WO2020173157A1 - 清洁机器人及其控制方法和控制装置 - Google Patents

清洁机器人及其控制方法和控制装置 Download PDF

Info

Publication number
WO2020173157A1
WO2020173157A1 PCT/CN2019/121444 CN2019121444W WO2020173157A1 WO 2020173157 A1 WO2020173157 A1 WO 2020173157A1 CN 2019121444 W CN2019121444 W CN 2019121444W WO 2020173157 A1 WO2020173157 A1 WO 2020173157A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
map
cleaning robot
operating parameter
parameter group
Prior art date
Application number
PCT/CN2019/121444
Other languages
English (en)
French (fr)
Inventor
袁立超
高向阳
Original Assignee
天佑电器(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天佑电器(苏州)有限公司 filed Critical 天佑电器(苏州)有限公司
Publication of WO2020173157A1 publication Critical patent/WO2020173157A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor

Definitions

  • the present invention relates to the technical field of cleaning devices, and in particular to a cleaning robot and a control method and control device of the cleaning robot.
  • robots have been developed for industrial use and as part of factory automation.
  • application field of robots has expanded, and medical robots and space robots have been developed.
  • robots suitable for homes have also begun to be developed and gradually appear on the market.
  • home robots There are many types of home robots, the most common of which is the cleaning robot.
  • the cleaning robot can autonomously navigate the room to perform cleaning tasks in a limited area according to a program stored in a memory coupled to the control device.
  • the cleaning robot is equipped with a camera device. During cleaning operations, the camera device will take real-time images of the ground. The cleaning robot compares and analyzes the captured images with the data stored in the memory to identify the ground material. Second, the cleaning robot is equipped with a sensor device, which will transmit when the cleaning robot performs the cleaning operation. The sensing device monitors the displacement of the walking wheel in real time. The cleaning robot determines the ground material by comparing the real-time displacement of the walking wheel with the standard displacement stored in the memory.
  • the above method of selecting the cleaning mode of the cleaning robot by identifying the ground material has some problems, as follows: 1.
  • the additional design of a camera or sensor device will greatly increase the production and processing cost of the cleaning robot; 2.
  • the camera device and sensor device will increase the power consumption of the cleaning robot and affect the working efficiency of the cleaning robot.
  • the technical problem to be solved by the present invention is to provide a method that can perform different operations on the surface to be cleaned of different materials without additional design of a sensor device or a camera device. Parameters cleaning robot that performs cleaning operations.
  • Another technical problem to be solved by the present invention is to provide a control method and control device for a cleaning robot.
  • the cleaning robot can perform cleaning of different materials without additional design of sensing devices or camera devices.
  • the surface performs cleaning operations according to different operating parameters.
  • an embodiment of the present invention provides a control method of a cleaning robot, and the control method includes:
  • the map of the whole area is divided into a number of district maps
  • the first operating parameter group corresponding to the partition map corresponding to the cleaning area is matched, and the cleaning robot is controlled to clean the cleaning area according to the first operating parameter group.
  • the method further includes:
  • the common cleaning schedule corresponding to the functional element corresponding to each zone map is matched;
  • the general cleaning schedule corresponding to each zone map is matched, and the cleaning robot is controlled to clean the cleaning area indicated by the corresponding zone map according to the first operating parameter group and the general cleaning schedule.
  • the cleaning robot includes a normal cleaning mode and a deep cleaning mode; the normal cleaning mode corresponds to a first operating parameter group and a normal cleaning schedule;
  • the control method further includes:
  • the cleaning robot is controlled to execute the deep cleaning mode according to the deep cleaning schedule.
  • control method further includes:
  • the cleaning robot is controlled to execute the deep cleaning mode on the cleaning area indicated by the corresponding zone map in accordance with the second operating parameter group and the deep cleaning schedule.
  • an embodiment of the present invention provides a method for controlling a cleaning robot.
  • the control method includes: when the cleaning robot enters a cleaning area, acquiring a zone map corresponding to the cleaning area;
  • the cleaning robot is controlled to clean the cleaning area according to the first operating parameter group.
  • an embodiment of the present invention provides a control method of a cleaning robot, the control method includes: constructing a map of the entire area, the map of the entire area is divided into a plurality of partition maps;
  • an embodiment of the present invention provides a control device for a cleaning robot.
  • the control device includes a memory configured to store a first correspondence between a ground attribute element and a first operating parameter group and all The second correspondence between the first operating parameter group and the zone map;
  • Input unit configured to collect user input
  • the controller is configured to: construct a full-area map divided into a plurality of partition maps; in response to user input collected by the input unit, obtain a ground attribute element corresponding to each partition map; and according to a first correspondence established in advance , Respectively match the first operating parameter group corresponding to the ground attribute element corresponding to each regional map; establish the first operating parameter group corresponding to the ground attribute element corresponding to each regional map and the second operating parameter group of each regional map Correspondence; when the cleaning robot enters a cleaning area, obtain the partition map corresponding to the cleaning area; according to the second correspondence relationship, match the first operating parameter set corresponding to the partition map corresponding to the cleaning area , Controlling the cleaning robot to clean the cleaning area according to the first operating parameter group.
  • the memory is further configured to store a third correspondence between a functional element and an ordinary cleaning schedule and a fourth correspondence between the ordinary cleaning schedule and the partition map;
  • the controller is further configured to: in response to the user input collected by the input unit, obtain the functional element corresponding to each zoning map; according to the pre-established third correspondence relationship, match the corresponding to each zoning map
  • the ordinary cleaning schedule corresponding to the functional element establish a fourth correspondence between the ordinary cleaning schedule corresponding to the functional element corresponding to each district map and each district map; according to the fourth correspondence, match with each district
  • the common cleaning schedule corresponding to the map is controlled to control the cleaning robot to clean the cleaning area indicated by the corresponding zone map according to the first operating parameter group and the common cleaning schedule.
  • the cleaning robot includes a normal cleaning mode and a deep cleaning mode; the normal cleaning mode corresponds to a first operating parameter group and a normal cleaning schedule;
  • the controller is further configured to: evaluate the total energy consumption of a single day of the cleaning robot performing the ordinary cleaning mode in a cleaning cycle; calculate the remaining energy consumption of the cleaning robot in a single day; and set a deep cleaning schedule according to the remaining energy consumption of a single day ; Control the cleaning robot to execute the deep cleaning mode according to the deep cleaning schedule.
  • the memory is further configured to store a fifth correspondence between the ground attribute element and the second operating parameter group;
  • the controller is also configured to: according to the fifth pre-established correspondence relationship, respectively match the second operating parameter group corresponding to the ground attribute element corresponding to each zone map; and control the cleaning robot according to the second operating parameter group and the depth
  • the cleaning schedule executes the deep cleaning mode on the cleaning area indicated by the corresponding zone map.
  • an embodiment of the present invention provides a control device for a cleaning robot.
  • the control device includes a memory configured to store a second correspondence between a partition map and a first operating parameter group;
  • the controller is configured to: when the cleaning robot enters a cleaning area, obtain a zone map corresponding to the cleaning zone; and match the first operating parameter group corresponding to the zone map according to a second correspondence established in advance; The cleaning robot is controlled to clean the cleaning area according to the first operating parameter group.
  • an embodiment of the present invention provides a control device for a cleaning robot.
  • the control device includes a memory configured to store a first correspondence and a first correspondence between a ground attribute element and a first operating parameter group. A second correspondence between the operating parameter group and the zone map;
  • the controller is configured to: construct a map of the whole area, the map of the whole area is divided into a number of partition maps; in response to user input, obtain the corresponding ground attribute elements of each partition map; and respectively match according to the first correspondence established in advance A first operation parameter group corresponding to the ground attribute element corresponding to each partition map; establishing a second correspondence between the first operation parameter group corresponding to the ground attribute element corresponding to each partition map and each partition map.
  • an embodiment of the present invention provides a cleaning robot, which includes the control device.
  • the ground attribute elements are obtained and the corresponding operating parameters are matched, so that the cleaning robot can perform cleaning operations on the surfaces to be cleaned of different materials according to different operating parameters without additional design of sensing devices or camera devices. It can improve the cleaning effect and save the manufacturing cost;
  • the cleaning robot After the cleaning robot completes a cleaning cycle in the normal cleaning mode, it can calculate the energy consumption to obtain the deep cleaning schedule. In this way, the cleaning robot can select the normal cleaning mode and the deep cleaning mode according to the specific cleaning conditions, which is more intelligent Perform cleaning operations;
  • the cleaning robot can automatically obtain the corresponding operating parameters in the deep cleaning mode according to the ground attribute elements input by the user, so as to complete the cleaning operation without the user to make additional settings, reducing man-made operating;
  • the cleaning robot also contains mopping parts.
  • the cleaning robot sets a deep cleaning schedule, the user can set the status parameters of the mopping parts separately according to their needs. Therefore, when the cleaning robot is performing cleaning operations, you can use the mopping parts to perform cleaning tasks. Deep clean dirty areas.
  • FIG. 1 is a schematic structural diagram of a cleaning robot related to various embodiments of the present invention
  • Fig. 2 is a flowchart of a method for controlling a cleaning robot according to various embodiments
  • Fig. 3 is a flow chart showing a method for controlling a cleaning robot according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a method for controlling a cleaning robot according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a method for controlling a cleaning robot according to another exemplary embodiment
  • Fig. 6 is a flowchart showing a method for controlling a cleaning robot according to another exemplary embodiment.
  • unit refers to an element for performing at least one function or operation, and can be implemented in hardware or software or a combination of hardware and software.
  • module in addition to “modules” or “units” that must be implemented as specific hardware, multiple “modules” or multiple “units” may be integrally formed as at least one processing module.
  • an embodiment of the present invention provides a cleaning robot 11, which is configured to be able to charge, walk, and perform tasks by itself (such as cleaning the cleaning area, building a map of the cleaning area, etc.).
  • the cleaning robot 11 specifically includes a main body 110, a battery pack, an air flow generating device, a dust collecting device, a cleaning device, and a walking device.
  • the battery pack is installed at the lower part of the main body 110 and is used to provide driving power required by the cleaning robot 11.
  • the battery pack may be electrically connected to various electric drive components of the cleaning robot 11, so as to provide drive power for these electric drive components.
  • the electric drive components include, but are not limited to, the airflow generating device, the Cleaning device, the walking device.
  • the main body 110 includes a suction port 1101 provided on its lower surface and an air outlet 1102 provided on its side surface. A gas path from the suction port 1101 to the air outlet 1102 is formed inside the cleaning robot 11.
  • the air flow generating device is arranged inside the main body 110 and is used to drive air to flow to form an air flow.
  • the air flow enters the air passage from the suction port 1101 until it is discharged from the air outlet 1102.
  • the air flow generating device may specifically include a first motor and an impeller driven by the first motor.
  • the first motor can drive the impeller to rotate, thereby driving the air flow from the suction port 1101 to The air outlet 1102 flows.
  • the air flow generating device has several operating parameters, for example, the operating power of the first motor and the rotation speed of the impeller. Based on the driving of the impeller by the first motor, the operating power of the first motor is positively related to the rotational speed of the impeller; when the operating power of the first motor increases, the corresponding impeller's As the rotation speed increases, the driven airflow increases, so that the suction force at the suction port 1101 increases.
  • the dust collecting device is assembled on the main body 110 and is used to filter and collect foreign objects, such as dust, entrapped by the airflow entering the air path.
  • the dust collection device may include a dust bucket and a filter element arranged in the dust bucket.
  • the cleaning robot 11 performs cleaning operations, the airflow containing dust sucked in from the suction port 1101 enters the dust bucket under the driving of the airflow generating device.
  • the inside of the dust bucket is filtered by the filter element to become a clean air flow and then discharged from the air outlet 1102, and the foreign matter filtered out by the filter element is collected in the dust bucket.
  • the cleaning device is arranged under the main body 110 and can act on the surface to be cleaned in the cleaning area to complete the cleaning of the surface to be cleaned.
  • the cleaning device may include a second motor and a roller brush 1121 driven by the second motor.
  • the roller brush 1121 is installed in the center of the lower part of the main body 110 and located near the suction port 1101.
  • the roller brush 1121 can be driven by the second motor to rotate around the pivot axis of the roller brush 1121, so as to clean the surface to be cleaned (especially the surface to be cleaned corresponding to the lower center of the main body 110).
  • the foreign body guides the foreign body to the suction port 1101, so that the foreign body can be sucked into the air passage through the suction port 1101 along with the airflow.
  • the pivot axis of the rolling brush 1121 extends in the left-right direction.
  • the cleaning device may further include a plurality of side brushes 1122 and a third motor that drives the plurality of side brushes 1122, and the plurality of side brushes 1122 can be installed at the lower edge of the main body 110 by hooks, threads, riveting, and other matching methods.
  • the side brush 1122 can be driven by the third motor to rotate around the pivot axis of the side brush 1122 to sweep away the surface to be cleaned (especially the surface to be cleaned corresponding to the lower edge of the main body 110).
  • the foreign matter and the foreign matter are led to the front of the roller brush 1121, and then the foreign matter is led to the suction port 1101 by the roller brush 1121.
  • the pivot axis of the side brush 1122 extends in the vertical direction.
  • the cleaning device may further include a mop and wash part, and the mop and wash part have a use state and a stowed state.
  • the mop works, specifically, the mop is in contact with the surface to be cleaned, so that the mop is used during the cleaning operation of the cleaning robot 11
  • the mop does not work.
  • the cleaning robot 11 uses the mop to perform the cleaning operation. Then mop the clean surface.
  • the cleaning device has several operating parameters, for example, the operating power of the second motor, the rotating speed of the roller brush 1121, the operating power of the third motor, the rotating speed of the side brush 1122, and the state of the mop.
  • the operating power of the second motor is positively related to the rotational speed of the roller brush 1121.
  • the corresponding roller brush 1121 When the operating power of the second motor increases, the corresponding roller brush The rotation speed of 1121 increases, and the roller brush 1121 has a stronger sweeping force on the surface to be cleaned; based on the driving of the side brush 1122 by the third motor, the operating power of the third motor is positively related to the rotation speed of the side brush 1122 , When the operating power of the third motor increases, the rotation speed of the corresponding side brush 1122 increases, and the side brush 1122 sweeps the foreign objects on the cleaning surface stronger; compared with the retracted state of the mop , The cleaning effect is better when the mopping member is in use.
  • the walking device may include a fourth motor and a plurality of driving wheels 1131 driven by the fourth motor.
  • the driving wheel 1131 is driven by the fourth motor to rotate around the pivot axis of the driving wheel 1131 so that the cleaning robot 11 can be Move back and forth and turn when performing cleaning operations.
  • the pivot axis of the driving wheel 1131 extends in the left-right direction.
  • the walking device may further include a balance wheel that enables the cleaning robot 11 to remain stable.
  • the balance wheel is arranged below the main body 110 and arranged at the front edge of the lower part of the main body 110.
  • the balance wheel is arranged on the symmetry axis of the two drive wheels 1131 so that the balance wheel and the two drive wheels 1131 are arranged in an isosceles triangle.
  • the two driving wheels 1131 and the balance wheel can be modularized into a roller module that is simultaneously disassembled or assembled, so that when the driving wheel 1131 or the balance wheel needs to be repaired or replaced due to failure, the roller mold can be The group is completely separated from the main body 110 without disassembling the main body 110.
  • the walking device may further include a fifth motor for driving the roller module to rise or fall relative to the main body 110, thereby reducing or increasing the height of the main body 110 from the ground, thereby making the roller brush 1121 The ground clearance of the side brush 1122 changes accordingly.
  • the walking device has several operating parameters, such as the operating power of the fourth motor, the rotation speed of the driving wheel 1131, the operating state of the fifth motor, and the relative height of the roller module.
  • the operating power of the fourth motor is positively related to the rotational speed of the driving wheel 1131.
  • the corresponding driving wheel 1131 The rotation speed is increased to increase the walking speed of the cleaning robot 11; based on the driving of the fifth motor to the roller module, the running state of the fifth motor is related to the relative height of the roller module.
  • the fifth motor performs work and drives the roller module to descend relative to the main body 110, the ground clearance of the corresponding main body 110 increases, which further increases the ground clearance of the roller brush 1121 and the side brush 1122.
  • the operating parameters of the cleaning robot 11 include, but are not limited to, the operating power of the first motor, the rotating speed of the impeller, the operating power of the second motor, the rotating speed of the roller brush 1121, and the running of the third motor. Power, the rotation speed of the side brush 1122, the state of the mop, the running power of the fourth motor, the rotation speed of the driving wheel 1131, the running state of the fifth motor, the relative height of the roller module, etc.
  • the cleaning robot 11 further includes a control device, which includes a memory, an input unit, an output unit, and a controller.
  • the output unit is configured to output information to the user.
  • the information may be various status information of the cleaning robot 11, for example, it may be the charging state of the battery pack, the power level of the battery pack, and whether the dust collecting device is full. Dust, operating parameters of the cleaning robot 11, the cleaning mode of the cleaning robot 11, whether the cleaning robot 11 is malfunctioning, and so on.
  • the output unit may include various hardware or software devices for presenting information to users, such as display screens, speakers, warning lights, etc.; the information output by the output unit may be text, symbols, pictures, sounds, lights, etc. Present in any one or more ways.
  • the input unit is configured to collect user input, and the content of the user input includes, but is not limited to, a query command aimed at acquiring the state of the cleaning robot 11 and a control command aimed at changing the state of the cleaning robot 11.
  • the input unit may include various buttons or hardware or software devices for collecting user input, such as switches, pedals, keyboards, mice, trackballs, various levers, handles, joysticks, touch panels, microphones, etc.
  • the implementation of the user input includes but is not limited to at least one selected from touch input, bending input, voice input, button input, mobile input, and multi-mode input.
  • the touch input may include touch gestures (such as touch and hold gestures, tap gestures, double-tap gestures, translation gestures, light gestures, etc.) performed by the user on the surface of the input unit or within a certain distance from the input unit. Play gestures, touch and drag gestures, retract gestures, etc.).
  • the button input refers to an input controlled by a user using a physical button on the device.
  • the movement input refers to the user applying to the device to control the movement of the device (for example, rotating the device, tilting the device, or moving the device up, down, left, or right).
  • the multi-modal input refers to a combination of at least two input methods, for example, a combination of touch input and mobile input, and a combination of touch input and voice input.
  • the output unit preferably includes a display screen arranged on the upper surface of the main body 110.
  • the input unit preferably includes a graphical user interface, which forms a common layer structure with the display screen to be integrated into a touch display screen with both display and touch functions.
  • a graphical user interface which forms a common layer structure with the display screen to be integrated into a touch display screen with both display and touch functions.
  • the memory is configured to temporarily or non-temporarily store data and programs required for the operation of the cleaning robot 11, for example, it can store information input by the user collected by the input unit, store historical cleaning data of the cleaning robot 11, and store cleaning The operating parameters of the robot 11, etc.
  • the controller may generate various control signals to control the overall operation of the cleaning robot 11.
  • the controller may control various components of the cleaning robot 11, which include, but are not limited to, the memory, the input unit, the output unit, the airflow generating device, the cleaning device, and the walking device.
  • the controller can generate a control signal to turn on or off the power supply circuit of the battery pack to each electric drive component of the cleaning robot 11, and then control the startup or shutdown of the cleaning robot 11; the controller can generate control Signal to activate the airflow generating device, the cleaning device, and the walking device, and then control the cleaning robot 11 to perform cleaning operations; the controller can generate control signals to enable the airflow generating device, the cleaning device, The walking device operates with set operating parameters, thereby controlling the operating state/cleaning mode of the cleaning robot 11.
  • the controller may generate a control signal for the memory.
  • the controller may generate a control signal for the memory to store the historical cleaning data of the cleaning robot 11, and generate a control signal for the memory to store the input unit Control signals for information collected by users, etc.
  • the controller may generate a control signal for the input unit to make the input unit collect user input, and generate a control signal for the output unit to make the output unit output information to a user.
  • the controller may generate a control signal to cause the touch display screen to output a screen corresponding to user input, or to change the touch display screen to a screen corresponding to user input.
  • the memory is configured to store a first corresponding relationship between the ground attribute element and the first operating parameter group.
  • the floor attribute element refers to the material of the surface to be cleaned in the cleaning area, such as wooden floor, blanket, ceramic tile, glass, long blanket, stone board, etc.
  • the first operating parameter group includes multiple operating parameters of the cleaning robot 11.
  • the operating parameters may be the rotational speed of the impeller (or the operating power of the first motor) that changes the suction at the suction port 1101, and the rotational speed of the roller brush 1121 ( Or the operating power of the second motor), the rotational speed of the side brush 1122 (or the operating power of the third motor), the rotational speed of the driving wheel 1131 that can change the walking speed of the cleaning robot 11 (or the operating power of the fourth motor) Power), the relative height of the roller module that can change the height of the roller brush 1121 and the side brush 1122 from the ground, etc.
  • the first operating parameter group is exemplified in ⁇ P, R, r, p, H ⁇ below, that is, the first operating parameter group includes the operating power of the first motor that can change the suction at the suction port 1101 P, the rotational speed R of the roller brush 1121, the rotational speed r of the side brush 1122, the operating power p of the fourth motor that can change the walking speed of the cleaning robot 11, the roller that can change the height of the roller brush 1121 and the side brush 1122 from the ground The height of the module H.
