and 4 are provided in a shape slightly wider than the substrate 10 so as to include the entire substrate 10 in a plan view when the substrate 10 is transported along the circumference M2 for the substrate transport path. ..
- the thin film forming nozzles 1L and 1H which are the first and second direction mist ejecting units, are the same as the thin film forming nozzles 1L and 1H of the first embodiment installed in the film forming chambers F21 and F22, respectively. Attached to.
- the film forming chambers F21 and F22 are provided without having an opening area communicating with the outside, other than the rotation side opening area described later.
- the substrate transfer device 8 rotates the plurality of substrates 10 (16 substrates 10 in FIG. 3) along the substrate transfer path circumference M2. It is conveyed in the direction R2.
- the first thin film forming nozzles 1L and 1H (mist spraying unit) in the film forming chamber F21 perform the first heat treatment.
- the mist injection process is executed.
- the second heating process by the infrared light irradiators 2 and 4 in the heating chamber H22 the second mist injection process by the thin film forming nozzles 1L and 1H in the film forming chamber F21 is performed.
- thin films can be formed on the front surface and the back surface of the plurality of substrates 10, respectively.
- the film forming apparatus 72 of the second embodiment has the same effect as the film forming apparatus 71 of the first embodiment.
- the effect peculiar to the second embodiment will be described.
- the infrared light irradiators 2 and 4 provided in the heating chambers H21 and H22 are integrated into one unit of the heating mechanism, a plurality of heating mechanisms (heating of two units) is performed.
- the mechanism) is arranged in the corresponding heating chamber among the plurality of heating chambers (two heating chambers H21 and H22).
- the plurality of mist ejecting units include the plurality of film forming chambers ( The two film forming chambers F21 and F22) are arranged in the corresponding film forming chambers.
- the film forming apparatus 72 transfers the one substrate 10 along the circumference M2 for the substrate transfer path with the substrate rotation direction R2 as the movement direction, starting from inside the heating chamber H21.
- the first heat treatment in the heating chamber H21, the first mist injection treatment in the film forming chamber F21, the second heat treatment in the heating chamber H22, and the second mist injection in the film forming chamber F22 in one revolution. They are executed in the order of processing.
- the heat treatment is performed twice (first and second heat treatments) and the mist injection is performed twice. Processing (first and second mist injection processing) is executed.
- the film forming apparatus 72 when the film forming apparatus 72 according to the second embodiment conveys the substrate 10 in an orbit along the circumference M2 (predetermined circumference) for the substrate carrying path, the film forming apparatus 72 performs the same process for the same substrate 10 per one turn. Since the number of film treatments (heat treatment+mist injection treatment) can be increased, the throughput in the film formation treatment can be improved.
- FIG. 4 is an explanatory view schematically showing the planar structure of the film forming apparatus 73 according to the third embodiment of the present invention.
- FIG. 4 shows an XYZ rectangular coordinate system.
- the features of the film forming apparatus 73 of the third embodiment will be mainly described, and the description of the features similar to those of the film forming apparatus 71 of the first embodiment will be appropriately omitted.
- the circumference M3 (predetermined circumference) for the substrate transport path, which is the circumference of radius d3 centered on the center point C3, is set.
- the heating chamber H30 and the film forming chamber F30 are arranged separately from each other in an arc shape along the circumference M3 for the substrate transfer path.
- the heating chamber H30 and the film forming chamber F30 are arranged adjacent to each other in the heating chamber H30 and without forming a substantially empty space on the substrate transport path circumference M3.
- a plurality of substrates 10 are simultaneously transported by the substrate transport device 8 described in detail later along the circumference M3 for the substrate transport path with the substrate rotation direction R3 as the moving direction.
- the infrared light irradiators 2 and 4 which are the first and second direction heating units are mounted in the heating chamber H30 in the same manner as the infrared light irradiators 2 and 4 of the first embodiment mounted in the heating chamber H10.
- the heating chamber H30 is provided without having an opening area that communicates with the outside, other than the rotation side opening area described below.
- a plurality of infrared light irradiators 2 and 4 are discretely arranged in a rectangular shape in a plan view inside the heating chamber H30.
- a plurality of infrared light irradiators 2 and 4 are discretely arranged at positions corresponding to the plurality of substrates 10 shown in FIG.
- the infrared light irradiators 2 and 4 are provided in a shape slightly wider than the substrate 10 so as to include the entire substrate 10 in a plan view when the substrate 10 is transported along the substrate transport path circumference M3. ..
- the thin film forming nozzles 1L and 1H which are the first and second direction mist ejecting units, are installed in the film forming chamber F30 in the same manner as the thin film forming nozzles 1L and 1H of the first embodiment installed in the film forming chamber F10. ..
- the film forming chamber F30 is provided without having an opening area that communicates with the outside, other than the rotation side opening area described below.
- a plurality of thin film forming nozzles 1L and 1H are arranged in a rectangular shape in plan view inside the film forming chamber F30.
- three thin film forming nozzles 1L and 1H are discretely arranged at positions corresponding to the three substrates 10 shown in FIG.
- a plurality (three) of thin film forming nozzles 1L and 1H are discretely provided in the film forming chamber F30, but in the following, for convenience of description, a set of thin film forming nozzles 1L and 1H is represented. explain.
- the substrate transfer device 8 rotates the plurality of substrates 10 (16 substrates 10 in FIG. 4) along the substrate transfer path circumference M3.
- the direction R3 is conveyed as the moving direction.
- the mist jetting process by the thin film forming nozzles 1L and 1H is performed, and the front surface and the back surface of the plurality of substrates 10 are performed. A thin film is formed on each.
- the film forming apparatus 73 of the third embodiment has the same effect as the film forming apparatus 71 of the first embodiment.
- the features and effects of the third embodiment will be described below.
- the heating process by the infrared light irradiators 2 and 4 in the heating chamber H30 requires execution of the required heating time TH3, and the mist injection process by the thin film forming nozzles 1L and 1H in the film forming chamber F30 is necessary mist injection.
- the execution of time TM3 is required. That is, a case will be considered in which a desired thin film can be formed with high quality by performing a heating process for the required heating time TH3 and then performing a mist injection process for the required mist injection time TM3.
- the arc-shaped formation length along the circumference M3 for the substrate transfer path of the heating chamber H30 is defined as the heating process length LH3, and the arc-shaped formation along the circumference M3 for the substrate transfer path of the film forming chamber F30.
- the heating process length LH3 and the film forming process length LM3 are formed so that the process length ratio PL3 becomes 3/13.
- the heating chamber H30 has a heating step length LH3 capable of accommodating 13 substrates 10 at equal intervals at the same time, and the film formation chamber F30 has three substrates 10 at equal intervals. It has a film forming process length LM3 that can be accommodated at the same time.
- the process length ratio PL3 which is the ratio of the heating process length LH3 to the film forming process length LM3, needs to be the ratio of the required heating time TH3 to the required mist injection time TM3. It is set to match the time ratio PT3.
- the transport speed V3 at this time is defined as a transport speed V3H.
- the transport speed V3 at this time is defined as a transport speed V3M.
- the transport speed V3 that satisfies the above condition (1) is determined (provisionally “V3H"), and then the transport speed V3 that satisfies the above condition (2) is determined (provisionally “V3M”). To). The transport speed V3H and the transport speed V3M do not match.
- the transport speed V3 of the substrate 10 by the substrate transport device 8 is set to the transport speed V3H in the heating chamber H30 and the transport speed V3M in the film forming chamber F30, and thus the heating chamber
- the transport speed V3 is individually set between the H30 and the film forming chamber F30.
- the transport speed V3 of the substrates 10 by the substrate transport device 8 is set to the heating process length LH3 and the film forming process length LM3. Based on this, the transport speed V3H in the heating chamber H30 and the transport speed V3H in the film forming chamber F30 are individually set so as to satisfy the required heating time TH3 and the required mist injection time TM3, respectively.
- the modification of the third embodiment has the above characteristics, it is possible to perform the film forming process on one substrate 10 under the optimum conditions that satisfy the above conditions (1) and (2).
- N is the number of turns of the circumference M3 for the substrate transfer path. The number of revolutions N is common to the heating process and the mist injection process.
- the film formation apparatus 73 of the third embodiment when the film formation target to be processed at the same time is one substrate 10, the film formation apparatus 73 of the third embodiment and the film formation apparatus 71 of the first embodiment or It is also applicable to the film forming apparatus 72 of the second embodiment.
- FIG. 5 is an explanatory view schematically showing a planar structure of a film forming apparatus 74 which is Embodiment 4 of the present invention.
- FIG. 6 is a sectional view showing the sectional structure of the film forming apparatus 74 of the fourth embodiment.
- FIG. 6 shows a cross section taken along the line BB of FIG. 5, and the XYZ orthogonal coordinate system is described in each of FIG. 5 and FIG.
- the film forming apparatus 74 of the fourth embodiment has the same configuration as the film forming apparatus 71 of the first embodiment except that the substrate transfer device 8 is specifically shown. 6, the lamp mounting table 31 and the infrared light lamp 32 in the infrared light irradiator 2 and the lamp mounting table 41 and the infrared light lamp 42 in the infrared light irradiator 4 are omitted.
- the substrate transfer device 8 will be described below.
- the substrate transfer device 8 includes a rotation body 8r, a rotation auxiliary member 8p, and a substrate holder 6 as main components, and the rotation body 8r and the rotation auxiliary member 8p form a rotation mechanism section.
- the rotating body 8r has a cylindrical shape, and performs a rotating operation along the substrate rotating direction R1 with the center point C1 as the center. That is, the rotating body 8r performs a rotating operation for carrying the plurality of substrates 10 along the circumference M1 (predetermined circumference) for the substrate carrying path.
- a motor or the like can be considered as a drive source for the rotating body 8r.
- a plurality of rotation assisting members 8p are provided extending radially from the side surface of the rotating body 8r in a radial direction centered on the center point C1. Therefore, the plurality of rotation assisting members 8p rotate in the substrate rotation direction R1 as the rotation body 8r rotates.
- the substrate holders 6 are provided so as to be connected to the tips of the plurality of rotation assisting members 8p, respectively. That is, the plurality of substrate holders 6 are provided corresponding to the plurality of rotation assisting members 8p.
- the substrate holder 6 holds the substrate 10 and is transported along with the substrate 10 on the substrate transport path circumference M1 as the substrate 10 is rotated by the rotation mechanism section (rotary body 8r+rotation auxiliary member 8p).
- FIGS. 7 and 8 are plan views showing a planar structure of the substrate holder 6A which is the first mode of the substrate holder 6, FIG. 7 being a state before holding the substrate 10 and FIG. 8 holding the substrate 10. It shows the state.
- FIG. 9 is a sectional view showing a sectional structure taken along the line CC of FIG. An XYZ orthogonal coordinate system is shown in each of FIGS. 7 to 9.
- the substrate holder 6A includes a substrate frame body 60, substrate guide members 61 to 63, and a pin support base 68 as main components.
- the substrate frame body 60 is a frame body having a substantially rectangular space region inside, and the space region has an area slightly larger than the formation area of the substrate 10.
- a pin support 68 having a right-angled triangular shape in plan view is provided at four corners of the space area.
- Substrate guide members 61 to 63 are provided on each of the four pin supports 68.
- the board guide members 61 and 62 are provided on the pin support base 68 at the same height, the board guide member 61 is provided for positioning in the X direction, and the board guide member 62 is provided for positioning in the Y direction. That is, the distance between the substrate guide members 61 and 61 facing each other in the X direction is substantially equal to the length of the substrate 10 in the X direction, and the distance between the substrate guide members 62 and 62 facing each other in the Y direction is the length of the substrate 10 in the Y direction. It is provided so that it is almost equal to.
- the board guide member 63 is provided so that the formation position in the X direction matches the board guide member 62 and the formation position in the Y direction matches the board guide member 61, and is provided on the pin support base 68. As shown in FIG. 9, the substrate guide member 63 is set to have a lower forming height than the substrate guide members 61 and 62.