  • the first operating parameter group is not limited to only including the above operating parameters.
  • ground attribute elements correspond to at least part of the set values of the first operating parameter group.
  • the ground attribute element "tile” corresponds to the first operating parameter group ⁇ P 1 , R 1 , r 1 , p 1 , H 1 ⁇
  • the ground attribute element "wood floor” corresponds to the first One operating parameter group ⁇ P 2 ,R 2 ,r 2 ,p 2 ,H 1 ⁇
  • the ground attribute element "blanket” corresponds to the first operating parameter group ⁇ P 3 ,R 1 ,r 1 ,p 1 ,H 3 ⁇
  • the height H of the roller module corresponding to "tile” is set to H 1
  • the height H of the roller module corresponding to "wood floor” is set to H 1
  • the roller corresponding to "felt” The height H of the module is set to H 3 , and the other analogy is similar, so I won’t repeat it.
  • the controller controls the cleaning robot to perform step 20: constructing a map of the whole area divided into a plurality of partition maps.
  • the action of the controller to construct a map of the entire region divided into several subregional maps can be triggered by the following method: when the touch screen is lit, the user touches "on the screen of the touch screen The “build map” icon, the input unit collects the user input, triggers the controller to generate a “build map” control signal, and the controller builds a map of the whole area divided into several zone maps.
  • the whole area map corresponds to the entire cleaning area, such as the floor of a house where the cleaning robot 11 is used.
  • the method for the controller to construct the whole area map may be specifically as follows: the controller controls the walking device to start, and then controls the cleaning robot 11 to walk in the entire cleaning area, so that the controller can be based on the cleaning robot 11
  • the walkable boundary constructs the whole area map.
  • the controller constructs the map of the entire area may also be: the controller controls the cleaning robot 11 to download the map of the entire area adapted to the house from a network server, and then The user confirms the modification to obtain a map of the whole area fully adapted to the house.
  • the zone map corresponds to a partial area in the entire cleaning area, for example, the floor of a room in a house where the cleaning robot 11 is used. It is understandable that the whole district map is composed of several district maps. The number of district maps is related to the number of rooms/layouts of the house. For ease of description, in the following description, the district map Take the map divided into three areas as an example. In this embodiment, when the controller constructs the whole area map, it automatically fits several of the district maps; of course, in other feasible embodiments, the controller constructs the whole area map as a whole, Then, the whole area map is divided into a number of partition maps by artificial means.
  • controller is further configured to: after constructing a full-area map divided into several subregional maps, control the output unit to display the full-area map.
  • the touch display screen may have a "view map” icon, and the user touches the "view map” icon to make the controller generate control Signal, the controller controls the touch display screen to display the entire area map.
  • controller is further configured to: after constructing a full-area map divided into a plurality of subarea maps, set the name identification of each subarea map.
  • the controller may automatically generate the name identification, or may generate the name identification in response to user input. For example, if the user selects a certain area map, the touch screen displays a "naming" dialog box/icon, and the user can input the name identification of the area map through the "naming" dialog box/icon, such as "Room 1".
  • the controller controls the cleaning robot to perform step 30: in response to the user input collected by the input unit, obtain the ground attribute elements corresponding to each zone map; perform step 40: according to The pre-established first correspondences respectively match the first operating parameter groups corresponding to the ground attribute elements corresponding to each zoning map; Step 50: Establish the first operating parameter group corresponding to the ground attribute elements corresponding to each zoning map The second correspondence between the operating parameter group and each zone map; Step 60: Enter a clean area; Step 70: Obtain the zone map corresponding to the clean area; Step 80: According to the second correspondence, match with The first operating parameter group corresponding to the partition map corresponding to the cleaning area; Step 90 is executed: controlling the cleaning robot to clean the cleaning area indicated by the corresponding partition map according to the first operating parameter group.
  • the controller controls the cleaning robot to match the corresponding ⁇ P1,R1,r1, p1,H1 ⁇ , ⁇ P2,R2,r2,p2,H1 ⁇ , ⁇ P3,R1,r1,p1,H3 ⁇ ; then the controller controls the cleaning robot 11 to interact with "tiles", "wood floors”, “ “Blanket” respectively correspond to the three district maps "Room 1” ⁇ P1,R1,r1,p1,H1 ⁇ , ⁇ P2,R2,r2,p2,H1 ⁇ , ⁇ P3,R1,r1,p1,H3 ⁇ ", "Room 2", and "Room 3" correspond to each other, namely: create ⁇ P1,R1,r1,p1,H1 ⁇ , ⁇ P2,R2,r2,p2,H1 ⁇ , ⁇
  • Root 3 corresponding to ⁇ P1,R1,r1,p1,H1 ⁇ , ⁇ P2,R2,r2,p2,H1 ⁇ , ⁇ P3,R1,r1,p1,H3 ⁇ , and the controller described later Generate a first control signal containing ⁇ P1,R1,r1,p1,H1 ⁇ , ⁇ P2,R2,r2,p2,H1 ⁇ , ⁇ P3,R1,r1,p1,H3 ⁇ to control the cleaning robot 11 to
  • the first operating parameter group ⁇ P1,R1,r1,p1,H1 ⁇ , ⁇ P2,R2,r2,p2,H1 ⁇ , ⁇ P3,R1,r1,p1,H3 ⁇ compares the partition map "Room 1", "Room 2. Clean the floor of the room referred to by "Room 3".
  • the cleaning robot 11 can perform cleaning operations according to the corresponding operating parameters of the ground attribute elements input by the user, without the need to design additional sensing devices or camera devices, which saves production and manufacturing costs; at the same time, the cleaning robot 11 can handle different materials.
  • the cleaning surface performs cleaning operations according to different first operating parameter groups. In this way, the cleaning operations can be adapted to local conditions and improve the overall cleanliness of the house.
  • ⁇ P1,R1,r1,p1,H1 ⁇ is used to perform cleaning operations for "tiles”
  • ⁇ P3,R1,r1,p1,H3 ⁇ is used to perform cleaning operations for "blankets”
  • P3>P1, H3>H1 that is: compared with "tiles”
  • the suction port 1101 has greater suction and rolls
  • the brush 1121 and the side brush 1122 have a larger ground clearance to clean the surface to be cleaned of the "felt" material.
  • the controller may also control the cleaning robot to perform step 20: construct a map of the entire area, the map of the entire area is divided into a number of partition maps; execute step 30: in response to user input, obtain The ground attribute elements corresponding to each zone map; perform step 40: according to the first correspondence established in advance, respectively match the first operating parameter group corresponding to the ground attribute elements corresponding to each zone map; perform step 50: Establish a second correspondence between the first operating parameter group corresponding to the ground attribute element corresponding to each subarea map and each subarea map.
  • the cleaning robot 11 may only store the data input by the user without immediately performing the cleaning operation, that is, the user can set the cleaning robot 11 in advance , And there is no need to use the cleaning robot 11 immediately after the setting is completed. If there is a need for cleaning in the future, the cleaning robot 11 can be used directly without setting it again.
  • the controller may also control the cleaning robot to perform step 60: enter a cleaning area; perform step 70: obtain a zone map corresponding to the cleaning area; Perform step 80: match the first operating parameter set corresponding to the partition map according to the second correspondence established in advance; perform step 90: control the cleaning robot to clean the cleaning area according to the first operating parameter set .
  • three partition maps "Room 1", “Room 2”, and “Room 3”, respectively corresponding to the surfaces to be cleaned are ceramic tiles, wooden floors, and blankets.
  • the cleaning robot 11 enters the cleaning area indicated by the above partition map.
  • the controller controls the cleaning robot to match the first operating parameter group ⁇ P1, "Room 1", “Room 2”, and "Room 3" corresponding to the above-mentioned partition maps according to the second correspondence established in advance.
  • the cleaning robot 11 can store the user's corresponding input, so that when the cleaning robot 11 enters a cleaning area in subsequent cleaning operations, it can directly obtain the partition map corresponding to the area. Therefore, the cleaning operation is performed by matching the operating parameter group corresponding to the partition map without the user's input again.
  • controller is further configured to: control the output unit to push multiple ground attribute elements for each partition map for selection by the user, and obtain the selected ground attribute elements as the corresponding ground attribute elements of the partition map.
  • the touch screen displays "wood floor”, “blanket”, “tile”, “glass”, “long woolen blanket”, and “stone board”. "” and many other icons for the user to choose. If the surface to be cleaned corresponding to the partition map "Room 1" is made of tiles, the user can touch the "tiles” icon to achieve selective input, and the "tiles" selected by the user are the partitions The ground attribute element corresponding to the map "Room 1". In this way, corresponding first operating parameter groups can be set for multiple materials in advance, so as to improve the intelligent control of the cleaning robot 11 and improve user experience.
  • the memory is further configured to store a third correspondence relationship between the functional element and the ordinary cleaning schedule.
  • the functional element refers to the purpose of the clean area corresponding to the zoning map, such as kitchen, study, living room, bedroom, bathroom, balcony, gym, etc.
  • the general cleaning schedule may include cleaning time (for example, 8:00, 14:00, 20:00), cleaning frequency (for example, every day, every other day, every Saturday), and the like.
  • the third corresponding relationship is preset by the controller and stored in the memory in accordance with the general living rules of ordinary people.
  • the kitchen is usually used from 17:00 to 20:00 every evening.
  • the corresponding ordinary cleaning schedule can be set to "20:00 every day” .
  • the controller is further configured to: in response to the user input collected by the input unit, obtain the functional element corresponding to each subarea map; according to a third pre-established correspondence relationship, match with each subarea map
  • the ordinary cleaning schedule corresponding to the corresponding functional element ; establish a fourth correspondence between the ordinary cleaning schedule corresponding to the functional element corresponding to each district map and each district map; according to the fourth correspondence, matching and
  • the cleaning robot is controlled to clean the cleaning area indicated by the corresponding zone map according to the first operating parameter group and the general cleaning schedule.
  • :00 corresponds to the partition maps “Room 1”, “Room 2”, and “Room 3”, that is, the controller controls the cleaning robot 11 to establish a general cleaning schedule of “20:00 every day” and “Every Saturday The fourth corresponding relationship between 9:00" and "every day 22:00" and the partition maps "Room 1", “Room 2", and “Room 3”; finally, the controller controls the memory to store the fourth corresponding relationship .
  • the controller can control the cleaning robot 11 to clean the cleaning area referred to by "Room 1" at 20:00 every day, and to clean the cleaning area referred to by "Room 2" at 9:00 every Saturday. Walk at 22:00 to clean the cleaning area referred to by "Room 3".
  • the controller is further configured to: after matching the ordinary cleaning schedule corresponding to the functional element, control the output unit to push the ordinary cleaning schedule to the user for user review, and the controller sets according to the review result The final ordinary cleaning schedule.
  • the input unit collects user input for changing the ordinary cleaning schedule, and the controller sets a final ordinary cleaning schedule in response to the user input; when the audit result is yes, The controller directly adopts and sets the final ordinary cleaning schedule.
  • the ordinary cleaning schedule corresponding to "kitchen” is "20:00 every day”;
  • the touch screen can be A dialog box including "the general cleaning schedule of the kitchen is 20:00 every day” and “confirm”, "change” and other information is displayed; the user touches the "confirm” icon to make the controller obtain the audit result "Yes”, the The controller directly adopts and sets "20:00 every day” as the final ordinary cleaning schedule.
  • the ordinary cleaning schedule corresponding to the partition map "Room 1" in the first control signal generated by the controller is "20:00 every day: 00"; the user touches the "change” icon to make the controller obtain the audit result "No”, the user changes the ordinary cleaning schedule to "21:00 every day” through the touch screen, and the controller sets " 21:00 every day is the final ordinary cleaning schedule, so that the ordinary cleaning schedule corresponding to the partition map “room 1” in the first control signal generated by the controller is “21:00 every day”.
  • the cleaning robot 11 includes a normal cleaning mode and a deep cleaning mode.
  • the ordinary cleaning mode corresponds to the first operating parameter group and the ordinary cleaning schedule; that is, in the ordinary cleaning mode, the controller controls the cleaning robot 11 to map the corresponding zone according to the first operating parameter group and the ordinary cleaning schedule.
  • the cleaning area referred to is cleaned.
  • the controller is further configured to: evaluate the total energy consumption per day of the cleaning robot 11 performing the normal cleaning mode in a cleaning cycle; calculate the remaining energy consumption per day of the cleaning robot 11; and set the depth according to the remaining energy consumption per day Cleaning schedule; controlling the cleaning robot 11 to execute the deep cleaning mode according to the deep cleaning schedule.
  • the deep cleaning schedule may include cleaning time (for example, 8:00, 14:00, 20:00), cleaning frequency (for example, every Sunday, the 6th of each month), and the like.
  • cleaning frequency in the deep cleaning schedule is much smaller than the cleaning frequency in the ordinary cleaning schedule, and the cleaning time in the deep cleaning schedule and the cleaning time in the ordinary cleaning schedule can be set to be the same.
  • the cleaning period is a preset value, for example, 15 days can be used as a cleaning period, or one month as a cleaning period.
  • An example of the process of the controller setting a deep cleaning schedule is: for the partition maps "Room 1", “Room 2", and “Room 3", the functional elements are “kitchen”, “bedroom”, and “living room”, corresponding The general cleaning schedule of "Everyday 20:00", “Every Saturday 9:00”, “Everyday 22:00”; the controller evaluates that the cleaning robot 11 performs the ordinary cleaning within a cleaning cycle (for example, one month) The total energy consumption of a single day in the mode; calculate the remaining energy consumption of the cleaning robot 11 in a single day according to the total energy consumption of the single day and the rated total energy consumption of the battery pack; after calculation, it is found that the 2nd and 4th of each month , The remaining energy consumption of a single day on the 6th of each month is relatively the largest.
  • the deep cleaning schedule of "Room 3" is "20:00 on the 2nd of each month", “9:00 on the 4th of each month", and "22:00 on the 6th of each month”;
  • the cleaning area referred to is executed in the deep cleaning mode, the cleaning area referred to by "Room 2" is executed at 9:00 on the 4th of each month, and the cleaning area referred to by "Room 3" is executed at 22:00 on the 6th of each month.
  • the cleaning area executes the deep cleaning mode.
  • the controller is further configured to: after setting a deep cleaning schedule, control the output unit to push the deep cleaning schedule to the user for review by the user, and the controller sets the final deep cleaning schedule according to the review result .
  • the input unit collects user input for changing the deep cleaning schedule, and the controller sets a final deep cleaning schedule in response to the user input; when the audit result is yes, The controller directly adopts and sets the final deep cleaning schedule.
  • the touch screen displays a dialog box including "The deep cleaning schedule for the kitchen is 21:00 on the 2nd of each month” and “Confirm” and “Change”; the user touches “ “Confirm” icon to make the controller obtain the audit result "Yes”, the controller directly adopts and sets "21:00 on the 2nd of every month” as the final deep cleaning schedule, so that the controller generates the first Second, the deep cleaning schedule corresponding to the zone map "Room 1" in the control signal is "21:00 on the 2nd of every month”; the user touches the "change” icon to make the controller obtain the audit result "No", and the user passes all
  • the touch display screen changes the deep cleaning schedule to "21:00 on the 3rd of each month", and the controller sets "21:00 on the 3rd of each month” as the final deep cleaning schedule. In this way, the controller generates The deep cleaning schedule corresponding to the partition map "Room 1" in the second control signal is "21:00 on the 3rd of every month”.
  • the memory is further configured to store a fifth correspondence between the ground attribute element and the second operating parameter group.
  • the second operating parameter group corresponds to the deep cleaning mode.
  • the second operating parameter group includes a plurality of operating parameters of the cleaning robot 11. Compared with the first operating parameter group, the second operating parameter group corresponds to the cleaning robot 11 that has a stronger cleaning force on the surface to be cleaned. Operation parameter setting.
  • the second operating parameter group may include the operating power P'of the first motor that changes the suction at the suction port 1101, the rotating speed R'of the roller brush 1121, the rotating speed r'of the side brush 1122, and the walking of the cleaning robot 11 can be changed.
  • the second operating parameter group is illustrated in the form of ⁇ P', R', r', p', H' ⁇ .
  • the The operating power of a motor P'>P increases the suction force at the suction port 1101
  • the rotating speed of the roller brush 1121 R'>R and/or the rotating speed of the side brush 1122 r'>r increases the frequency of cleaning foreign objects on the surface to be cleaned
  • the operating power of the fourth motor p' ⁇ p so as to reduce the walking speed of the cleaning robot 11.
  • controller is further configured to: according to the fifth correspondence established in advance, respectively match the second operating parameter group corresponding to the ground attribute element corresponding to each zone map; and control the cleaning robot according to the second operating parameter The group and deep cleaning schedule execute the deep cleaning mode on the cleaning area indicated by the corresponding zone map.
  • the corresponding ground attribute elements are "tiles", “wood floors”, and “carpets” respectively
  • the controller accesses the memory, according to the fifth and the matching correspondence relation to a "tile", "wood", “blanket” one by one corresponding to the second operating parameter set ⁇ P '1, R' 1 , r '1, p' 1, H ' 1 ⁇ , ⁇ P' 2 ,R' 2 ,r' 2 ,p' 2 ,H' 1 ⁇ , ⁇ P' 3 ,R' 1 ,r' 1 ,p' 1 ,H' 3 ⁇ ; then
  • the controller generation includes ⁇ P'1,R'1,r'1,p'1,H'1 ⁇ , ⁇ P'2,R'2,r'2,p'2,H'1 ⁇ , ⁇ P'3,R'1,r'1,p'1,H'3 ⁇ to control the cleaning robot 11 to use the second operating parameter group ⁇ P' 1 ,R'
  • the second operating parameter group also includes a state parameter T'related to the mopping and washing piece.
  • the second operating parameter group is further exemplified in the form of ⁇ P', R', r', p', H', T' ⁇ .
  • the controller is also configured to control the cleaning robot 11 to clean the cleaning area indicated by the corresponding zone map according to the second operating parameter group, if the state parameter in the second operating parameter group is in the use state, During the cleaning process, the mopping article works; if the state parameter in the second operating parameter group is in the stowed state, the mopping article does not work during the cleaning process.
  • the corresponding ground attribute elements are "tiles” and “carpets” respectively, and the controller accesses the memory, and according to the first The five correspondences match to the second operating parameter group ⁇ P' 1 ,R' 1 ,r' 1 ,p' 1 ,H' 1 ,T 1 ' ⁇ , ⁇ P ' 3 ,R' 1 ,r' 1 ,p' 1 ,H' 3 ,T 2 ' ⁇ ;
  • T 1 ' means that the state parameter is in use, and T 2 'means that the state parameter is receiving from the state;
  • the controller controls the cleaning robot 11 to ⁇ P '1, R' 1 , r '1, p' 1, H '1, T 1' ⁇ of the "room 1" refers to the generation of a cleaning area to perform deep when the cleaning mode, the cleaning mop during said working member; wherein the controller controls the cleaning robot 11 to ⁇ P '3, R' 1 ,
  • the house can be regularly deep cleaned (for example, increasing the suction at the suction port 1101 and mopping the floor); on the other hand, it can also be selectively used according to the different floor materials.
  • the mopping and washing parts are not used to prevent damage to the floor material that is not convenient for mopping.
  • control method of this embodiment is used by the control device of the cleaning robot described above, in this embodiment, the detailed content of the control method will not be repeated.
  • an embodiment of the present invention provides a cleaning robot 11, the cleaning robot 11 is configured to self-charge, walk and perform operations (such as cleaning operations for the cleaning area, map construction of the cleaning area Wait).
  • the cleaning robot 11 specifically includes the main body, a battery pack, an air flow generating device, a dust collecting device, a cleaning device, and a walking device. These components/structures are the same as in Embodiment 1, and will not be repeated here.
  • the cleaning robot 11 further includes a control device, part of the structure/component of the control device is arranged on the main body of the cleaning robot, and another part of the control device is arranged on the main body of the cleaning robot.
  • the mobile terminal can be a mobile phone (also called a cellular phone) that can interact with the cleaning robot, or a PDA (Personal Digital Assistant, that is, palmtop computer), laptop computer, digital camera, MP3 Players, smart bracelets, remote controls, etc.
  • the control device may also be all provided on the main body of the cleaning robot 11 as described in the first embodiment.
  • control device includes a communicator, a memory, an input unit, an output unit, and a controller.
  • the output unit preferably includes a display screen provided on the mobile terminal.
  • the input unit preferably includes a graphical user interface, which forms a common layer structure with the display screen to be integrated into a touch display screen with both display and touch functions.
  • a graphical user interface which forms a common layer structure with the display screen to be integrated into a touch display screen with both display and touch functions.
  • the communicator may be implemented by a communication module, for example, may include various communication modules such as a wireless Internet module, a short-range communication module, and a mobile communication module.
  • the communicator includes a machine-side communication unit provided on the cleaning robot 11 and a terminal communication unit provided on the mobile terminal.
  • the machine-side communication unit is configured to be able to communicate with the internal components of the cleaning robot and/or the outside of the cleaning robot (such as the base, the terminal of the mobile terminal) through a wired and/or wireless manner.
  • Communication unit, external server, etc. communicate for interactive transmission of information.
  • the terminal communication unit is configured to communicate with an external server and/or the machine-side communication unit on the cleaning robot in a wired and/or wireless manner for interactive transmission of information.
  • the memory is configured to temporarily or non-temporarily store data and programs for the operation of the cleaning robot.
  • the memory includes a machine-side storage unit provided on the cleaning robot and a terminal storage unit provided on the mobile terminal.
  • the machine-side storage unit is configured to store various control signals generated by the controller, store historical cleaning data of the cleaning robot, store a map of the cleaning area, store operating parameters of the cleaning robot, and so on.
  • the terminal storage unit may store application programs downloaded from an external server.
  • the controller includes a machine-side control unit provided on the cleaning robot and a terminal control unit provided on the mobile terminal.
  • the machine-side control unit can control various components of the cleaning robot, which include but are not limited to the machine-side storage unit, the machine-side communication unit, the airflow generating device, the cleaning device, and the Walking device.
  • the machine-side control unit is configured to: generate a control signal to turn on or disconnect the power supply circuit of the battery pack to each electric drive component of the cleaning robot, thereby controlling the startup or shutdown of the cleaning robot; Generate control signals to enable the airflow generating device, the cleaning device, and the walking device to start, and then control the cleaning robot to perform cleaning operations; it is possible to generate control signals to enable the airflow generating device, the cleaning device, and the The walking device runs with set operating parameters, and then controls the operating state/cleaning mode of the cleaning robot.
  • the machine-side control unit is configured to generate a control signal for the machine-side storage unit to store the historical cleaning data of the cleaning robot, generate a control signal for the machine-side storage unit to store a map, and the like.
  • the machine-side control unit is configured to: generate a control signal to enable the machine-side communication unit to receive various control signals from the terminal communication unit, and to generate a signal for the machine-side communication unit to send information to the outside of the cleaning robot Control signals, etc.
  • the machine-side control unit is configured to: after the machine-side communication unit directly or indirectly via an external server receives various control signals sent from the terminal communication unit, according to the information received by the machine-side communication unit The control signal controls the cleaning robot to perform work.
  • the terminal control unit may control the input unit, the output unit, the terminal communication unit, and the terminal storage unit.