- the substrate holder 6 A mounts the substrate 10 on the four substrate guide members 63. That is, the four board guide members 63 support the four corners of the back surface of the board 10 from the back surface side.
- the positioning in the X direction is performed by disposing the substrate 10 between the two sets of substrate guide members 61, 61 facing each other in the X direction
- the positioning in the Y direction is performed by the two sets of substrates facing each other in the Y direction. This is performed by disposing the substrate 10 between the guide members 62, 62.
- the substrate holder 6A holds the substrate 10 in place. Can be held.
- the positioning of the four substrate guide members 61 in the X direction and the positioning of the four substrate guide members 62 in the Y direction are both performed in such a manner that the substrate 10 having a rectangular shape in plan view is sandwiched, the substrate 10 is held. It is strengthening.
- the substrate 10 held by the substrate holder 6A of the first aspect is positioned so that its center is on the substrate transport path circumference M1.
- the substrate holder 6A holds the substrate 10 in a state where the entire front surface of the substrate 10 and the entire area of the back surface except the corners are exposed. That is, on the back surface of the substrate 10 having a rectangular shape in a plan view, the entire areas other than the contact areas with the tips of the four substrate guide members 63 at the four corners are exposed.
- the substrate holder 6A holds the substrate 10 and is transported along with the substrate 10 on the circumference M1 for the substrate transport path as the rotary body 8r rotates.
- the rotation body 8r moves in the substrate rotation direction R1 using a motor or the like as a drive source. Since the rotation operation can be performed along the substrate, the substrate transfer device 8 can be realized at a relatively low cost.
- the heating mechanism (the infrared light irradiators 2 and 4) is provided. It is possible to form a thin film without disturbing the heat treatment by the above method and the mist jetting process by the mist jetting section (thin film forming nozzles 1L and 1H).
- the heating chamber H10 and the film forming chamber F10 Since the tip region of the rotation assisting member 8p and the substrate holder 6 are arranged in the heating chamber H10 and the film forming chamber F10, the heating chamber H10 and the film forming process are performed in order to stably perform the rotating operation of the rotating body 8r.
- a rotation side opening area (not shown) is provided on the inner side surface of the chamber F10, and the tip of the rotation assisting member 8p is disposed in the heating chamber H10 and the film forming chamber F10 via the rotation side opening area.
- FIGS. 10 and 11 are plan views showing a planar structure of a substrate holder 6B which is a second mode of the substrate holder 6, FIG. 10 being a state before holding the substrate 10 and FIG. 11 holding the substrate 10. It shows the state.
- FIG. 12 is a cross-sectional view showing a cross-sectional structure taken along the line DD in FIG. An XYZ orthogonal coordinate system is shown in each of FIGS. 10 to 12.
- the substrate holder 6B includes a substrate frame 60, a substrate guide member 64, a substrate lift pin 66, and a pin mount 69 as main components.
- the substrate frame body 60 is a frame body having a substantially rectangular space region inside, and the space region has an area slightly larger than the formation area of the substrate 10.
- a substrate guide member 64 is provided at the center of each of the four inner side surfaces of the substrate frame body 60 that defines the space area.
- Each of the four board guide members 64 has a semicircular shape in plan view.
- the four board guide members 64 are provided on the inner side surface of the board frame body 60 such that the semicircular rounded portions correspond to the X direction or the Y direction.
- the four pin mounts 69 are provided on each of the two inner side surfaces of the board frame 60 extending in the Y direction, and a total of four pin mounts 69 are provided.
- the two pin mounts 69 are provided near both ends of the two inner side surfaces extending in the Y direction.
- Substrate lift pins 66 that are substantially U-shaped when viewed in cross section from the bottom surface of each pin mount 69 are provided. That is, four substrate lift pins 66 are provided corresponding to the four pin mounts 69. When holding the substrate 10, the tip portions of the four substrate lift pins 66 are arranged so as to be slightly inside from the four apexes of the substrate 10.
- two board guide members 64 facing each other in the X direction are provided for positioning the board 10 in the X direction, and two board guide members 64 facing each other in the Y direction among the four board guide members 64. 64 is provided for positioning the substrate 10 in the Y direction.
- the distance between the substrate guide members 64, 64 facing each other in the X direction is substantially equal to the length of the substrate 10 in the X direction
- the distance between the substrate guide members 64, 64 facing in the Y direction is the length in the Y direction of the substrate 10. It is provided so that it is almost equal to.
- the substrate holder 6B mounts the substrate 10 on the tips of the four substrate lift pins 66. That is, the four board guide members 63 support the four corners of the back surface of the board 10 from the back surface side.
- the positioning in the X direction is performed by disposing between the pair of substrate guide members 64, 64 facing each other in the X direction
- the positioning in the Y direction is performed by the pair of substrate guide members 64, 64 facing each other in the Y direction. It is performed by placing it in between.
- the substrate holder 6B can hold the substrate 10 by positioning the substrate 10 in the X and Y directions by the four substrate guide members 64 and supporting the substrate 10 by the four substrate lift pins 66.
- the four board guide members 64 are used for positioning in the X and Y directions so as to sandwich the board 10 having a rectangular shape in plan view, the holding function of the board 10 is enhanced.
- the substrate 10 held by the substrate holder 6B of the second aspect as described above is positioned so that the center thereof is on the substrate transport path circumference M1.
- the substrate holder 6B holds the substrate 10 in a state where the entire surface of the substrate 10 and the entire area of the back surface except the corners are exposed. That is, the entire area of the back surface of the substrate 10 having a rectangular shape in plan view is exposed except for the contact areas with the tips of the four substrate lift pins 66 at the four corners.
- the substrate holder 6B holds the substrate 10 and is transported along with the substrate 10 on the substrate transport path circumference M1 as the rotary body 8r rotates.
- the second mode of the substrate transfer device 8 including the rotation main body 8r, the rotation assisting member 8p, and the substrate holder 6B as main components is similar to the first mode in that the rotation main body uses a motor or the like as a drive source. Since 8r can perform the rotation operation along the substrate rotation direction R1, the substrate transfer device 8 can be realized at a relatively low cost.
- the heating mechanism infrared light irradiators 2 and 4
- the mist jetting section thin film forming nozzles 1L and 1H.
- the substrate transport device 8 is used as the substrate transport unit of the film deposition device 71 of the first embodiment, but the film deposition device 72 and the deposition device of the second and third embodiments are used.
- the substrate transfer device 8 can be used as the substrate transfer part of the film device 73.
- the rotation side opening area (not shown) on the inner side surface of the heating chambers H21 and H22, the film formation chambers F21 and F22, the heating chamber H30, and the film formation chamber F30, the rotation side opening area is formed.
- the tip of the rotation assisting member 8p can be disposed in the heating chambers H21 and H22, the film forming chambers F21 and F22, the heating chamber H30, and the film forming chamber F30 via the.
- FIG. 13 is an explanatory view schematically showing the planar structure of the thin film forming nozzle 11 in the film forming apparatus 75 according to the fifth embodiment of the present invention.
- the film forming apparatus 75 of the fifth embodiment has the same configuration as the film forming apparatus 71 of the first embodiment except that the thin film forming nozzles 1L and 1H are replaced with the thin film forming nozzle 11.
- the thin film forming nozzle 11 used in the fifth embodiment will be described below.
- the thin film forming nozzle 11 is used instead of the thin film forming nozzles 1L and 1H shown in FIG. 2, and ejects the raw material mist MT from the mist ejecting port 21.
- the thin film forming nozzle 11 when the thin film forming nozzle 11 is used as the thin film forming nozzle 1L, the thin film forming nozzle 11 is provided below the substrate 10 and injects the raw material mist MT from the mist injection port 21 in the first upward direction.
- the thin film forming nozzle 11 when the thin film forming nozzle 11 is used as the thin film forming nozzle 1H, the thin film forming nozzle 11 is provided above the substrate 10 and injects the raw material mist MT from the mist injection port 21 in the second downward direction.
- the thin film forming nozzle 11 has a mist injection port 21 for injecting the raw material mist MT.
- the mist injection port 21 has an opening area in which the arc length CB on the outside (the side away from the center point C1) is longer than the arc length CA on the inside (side toward the center point C1 (see FIG. 1)) (CA>CB).
- mist injection port 21 is characterized in that the opening area becomes wider as it goes away from the center point C1 of the substrate transport path circumference M1 (predetermined circumference).
- the mist jetting port 21 of the thin film forming nozzle 11 which is the mist jetting unit in the film forming apparatus 75 of the fifth embodiment has the above characteristics, the mist jetting port 21 from the center point C1 of the substrate transport path circumference M1 (predetermined circumference). The material mist can be evenly sprayed onto the substrate 10 regardless of the distance.
- FIG. 14 is an explanatory diagram schematically showing a planar structure of a thin film forming nozzle 12 which is a first modified example of the film forming apparatus 75 of the fifth embodiment. Similar to the thin film forming nozzle 11, the thin film forming nozzle 12 is used instead of the thin film forming nozzles 1L and 1H shown in FIG. 2, and ejects the raw material mist MT from the mist ejecting port 22.
- the thin film forming nozzle 12 is provided so that the formation width of the mist injection port 22 for ejecting the raw material mist MT (formation length along the tangential direction of the substrate transport path circumference M1) is sufficiently narrow.
- the proper width of the mist injection port 22 is 1 mm or more and 5 mm or less, and 2 mm is particularly desirable.
- the first modification of the fifth embodiment is characterized in that the mist injection port 22 has a shape with a sufficiently narrow formation width.
- the mist injection port 22 of the thin film forming nozzle 12 that is the mist injection unit has the above-mentioned characteristics, it is uniformly applied to the substrate 10 regardless of the distance from the center point C1 of the substrate transport path circumference M1 (predetermined circumference). A raw material mist can be sprayed.
- FIG. 15 is an explanatory diagram showing a planar structure of a thin film forming nozzle 13 which is a second modification of the film forming apparatus 75 of the fifth embodiment.
- the thin film forming nozzle 13 is used instead of the thin film forming nozzles 1L and 1H shown in FIG. 2, and ejects the raw material mist MT from the mist ejecting port 23.
- the mist injection port 23 for injecting the raw material mist MT is composed of three mist injection ports 231 to 233 which are discretely arranged.
- the mist injection ports 231 to 233 are provided such that the formation widths (the formation lengths along the tangential direction of the substrate transport path circumference M1) are sufficiently narrow.
- the proper width of each of the mist injection ports 231 to 233 is 1 mm or more and 5 mm or less, and 2 mm is particularly desirable.
- the second modification of the fifth embodiment is characterized in that the mist injection ports 23 have a sufficiently narrow formation width for each of the mist injection ports 231 to 233.
- the mist injection port 23 of the thin film forming nozzle 13, which is the mist injection unit has the above characteristics, it is even with respect to the substrate 10 regardless of the distance from the center point C1 of the substrate transport path circle M1 (predetermined circle).
- the raw material mist can be sprayed on.
- the injection amount of the raw material mist MT is not reduced.