  • the terminal control unit is configured to connect to the output unit and generate a control signal to enable the output unit to output information to the user.
  • a control signal for example, in this embodiment, the icon of the application program downloaded from an external server and all the information are displayed to the user.
  • the operation interfaces at all levels after the application is executed.
  • the terminal control unit is configured to connect to the input unit and generate a control signal so that the input unit collects user input. For example, in this embodiment, after the application program is executed, the terminal control unit generates control Signal so that the input unit recognizes and collects the input operation of the user.
  • the terminal control unit is configured to connect to the terminal communication unit and generate a control signal to enable the terminal communication unit to receive/send information. For example, in this embodiment, when the terminal control unit generates a control signal for controlling the When cleaning the control signal of the robot, the terminal control unit also generates another control signal at the same time so that the terminal communication unit sends the control signal for controlling the cleaning robot to the machine-side communication unit.
  • the terminal control unit is connected to the terminal storage unit and generates a control signal to enable the terminal storage unit to store information or read information stored in the terminal storage unit. For example, in this embodiment, the terminal control unit generates a control signal to cause the terminal storage unit to store the application program downloaded from an external server, and store historical data of executing the application program.
  • the memory is configured to store ground attribute elements and a first operating parameter group corresponding to the ground attribute elements.
  • the floor attribute element refers to the material of the surface to be cleaned in the cleaning area, such as wooden floor, blanket, ceramic tile, glass, long blanket, stone board, etc.
  • the related content of the first operating parameter group is consistent with that of Embodiment 1, and will not be repeated here.
  • the controller controls the cleaning robot to perform step 20': constructing a map of the whole area divided into a plurality of partition maps.
  • the action of the controller to construct a map of the whole area divided into several subregional maps can be triggered in the following manner: when the touch screen is lit, the application is displayed on the touch screen On the main desktop of the user interface, the user touches the icon of the application program to execute the application program; further, the user touches the “build map” icon on the screen of the touch display screen, and the input unit collects the User input triggers the terminal control unit to generate a "build map” control signal, and when the terminal control unit generates a "build map” control signal, the terminal control unit controls the terminal communication unit directly or indirectly through an external server Send the “build map” control signal to the machine-side communication unit; after the machine-side communication unit receives the “build map” control signal, the machine-side control unit controls the cleaning robot to construct a partition based on its walkable boundary A map of the whole district into several district maps.
  • the terminal control unit receives the constructed map of the entire area and controls the terminal storage unit to store the map of the entire area.
  • the whole area map corresponds to the entire cleaning area, such as the floor of a house where the cleaning robot is used.
  • the method for the controller to construct the full area map may be specifically as follows: the machine-side control unit controls the walking device to start, and then controls the cleaning robot to walk in the entire cleaning area, and is based on the availability of the cleaning robot.
  • the walking boundary constructs the whole area map.
  • the partition map corresponds to a partial area in the entire cleaning area, for example, the floor of a room in a house where the cleaning robot is used. It is understandable that the whole district map is composed of several district maps. The number of district maps is related to the number of rooms/layouts of the house. For ease of description, in the following description, the district map Take the map divided into three areas as an example. In this embodiment, when the controller constructs the whole area map, it automatically fits several of the district maps; of course, in other feasible embodiments, the controller constructs the whole area map as a whole, Then, the whole area map is divided into a number of partition maps by artificial means.
  • controller is further configured to: after constructing a full-area map divided into several subregional maps, control the output unit to display the full-area map.
  • the touch display screen may have a "view map” icon, and the user touches the "view map” icon to cause the terminal control unit to generate Control signal, the terminal control unit controls the touch screen to display the map of the whole area.
  • controller is further configured to: after constructing a full-area map divided into a plurality of subarea maps, set the name identification of each subarea map.
  • controller may automatically generate the name identification, or may respond to user input
  • the name identification is generated. For example, if the user selects a certain area map, the touch screen displays a "naming" dialog box/icon, and the user can input the name identification of the area map through the "naming" dialog box/icon, such as "Room 1".
  • the controller controls the cleaning robot to perform step 30': in response to user input, obtain the ground attribute elements corresponding to each partition map, wherein different ground attribute elements correspond to different first An operating parameter group; execute step 40': enter a cleaning area; execute step 50': obtain a first zone map corresponding to the cleaning zone, the first zone map being one of the plurality of zone maps; execute Step 60': Obtain a first ground attribute element corresponding to the first zone map, where the first ground attribute element is one of the different ground attribute elements; Step 70': Control the cleaning robot according to The first operating parameter group corresponding to the first ground attribute cleans the cleaning area.
  • the three partition maps "Room 1", “Room 2”, and “Room 3” respectively correspond to the surfaces to be cleaned with ceramic tiles, wooden floors, and blankets.
  • the user can input “tiles” and “wooden tiles” at the positions that are in contact with “Room 1", “Room 2” and “Room 3" through the touch screen.
  • the terminal control unit obtains from the touch screen that "tile” is connected with “Room 1", “Wooden Floor” is connected with “Room 2”, and “Blanket” is connected with “Room 3”; Then the terminal control unit forms a mapping between “tiles” and “room 1", mapping between “wood floor” and “room 2", and mapping between “blanket” and “room 3", And store the above mapping in the application; the terminal control unit generates a mapping containing "tiles” and "room 1", a mapping between "wood floor” and “room 2", and a mapping between “blanket” and "room 3" The first control signal; then the terminal communication unit sends the first control signal to the machine-side communication unit; and finally the machine-side storage unit stores the above mapping.
  • the machine-side storage unit also prestores the correspondence between "tiles” and the first operating parameters ⁇ P1, R1, r1, p1, H1 ⁇ , and "wood floor” and the first operating parameters ⁇ P2, R2, r2 ,p2,H1 ⁇ , and the corresponding relationship between "blanket” and the first operating parameter ⁇ P3,R1,r1,p1,H3 ⁇ ; it should be noted that in other embodiments, "tile” and the first The correspondence between the operating parameters ⁇ P1,R1,r1,p1,H1 ⁇ , the correspondence between the "wood floor” and the first operating parameter ⁇ P2,R2,r2,p2,H1 ⁇ , and the correspondence between the "blanket” and the first operating parameter
  • the corresponding relationship of ⁇ P3, R1, r1, p1, H3 ⁇ can also be pre-stored in the application, and the first control signal sent by the terminal communication unit to the machine-side communication unit also includes "tiles” and The corresponding relationship between the first operating parameter ⁇ P1, R1, r1, p1, H1 ⁇
  • the cleaning robot After the user completes the input of the ground attribute elements of the above three partition maps, if there is a cleaning demand, the cleaning robot will perform the following tasks: When the cleaning robot 11 enters any of the above cleaning areas, it will enter the corresponding "room 1" For example, the machine-side control unit can control the cleaning robot 11 to obtain the partition map "Room 1" corresponding to the cleaning area, and then control the cleaning robot to obtain the floor corresponding to the partition map "Room 1" from the machine-side storage unit The attribute element "tile”, finally controls the cleaning robot to read the first operating parameter group ⁇ P1, R1, r1, p1, H1 ⁇ corresponding to the ground attribute element "tile" from the machine-side storage unit and follow the first Run the parameter group ⁇ P1, R1, r1, p1, H1 ⁇ to perform cleaning operations.
  • the machine-side control unit can control the cleaning robot 11 to obtain the partition map "Room 1" corresponding to the cleaning area, and then control the cleaning robot to obtain the floor corresponding to the partition map "Room 1"
  • the controller only needs to control the cleaning robot 11 to correspond one-to-one correspondence between the ground attribute elements and the partition map, instead of controlling the cleaning robot 11 to associate the first operating parameter group with the partition map. Corresponding to the map.
  • the cleaning robot 11 can perform cleaning operations on surfaces to be cleaned of different materials according to different operating parameters without additional design of sensing devices or cameras; on the other hand, the cleaning robot of this embodiment
  • the control system of 11 is simpler and runs more accurately.
  • the controller may also control the cleaning robot to perform step 20': construct a map of the entire area, and the map of the entire area is divided into a number of partition maps; execute step 30': in response to user input , Obtain the ground attribute elements corresponding to each zone map, where different ground attribute elements correspond to different first operating parameter groups.
  • the three partition maps "Room 1", “Room 2”, and “Room 3" respectively correspond to the surfaces to be cleaned are ceramic tiles, wooden floors, and blankets.
  • the user can input “tiles” and “wooden tiles” at the positions that are in contact with “Room 1", “Room 2” and “Room 3" through the touch screen.
  • the terminal control unit obtains from the touch screen that "tile” is connected with “Room 1", “Wooden Floor” is connected with “Room 2”, and “Blanket” is connected with “Room 3”; Then the terminal control unit forms a mapping between “tiles” and “room 1", mapping between “wood floor” and “room 2", and mapping between “blanket” and “room 3", And store the above mapping in the application; the terminal control unit generates a mapping containing "tiles” and "room 1", a mapping between "wood floor” and “room 2", and a mapping between “blanket” and "room 3" The first control signal; then the terminal communication unit sends the first control signal to the machine-side communication unit; and finally the machine-side storage unit stores the above mapping.
  • the machine-side storage unit also prestores the correspondence between "tiles” and the first operating parameters ⁇ P1, R1, r1, p1, H1 ⁇ , and "wood floor” and the first operating parameters ⁇ P2, R2, r2 ,p2,H1 ⁇ , and the corresponding relationship between "felt” and the first operating parameter ⁇ P3, R1, r1, p1, H3 ⁇ . It is understandable that after the user inputs the ground attribute elements to the cleaning robot 11 as required, the cleaning robot 11 may only store the data input by the user without immediately performing the cleaning operation, that is, the user can set the cleaning robot 11 in advance , And there is no need to use the cleaning robot 11 immediately after the setting is completed. If there is a need for cleaning in the future, the cleaning robot 11 can be used directly without setting it again.
  • the controller may also control the cleaning robot to perform step 40': enter a cleaning area, and perform step 50': obtain the partition corresponding to the cleaning area Map; execute step 60': obtain the ground attribute element corresponding to the zoning map, the ground attribute element is pre-input by the user, and the ground attribute element corresponds to the first operating parameter group; execute step 70': control The cleaning robot cleans the cleaning area according to the first operating parameter group.
  • the three partition maps "Room 1", “Room 2", and “Room 3" respectively correspond to the surfaces to be cleaned are ceramic tiles, wooden floors, and blankets.
  • the cleaning robot 11 enters any of the above cleaning areas, it can enter " Take the cleaning area corresponding to room 1" as an example.
  • the machine-side control unit can control the cleaning robot 11 to obtain the partition map "Room 1" corresponding to the cleaning area, and then control the cleaning robot to obtain the partition map "Room 1" from the machine-side storage unit.
  • the cleaning robot 11 can store the user's corresponding input, so that when the cleaning robot 11 enters a cleaning area in subsequent cleaning operations, it can directly read the zone map corresponding to the area , And match the ground attribute elements corresponding to the zoning map, so that the cleaning operation is executed according to the first operating parameter group corresponding to the ground attribute elements, without the need for the user to input again.
  • controller is further configured to: control the output unit to push multiple ground attribute elements for each partition map for selection by the user, and obtain the selected ground attribute elements as the corresponding ground attribute elements of the partition map.
  • the touch screen displays "wood floor”, “blanket”, “tile”, “glass”, “long woolen blanket”, and “stone board”. "” and many other icons for the user to choose. If the surface to be cleaned corresponding to the partition map "Room 1" is made of tiles, the user can touch the "tiles" icon to achieve selective input, and the "tiles" selected by the user are the partitions The ground attribute element corresponding to the map "Room 1". In this way, corresponding first operating parameter groups can be set for multiple materials in advance, so as to improve the intelligent control of the cleaning robot and improve user experience.
  • the memory is also configured to store functional elements and ordinary cleaning schedules corresponding to the functional elements.
  • the functional element refers to the purpose of the clean area corresponding to the zoning map, such as kitchen, study, living room, bedroom, bathroom, balcony, gym, etc.
  • the general cleaning schedule may include cleaning time (for example, 8:00, 14:00, 20:00), cleaning frequency (for example, every day, every other day, every Saturday), and the like.
  • the ordinary cleaning schedule corresponding to the functional elements can be preset according to the general living rules of ordinary people.
  • the kitchen is usually used from 17:00 to 20:00 every evening.
  • the corresponding ordinary cleaning schedule can be set to "20:00 every day” .
  • controller is further configured to: in response to user input collected by the input unit, obtain a functional element corresponding to each zone map, and the functional element corresponds to the general cleaning schedule one-to-one; and control The cleaning robot cleans the cleaning area indicated by the corresponding zone map according to the first operating parameter group and the ordinary cleaning schedule.
  • the user inputs the functional elements “kitchen”, “bedroom”, and “living room” respectively, and the terminal control unit accesses the terminal storage unit, and Read the ordinary cleaning schedule "20:00 every day”, “9:00 every Saturday”, and “22 every day” corresponding to the functional elements "kitchen”, “bedroom”, and "living room” stored in the storage unit of the terminal.
  • the terminal control unit generates a first control signal including "20:00 every day”, “9:00 every Saturday", and "22:00 every day”; then the terminal communication unit sends the first control signal
  • the control signal is sent to the machine-side communication unit, and the machine-side storage unit stores ordinary cleaning schedules "every day 20:00" and “every Saturday” corresponding to the functional elements "kitchen", "bedroom", and "living room”. 9:00", "every day 22:00".
  • the machine-side control unit controls the cleaning robot to clean the clean area referred to by "Room 1" at 20:00 every day, and clean the clean area referred to by "Room 2" at 9:00 every Saturday. Clean, clean the clean area referred to by "Room 3" at 22:00 every day.
  • the controller is further configured to: after matching the ordinary cleaning schedule corresponding to the functional element, control the output unit to push the ordinary cleaning schedule to the user for user review, and the controller sets according to the review result The final ordinary cleaning schedule.
  • the input unit collects user input for changing the ordinary cleaning schedule, and the controller sets a final ordinary cleaning schedule in response to the user input; when the audit result is yes, The controller directly adopts and sets the final ordinary cleaning schedule.
  • the ordinary cleaning schedule corresponding to "kitchen” is "20:00 every day”; the touch screen can display the general cleaning schedule including "kitchen” It is a dialog box with information such as 20:00 every day and “Confirm” and “Change”; the user touches the "Confirm” icon to make the controller obtain the audit result "Yes”, and the terminal control unit directly adopts and sets "Everyday 20:00” is the final general cleaning schedule.
  • the general cleaning schedule corresponding to the partition map "Room 1" in the control signal generated by the terminal control unit is "Everyday 20:00"; the user touches "Change “Icon to make the terminal control unit obtain the audit result "No”, the user changes the ordinary cleaning schedule to "21:00 every day” through the touch screen, and the terminal control unit sets "21:00 every day” as The final ordinary cleaning schedule, in this way, the ordinary cleaning schedule corresponding to the partition map "Room 1" in the control signal generated by the terminal control unit is "21:00 every day”.
  • the cleaning robot includes a normal cleaning mode and a deep cleaning mode.
  • the ordinary cleaning mode corresponds to the first operating parameter group and the ordinary cleaning schedule; that is, in the ordinary cleaning mode, the controller controls the cleaning robot to divide the corresponding partitions according to the first operating parameter group and the ordinary cleaning schedule.
  • the clean area indicated on the map is cleaned.
  • the controller is further configured to: evaluate the total single-day energy consumption of the cleaning robot performing the ordinary cleaning mode in a cleaning cycle; calculate the single-day remaining energy consumption of the cleaning robot; Setting a deep cleaning schedule; controlling the cleaning robot to execute the deep cleaning mode according to the deep cleaning schedule.
  • the deep cleaning schedule may include cleaning time (for example, 8:00, 14:00, 20:00), cleaning frequency (for example, every Sunday, the 6th of each month), and the like.
  • cleaning frequency in the deep cleaning schedule is much smaller than the cleaning frequency in the ordinary cleaning schedule, and the cleaning time in the deep cleaning schedule and the cleaning time in the ordinary cleaning schedule can be set to be the same.
  • the cleaning period is a preset value, for example, 15 days can be used as a cleaning period, or one month as a cleaning period.
  • An example of the process of the controller setting a deep cleaning schedule is: for the partition maps "Room 1", “Room 2", and “Room 3", the functional elements are “kitchen”, “bedroom”, and “living room”, corresponding The general cleaning schedule of "every day 20:00", “every Saturday 9:00”, “every day 22:00”; the terminal control unit evaluates that the cleaning robot executes the cleaning within a cleaning cycle (for example, one month) The total single-day energy consumption of the ordinary cleaning mode; calculate the single-day remaining energy consumption of the cleaning robot according to the total single-day energy consumption and the rated total energy consumption of the battery pack; The remaining energy consumption of a single day on the 4th and 6th of each month is relatively the largest.
  • the deep cleaning schedules for Room 2" and “Room 3" are "20:00 on the 2nd of each month", “9:00 on the 4th of each month", and "22:00 on the 6th of each month”; then the controller generates The second control signal including "20:00 on the 2nd of each month", “9:00 on the 4th of each month” and "22:00 on the 6th of each month” to control the cleaning robot at 20:00 on the 2nd of each month
  • the clean area referred to by "Room 1" performs the deep cleaning mode
  • the clean area referred to by "Room 2” is performed at 9:00 on the 4th of each month
  • the clean area referred to by "Room 2” is performed in the deep cleaning mode.
  • the cleaning area referred to performs a deep cleaning mode.
  • the controller is further configured to: after setting a deep cleaning schedule, control the output unit to push the deep cleaning schedule to the user for review by the user, and the controller sets the final deep cleaning schedule according to the review result .
  • the input unit collects user input for changing the deep cleaning schedule, and the controller sets a final deep cleaning schedule in response to the user input; when the audit result is yes, The controller directly adopts and sets the final deep cleaning schedule.
  • the touch screen displays a dialog box including "The deep cleaning schedule for the kitchen is 21:00 on the 2nd of each month” and “Confirm” and “Change”; the user touches " “Confirm” icon to make the terminal control unit obtain the audit result "Yes”, the terminal control unit directly adopts and sets "21:00 on the 2nd of every month” as the final deep cleaning schedule, so that the terminal control unit In the second control signal generated, the deep cleaning schedule corresponding to the zone map "Room 1" is "21:00 on the 2nd of every month”; the user touches the "change” icon to make the terminal control unit obtain the audit result "No” , The user changes the deep cleaning schedule to "21:00 on the 3rd of each month” through the touch display, and the terminal control unit sets "21:00 on the 3rd of each month” as the final deep cleaning schedule.
  • the deep cleaning schedule corresponding to the zone map "Room 1" in the second control signal generated by the terminal control unit is "21:00 on the 3rd of each month”.
  • the memory is further configured to store a ground attribute element and a second operating parameter group corresponding to the ground attribute element.
  • the second operating parameter group corresponds to the deep cleaning mode.
  • the second operating parameter group includes a plurality of operating parameters of the cleaning robot. Compared with the first operating parameter group, the second operating parameter group corresponds to making the cleaning robot more vigorously cleaning the surface to be cleaned. Strong operating parameter setting.
  • the second operating parameter group may include the operating power P'of the first motor that changes the suction at the suction port, the rotational speed R'of the roller brush, the rotational speed r'of the side brush, and the The operating power p'of the fourth motor at the walking speed of the cleaning robot, the height H'of the roller module that can change the height of the roller brush and the side brush from the ground, etc.
  • the second operating parameter group is illustrated in the form of ⁇ P', R', r', p', H' ⁇ .
  • the second operating parameter group ⁇ P',R',r',p',H' ⁇ for the same ground attribute element, the The operating power of a motor P'>P increases the suction force at the suction port, the rotational speed of the roller brush R'>R and/or the rotational speed of the side brush r'>r increases the foreign matter on the surface to be cleaned The cleaning frequency of the fourth motor, the operating power p' ⁇ p of the fourth motor, thereby reducing the walking speed of the cleaning robot.
  • controller is further configured to: match a second operating parameter group corresponding to the ground attribute element corresponding to each zone map, and control the cleaning robot to check the corresponding zone map according to the second operating parameter set and the deep cleaning schedule.
  • the corresponding ground attribute elements are "tiles", "wood floors”, and “blankets” respectively.
  • the machine-side control unit accesses the Machine-side storage unit, and matched to the second operating parameter group ⁇ P' 1 ,R' 1 ,r' 1 ,p' 1 ,H' 1 corresponding to "tiles", "wood floors", and "blankets" one by one ⁇ , ⁇ P' 2 ,R' 2 ,r' 2 ,p' 2 ,H' 1 ⁇ , ⁇ P' 3 ,R' 1 ,r' 1 ,p' 1 ,H' 3 ⁇ ; then the machine control Unit generation includes ⁇ P'1,R'1,r'1,p'1,H'1 ⁇ , ⁇ P'2,R'2,r'2,p'2,H'1 ⁇ , ⁇ P' 3.
  • the second control signal of R'1,r'1,p'1,H'3 ⁇ to control the cleaning robot to use the second operating parameter group ⁇ P' 1 ,R' 1 ,r' 1 ,p ' 1 ,H' 1 ⁇ Perform deep cleaning mode on the clean area referred to by "Room 1", using the second operating parameter group ⁇ P' 2 ,R' 2 ,r' 2 ,p' 2 ,H' 1 ⁇ Perform the deep cleaning mode for the cleaning area referred to by "Room 2", and use the second operating parameter group ⁇ P' 3 ,R' 1 ,r' 1 ,p' 1 ,H' 3 ⁇ to replace "Room 3" Refers to the cleaning area to perform deep cleaning mode.
  • the second operating parameter group also includes a state parameter T'related to the mopping and washing piece.
  • the second operating parameter group is further exemplified in the form of ⁇ P', R', r', p', H', T' ⁇ .
  • the controller is further configured to: control the cleaning robot to clean the cleaning area indicated by the corresponding zone map according to the second operating parameter group, if the state parameter in the second operating parameter group is in the use state , The mopping element works during the cleaning process; if the state parameter in the second operating parameter group is in the retracted state, the mopping element does not work during the cleaning process.
  • the corresponding floor attribute elements are “tiles” and “carpets” respectively, and the machine-side control unit accesses the machine-side storage unit, And match the second operating parameter group ⁇ P' 1 ,R' 1 ,r' 1 ,p' 1 ,H' 1 ,T 1 ' ⁇ , ⁇ P' 3 corresponding to "tiles” and “blankets” respectively ,R' 1 ,r' 1 ,p' 1 ,H' 3 ,T 2 ' ⁇ ;
  • T 1 ' refers to the state parameter being in use
  • T 2 ' refers to the state parameter being in the retracted state ;
  • the end of the machine control unit controls the cleaning robot ⁇ P '1, R' 1 , r '1, p' 1, H '1, T 1' ⁇ of the "room 1" refers to the generation of When the cleaning area is in deep cleaning mode, the mopping and washing parts work during the cleaning process;
  • the house can be regularly deep cleaned (for example, increasing the suction at the suction port and mopping the floor); on the other hand, it can also be selectively used according to the different floor materials /Do not use the mop and wash part to prevent damage to the floor material that is not easy to mop.
  • control method of this embodiment is used by the control device of the cleaning robot described above, in this embodiment, the detailed content of the control method will not be repeated.