- the thin film forming nozzles 11 to 13 are used as the mist injection unit of the film forming apparatus 71 of the first embodiment (including the film forming apparatus 74 of the fourth embodiment) has been described. It is needless to say that the thin film forming nozzles 11 to 13 can be used as the mist ejecting portions of the film forming apparatus 72 and the film forming apparatus 73 of the second and third embodiments.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Spray Control Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
- Nozzles (AREA)
- Chemically Coating (AREA)
Abstract
本発明は、成膜品質や成膜速度を落とすことなく、基板上に薄膜を成膜することができ、かつ、成膜処理のスループットの向上を図った成膜装置を提供することを目的とする。そして、本発明は、基板搬送経路用円周(M1)上に沿って加熱室(H10)及び成膜室(F10)が配置される。加熱室(H10)及び成膜室(F10)は互いに隣接して配置される。基板搬送装置(8)により、基板搬送経路用円周(M1)上に沿って基板回転方向(R1)を移動方向として複数の基板(10)が同時に搬送される。加熱室(H10)内の赤外光照射器(2,4)による基板(10)の加熱処理の実行後に、成膜室(F10)内の薄膜形成ノズル(1L,1H)による基板(10)に対するミスト噴射処理を実行して複数の基板(10)の表面上及び裏面上それぞれに薄膜を成膜している。
Description
この発明は、太陽電池などの電子デバイスの製造に用いられ、基板上に膜を成膜する成膜装置に関するものである。
基板上に膜を成膜する方法として、化学気相成長(CVD(Chemical Vapor Deposition))法がある。しかしながら、化学気相成長法では真空下での成膜が必要な場合が多くなり、真空ポンプなどに加えて、大型の真空容器を用いる必要がある。さらに、化学気相成長法では、コスト等の観点から、成膜される基板として大面積のものを採用することが困難である、という問題があった。そこで、大気圧下における成膜処理が可能なミスト法が、注目されている。
ミスト法を利用した成膜装置に関する従来技術として、例えば特許文献1に係る技術が存在している。
特許文献1に係る技術では、ミスト噴射用ノズル等を含むミスト噴射ヘッド部の底面に設けられる原料溶液噴出口及び反応材料噴出口から、大気中に配置されている基板に対してミスト化された原料溶液及び反応材料が噴射されている。当該噴射により、基板上には膜が成膜される。なお、反応材料は原料溶液との反応に寄与する材料を意味する。
特許文献1で代表される従来の成膜装置は、薄膜形成ノズルによるミスト噴射処理と加熱機構による加熱処理とを同時に実行することにより基板上に薄膜を成膜している。
また、基板を上面上に載置する基板積載ステージの内部に加熱機構を設け、この基板積載ステージを平面型加熱手段として用いるのが一般的であった。
上述したように、従来の成膜装置は、成膜対象物となる基材である基板を上面上に載置する基板積載ステージの内部に加熱機構を設け、基板積載ステージを平面型加熱手段として用いるのが一般的であった。
基板積載ステージのような平面型加熱手段を用いる場合、基板積載ステージの上面と基板の下面とを接触させ、基板積載ステージ,基板間を伝熱させて基板の加熱処理を実行することになる。
しかし、基板が平板形状ではなく、その下面が湾曲したものや、下面に凹凸がある構造を呈する場合、平面型加熱手段では、基板積載ステージの上面と基板の裏面との接触が局所的になる。このため、加熱機構による加熱処理の実行時に基板の加熱が不均一になったり、基板に反りが発生して変形したりする等の問題点があった。
本発明では、上記のような問題点を解決し、成膜品質や成膜速度を落とすことなく、基板上に薄膜を成膜することができ、かつ、成膜処理のスループットの向上を図った成膜装置を提供することを目的とする。
この発明に係る成膜装置は、所定の円周上に沿って基板を搬送する基板搬送部と、前記所定の円周上に沿って配置された加熱室内に設けられ、前記加熱室内の前記基板と接触することなく、前記基板を加熱する加熱処理を実行する加熱機構と、前記所定の円周上に沿って配置された成膜室内に設けられ、原料溶液をミスト化して得られる原料ミストを前記成膜室内の前記基板に向けて噴射するミスト噴射処理を実行するミスト噴射部とを備え、前記加熱室と前記成膜室とは互いに分離して配置され、前記基板搬送部によって前記基板を搬送させつつ、前記加熱機構による加熱処理の実行後に、前記ミスト噴射部によるミスト噴射処理を実行して前記基板上に薄膜を成膜する。
請求項1記載の本願発明の成膜装置は、加熱室内の基板と接触することなく、基板を加熱する加熱処理を実行する加熱機構を備えているため、加熱機構による加熱処理の実行により基板の形状に関わらず、基板を均一に加熱することができる。
さらに、加熱処理とミスト噴射処理とが互いに影響を受けないように加熱機構及びミスト噴射部は加熱室及び成膜室に分離して配置されているため、ミスト噴射処理が加熱処理に悪影響を与えることもない。
その結果、請求項1記載の本願発明の成膜装置は、加熱機構による加熱処理の実行後、ミスト噴射部によるミスト噴射処理を実行することにより、成膜品質や成膜速度を落とすことなく、基板の表面に薄膜を成膜することができる。
さらに、請求項1記載の本願発明の成膜装置は、所定の円周上に加熱機構が設けられた加熱室とミスト噴射部が設けられた成膜室とが配置され、かつ、基板搬送機構によって上記所定の円周上に沿って基板が搬送されている。
このため、請求項1記載の本願発明の成膜装置は、基板搬送部によって所定の円周上に複数回周回するように基板を搬送させることにより、加熱機構及びミスト噴射部の数を必要最小限に抑え、かつ、加熱処理及びミスト噴射処理を含む成膜処理のスループットを高めることができる。
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
<前提技術>
加熱機構として、従来の平面型加熱手段に変えて赤外光照射器を用いることが考えられる。赤外光照射器を用いることにより、基板に接触することなく電磁波である赤外線で直接加熱できるため、基板の形状に関わらず均一に加熱することが可能となる。
加熱機構として、従来の平面型加熱手段に変えて赤外光照射器を用いることが考えられる。赤外光照射器を用いることにより、基板に接触することなく電磁波である赤外線で直接加熱できるため、基板の形状に関わらず均一に加熱することが可能となる。
しかし、原料溶液をミスト化して得られる原料ミストが赤外光を吸収し、原料ミストが加熱されて蒸発するため、基板上に形成される薄膜の成膜品質や、成膜処理における成膜速度が低下する問題があった。また、原料ミストを噴射するミスト噴射処理自体が基板の加熱の妨げになることも問題であった。
これらの問題を解決するため、加熱工程と成膜工程(ミスト噴射工程)を分離しそれぞれ別の空間で行う改良製法が考えられる。この改良製法を用いることにより、基板の形状に関わらず、薄膜の成膜品質や成膜処理における成膜速度を落とすことなく成膜することを可能となる。
しかし、基板が加熱工程を終えた直後から、急激に基板の温度が低下するため、加熱工程と成膜工程を繰り返す必要がある。このため、加熱処理を行う加熱機構とミスト噴射処理を行うミスト噴射部とをそれぞれ複数準備し、複数の加熱機構と複数のミスト噴射部とを交互に多数並べる第1の方法が考えられる。さらに、単一の加熱機構と単一のミスト噴射部との間の基板を複数回往復させる第2の方法が考えられる。
図16はこの発明の前提技術における上記第1の方法を具体化した成膜装置の概略構成を示す説明図である。図16にXYZ直交座標系を記している。
図16に示すように、前提技術の薄膜製造装置112は、加熱室801及び802、成膜室901及び902、2つの薄膜形成ノズル101、2組の赤外光照射器102及び104の組合せ並びにコンベア53を主要構成要素として含んでいる。
赤外光照射器102はランプ載置台121及び複数の赤外光ランプ122から構成され、ランプ載置台121の上部に複数の赤外光ランプ122が取り付けられる。したがって、赤外光照射器102は複数の赤外光ランプ122から上方(+Z方向)に向けて赤外光を照射することができる。赤外光照射器102による上述した赤外光照射によってベルト52の上面に載置した複数の基板110の裏面に対する加熱処理(第1方向加熱処理)を実行することができる。
赤外光照射器104はランプ載置台141及び複数の赤外光ランプ142から構成され、ランプ載置台141の下部に複数の赤外光ランプ142が取り付けられる。したがって、赤外光照射器104は複数の赤外光ランプ142から下方(-Z方向)に向けて赤外光を照射することができる。赤外光照射器104による上述した赤外光照射によってベルト52の上面に載置した複数の基板110の表面に対する加熱処理(第2方向加熱処理)を実行することができる。
基板搬送部であるコンベア53はベルト52の上面に複数の基板110を載置しつつ、複数の基板110を搬送方向(X方向)に搬送している。コンベア53は左右両端に設けられた搬送用の一対のローラ51と、一対のローラ51に架け渡された無端状の搬送用のベルト52とを備えている。
コンベア53は、一対のローラ51の回転駆動によって、上方側(+Z方向側)のベルト52を搬送方向(X方向)に沿って移動させることができる。
コンベア53の一対のローラ51のうち、一方は加熱室801外の左方(-X方向)に設けられ、他方は成膜室902の右方(+X方向)に設けられる。また、ベルト52の中央部は、加熱室801、加熱室802、成膜室901及び成膜室902のうちいずれかの内部に設けられる。
したがって、ベルト52は一対のローラ51の回転駆動により、加熱室801及び802それぞれの左右(-X方向,+X方向)の側面の一部に設けられる一対の開口部88、及び成膜室901及び902それぞれの左右の側面の一部に設けられる一対の開口部98を介して、加熱室801及び802の内部、成膜室901及び902の内部並びに外部との間を移動することができる。
加熱室801及び802と成膜室901及び902は、加熱室801、成膜室901、加熱室802及び成膜室902の順で左方から右方にかけて隣接して設けられる。また、加熱室801の右側の開口部88と成膜室901の左側の開口部98とが共用され、成膜室901の右側の開口部98と加熱室802の左側の開口部88とが共用され、加熱室802の右側の開口部88と成膜室902の開口部98とが共用される。
コンベア53の一部は加熱室801及び802に収納される。加熱室801及び802の内部及び周辺の構成は同じであるため、以下では加熱室801を中心に説明する。
加熱室801は、上部容器83、下部容器84及び一対の開口部88により構成される。Z方向である高さ方向において上部容器83と下部容器84との間に一対の開口部88が位置する。したがって、加熱室801内の開口部88,88間に設けられるコンベア53は下部容器84より高く、上部容器83より低い位置に配置される。
加熱室801の周辺において、第1方向加熱部である赤外光照射器102は下部容器84外の下方(-Z方向)側のコンベア53から離れた位置に、図示しない固定手段より固定される。
加熱室801の周辺において、第2方向加熱部であるである赤外光照射器104は上部容器83外の上方(+Z方向)側のコンベア53から離れた位置に、図示しない固定手段より固定される。赤外光照射器102及び赤外光照射器104により加熱機構が構成される。
なお、赤外光照射器102及び104は共に、加熱室801内のベルト52の上面領域(線状の一対のコンベアチェーンに挟まれる領域)と平面視して重複する位置に配置される。
加熱室801及び802はそれぞれ、赤外光照射器102及び104から照射される赤外光を吸収することなく、透過性に優れた赤外光透過材料を構成材料としている。具体的には、加熱室801及び802はそれぞれ構成材料として石英ガラスを採用している。
第1方向加熱部である赤外光照射器102は、基板110の裏面側(他方主面側)から+Z方向(第1の方向)に向けて赤外光を照射して基板110を裏面側から加熱する第1方向加熱処理を行っている。
第2方向加熱部である赤外光照射器104は、基板110の表面側(一方主面側)から、+Z方向と反対方向となる-Z方向(第2の方向)に向けて赤外光を照射して基板110を表面側から加熱する第2方向加熱処理を行っている。
また、加熱室801は、赤外光照射器102及び104の加熱処理(第1方向加熱処理及び第2方向加熱処理)の実行時に、基板110を内部に収容している。
加熱室801は、加熱処理を行う際、エアカーテン107により上部容器83,下部容器84間の開口部88を塞ぐことにより、ベルト52上に載置された複数の基板110を外部から遮断することができる。