Landscapes

  • Electric Vacuum Cleaner (AREA)

Abstract

一种清洁机器人(11)及清洁机器人(11)的控制方法和控制装置,控制方法包括:当清洁机器人(11)进入一清洁区域时,获取清洁区域所对应的分区地图;获取分区地图所对应的地面属性元素,地面属性元素由用户预先输入,并且,地面属性元素对应于第一运行参数组;控制清洁机器人(11)依照第一运行参数组对清洁区域进行清洁。清洁机器人(11)无需额外设计传感装置或摄像装置便可以对不同材质的待清洁面按照不同的运行参数执行清洁作业。

Description

清洁机器人及其控制方法和控制装置 技术领域
本发明涉及清洁装置技术领域,尤其是涉及一种清洁机器人及该清洁机器人的控制方法和控制装置。
背景技术
通常,机器人已经被开发用于工业使用并且作为工厂自动化的一部分。近年来,机器人的应用领域已经扩大,并且已经开发出医疗机器人和空间机器人,此外,适用于家庭的机器人也开始被开发并逐渐出现在市场上。家庭机器人种类繁多,其中最常见的便是清洁机器人,清洁机器人可依照存储在耦合于控制装置的存储器中的程序,自主导航地在房间中行走以执行在限定区域内的清洁作业。
普通的居民住房通常会设有多个房间,各个房间的地面也会依照用户的喜好进行材质的选择,以此,用户需要清洁机器人能够在不同材质的地面上保持稳定高效的工作。现有的清洁机器人大多是通过识别地面材质并选择对应的清洁模式的方法来进行清洁作业,具体地,主要通过以下两种方法来识别地面材质:一、清洁机器人配置有摄像装置,在清洁机器人进行清洁作业时,摄像装置会实时拍摄地面图像,清洁机器人通过对比分析拍摄的图像与存储器预存的数据来识别地面材质;二、清洁机器人配置有传感装置,在清洁机器人进行清洁作业时,传感装置会实时监控行走轮的位移,清洁机器人通过对比行走轮实时的位移与存储器预存的标准位移来确定地面材质。
然而,上述通过识别地面材质来选择清洁机器人的清洁模式的方法存在一些问题,具体如下:一、额外设计的摄像装置或传感装置会极大的增加清洁机器人的制作加工成本;二、实时工作的摄像装置及传感装置会增加清洁机器人的功耗,影响清洁机器人的工作效率。
发明内容
为了克服上述清洁机器人及其控制方法和控制装置所存在的缺陷,本发明所要解决的技术问题是提供一种无需额外设计传感装置或摄像装置便可以对不同材质的待清洁面按照不同的运行参数执行清洁作业的清洁机器人。
本发明另一个要解决的技术问题是提供一种清洁机器人的控制方法及控制装置,通过所述控制方法及控制装置,清洁机器人无需额外设计传感装置或摄像装置便可以对不同材质的待清洁面按照不同的运行参数执行清洁作业。
为实现上述发明目的之一,本发明一实施例提供了一种清洁机器人的控制方法,所述控制方法包括:
构建全区地图,所述全区地图划分成若干分区地图;
响应于用户输入,获取每个分区地图相对应的地面属性元素;
根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;
建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系;
当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;
根据所述第二对应关系,匹配与所述清洁区域所对应的分区地图相对应的第一运行参数组,控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
作为本发明一实施例的进一步改进,所述方法还包括:
响应于用户输入,获取每个分区地图相对应的功能元素;
根据预先建立的第三对应关系,匹配与每个分区地图相对应的功能元素相对应的普通清洁日程;
建立与每个分区地图相对应的功能元素相对应的普通清洁日程与每个分区地图的第四对应关系;
根据所述第四对应关系,匹配与每个分区地图对应的普通清洁日程,控制清洁机器人按照所述第一运行参数组和所述普通清洁日程对相应分区地图所指代的清洁区域进行清洁。
作为本发明一实施例的进一步改进,所述清洁机器人包括普通清洁模式和深度清洁模式;所述普通清洁模式对应第一运行参数组和普通清洁日程;
所述控制方法还包括:
评估清洁机器人在一个清洁周期内执行所述普通清洁模式的单日总能耗;
计算清洁机器人的单日剩余能耗;
根据单日剩余能耗设定深度清洁日程;
控制清洁机器人按照深度清洁日程执行所述深度清洁模式。
作为本发明一实施例的进一步改进,所述控制方法还包括:
根据预先建立的第五对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第二运行参数组;
控制清洁机器人依照第二运行参数组和深度清洁日程对相应分区地图所指代的清洁区域执行所述深度清洁模式。
为实现上述发明目的之一,本发明一实施例提供了一种清洁机器人的控制方法,所述控制方法包括:当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;
根据预先建立的第二对应关系,匹配与所述分区地图相对应的第一运行参数组;
控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
为实现上述发明目的之一,本发明一实施例提供了一种清洁机器人的控制方法,所述控制方法包括:构建全区地图,所述全区地图划分成若干分区地图;
响应于用户输入,获取每个分区地图相对应的地面属性元素;
根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面 属性元素相对应的第一运行参数组;
建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系。
为实现上述发明目的之一,本发明一实施例提供了一种清洁机器人的控制装置,所述控制装置包括:存储器,配置为存储地面属性元素与第一运行参数组的第一对应关系及所述第一运行参数组与分区地图的第二对应关系;
输入单元,配置为采集用户输入;
控制器,配置为:构建划分成若干分区地图的全区地图;响应于所述输入单元所采集到的用户输入,获取每个分区地图相对应的地面属性元素;根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系;当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;根据所述第二对应关系,匹配与所述清洁区域所对应的分区地图相对应的第一运行参数组,控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
作为本发明一实施例的进一步改进,所述存储器还配置为存储功能元素与普通清洁日程的第三对应关系及所述普通清洁日程与所述分区地图的第四对应关系;
所述控制器还配置为:响应于所述输入单元所采集到的用户输入,获取每个分区地图相对应的功能元素;根据预先建立的第三对应关系,匹配与每个分区地图相对应的功能元素相对应的普通清洁日程;建立与每个分区地图相对应的功能元素相对应的普通清洁日程与每个分区地图的第四对应关系;根据所述第四对应关系,匹配与每个分区地图对应的普通清洁日程,控制清洁机器人按照所述第一运行参数组和所述普通清洁日程对相应分区地图所指代的清洁区域进行清洁。
作为本发明一实施例的进一步改进,所述清洁机器人包括普通清洁模式和深度清洁模式;所述普通清洁模式对应第一运行参数组和普通清洁日程;
所述控制器还配置为:评估清洁机器人在一个清洁周期内执行所述普通清洁模式的单日总能耗;计算清洁机器人的单日剩余能耗;根据单日剩余能耗设定深度清洁日程;控制清洁机器人按照深度清洁日程执行所述深度清洁模式。
作为本发明一实施例的进一步改进,所述存储器还配置为存储地面属性元素与第二运行参数组的第五对应关系;
所述控制器还配置为:根据预先建立的第五对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第二运行参数组;控制清洁机器人依照第二运行参数组和深度清洁日程对相应分区地图所代指的清洁区域执行所述深度清洁模式。
为实现上述发明目的之一,本发明一实施例提供了一种清洁机器人的控制装置,所述控制装置包括:存储器,配置为存储分区地图与第一运行参数组的第二对应关系;
控制器,配置为:当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;根据预先建立的第二对应关系,匹配与所述分区地图相对应的第一运行参数组;控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
为实现上述发明目的之一,本发明一实施例提供了一种清洁机器人的控制装置,所述控制装置包括:存储器,配置为存储地面属性元素与第一运行参数组的第一对应关系及第一运行参数组与分区地图的第二对应关系;
控制器,配置为:构建全区地图,所述全区地图划分成若干分区地图;响应于用户输入,获取每个分区地图相对应的地面属性元素;根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系。
为实现上述发明目的之一,本发明一实施例提供了一种清洁机器人,所述清洁机器人包括所述控制装置。
本发明的有益效果为:
根据用户输入而获取地面属性元素,并匹配对应的运行参数,使清洁机器人无需额外设计传感装置或摄像装置便可以对不同材质的待清洁面按照不同的运行参数执行清洁作业,以此,不仅可以提高清洁效果,还可以节约制造成本;
根据用户输入而采集分区地图所对应的功能元素,并匹配相应的普通清洁日程,使得清洁机器人可以按照用户的需求针对各个房间的特性来安排清洁日程,从而使得需要多次清洁的房间得到有效的清扫;
在清洁机器人以普通清洁模式完成一个清洁周期的清洁后,其可以通过能耗计算而获得深度清洁日程,以此,清洁机器人可根据具体清洁状况选择普通清洁模式及深度清洁模式,更为智能地执行清洁作业;
在按照深度清洁日程执行深度清洁模式时,清洁机器人可根据用户输入的地面属性元素,自动获取对应的深度清洁模式下的运行参数,从而完成清洁作业,无需用户进一步做额外设置,减少了人为的操作;
清洁机器人还包含拖洗件,在清洁机器人设置深度清洁日程时,用户可根据需要对拖洗件的状态参数进行单独设置,故在清洁机器人进行清洁作业时,可以通过拖洗件对某些较脏的区域进行深度清洁。
附图说明
图1是本发明各个实施例涉及的清洁机器人的结构示意图;
图2是根据各个实施例示出的一种清洁机器人的控制方法的流程图;
图3是根据一示例性实施例示出的一种清洁机器人控制方法的流程图;
图4是根据一示例性实施例示出的一种清洁机器人控制方法的流程图;
图5是根据另一示例性实施例示出的一种清洁机器人控制方法的流程图;
图6是根据另一示例性实施例示出的一种清洁机器人控制方法的流程图。
具体实施方式
以下将结合附图中示例性实施例对本发明进行详细描述。在示例性实施例中使用的术语被选择为尽可能广泛地使用的一般术语,但是在特定情况下,也使用申请人任意选择的术语,并且在这种情况下,在相应的详细描述部分中提及含义,因此本发明概念不应由术语的字面含义理解,而应由术语的给定含义来理解。
由于本发明的概念允许各种变化和许多示例性实施例,特定示例性实施例将在附图中示出并在书面描述中详细描述。然而,这并不旨在将本发明的概念限制到特定的实践模式,并且应当理解,不脱离精神和技术范围的所有改变、等同物和替代物都包含在本发明的概念中。在说明书中,当认为可能不必要地模糊本发明概念的本质时,省略对现有技术的某些详细说明。
虽然诸如“第一”、“第二”等术语可以用于描述各种元素,但是这些元素不能限于上述术语。上述术语仅用于将一个元素与另一个元素区分开。
单数使用的表达方式包括复数形式的表达,除非在上下文中具有明显不同的含义。在本说明书中,应当理解,诸如“包括”、“具有”、“包含”等术语旨在表示特征、数字、步骤、动作、组件、部分或其组合存在本说明书中,并不意图排除可能存在或可以添加一个或多个其他特征、数字、步骤、动作、组件、部分或其组合的可能性。
说明书中描述的诸如“单元”、“器”、“组件”、“模块”等术语是指用于执行至少一个功能或操作的元件,并且可以在硬件或软件或硬件和软件的组合中实现。此外,除了必须实现为特定硬件的“模块”或“单元”之外,可以将多个“模块”或多个“单元”整体地形成为至少一个处理模块。
在整个说明书中,还将理解,当元件被称为“连接到”另一元件时,其可以直接连接到另一元件或者电连接到另一元件,而中间元件也可以存在。此外,当部分“包括”元素时,可以进一步包括另一元素而不是排除另一元素的存在,除非另有说明。
下面将参考附图来描述示例性实施例来解释本说明书的方面。当诸如“至少一个”的表达方式位于一个元素列表之前时,其修饰整个元素列表而不修饰列表的各个元素。
实施例1
参看图1-图4,本发明一实施例提供一种清洁机器人11,清洁机器人11配置为可以自行充电、行走并执行作业(例如对清洁区域的清洁作业、清洁区域的地图构建等)。
清洁机器人11具体包括主体110、电池包、气流发生装置、集尘装置、清洁装置以及行走装置。
所述电池包安装于主体110下部,其用于提供清洁机器人11所需的驱动电力。具体来讲,所述电池包可电连接至清洁机器人11的各种电力驱动部件,以便于为这些电力驱动部件提供驱动电力,所述电力驱动部件包括但不限于所述气流发生装置、所述清洁装置、所述行走装置。
主体110包括设置于其下表面处的吸口1101以及设置于其侧表面处的出风口1102,在清洁机器人11内部形成有由吸口1101至出风口1102的气路通道。
所述气流发生装置设置于主体110内部并用于驱动空气流动以形成气流。当清洁机器人11执行清洁作业时,在所述气流发生装置的驱动下,气流从吸口1101进入所述气路通道直至从出风口1102排出。
所述气流发生装置可具体包括第一电机以及由所述第一电机驱动的叶轮,当所述第一电机启动时,所述第一电机能够带动所述叶轮旋转,从而驱动气流从吸口1101向出风口1102流动。
所述气流发生装置具有若干运行参数,例如,所述第一电机的运行功率及所述叶轮的转速等。基于所述第一电机对所述叶轮的驱动,所述第一电机的运行功率与所述叶轮的转速正向相关;当所述第一电机的运行功率增大时,相应的所述叶轮的转速增大,所驱动形成的气流增强,以使得吸口1101处的吸力增大。
所述集尘装置组装于主体110上,其至少用于过滤并收集进入所述气路通道中的气流所裹挟的异物,例如灰尘。所述集尘装置可以包括尘桶以及布置于所述尘桶内的过滤件,当清洁机器人11执行清洁作业时,在所述气流发生装置的驱动下,从吸口1101吸入的含尘气流进入所述尘桶内,经所述过滤件过滤处理为洁净气流后从出风口1102排出,被所述过滤件过滤出来的异物被收集在所述尘桶内。
所述清洁装置设置于主体110的下方,其可作用于清洁区域的待清洁面以完成对待清洁面的清洁。
所述清洁装置可以包括第二电机以及被所述第二电机所驱动的滚刷1121,滚刷1121安装于主体110下部中央并位于吸口1101附近。当清洁机器人11执行清洁作业时,滚刷1121可被所述第二电机驱动地绕滚刷1121的枢转轴转动,以扫除待清洁面(尤其是主体110下部中央对应的待清洁面)上的异物并将异物引向吸口1101,进而便于异物随气流一起经吸口1101被吸入所述气路通道内。其中,滚刷1121的枢转轴沿左右方向延伸。
所述清洁装置还可以包括多个边刷1122以及驱动多个边刷1122的第三电机,多个边刷1122可通过卡钩、螺纹、铆合等配接方式安装于主体110下部边缘处。当清洁机器人11执行清洁作业时,边刷1122可被所述第三电机驱动地绕边刷1122的枢转轴转动,以扫除待清洁面(尤其是主体110下部边缘对应的待清洁面)上的异物并将异物引向滚刷1121前方,进而异物被滚刷1121引向吸口1101。其中,边刷1122的枢转轴沿竖直方向延伸。
所述清洁装置还可以包括拖洗件,所述拖洗件具有使用状态和收起状态。当所述拖洗件处于所述使用状态时,所述拖洗件工作,具体为,所述拖洗件与待清洁面接触,从而在清洁机器人11在执行清洁作业过程中利用所述拖洗件对待清洁面进行拖洗;当所述拖洗件处于所述收起状态时,所述拖洗件不工作,具体为,在清洁机器人11在执行清洁作业过程中利用所述拖洗件不再对待清洁面进行拖洗。
所述清洁装置具有若干运行参数,例如,所述第二电机的运行功率、滚 刷1121的转速、所述第三电机的运行功率、边刷1122的转速、所述拖洗件的状态。其中,基于所述第二电机对滚刷1121的驱动,所述第二电机的运行功率与滚刷1121的转速正向相关,当所述第二电机的运行功率增大时,相应的滚刷1121的转速增大,滚刷1121对待清洁面上的异物清扫力度变强;基于所述第三电机对边刷1122的驱动,所述第三电机的运行功率与边刷1122的转速正向相关,当所述第三电机的运行功率增大时,相应的边刷1122的转速增大,边刷1122对待清洁面上的异物清扫力度变强;相较于所述拖洗件的收起状态,所述拖洗件的使用状态下,清洁效果更佳。
所述行走装置可以包括第四电机以及由所述第四电机驱动的多个驱动轮1131,驱动轮1131被所述第四电机驱动地绕驱动轮1131的枢转轴转动以使得清洁机器人11能够在执行清洁作业时前后移动和转向移动。其中,驱动轮1131的枢转轴沿左右方向延伸。
所述行走装置还可以包括平衡轮,所述平衡轮使清洁机器人11能够保持稳定。在本实施例中,所述平衡轮设置在主体110的下方,并且布置在所述主体110下部的前边缘处。优选地,所述平衡轮布置在两个驱动轮1131的对称轴线上以使所述平衡轮和两个驱动轮1131呈等腰三角形布局。
两个驱动轮1131和所述平衡轮可以模块化为同步拆卸或组装的一个滚轮模组,以便于当驱动轮1131或所述平衡轮由于故障而需要维修或更换时,可以将所述滚轮模组从主体110上整体脱离下来而不需要拆卸主体110。
所述行走装置还可以包括第五电机,所述第五电机用于驱动所述滚轮模组相对主体110上升或下降,从而减小或增大主体110的离地高度,进而使得滚刷1121、边刷1122的离地高度相应改变。
所述行走装置具有若干运行参数,例如,所述第四电机的运行功率、驱动轮1131的转速、所述第五电机的运行状态、所述滚轮模组的相对高度。基于所述第四电机对驱动轮1131的驱动,所述第四电机的运行功率与驱动轮1131的转速正向相关,当所述第四电机的运行功率增大时,相应的驱动轮1131的转速增大,以使得清洁机器人11的行走速度提升;基于所述第五电 机对所述滚轮模组的驱动,所述第五电机的运行状态与所述滚轮模组的相对高度相关,当所述第五电机做功并驱动所述滚轮模组相对主体110下降时,相应的主体110的离地高度增大,进一步使得滚刷1121和边刷1122的离地高度增大。
如上述的所述气流发生装置的若干运行参数、所述清洁装置的若干运行参数、所述行走装置的若干运行参数等构成了清洁机器人11的运行参数。也即,清洁机器人11的运行参数包括但不限于所述第一电机的运行功率、所述叶轮的转速、所述第二电机的运行功率、滚刷1121的转速、所述第三电机的运行功率、边刷1122的转速、所述拖洗件的状态、所述第四电机的运行功率、驱动轮1131的转速、所述第五电机的运行状态、所述滚轮模组的相对高度等。
清洁机器人11每次执行清洁作业时,所述气流发生装置的若干运行参数、所述清洁装置的若干运行参数、所述行走装置的若干运行参数很大程度上决定了清洁效果,上述运行参数与待清洁面的材质的适配程度也会直接影响清洁效果和清洁效率。
本实施例中,清洁机器人11还进一步包括控制装置,所述控制装置包括存储器、输入单元、输出单元以及控制器。
所述输出单元配置为向用户输出信息,该信息可以为清洁机器人11的各种状态信息,例如,可以是所述电池包的充电状态、所述电池包的电量、所述集尘装置是否充满灰尘、清洁机器人11的运行参数、清洁机器人11的清洁模式、清洁机器人11是否故障等。
所述输出单元可以包括用于向用户呈现信息的各种硬件或软件设备,例如显示屏、扬声器、警示灯等;所述输出单元所输出的信息可以采用文字、符号、图画、声音、灯光等任一种或多种方式呈现。
所述输入单元配置为采集用户输入,用户输入的内容包括但不限于目的在于获取清洁机器人11状态的查询命令及目的在于更改清洁机器人11状态的控制命令。
所述输入单元可以包括用于采集用户输入的各种按钮或硬件或软件设备, 例如开关、踏板、键盘、鼠标、跟踪球、各种杠杆、手柄、操作杆、触控面板、麦克风等。
所述用户输入的实现方式包括但不限于从触摸输入、弯曲输入、语音输入、按钮输入、移动输入和多模式输入中选择的至少一个。所述触摸输入可以包括由用户在所述输入单元表面或距离所述输入单元一定距离内进行的用于控制设备的触摸手势(例如触摸和保持手势、敲击手势、双击手势、平移手势、轻弹手势、触摸和拖动手势、收放手势等)。所述按钮输入是指用户使用装置上的物理按钮来控制的输入。所述移动输入是指用户施加到装置以控制该装置的移动(例如旋转装置、倾斜装置或者向上、向下、向左、向右移动装置)。所述多模式输入是指至少两种输入方法的组合,例如,触摸输入和移动输入的结合,触摸输入和语音输入的结合。
本实施例中,所述输出单元优选地包括设置于主体110上表面处的显示屏。所述输入单元优选地包括图形用户界面,其与所述显示屏形成共同层结构以集成为同时具有显示和触控功能的触摸显示屏。在下文中,为了便于描述,假设所述输入单元和所述输出单元以触摸显示屏的方式予以实施。
所述存储器配置为可以临时或非临时地存储清洁机器人11运行所需要的数据和程序,例如,可以存储所述输入单元所采集的用户输入的信息,存储清洁机器人11的历史清洁数据及存储清洁机器人11的运行参数等。
所述控制器可以生成各种控制信号以控制清洁机器人11的整体操作。所述控制器可以控制清洁机器人11的各个部件,该各个部件包括但不限于所述存储器、所述输入单元、所述输出单元、所述气流发生装置、所述清洁装置、所述行走装置。
所述控制器能够生成控制信号以使所述电池包向清洁机器人11的各个电力驱动部件的供电电路的导通或断开,进而控制清洁机器人11的开机或关机;所述控制器能够生成控制信号以使所述气流发生装置、所述清洁装置、所述行走装置启动,进而控制清洁机器人11执行清洁作业;所述控制器能够生成控制信号以使所述气流发生装置、所述清洁装置、所述行走装置以设定 运行参数运行,进而控制清洁机器人11的运行状态/清洁模式。
所述控制器可以生成用于所述存储器的控制信号,例如,所述控制器可以生成使所述存储器存储清洁机器人11的历史清洁数据的控制信号,生成使所述存储器存储所述输入单元所采集的用户输入的信息的控制信号等。
所述控制器可以生成用于所述输入单元的控制信号以使所述输入单元采集用户输入,以及生成用于所述输出单元的控制信号以使所述输出单元向用户输出信息。例如,本实施例中,所述控制器可以生成控制信号,使所述触摸显示屏输出与用户输入相对应的屏幕,或者使所述触摸显示屏改变与用户输入相对应的屏幕。
进一步地,所述存储器配置为存储有地面属性元素与第一运行参数组的第一对应关系。
其中,所述地面属性元素代指清洁区域中待清洁面的材质,例如木地板、毛毯、瓷砖、玻璃、长毛毯、石材板等。
所述第一运行参数组包括清洁机器人11的多项运行参数,运行参数可以是改变吸口1101处吸力的所述叶轮的转速(或所述第一电机的运行功率)、滚刷1121的转速(或所述第二电机的运行功率)、边刷1122的转速(或所述第三电机的运行功率)、可以改变清洁机器人11行走速度的驱动轮1131的转速(或所述第四电机的运行功率)、可以改变滚刷1121和边刷1122离地高度的所述滚轮模组的相对高度等。
为便于描述,第一运行参数组在下文中以{P,R,r,p,H}的方式示例,也即第一运行参数组包括可以改变吸口1101处吸力的所述第一电机的运行功率P、滚刷1121的转速R、边刷1122的转速r、可以改变清洁机器人11行走速度的所述第四电机的运行功率p、可以改变滚刷1121和边刷1122离地高度的所述滚轮模组的高度H。当然,所述第一运行参数组并不限制为仅仅包含上述运行参数。
不同的地面属性元素对应于的第一运行参数组至少部分设定值不同。例如,根据所述第一对应关系,地面属性元素“瓷砖”对应于第一运行参数组 {P 1,R 1,r 1,p 1,H 1};地面属性元素“木地板”对应于第一运行参数组{P 2,R 2,r 2,p 2,H 1};地面属性元素“毛毯”对应于第一运行参数组{P 3,R 1,r 1,p 1,H 3},也即“瓷砖”对应的所述滚轮模组的高度H设定为H 1、“木地板”对应的所述滚轮模组的高度H设定为H 1,“毛毯”对应的所述滚轮模组的高度H设定为H 3,其他同理类推,不再赘述。
进一步地,请参考图3,所述控制器控制清洁机器人执行步骤20:构建划分成若干分区地图的全区地图。
在本实施例中,所述控制器构建划分成若干分区地图的全区地图的动作可以通过以下方式触发:所述触摸显示屏被点亮时,用户触摸所述触摸显示屏的屏幕上的“构建地图”图标,所述输入单元采集到该用户输入,触发所述控制器生成“构建地图”控制信号,所述控制器构建划分成若干分区地图的全区地图。
其中,所述全区地图对应整个清洁区域,例如使用清洁机器人11的房屋的地面。所述控制器构建所述全区地图的方式具体可以为:所述控制器控制所述行走装置启动,进而控制清洁机器人11在整个清洁区域中行走,从而所述控制器可基于清洁机器人11的可行走边界构建出所述全区地图。需要注意的是,在其他实施例中,所述控制器构建所述全区地图的方式也可以是:所述控制器控制清洁机器人11从网络服务器下载与房屋适配的全区地图,后由用户确认修改以获得与房屋完全适配的全区地图。
所述分区地图对应整个清洁区域中的局部区域,例如使用清洁机器人11的房屋中的一个房间的地面。可以理解的,所述全区地图由若干个所述分区地图拼合而成,分区地图的数目与房屋的房间数目/布局有关,为便于说明,在后文的描述中,以所述全区地图划分为三个分区地图为例。在本实施例中,所述控制器构建所述全区地图时,自动拟合出若干所述分区地图;当然,在可行的其他实施例中,所述控制器构建所述全区地图整体,然后通过人为方式将所述全区地图分割成若干所述分区地图。
进一步地,所述控制器还配置为:构建划分成若干分区地图的全区地图 后,控制所述输出单元显示所述全区地图。
例如,本实施例中,当所述控制器构建出全区地图后,所述触摸显示屏上可以具有“查看地图”图标,用户通过触摸“查看地图”图标,以使所述控制器生成控制信号,所述控制器控制所述触摸显示屏显示出所述全区地图。
进一步地,所述控制器还配置为:构建划分成若干分区地图的全区地图后,设定每个所述分区地图的名称标识。
其中,所述控制器可以自动生成所述名称标识,或者可以响应于用户输入而生成所述名称标识。例如,用户选中某分区地图,所述触摸显示屏显示“命名”对话框/图标,用户通过“命名”对话框/图标可输入分区地图的名称标识,例如“房间1”。
进一步地,请继续参考图3,所述控制器控制清洁机器人执行步骤30:响应于所述输入单元所采集到的用户输入,获取每个分区地图相对应的地面属性元素;执行步骤40:根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;执行步骤50:建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系;执行步骤60:进入一清洁区域;执行步骤70:获取清洁区域所对应的分区地图;执行步骤80:根据所述第二对应关系,匹配与所述清洁区域相对应的分区地图相对应的第一运行参数组;执行步骤90:控制清洁机器人依照所述第一运行参数组对相应分区地图所指代的清洁区域进行清洁。
例如,当三个分区地图“房间1”、“房间2”、“房间3”分别对应的待清洁面是瓷砖、木地板、毛毯材质时,用户可通过所述触摸显示屏分别输入“瓷砖”、“木地板”、“毛毯”;所述控制器控制清洁机器人根据所述第一对应关系匹配到与“瓷砖”、“木地板”、“毛毯”分别相对应的{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3};而后所述控制器控制清洁机器人11将与“瓷砖”、“木地板”、“毛毯”分别相对应的{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}分别 与三个分区地图“房间1”、“房间2”、“房间3”相对应,即:建立{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}与三个分区地图“房间1”、“房间2”、“房间3”的第二对应关系;最后,所述控制器控制清洁机器人11将所述第二对应关系存储于所述存储器中;以此,清洁机器人11到达“房间1”、“房间2”或“房间3”时,所述控制器控制清洁机器人根据所述第二对应关系匹配到与“房间1”、“房间2”、“房间3”分别相对应的{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3},而后所述控制器生成包含{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}的第一控制信号,以控制清洁机器人11分别以第一运行参数组{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}对分区地图“房间1”、“房间2”、“房间3”所指代的房间地面进行清洁。由此可见,清洁机器人11可根据用户输入的地面属性元素匹配相应的运行参数执行清洁作业,无需额外设计传感装置或摄像装置,节约了生产制造成本;同时清洁机器人11可以对不同材质的待清洁面按照不同的第一运行参数组执行清洁作业,以此,清洁作业可以因地制宜,提高房屋整体的清洁度,例如,针对“瓷砖”采用{P1,R1,r1,p1,H1}执行清洁作业,而针对“毛毯”采用{P3,R1,r1,p1,H3}执行清洁作业,P3>P1,H3>H1,也即:相较于“瓷砖”,采用吸口1101处具有更大吸力、滚刷1121和边刷1122的离地高度较大的方式来对“毛毯”材质的待清洁面进行清洁。
需要注意的是,在其他实施例中,所述控制器也可以控制清洁机器人执行步骤20:构建全区地图,所述全区地图划分成若干分区地图;执行步骤30:响应于用户输入,获取每个分区地图相对应的地面属性元素;执行步骤40:根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;执行步骤50:建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系。
例如:当三个分区地图“房间1”、“房间2”、“房间3”,分别对应的待清洁面是瓷砖、木地板、毛毯材质时,用户可通过所述触摸显示屏分别 输入“瓷砖”、“木地板”、“毛毯”;所述控制器控制清洁机器人根据所述第一对应关系匹配到与“瓷砖”、“木地板”、“毛毯”分别相对应的{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3};而后所述控制器控制清洁机器人11将与“瓷砖”、“木地板”、“毛毯”分别相对应的{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}分别与三个分区地图“房间1”、“房间2”、“房间3”相对应,即:建立{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}与三个分区地图“房间1”、“房间2”、“房间3”的第二对应关系;最后,所述控制器控制清洁机器人11将所述第二对应关系存储于所述存储器中。可以理解的是,在用户根据需要对清洁机器人11进行地面属性元素输入后,清洁机器人11也可以仅是存储用户输入的数据而不立即进行清洁作业,即:用户可以提前进行清洁机器人11的设置,而设置完成后无需立即使用清洁机器人11,若以后有清洁的需求,可直接使用清洁机器人11而无需再次设置。
可以理解的是,在其他实施例中,请具体参考图4,所述控制器也可以控制清洁机器人执行步骤60:进入一清洁区域;执行步骤70:获取所述清洁区域所对应的分区地图;执行步骤80:根据预先建立的第二对应关系,匹配与所述分区地图相对应的第一运行参数组;执行步骤90:控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
例如:三个分区地图“房间1”、“房间2”、“房间3”,分别对应的待清洁面是瓷砖、木地板、毛毯材质,清洁机器人11分别进入上述分区地图所指代的清洁区域时,所述控制器控制清洁机器人根据预先建立的第二对应关系,匹配与上述分区地图“房间1”、“房间2”、“房间3”所分别相对应的第一运行参数组{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3},而后所述控制器生成包含{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}的第一控制信号,以控制清洁机器人11分别以第一运行参数组{P1,R1,r1,p1,H1}、{P2,R2,r2,p2,H1}、{P3,R1,r1,p1,H3}对分区地图“房间1”、“房间2”、“房间3”所指代 的房间地面进行清洁。在用户完成清洁机器人的设置后,清洁机器人11可存储用户相应的输入,以此,在清洁机器人11之后的清洁作业中,其进入一清洁区域时,可直接获取该区域所对应的分区地图,从而匹配分区地图相对应的运行参数组执行清洁作业,无需用户再次输入。
进一步地,所述控制器还配置为:控制所述输出单元针对每个分区地图推送多个地面属性元素以供用户选择,获取选中的地面属性元素作为分区地图相对应的地面属性元素。
例如,当针对分区地图“房间1”进行地面属性元素的获取时,所述触摸显示屏上呈现“木地板”、“毛毯”、“瓷砖”、“玻璃”、“长毛毯”、“石材板”等多个图标供用户选择,若分区地图“房间1”对应的待清洁面为瓷砖材质,则用户可通过触摸“瓷砖”图标以实现选择式输入,用户选中的“瓷砖”即为该分区地图“房间1”相对应的地面属性元素。这样,可以预先针对多种材质设置相对应的第一运行参数组,以提高清洁机器人11的智能化控制,提升用户体验。
进一步地,所述存储器还配置为存储功能元素与普通清洁日程的第三对应关系。
其中,所述功能元素代指分区地图所对应的清洁区域的用途,例如厨房、书房、客厅、卧室、盥洗室、阳台、健身房等。
所述普通清洁日程可以包括清洁时间(例如8:00、14:00、20:00)、清洁频率(例如每天、隔天、每周六)等。
所述第三对应关系依照普通大众的生活普遍规律由控制器进行预先设置并存储于所述存储器中。例如,依照普通大众的生活普遍规律,厨房通常在每天晚上17:00~20:00被使用,则针对功能元素“厨房”,其对应的普通清洁日程即可设定为“每天20:00”。
进一步地,所述控制器还配置为:响应于所述输入单元所采集到的用户输入,获取每个分区地图相对应的功能元素;根据预先建立的第三对应关系,匹配与每个分区地图相对应的功能元素相对应的普通清洁日程;建立与每个 分区地图相对应的功能元素相对应的普通清洁日程与每个分区地图的第四对应关系;根据所述第四对应关系,匹配与每个分区地图对应的普通清洁日程,控制清洁机器人按照所述第一运行参数组和所述普通清洁日程对相应分区地图所指代的清洁区域进行清洁。