このように、前提技術の薄膜製造装置112は、第1の加熱機構として加熱室801の外部周辺に設けられた赤外光照射器102及び104を有し、第2の加熱機構として加熱室802の外部周辺に設けられた赤外光照射器102及び104を有している。
そして、加熱室801内の複数の基板110に対し赤外光照射器102及び104により第1の加熱処理を実行し、加熱室802内の複数の基板110に対し赤外光照射器102及び104により第2の加熱処理を実行している。これら第1及び第2の加熱処理がそれぞれ上述した第1方向加熱処理及び第2方向加熱処理を含んでいる。
成膜室901及び902はそれぞれ薄膜形成ノズル101及びコンベア53の一部を収納する。成膜室901及び902の内部構成は同じであるため、以下では成膜室901を中心に説明する。
成膜室901は、上部容器91、下部容器92及び一対の開口部98により構成される。Z方向である高さ方向において上部容器91と下部容器92との間に一対の開口部98が位置する。したがって、成膜室901内の開口部98,98間に設けられるコンベア53は下部容器92より高く、上部容器91より低い位置に配置される。
成膜室901において、ミスト噴射部である薄膜形成ノズル101は上部容器91内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル101は、噴射面とベルト52の上面とが対向する位置関係で配置される。
成膜室901において、薄膜形成ノズル101は、噴射面に設けられた噴射口から下方(-Z方向)に原料ミストMTを噴射するミスト噴射処理を実行する。
このように、前提技術の薄膜製造装置112は、第1のミスト噴射部として成膜室901内に設けられた薄膜形成ノズル101を有し、第2のミスト噴射部として成膜室902内に設けられた薄膜形成ノズル101を有している。
そして、成膜室901内に設けられた薄膜形成ノズル101により第1のミスト噴射処理を実行し、成膜室902内に設けられた薄膜形成ノズル101により第2の加熱処理を実行している。
成膜室901及び902はそれぞれ、ミスト噴射処理を行う際、エアカーテン107により上部容器91,下部容器92間の開口部98を塞ぐことにより、薄膜形成ノズル101、及びベルト52上に載置された複数の基板110を外部から遮断することができる。
したがって、前提技術の薄膜製造装置112は、エアカーテン107によって加熱室801及び802それぞれの一対の開口部88並びに成膜室901及び902それぞれの一対の開口部98を全て閉状態にし、コンベア53のベルト52を搬送方向(X方向)に沿って移動させることにより、成膜環境を設定することができる。
前提技術の薄膜製造装置112は、上記成膜環境下で、加熱室801及び802内の基板110に対して行う加熱処理と成膜室901及び902内の基板110に対して行うミスト噴射処理とが互いに影響を受けないように、2組の赤外光照射器102及び104の組合せと2つの薄膜形成ノズル101とをそれぞれ分離して配置している。
そして、前提技術の薄膜製造装置112は、上記成膜環境下で、加熱室801内の複数の基板110に対し赤外光照射器102及び104の赤外光照射による第1の加熱処理を実行した後、成膜室901内で薄膜形成ノズル101による第1のミスト噴射処理を実行する。
その後、薄膜製造装置112は、上記成膜環境下で、加熱室802内の複数の基板110に対し赤外光照射器102及び104の赤外光照射による第2の加熱処理を実行した後、成膜室902内で薄膜形成ノズル101による第2のミスト噴射処理を実行する。
その結果、前提技術の薄膜製造装置112は、最終的に成膜室902においてベルト52の上面に載置された基板110の表面上に薄膜を成膜することができる。
このように、前提技術の薄膜製造装置112は、基板110と接触関係をもたせることなく、2組の赤外光照射器102及び104の組合せによって基板110を加熱することができるため、基板110の形状に関わらず均一な加熱を、基板110を変形させることなく行うことができる。
さらに、前提技術の薄膜製造装置112は、加熱処理とミスト噴射処理とが互いに影響を受けないように2組の赤外光照射器102及び104と2つの薄膜形成ノズル101とをそれぞれ分離して配置している。このため、薄膜製造装置112は、第1及び第2の加熱処理並びに第1及び第2のミスト噴射処理それぞれの実行時に、上記原料ミスト蒸発現象の発生を確実に回避することができる。
その結果、前提技術の薄膜製造装置112は、成膜品質や成膜速度を落とすことなく、基板110の表面上に薄膜を成膜することができる。
前提技術の薄膜製造装置112は、上述したように、第1及び第2の加熱処理並びに第1及び第2のミスト噴射処理間で影響を受けないように、第1及び第2の加熱機構並びに第1及び第2ミスト噴射部は、第1、第2の順で交互に配置されている。
そして、前提技術の薄膜製造装置112は、第1及び第2の加熱処理と第1及び第2のミスト噴射処理とを第1,第2の順で交互に実行することを特徴としている。
したがって、前提技術の薄膜製造装置112は、2回交互に繰り返される加熱処理及びミスト噴射処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なる2つの膜による積層構造で薄膜を形成したりすることができる。
なお、上述した薄膜製造装置112では、2つの加熱機構と2つのミスト噴射部による組合せを示したが、n(n≧2)個の加熱機構とn個のミスト噴射部による組合せによる拡張変形例を実現することができる。
上記拡張変形例は、第1~第nの加熱処理を実行する第1~第nの加熱機構を有し、第1~第nのミスト噴射処理を実行する第1~第nのミスト噴射部を有している。
上記拡張変形例は、第1~第nの加熱処理及び第1~第nのミスト噴射処理間で影響を受けないように、第1~第nの加熱機構及び第1~第nのミスト噴射部を、第1~第nの順で交互に分離して配置している。
そして、上記拡張変形例は、第1~第nの加熱処理と第1~第nのミスト噴射処理とを第1,第2,…第nの順で交互に実行することを特徴としている。
したがって、上記拡張変形例は、n(≧2)回交互に繰り返して加熱処理及びミスト噴射処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なるn層の膜による積層構造で薄膜を形成したりすることができる。
加えて、前提技術の薄膜製造装置112は、加熱室801及び802内の基板110に対して行う第1及び第2の加熱処理として、赤外光照射器102による第1方向加熱処理と赤外光照射器104による第2方向加熱処理とを同時に行っている。
その結果、前提技術の薄膜製造装置112は、加熱室801及び802それぞれ内において基板110をより均一に加熱することができる。
しかしながら、図16で示したような前提技術に代表される第1の方法では、加熱機構である赤外光照射器102及び104、ミスト噴射部である薄膜形成ノズル101を複数設ける必要があるため、コストの上昇を招くという問題点があった。
一方、第2の方法は、単一の加熱機構と単一のミスト噴射部との間を移動させる際、必ず、加熱処理及びミスト噴射処理のいずれも実行されない無駄な時間が発生してしまうため、成膜処理におけるスループットが低くなるという問題点を有している。
以下に述べる実施の形態では、上記第1及び第2の方法の問題点をも解決し、加熱機構及びミスト噴射部の数を必要最小限に抑え、かつ、成膜処理のスループットを高めることを目的としている。
<実施の形態1>
図1はこの発明の実施の形態1である成膜装置71の平面構造を模式的に示す説明図である。図2は実施の形態1の成膜装置71の断面構造を示す断面図である。図2は図1のA-A断面を示しており、図1及び図2それぞれにXYZ直交座標系を示している。
図1はこの発明の実施の形態1である成膜装置71の平面構造を模式的に示す説明図である。図2は実施の形態1の成膜装置71の断面構造を示す断面図である。図2は図1のA-A断面を示しており、図1及び図2それぞれにXYZ直交座標系を示している。
図1に示すように、中心点C1を中心とした半径d1の円周である基板搬送経路用円周M1(所定の円周)が設定されている。
基板搬送経路用円周M1上に沿ってそれぞれ円弧状に加熱室H10及び成膜室F10が互いに分離して配置される。加熱室H10及び成膜室F10は互いに隣接して配置され、基板搬送経路用円周M1上において実質的な空き空間を生じさせることなく設けられる。
後に詳述する基板搬送装置8により、基板搬送経路用円周M1上に沿って基板回転方向R1を移動方向として複数の基板10が同時に搬送される。複数の基板10はそれぞれ平面視して矩形状を呈している。複数の基板10はそれぞれの中心が常に基板搬送経路用円周M1上に位置するように搬送される。
図2に示すように、第1方向加熱部である赤外光照射器2は加熱室H10内の基板10から離れた位置に、図示しない固定手段より固定される。第2方向加熱部である赤外光照射器4は加熱室H10内の基板10から離れた位置に、図示しない固定手段より固定される。赤外光照射器2及び赤外光照射器4の組合せにより加熱機構が構成される。加熱室H10は後述する回転用側面開口領域以外に外部に通じる開口領域を有していない。
なお、赤外光照射器2及び4は、加熱室H10内に平面視して矩形状に複数個離散配置されている。例えば、図1で示される複数の基板10(15個の基板10)に対応する位置に複数の赤外光照射器2及び4が離散配置されている。そして、赤外光照射器2及び4は基板搬送経路用円周M1に沿って基板10が搬送される際、基板10全体を平面視して含むように、基板10より少し広い形状で設けられる。
このように、加熱室H10内において、赤外光照射器2及び4は離散的に複数設けられるが、以下では、説明の都合上、一組の赤外光照射器2及び4を代表して説明する。
赤外光照射器2はランプ載置台31及び赤外光ランプ32から構成され、ランプ載置台31の上部に赤外光ランプ32が取り付けられる。したがって、赤外光照射器2は赤外光ランプ32から上方(+Z方向(第1の方向))に向けて赤外光LRを照射することができる。赤外光照射器2による上述した赤外光照射によって基板10に対する加熱処理(第1方向加熱処理)を実行することができる。
赤外光照射器4はランプ載置台41及び赤外光ランプ42から構成され、ランプ載置台41の下部に赤外光ランプ42が取り付けられる。したがって、赤外光照射器4は赤外光ランプ42から下方(-Z方向)に向けて赤外光LRを照射することができる。赤外光照射器4による上述した赤外光照射によって基板10に対する加熱処理(第2の方向加熱処理)を実行することができる。
このように、第1方向加熱部である赤外光照射器2は、+Z方向(第1の方向)に向けて赤外光LRを照射することにより、基板10と接触することなく基板10を加熱する第1方向加熱処理を行っている。+Z方向は基板10の裏面から表面に向かう方向となる。
一方、第2方向加熱部である赤外光照射器4は、+Z方向と反対方向となる-Z方向(第2の方向)に向けて赤外光LRを照射することにより、基板10と接触することなく基板10を加熱する第2方向加熱処理を行っている。-Z方向は基板10の表面から裏面に向かう方向となる。
このように、赤外光照射器2及び4は、加熱室H10内に設けられ、加熱室H10内の基板10を加熱する加熱処理(第1方向加熱処理+第2方向加熱処理)を実行する加熱機構として機能する。
第1方向ミスト噴射部である薄膜形成ノズル1Lは基板10の下方に位置するように成膜室F10内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル1Lは、ミスト噴射口が基板10の裏面と対向する位置関係で配置される。
第2方向ミスト噴射部である薄膜形成ノズル1Hは成膜室F10内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル1Hは、ミスト噴射口と基板10の表面とが対向する位置関係で配置される。なお、成膜室F10は後述する回転用側面開口領域以外に外部に通じる開口領域を有していない。
成膜室F10内において、薄膜形成ノズル1Lは、ミスト噴射口から上方(+Z方向;第1の方向)に原料ミストMTを噴射する第1方向ミスト噴射処理を実行する。
成膜室F10内において、薄膜形成ノズル1Hは、ミスト噴射口から下方(-Z方向;第2の方向)に原料ミストMTを噴射する第2方向ミスト噴射処理を実行する。
このように、実施の形態1の成膜装置71は、第1方向ミスト噴射部として薄膜形成ノズル1Lを有し、第2方向ミスト噴射部とし薄膜形成ノズル1Hを有している。したがって、実施の形態1の成膜装置71は、薄膜形成ノズル1L及び1Hの組合せによりミスト噴射部を構成し、ミスト噴射部は、第1方向ミスト噴射処理及び第2方向ミスト噴射処理の組合せによるミスト噴射処理を実行している。
上述したように、薄膜形成ノズル1L及び1Hは、基板搬送経路用円周M1上に沿って配置された成膜室F10内に設けられ、原料溶液をミスト化して得られる原料ミストMTを成膜室F10の基板10に向けて噴射するミスト噴射処理を実行するミスト噴射部として機能する。
このような構成の実施の形態1の成膜装置71は、図示しない基板搬送装置8によって複数の基板10(図1では16個の基板10)を基板搬送経路用円周M1上に沿って、基板回転方向R1に搬送させている。そして、加熱室H10内の赤外光照射器2及び4(加熱機構)による加熱処理の実行後に、成膜室F10内の薄膜形成ノズル1L及び1H(ミスト噴射部)によるミスト噴射処理を実行して複数の基板10の表面上及び裏面上それぞれに薄膜を成膜している。