例如,针对分区地图“房间1”、“房间2”、“房间3”,用户分别输入功能元素“厨房”、“卧室”、“客厅”,所述控制器访问所述存储器,并根据预先建立的第三对应关系匹配到与“厨房”、“卧室”、“客厅”逐一相对应的普通清洁日程为“每天20:00”、“每周六9:00”、“每天22:00”;而后所述控制器控制清洁机器人11将与功能元素“厨房”、“卧室”、“客厅”逐一相对应的普通清洁日程“每天20:00”、“每周六9:00”、“每天22:00”与分区地图“房间1”、“房间2”、“房间3”相对应,即:所述控制器控制所述清洁机器人11建立普通清洁日程“每天20:00”、“每周六9:00”、“每天22:00”与分区地图“房间1”、“房间2”、“房间3”的第四对应关系;最后所述控制器控制所述存储器存储所述第四对应关系。以此,控制器可控制清洁机器人11每天20:00对“房间1”所代指的清洁区域进行清洁、每周六9:00对“房间2”所代指的清洁区域进行清洁、每天的22:00行走对“房间3”所代指的清洁区域进行清洁。
进一步地,所述控制器还配置为:匹配与功能元素相对应的普通清洁日程后,控制所述输出单元向用户推送所述普通清洁日程以供用户审核,所述控制器根据审核结果设定最终的普通清洁日程。其中,当审核结果为否时,所述输入单元采集用于更改所述普通清洁日程的用户输入,所述控制器响应于用户输入设定出最终的普通清洁日程;当审核结果为是时,所述控制器直接采用并设定最终的普通清洁日程。
例如,针对分区地图“房间1”,其对应功能元素“厨房”,根据所述第三对应关系,与“厨房”相对应的普通清洁日程为“每天20:00”;所述触摸显示屏可以显示包括“厨房的普通清洁日程为每天20:00”以及“确认”、“更改”等信息的对话框;用户通过触摸“确认”图标以使得所述控制器获 取审核结果“是”,所述控制器直接采用并设定“每天20:00”为最终的普通清洁日程,这样,所述控制器生成的第一控制信号中对应至分区地图“房间1”的普通清洁日程为“每天20:00”;用户通过触摸“更改”图标以使得所述控制器获取审核结果“否”,用户通过所述触摸显示屏将普通清洁日程更改为“每天21:00”,所述控制器设定“每天21:00”为最终的普通清洁日程,这样,所述控制器生成的第一控制信号中对应至分区地图“房间1”的普通清洁日程为“每天21:00”。
进一步地,清洁机器人11包括普通清洁模式和深度清洁模式。
所述普通清洁模式对应第一运行参数组和普通清洁日程;也就是说,于所述普通清洁模式下,所述控制器控制清洁机器人11按照第一运行参数组和普通清洁日程对相应分区地图所代指的清洁区域进行清洁。
接下来对清洁机器人11的深度清洁模式的实现进行介绍。
所述控制器还配置为:评估清洁机器人11在一个清洁周期内执行所述普通清洁模式的单日总能耗;计算清洁机器人11的单日剩余能耗;根据单日剩余能耗设定深度清洁日程;控制清洁机器人11按照深度清洁日程执行所述深度清洁模式。
其中,所述深度清洁日程可以包括清洁时间(例如8:00、14:00、20:00)、清洁频率(例如每周日、每月6号)等。针对同一分区地图,所述深度清洁日程中清洁频率要远小于所述普通清洁日程中清洁频率,而所述深度清洁日程中清洁时间与所述普通清洁日程中清洁时间可以设置为相同。
所述清洁周期为预设值,例如,可以15天作为一个清洁周期,或者一个月作为一个清洁周期。
所述控制器设定深度清洁日程的过程示例为:针对分区地图“房间1”、“房间2”、“房间3”,功能元素分别为“厨房”、“卧室”、“客厅”,相对应的普通清洁日程“每天20:00”、“每周六9:00”、“每天22:00”;所述控制器评估清洁机器人11于一个清洁周期(例如一个月)内执行所述普通清洁模式的单日总能耗;根据所述单日总能耗和所述电池包的额定总能耗, 计算清洁机器人11的单日剩余能耗;计算后发现每月2号、每月4号、每月6号的单日剩余能耗相对最大,则分别于每月2号、每月4号、每月6号设定深度清洁日程,可以是设定“房间1”、“房间2”、“房间3”的深度清洁日程分别为“每月2日20:00”、“每月4日9:00”、“每月6日22:00”;而后所述控制器生成包含“每月2日20:00”、“每月4日9:00”、“每月6日22:00”的第二控制信号,以控制清洁机器人11每月2日20:00对“房间1”所代指的清洁区域执行深度清洁模式、每月4日9:00对“房间2”所代指的清洁区域执行深度清洁模式、每月6日22:00对“房间3”所代指的清洁区域执行深度清洁模式。
进一步地,所述控制器还配置为:设定深度清洁日程后,控制所述输出单元向用户推送所述深度清洁日程以供用户审核,所述控制器根据审核结果设定最终的深度清洁日程。其中,当审核结果为否时,所述输入单元采集用于更改所述深度清洁日程的用户输入,所述控制器响应于用户输入设定出最终的深度清洁日程;当审核结果为是时,所述控制器直接采用并设定最终的深度清洁日程。
例如,针对分区地图“房间1”,所述触摸显示屏显示包括“厨房的深度清洁日程为每月2日21:00”以及“确认”、“更改”等信息的对话框;用户通过触摸“确认”图标以使得所述控制器获取审核结果“是”,所述控制器直接采用并设定“每月2日21:00”为最终的深度清洁日程,这样,所述控制器生成的第二控制信号中对应至分区地图“房间1”的深度清洁日程为“每月2日21:00”;用户通过触摸“更改”图标以使得所述控制器获取审核结果“否”,用户通过所述触摸显示屏将深度清洁日程更改为“每月3日21:00”,所述控制器设定“每月3日21:00”为最终的深度清洁日程,这样,所述控制器生成的第二控制信号中对应至分区地图“房间1”的深度清洁日程为“每月3日21:00”。
进一步地,所述存储器还配置为存储地面属性元素与第二运行参数组的第五对应关系。
其中,所述第二运行参数组对应于所述深度清洁模式。所述第二运行参数组包括清洁机器人11的多个运行参数,相较于所述第一运行参数组,所述第二运行参数组对应于使清洁机器人11对待清洁面的清洁力度更强的运行参数设定。
例如,所述第二运行参数组可以包括改变吸口1101处吸力的所述第一电机的运行功率P'、滚刷1121的转速R'、边刷1122的转速r'、可以改变清洁机器人11行走速度的所述第四电机的运行功率p'、可以改变滚刷1121和边刷1122离地高度的所述滚轮模组的高度H'等。为便于描述,第二运行参数组以{P',R',r',p',H'}的方式示例。第二运行参数组{P',R',r',p',H'}相较于第一运行参数组{P,R,r,p,H},针对同一地面属性元素,所述第一电机的运行功率P'>P从而增大吸口1101处的吸力,滚刷1121的转速R'>R和/或边刷1122的转速r'>r从而增大对待清洁面上异物的清扫频率,所述第四电机的运行功率p'<p从而降低清洁机器人11行走速度。
进一步地,所述控制器还配置为:根据预先建立的第五对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第二运行参数组;控制清洁机器人依照第二运行参数组和深度清洁日程对相应分区地图所代指的清洁区域执行所述深度清洁模式。
例如,针对分区地图“房间1”、“房间2”、“房间3”,相对应的地面属性元素分别为“瓷砖”、“木地板”、“毛毯”,所述控制器访问所述存储器,并且根据所述第五对应关系匹配到与“瓷砖”、“木地板”、“毛毯”逐一相对应的第二运行参数组{P' 1,R' 1,r' 1,p' 1,H' 1}、{P' 2,R' 2,r' 2,p' 2,H' 1}、{P' 3,R' 1,r' 1,p' 1,H' 3};而后所述控制器生成包含{P'1,R'1,r'1,p'1,H'1}、{P'2,R'2,r'2,p'2,H'1}、{P'3,R'1,r'1,p'1,H'3}的第二控制信号,以控制清洁机器人11以第二运行参数组{P' 1,R' 1,r' 1,p' 1,H' 1}对“房间1”所代指的清洁区域执行深度清洁模式、以第二运行参数组{P' 2,R' 2,r' 2,p' 2,H' 1}对“房间2”所代指的清洁区域执行深度清洁模式、以第二运行参数组{P' 3,R' 1,r' 1,p' 1,H' 3}对“房间3” 所代指的清洁区域执行深度清洁模式。
进一步地,所述第二运行参数组还包括关于所述拖洗件的状态参数T’。相应的,为便于描述,第二运行参数组进一步以{P',R',r',p',H',T'}的方式示例。
所述控制器还配置为:控制清洁机器人11依照第二运行参数组对相应分区地图所代指的清洁区域进行清洁时,若所述第二运行参数组中的所述状态参数为使用状态,清洁过程中所述拖洗件工作;若所述第二运行参数组中的所述状态参数为收起状态,清洁过程中所述拖洗件不工作。
例如,本实施例中,针对分区地图“房间1”、“房间3”,相对应的地面属性元素分别为“瓷砖”、“毛毯”,所述控制器访问所述存储器,并且根据所述第五对应关系匹配到与“瓷砖”、“毛毯”分别相对应的第二运行参数组{P' 1,R' 1,r' 1,p' 1,H' 1,T 1'}、{P' 3,R' 1,r' 1,p' 1,H' 3,T 2'};其中,T 1'代指所述状态参数为使用状态,T 2'代指所述状态参数为收起状态;所述控制器控制清洁机器人11以{P' 1,R' 1,r' 1,p' 1,H' 1,T 1'}对“房间1”所代指的清洁区域执行深度清洁模式时,清洁过程中所述拖洗件工作;所述控制器控制清洁机器人11以{P' 3,R' 1,r' 1,p' 1,H' 3,T 2'}对“房间3”所代指的清洁区域执行深度清洁模式时,清洁过程中所述拖洗件不工作。
这样,一方面可以通过设置深度清洁模式,可以定期对房屋实现深度清洁(例如增大吸口1101处的吸力,并且拖洗地面);另一方面,还可以根据地面材质的不同,选择性使用/不使用所述拖洗件,防止不便于拖洗的地面材质受损。
由于本实施例的控制方法为上述清洁机器人的控制装置所使用,故在本实施例中,控制方法的详细内容便不再赘述。
实施例2
请结合参考图5及图6,本发明一实施例提供一种清洁机器人11,所述清洁机器人11配置为可以自行充电、行走并执行作业(例如对清洁区域的清洁作业、清洁区域的地图构建等)。
所述清洁机器人11具体包括所述主体、电池包、气流发生装置、集尘装置、清洁装置以及行走装置。这些部件/结构与实施例1相同,在此不再赘述。
本实施例中,所述清洁机器人11还进一步包括控制装置,所述控制装置的部分结构/部件设置于所述清洁机器人的所述主体上,所述控制装置的另一部分分结构/部件设置于移动终端上,该移动终端可以是能够与所述清洁机器人进行信息交互的手机(也称蜂窝电话),还可以是PDA(Personal Digital Assistant,即掌上电脑)、膝上型计算机、数字照相机、MP3播放器、智能手环、遥控器等。需要注意的是,在其他实施例中,所述控制装置也可以如实施例1所述全部设置于所述清洁机器人11的所述主体上。
具体地,所述控制装置包括通讯器、存储器、输入单元、输出单元以及控制器。
本实施例中,所述输出单元优选地包括设置于所述移动终端上的显示屏。所述输入单元优选地包括图形用户界面,其与所述显示屏形成共同层结构以集成为同时具有显示和触控功能的触摸显示屏。在下文中,为了便于描述,假设所述输入单元和所述输出单元以触摸显示屏的方式予以实施。
所述通讯器可以通过通信模块进行实现,例如,可以包括无线因特网模块、短距离通信模块、移动通信模块等各种通信模块。具体地,所述通讯器包括设置于所述清洁机器人11上的机器端通讯单元以及设置于所述移动终端上的终端通讯单元。
其中,所述机器端通讯单元配置为可以通过有线和/或无线方式与所述清洁机器人的内部部件和/或所述清洁机器人的外部(例如所述基座、所述移动终端的所述终端通讯单元、外部服务器等)进行通信以进行信息的交互传输。
所述终端通讯单元配置为可以通过有线和/或无线方式与外部服务器和/或所述清洁机器人上的所述机器端通讯单元进行通信以进行信息的交互传输。
所述存储器配置为可以临时或非临时地存储用于所述清洁机器人的操作的数据和程序。在本实施例中,所述存储器包括设置于所述清洁机器人上的机器端存储单元以及设置于所述移动终端上的终端存储单元。其中,所述机 器端存储单元配置为:存储所述控制器生成的各种控制信号、存储所述清洁机器人的历史清洁数据、存储的清洁区域的地图及存储清洁机器人的运行参数等。所述终端存储单元可以存储从外部服务器下载的应用程序。
在本实施例中,所述控制器包括设置于所述清洁机器人上的机器端控制单元以及设置于所述移动终端上的终端控制单元。
所述机器端控制单元可以控制所述清洁机器人的各个部件,该各个部件包括但不限于所述机器端存储单元、所述机器端通讯单元、所述气流发生装置、所述清洁装置、所述行走装置。
所述机器端控制单元配置为:生成控制信号以使所述电池包向所述清洁机器人的各个电力驱动部件的供电电路的导通或断开,进而控制所述清洁机器人的开机或关机;能够生成控制信号以使所述气流发生装置、所述清洁装置、所述行走装置启动,进而控制所述清洁机器人执行清洁作业;能够生成控制信号以使所述气流发生装置、所述清洁装置、所述行走装置以设定运行参数运行,进而控制所述清洁机器人的运行状态/清洁模式。
所述机器端控制单元配置为:生成使所述机器端存储单元存储所述清洁机器人的历史清洁数据的控制信号,生成使所述机器端存储单元存储地图的控制信号等。
所述机器端控制单元配置为:生成控制信号以使所述机器端通讯单元从所述终端通讯单元接收各种控制信号,生成使所述机器端通讯单元向所述清洁机器人的外部发送信息的控制信号等。
所述机器端控制单元配置为:在所述机器端通讯单元直接地或经外部服务器间接地接收从所述终端通讯单元发送来的各种控制信号后,根据所述机器端通讯单元接收到的控制信号控制所述清洁机器人执行作业。
所述终端控制单元可以控制所述输入单元、所述输出单元、所述终端通讯单元、所述终端存储单元。
所述终端控制单元配置为:连接所述输出单元并生成控制信号以使所述输出单元向用户输出信息,例如,在本实施例中,向用户展示从外部服务器 下载的应用程序的图标及所述应用程序执行后的各级操作界面。
所述终端控制单元配置为:连接所述输入单元并生成控制信号以使所述输入单元采集用户输入,例如,在本实施例中,当所述应用程序执行后,所述终端控制单元生成控制信号以使所述输入单元识别并采集用户的输入操作。
所述终端控制单元配置为:连接所述终端通讯单元并生成控制信号以使所述终端通讯单元收/发信息,例如,在本实施例中,当所述终端控制单元生成用于控制所述清洁机器人的控制信号时,所述终端控制单元还同时生成另一控制信号以使所述终端通讯单元发送上述用于控制所述清洁机器人的控制信号给所述机器端通讯单元。
所述终端控制单元连接所述终端存储单元并生成控制信号以使所述终端存储单元存储信息或读取所述终端存储单元内已存储的信息。例如,在本实施例中,所述终端控制单元生成控制信号以使所述终端存储单元存储从外部服务器下载的所述应用程序,存储执行所述应用程序的历史数据。
以上对所述控制装置的各个部件/结构之间的基本连接关系进行了说明,下面将对所述控制装置对所述清洁机器人的控制过程进行详细描述。
所述存储器配置为存储地面属性元素及与所述地面属性元素相对应的第一运行参数组。
其中,所述地面属性元素代指清洁区域中待清洁面的材质,例如木地板、毛毯、瓷砖、玻璃、长毛毯、石材板等。
关于所述第一运行参数组的相关内容与实施例1一致,这里便不再赘述。
进一步地,请参考图5,所述控制器控制清洁机器人执行步骤20’:构建划分成若干分区地图的全区地图。
在本实施例中,所述控制器构建划分成若干分区地图的全区地图的动作可以通过以下方式触发:所述触摸显示屏被点亮时,所述应用程序被显示于所述触摸显示屏的主桌面上,用户通过触摸所述应用程序的图标以使所述应用程序被执行;进一步地,用户触摸所述触摸显示屏的屏幕上的“构建地图”图标,所述输入单元采集到该用户输入,触发所述终端控制单元生成“构建 地图”控制信号,而当所述终端控制单元生成“构建地图”控制信号时,所述终端控制单元控制所述终端通讯单元直接或通过外部服务器间接地发送“构建地图”控制信号至所述机器端通讯单元;所述机器端通讯单元接收到“构建地图”控制信号后,所述机器端控制单元控制所述清洁机器人基于其可行走边界构建划分成若干分区地图的全区地图。
通过所述通讯器,所述终端控制单元接收到构建出的全区地图并控制所述终端存储单元存储全区地图。
其中,所述全区地图对应整个清洁区域,例如使用所述清洁机器人的房屋地面。所述控制器构建所述全区地图的方式具体可以为:所述机器端控制单元控制所述行走装置启动,进而控制所述清洁机器人在整个清洁区域中行走,并基于所述清洁机器人的可行走边界构建出所述全区地图。
所述分区地图对应整个清洁区域中的局部区域,例如使用所述清洁机器人的房屋中的一个房间地面。可以理解的,所述全区地图由若干个所述分区地图拼合而成,分区地图的数目与房屋的房间数目/布局有关,为便于说明,在后文的描述中,以所述全区地图划分为三个分区地图为例。在本实施例中,所述控制器构建所述全区地图时,自动拟合出若干所述分区地图;当然,在可行的其他实施例中,所述控制器构建所述全区地图整体,然后通过人为方式将所述全区地图分割成若干所述分区地图。
进一步地,所述控制器还配置为:构建划分成若干分区地图的全区地图后,控制所述输出单元显示所述全区地图。
例如,本实施例中,当所述控制器构建出全区地图后,所述触摸显示屏上可以具有“查看地图”图标,用户通过触摸“查看地图”图标,以使所述终端控制单元生成控制信号,所述终端控制单元控制所述触摸显示屏显示出所述全区地图。
进一步地,所述控制器还配置为:构建划分成若干分区地图的全区地图后,设定每个所述分区地图的名称标识。
其中,所述控制器可以自动生成所述名称标识,或者可以响应于用户输
入而生成所述名称标识。例如,用户选中某分区地图,所述触摸显示屏显示“命名”对话框/图标,用户通过“命名”对话框/图标可输入分区地图的名称标识,例如“房间1”。
进一步地,请继续参考图5,所述控制器控制清洁机器人执行步骤30’:响应于用户输入,获取每个分区地图相对应的地面属性元素,其中,不同的地面属性元素分别对应不同的第一运行参数组;执行步骤40’:进入一清洁区域;执行步骤50’:获取所述清洁区域所对应的第一分区地图,所述第一分区地图为所述若干分区地图中之一;执行步骤60’:获取所述第一分区地图所对应的第一地面属性元素,所述第一地面属性元素为所述不同的地面属性元素中之一;执行步骤70’:控制清洁机器人依照与所述第一地面属性对应的第一运行参数组对所述清洁区域进行清洁。
例如,三个分区地图“房间1”、“房间2”、“房间3”分别对应的待清洁面是瓷砖、木地板、毛毯材质。对于“房间1”、“房间2”、“房间3”,用户可通过触摸显示屏分别在与“房间1”、“房间2”、“房间3”产生联系的位置输入“瓷砖”、“木地板”、“毛毯”;终端控制单元从触摸显示屏获取到“瓷砖”与“房间1”产生联系,“木地板”与“房间2”产生联系,“毛毯”与“房间3”产生联系;之后所述终端控制单元分别将“瓷砖”与“房间1”之间形成映射,将“木地板”与“房间2”之间形成映射,将“毛毯”与“房间3”之间形成映射,并将上述映射存储于应用程序中;所述终端控制单元生成包含“瓷砖”与“房间1”的映射,“木地板”与“房间2”的映射,“毛毯”与“房间3”的映射的第一控制信号;之后所述终端通讯单元将所述第一控制信号发送至所述机器端通讯单元;最后所述机器端存储单元存储上述映射。在本实施例中,机器端存储单元还预存“瓷砖”与第一运行参数{P1,R1,r1,p1,H1}的对应关系,“木地板”与第一运行参数{P2,R2,r2,p2,H1}的对应关系,以及“毛毯”与第一运行参数{P3,R1,r1,p1,H3}的对应关系;需要注意的是,在其他实施例中,“瓷砖”与第一运行参数{P1,R1,r1,p1,H1}的对应关系,“木地板”与第一运行参 数{P2,R2,r2,p2,H1}的对应关系,以及“毛毯”与第一运行参数{P3,R1,r1,p1,H3}的对应关系也可以是预存于所述应用程序中,则所述终端通讯单元发送至所述机器端通讯单元的第一控制信号还包含“瓷砖”与第一运行参数{P1,R1,r1,p1,H1}的对应关系,“木地板”与第一运行参数{P2,R2,r2,p2,H1}的对应关系,以及“毛毯”与第一运行参数{P3,R1,r1,p1,H3}的对应关系,之后所述机器端存储单元存储上述对应关系。当用户完成上述三个分区地图的地面属性元素输入后,若当即便有清洁需求,则清洁机器人会进行如下作业:当清洁机器人11进入上述任意一个清洁区域时,以进入“房间1”所对应的清洁区域为例,机器端控制单元可控制清洁机器人11获取该清洁区域所对应的分区地图“房间1”,之后控制清洁机器人从机器端存储单元获取该分区地图“房间1”所对应的地面属性元素“瓷砖”,最后控制清洁机器人从机器端存储单元中读取与地面属性元素“瓷砖”相对应的第一运行参数组{P1,R1,r1,p1,H1}并依照所述第一运行参数组{P1,R1,r1,p1,H1}执行清洁作业。与实施例1不同,在本实施例中,控制器仅需控制清洁机器人11将地面属性元素与所述分区地图一一对应,而无需再控制清洁机器人11将第一运行参数组与所述分区地图进行对应,以此,一方面,清洁机器人11无需额外设计传感装置或摄像装置便可以对不同材质的待清洁面按照不同的运行参数执行清洁作业;另一方面,本实施例的清洁机器人11的控制系统更为简单,运行更为准确。
需要注意的是,在其他实施例中,所述控制器也可以控制清洁机器人执行步骤20’:构建全区地图,所述全区地图划分成若干分区地图;执行步骤30’:响应于用户输入,获取每个分区地图相对应的地面属性元素,其中,不同的地面属性元素分别对应不同的第一运行参数组。
例如:三个分区地图“房间1”、“房间2”、“房间3”分别对应的待清洁面是瓷砖、木地板、毛毯材质。对于“房间1”、“房间2”、“房间3”,用户可通过触摸显示屏分别在与“房间1”、“房间2”、“房间3”产生联系的位置输入“瓷砖”、“木地板”、“毛毯”;终端控制单元从触摸显示 屏获取到“瓷砖”与“房间1”产生联系,“木地板”与“房间2”产生联系,“毛毯”与“房间3”产生联系;之后所述终端控制单元分别将“瓷砖”与“房间1”之间形成映射,将“木地板”与“房间2”之间形成映射,将“毛毯”与“房间3”之间形成映射,并将上述映射存储于应用程序中;所述终端控制单元生成包含“瓷砖”与“房间1”的映射,“木地板”与“房间2”的映射,“毛毯”与“房间3”的映射的第一控制信号;之后所述终端通讯单元将所述第一控制信号发送至所述机器端通讯单元;最后所述机器端存储单元存储上述映射。在本实施例中,机器端存储单元还预存“瓷砖”与第一运行参数{P1,R1,r1,p1,H1}的对应关系,“木地板”与第一运行参数{P2,R2,r2,p2,H1}的对应关系,以及“毛毯”与第一运行参数{P3,R1,r1,p1,H3}的对应关系。可以理解的是,在用户根据需要对清洁机器人11进行地面属性元素输入后,清洁机器人11可仅是存储用户输入的数据而不立即进行清洁作业,也即:用户可以提前进行清洁机器人11的设置,而设置完成后无需立即使用清洁机器人11,若以后有清洁的需求,可直接使用清洁机器人11而无需再次设置。
可以理解的是,在其他实施例中,请具体参考图6,所述控制器也可以控制清洁机器人执行步骤40’:进入一清洁区域,执行步骤50’:获取所述清洁区域所对应的分区地图;执行步骤60’:获取所述分区地图所对应的地面属性元素,所述地面属性元素由用户预先输入,并且,所述地面属性元素对应于第一运行参数组;执行步骤70’:控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
例如:三个分区地图“房间1”、“房间2”、“房间3”分别对应的待清洁面是瓷砖、木地板、毛毯材质,当清洁机器人11进入上述任意一个清洁区域时,以进入“房间1”所对应的清洁区域为例,机器端控制单元可控制清洁机器人11获取该清洁区域所对应的分区地图“房间1”,之后控制清洁机器人从机器端存储单元获取该分区地图“房间1”所对应的地面属性元素“瓷砖”,最后控制清洁机器人从机器端存储单元中读取与地面属性元素“瓷 砖”相对应的第一运行参数组{P1,R1,r1,p1,H1}并依照所述第一运行参数组{P1,R1,r1,p1,H1}执行清洁作业。在用户完成清洁机器人的设置后,清洁机器人11可存储用户相应的输入,以此,在清洁机器人11之后的清洁作业中,其进入一清洁区域时,可直接读取该区域所对应的分区地图,并匹配分区地图相对应的地面属性元素,从而依照地面属性元素所对应的第一运行参数组执行清洁作业,无需用户再次输入。
进一步地,所述控制器还配置为:控制所述输出单元针对每个分区地图推送多个地面属性元素以供用户选择,获取选中的地面属性元素作为分区地图相对应的地面属性元素。
例如,当针对分区地图“房间1”进行地面属性元素的获取时,所述触摸显示屏上呈现“木地板”、“毛毯”、“瓷砖”、“玻璃”、“长毛毯”、“石材板”等多个图标供用户选择,若分区地图“房间1”对应的待清洁面为瓷砖材质,则用户可通过触摸“瓷砖”图标以实现选择式输入,用户选中的“瓷砖”即为该分区地图“房间1”相对应的地面属性元素。这样,可以预先针对多种材质设置相对应的第一运行参数组,以提高所述清洁机器人的智能化控制,提升用户体验。
进一步地,所述存储器还配置为存储功能元素及与所述功能元素相对应的普通清洁日程。
其中,所述功能元素代指分区地图所对应的清洁区域的用途,例如厨房、书房、客厅、卧室、盥洗室、阳台、健身房等。
所述普通清洁日程可以包括清洁时间(例如8:00、14:00、20:00)、清洁频率(例如每天、隔天、每周六)等。
所述功能元素所对应的普通清洁日程可按照普通大众的生活普遍规律进行预先设置。例如,依照普通大众的生活普遍规律,厨房通常在每天晚上17:00~20:00被使用,则针对功能元素“厨房”,其对应的普通清洁日程即可设定为“每天20:00”。
进一步地,所述控制器还配置为:响应于所述输入单元所采集到的用户 输入,获取每个分区地图相对应的功能元素,所述功能元素与所述普通清洁日程一一对应;控制清洁机器人按照第一运行参数组和普通清洁日程对相应分区地图所代指的清洁区域进行清洁。
例如,针对分区地图“房间1”、“房间2”、“房间3”,用户分别输入功能元素“厨房”、“卧室”、“客厅”,所述终端控制单元访问所述终端存储单元,并读取存储于终端存储单元中的与功能元素“厨房”、“卧室”、“客厅”一一对应的普通清洁日程“每天20:00”、“每周六9:00”、“每天22:00”;而后所述终端控制单元生成包含“每天20:00”、“每周六9:00”、“每天22:00”的第一控制信号;之后所述终端通讯单元将所述第一控制信号发送至所述机器端通讯单元,所述机器端存储单元存储与功能元素“厨房”、“卧室”、“客厅”一一对应的普通清洁日程“每天20:00”、“每周六9:00”、“每天22:00”。以此,所述机器端控制单元控制所述清洁机器人每天20:00对“房间1”所代指的清洁区域进行清洁、每周六9:00对“房间2”所代指的清洁区域进行清洁、每天的22:00对“房间3”所代指的清洁区域进行清洁。
进一步地,所述控制器还配置为:匹配与功能元素相对应的普通清洁日程后,控制所述输出单元向用户推送所述普通清洁日程以供用户审核,所述控制器根据审核结果设定最终的普通清洁日程。其中,当审核结果为否时,所述输入单元采集用于更改所述普通清洁日程的用户输入,所述控制器响应于用户输入设定出最终的普通清洁日程;当审核结果为是时,所述控制器直接采用并设定最终的普通清洁日程。
例如,针对分区地图“房间1”,其对应功能元素“厨房”,与“厨房”相对应的普通清洁日程为“每天20:00”;所述触摸显示屏可以显示包括“厨房的普通清洁日程为每天20:00”以及“确认”、“更改”等信息的对话框;用户通过触摸“确认”图标以使得所述控制器获取审核结果“是”,所述终端控制单元直接采用并设定“每天20:00”为最终的普通清洁日程,这样,所述终端控制单元生成的控制信号中对应至分区地图“房间1”的普通清洁 日程为“每天20:00”;用户通过触摸“更改”图标以使得所述终端控制单元获取审核结果“否”,用户通过所述触摸显示屏将普通清洁日程更改为“每天21:00”,所述终端控制单元设定“每天21:00”为最终的普通清洁日程,这样,所述终端控制单元生成的控制信号中对应至分区地图“房间1”的普通清洁日程为“每天21:00”。
进一步地,所述清洁机器人包括普通清洁模式和深度清洁模式。
所述普通清洁模式对应第一运行参数组和普通清洁日程;也就是说,于所述普通清洁模式下,所述控制器控制所述清洁机器人按照第一运行参数组和普通清洁日程对相应分区地图所代指的清洁区域进行清洁。
接下来对所述清洁机器人的深度清洁模式的实现进行介绍。
所述控制器还配置为:评估所述清洁机器人在一个清洁周期内执行所述普通清洁模式的单日总能耗;计算所述清洁机器人的单日剩余能耗;根据单日剩余能耗设定深度清洁日程;控制所述清洁机器人按照深度清洁日程执行所述深度清洁模式。
其中,所述深度清洁日程可以包括清洁时间(例如8:00、14:00、20:00)、清洁频率(例如每周日、每月6号)等。针对同一分区地图,所述深度清洁日程中清洁频率要远小于所述普通清洁日程中清洁频率,而所述深度清洁日程中清洁时间与所述普通清洁日程中清洁时间可以设置为相同。
所述清洁周期为预设值,例如,可以15天作为一个清洁周期,或者一个月作为一个清洁周期。
所述控制器设定深度清洁日程的过程示例为:针对分区地图“房间1”、“房间2”、“房间3”,功能元素分别为“厨房”、“卧室”、“客厅”,相对应的普通清洁日程“每天20:00”、“每周六9:00”、“每天22:00”;所述终端控制单元评估所述清洁机器人于一个清洁周期(例如一个月)内执行所述普通清洁模式的单日总能耗;根据所述单日总能耗和所述电池包的额定总能耗,计算所述清洁机器人的单日剩余能耗;计算后发现每月2号、每月4号、每月6号的单日剩余能耗相对最大,则分别于每月2号、每月4号、 每月6号设定深度清洁日程,可以是设定“房间1”、“房间2”、“房间3”的深度清洁日程分别为“每月2日20:00”、“每月4日9:00”、“每月6日22:00”;而后所述控制器生成包含“每月2日20:00”、“每月4日9:00”、“每月6日22:00”的第二控制信号,以控制所述清洁机器人每月2日20:00对“房间1”所代指的清洁区域执行深度清洁模式、每月4日9:00对“房间2”所代指的清洁区域执行深度清洁模式、每月6日22:00对“房间3”所代指的清洁区域执行深度清洁模式。
进一步地,所述控制器还配置为:设定深度清洁日程后,控制所述输出单元向用户推送所述深度清洁日程以供用户审核,所述控制器根据审核结果设定最终的深度清洁日程。其中,当审核结果为否时,所述输入单元采集用于更改所述深度清洁日程的用户输入,所述控制器响应于用户输入设定出最终的深度清洁日程;当审核结果为是时,所述控制器直接采用并设定最终的深度清洁日程。
例如,针对分区地图“房间1”,所述触摸显示屏显示包括“厨房的深度清洁日程为每月2日21:00”以及“确认”、“更改”等信息的对话框;用户通过触摸“确认”图标以使得所述终端控制单元获取审核结果“是”,所述终端控制单元直接采用并设定“每月2日21:00”为最终的深度清洁日程,这样,所述终端控制单元生成的第二控制信号中对应至分区地图“房间1”的深度清洁日程为“每月2日21:00”;用户通过触摸“更改”图标以使得所述终端控制单元获取审核结果“否”,用户通过所述触摸显示屏将深度清洁日程更改为“每月3日21:00”,所述终端控制单元设定“每月3日21:00”为最终的深度清洁日程,这样,所述终端控制单元生成的第二控制信号中对应至分区地图“房间1”的深度清洁日程为“每月3日21:00”。
进一步地,所述存储器还配置为存储地面属性元素及与所述地面属性元素相对应的第二运行参数组。
其中,所述第二运行参数组对应于所述深度清洁模式。所述第二运行参数组包括所述清洁机器人的多个运行参数,相较于所述第一运行参数组,所 述第二运行参数组对应于使所述清洁机器人对待清洁面的清洁力度更强的运行参数设定。
例如,所述第二运行参数组可以包括改变所述吸口处吸力的所述第一电机的运行功率P'、所述滚刷的转速R'、所述边刷的转速r'、可以改变所述清洁机器人行走速度的所述第四电机的运行功率p'、可以改变所述滚刷和所述边刷离地高度的所述滚轮模组的高度H',等。为便于描述,第二运行参数组以{P',R',r',p',H'}的方式示例。
第二运行参数组{P',R',r',p',H'}相较于第一运行参数组{P,R,r,p,H},针对同一地面属性元素,所述第一电机的运行功率P'>P从而增大所述吸口处的吸力,所述滚刷的转速R'>R和/或所述边刷的转速r'>r从而增大对待清洁面上异物的清扫频率,所述第四电机的运行功率p'<p从而降低所述清洁机器人行走速度。
进一步地,所述控制器还配置为:匹配与每个分区地图相对应的地面属性元素相对应的第二运行参数组,控制清洁机器人依照第二运行参数组和深度清洁日程对相应分区地图所代指的清洁区域执行所述深度清洁模式。
例如,针对分区地图“房间1”、“房间2”、“房间3”,相对应的地面属性元素分别为“瓷砖”、“木地板”、“毛毯”,所述机器端控制单元访问所述机器端存储单元,并且匹配到与“瓷砖”、“木地板”、“毛毯”逐一相对应的第二运行参数组{P' 1,R' 1,r' 1,p' 1,H' 1}、{P' 2,R' 2,r' 2,p' 2,H' 1}、{P' 3,R' 1,r' 1,p' 1,H' 3};而后机器端控制单元生成包含{P'1,R'1,r'1,p'1,H'1}、{P'2,R'2,r'2,p'2,H'1}、{P'3,R'1,r'1,p'1,H'3}的第二控制信号,以控制所述清洁机器人以第二运行参数组{P' 1,R' 1,r' 1,p' 1,H' 1}对“房间1”所代指的清洁区域执行深度清洁模式、以第二运行参数组{P' 2,R' 2,r' 2,p' 2,H' 1}对“房间2”所代指的清洁区域执行深度清洁模式、以第二运行参数组{P' 3,R' 1,r' 1,p' 1,H' 3}对“房间3”所代指的清洁区域执行深度清洁模式。
进一步地,所述第二运行参数组还包括关于所述拖洗件的状态参数T’。 相应的,为便于描述,第二运行参数组进一步以{P',R',r',p',H',T'}的方式示例。
所述控制器还配置为:控制所述清洁机器人依照第二运行参数组对相应分区地图所代指的清洁区域进行清洁时,若所述第二运行参数组中的所述状态参数为使用状态,清洁过程中所述拖洗件工作;若所述第二运行参数组中的所述状态参数为收起状态,清洁过程中所述拖洗件不工作。
例如,本实施例中,针对分区地图“房间1”、“房间3”,相对应的地面属性元素分别为“瓷砖”、“毛毯”,所述机器端控制单元访问所述机器端存储单元,并匹配到与“瓷砖”、“毛毯”分别相对应的第二运行参数组{P' 1,R' 1,r' 1,p' 1,H' 1,T 1'}、{P' 3,R' 1,r' 1,p' 1,H' 3,T 2'};其中,T 1'代指所述状态参数为使用状态,T 2'代指所述状态参数为收起状态;以此,所述机器端控制单元控制所述清洁机器人以{P' 1,R' 1,r' 1,p' 1,H' 1,T 1'}对“房间1”所代指的清洁区域执行深度清洁模式时,清洁过程中所述拖洗件工作;所述机器端控制单元控制所述清洁机器人以{P' 3,R' 1,r' 1,p' 1,H' 3,T 2'}对“房间3”所代指的清洁区域执行深度清洁模式时,清洁过程中所述拖洗件不工作。
这样,一方面可以通过设置深度清洁模式,可以定期对房屋实现深度清洁(例如增大所述吸口处的吸力,并且拖洗地面);另一方面,还可以根据地面材质的不同,选择性使用/不使用所述拖洗件,防止不便于拖洗的地面材质受损。
由于本实施例的控制方法为上述清洁机器人的控制装置所使用,故在本实施例中,控制方法的详细内容便不再赘述。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精 神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围。