実施の形態1の成膜装置71は、加熱室H10の基板10と接触することなく、基板10を加熱する加熱処理を実行する加熱機構(赤外光照射器2及び4)を備えているため、加熱機構による加熱処理の実行により基板10の形状に関わらず、基板を均一に加熱することができる。
さらに、加熱処理とミスト噴射処理とが互いに影響を受けないように加熱機構及びミスト噴射部は加熱室H10及び成膜室F10に分離して配置されているため、ミスト噴射処理が加熱処理に悪影響を与えることもない。
その結果、実施の形態1の成膜装置71は、加熱機構による加熱処理の実行後、ミスト噴射部によるミスト噴射処理を実行することにより、成膜品質や成膜速度を落とすことなく、基板10上に薄膜を成膜することができる。
実施の形態1の成膜装置71は、基板搬送経路用円周M1(所定の円周)上に赤外光照射器2及び4(加熱機構)が設けられた加熱室H10と薄膜形成ノズル1L及び1H(ミスト噴射部)が設けられた成膜室F10とが配置され、かつ、基板搬送装置8(基板搬送部)によって基板搬送経路用円周M1上に沿って複数の基板10が同時に搬送されている。
このため、実施の形態1の成膜装置71は、基板搬送装置8によって、基板搬送経路用円周M1上に複数回周回するように複数の基板10を搬送させることにより、赤外光照射器2及び4並びに薄膜形成ノズル1L及び1Hの数を必要最小限に抑え、かつ、加熱処理及びミスト噴射処理を含む成膜処理のスループットを高めることができる。
なぜなら、加熱室H10及び成膜室F10は共に基板搬送経路用円周M1上に沿って配置されているため、複数の基板10それぞれを基板搬送経路用円周M1に沿って繰り返し周回させることにより、加熱室H10内に設けられる赤外光照射器2及び4並びに成膜室F10内に設けられる薄膜形成ノズル1L及び1Hを、加熱処理用並びにミスト噴射処理用に複数回用いることができるからである。
なお、上記効果は、搬送される基板が1枚の場合でも発揮することができる。また、成膜室F10及び加熱室H10を基板搬送経路用円周M1上に隙間を設けることなく隣接配置することにより、加熱処理からミスト噴射処理、ミスト噴射処理から加熱処理の移行期間を実質的に“0”に近づけることができる。このため、実施の形態1の成膜装置71は、薄膜の成膜処理におけるスループットのさらなる向上を図ることができる。
さらに、実施の形態1の成膜装置71は、基板搬送経路用円周M1上に沿って同時に複数の基板を周回搬送させる分、成膜処理におけるスループットの向上をより一層図ることができる。
加えて、実施の形態1の成膜装置71は、加熱室H10内で行う加熱処理として、赤外光照射器2による第1方向加熱処理と赤外光照射器4による第2方向加熱処理とを同時に行っている。したがって、上記第1方向加熱処理によって基板10の裏面から加熱し、かつ、上記第2方向加熱処理によって基板10の表面から加熱することができる。
その結果、実施の形態1の成膜装置71は、加熱室H10内において基板10をより均一に加熱することができる。
さらに、実施の形態1の成膜装置71は、薄膜形成ノズル1Lによる第1方向ミスト噴射処理と薄膜形成ノズル1Hによる第2方向ミスト噴射処理とを同時行うことにより、基板の裏面及び表面それぞれに薄膜を成膜することができる。
<実施の形態2>
図3はこの発明の実施の形態2である成膜装置72の平面構造を模式的に示す説明図である。図3にXYZ直交座標系を記している。以下、実施の形態2の成膜装置72の固有の特徴を中心に説明し、実施の形態1の成膜装置71と同様な特徴の説明は適宜省略する。
図3はこの発明の実施の形態2である成膜装置72の平面構造を模式的に示す説明図である。図3にXYZ直交座標系を記している。以下、実施の形態2の成膜装置72の固有の特徴を中心に説明し、実施の形態1の成膜装置71と同様な特徴の説明は適宜省略する。
図3に示すように、中心点C2を中心とした半径d2の円周である基板搬送経路用円周M2(所定の円周)が設定されている。
基板搬送経路用円周M2上に沿ってそれぞれ円弧状に加熱室H21及びH22並びに成膜室F21及びF22が互いに分離して配置される。加熱室H21及びH22並びに成膜室F21及びF22は基板回転方向R2に沿って加熱室H21、成膜室F21、加熱室H22及び成膜室F22の順で互いに隣接して配置され、基板搬送経路用円周M2上において実質的な空き空間を生じさせることなく設けられる。
後に詳述する基板搬送装置8により、基板搬送経路用円周M2上に沿って基板回転方向R2を移動方向として複数の基板10が同時に搬送される。
第1及び第2方向加熱部である赤外光照射器2及び4は加熱室H21及びH22それぞれ内において、加熱室H10内に取り付けられた実施の形態1の赤外光照射器2及び4と同様に取り付けられる。加熱室H21及びH22はそれぞれ後述する回転用側面開口領域以外に外部に通じる開口領域を有することなく設けられる。
なお、赤外光照射器2及び4は、加熱室H21及びH22それぞれ内に平面視して矩形状に複数個離散配置されている。例えば、加熱室H21及びH22それぞれにおいて、図3で示される複数の基板10(7個の基板10)に対応する位置に複数の赤外光照射器2及び4(7組の赤外光照射器2及び4)が離散配置されている。そして、赤外光照射器2及び4は基板搬送経路用円周M2に沿って基板10が搬送される際、基板10全体を平面視して含むように、基板10より少し広い形状で設けられる。
第1及び第2方向ミスト噴射部である薄膜形成ノズル1L及び1Hは成膜室F21及びF22それぞれ内に、成膜室F10内に取り付けられた実施の形態1の薄膜形成ノズル1L及び1Hと同様に取り付けられる。なお、成膜室F21及びF22は後述する回転用側面開口領域以外に外部に通じる開口領域を有することなく設けられる。
このような構成の実施の形態2の成膜装置72は、基板搬送装置8によって複数の基板10(図3では16個の基板10)を基板搬送経路用円周M2上に沿って、基板回転方向R2に搬送させている。
そして、加熱室H21内の赤外光照射器2及び4(加熱機構)による第1の加熱処理の実行後に、成膜室F21内の薄膜形成ノズル1L及び1H(ミスト噴射部)による第1のミスト噴射処理を実行する。さらに、加熱室H22内の赤外光照射器2及び4による第2の加熱処理の実行後に、成膜室F21内の薄膜形成ノズル1L及び1Hによる第2のミスト噴射処理を実行する。その結果、複数の基板10の表面上及び裏面上にそれぞれ薄膜を成膜することができる。
したがって、実施の形態2の成膜装置72は、実施の形態1の成膜装置71と同様な効果を奏する。以下、実施の形態2の固有の効果について説明する。
実施の形態2の成膜装置72は、加熱室H21及びH22それぞれ内に設けられる赤外光照射器2及び4を集約して加熱機構の1単位とすると、複数の加熱機構(2単位の加熱機構)は複数の加熱室(2つの加熱室H21及びH22)のうち対応する加熱室内に配置される。
同様に、成膜室F21及びF22それぞれ内に設けられる薄膜形成ノズル1L及び1Hをミスト噴射部の1単位とすると,複数のミスト噴射部(2単位のミスト噴射部)は複数の成膜室(2つの成膜室F21及びF22)のうち対応する成膜室内に配置される。
したがって、実施の形態2の成膜装置72は、加熱室H21内を開始点として、一の基板10を基板搬送経路用円周M2に沿って基板回転方向R2を移動方向として搬送することにより、1周回で加熱室H21内の第1の加熱処理、成膜室F21内の第1のミスト噴射処理、加熱室H22内の第2の加熱処理、及び成膜室F22内の第2のミスト噴射処理の順で実行している。
すなわち、実施の形態2の成膜装置72は、基板10が基板搬送経路用円周M1を1周回する際、2度の加熱処理(第1及び第2の加熱処理)及び2度のミスト噴射処理(第1及び第2のミスト噴射処理)を実行している。
このように、実施の形態2の成膜装置72は、基板搬送経路用円周M2(所定の円周)上に沿って基板10を周回搬送させる際、1周当たりの同一の基板10に対する成膜処理(加熱処理+ミスト噴射処理)の回数を増加させることができる分、成膜処理におけるスループットの向上を図ることができる。
<実施の形態3>
図4はこの発明の実施の形態3である成膜装置73の平面構造を模式的に示す説明図である。図4にXYZ直交座標系を記している。以下、実施の形態3の成膜装置73の特徴を中心に説明し、実施の形態1の成膜装置71と同様な特徴の説明は適宜省略する。
図4はこの発明の実施の形態3である成膜装置73の平面構造を模式的に示す説明図である。図4にXYZ直交座標系を記している。以下、実施の形態3の成膜装置73の特徴を中心に説明し、実施の形態1の成膜装置71と同様な特徴の説明は適宜省略する。
図4に示すように、中心点C3を中心とした半径d3の円周である基板搬送経路用円周M3(所定の円周)が設定されている。
基板搬送経路用円周M3上に沿ってそれぞれ円弧状に加熱室H30及び成膜室F30が互いに分離して配置される。加熱室H30及び成膜室F30はで互いに隣接して配置され、基板搬送経路用円周M3上において実質的な空き空間を生じさせることなく設けられる。
後に詳述する基板搬送装置8により、基板搬送経路用円周M3上に沿って基板回転方向R3を移動方向として複数の基板10が同時に搬送される。
第1及び第2方向加熱部である赤外光照射器2及び4は加熱室H30内において、加熱室H10内に取り付けられた実施の形態1の赤外光照射器2及び4と同様に取り付けられる。加熱室H30は後述する回転用側面開口領域以外に外部に通じる開口領域を有することなく設けられる。
なお、赤外光照射器2及び4は、加熱室H30内に平面視して矩形状に複数個離散配置されている。例えば、図4で示される複数の基板10に対応する位置に複数の赤外光照射器2及び4が離散配置されている。そして、赤外光照射器2及び4は基板搬送経路用円周M3に沿って基板10が搬送される際、基板10全体を平面視して含むように、基板10より少し広い形状で設けられる。
第1及び第2方向ミスト噴射部である薄膜形成ノズル1L及び1Hは成膜室F30内において、成膜室F10内に取り付けられた実施の形態1の薄膜形成ノズル1L及び1Hと同様に取り付けられる。なお、成膜室F30は後述する回転用側面開口領域以外に外部に通じる開口領域を有することなく設けられる。
なお、薄膜形成ノズル1L及び1Hは、成膜室F30内に平面視して矩形状に複数個離散配置されている。例えば、図4で示される3つの基板10に対応する位置に3つの薄膜形成ノズル1L及び1Hが離散配置されている。
このように、成膜室F30内に薄膜形成ノズル1L及び1Hは離散的に複数(3つ)設けられるが、以下では、説明の都合上、一組の薄膜形成ノズル1L及び1Hを代表して説明する。
このような構成の実施の形態3の成膜装置73は、基板搬送装置8によって複数の基板10(図4では16個の基板10)を基板搬送経路用円周M3上に沿って、基板回転方向R3を移動方向として搬送させる。
そして、赤外光照射器2及び4(加熱機構)による加熱処理の実行後に、薄膜形成ノズル1L及び1H(ミスト噴射部)によるミスト噴射処理を実行して複数の基板10の表面上及び裏面上にそれぞれ薄膜を成膜している。
したがって、実施の形態3の成膜装置73は、実施の形態1の成膜装置71と同様な効果を奏する。以下、実施の形態3の特徴及びその効果について説明する。
ここで、加熱室H30内における赤外光照射器2及び4による加熱処理は必要加熱時間TH3の実行を必要とし、成膜室F30内における薄膜形成ノズル1L及び1Hによるミスト噴射処理は必要ミスト噴射時間TM3の実行を必要とすると場合を考える。すなわち、必要加熱時間TH3の加熱処理を実行し、その後、必要ミスト噴射時間TM3のミスト噴射処理を実行することにより、所望の薄膜を高品質に成膜することができる場合を考える。
この場合、必要加熱時間TH3の必要ミスト噴射時間TM3に対する比である必要時間比PT3は、「PT3=TM3/TH3」として求められる。
ここで、加熱室H30の基板搬送経路用円周M3上に沿った円弧状の形成長を加熱工程長LH3とし、成膜室F30の基板搬送経路用円周M3上に沿った円弧状の形成長を成膜工程長LM3とすると、加熱工程長LH3の成膜工程長LM3に対する比である工程長比PL3は、「PL3=LM3/LH3」となる。
実施の形態3の成膜装置73では、工程長比PL3が必要時間比PT3と適合するように設計されることを特徴としている。すなわち、「PL3=PT3」を実質的に満足するように設計される。
例えば、必要時間比PT3が3/13の場合、工程長比PL3が3/13になるように、加熱工程長LH3及び成膜工程長LM3が形成される。例えば、図4に示す様に、加熱室H30は均等間隔で13個の基板10が同時に収容可能な加熱工程長LH3を有し、かつ、成膜室F30は均等間隔で3個の基板10が同時に収容可能な成膜工程長LM3を有する。
このように、実施の形態3の成膜装置73は、加熱工程長LH3の成膜工程長LM3に対する比である工程長比PL3を、必要加熱時間TH3の必要ミスト噴射時間TM3に対する比である必要時間比PT3と適合するように設定している。
基板搬送装置8による基板搬送経路用円周M3上に沿った基板回転方向R3における搬送速度をV3とする。そして、条件(1){TH3=LH3/V3}を満足する搬送速度V3を求める。このときの搬送速度V3を搬送速度V3Hとする。