Claims (13)

  1. 一种清洁机器人的控制方法,其特征在于,所述控制方法包括:
    构建全区地图,所述全区地图划分成若干分区地图;
    响应于用户输入,获取每个分区地图相对应的地面属性元素;
    根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;
    建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系;
    当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;
    根据所述第二对应关系,匹配与所述清洁区域所对应的分区地图相对应的第一运行参数组,控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
  2. 根据权利要求1所述的清洁机器人的控制方法,其特征在于,所述方法还包括:
    响应于用户输入,获取每个分区地图相对应的功能元素;
    根据预先建立的第三对应关系,匹配与每个分区地图相对应的功能元素相对应的普通清洁日程;
    建立与每个分区地图相对应的功能元素相对应的普通清洁日程与每个分区地图的第四对应关系;
    根据所述第四对应关系,匹配与每个分区地图对应的普通清洁日程,控制清洁机器人按照所述第一运行参数组和所述普通清洁日程对相应分区地图所指代的清洁区域进行清洁。
  3. 根据权利要求2所述的清洁机器人的控制方法,其特征在于,所述清洁机器人包括普通清洁模式和深度清洁模式;所述普通清洁模式对应第一运行参数组和普通清洁日程;
    所述控制方法还包括:
    评估清洁机器人在一个清洁周期内执行所述普通清洁模式的单日总能耗;
    计算清洁机器人的单日剩余能耗;
    根据单日剩余能耗设定深度清洁日程;
    控制清洁机器人按照深度清洁日程执行所述深度清洁模式。
  4. 根据权利要求3所述的清洁机器人的控制方法,其特征在于,所述控制方法还包括:
    根据预先建立的第五对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第二运行参数组;
    控制清洁机器人依照第二运行参数组和深度清洁日程对相应分区地图所指代的清洁区域执行所述深度清洁模式。
  5. 一种清洁机器人的控制方法,其特征在于,所述控制方法包括:
    当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;
    根据预先建立的第二对应关系,匹配与所述分区地图相对应的第一运行参数组;
    控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
  6. 一种清洁机器人的控制方法,其特征在于,所述控制方法包括:
    构建全区地图,所述全区地图划分成若干分区地图;
    响应于用户输入,获取每个分区地图相对应的地面属性元素;
    根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;
    建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系。
  7. 一种清洁机器人的控制装置,其特征在于,所述控制装置包括:
    存储器,配置为存储地面属性元素与第一运行参数组的第一对应关系及所述第一运行参数组与分区地图的第二对应关系;
    输入单元,配置为采集用户输入;
    控制器,配置为:构建划分成若干分区地图的全区地图;响应于所述输 入单元所采集到的用户输入,获取每个分区地图相对应的地面属性元素;根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系;当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;根据所述第二对应关系,匹配与所述清洁区域所对应的分区地图相对应的第一运行参数组,控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
  8. 根据权利要求7所述的清洁机器人的控制装置,其特征在于,所述存储器还配置为存储功能元素与普通清洁日程的第三对应关系及所述普通清洁日程与所述分区地图的第四对应关系;
    所述控制器还配置为:响应于所述输入单元所采集到的用户输入,获取每个分区地图相对应的功能元素;根据预先建立的第三对应关系,匹配与每个分区地图相对应的功能元素相对应的普通清洁日程;建立与每个分区地图相对应的功能元素相对应的普通清洁日程与每个分区地图的第四对应关系;根据所述第四对应关系,匹配与每个分区地图对应的普通清洁日程,控制清洁机器人按照所述第一运行参数组和所述普通清洁日程对相应分区地图所指代的清洁区域进行清洁。
  9. 根据权利要求8所述的清洁机器人的控制装置,其特征在于,所述清洁机器人包括普通清洁模式和深度清洁模式;所述普通清洁模式对应第一运行参数组和普通清洁日程;
    所述控制器还配置为:评估清洁机器人在一个清洁周期内执行所述普通清洁模式的单日总能耗;计算清洁机器人的单日剩余能耗;根据单日剩余能耗设定深度清洁日程;控制清洁机器人按照深度清洁日程执行所述深度清洁模式。
  10. 根据权利要求9所述的清洁机器人的控制装置,其特征在于,所述存储器还配置为存储地面属性元素与第二运行参数组的第五对应关系;
    所述控制器还配置为:根据预先建立的第五对应关系,分别匹配与每个 分区地图相对应的地面属性元素相对应的第二运行参数组;控制清洁机器人依照第二运行参数组和深度清洁日程对相应分区地图所代指的清洁区域执行所述深度清洁模式。
  11. 一种清洁机器人的控制装置,其特征在于,所述控制装置包括:
    存储器,配置为存储分区地图与第一运行参数组的第二对应关系;
    控制器,配置为:当清洁机器人进入一清洁区域时,获取所述清洁区域所对应的分区地图;根据预先建立的第二对应关系,匹配与所述分区地图相对应的第一运行参数组;控制清洁机器人依照所述第一运行参数组对所述清洁区域进行清洁。
  12. 一种清洁机器人的控制装置,其特征在于,所述控制装置包括:
    存储器,配置为存储地面属性元素与第一运行参数组的第一对应关系及第一运行参数组与分区地图的第二对应关系;
    控制器,配置为:构建全区地图,所述全区地图划分成若干分区地图;响应于用户输入,获取每个分区地图相对应的地面属性元素;根据预先建立的第一对应关系,分别匹配与每个分区地图相对应的地面属性元素相对应的第一运行参数组;建立每个分区地图相对应的地面属性元素相对应的第一运行参数组与每个分区地图的第二对应关系。
  13. 一种清洁机器人,其特征在于,所述清洁机器人包括权利要求7-12所述的控制装置。
PCT/CN2019/121444 2018-09-29 2019-11-28 清洁机器人及其控制方法和控制装置 WO2020173157A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811148039 2018-09-29
CN201910143757.9 2019-02-25
CN201910143757.9A CN110960150B (zh) 2018-09-29 2019-02-25 清洁机器人及其控制方法和控制装置

Publications (1)

Publication Number Publication Date
WO2020173157A1 true WO2020173157A1 (zh) 2020-09-03

Family

ID=70028493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121444 WO2020173157A1 (zh) 2018-09-29 2019-11-28 清洁机器人及其控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN110960150B (zh)
WO (1) WO2020173157A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114532924A (zh) * 2022-02-25 2022-05-27 深圳市商汤科技有限公司 区域清洁的方法、装置、电子设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210196093A1 (en) * 2018-10-27 2021-07-01 Hizero Technologies Co., Ltd. Drone-based cleaning method and system
CN111984010B (zh) * 2020-08-12 2023-06-02 南京苏美达智能技术有限公司 一种自动选择地图的方法、系统及自动行走设备
CN115104947B (zh) * 2021-03-17 2024-07-02 达利通香港有限公司 地板材质识别装置以及具有该地板材质识别装置的吸头和吸尘器
CN117694781A (zh) * 2022-09-06 2024-03-15 速感科技(北京)有限公司 清洁机器人及其控制方法和装置、用户设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188800A1 (ko) * 2016-04-29 2017-11-02 엘지전자 주식회사 이동 로봇 및 그 제어방법
CN108231069A (zh) * 2017-08-30 2018-06-29 深圳乐动机器人有限公司 清洁机器人的语音控制方法、云服务器、清洁机器人及其存储介质
CN108245080A (zh) * 2017-12-29 2018-07-06 北京视觉世界科技有限公司 清洁区域的清洁方法、装置、计算机设备和存储介质
CN108803590A (zh) * 2017-04-28 2018-11-13 深圳乐动机器人有限公司 机器人清洁模式控制系统
CN108968812A (zh) * 2018-06-28 2018-12-11 芜湖泰领信息科技有限公司 自动转换清洁头的扫地机及清洁头自动转换方法
CN109077675A (zh) * 2018-06-28 2018-12-25 芜湖泰领信息科技有限公司 自动清洁的扫地机及其自动清洁方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524020B1 (ko) * 2009-03-06 2015-05-29 엘지전자 주식회사 로봇 청소기의 점진적 지도 작성 및 위치 보정 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188800A1 (ko) * 2016-04-29 2017-11-02 엘지전자 주식회사 이동 로봇 및 그 제어방법
CN108803590A (zh) * 2017-04-28 2018-11-13 深圳乐动机器人有限公司 机器人清洁模式控制系统
CN108231069A (zh) * 2017-08-30 2018-06-29 深圳乐动机器人有限公司 清洁机器人的语音控制方法、云服务器、清洁机器人及其存储介质
CN108245080A (zh) * 2017-12-29 2018-07-06 北京视觉世界科技有限公司 清洁区域的清洁方法、装置、计算机设备和存储介质
CN108968812A (zh) * 2018-06-28 2018-12-11 芜湖泰领信息科技有限公司 自动转换清洁头的扫地机及清洁头自动转换方法
CN109077675A (zh) * 2018-06-28 2018-12-25 芜湖泰领信息科技有限公司 自动清洁的扫地机及其自动清洁方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114532924A (zh) * 2022-02-25 2022-05-27 深圳市商汤科技有限公司 区域清洁的方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN110960150A (zh) 2020-04-07
CN110960150B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2020173157A1 (zh) 清洁机器人及其控制方法和控制装置
CN111035328B (zh) 机器人清洁方法及机器人
KR100791382B1 (ko) 로봇의 이동 경로에 따라 소정 영역의 특성에 관한 정보를수집하고 분류하는 방법 및 상기 영역 특성에 따라제어되는 로봇, 상기 영역 특성을 이용한 ui 구성 방법및 장치
WO2020125492A1 (zh) 一种清洁机器人、清洁方法及自动充电系统
CN103479303B (zh) 机器人清洁器、其控制方法以及机器人清洁系统
CN111973075B (zh) 基于户型图的地面清扫方法、装置、扫地机和计算机介质
US20210244250A1 (en) Self-actuated cleaning head for an autonomous vacuum
JP2023534989A (ja) コンテキストおよびユーザ体験ベースのロボット制御
WO2023125698A1 (zh) 清洁设备及其控制方法和控制装置
CN107913042A (zh) 清洁设备及其控制方法
TW202247809A (zh) 一種清潔設備及燈效控制方法
CN113995355B (zh) 机器人管理方法、装置、设备及可读存储介质
CN107461811A (zh) 室内机及空调器
WO2024022360A1 (en) Method, device, and system for controlling cleaning robot, and storage medium
CN110096736A (zh) 一种二维户型图绘制方法
CN207019183U (zh) 室内机及空调器
CN106765906B (zh) 一种空气调节装置及空气调节装置的控制方法
CN111920351B (zh) 一种天花板远程清扫智能设备及控制方法
JP4300053B2 (ja) 建物検査支援装置
CN106679074B (zh) 一种空气调节装置及空气调节装置的控制方法
CN206526006U (zh) 一种智能拖把
CN209091159U (zh) 一种吸尘器及其地刷组件
CN111121217B (zh) 一种空调的清洁方法、装置、存储介质及空调
CN207267253U (zh) 一种水箱以及扫地机器人
CN110119219A (zh) 触摸屏点击控制系统和控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916794

Country of ref document: EP

Kind code of ref document: A1