次に、条件(2)「TM3=LM3/V3」を満足する搬送速度V3を求める。このときの搬送速度V3を搬送速度V3Mとする。
実施の形態3の成膜装置73では、前述したように、工程長比PL3と必要時間比PT3とが等しいため、{V3M(=LM3/TM3=(PL3・LH3)/(PT3・TH3)=LH3/TH3)=V3H}となり、搬送速度V3Hと搬送速度V3Mとは一致する。
その結果、実施の形態3の成膜装置73は、基板搬送装置8による基板10の搬送速度V3を最適な一定値(V3H(=V3M))に決定することができる分、基板搬送装置8の動作制御を実行容易にすることができる効果を奏する。
さらに、図4に示すように、成膜室F30の成膜工程長LM3を同時に3つの基板10が収納可能に長くすることにより、搬送速度V3を上昇させても十分な必要ミスト噴射時間TM3を確保することができる効果も奏する。
(変形例)
なお、基板10の枚数が1枚の場合、実施の形態3の変形例として、工程長比PL3が必要時間比PT3と適合していない場合における態様が考えられる。変形例では、基板搬送装置8による搬送速度V3を以下のように決定する。
なお、基板10の枚数が1枚の場合、実施の形態3の変形例として、工程長比PL3が必要時間比PT3と適合していない場合における態様が考えられる。変形例では、基板搬送装置8による搬送速度V3を以下のように決定する。
まず、上述した条件(1)を満足する搬送速度V3を決定し(仮に「V3H」とする)、次に、上述した条件(2)を満足する搬送速度V3を決定する(仮に「V3M」とする)。搬送速度V3Hと搬送速度V3Mとは一致しない。
したがって、実施の形態3の変形例では、基板搬送装置8による基板10の搬送速度V3を、加熱室H30内において搬送速度V3Hとし、成膜室F30内において搬送速度V3Mとすることにより、加熱室H30及び成膜室F30間で搬送速度V3を個別に設定している。
このように、基板10の枚数が1枚の場合において適用可能な実施の形態3の変形例では、基板搬送装置8による基板10の搬送速度V3は、加熱工程長LH3及び成膜工程長LM3に基づき、必要加熱時間TH3及び必要ミスト噴射時間TM3をそれぞれ満足するように、加熱室H30内における搬送速度V3Hと成膜室F30内における搬送速度V3Hとを個別に設定することを特徴とする。
実施の形態3の変形例は上記特徴を有するため、上述した条件(1)及び条件(2)を満足する最適な条件で1枚の基板10に対する成膜処理を行うことができる。
なお、上述した条件(1)及び条件(2)に変えて、条件(3){TH3=N・(LH3/V3)}及び条件(4){TM3=N・(LM3/V3)}を用いても良い。なお、Nは基板搬送経路用円周M3の周回数である。周回数Nは加熱処理及びミスト噴射処理で共通となる。
なお、実施の形態3の変形例は、同時に処理される成膜対象が1枚の基板10の場合、実施の形態3の成膜装置73は勿論、実施の形態1の成膜装置71や実施の形態2の成膜装置72にも適用可能である。
<実施の形態4>
図5はこの発明の実施の形態4である成膜装置74の平面構造を模式的に示す説明図である。図6は実施の形態4の成膜装置74の断面構造を示す断面図である。図6は図5のB-B断面を示しており、図5及び図6それぞれにXYZ直交座標系を記している。実施の形態4の成膜装置74は、基板搬送装置8を具体的に示した点を除き、実施の形態1の成膜装置71と同様な構成を有している。なお、図6では赤外光照射器2におけるランプ載置台31及び赤外光ランプ32、赤外光照射器4におけるランプ載置台41及び赤外光ランプ42の図示を省略している。
図5はこの発明の実施の形態4である成膜装置74の平面構造を模式的に示す説明図である。図6は実施の形態4の成膜装置74の断面構造を示す断面図である。図6は図5のB-B断面を示しており、図5及び図6それぞれにXYZ直交座標系を記している。実施の形態4の成膜装置74は、基板搬送装置8を具体的に示した点を除き、実施の形態1の成膜装置71と同様な構成を有している。なお、図6では赤外光照射器2におけるランプ載置台31及び赤外光ランプ32、赤外光照射器4におけるランプ載置台41及び赤外光ランプ42の図示を省略している。
以下、基板搬送装置8について説明する。基板搬送装置8は回転本体8r、回転補助部材8p及び基板保持具6を主要構成要素として含んでおり、回転本体8r及び回転補助部材8pにより回転機構部を構成している。
図5及び図6に示すように、回転本体8rは円柱形状を呈しており、中心点C1を中心とした基板回転方向R1に沿って回転動作を行う。すなわち、回転本体8rは基板搬送経路用円周M1(所定の円周)上に沿って複数の基板10を搬送させるための回転動作を行う。なお、回転本体8rの駆動源としてはモータ等が考えられる。
回転本体8rの側面から、中心点C1を中心とした半径方向に放射状に延びて複数の回転補助部材8pが設けられる。したがって、複数の回転補助部材8pは回転本体8rの回転動作に伴い基板回転方向R1に回転する。
そして、複数の回転補助部材8pの先端部にそれぞれ基板保持具6が連結して設けられる。すなわち、複数の回転補助部材8pに対応して複数の基板保持具6が設けられる。基板保持具6は基板10を保持し、かつ、回転機構部(回転本体8r+回転補助部材8p)による回転動作に伴い、基板10と共に基板搬送経路用円周M1上を搬送される。
図7及び図8は基板保持具6の第1の態様である基板保持具6Aの平面構造を示す平面図であり、図7は基板10を保持前の状態、図8は基板10を保持した状態を示している。図9は図8のC-C断面における断面構造を示す断面図である。図7~図9それぞれにXYZ直交座標系を記している。
図7~図9に示すように、基板保持具6Aは基板枠体60、基板ガイド部材61~63、及びピン支持台68を主要構成要素として含んでいる。
基板枠体60は内部に略矩形状の空間領域を有する枠体であり、空間領域は基板10の形成面積より少し広い面積を有している。空間領域の4つの角部に平面視直角三角形状のピン支持台68が設けられる。4つのピン支持台68それぞれ上に基板ガイド部材61~63が設けられる。
基板ガイド部材61及び62は互いに同一高さでピン支持台68上に設けられ、基板ガイド部材61はX方向における位置決め用、基板ガイド部材62はY方向における位置決め用に設けられる。すなわち、X方向に対向する基板ガイド部材61,61間の距離が基板10のX方向の長さとほぼ等しく、Y方向に対向する基板ガイド部材62,62間の距離が基板10のY方向の長さとほぼ等しくなるように設けられる。
基板ガイド部材63はX方向の形成位置が基板ガイド部材62に一致し、Y方向における形成位置が基板ガイド部材61に一致するように設けられ、ピン支持台68上に設けられる。図9に示すように、基板ガイド部材63は基板ガイド部材61及び62に比べ形成高さが低く設定されている。
図8及び図9に示すように、基板保持具6Aは4つの基板ガイド部材63上に基板10を載置する。すなわち、4つの基板ガイド部材63は基板10の裏面の4つの角部を裏面側から支持している。
この際、X方向の位置決めは、X方向に対向する2組の基板ガイド部材61,61間に基板10を配置することにより行われ、Y方向の位置決めは、Y方向に対向する2組の基板ガイド部材62,62間に基板10を配置することにより行われる。
このように、4つの基板ガイド部材61によるX方向の位置決め、4つの基板ガイド部材62によるY方向の位置決め、及び4つの基板ガイド部材63による基板10の支持によって、基板保持具6Aは基板10を保持することができる。
また、4つの基板ガイド部材61によるX方向の位置決め及び4つの基板ガイド部材62によるY方向の位置決めは共に平面視矩形状の基板10を挟み込む態様で行われているため、基板10の保持機能を強化している。
上述のように第1の態様の基板保持具6Aに保持された基板10は、その中心が基板搬送経路用円周M1上になるように位置決めされる。
したがって、基板保持具6Aは、基板10の表面の全面及び裏面の角部を除く全領域を露出させた状態で基板10を保持している。すなわち、平面視矩形状の基板10の裏面において、4つの角部における4つの基板ガイド部材63の先端部と接触領域以外の全領域を露出させている。
このように、基板保持具6Aは、基板10を保持し、かつ、回転本体8rの回転動作に伴い、基板10と共に基板搬送経路用円周M1上を搬送される。
上述したように、回転本体8r、回転補助部材8p及び基板保持具6Aを主要構成要素として含む基板搬送装置8の第1の態様は、モータ等を駆動源として回転本体8rは基板回転方向R1に沿った回転動作を実行させることができるため、基板搬送装置8を比較的低コストで実現することができる。
さらに、基板保持具6Aは、基板10の表面の全面及び裏面の角部を除く全領域を露出させた状態で基板10を保持しているため、加熱機構(赤外光照射器2及び4)による加熱処理、及びミスト噴射部(薄膜形成ノズル1L及び1H)によるミスト噴射処理に支障を来すことなく、薄膜を成膜することができる。
なお、回転補助部材8pの先端領域及び基板保持具6は、加熱室H10及び成膜室F10内に配置されるため、回転本体8rの回転動作を安定して行うべく、加熱室H10及び成膜室F10の内側側面には回転用側面開口領域(図示せず)が設けられ、回転用側面開口領域を介して回転補助部材8pの先端部を加熱室H10及び成膜室F10内に配置させることができる。
図10及び図11は基板保持具6の第2の態様である基板保持具6Bの平面構造を示す平面図であり、図10は基板10を保持前の状態、図11は基板10を保持した状態を示している。図12は図11のD-D断面における断面構造を示す断面図である。図10~図12それぞれにXYZ直交座標系を記している。
図11に示すように、基板保持具6Bは基板枠体60、基板ガイド部材64、基板リフトピン66及びピン取付台69を主要構成要素として含んでいる。
基板枠体60は内部に略矩形状の空間領域を有する枠体であり、空間領域は基板10の形成面積より少し広い面積を有している。空間領域を規定する基板枠体60の4つの内側側面それぞれの中央部に基板ガイド部材64が設けられる。4つの基板ガイド部材64はそれぞれ平面視して半円状を呈している。4つの基板ガイド部材64は、半円状の丸みを帯びた部分がX方向あるいはY方向に対応するように基板枠体60の内側側面に設けられる。
4つのピン取付台69は基板枠体60のY方向に延びる2つの内側側面に2つずつ設けられ、合計、4つのピン取付台69が設けられる。2つのピン取付台69はY方向に延びる2つの内側側面の両端部近傍に設けられる。
各ピン取付台69の底面から断面視して略U字状の基板リフトピン66が設けられる。すなわち、4つのピン取付台69に対応して4つの基板リフトピン66が設けられる。4つの基板リフトピン66の先端部分が基板10を保持する際、基板10の4つの頂点から少し内側になるように配置される。
4つの基板ガイド部材64のうちX方向に対向する2つの基板ガイド部材64はX方向における基板10の位置決め用に設けられ、4つの基板ガイド部材64のうちY方向に対向する2つの基板ガイド部材64はY方向における基板10の位置決め用に設けられる。
すなわち、X方向に対向する基板ガイド部材64,64間の距離が基板10のX方向の長さとほぼ等しく、Y方向に対向する基板ガイド部材64,64間の距離が基板10のY方向の長さとほぼ等しくなるように設けられる。
図11及び図12に示すように、基板保持具6Bは4つの基板リフトピン66の先端部上に基板10を載置する。すなわち、4つの基板ガイド部材63は基板10の裏面の4つの角部を裏面側から支持している。
この際、X方向の位置決めはX方向に対向する1組の基板ガイド部材64,64間に配置することにより行われ、Y方向の位置決めはY方向に対向する1組の基板ガイド部材64,64間に配置することにより行われる。
このように、4つの基板ガイド部材64によるX方向及びY方向における基板10の位置決め及び4つの基板リフトピン66による基板10の支持によって、基板保持具6Bは基板10を保持することができる。
また、4つの基板ガイド部材64によりX方向及びY方向の位置決めは、平面視矩形状の基板10を挟み込む態様で行われているため、基板10の保持機能を強化している。
上述のように第2の態様の基板保持具6Bに保持された基板10は、その中心が基板搬送経路用円周M1上になるように位置決めされる。
したがって、基板保持具6Bは、基板10の表面の全面及び裏面の角部を除く全領域を露出させた状態で基板10を保持している。すなわち、平面視矩形状の基板10の裏面において、4つの角部における4つの基板リフトピン66の先端部と接触領域以外の全領域を露出されている。
このように、基板保持具6Bは、基板10を保持し、かつ、回転本体8rの回転動作に伴い、基板10と共に基板搬送経路用円周M1上を搬送される。
上述したように、回転本体8r、回転補助部材8p及び基板保持具6Bを主要構成要素として含む基板搬送装置8の第2の態様は、第1の態様と同様、モータ等を駆動源として回転本体8rは基板回転方向R1に沿った回転動作を実行させることができるため、基板搬送装置8を比較的低コストで実現することができる。
さらに、基板保持具6Bは、基板10の表面の全面及び裏面の角部を除く全領域を露出させた状態で基板10を保持しているため、加熱機構(赤外光照射器2及び4)による加熱処理、及びミスト噴射部(薄膜形成ノズル1L及び1H)によるミスト噴射処理に支障を来すことなく、薄膜を成膜することができる。
なお、実施の形態4では、実施の形態1の成膜装置71の基板搬送部として基板搬送装置8を用いる構成を示したが、実施の形態2及び実施の形態3の成膜装置72及び成膜装置73の基板搬送部として基板搬送装置8を用いることができるのは勿論である。
この場合、加熱室H21及びH22、成膜室F21及びF22、加熱室H30、並びに成膜室F30の内側側面には回転用側面開口領域(図示せず)を設けることにより、回転用側面開口領域を介して回転補助部材8pの先端部を加熱室H21及びH22、成膜室F21及びF22、加熱室H30、並びに成膜室F30内に配置させることができる。
<実施の形態5>
図13はこの発明の実施の形態5である成膜装置75における薄膜形成ノズル11の平面構造を模式的に示す説明図である。実施の形態5の成膜装置75は、薄膜形成ノズル1L及び1Hが薄膜形成ノズル11に置き換わった点を除き、実施の形態1の成膜装置71と同様な構成を有している。
図13はこの発明の実施の形態5である成膜装置75における薄膜形成ノズル11の平面構造を模式的に示す説明図である。実施の形態5の成膜装置75は、薄膜形成ノズル1L及び1Hが薄膜形成ノズル11に置き換わった点を除き、実施の形態1の成膜装置71と同様な構成を有している。
以下、実施の形態5で用いる薄膜形成ノズル11について説明する。なお、薄膜形成ノズル11は図2で示した薄膜形成ノズル1L及び1Hそれぞれに変えて用いられ、ミスト噴射口21から原料ミストMTを噴射する。
したがって、薄膜形成ノズル11を薄膜形成ノズル1Lとして用いる場合は、薄膜形成ノズル11は基板10の下方に設けられ、ミスト噴射口21から上方に向かう第1方向に沿って原料ミストMTを噴射する。一方、薄膜形成ノズル11を薄膜形成ノズル1Hとして用いる場合は、薄膜形成ノズル11は基板10の上方に設けられ、ミスト噴射口21から下方に向かう第2方向に沿って原料ミストMTを噴射する。
図13に示すように、薄膜形成ノズル11は原料ミストMTを噴射するミスト噴射口21を有している。ミスト噴射口21は、内側(中心点C1に向かう側(図1参照))の円弧長CAより、外側(中心点C1から遠ざかる側)の円弧長CBが長くなる(CA>CB)開口領域を有している。
すなわち、ミスト噴射口21は、基板搬送経路用円周M1(所定の円周)の中心点C1から遠ざかるに従い開口領域が広くなる形状を有することを特徴としている。
実施の形態5の成膜装置75におけるミスト噴射部である薄膜形成ノズル11のミスト噴射口21は上記特徴を有するため、基板搬送経路用円周M1(所定の円周)の中心点C1からの距離に関係無く基板10に対し均等に原料ミストを噴射することができる。
(第1の変形例)
図14は実施の形態5の成膜装置75の第1の変形例である薄膜形成ノズル12の平面構造を模式的に示す説明図である。薄膜形成ノズル12は、薄膜形成ノズル11と同様、図2で示した薄膜形成ノズル1L及び1Hそれぞれに変えて用いられ、ミスト噴射口22から原料ミストMTを噴射する。
図14は実施の形態5の成膜装置75の第1の変形例である薄膜形成ノズル12の平面構造を模式的に示す説明図である。薄膜形成ノズル12は、薄膜形成ノズル11と同様、図2で示した薄膜形成ノズル1L及び1Hそれぞれに変えて用いられ、ミスト噴射口22から原料ミストMTを噴射する。
図14に示すように、薄膜形成ノズル12は原料ミストMTの噴射するミスト噴射口22の形成幅(基板搬送経路用円周M1の接線方向に沿った形成長さ)が十分狭くなるように設けられる。なお、ミスト噴射口22の形成幅は1mm以上、5mm以下が適正範囲であり、特に2mmが望ましい。
実施の形態5の第1の変形例では、ミスト噴射口22は形成幅が十分狭い形状を有することを特徴としている。
ミスト噴射部である薄膜形成ノズル12のミスト噴射口22は上記特徴を有するため、基板搬送経路用円周M1(所定の円周)の中心点C1からの距離に関係無く基板10に対し均等に原料ミストを噴射することができる。
(第2の変形例)
図15は実施の形態5の成膜装置75の第2の変形例である薄膜形成ノズル13の平面構造を示す説明図である。薄膜形成ノズル13は、薄膜形成ノズル11と同様、図2で示した薄膜形成ノズル1L及び1Hそれぞれに変えて用いられ、ミスト噴射口23から原料ミストMTを噴射する。
図15は実施の形態5の成膜装置75の第2の変形例である薄膜形成ノズル13の平面構造を示す説明図である。薄膜形成ノズル13は、薄膜形成ノズル11と同様、図2で示した薄膜形成ノズル1L及び1Hそれぞれに変えて用いられ、ミスト噴射口23から原料ミストMTを噴射する。
図15に示すように、薄膜形成ノズル13は原料ミストMTの噴射するミスト噴射口23は互いに離散配置した3つのミスト噴射口231~233から構成される。ミスト噴射口231~233それぞれの形成幅(基板搬送経路用円周M1の接線方向に沿った形成長さ)が十分狭くなるように設けられる。なお、ミスト噴射口231~233それぞれの形成幅は1mm以上、5mm以下が適正範囲であり、特に2mmが望ましい。
実施の形態5の第2の変形例では、ミスト噴射口23におけるミスト噴射口231~233それぞれの形成幅が十分狭い形状を有することを特徴としている。
ミスト噴射部である薄膜形成ノズル13のミスト噴射口23は上記特徴を有するため、基板搬送経路用円周M1(所定の円周)の中心点C1からの距離に関係無く、基板10に対し均等に原料ミストを噴射することができる。
さらに、第2の変形例は、3つのミスト噴射口231~233を設けるため、原料ミストMTの噴射量を低下させることもない。
なお、実施の形態5では、実施の形態1の成膜装置71(実施の形態4の成膜装置74を含む)のミスト噴射部として薄膜形成ノズル11~13を用いる例を示したが、実施の形態2及び実施の形態3の成膜装置72及び成膜装置73のミスト噴射部として薄膜形成ノズル11~13を用いることができるのは勿論である。
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
したがって、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
1H,1L,11~13 薄膜形成ノズル
2,4 赤外光照射器
6,6A,6B 基板保持具
8 基板搬送装置
10 基板
21~23,231~233 ミスト噴射口
71~75 成膜装置
F10,F21,F22,F30 成膜室
H10,H21,H22,H30 加熱室
2,4 赤外光照射器
6,6A,6B 基板保持具
8 基板搬送装置
10 基板
21~23,231~233 ミスト噴射口
71~75 成膜装置
F10,F21,F22,F30 成膜室
H10,H21,H22,H30 加熱室
Claims (10)
- 所定の円周上に沿って基板(10)を搬送する基板搬送部(8)と、
前記所定の円周上に沿って配置された加熱室(H10,H21,H22,H30)内に設けられ、前記加熱室内の前記基板と接触することなく、前記基板を加熱する加熱処理を実行する加熱機構(2,4)と、
前記所定の円周上に沿って配置された成膜室(F10,F21,F22,F30)内に設けられ、原料溶液をミスト化して得られる原料ミスト(MT)を前記成膜室内の前記基板に向けて噴射するミスト噴射処理を実行するミスト噴射部(1H,1L)とを備え、
前記加熱室と前記成膜室とは互いに分離して配置され、前記基板搬送部によって前記基板を搬送させつつ、前記加熱機構による加熱処理の実行後に、前記ミスト噴射部によるミスト噴射処理を実行して前記基板上に薄膜を成膜する、
成膜装置。 - 請求項1記載の成膜装置であって、
前記基板は複数の基板を含む、
成膜装置。 - 請求項1または請求項2記載の成膜装置であって、
前記加熱室は複数の加熱室(H21,H22)を含み、前記加熱機構は複数の加熱機構を含み、前記複数の加熱機構は前記複数の加熱室のうち対応する加熱室内に配置され、
前記成膜室は複数の成膜室(F21,F22)を含み、前記ミスト噴射部は複数のミスト噴射部を含み、前記複数のミスト噴射部は前記複数の成膜室のうち対応する成膜室内に配置される、
成膜装置。 - 請求項1から請求項3のうち、いずれか1項に記載の成膜装置であって、
前記加熱室(H30)は前記所定の円周上に沿った加熱工程長(LH3)を有し、前記成膜室(F30)は前記所定の円周上に沿った成膜工程長(LM3)を有し、前記加熱処理は必要加熱時間(TH3)の実行を必要とし、前記ミスト噴射処理は必要ミスト噴射時間(TM3)の実行を必要とし、
前記加熱工程長の前記成膜工程長に対する比である工程長比(PL3)は、前記必要加熱時間の前記必要ミスト噴射時間に対する比である必要時間比(PT3)と適合するように設定される、
成膜装置。 - 請求項1記載の成膜装置であって、
前記基板は1枚の基板を含み、
前記加熱室(H30)は前記所定の円周に沿った加熱工程長(LH3)を有し、前記成膜室は前記所定の円周に沿った成膜工程長(LM3)を有し、前記加熱処理は必要加熱時間(TH3)の実行を必要とし、前記ミスト噴射処理は必要ミスト噴射時間(TM3)の実行を必要とし、
前記基板搬送部による基板の前記所定の円周上に沿った搬送速度(V3)は、前記加熱工程長及び前記成膜工程長に基づき、前記必要加熱時間及び前記必要ミスト噴射時間を共に満足するように、前記加熱室内における搬送速度(V3H)と前記成膜室内における搬送速度(V3M)とが個別に設定されることを特徴とする、
成膜装置。 - 請求項1から請求項3のうち、いずれか1項に記載の成膜装置であって、
前記ミスト噴射部は前記原料ミストを噴射するミスト噴射口(21~23)を有し、
前記ミスト噴射口は前記所定の円周の中心点から遠ざかるに従い開口領域が広くなる形状を有する、
成膜装置。 - 請求項1から請求項3のうち、いずれか1項に記載の成膜装置であって、
前記基板搬送部は、
前記所定の円周上に沿って前記基板を搬送させるための回転動作を行う回転機構部(8r,8p)と、
前記基板を保持し、かつ、前記回転動作に伴い前記所定の円周上に沿って搬送される基板保持具(6,6A,6B)とを含む、
成膜装置。 - 請求項7記載の成膜装置であって、
前記基板は平面視矩形状の基板であり、
前記基板保持具は、前記基板の表面の全面を露出させ、かつ、前記基板の裏面の角部を除く全領域を露出させた状態で、前記基板を保持することを特徴とする、
成膜装置。 - 請求項1から請求項3のうち、いずれか1項に記載の成膜装置であって、
前記加熱機構は、
第1の方向に向けて赤外光を照射して前記基板を加熱する第1方向加熱処理を行う第1方向加熱部(2)と、
前記第1の方向と反対方向となる第2の方向に向けて赤外光を照射して前記基板を加熱する第2方向加熱処理を行う第2方向加熱部(4)とを含み、
前記加熱処理は前記第1方向加熱処理と前記第2方向加熱処理とを含み、前記第1の方向は前記基板の裏面から表面に向かう方向であり、前記第2の方向は前記基板の表面から裏面に向かう方向である、
成膜装置。 - 請求項9記載の成膜装置であって、
前記ミスト噴射部は、
前記第1の方向に向けて前記原料ミストを噴射する第1方向ミスト噴射処理を実行する第1方向ミスト噴射部(1L)と、
前記第2の方向に向けて前記原料ミストを噴射する第2方向ミスト噴射処理を実行する第2方向ミスト噴射部(1H)とを含み、
前記ミスト噴射処理は前記第1方向ミスト噴射処理と前記第2方向ミスト噴射処理とを含む、
成膜装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/630,947 US20210130952A1 (en) | 2019-02-28 | 2019-02-28 | Film forming apparatus |
JP2019541367A JP6855147B2 (ja) | 2019-02-28 | 2019-02-28 | 成膜装置 |
KR1020207027451A KR102548322B1 (ko) | 2019-02-28 | 2019-02-28 | 성막 장치 |
EP19836781.5A EP3722458B1 (en) | 2019-02-28 | 2019-02-28 | Film forming device |
CN201980017491.1A CN111868298A (zh) | 2019-02-28 | 2019-02-28 | 成膜装置 |
PCT/JP2019/007750 WO2020174643A1 (ja) | 2019-02-28 | 2019-02-28 | 成膜装置 |
TW108137474A TWI731438B (zh) | 2019-02-28 | 2019-10-17 | 成膜裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/007750 WO2020174643A1 (ja) | 2019-02-28 | 2019-02-28 | 成膜装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020174643A1 true WO2020174643A1 (ja) | 2020-09-03 |
Family
ID=72239581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007750 WO2020174643A1 (ja) | 2019-02-28 | 2019-02-28 | 成膜装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210130952A1 (ja) |
EP (1) | EP3722458B1 (ja) |
JP (1) | JP6855147B2 (ja) |
KR (1) | KR102548322B1 (ja) |
CN (1) | CN111868298A (ja) |
TW (1) | TWI731438B (ja) |
WO (1) | WO2020174643A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168170A (ja) * | 1984-09-11 | 1986-04-08 | Toagosei Chem Ind Co Ltd | ゆるみ止めねじの製法 |
DE19502404A1 (de) * | 1994-01-26 | 1995-07-27 | Nylok Fastener Corp | Harzbeschichteter Befestiger sowie Vorrichtung und Verfahren zu dessen Herstellung |
US6004627A (en) * | 1997-01-07 | 1999-12-21 | Nylok Fastener Corporation | Method and apparatus for applying a coating to the head/shank junction of externally threaded articles |
JP2010077508A (ja) * | 2008-09-26 | 2010-04-08 | Tokyo Electron Ltd | 成膜装置及び基板処理装置 |
WO2017068625A1 (ja) | 2015-10-19 | 2017-04-27 | 東芝三菱電機産業システム株式会社 | 成膜装置 |
WO2017187503A1 (ja) * | 2016-04-26 | 2017-11-02 | 東芝三菱電機産業システム株式会社 | 成膜装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4951603A (en) * | 1988-09-12 | 1990-08-28 | Daidousanso Co., Ltd. | Apparatus for producing semiconductors |
US5314541A (en) * | 1991-05-28 | 1994-05-24 | Tokyo Electron Limited | Reduced pressure processing system and reduced pressure processing method |
US5795399A (en) * | 1994-06-30 | 1998-08-18 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product |
US6203619B1 (en) * | 1998-10-26 | 2001-03-20 | Symetrix Corporation | Multiple station apparatus for liquid source fabrication of thin films |
JP3629371B2 (ja) * | 1998-10-29 | 2005-03-16 | シャープ株式会社 | 成膜装置および成膜方法 |
KR101796656B1 (ko) * | 2010-04-30 | 2017-11-13 | 어플라이드 머티어리얼스, 인코포레이티드 | 수직 인라인 화학기상증착 시스템 |
US8821641B2 (en) * | 2011-09-30 | 2014-09-02 | Samsung Electronics Co., Ltd. | Nozzle unit, and apparatus and method for treating substrate with the same |
CN102615010B (zh) * | 2012-03-07 | 2014-02-12 | 东莞百进五金塑料有限公司 | 用于头盔的真空喷涂生产线及其生产方法 |
US20160002784A1 (en) * | 2014-07-07 | 2016-01-07 | Varian Semiconductor Equipment Associates, Inc. | Method and apparatus for depositing a monolayer on a three dimensional structure |
JP6062413B2 (ja) * | 2014-11-28 | 2017-01-18 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法およびプログラム |
JP6559039B2 (ja) * | 2015-10-19 | 2019-08-14 | 日本化薬株式会社 | 共役ジオレフィン製造用触媒と、その製造方法 |
WO2017187500A1 (ja) * | 2016-04-26 | 2017-11-02 | 東芝三菱電機産業システム株式会社 | 成膜装置 |
-
2019
- 2019-02-28 JP JP2019541367A patent/JP6855147B2/ja active Active
- 2019-02-28 WO PCT/JP2019/007750 patent/WO2020174643A1/ja unknown
- 2019-02-28 CN CN201980017491.1A patent/CN111868298A/zh active Pending
- 2019-02-28 KR KR1020207027451A patent/KR102548322B1/ko active IP Right Grant
- 2019-02-28 EP EP19836781.5A patent/EP3722458B1/en active Active
- 2019-02-28 US US16/630,947 patent/US20210130952A1/en active Pending
- 2019-10-17 TW TW108137474A patent/TWI731438B/zh active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168170A (ja) * | 1984-09-11 | 1986-04-08 | Toagosei Chem Ind Co Ltd | ゆるみ止めねじの製法 |
DE19502404A1 (de) * | 1994-01-26 | 1995-07-27 | Nylok Fastener Corp | Harzbeschichteter Befestiger sowie Vorrichtung und Verfahren zu dessen Herstellung |
JPH07259828A (ja) * | 1994-01-26 | 1995-10-09 | Nylok Fastener Corp | ファスナ樹脂被覆装置及び方法 |
US5511510A (en) * | 1994-01-26 | 1996-04-30 | Duffy; Richard J. | Resin coated fastener and apparatus and method for manufacture of same |
US6004627A (en) * | 1997-01-07 | 1999-12-21 | Nylok Fastener Corporation | Method and apparatus for applying a coating to the head/shank junction of externally threaded articles |
CN1248184A (zh) * | 1997-01-07 | 2000-03-22 | 耐乐克扣件有限公司 | 对外螺纹物件的头部/轴杆接合部施涂涂层的方法和装置 |
TW410174B (en) * | 1997-01-07 | 2000-11-01 | Nylok Fastener Corp | Method and apparatus for applying a coating to the head/shank junction of externally threaded articles |
JP2001508356A (ja) * | 1997-01-07 | 2001-06-26 | ナイロック・ファスナー・コーポレーション | 外ねじ付き製品の頭と軸部の交差部にコーティングを塗布する方法及び装置 |
KR100554902B1 (ko) * | 1997-01-07 | 2006-02-24 | 나일록 코포레이션 | 외부에 나사가 마련된 제품의 헤드/생크 연결부에 코팅을 도포하는 방법 및 장치 |
JP2010077508A (ja) * | 2008-09-26 | 2010-04-08 | Tokyo Electron Ltd | 成膜装置及び基板処理装置 |
KR20110058909A (ko) * | 2008-09-26 | 2011-06-01 | 도쿄엘렉트론가부시키가이샤 | 성막 장치 및 기판 처리 장치 |
CN102165100A (zh) * | 2008-09-26 | 2011-08-24 | 东京毅力科创株式会社 | 成膜装置和基板处理装置 |
US20110265725A1 (en) * | 2008-09-26 | 2011-11-03 | Tokyo Electron Limited | Film deposition device and substrate processing device |
WO2017068625A1 (ja) | 2015-10-19 | 2017-04-27 | 東芝三菱電機産業システム株式会社 | 成膜装置 |
WO2017187503A1 (ja) * | 2016-04-26 | 2017-11-02 | 東芝三菱電機産業システム株式会社 | 成膜装置 |
KR20180104130A (ko) * | 2016-04-26 | 2018-09-19 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | 성막 장치 |
CN108699681A (zh) * | 2016-04-26 | 2018-10-23 | 东芝三菱电机产业系统株式会社 | 成膜装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3722458A4 |
Also Published As
Publication number | Publication date |
---|---|
JP6855147B2 (ja) | 2021-04-07 |
CN111868298A (zh) | 2020-10-30 |
EP3722458B1 (en) | 2022-01-19 |
EP3722458A1 (en) | 2020-10-14 |
EP3722458A4 (en) | 2021-03-17 |
TWI731438B (zh) | 2021-06-21 |
KR102548322B1 (ko) | 2023-06-28 |
US20210130952A1 (en) | 2021-05-06 |
JPWO2020174643A1 (ja) | 2021-03-11 |
TW202033823A (zh) | 2020-09-16 |
EP3722458A8 (en) | 2020-12-09 |
KR20200123822A (ko) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI311895B (ja) | ||
JP5014603B2 (ja) | 真空処理装置 | |
CN112135923B (zh) | 成膜装置 | |
JPH09279341A (ja) | トレイ搬送式インライン成膜装置 | |
WO2020174643A1 (ja) | 成膜装置 | |
US9899243B2 (en) | Light irradiation apparatus | |
WO2020174642A1 (ja) | 成膜装置 | |
TWI680806B (zh) | 成膜裝置 | |
JP7280751B2 (ja) | 成膜方法 | |
JPH05306467A (ja) | プラズマcvd装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019541367 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019836781 Country of ref document: EP Effective date: 20200124 |
|
ENP | Entry into the national phase |
Ref document number: 20207027451 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |