WO2020171221A1 - ベンゾアゾール環構造を有するアリールアミン化合物および有機エレクトロルミネッセンス素子 - Google Patents

ベンゾアゾール環構造を有するアリールアミン化合物および有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2020171221A1
WO2020171221A1 PCT/JP2020/007158 JP2020007158W WO2020171221A1 WO 2020171221 A1 WO2020171221 A1 WO 2020171221A1 JP 2020007158 W JP2020007158 W JP 2020007158W WO 2020171221 A1 WO2020171221 A1 WO 2020171221A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
formula
Prior art date
Application number
PCT/JP2020/007158
Other languages
English (en)
French (fr)
Inventor
望月 俊二
卓也 上原
幸喜 加瀬
雄太 平山
剛史 山本
秀一 林
ヨンテ チェ
セジン イ
ソンベ パク
テジョン ユ
ビョンソン ヤン
Original Assignee
保土谷化学工業株式会社
エスエフシー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社, エスエフシー カンパニー リミテッド filed Critical 保土谷化学工業株式会社
Priority to JP2021502203A priority Critical patent/JP7499748B2/ja
Priority to US17/427,772 priority patent/US20220119360A1/en
Priority to CN202080011823.8A priority patent/CN113382993A/zh
Priority to EP20759116.5A priority patent/EP3929193A4/en
Priority to KR1020217024115A priority patent/KR20210131321A/ko
Publication of WO2020171221A1 publication Critical patent/WO2020171221A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/62Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems having two or more ring systems containing condensed 1,3-oxazole rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to a compound suitable for an organic electroluminescence device (hereinafter, abbreviated as an organic EL device) which is a self-luminous device suitable for various display devices and the device, more specifically, a benzoazole ring structure.
  • the present invention relates to an arylamine compound having the compound and an organic EL device using the compound.
  • organic EL elements are self-luminous elements, they are brighter, have better visibility than liquid crystal elements, and can display clearly, so active research has been conducted.
  • Eastman Kodak Company C.I. W. Tang et al. made an organic EL element using an organic material practical by developing a laminated structure element in which various roles are shared by the respective materials. They stack a phosphor capable of transporting electrons, tris(8-hydroxyquinoline)aluminum (hereinafter abbreviated as Alq3), and an aromatic amine compound capable of transporting holes, and charge both charges.
  • Alq3 tris(8-hydroxyquinoline)aluminum
  • aromatic amine compound capable of transporting holes, and charge both charges.
  • a top-emission light-emitting device that emits light from the top has been used with a metal having a high work function as the anode.
  • a metal having a high work function as the anode.
  • the area where the light is taken out is limited, whereas in a light emitting element with a top emission structure, when the light is taken out from the top, it is blocked by the pixel circuit. Since there is no light, there is an advantage that a large area for extracting light can be taken.
  • Non-Patent Document 2 the use of triplet excitons has been attempted for the purpose of further improving the light emission efficiency, and the use of phosphorescent emitters has been examined (for example, see Non-Patent Document 2).
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a fluorescent substance or a phosphorescent substance.
  • a charge transporting compound generally called a host material with a fluorescent substance or a phosphorescent substance.
  • a host a compound having a nitrogen-containing heteroaromatic ring structure having a high electron-transporting ability and a compound having a carbazole structure having a hole-transporting ability are used together, and compared with the case where they are used alone. As a result, the luminous efficiency is significantly improved (see, for example, Patent Documents 3 and 4).
  • An iridium complex is generally used as a material exhibiting high luminous efficiency as a phosphorescent emitter, but the emission spectrum of an organic EL element using the iridium complex has a problem that the half-value width is large and the color purity is low.
  • a "capping layer" with a high refractive index is provided outside the semi-transparent electrode with a low refractive index to build an optical resonator called a microcavity.
  • a light emitting device configuration in which the emission spectrum is adjusted (see, for example, Patent Document 5).
  • Alq3 and arylamine compounds have been proposed as materials for the capping layer (for example, Non-Patent Document 3 and Patent Document 6).
  • these conventional materials have a problem that the refractive index of the green and red light emitting regions is low and the light extraction efficiency is low.
  • an element having a capping layer using a conventional material transmits sunlight having a wavelength of 400 nm to 410 nm, which affects the material inside the element, resulting in a decrease in color purity and an increase in light extraction efficiency. There is also the problem of deterioration.
  • the material of the capping layer a material having a high refractive index and excellent stability and durability of the thin film is required.
  • An object of the present invention is to provide an organic EL device having (1) high luminous efficiency and power efficiency, (2) low emission starting voltage, (3) low practical driving voltage, and (4) particularly long life. Therefore, various materials for organic EL devices, which have excellent hole/electron injection/transport performance, stability in a thin film state, durability, etc., and the inside of the device that absorbs sunlight with wavelengths from 400 nm to 410 nm Has a high extinction coefficient so that it does not affect the material, and has a high refractive index to greatly improve the light extraction efficiency.
  • An object of the present invention is to provide an organic EL element in which a capping layer made of a material having no absorption in each wavelength region of green and red is combined so as to effectively exhibit the characteristics of each material.
  • the physical properties of the material of the capping layer suitable for achieving the above object are (1) absorption of light of 400 nm to 410 nm, (2) high refractive index, and (3) vapor deposition. There are no thermal decomposition, (4) stable thin film state, and (5) high glass transition temperature.
  • Physical properties of the device suitable for the present invention include (1) high light extraction efficiency, (2) no deterioration in color purity, and (3) light transmission without change over time. (4) high luminous efficiency and power efficiency, (5) low light emission starting voltage, (6) low practical driving voltage, and (7) particularly long life.
  • the inventors have found that the arylamine-based material has excellent stability and durability of the thin film, and that the metal complex that is a phosphorescent dopant has excellent emission efficiency.
  • An arylamine compound having a specific benzazole ring structure which has a high refractive index at wavelengths of 400 nm to 650 nm and a high extinction coefficient at wavelengths of 400 nm to 410 nm, is selected and used as a material for the capping layer, and a light emitting layer containing a phosphorescent dopant.
  • Various combined organic EL devices were produced and the characteristics of the devices were eagerly evaluated. As a result, the present invention has been completed.
  • the organic EL device of the present invention which can solve the above-mentioned problems has at least an anode, a first hole transport layer, a second hole transport layer, a light emitting layer, an electron transport layer, a cathode and a capping layer in this order.
  • R 1 to R 4 are each independently a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a silyl group, or the number of carbon atoms which may have a substituent.
  • R 1 to R 4 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, a substituted or unsubstituted amino group, an oxygen atom or a sulfur atom to form a ring.
  • the organic EL device of the present invention has a capping layer provided outside the transparent or semitransparent electrode and having a higher refractive index than the electrode, the color purity and the light extraction efficiency are significantly improved. Further, by using the arylamine compound having a group represented by the above formula (1) for the capping layer, it is possible to absorb sunlight of 400 to 410 nm, so that it is possible to prevent damage to the light emitting element. it can. By having such characteristics, it can be suitably applied to a full-color display and a high-definition image can be displayed.
  • FIG. 3 is a diagram showing structures of compounds (2-1) to (2-16) as arylamine compounds represented by formula (2).
  • FIG. 3 is a diagram showing structures of compounds (2-17) to (2-32) as the arylamine compound represented by the formula (2).
  • FIG. 3 is a diagram showing structures of compounds (2-33) to (2-48) as arylamine compounds represented by formula (2).
  • FIG. 3 is a diagram showing structures of compounds (2-49) to (2-64) as arylamine compounds represented by formula (2).
  • FIG. 3 is a diagram showing structures of compounds (2-65) to (2-82) as the arylamine compound represented by the formula (2).
  • FIG. 3 is a diagram showing structures of compounds (3-1) to (3-14) as arylamine compounds represented by formula (3).
  • FIG. 3 is a diagram showing structures of compounds (3-15) to (3-30) as arylamine compounds represented by formula (3).
  • FIG. 3 is a diagram showing structures of compounds (3-31) to (3-42) as the arylamine compound represented by the formula (3).
  • FIG. 3 is a diagram showing structures of compounds (3-43) to (3-53) as arylamine compounds represented by formula (3).
  • FIG. 3 is a diagram showing structures of compounds (3-54) to (3-65) as arylamine compounds represented by formula (3).
  • FIG. 3 is a diagram showing structures of compounds (3-66) to (3-74) as arylamine compounds represented by formula (3).
  • FIG. 3 is a diagram showing structures of compounds (A-1) to (A-15) as the first host compound represented by the formula (Host-A).
  • FIG. 3 is a diagram showing structures of compounds (A-1) to (A-15) as the first host compound represented by the formula (Host-A).
  • FIG. 3 is a diagram showing structures of compounds (A-16) to (A-28) as the first host compound represented by the formula (Host-A).
  • FIG. 3 is a diagram showing structures of compounds (A-29) to (A-43) as a first host compound represented by the formula (Host-A).
  • FIG. 3 is a diagram showing structures of compounds (A-44) to (A-56) as the first host compound represented by the formula (Host-A).
  • FIG. 6 is a diagram showing structures of compounds (A-57) to (A-69) as the first host compound represented by the formula (Host-A).
  • FIG. 3 is a diagram showing structures of compounds (B-1) to (B-15) as a second host compound represented by the formula (Host-B).
  • FIG. 3 is a diagram showing structures of compounds (B-16) to (B-27) as a second host compound represented by the formula (Host-B).
  • FIG. 3 is a diagram showing structures of compounds (B-28) to (B-39) as a second host compound represented by the formula (Host-B).
  • FIG. 6 is a diagram showing structures of compounds (B-40) to (B-52) as the second host compound represented by the formula (Host-B).
  • FIG. 3 is a diagram showing structures of compounds (4-1) to (4-18) as the metal complex represented by the formula (4).
  • FIG. 3 is a diagram showing structures of compounds (4-19) to (4-32) as the metal complex represented by the formula (4).
  • FIG. 3 is a diagram showing structures of compounds (4-33) to (4-45) as the metal complex represented by the formula (4).
  • FIG. 3 is a diagram showing structures of compounds (5-1) to (5-16) as arylamine compounds represented by formula (5).
  • FIG. 3 is a diagram showing structures of compounds (5-17) to (5-32) as arylamine compounds represented by formula (5).
  • FIG. 3 is a diagram showing structures of compounds (5-33) to (5-48) as arylamine compounds represented by formula (5).
  • FIG. 6 is a diagram showing structures of compounds (5-49) to (5-63) as the arylamine compound represented by the formula (5).
  • FIG. 5 is a diagram showing the organic EL device configurations of Examples 13 to 22 and Comparative Examples 1 and 2.
  • the arylamine compound and the organic EL device of the present invention will be described by listing their modes.
  • the term “to” is a term representing a range.
  • the description "5 to 10” means “5 or more and 10 or less” and represents a range including numerical values before and after "to”.
  • a group having at least an anode, a first hole transport layer, a second hole transport layer, a light emitting layer, an electron transport layer, a cathode and a capping layer in this order, and the capping layer is represented by the following formula (1).
  • An organic electroluminescent device comprising an arylamine compound having the formula (1), and the light emitting layer containing a host and a phosphorescent dopant which is a metal complex containing iridium or platinum.
  • R 1 to R 4 are each independently a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a silyl group, or the number of carbon atoms which may have a substituent.
  • R 1 to R 4 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, a substituted or unsubstituted amino group, an oxygen atom or a sulfur atom to form a ring.
  • Ar 2 , Ar 3 and Ar 4 are each independently a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted fused polycyclic aromatic group. Represents a group group or a group represented by formula (1), and at least one of Ar 2 , Ar 3 and Ar 4 is a group represented by formula (1).
  • Ar 5 , Ar 6 , Ar 7 and Ar 8 are each independently a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted condensed group.
  • L 1 represents a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, or a substituted or unsubstituted terphenylene group.
  • each Z independently represents N or CRa, and at least one of Z is N
  • R 5 to R 10 and Ra are each independently a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, or a substituted group.
  • L 2 and L 3 each independently represent a single bond, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, n1 and n2 each independently represent an integer of 0 or 1.
  • Y 1 and Y 2 are each independently a single bond, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 carbon atoms.
  • Ar 9 and Ar 10 each independently represent a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 carbon atoms
  • R 11 to R 16 are each independently a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted 6 carbon atom To 30 aryl group, or a substituted or unsubstituted heteroaryl group having 5 to 30 carbon atoms
  • m represents an integer of 0 to 4.
  • R 17 to R 32 are each independently a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, or a linear or branched chain having 1 to 6 carbon atoms which may have a substituent.
  • -Like alkyl group cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent
  • R 33 to R 35 , Rb and Rc are each independently a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, Or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, Ar 11 and Ar 12 each independently represent a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 30 carbon atoms.
  • R 36 to R 39 , Rb and Rc are each independently a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a substituted or unsubstituted carbon atom number of 1 to 15 Represents an alkyl group or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • Substituted or unsubstituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the formulas (1), (2) and (3), “substituted or unsubstituted aromatic heterocyclic group” or Examples of the "aromatic hydrocarbon group", “aromatic heterocyclic group” or “condensed polycyclic aromatic group” in the “substituted or unsubstituted condensed polycyclic aromatic group” include phenyl group and biphenylyl group.
  • a deuterium atom, a cyano group, a nitro group a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a methyl group, an ethyl group, an n-propyl group A linear or branched alkyl group having 1 to 6 carbon atoms such as isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group;
  • a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent represented by R 1 to R 4 in the formula (1), “having a substituent”
  • Examples of the “6 linear or branched alkyl group”, “5 to 10 carbon atom cycloalkyl group” or “2 to 6 carbon atom linear or branched alkenyl group” include , Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group,
  • a linear or branched alkyl group having 1 to 6 carbon atoms having a substituent represented by R 1 to R 4 in the formula (1), “5 to 10 carbon atoms having a substituent” Is a "deuterium atom, a cyano group or a nitro group”.
  • Halogen atom such as fluorine atom, chlorine atom, bromine atom and iodine atom; linear or branched alkyloxy group having 1 to 6 carbon atoms such as methyloxy group, ethyloxy group and propyloxy group; vinyl group, allyl Alkenyl groups such as groups; aryloxy groups such as phenyloxy groups and tolyloxy groups; arylalkyloxy groups such as benzyloxy groups and phenethyloxy groups; phenyl groups, biphenylyl groups, terphenylyl groups, naphthyl groups, anthracenyl groups, phenanthrenyl groups, Aromatic hydrocarbon groups such as fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group or condensed polycyclic aromatic groups; pyridyl group, pyrimidinyl group, triazinyl
  • These groups are a single bond, a substituted or unsubstituted methylene group, and oxygen. They may be bonded to each other via an atom or a sulfur atom to form a ring.
  • a straight-chain or branched alkyloxy group having 1 to 6 carbon atoms having a substituent represented by R 1 to R 4 in the formula (1) or “having 5 to 5 carbon atoms having a substituent”
  • the "substituent” in the “10 cycloalkyloxy group” is "a straight chain or branched chain having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 4 in the above general formula (1).
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted aromatic heterocyclic group” or “substituted or unsubstituted fused polycyclic group” represented by R 1 to R 4 in the formula (1)
  • the "aromatic hydrocarbon group”, “aromatic heterocyclic group” or “fused polycyclic aromatic group” in the "cyclic aromatic group” means Ar 1 in the formulas (1), (2) and (3).
  • these groups may have a substituent, and as the substituent, a “substituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the above formulas (1), (2) and (3) ", "Substituted aromatic heterocyclic group” or “substituted condensed polycyclic aromatic group” may be the same as those described for "substituent”. You can
  • the “aryloxy group” in the “substituted or unsubstituted aryloxy group” represented by R 1 to R 4 in the formula (1) is specifically a phenyloxy group, a biphenylyloxy group, a terphenyl group. Examples thereof include a ryloxy group, a naphthyloxy group, an anthracenyloxy group, a phenanthrenyloxy group, a fluorenyloxy group, an indenyloxy group, a pyrenyloxy group, and a perylenyloxy group.
  • Any one of R 1 to R 4 and Ar 1 in the formula (1) is a linking group as a binding site. That is, any one of R 1 to R 4 and Ar 1 in the formula (1) is represented by the formula (1) in the arylamine compound having a group represented by the formula (1). It is a linking group that connects a group to another structure. When any one of R 1 to R 4 in the formula (1) is a linking group as a binding site, R 1 to R 4 may be a single bond.
  • Ar 1 in the formula (1) “substituted or unsubstituted aromatic hydrocarbon group” and “substituted or unsubstituted condensed polycondensation group” are used.
  • a "cyclic aromatic group” is preferable, a phenyl group and a biphenyl group are more preferable, and a phenyl group is particularly preferable.
  • R 1 to R 4 in the formula (1) a hydrogen atom or a deuterium atom is preferable, and a hydrogen atom is more preferable from the viewpoint of synthesis.
  • the arylamine compound having a group represented by the formula (1) is an arylamine compound represented by the formula (2) or the formula (3) from the viewpoint of increasing the refractive index and the extinction coefficient. preferable. Further, Ar 1 in the formula (1) is preferably bonded to the nitrogen atom in the formulas (2) and (3).
  • At least one of Ar 2 to Ar 4 in the above formula (2) is a group represented by the above formula (1), and two of Ar 2 to Ar 4 are each independently the above formula (1 It is preferable that it is a group represented by these.
  • at least one of Ar 5 to Ar 8 in the above formula (3) is a group represented by the above formula (1), and two of Ar 5 to Ar 8 are each independently the above formula.
  • the group represented by formula (1) is preferable, and Ar 5 and Ar 8 are more preferably each independently the group represented by formula (1).
  • groups other than the group represented by the above formula (1) include “substituted or unsubstituted aromatic hydrocarbon group” or “substituted Alternatively, an “unsubstituted fused polycyclic aromatic group” is preferable, and a substituted or unsubstituted phenyl group and a substituted or unsubstituted biphenyl group are more preferable.
  • a substituent of the phenyl group and the biphenyl group a phenyl group, a naphthyl group and a phenanthrenyl group are preferable.
  • Specific examples of preferable groups include groups represented by the following formulas.
  • a substituted or unsubstituted biphenylene group or a substituted or unsubstituted terphenylene group is preferable, and from the viewpoint of synthesis, an unsubstituted biphenylene group or an unsubstituted terphenylene group. Groups are more preferred.
  • arylamine compounds represented by the above formula (1) which are preferably used in the organic EL device of the present invention, specific examples of preferable compounds are shown in FIGS. 1 to 11, but are not limited to these compounds. is not.
  • alkyl group having 1 to 15 carbon atoms in the “substituted or unsubstituted alkyl group having 1 to 15 carbon atoms” represented by R 5 to R 10 and Ra in the formula (Host-A), Specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t -Butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloro
  • the “substituent” in the “substituted or unsubstituted alkyl group having 1 to 15 carbon atoms” represented by R 5 to R 10 and Ra in the formula (Host-A) is as defined in the formula (1).
  • substituted or unsubstituted aryl group having 6 to 15 carbon atoms represented by R 5 to R 10 and Ra in the formula (Host-A) include a phenyl group, a biphenylyl group, and 9 , 9'-dimethylfluorenyl group, 1-naphthyl group, 2-naphthyl group, fluorophenyl group, difluorophenyl group, trifluorophenyl group, tetrafluorophenyl group, pentafluorophenyl group, toluyl group, nitrophenyl group, Examples thereof include a cyanophenyl group, a fluorobiphenylyl group, a nitrobiphenylyl group, a cyanobiphenyl group, a cyanonaphthyl group, a nitronaphthyl group, and a fluoronaphthyl group, and these groups
  • Substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms represented by L 1 and L 2 in the formula (Host-A), or “substituted or unsubstituted 5 to 30 ring carbon atoms.
  • Heteroarylene group having 6 to 30 ring-forming carbon atoms or “heteroarylene group having 5 to 30 ring-forming carbon atoms” is specifically defined as phenylene group, biphenylene group, terphenylene group, quarter Phenylene group, kinkphenylene group, naphthylene group, anthrylene group, phenanthrylene group, fluorenylene group, indenylene group, pyrenylene group, acetonaphthenylene group, fluoranthenylene group, triphenylenylene group, pyridylene group, pyranylene group, quinolylene group, isoquinolylene group Group, benzofuranylene group, benzothienylene group, indolylene group, carbazolylene group, benzoxazolylene group, benzothiazolylene group, quinoxarylene group, benzimidazolylene group, pyrazolylene group, dibenzofuranylene group, dibenzo
  • “Substituted group” in the “heteroarylene group” is a “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the formulas (1), (2) and (3), and a “substituted aromatic hetero group”.
  • the same thing as what was shown about the "substituent" in "cyclic group” or “substituted condensed polycyclic aromatic group” can be mentioned, and the similar embodiments can also be mentioned.
  • the compound (A-43) shown in FIG. 14 is preferable from the viewpoint of luminous efficiency and power efficiency, but the compound is not limited to this compound.
  • the "aryl group having 6 to 30 carbon atoms” or “heteroaryl group having 5 to 30 carbon atoms” in the “aryl group” is specifically a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a triphenylene group.
  • the “substituent” in the “aryl group” the “substituted aromatic hydrocarbon group” and the “substituted aromatic heterocyclic group” represented by Ar 1 to Ar 8 in the formulas (1), (2) and (3).
  • the same as those described for the “substituent” in the “substituted condensed polycyclic aromatic group” can also include the same.
  • alkyl group having 1 to 15 carbon atoms represented by R 11 to R 16 in the formula (Host-B) include a methyl group, an ethyl group, a propyl group, an isopropyl group and n-butyl.
  • the “substituent” in the “alkyl group having 1 to 15 carbon atoms” represented by R 11 to R 16 in the formula (Host-B) is represented by R 1 to R 4 in the formula (1).
  • R 1 to R 4 A straight-chain or branched alkyl group having 1 to 6 carbon atoms having a substituent”, “a cycloalkyl group having 5 to 10 carbon atoms having a substituent” or “a carbon atom having a substituent of 2”
  • To the straight-chain or branched alkenyl group of "6 to 6 and the similar examples to those of the "substituent”.
  • the "substituent” in the "heteroaryl group” is a "substituted aromatic hydrocarbon group” or “substituted aromatic heterocycle” represented by Ar 1 to Ar 8 in the formulas (1), (2) and (3).
  • the same thing as what was shown about the "substituent” in "cyclic group” or “substituted condensed polycyclic aromatic group” can be mentioned, and the similar embodiments can also be mentioned.
  • the "arylene group having 6 to 30 carbon atoms” or “heteroarylene group having 5 to 30 carbon atoms” in the “arylene group” specifically includes a phenylene group, a biphenylene group, a terphenylene group, a naphthylene group, and an anthrylene group.
  • phenanthrylene group fluorenylene group, indenylene group, pyrenylene group, acetonaphthenylene group, fluoranthenylene group, triphenylenylene group, pyridylene group, pyranylene group, quinolylene group, isoquinolylene group, benzofuranylene group, benzothienylene group, indolylene group, Examples thereof include a carbazolylene group, a benzoxazolylene group, a benzothiazolylene group, a quinoxarylene group, a benzimidazolylene group, a pyrazolylene group, a dibenzofuranylene group, and a dibenzothienylene group.
  • a phenylene group, a biphenylene group, or a pyrenylene group is particularly preferable.
  • the “substituent” in the “aryl group” the “substituted aromatic hydrocarbon group” and the “substituted aromatic heterocyclic group” represented by Ar 1 to Ar 8 in the formulas (1), (2) and (3).
  • the same as those described for the “substituent” in the “substituted condensed polycyclic aromatic group” can also include the same.
  • the compound (B-25) shown in FIG. 18 is preferable from the viewpoint of luminous efficiency and power efficiency, but the compound is not limited to this compound.
  • a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent represented by R 17 to R 32 in the formula (4)
  • Specific examples of the "6 linear or branched alkyl group", “5 to 10 carbon atom cycloalkyl group” or “2 to 6 carbon linear or branched alkenyl group” include , Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, Examples thereof include a 1-adamant
  • a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent represented by R 17 to R 32 in the formula (4)
  • a "substituent" in an optionally substituted cycloalkyl group having 5 to 10 carbon atoms” or "a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent” Is a “linear or branched alkyl group having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 4 in the above formula (1), and “5 to 5 carbon atoms having a substituent”
  • Examples of the "substituent” in the "10 cycloalkyl group” or "a straight-chain or branched alkenyl group having 2 to 6 carbon atoms having a substituent” and the substituents are possible. The aspect can also mention the same thing.
  • a straight-chain or branched alkyloxy group having 1 to 6 carbon atoms having a substituent represented by R 17 to R 32 in the formula (4) or “having 5 to 5 carbon atoms having a substituent”
  • the “substituent” in the “10 cycloalkyloxy group” means a “substituted or substituted straight-chain or branched C 1-6 carbon atom represented by R 1 to R 4 in the formula (1).
  • “Alkyl group”, “C5-10 cycloalkyl group having a substituent” or “substituent” in "a C2-C6 linear or branched alkenyl group having a substituent” is shown. The same as those mentioned above can be mentioned, and the similar embodiments can be mentioned.
  • the “aryloxy group” in the “substituted or unsubstituted aryloxy group” represented by R 17 to R 32 in the formula (4) is specifically a phenyloxy group, a biphenylyloxy group or a terphenyl group.
  • Examples thereof include a ryloxy group, a naphthyloxy group, an anthracenyloxy group, a phenanthrenyloxy group, a fluorenyloxy group, an indenyloxy group, a pyrenyloxy group, and a perylenyloxy group. They may be bonded to each other via a bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring.
  • the “substituent” in the “substituted or unsubstituted aryloxy group” represented by R 17 to R 32 in the formula (4) is represented by R 1 to R 4 in the formula (1).
  • R 1 to R 4 in the formula (1) The same thing as what was shown about the "substituent” in the "substituted or unsubstituted aryloxy group” can be mentioned, and the similar embodiments can be mentioned.
  • the compound (4-35) shown in FIG. 23 is preferable from the viewpoint of luminous efficiency and power efficiency, but the compound is not limited to this compound.
  • the "aryl group having 6 to 30 carbon atoms” or “heteroaryl group having 5 to 30 carbon atoms” is, specifically, phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group.
  • Fluorenyl group Fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group Group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, naphthyridinyl group, phenanthrolinyl group, acridinyl group, and carborinyl group And the like. These groups may be bonded to each other via a single bond, a substituted or unsubstitute
  • Substituted or unsubstituted aryl group having 6 to 30 carbon atoms or "substituted or unsubstituted heteroaryl group having 5 to 30 carbon atoms” represented by Ar 11 and Ar 12 in the formula (5).
  • the “substituent” in “is” is a “substituted aromatic hydrocarbon group” or a “substituted aromatic heterocyclic group” represented by Ar 1 to Ar 8 in the formulas (1), (2) and (3). Or the same as those described for the “substituent” in the “substituted condensed polycyclic aromatic group”, and the possible embodiments can also include the same.
  • alkyl group having 1 to 15 carbon atoms in the “substituted or unsubstituted alkyl group having 1 to 15 carbon atoms” represented by R 33 to R 39 in the formulas (5) and (6) is Specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t -Butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroeth
  • the “substituent” in the “substituted or unsubstituted alkyl group having 1 to 15 carbon atoms” represented by R 33 to R 39 in the formulas (5) and (6) is as defined in the formula (1).
  • the “aryl group having 6 to 12 carbon atoms” in the “substituted or unsubstituted aryl group having 6 to 12 carbon atoms” represented by R 33 to R 39 in the formulas (5) and (6) is Specifically, phenyl group, biphenylyl group, 1-naphthyl group, 2-naphthyl group, fluorophenyl group, difluorophenyl group, trifluorophenyl group, tetrafluorophenyl group, pentafluorophenyl group, toluyl group, nitrophenyl group , A cyanophenyl group, a fluorobiphenylyl group, a nitrobiphenylyl group, a cyanobiphenyl group, a cyanonaphthyl group, a nitronaphthyl group, a fluoronaphthyl group, and the like, a single bond between these groups, substituted
  • an unsubstituted biphenyl group, an unsubstituted Tafel group, an unsubstituted triphenylyl group, and an unsubstituted phenanthrel group are used.
  • a fluorenyl group having a substituent and a thienyl group having a substituent are preferable, and an unsubstituted biphenyl group and a fluorenyl group having a substituent are more preferable.
  • the substituent of the fluorenyl group and the thienyl group is preferably a methyl group and a phenyl group, and the substituent of the fluorenyl group is more preferably a methyl group.
  • R 33 to R 37 in the formulas (5) and (6) a hydrogen atom and a deuterium atom are preferable, and a hydrogen atom is more preferable from the viewpoint of synthesis.
  • R 38 and R 39 in the formula (6) a methyl group is preferable.
  • arylamine compounds represented by the above formula (5) which are preferably used in the organic EL device of the present invention, specific examples of preferable compounds are shown in FIGS. 24 to 27, but are not limited to these compounds. is not.
  • the compound represented by (5-48) shown in FIG. 26 is preferable from the viewpoint of hole transportability and thin film stability, but the compound is not limited to this compound.
  • the arylamine compound having a group represented by the above formula (1) of the present invention is a novel compound and has a higher refractive index than the conventional capping material in the wavelength range of light of 450 nm to 650 nm, When it contains the green and red phosphorescent light emitting materials, it has an effect that the light extraction efficiency of the organic EL element can be more preferably improved.
  • the arylamine compound having a group represented by the formula (1) of the present invention has a higher extinction coefficient in the wavelength range of 400 nm to 410 nm than that of the conventional capping material, so that the element is not damaged by sunlight. It has a preventive action and can realize high durability.
  • the organic EL device of the present invention has a higher refractive index than conventional capping materials, an excellent extinction coefficient, and an excellent amorphous property, ie, a group represented by the above formula (1), that is, a benzazole ring.
  • An arylamine compound having a structure is used. Therefore, high efficiency and high durability can be realized.
  • the amine compound having a group represented by the formula (1) of the present invention is a novel compound, and the benzoazole derivative which is the main skeleton of these compounds can be synthesized by a method known per se (for example, Non-Patent Documents). 4). Furthermore, the amine compound having a group represented by the above formula (1) of the present invention can be synthesized by subjecting the synthesized halogenated benzoazole derivative and arylamine to a coupling reaction with a copper catalyst or a palladium catalyst. it can.
  • a coupling reaction with a halogenated arylamine can also provide a group represented by the above formula (1) of the present invention.
  • An arylamine compound can be synthesized (see, for example, Non-Patent Documents 4 and 5).
  • the first host compound represented by the above formula (Host-A) can be synthesized according to a method known per se (see, for example, Patent Documents 3, 4, and 8).
  • the second host compound represented by the above formula (Host-B) can be synthesized according to a method known per se (see, for example, Patent Documents 3 and 4).
  • the metal complex represented by the above formula (4) can be synthesized according to a method known per se (see, for example, Patent Documents 9 and 10).
  • the arylamine compound represented by the above formula (5) can be synthesized according to a method known per se (see, for example, Patent Document 11).
  • An amine compound having a group represented by the above formula (1), a first host compound represented by the above formula (Host-A), a second host compound represented by the above formula (Host-B), the above formula ( The metal complex represented by 4) and the arylamine compound represented by the above formula (5) are purified by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, recrystallization by solvent or crystallization method. , Sublimation purification method, etc.
  • the compound can be identified by NMR analysis.
  • As the physical property values it is preferable to measure melting point, glass transition point (Tg), work function and the like.
  • the melting point is an index of vapor deposition property
  • the glass transition point (Tg) is an index of stability of thin film state
  • the work function is an index of hole transporting property and hole blocking property.
  • the compound used in the organic EL device of the present invention is purified by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, etc., recrystallization by solvent, crystallization method, etc., and finally by sublimation purification method. It is preferable to use the one purified by.
  • the melting point and glass transition point (Tg) can be measured by using a powder with a high-sensitivity reading scanning calorimeter (DSC3100SA manufactured by Bruker AXS).
  • the refractive index and the extinction coefficient can be measured by forming a thin film of 80 nm on a silicon substrate and using a spectrophotometer (F10-RT-UV manufactured by Filmetrics).
  • an anode, a hole injection layer, a first hole transport layer, a second hole transport layer, and a light emission are sequentially formed on a glass substrate.
  • a layer, an electron transport layer, a cathode and a capping layer, a hole injection layer between the anode and the hole transport layer, an electron blocking layer between the hole transport layer and the light emitting layer examples thereof include those having a hole blocking layer between the light emitting layer and the electron transport layer, and those having an electron injection layer between the electron transport layer and the cathode.
  • one organic layer can also serve as several layers.
  • one organic layer also serves as a hole injection layer and a hole transport layer, a hole transport layer.
  • a structure that also serves as an electron blocking layer a structure that serves as a hole blocking layer and an electron transporting layer, a structure that serves as an electron transporting layer and an electron injection layer, and the like.
  • a laminated structure, a structure in which two capping layers are laminated, or the like is also possible.
  • the total thickness of each layer of the organic EL element is preferably about 100 nm to 700 nm, more preferably about 150 nm to 300 nm.
  • the film thickness of the capping layer is, for example, preferably 30 nm to 120 nm, more preferably 40 nm to 80 nm. In this case, good light extraction efficiency can be obtained.
  • the film thickness of the capping layer can be appropriately changed according to the type of light emitting material used for the light emitting element, the thickness of the organic EL element other than the capping layer, and the like.
  • an arylamine compound having a structure in which three or more triphenylamine structures are linked by a divalent group containing no single bond or hetero atom in the molecule for example, , Materials such as starburst type triphenylamine derivatives, various triphenylamine tetramers, porphyrin compounds represented by copper phthalocyanine, acceptor heterocyclic compounds such as hexacyanoazatriphenylene, and coating type polymer materials Can be used.
  • Examples of materials for the first hole transport layer of the organic EL device of the present invention include N,N′-diphenyl-N,N′-di(m-tolyl)benzidine (hereinafter abbreviated as TPD) and N,N′-.
  • Benzidine derivatives such as diphenyl-N,N'-di( ⁇ -naphthyl)benzidine (hereinafter abbreviated as NPD), N,N,N',N'-tetrabiphenylylbenzidine, 1,1-bis[4- (Di-4-tolylamino)phenyl]cyclohexane (hereinafter abbreviated as TAPC), particularly an arylamine having a structure in which two triphenylamine structures are linked in a molecule with a divalent group containing no single bond or hetero atom. It is preferable to use compounds such as N,N,N′,N′-tetrabiphenylylbenzidine and the like.
  • NPD diphenyl-N,N'-di( ⁇ -naphthyl)benzidine
  • TAPC 1,1-bis[4- (Di-4-tolylamino)phenyl]cyclohexane
  • TAPC 1,1-bis
  • an arylamine compound having a structure in which three or more triphenylamine structures are linked in the molecule by a divalent group containing no single bond or hetero atom for example, various triphenylamine trimers and tetramers And the like are preferably used.
  • a material for the hole injecting/transporting layer poly(3,4-ethylenedioxythiophene) (hereinafter abbreviated as PEDOT)/poly(styrene sulfonate) (hereinafter abbreviated as PSS), etc.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • PSS poly(styrene sulfonate)
  • the arylamine compound represented by the above formula (5) is more preferable, but 4,4′,4′′-tri(N- Carbazolyl)triphenylamine (hereinafter abbreviated as TCTA), 9,9-bis[4-(carbazol-9-yl)phenyl]fluorene, 1,3-bis(carbazol-9-yl)benzene (hereinafter mCP) ), 2,2-bis(4-carbazol-9-ylphenyl)adamantane (hereinafter abbreviated as Ad-Cz), and other carbazole derivatives, 9-[4-(carbazol-9-yl)phenyl]
  • a compound having an electron blocking action such as a compound having a triphenylsilyl group represented by -9-[4-(triphenylsilyl)phenyl]-9H-fluorene and a triarylamine structure, can be used.
  • trisbromophenylamine hexachloroantimony As materials for the hole injecting layer and the hole transporting layer, trisbromophenylamine hexachloroantimony, a radialene derivative (for example, the compound (Acceptor-1) described later, and P-doped (see Patent Document 12), a polymer compound having a structure of a benzidine derivative such as TPD in its partial structure, and the like can be used.
  • a host material having a hole transporting property and a host material having an electron transporting property can be used as the host of the light emitting layer of the organic EL device of the present invention.
  • As the hole-transporting host material in addition to the second host compound represented by the above formula (Host-B), 4,4′-di(N-carbazolyl)biphenyl (CBP), TCTA, mCP and the like can be used.
  • CBP 4,4′-di(N-carbazolyl)biphenyl
  • TCTA TCTA
  • mCP mCP
  • the electron-transporting host material in addition to the first host compound represented by the above formula (Host-A), p-bis(triphenylsilyl)benzene (UGH2), 2,2′,2′′- (1,3,5-phenylene)-tris(1-phenyl-1H-benzimidazole) (TPBi) and the like can be used.
  • a first host compound having an electron transporting ability and a second host compound having a hole transporting ability may be used alone or in combination of two or more.
  • the first host compound and the second host compound may be included in a weight ratio of 1:10 to 10:1, for example.
  • the first host compound of the light emitting layer of the organic EL device of the present invention a compound having a nitrogen-containing heteroaromatic ring structure represented by the formula (Host-A) is preferable, and the second host compound is A compound having a carbazole ring structure represented by the above formula (Host-B) is preferable.
  • one or more host compounds can be further included.
  • the metal complex represented by the above formula (4) is more preferable, but in addition, Pt, Os, Ti, Zr, Hf, Eu, Tb, Organometallic compounds including Tm, Fe, Co, Ni, Ru, Rh, Pd or combinations thereof can be used.
  • the dopant may be a red, green or blue dopant, and can produce a high performance organic EL device.
  • the doping of the host material with the phosphorescent dopant is preferably performed by co-evaporation in the range of 1 to 30 wt% with respect to the entire light emitting layer in order to avoid concentration quenching.
  • Examples of the material for the hole blocking layer of the organic EL device of the present invention include phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP), aluminum (III) bis(2-methyl-8-quinolinato)-4-phenylphenolate (
  • BCP bathocuproine
  • III aluminum bis(2-methyl-8-quinolinato)-4-phenylphenolate
  • a compound having a hole blocking action such as a metal complex of a quinolinol derivative such as BAlq
  • various rare earth complexes such as a triazole derivative, a triazine derivative, a pyrimidine derivative, an oxadiazole derivative, a benzazole derivative, or the like is used. You can These materials may also serve as the material of the electron transport layer.
  • metal complexes of quinolinol derivatives such as Alq 3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, pyrimidine derivatives, oxadiazole derivatives, pyridine derivatives, benz An imidazole derivative, a benzazole derivative, a thiadiazole derivative, an anthracene derivative, a carbodiimide derivative, a quinoxaline derivative, a pyridoindole derivative, a phenanthroline derivative, a silole derivative and the like can be used.
  • Examples of the electron injection layer of the organic EL device of the present invention include alkali metal salts such as lithium fluoride and cesium fluoride, alkaline earth metal salts such as magnesium fluoride, metal complexes of quinolinol derivatives such as lithium quinolinol, and aluminum oxide. Although a metal oxide or the like can be used, the electron injection layer can be omitted depending on the preferable selection of the electron transport layer and the cathode.
  • a material for the electron injection layer and the electron transport layer a material obtained by N-doping a metal such as cesium, lithium fluoride or ytterbium with an organic compound usually used for these layers can be used.
  • an electrode material having a low work function such as aluminum or ytterbium, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy or an aluminum magnesium alloy is used as an electrode material.
  • an arylamine compound having a group represented by the formula (1) of the present embodiment is preferable.
  • the refractive index of the material forming the capping layer is preferably higher than that of the adjacent electrodes.
  • the light extraction efficiency of the organic EL element is improved by the capping layer, but the effect is that the greater the reflectance at the interface between the capping layer and the material in contact with the capping layer, the greater the effect of light interference. It is valid. Therefore, the refractive index of the material forming the capping layer is preferably larger than that of the adjacent electrode, and the refractive index in the wavelength range of 450 nm to 650 nm may be 1.70 or more, but 1.80 or more. Is more preferable, and it is particularly preferable that it is 1.85 or more.
  • These materials used for each layer constituting the organic EL device of the present invention can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method and an inkjet method. Further, these materials may be formed as a single film, but a plurality of kinds of materials may be mixed and formed as a single layer. In addition, a laminated structure of layers in which these materials are independently formed, a laminated structure of layers in which these materials are mixed and formed, or a mixture of a plurality of kinds of layers in which these materials are independently formed and a plurality of kinds are formed. It may have a layered structure of layers.
  • the present invention is not limited to this, and the organic EL device having the bottom emission structure or the dual emission structure emitting light from both the top and bottom portions is used. The same can be applied to the organic EL element. In these cases, the electrode in the direction in which light is extracted from the light emitting element needs to be transparent or semitransparent.
  • Tris(dibenzylideneacetone)dipalladium(0): 0.9 g, 50% (w/v) toluene solution of tri-(t-butyl)phosphine: 0.4 ml were added, and the mixture was stirred with heating under reflux for 3 hours. .. After cooling to 80° C., silica gel was added and the mixture was filtered, and the filtrate was concentrated to give a crude product. The crude product was recrystallized from toluene to give a yellow powder of bis- ⁇ 4-(benzoxazol-2-yl)phenyl ⁇ - ⁇ 4-(naphthalen-2-yl)phenyl ⁇ amine (2-34): 6. 3 g (yield 30%) was obtained.
  • Tris(dibenzylideneacetone)dipalladium(0): 0.8 g, 50% (w/v) toluene solution of tri-(t-butyl)phosphine: 0.4 ml were added, and the mixture was stirred under heating and refluxing for 3 hours. .. After cooling to 80° C., silica gel was added and the mixture was filtered, and the filtrate was concentrated to give a crude product. The crude product was recrystallized from toluene, and yellow powder of bis- ⁇ 4-(benzoxazol-2-yl)phenyl ⁇ - ⁇ 4-(phenanthren-9-yl)phenyl ⁇ amine (2-39) was obtained. 0 g (yield 77.0%) was obtained.
  • Tris(dibenzylideneacetone)dipalladium(0): 0.6 g, 50% (w/v) toluene solution of tri-(t-butyl)phosphine: 0.6 ml were added, and the mixture was heated under reflux for 3.5 hours. It was stirred. After cooling to 80° C., Celite was added and filtered, and the filtrate was concentrated to obtain a crude product. The crude product was dissolved in toluene by heating, activated carbon and silica gel were added at 80° C., the mixture was filtered, and the filtrate was concentrated.
  • Tris(dibenzylideneacetone)dipalladium(0): 0.6 g, 50% (w/v) toluene solution of tri-(t-butyl)phosphine: 0.6 ml were added, and the mixture was stirred with heating under reflux for 3 hours. .. After cooling to 80° C., Celite was added and filtered, and the filtrate was concentrated to obtain a crude product. The crude product was dissolved in monochlorobenzene by heating, activated carbon and silica gel were added at 80° C., the mixture was filtered, and the filtrate was concentrated. Acetone was added to the concentrate, and the precipitated solid was filtered.
  • Tris(dibenzylideneacetone)dipalladium(0): 0.6 g, 50% (w/v) toluene solution of tri-(t-butyl)phosphine: 0.6 ml were added, and the mixture was stirred under heating under reflux for 18 hours. .. After cooling to 80° C., Celite was added and filtered, and the filtrate was concentrated to obtain a crude product. The crude product was dissolved in toluene by heating, activated carbon and silica gel were added at 80° C., the mixture was filtered, and the filtrate was concentrated. Acetone was added to the concentrate, and the precipitated solid was filtered.
  • Example 7 ⁇ Synthesis of N,N′-bis ⁇ 4-(benzoxazol-2-yl)phenyl ⁇ -N,N′-diphenyl-4,4′-diamino-1,1′-biphenyl> (3-31) 2-(4-Bromophenyl)-benzoxazole (13.0 g), N,N'-diphenylbenzidine (7.6 g), tert-butoxy sodium (4.6 g), and toluene (160 ml) were added to a reaction vessel purged with nitrogen, and ultrasonic waves were applied for 30 minutes. Was irradiated with nitrogen gas.
  • Example 11 The melting point and glass transition point of the arylamine compounds obtained in Examples 1 to 10 were measured by a high-sensitivity differential scanning calorimeter (DSC3100SA manufactured by Bruker AXS). The results are shown in Table 1.
  • the arylamine compounds obtained in Examples 1 to 10 have a glass transition point of 100° C. or higher, which indicates that the thin film state is stable.
  • Example 12 Using the arylamine compounds obtained in Examples 1 to 10 above, a vapor-deposited film having a thickness of 80 nm was prepared on a silicon substrate, and a wavelength was measured using a spectrophotometer (F10-RT-UV manufactured by Filmetrics Inc.). The refractive index n and the extinction coefficient k at 400 nm to 650 nm were measured.
  • the compounds (CPL-1) and (CPL-2) having the following structural formulas see, for example, Patent Document 6) were also measured for the refractive index n and the extinction coefficient k at wavelengths of 400 nm to 650 nm. The measurement results are summarized in Table 2.
  • a blue emission wavelength region ( The refractive index at 450 nm) is as high as 2.18 to 2.39 for the compounds of the present invention, compared to 1.98 to 2.02 for the compounds (CPL-1) and (CPL-2). Also in the green light emission wavelength region (550 nm), the compounds (CPL-1) and (CPL-2) had a refractive index of 1.85 to 1.90, whereas the compound of the present invention had a refractive index of 1.95 to 2.90. It is as high as 05.
  • the compounds of the present invention (CPL-1) and (CPL-2) have a refractive index of 1.84 to 1.81, whereas the compound of the present invention has a refractive index of 1.90 to 1. As high as 97.
  • the compound of the present invention has a higher refractive index than the compounds (CPL-1) and (CPL-2) in the emission wavelength regions of blue, green and red, and the light emission in the organic EL device is It can be expected that the extraction efficiency will be improved.
  • the extinction coefficient at wavelengths from 400 nm to 410 nm is 0.2 or less in the compounds (CPL-1) and (CPL-2), whereas it is as large as 0.46 to 0.89 in the compound of the present invention. It has a value, which means that it absorbs well the sunlight having a wavelength of 400 nm to 410 nm and does not affect the material inside the element.
  • the organic EL device comprises a hole injection layer 4, a first hole transport layer 5, a first hole transport layer 5, a first hole transport layer 5
  • the two-hole transport layer 6, the light emitting layer 7, the electron transport layer 8, the electron injection layer 9, the cathode 10 and the capping layer 11 were vapor-deposited in this order.
  • Binary vapor deposition was performed on the transparent anode 3 at a vapor deposition rate of 97 to form the hole injection layer 4 so that the film thickness was 10 nm.
  • HTM-1 was vapor-deposited on the hole injection layer 4 as the first hole transport layer 5 so that the film thickness was 70 nm.
  • An arylamine compound (5-48) having the following structural formula was vapor-deposited on the first hole transport layer 5 as the second hole transport layer 6 so that the film thickness was 10 nm.
  • a first host compound (A-43) having the following structural formula and a second host compound (B-25) having the following structural formula are simultaneously used as hosts as a light emitting layer 7,
  • a metal complex (4-35) having the following structural formula was doped as a dopant to 5 wt %, and the compound was vacuum-deposited to a film thickness of 40 nm.
  • the first host compound (A-43) and the second host compound (B-25) were used in a ratio of 1:1.
  • Binary vapor deposition was performed at a vapor deposition rate of 50 to form the electron transport layer 8 having a thickness of 30 nm.
  • Lithium fluoride was vapor-deposited as an electron injection layer 9 on the electron transport layer 8 so as to have a film thickness of 1 nm.
  • a magnesium silver alloy was formed as a transparent cathode 10 on the electron injection layer 9 so as to have a film thickness of 12 nm.
  • the compound (2-34) obtained in Example 1 was formed to have a film thickness of 60 nm.
  • the characteristics of the produced organic EL device were measured at room temperature in the air. Table 3 summarizes the measurement results of the emission characteristics when a DC voltage was applied to the produced organic EL element.
  • Example 14 to 22 An organic EL device was prepared in the same manner as in Example 13 except that each compound obtained in Examples 2 to 10 was used as the material of the capping layer 11 instead of the compound (2-34) obtained in Example 1. It was made. The characteristics of the produced organic EL device were measured at room temperature in the air. Table 3 summarizes the measurement results of the light emission characteristics when a DC voltage was applied to the manufactured organic EL element.
  • Table 3 summarizes the results of measuring the device life using the organic EL devices produced in Examples 13 to 22 and Comparative Examples 1 and 2. Element life, when the emission start time of the emission luminance (initial luminance) was driven with a constant current as 10000 cd / m 2, equivalent to 95% when the emission luminance is taken as 100% of 9500cd / m 2 (initial luminance: It was measured as the time until decay to 95%.
  • the driving voltage at a current density of 10 mA/cm 2 is almost the same in the devices of Comparative Examples 1 and 2 and the devices of Examples 13 to 22, while the luminance, the luminous efficiency, and the power efficiency are high.
  • the elements of Examples 13 to 22 were improved as compared with the elements of Comparative Examples 1 and 2. This indicates that the light extraction efficiency can be significantly improved by including a material having a high refractive index and suitably used for the organic EL device of the present invention in the capping layer.
  • the arylamine compound having a group represented by the formula (1) which is preferably used in the organic EL device of the present invention, has a high refractive index and thus can significantly improve the light extraction efficiency. Further, since the thin film state is stable, it is excellent as a compound for an organic EL device. High efficiency can be obtained by manufacturing an organic EL device using the compound and a metal complex that is a phosphorescent dopant. Furthermore, by using the compound for a capping layer in an organic EL device, it is possible to absorb light having a specific wavelength of sunlight and prevent the material inside the device from being affected, thereby improving durability and light resistance. .. Further, by using the compound having no absorption in each of the blue, green and red wavelength regions, a clear and bright image having good color purity can be displayed. For example, it has become possible to expand to household appliances and lighting applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明の目的は、太陽光の波長400nmから410nmの光を吸光して有機EL素子内部の材料に影響を与えず、また光の取り出し効率を大幅に改善させるために吸光係数及び屈折率が高く、薄膜の安定性や耐久性や耐光性にも優れているとともに、青、緑及び赤それぞれの波長領域に吸収を持たない材料から構成されるキャッピング層と、素子の各種材料とを組み合わせ、素子の各種材料が有する特性を効果的に発現できる有機EL素子を提供することにある。 本発明は、ベンゾアゾール構造を有するアリールアミン化合物、並びに該アリールアミン化合物を含有するキャッピング層、及びホストと燐光発光性ドーパントとを含む発光層を有する有機EL素子である。

Description

ベンゾアゾール環構造を有するアリールアミン化合物および有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(以後、有機EL素子と略称する)に適した化合物と該素子に関するものであリ、詳しくはベンゾアゾール環構造を有するアリールアミン化合物と、該化合物を用いた有機EL素子に関するものである。
 有機EL素子は自発光性素子であるため、液晶素子に比べて明るく視認性に優れ、鮮明な表示が可能であることから、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは、各種の役割を各材料に分担した積層構造素子を開発することにより、有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体、トリス(8-ヒドロキシキノリン)アルミニウム(以後、Alq3と略称する)と正孔を輸送することのできる芳香族アミン化合物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度を得ている(例えば、特許文献1及び特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされ、積層構造の各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子の底部から光を取り出すボトムエミッション構造の発光素子によって、高効率と耐久性が達成されるようになってきた(例えば、非特許文献1参照)。
 近年、高い仕事関数を持った金属を陽極に用い、上部から発光するトップエミッション構造の発光素子が用いられるようになってきた。画素回路を有する底部から光を取り出すボトムエミッション構造では、光を取り出す面積が制限されてしまうのに対して、トップエミッション構造の発光素子では、上部から光を取り出すことで、画素回路に遮られることがないため光を取り出す面積を広くとれる利点がある。
 また、発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用が検討されている(例えば、非特許文献2参照)。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光体や燐光発光体をドープして作製することもできる。近年では、ホストとして、電子輸送能が高い含窒素ヘテロ芳香族環構造を有する化合物と、正孔輸送能を有するカルバゾール構造を有する化合物とを共に使用することによって、単独で使用された場合と比較して発光効率が顕著に改善されている(例えば、特許文献3及び特許文献4参照)。
 燐光発光体として高い発光効率を示す材料としてイリジウム錯体が一般的に用いられているが、イリジウム錯体を用いた有機EL素子の発光スペクトルは、半値幅が大きく色純度が低いという問題がある。
 この色純度の改善と発光効率を向上させる手段として、屈折率の低い半透明電極の外側に、屈折率の高い「キャッピング層」を設けることで、マイクロキャビティと呼ばれる光学的な共振器を構築して発光スペクトルを調整する発光素子構成が提案されている(例えば、特許文献5参照)。
 上記キャッピング層の材料として、Alq3やアリールアミン化合物が提案されている(例えば、非特許文献3及び特許文献6)。しかしながら、これら従来の材料では、緑色及び赤色発光領域の屈折率が低く、光の取り出し効率が低い問題点がある。
 また、従来の材料を使用したキャッピング層を有する素子では、太陽光の波長400nmから410nmの光を透過してしまい、素子内部の材料に影響を与えるため、色純度の低下及び光の取り出し効率の低下という問題点もある。
 そこで、有機EL素子の素子特性を改善させるために、特に、太陽光の波長400nmから410nmの光を吸収して素子内部の材料に影響を与えないために、また光の取り出し効率を大幅に改善させるために、キャッピング層の材料として、屈折率が高く、薄膜の安定性や耐久性に優れた材料が求められている。
US5792557 US5639914 EP3042943 US20170104163 US7102282 US20140225100 国際公開第2015/001726号 US10147891 特開2002-105055号公報 EP2730583 US20180093962 EP2684932
応用物理学会第9回講習会予稿集55~61ページ(2001) 応用物理学会第9回講習会予稿集23~31ページ(2001) Appl.Phys.Let.,78,544(2001) J.Org.Chcm.,60,7508(1995) Synth.Commun.,11,513(1981)
 本発明の目的は、(1)発光効率及び電力効率が高く、(2)発光開始電圧が低く、(3)実用駆動電圧が低く、(4)特に長寿命である、有機EL素子を提供するために、正孔及び電子の注入・輸送性能、薄膜状態での安定性、耐久性等に優れた有機EL素子用の各種材料と、太陽光の波長400nmから410nmの光を吸光して素子内部の材料に影響を与えないために吸光係数が高く、また光の取り出し効率を大幅に改善させるために屈折率が高く、さらに薄膜の安定性や耐久性や耐光性に優れているとともに、青、緑及び赤それぞれの波長領域において吸収を持たない材料から構成されるキャッピング層とを、それぞれの材料が有する特性が効果的に発現できるように組み合わせた有機EL素子を提供することにある。
 上記目的を達成するために適したキャッピング層の材料における物理的な特性としては、(1)400nmから410nmの光を吸収すること、(2)屈折率が高いこと、(3)蒸着が可能で熱分解しないこと、(4)薄膜状態が安定であること、(5)ガラス転移温度が高いこと、を挙げることができる。
 また、本発明に適した素子の物理的な特性としては、(1)光の取り出し効率が高いこと、(2)色純度の低下がないこと、(3)経時変化することなく光を透過すること、(4)発光効率及び電力効率が高いこと、(5)発光開始電圧が低いこと、(6)実用駆動電圧が低いこと、(7)特に長寿命であること、を挙げることができる。
 本発明者らは上記の目的を達成するために、アリールアミン系材料が、薄膜の安定性や耐久性に優れていること、燐光発光性ドーパントである金属錯体が発光効率に優れていることに着目した。波長400nmから650nmの屈折率が高く、波長400nmから410nmにおける消光係数が高い特定のベンゾアゾール環構造を有するアリールアミン化合物を選択してキャッピング層の材料として用い、燐光発光性ドーパントを含む発光層と組み合わせた種々の有機EL素子を作製し、素子の特性評価を鋭意行った。その結果、本発明を完成するに至った。
 上記課題を解決することのできる、本発明の有機EL素子は、少なくとも陽極、第一正孔輸送層、第二正孔輸送層、発光層、電子輸送層、陰極及びキャッピング層をこの順に有し、前記キャッピング層が下記式(1)で表される基(ベンゾアゾール環構造)を有するアリールアミン化合物を含有し、前記発光層がホストとイリジウム又は白金を含む金属錯体である燐光発光性ドーパントとを含有するものである。
Figure JPOXMLDOC01-appb-C000012
(式中、R~Rは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、シリル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を表し、
 Arは、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、又は置換若しくは無置換の縮合多環芳香族基を表し、
 R~R及びArのいずれか1つは、結合部位としての連結基であり、
 Xは、酸素原子又は硫黄原子を表す。
 R~Rは、単結合、置換若しくは無置換のメチレン基、置換若しくは無置換のアミノ基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。)
 本発明の有機EL素子は、透明又は半透明電極の外側に設けた、該電極よりも屈折率の高いキャッピング層を有するため、色純度及び光の取り出し効率が大幅に向上している。また、キャッピング層に、前記式(1)で表される基を有するアリールアミン化合物を使用することによって、400~410nmの太陽光を吸収することができるので、発光素子へのダメージを防ぐことができる。このような特性を有することにより、フルカラーディスプレイに好適に適用でき、高精細な画像を表示することが可能になる。
式(2)で表されるアリールアミン化合物として、化合物(2-1)~(2-16)の構造を示す図である。 式(2)で表されるアリールアミン化合物として、化合物(2-17)~(2-32)の構造を示す図である。 式(2)で表されるアリールアミン化合物として、化合物(2-33)~(2-48)の構造を示す図である。 式(2)で表されるアリールアミン化合物として、化合物(2-49)~(2-64)の構造を示す図である。 式(2)で表されるアリールアミン化合物として、化合物(2-65)~(2-82)の構造を示す図である。 式(3)で表されるアリールアミン化合物として、化合物(3-1)~(3-14)の構造を示す図である。 式(3)で表されるアリールアミン化合物として、化合物(3-15)~(3-30)の構造を示す図である。 式(3)で表されるアリールアミン化合物として、化合物(3-31)~(3-42)の構造を示す図である。 式(3)で表されるアリールアミン化合物として、化合物(3-43)~(3-53)の構造を示す図である。 式(3)で表されるアリールアミン化合物として、化合物(3-54)~(3-65)の構造を示す図である。 式(3)で表されるアリールアミン化合物として、化合物(3-66)~(3-74)の構造を示す図である。 式(Host-A)で表される第1ホスト化合物として、化合物(A-1)~(A-15)の構造を示す図である。 式(Host-A)で表される第1ホスト化合物として、化合物(A-16)~(A-28)の構造を示す図である。 式(Host-A)で表される第1ホスト化合物として、化合物(A-29)~(A-43)の構造を示す図である。 式(Host-A)で表される第1ホスト化合物として、化合物(A-44)~(A-56)の構造を示す図である。 式(Host-A)で表される第1ホスト化合物として、化合物(A-57)~(A-69)の構造を示す図である。 式(Host-B)で表される第2ホスト化合物として、化合物(B-1)~(B-15)の構造を示す図である。 式(Host-B)で表される第2ホスト化合物として、化合物(B-16)~(B-27)の構造を示す図である。 式(Host-B)で表される第2ホスト化合物として、化合物(B-28)~(B-39)の構造を示す図である。 式(Host-B)で表される第2ホスト化合物として、化合物(B-40)~(B-52)の構造を示す図である。 式(4)で表される金属錯体として、化合物(4-1)~(4-18)の構造を示す図である。 式(4)で表される金属錯体として、化合物(4-19)~(4-32)の構造を示す図である。 式(4)で表される金属錯体として、化合物(4-33)~(4-45)の構造を示す図である。 式(5)で表されるアリールアミン化合物として、化合物(5-1)~(5-16)の構造を示す図である。 式(5)で表されるアリールアミン化合物として、化合物(5-17)~(5-32)の構造を示す図である。 式(5)で表されるアリールアミン化合物として、化合物(5-33)~(5-48)の構造を示す図である。 式(5)で表されるアリールアミン化合物として、化合物(5-49)~(5-63)の構造を示す図である。 実施例13~22、比較例1、2の有機EL素子構成を示した図である。
 以下、本発明の実施形態について詳細に説明する。まず、本発明のアリールアミン化合物及び有機EL素子について、その態様を列挙して説明する。なお、本願において「ないし」との用語は範囲を表す用語である。例えば「5ないし10」との記載は、「5以上10以下」を意味し、「ないし」の前後に記載される数値自体も含む範囲を表す。
1)少なくとも陽極、第一正孔輸送層、第二正孔輸送層、発光層、電子輸送層、陰極及びキャッピング層をこの順に有し、前記キャッピング層が下記式(1)で表される基を有するアリールアミン化合物を含有し、前記発光層がホストとイリジウム又は白金を含む金属錯体である燐光発光性ドーパントとを含有する、有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000013
(式中、R~Rは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、シリル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を表し、
 Arは、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、又は置換若しくは無置換の縮合多環芳香族基を表し、
 R~R及びArのいずれか1つは、結合部位としての連結基であり、
 Xは、酸素原子又は硫黄原子を表す。
 R~Rは、単結合、置換若しくは無置換のメチレン基、置換若しくは無置換のアミノ基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。)
2)前記式(1)で表される基を有するアリールアミン化合物が、下記式(2)又は下記式(3)で表されるアリールアミン化合物である、前記1)に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000014
(式中、Ar、Ar及びArは、それぞれ独立して、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は式(1)で表される基を表し、Ar、Ar及びArの少なくとも1つは、式(1)で表される基である。)
Figure JPOXMLDOC01-appb-C000015
(式中、Ar、Ar、Ar及びArは、それぞれ独立して、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は式(1)で表される基を表し、Ar、Ar、Ar及びArの少なくとも1つは、式(1)で表される基であり、
 Lは、置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニレン基、又は置換若しくは無置換のターフェニレン基を表す。)
 3)前記式(1)で表される基を有するアリールアミン化合物が、前記式(3)で表されるアリールアミン化合物である、2)に記載の有機エレクトロルミネッセンス素子。
4)前記ホストが、下記式(Host-A)で表される第1ホスト化合物と、下記式(Host-B)で表される第2ホスト化合物と、を含む、前記1)~3)のいずれかに記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000016
(式中、Zは、それぞれ独立して、N又はCRaを表し、Zのうちの少なくとも一つは、Nであり、
 R~R10及びRaは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換若しくは無置換の炭素原子数1ないし15のアルキル基、又は置換若しくは無置換の炭素原子数6ないし12のアリール基を表し、
 L及びLは、それぞれ独立して、単結合、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数2ないし30のヘテロアリール基を表し、
 n1及びn2は、それぞれ独立して、0又は1の整数を表す。)
Figure JPOXMLDOC01-appb-C000017
(式中、Y及びYは、それぞれ独立して、単結合、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表し、
 Ar及びAr10は、それぞれ独立して、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表し、
 R11~R16は、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1ないし15のアルキル基、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表し、
 mは、0~4の整数を表す。)
5)前記燐光発光性ドーパントが、下記式(4)で表される金属錯体である、前記1)~4)のいずれかに記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000018
(式中、R17~R32は、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、トリメチルシリル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、置換若しくは無置換のアリールオキシ基、又は芳香族炭化水素基、芳香族複素環基若しくは縮合多環芳香族基から選ばれる基によって置換された二置換アミノ基を表し、
 nは、1~3の整数を表す。)
6)前記第二正孔輸送層は、下記式(5)で表されるアリールアミン化合物を含有する、前記1)~5)のいずれかに記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000019
(式中、隣接する2個の*は、下記式(6)の2個の*と結合して環を形成しており、残りの2個の*は、CRb及びCRcを表し、
 R33~R35、Rb及びRcは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換若しくは無置換の炭素原子数1ないし15のアルキル基、又は置換若しくは無置換の炭素原子数6ないし12のアリール基を表し、
 Ar11及びAr12は、それぞれ独立して、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表す。)
Figure JPOXMLDOC01-appb-C000020
(式中、R36~R39、Rb及びRcは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換若しくは無置換の炭素原子数1ないし15のアルキル基、又は置換若しくは無置換の炭素原子数6ないし12のアリール基を表す。)
7)前記キャッピング層の厚さが、30nm~120nmの範囲内である、前記1)~6)のいずれか一項に記載の有機エレクトロルミネッセンス素子。
8)前記キャッピング層の屈折率が、波長450nm~650nmの範囲内において1.85以上である、前記1)~7)のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 前記式(1)、(2)及び(3)中のAr~Arで表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の芳香族複素環基」又は「置換若しくは無置換の縮合多環芳香族基」における、「芳香族炭化水素基」、「芳香族複素環基」又は「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、セレノニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、及びカルボリニル基等を挙げることができる。
 前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、セレノニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基のような基を挙げることができ、これらの置換基は、さらに前記例示した置換基が置換していてもよい。また、これらの置換基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」又は「置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」又は「炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基等を挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。
 前記式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」又は「置換基を有する炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、セレノニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基のような基を挙げることができ、これらの置換基はさらに、前記例示した置換基が置換していてもよい。また、これらの置換基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」における「炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基」又は「炭素原子数5ないし10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基等を挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有する炭素原子数5ないし10のシクロアルキルオキシ基」における「置換基」としては、上記一般式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」又は「置換基を有する炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(1)中のR~Rで表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の芳香族複素環基」又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」又は「縮合多環芳香族基」としては、前記式(1)、(2)及び(3)中のAr~Arで表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の芳香族複素環基」又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」又は「縮合多環芳香族基」に関して示したものと同様のものを挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。また、これらの基は置換基を有していてよく、置換基として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(1)中のR~Rで表される「置換若しくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基等を挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。また、これらの基は置換基を有していてよく、置換基として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(1)中のR~R及びArのいずれか1つは、結合部位としての連結基である。すなわち、前記式(1)中のR~R及びArのいずれか1つは、前記式(1)で表される基を有するアリールアミン化合物において、前記式(1)で表される基と、他の構造とを結合している連結基である。前記式(1)中のR~Rのいずれか1つが結合部位としての連結基である場合、R~Rは単結合であってもよい。
 本発明においては、屈折率及び消光係数を高くする観点から、前記式(1)中のArとしては、「置換若しくは無置換の芳香族炭化水素基」、及び「置換若しくは無置換の縮合多環芳香族基」が好ましく、フェニル基及びビフェニル基がより好ましく、特にフェニル基が好ましい。
 前記式(1)中のR~Rとしては、水素原子又は重水素原子が好ましく、合成上の観点から、水素原子がより好ましい。
 前記式(1)で表される基を有するアリールアミン化合物は、屈折率及び消光係数を高くする観点から、前記式(2)又は前記式(3)で表されるアリールアミン化合物であることが好ましい。また、前記式(1)中のArが、前記式(2)及び(3)中の窒素原子と結合していることが好ましい。
 前記式(2)中のAr~Arの少なくとも1つは前記式(1)で表される基であるが、Ar~Arのうち2つが、それぞれ独立して、前記式(1)で表される基であることが好ましい。また、前記式(3)中のAr~Arの少なくとも1つは前記式(1)で表される基であるが、Ar~Arのうち2つが、それぞれ独立して、前記式(1)で表される基であることが好ましく、Ar及びArが、それぞれ独立して、前記式(1)で表される基であることがより好ましい。
 前記式(2)及び(3)中のAr~Arのうち、前記式(1)で表される基以外の基としては、「置換若しくは無置換の芳香族炭化水素基」又は「置換若しくは無置換の縮合多環芳香族基」が好ましく、置換若しくは無置換のフェニル基、置換若しくは無置換のビフェニル基がより好ましい。フェニル基及びビフェニル基の置換基としては、フェニル基、ナフチル基及びフェナントレニル基が好ましい。好ましい基の具体例としては、例えば、下記式で表される基を挙げることができる。
Figure JPOXMLDOC01-appb-C000021
(式中、破線部は結合部位を表す。)
 前記式(3)中のLとしては、置換若しくは無置換のビフェニレン基、又は置換若しくは無置換のターフェニレン基が好ましく、合成上の観点から、無置換のビフェニレン基、又は無置換のターフェニレン基がより好ましい。
 本発明の有機EL素子に好適に用いられる、前記式(1)で表されるアリールアミン化合物の中で、好ましい化合物の具体例を図1~11に示すが、これらの化合物に限定されるものではない。
 前記式(Host-A)中のR~R10及びRaで表される「置換若しくは無置換の炭素原子数1ないし15のアルキル基」における「炭素原子数1ないし15のアルキル基」としては、具体的に、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等を挙げることができる。
 前記式(Host-A)中のR~R10及びRaで表される「置換若しくは無置換の炭素原子数1ないし15のアルキル基」における「置換基」としては、前記式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」又は「置換基を有する炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(Host-A)中のR~R10及びRaで表される「置換若しくは無置換の炭素数原子6ないし15のアリール基」としては、具体的に、フェニル基、ビフェニリル基、9,9’-ジメチルフルオレニル基、1-ナフチル基、2-ナフチル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基、トルイル基、ニトロフェニル基、シアノフェニル基、フルオロビフェニリル基、ニトロビフェニリル基、シアノビフェニル基、シアノナフチル基、ニトロナフチル基、フルオロナフチル基等を挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(Host-A)中のR~R10及びRaで表される「置換若しくは無置換の環形成炭素数6ないし12のアリール基」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(Host-A)中のL及びLで表される「置換若しくは無置換の環形成炭素数6ないし30のアリーレン基」、又は「置換若しくは無置換の環形成炭素数5ないし30のヘテロアリーレン基」における「環形成炭素数6ないし30のアリーレン基」又は「環形成炭素数5ないし30のヘテロアリーレン基」としては、具体的に、フェニレン基、ビフェニレン基、ターフェニレン基、クォーターフェニレン基、キンクフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、フルオレニレン基、インデニレン基、ピレニレン基、アセトナフテニレン基、フルオランテニレン基、トリフェニレニレン基、ピリジレン基、ピラニレン基、キノリレン基、イソキノリレン基、ベンゾフラニレン基、ベンゾチエニレン基、インドリレン基、カルバゾリレン基、ベンゾオキサゾリレン基、ベンゾチアゾリレン基、キノキサリレン基、ベンゾイミダゾリレン基、ピラゾリレン基、ジベンゾフラニレン基、及びジベンゾチエニレン基等を挙げることができる。
 前記式(Host-A)中のL及びLで表される「置換若しくは無置換の環形成炭素数6ないし30のアリーレン基」、又は「置換若しくは無置換の環形成炭素数5ないし30のヘテロアリーレン基」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 本発明の有機EL素子に好適に用いられる、前記式(Host-A)で表される第1ホスト化合物の中で、好ましい化合物の具体例を図12~16に示すが、これらの化合物に限定されるものではない。
 本発明においては、発光効率及び電力効率の観点から、図14に示した化合物(A-43)が好ましいが、この化合物に限定されるものではない。
 前記式(Host-B)中のAr及びAr10で表される「置換若しくは無置換の炭素原子数6ないし30のアリール基」、又は「置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基」における「炭素原子数6ないし30のアリール基」、又は「炭素原子数5ないし30のヘテロアリール基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、トリフェニレン基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、及びカルボリニル基等を挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(Host-B)中のAr及びAr10で表される「置換若しくは無置換の炭素原子数6ないし30のアリール基」、又は「置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(Host-B)中のR11~R16で表される「炭素数1ないし15のアルキル基」としては、具体的に、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等を挙げることができる。
 前記式(Host-B)中のR11~R16で表される「炭素数1ないし15のアルキル基」における「置換基」としては前記式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」又は「置換基を有する炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(Host-B)中のR11~R16で表される「置換若しくは無置換の環形成炭素数6ないし30のアリール基」、又は「置換若しくは無置換の環形成炭素数5ないし30のヘテロアリール基」としては、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、及びカルボリニル基等を挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(Host-B)中のR11~R16で表される「置換若しくは無置換の環形成炭素数6ないし30のアリール基」、又は「置換若しくは無置換の環形成炭素数5ないし30のヘテロアリール基」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(Host-B)中のY及びYで表される「置換若しくは無置換の炭素原子数6ないし30のアリーレン基」、又は「置換若しくは無置換の炭素原子数5ないし30のヘテロアリーレン基」における「炭素原子数6ないし30のアリーレン基」、又は「炭素原子数5ないし30のヘテロアリーレン基」としては、具体的に、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、フルオレニレン基、インデニレン基、ピレニレン基、アセトナフテニレン基、フルオランテニレン基、トリフェニレニレン基、ピリジレン基、ピラニレン基、キノリレン基、イソキノリレン基、ベンゾフラニレン基、ベンゾチエニレン基、インドリレン基、カルバゾリレン基、ベンゾオキサゾリレン基、ベンゾチアゾリレン基、キノキサリレン基、ベンゾイミダゾリレン基、ピラゾリレン基、ジベンゾフラニレン基、及びジベンゾチエニレン基等を挙げることができる。上記の中でフェニレン基、ビフェニレン基、又はピレニレン基が特に好ましい。
 前記式(Host-B)中のY及びYで表される「置換若しくは無置換の炭素原子数6ないし30のアリール基」、又は「置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 本発明の有機EL素子に好適に用いられる、前記式(Host-B)で表される第2ホスト化合物の中で、好ましい化合物の具体例を図17~20に示すが、これらの化合物に限定されるものではない。
 本発明においては、発光効率及び電力効率の観点から、図18に示した化合物(B-25)が好ましいが、この化合物に限定されるものではない。
 前記式(4)中のR17~R32で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」又は「置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」又は「炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基、などを挙げることができる。また、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(4)中のR17~R32で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」、又は「置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」としては前記式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」又は「置換基を有する炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(4)中のR17~R32で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」における「炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基」又は「炭素原子数5ないし10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などを挙げることができる。
 前記式(4)中のR17~R32で表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有する炭素原子数5ないし10のシクロアルキルオキシ基」における「置換基」としては、前記式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」又は「置換基を有する炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(4)中のR17~R32で表される「置換若しくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などを挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(4)中のR17~R32で表される「置換若しくは無置換のアリールオキシ基」における「置換基」としては前記式(1)中のR~Rで表される「置換若しくは無置換のアリールオキシ基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(4)中のR17~R32で表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の芳香族複素環基」、又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」又は「縮合多環芳香族基」としては、具体的に、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ナフタセニル基、ピレニル基、ビフェニリル基、p-ターフェニル基、m-ターフェニル基、クリセニル基、トリフェニレニル基、ペリレニル基、インデニル基、フラニル基、チオフェニル基、ピロリル基、ピラゾリル基、イミダゾリル基、トリアゾリル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリジル基、ピリミジニル基、ピラジニル基、トリアジニル基、ベンゾフラニル基、ベンゾチオフェニル基、ベンズイミダゾリル基、インドリル基、キノリニル基、イソキノリニル基、キナゾリニル基、キノキサリニル基、ナフチリジニル基、ベンズオキサジニル基、ベンズチアジニル基、アクリジニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基などを挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(4)中のR17~R32で表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の芳香族複素環基」、又は「置換若しくは無置換の縮合多環芳香族基」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 本発明の有機EL素子に好適に用いられる、前記式(4)で表される金属錯体の中で、好ましい化合物の具体例を図21~23に示すが、これらの化合物に限定されるものではない。
 本発明においては、発光効率及び電力効率の観点から、図23に示した化合物(4-35)が好ましいが、この化合物に限定されるものではない。
 前記式(5)中のAr11及びAr12で表される「置換若しくは無置換の炭素原子数6ないし30のアリール基」、又は「置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基」における「炭素原子数6ないし30のアリール基」又は「炭素原子数5ないし30のヘテロアリール基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、及びカルボリニル基などを挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(5)中のAr11及びAr12で表される「置換若しくは無置換の炭素原子数6ないし30のアリール基」、又は「置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基である」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(5)及び(6)中のR33~R39で表される「置換若しくは無置換の炭素原子数1ないし15のアルキル基」における「炭素原子数1ないし15のアルキル基」としては、具体的に、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げることができる。
 前記式(5)及び(6)中のR33~R39で表される「置換若しくは無置換の炭素原子数1ないし15のアルキル基」における「置換基」としては、前記式(1)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」又は「置換基を有する炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 前記式(5)及び(6)中のR33~R39で表される「置換若しくは無置換の炭素数原子6ないし12のアリール基」における「炭素数原子6ないし12のアリール基」としては、具体的に、フェニル基、ビフェニリル基、1-ナフチル基、2-ナフチル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基、トルイル基、ニトロフェニル基、シアノフェニル基、フルオロビフェニリル基、ニトロビフェニリル基、シアノビフェニル基、シアノナフチル基、ニトロナフチル基、フルオロナフチル基などを挙げることができ、これらの基同士が単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 前記式(5)及び(6)中のR33~R39で表される「置換若しくは無置換の炭素数原子6ないし12のアリール基」における「置換基」として、前記式(1)、(2)及び(3)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」又は「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものを挙げることができ、とりうる態様も、同様のものを挙げることができる。
 本発明においては、正孔輸送性の観点から、前記式(5)中のAr11及びAr12として、無置換のビフェニル基、無置換のターフェル基、無置換のトリフェニレル基、無置換のフェナントレル基、置換基を有するフルオレニル基、及び置換基を有するチエニル基が好ましく、無置換のビフェニル基、及び置換基を有するフルオレニル基がより好ましい。ここで、フルオレニル基、及びチエニル基の置換基としては、メチル基及びフェニル基が好ましく、フルオレニル基の置換基としては、メチル基がより好ましい。
 前記式(5)及び(6)中のR33~R37としては、水素原子、重水素原子が好ましく、合成上の観点から、水素原子がより好ましい。前記式(6)中のR38及びR39としては、メチル基が好ましい。
 本発明の有機EL素子に好適に用いられる、前記式(5)で表されるアリールアミン化合物の中で、好ましい化合物の具体例を図24~27に示すが、これらの化合物に限定されるものではない。
 本発明においては、正孔輸送性及び薄膜の安定性の観点から、図26に示した(5-48)で表される化合物が好ましいが、この化合物に限定されるものではない。
 本発明の前記式(1)で表される基を有するアリールアミン化合物は新規の化合物であり、従来のキャッピング材料より、光の波長が450nmから650nmの範囲以内において高い屈折率を有し、特に緑色及び赤色燐光性発光材料を含む場合に、より好適に有機EL素子の光取り出し効率を向上させることができるという作用を有する。
 また本発明の前記式(1)で表される基を有するアリールアミン化合物は、従来のキャッピング材料より、光の波長が400nmから410nmの範囲における消光係数が高く、太陽光による素子へのダメージの防ぐ作用を有し、高耐久性を実現することが可能となる。
 本発明の有機EL素子は、従来のキャッピング材料より屈折率が高く、優れた吸光係数を有し、優れたアモルファス性を有した、前記式(1)で表される基、すなわち、ベンゾアゾール環構造を有するアリールアミン化合物を用いている。そのため、高効率、高耐久性を実現することが可能となる。
 本発明の前記式(1)で表される基を有するアミン化合物は新規化合物であり、これら化合物の主骨格であるベンゾアゾール誘導体は、それ自体公知の手法により合成ができる(例えば、非特許文献4参照)。更に、合成したハロゲン化ベンゾアゾール誘導体とアリールアミンを銅触媒やパラジウム触媒などによるカップリング反応を行うことで、本発明の前記式(1)で表される基を有するアミン化合物を合成することができる。その他、ハロゲン化ベンゾアゾール誘導体をボロン酸誘導体、又はボロン酸エステル誘導体にすることで、ハロゲン化アリールアミンとのカップリング反応により、同様に本発明の前記式(1)で表される基を有するアリールアミン化合物を合成することができる(例えば、非特許文献4、5参照)。
 上述した前記式(Host-A)で表される第1ホスト化合物は、それ自体公知の方法に準じて合成することができる(例えば、特許文献3、4、8参照)。
 上述した前記式(Host-B)で表される第2ホスト化合物は、それ自体公知の方法に準じて合成することができる(例えば、特許文献3、4参照)。
 上述した前記式(4)で表される金属錯体は、それ自体公知の方法に準じて合成することができる(例えば、特許文献9、10参照)。
 上述した前記式(5)で表されるアリールアミン化合物は、それ自体公知の方法に準じて合成することができる(例えば、特許文献11参照)。
 前記式(1)で表される基を有するアミン化合物、前記式(Host-A)で表される第1ホスト化合物、前記式(Host-B)で表される第2ホスト化合物、前記式(4)で表される金属錯体、及び前記式(5)で表されるアリールアミン化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法、昇華精製法などによって行える。化合物の同定は、NMR分析によって行える。物性値として、融点、ガラス転移点(Tg)及び仕事関数等の測定を行うことが好ましい。融点は蒸着性の指標となるものであり、ガラス転移点(Tg)は薄膜状態の安定性の指標となり、仕事関数は正孔輸送性や正孔阻止性の指標となるものである。
 本発明の有機EL素子に用いられる化合物は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法などによって精製を行った後、最後に昇華精製法によって精製されたものを用いることが好ましい。
 融点とガラス転移点(Tg)は、粉体を用いて高感度示走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって測定できる。
 前記式(1)で表される基を有するアミン化合物については、屈折率及び消光係数の測定を行うことが好ましい。屈折率及び消光係数は、シリコン基板上に80nmの薄膜を作製して、分光測定装置(フィルメトリクス社製、F10-RT-UV)を用いて測定できる。
 本発明の有機EL素子の構造としては、例えば、トップエミッション構造の発光素子の場合、ガラス基板上に順次、陽極、正孔注入層、第一正孔輸送層、第二正孔輸送層、発光層、電子輸送層、陰極及びキャッピング層からなるもの、また、陽極と正孔輸送層の間に正孔注入層を有するもの、正孔輸送層と発光層の間に電子阻止層を有するもの、発光層と電子輸送層の間に正孔阻止層を有するもの、電子輸送層と陰極の間に電子注入層を有するものが挙げられる。これらの多層構造においては、1つの有機層が何層かの役割を兼ねることが可能であり、例えば1つの有機層が、正孔注入層と正孔輸送層を兼ねた構成、正孔輸送層と電子阻止層を兼ねた構成、正孔阻止層と電子輸送層を兼ねた構成、電子輸送層と電子注入層を兼ねた構成とすること、などもできる。また、同一の機能を有する有機層を2層以上積層した構成とすることも可能であり、正孔輸送層を2層積層した構成、発光層を2層積層した構成、電子輸送層を2層積層した構成、キャッピング層を2層積層した構成、などもできる。
 有機EL素子の各層の膜厚の合計は、100nm~700nm程度が好ましく、150nm~300nm程度がより好ましい。また、キャッピング層の膜厚は、例えば、30nm~120nmが好ましく、40nm~80nmがより好ましい。この場合、良好な光の取り出し効率が得られる。なお、キャッピング層の膜厚は、発光素子に使用する発光材料の種類、キャッピング層以外の有機EL素子の厚さなどに応じて、適宜変更することができる。
 本発明の有機EL素子の正孔注入層の材料として、分子中に、トリフェニルアミン構造を3個以上、単結合又はヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料や銅フタロシアニンに代表されるポルフィリン化合物、ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料を用いることができる。
 本発明の有機EL素子の第一正孔輸送層の材料として、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(以後、TPDと略称する)やN,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以後、NPDと略称する)、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以後、TAPCと略称する)、特に分子中にトリフェニルアミン構造を2個、単結合又はヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、N、N、N’、N’-テトラビフェニリルベンジジンなどを用いるのが好ましい。また、分子中にトリフェニルアミン構造を3個以上、単結合、又はヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、種々のトリフェニルアミン3量体及び4量体などを用いるのが好ましい。
 また、正孔の注入・輸送層の材料として、ポリ(3,4-エチレンジオキシチオフェン)(以後、PEDOTと略称する)/ポリ(スチレンスルフォネート)(以後、PSSと略称する)などの塗布型の高分子材料を用いることができる。
 本発明の有機EL素子の第二正孔輸送層の材料として、前記式(5)で表されるアリールアミン化合物がより好ましいが、その他に、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(以後、TCTAと略称する)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(以後、mCPと略称する)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以後、Ad-Czと略称する)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造とを有する化合物などの、電子阻止作用を有する化合物を用いることができる。
 また、正孔注入層及び正孔輸送層の材料として、これらの層に通常使用される材料に対してトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(例えば、後述する化合物(Acceptor-1)、及び特許文献12参照)をPドーピングしたもの、及びTPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることができる。
 本発明の有機EL素子の発光層のホストとして、正孔輸送性のホスト材料及び電子輸送性のホスト材料を用いることができる。正孔輸送性のホスト材料としては、前記式(Host-B)で表される第2ホスト化合物の他に、4,4’-ジ(N-カルバゾリル)ビフェニル(CBP)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。電子輸送性のホスト材料としては、前記式(Host-A)で表される第1ホスト化合物の他に、p-ビス(トリフェニルシリル)ベンゼン(UGH2)、2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(TPBi)などを用いることができる。
 本発明では、電子輸送能を有した第1ホスト化合物と、正孔輸送能を有した第2ホスト化合物の二種類以上の化合物を用いるのが好ましい。前記第2ホスト化合物は、1種又は2種以上が用いられてもよい。前記第1ホスト化合物と前記第2ホスト化合物とは、例えば、1:10~10:1の重量比で含まれてもよい。
 本発明の有機EL素子の発光層の前記第1ホスト化合物としては、前記式(Host-A)で表される、含窒素ヘテロ芳香族環構造を有する化合物が好ましく、前記第2ホスト化合物としては、前記式(Host-B)で表される、カルバゾール環構造を有する化合物が好ましい。
 前述した第1ホスト化合物及び第2ホスト化合物以外に1種以上のホスト化合物をさらに含むことができる。
 本発明の有機EL素子の発光層の燐光発光性ドーパントとしては、前記式(4)で表される金属錯体がより好ましいが、その他に、Pt、Os、Ti、Zr、Hf、Eu、Tb、Tm、Fe、Co、Ni、Ru、Rh、Pd又はこれらの組み合わせを含む有機金属化合物を使用することができる。前記ドーパントは、赤色、緑色又は青色のドーパントであってもよく、高性能の有機EL素子を作製することができる。
 燐光発光性ドーパントのホスト材料へのドープは、濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によって行うことが好ましい。
 本発明の有機EL素子の正孔阻止層の材料として、バソクプロイン(以後、BCPと省略する)などのフェナントロリン誘導体、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと省略する)などのキノリノール誘導体の金属錯体、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、ピリミジン誘導体、オキサジアゾール誘導体、ベンゾアゾール誘導体などの、正孔阻止作用を有する化合物を用いることができる。これらの材料は電子輸送層の材料を兼ねてもよい。
 本発明の有機EL素子の電子輸送層の材料として、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、ピリミジン誘導体、オキサジアゾール誘導体、ピリジン誘導体、ベンズイミダゾール誘導体、ベンゾアゾール誘導体、チアジアゾール誘導体、アントラセン誘導体、カルボジイミド誘導体、キノキサリン誘導体、ピリドインドール誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。
 本発明の有機EL素子の電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、リチウムキノリノールなどのキノリノール誘導体の金属錯体、酸化アルミニウムなどの金属酸化物などを用いることができるが、電子輸送層と陰極の好ましい選択により、電子注入層を省略することができる。
 また、電子注入層及び電子輸送層の材料として、これらの層に通常使用される有機化合物に対してセシウム、フッ化リチウム、及びイッテルビウムなどの金属をNドーピングしたものを用いることができる。
 本発明の有機EL素子の陰極として、アルミニウム、イッテルビウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 本発明の有機EL素子のキャッピング層の材料としては、本実施形態の前記式(1)で表される基を有するアリールアミン化合物が好ましい。
 キャッピング層を構成する材料の屈折率は、隣接する電極の屈折率よりも大きいことが好ましい。キャッピング層によって、有機EL素子における光の取り出し効率は向上するが、その効果はキャッピング層とキャッピング層に接している材料との界面での反射率が大きい方が、光干渉の効果が大きいために有効である。そのため、キャッピング層を構成する材料の屈折率は、隣接する電極の屈折率よりも大きい方が好ましく、波長450nm~650nmの範囲内における屈折率が1.70以上あればよいが、1.80以上がより好ましく、1.85以上であることが特に好ましい。
 本発明の有機EL素子を構成する各層に用いられるこれらの材料は、蒸着法、スピンコート法およびインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、これらの材料は、単独で成膜してもよいが、複数種を混合して成膜することもでき、それぞれを単層として使用できる。また、これらの材料を単独で成膜した層同士の積層構造、混合して成膜した層同士の積層構造、またはこれらの材料を単独で成膜した層と複数種を混合して成膜した層の積層構造としてもよい。
 なお、上記では、トップエミッション構造の有機EL素子について説明したが、本発明はこれに限定されるものではなく、ボトムエミッション構造の有機EL素子や、上部及び底部の両方から発光するデュアルエミッション構造の有機EL素子についても、同様に適用することができる。これらの場合、光が発光素子から外部に取り出される方向にある電極は、透明又は半透明である必要がある。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
(実施例1)
<ビス-{4-(ベンゾオキサゾール-2-イル)フェニル}-{4-(ナフタレン-2-イル)フェニル}アミンの合成>(2-34)
 反応容器に4-(ナフタレン-2-イル)フェニル-アミン:7.5g、2-(4-ブロモフェニル)ベンゾオキサゾール:20.6g、t-ブトキシナトリウム:9.9g、トルエン:150mlを加え、30分間超音波を照射しながら窒素ガスを通気した。トリス(ジベンジリデンアセトン)ジパラジウム(0):0.9g、トリ-(t-ブチル)ホスフィンの50%(w/v)トルエン溶液:0.4mlを加えて加熱還流下にて3時間撹拌した。80℃まで放冷した後、シリカゲルを加え濾過して、濾液を濃縮して粗製物を得た。粗製物をトルエンで再結晶し、ビス-{4-(ベンゾオキサゾール-2-イル)フェニル}-{4-(ナフタレン-2-イル)フェニル}アミン(2-34)の黄色粉体:6.3g(収率30%)を得た。
Figure JPOXMLDOC01-appb-C000022
 得られた黄色粉体についてNMRを使用して構造を同定した。
 1H-NMR(CDCl)で以下の27個の水素シグナルを検出した。
δ(ppm)=8.19-8.24(4H)、8.09(1H)、7.87-7.97(3H)、7.73-7.83(5H)、7.51-7.62(4H)、7.32-7.42(10H)
(実施例2)
<ビス-{4-(ベンゾオキサゾール-2-イル)フェニル}-{4-(フェナントレン-9-イル)フェニル}アミンの合成>(2-39)
 反応容器に4-(フェナントレン-9-イル)フェニル-アミン:8.0g、2-(4-ブロモフェニル)ベンゾオキサゾール:17.9g、t-ブトキシナトリウム:8.6g、トルエン:160mlを加え、30分間超音波を照射しながら窒素ガスを通気した。トリス(ジベンジリデンアセトン)ジパラジウム(0):0.8g、トリ-(t-ブチル)ホスフィンの50%(w/v)トルエン溶液:0.4mlを加えて加熱還流下にて3時間撹拌した。80℃まで放冷した後、シリカゲルを加え濾過して、濾液を濃縮して粗製物を得た。粗製物をトルエンで再結晶し、ビス-{4-(ベンゾオキサゾール-2-イル)フェニル}-{4-(フェナントレン-9-イル)フェニル}アミン(2-39)の黄色粉体:15.0g(収率77.0%)を得た。
Figure JPOXMLDOC01-appb-C000023
 得られた黄色粉体についてNMRを使用して構造を同定した。
 1H-NMR(CDCl)で以下の29個の水素シグナルを検出した。
δ(ppm)=8.73-8.84(2H)、8.24-8.27(4H)、8.07-8.11(1H)、7.92-7.97(1H)、7.57-7.84(11H)、7.35-7.43(10H)
(実施例3)
<ビス-{4-(ベンゾオキサゾール-2-イル)フェニル}-([1,1’,2’,1’’]ターフェニル-4’-イル)-アミンの合成>(2-44)
 反応容器に([1,1’,2’,1’’]ターフェニル-4’-イル)-アミン:5.6g、2-(4-ブロモフェニル)ベンゾオキサゾール:14.4g、t-ブトキシナトリウム:4.4g、トルエン:60mlを加え、30分間超音波を照射しながら窒素ガスを通気した。酢酸パラジウム:0.1g、トリ-(t-ブチル)ホスフィンの50%(w/v)トルエン溶液:0.4mlを加えて加熱還流下にて一晩撹拌した。放冷した後、メタノールを加えて析出した固体を採取して粗製物を得た。粗製物をトルエン/アセトン混合溶媒による晶析精製にて析出した固体を採取し、ビス-{4-(ベンゾオキサゾール-2-イル)フェニル}-([1,1’,2’,1’’]ターフェニル-4’-イル)-アミン(2-44)の黄色粉体:11.0g(収率76.4%)を得た。
Figure JPOXMLDOC01-appb-C000024
 得られた黄色粉体についてNMRを使用して構造を同定した。
 1H-NMR(DMSO-d)で以下の29個の水素シグナルを検出した。
δ(ppm)=8.19(4H)、7.78(4H)、7.50(1H)、7.45-7.34(8H)、7.30(1H)、7.28-7.18(7H)、7.15(2H)
(実施例4)
<ビス-{4-(ベンゾチアゾール-2-イル)フェニル}-{4-(ナフタレン-2-イル)フェニル}アミンの合成>(2-52)
 反応容器に4-(ナフタレン-2-イル)フェニル-アミン:4.7g、2-(4-ブロモフェニル)ベンゾチアゾール:13.7g、t-ブトキシナトリウム:6.2g、トルエン:140mlを加え、30分間超音波を照射しながら窒素ガスを通気した。トリス(ジベンジリデンアセトン)ジパラジウム(0):0.6g、トリ-(t-ブチル)ホスフィンの50%(w/v)トルエン溶液:0.6mlを加えて加熱還流下にて3.5時間撹拌した。80℃まで放冷した後、セライトを加え濾過して、濾液を濃縮して粗製物を得た。粗製物をトルエンに加熱溶解させ、80℃で活性炭とシリカゲルを加えて濾過し、濾液を濃縮した。濃縮物をアセトンで還流分散洗浄し、ビス-{4-(ベンゾチアゾール-2-イル)フェニル}-{4-(ナフタレン-2-イル)フェニル}アミン(2-52)の黄色粉体:9.3g(収率68%)を得た。
Figure JPOXMLDOC01-appb-C000025
 得られた黄色粉体についてNMRを使用して構造を同定した。
 1H-NMR(DMSO-d)で以下の27個の水素シグナルを検出した。
δ(ppm)=8.27(1H)、7.88-8.15(14H)、7.29-7.56(12H)
(実施例5)
<ビス-{4-(ベンゾチアゾール-2-イル)フェニル}-{4-(フェナントレン-9-イル)フェニル}アミンの合成>(2-57)
 反応容器に4-(フェナントレン-9-イル)フェニル-アミン:6.0g、2-(4-ブロモフェニル)ベンゾチアゾール:14.2g、t-ブトキシナトリウム:6.4g、トルエン:140mlを加え、30分間超音波を照射しながら窒素ガスを通気した。トリス(ジベンジリデンアセトン)ジパラジウム(0):0.6g、トリ-(t-ブチル)ホスフィンの50%(w/v)トルエン溶液:0.6mlを加えて加熱還流下にて3時間撹拌した。80℃まで放冷した後、セライトを加え濾過して、濾液を濃縮して粗製物を得た。粗製物をモノクロロベンゼンに加熱溶解させ、80℃で活性炭とシリカゲルを加えて濾過し、濾液を濃縮した。濃縮物にアセトンを加え、析出した固体を濾過した。得られた固体をトルエンで再結晶し、ビス-{4-(ベンゾチアゾール-2-イル)フェニル}-{4-(フェナントレン-9-イル)フェニル}アミン(2-57)の淡黄色粉体:10.4g(収率68.0%)を得た。
Figure JPOXMLDOC01-appb-C000026
 得られた淡黄色粉体についてNMRを使用して構造を同定した。
 1H-NMR(DMSO-d)で以下の29個の水素シグナルを検出した。
δ(ppm)=8.89-8.99(2H)、8.00-8.16(10H)、7.88(1H)、7.63-7.80(6H)、7.55(2H)、7.35-7.48(8H)
(実施例6)
<ビス-{4-(ベンゾチアゾール-2-イル)フェニル}-([1,1’,2’,1’’]ターフェニル-4’-イル)-アミンの合成>(2-62)
 反応容器に([1,1’,2’,1’’]ターフェニル-4’-イル)-アミン:5.0g、2-(4-ブロモフェニル)ベンゾチアゾール:13.0g、t-ブトキシナトリウム:59g、トルエン:130mlを加え、30分間超音波を照射しながら窒素ガスを通気した。トリス(ジベンジリデンアセトン)ジパラジウム(0):0.6g、トリ-(t-ブチル)ホスフィンの50%(w/v)トルエン溶液:0.6mlを加えて加熱還流下にて18時間撹拌した。80℃まで放冷した後、セライトを加え濾過して、濾液を濃縮して粗製物を得た。粗製物をトルエンに加熱溶解させ、80℃で活性炭とシリカゲルを加えて濾過し、濾液を濃縮した。濃縮物にアセトンを加え、析出した固体を濾過した。得られた固体をトルエンで再結晶し、ビス-{4-(ベンゾチアゾール-2-イル)フェニル}-([1,1’,2’,1’’]ターフェニル-4’-イル)-アミン(2-62)の淡黄白色粉体:7.7g(収率57%)を得た。
Figure JPOXMLDOC01-appb-C000027
 得られた淡黄白色粉体についてNMRを使用して構造を同定した。
 1H-NMR(DMSO-d)で以下の29個の水素シグナルを検出した。
δ(ppm)=8.02-8.15(8H)、7.09-7.57(21H)
(実施例7)
<N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニルの合成>(3-31)
 窒素置換した反応容器に、2-(4-ブロモフェニル)-ベンゾオキサゾール13.0g、N,N’-ジフェニルベンジジン7.6g、tert-ブトキシナトリウム4.6g、トルエン160mlを加え、30分間超音波を照射しながら窒素ガスを通気した。酢酸パラジウム0.2g、tert-ブチルホスフィンの50%(v/v)トルエン溶液0.5gを加えて加熱し、攪拌しながら5時間加熱還流した。室温まで冷却し、ろ過によって析出物を採取した後、カラムクロマトグラフ(担体:NHシリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、さらに、n-ヘキサンを用いた分散洗浄を行うことによって、N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(3-31)の淡黄色粉体8.8g(収率54%)を得た。
Figure JPOXMLDOC01-appb-C000028
 得られた淡黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の34個の水素シグナルを検出した。
δ(ppm)=8.12(4H)、7.80-7.72(2H)、7.60-7.53(5H)、7.41-7.14(23H)
(実施例8)
<N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニルの合成>(3-32)
 窒素置換した反応容器に、2-(4-ブロモフェニル)-ベンゾチアゾール11.0g、N,N’-ジフェニルベンジジン6.7g、tert-ブトキシナトリウム3.9g、トルエン150mlを加え、30分間超音波を照射しながら窒素ガスを通気した。酢酸パラジウム0.2g、tert-ブチルホスフィンの50%(v/v)トルエン溶液0.5gを加えて加熱し、攪拌しながら5時間加熱還流した。室温まで冷却し、ろ過によって析出物を採取した後、カラムクロマトグラフ(担体:NHシリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、さらに、n-ヘキサンを用いた分散洗浄を行うことによって、N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(3-32)の淡黄色粉体9.3g(収率62%)を得た。
Figure JPOXMLDOC01-appb-C000029
 得られた淡黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の34個の水素シグナルを検出した。
δ(ppm)=8.10-7.88(8H)、7.60-7.13(26H)
(実施例9)
 <N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニルの合成>(3-56)
 窒素置換した反応容器に、{4-(ベンゾオキサゾール-2-イル)フェニル}フェニルアミン13.4g、4,4’’-1,1’:4’,1’’-ターフェニル10.8g、tert-ブトキシナトリウム5.0g、トルエン150mlを加え、30分間超音波を照射しながら窒素を通気した。酢酸パラジウム0.2g、tert-ブチルホスフィンの50%(v/v)トルエン溶液0.5gを加えて加熱し、攪拌しながら3時間加熱還流した。室温まで冷却し、ろ過によって析出物を採取した後、1,2-ジクロロベンゼン/メタノールの混合溶媒を用いた晶析精製を繰り返すことによって、N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(3-56)の黄色粉体8.4g(収率47%)を得た。
Figure JPOXMLDOC01-appb-C000030
 得られた黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の38個の水素シグナルを検出した。
δ(ppm)=8.13(4H)、7.80-7.55(11H)、7.50-7.16(23H)
(実施例10)
<N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニルの合成>(3-57)
 窒素置換した反応容器に、N-{4-(ベンゾチアゾール-2-イル)フェニル}フェニルアミン9.3g、4,4’’-ジヨード-1,1’:4’,1’’-ターフェニル7.1g、tert-ブトキシナトリウム4.6g、トルエン140mlを加え、30分間超音波を照射しながら窒素を通気した。酢酸パラジウム0.2g、tert-ブチルホスフィンの50%(v/v)トルエン溶液0.5gを加えて加熱し、攪拌しながら3時間加熱還流した。室温まで冷却し、ろ過によって析出物を採取した後、1,2-ジクロロベンゼン/メタノールの混合溶媒を用いた晶析精製を繰り返すことによって、N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(3-57)の緑色粉体7.0g(収率58%)を得た。
Figure JPOXMLDOC01-appb-C000031
 得られた黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の38個の水素シグナルを検出した。
δ(ppm)=8.13(4H)、7.80-7.55(11H)、7.50-7.16(23H)
(実施例11)
 前記実施例1~10で得られたアリールアミン化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって融点とガラス転移点を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000032
 前記実施例1~10で得られたアリールアミン化合物は100℃以上のガラス転移点を有しており、薄膜状態が安定であることを示すものである。
(実施例12)
 前記実施例1~10で得られたアリールアミン化合物を用いてシリコン基板上に膜厚80nmの蒸着膜を作製し、分光測定装置(フィルメトリクス社製、F10-RT-UV)を用いて、波長400nm~650nmにおける屈折率n及び消光係数kを測定した。比較のために、下記構造式の化合物(CPL-1)及び(CPL-2)(例えば、特許文献6参照)についても波長400nm~650nmにおける屈折率n及び消光係数kを測定した。測定結果を表2にまとめて示した。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-T000035
 表1に示すように、本発明の前記式(1)で表される基を有するアリールアミン化合物と、前記化合物(CPL-1)及び(CPL-2)との比較において、青色発光波長領域(450nm)の屈折率は、前記化合物(CPL-1)及び(CPL-2)の1.98~2.02に対し、本発明の化合物では2.18~2.39と高い。また、緑色発光波長領域(550nm)の屈折率においても、前記化合物(CPL-1)及び(CPL-2)の1.85~1.90に対し、本発明の化合物では1.95~2.05と高い。さらに、赤色発光波長領域(650nm)の屈折率においても、前記化合物(CPL-1)及び(CPL-2)の1.84~1.81に対し、本発明の化合物では1.90~1.97と高い。
 このように本発明の化合物は青色、緑色、赤色の発光波長領域において、前記化合物(CPL-1)及び(CPL-2)と比べて高い屈折率を有しており、有機EL素子における光の取り出し効率の向上が期待できる。
 また、波長400nmから410nmでの消光係数が、前記化合物(CPL-1)及び(CPL-2)では0.2以下であるのに対し、本発明の化合物では0.46~0.89と大きな値を有しており、このことは太陽光の波長400nmから410nmの光をよく吸光し素子内部の材料に影響を与えないことを示すものである。
(実施例13)
 有機EL素子は、図28に示すように、ガラス基板1上に反射膜2及び金属陽極3としてITO電極をあらかじめ形成したものの上に、正孔注入層4、第一正孔輸送層5、第二正孔輸送層6、発光層7、電子輸送層8、電子注入層9、陰極10、キャッピング層11の順に蒸着して作製した。
 具体的には、反射膜2及び透明陽極3であるITOを成膜したガラス基板1をイソプロピルアルコール中にて超音波洗浄を20分間行った後、200℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を15分間行った後、この反射膜及びITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。続いて、透明陽極3を覆うように正孔注入層4として、下記構造式の化合物(Acceptor-1)と化合物(HTM-1)とを、蒸着速度比がAcceptor-1:HTM-1=3:97となる蒸着速度で透明陽極3の上に二元蒸着し、膜厚が10nmとなるように正孔注入層4を形成した。
 この正孔注入層4の上に、第一正孔輸送層5としてHTM-1を膜厚が70nmとなるように蒸着した。
 この第一正孔輸送層5の上に、第二正孔輸送層6として下記構造式のアリールアミン化合物(5-48)を膜厚が10nmとなるように蒸着した。
 この第二正孔輸送層6の上に、発光層7として下記構造式の第1ホスト化合物(A-43)と下記構造式の第2ホスト化合物(B-25)とを同時にホストとして用い、ドーパントとして下記構造式の金属錯体(4-35)を5wt%にドーピングして、膜厚40nmになるように化合物を真空蒸着した。ここで前記第1ホスト化合物(A-43)と前記第2ホスト化合物(B-25)とは1:1の比率で用いた。
 この発光層7の上に、電子輸送層8として下記構造式の化合物(ETM-1)と下記構造式の化合物(ETM-2)とを、蒸着速度比がETM-1:ETM-2=50:50となる蒸着速度で二元蒸着し、膜厚が30nmとなるように電子輸送層8を形成した。
 この電子輸送層8の上に、電子注入層9としてフッ化リチウムを膜厚1nmとなるように蒸着した。
 この電子注入層9の上に、透明陰極10としてマグネシウム銀合金を膜厚12nmとなるように形成した。
 最後に、キャッピング層11として実施例1で得られた化合物(2-34)を膜厚60nmとなるように形成した。作製した有機EL素子について、大気中、常温で特性測定を行った。
 作製した有機EL素子に直流電圧を印加した発光特性の測定結果を表3にまとめて示した。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
(実施例14~22)
 実施例13において、キャッピング層11の材料として実施例1で得られた化合物(2-34)の代わりに実施例2~10で得られた各化合物を用いた以外は同様にして有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3にまとめて示した。
 実施例13~22及び比較例1~2で作製した有機EL素子を用いて、素子寿命を測定した結果を表3にまとめて示した。素子寿命は、発光開始時の発光輝度(初期輝度)を10000cd/mとして定電流駆動を行った時、発光輝度が9500cd/m(初期輝度を100%とした時の95%に相当:95%減衰)に減衰するまでの時間として測定した。
Figure JPOXMLDOC01-appb-T000044
 表3に示すように、電流密度10mA/cm時における駆動電圧は、比較例1~2の素子と実施例13~22の素子ではほぼ同等であるのに対し、輝度、発光効率、電力効率、寿命においては、比較例1~2の素子に対し実施例13~22の素子は向上した。このことは、キャッピング層に屈折率の高い、本発明の有機EL素子に好適に用いられる材料を含むことにより、光の取り出し効率を大幅に改善できることを示している。
 以上のように、本発明の有機EL素子に好適に用いられる、前記式(1)で表される基を有するアリールアミン化合物は、屈折率が高いために光の取り出し効率を大幅に改善でき、また薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物と燐光発光性ドーパントである金属錯体とを用いて有機EL素子を作製することにより、高い効率を得ることができる。さらに、該化合物を有機EL素子におけるキャッピング層に用いることで、太陽光の特定波長の光を吸光し、素子内部の材料に影響を与えることを防ぎ、耐久性や耐光性を改善させることができる。また、青、緑及び赤それぞれの波長領域において吸収を持たない該化合物を用いることにより、色純度がよく鮮明で明るい画像を表示することができる。例えば、家庭電化製品や照明の用途への展開が可能となった。

Claims (10)

  1.  少なくとも陽極、第一正孔輸送層、第二正孔輸送層、発光層、電子輸送層、陰極及びキャッピング層をこの順に有し、前記キャッピング層が下記式(1)で表される基を有するアリールアミン化合物を含有し、前記発光層がホストとイリジウム又は白金を含む金属錯体である燐光発光性ドーパントとを含有する、有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、シリル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を表し、
     Arは、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、又は置換若しくは無置換の縮合多環芳香族基を表し、
     R~R及びArのいずれか1つは、結合部位としての連結基であり、
     Xは、酸素原子又は硫黄原子を表す。
     R~Rは、単結合、置換若しくは無置換のメチレン基、置換若しくは無置換のアミノ基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。)
  2.  前記式(1)で表される基を有するアリールアミン化合物が、下記式(2)又は下記式(3)で表されるアリールアミン化合物である、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar、Ar及びArは、それぞれ独立して、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は式(1)で表される基を表し、Ar、Ar及びArの少なくとも1つは、式(1)で表される基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Ar、Ar、Ar及びArは、それぞれ独立して、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は式(1)で表される基を表し、Ar、Ar、Ar及びArの少なくとも1つは、式(1)で表される基であり、
     Lは、置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニレン基、又は置換若しくは無置換のターフェニレン基を表す。)
  3.  前記式(1)で表される基を有するアリールアミン化合物が、前記式(3)で表されるアリールアミン化合物である、請求項2記載の有機エレクトロルミネッセンス素子。
  4.  前記ホストが、下記式(Host-A)で表される第1ホスト化合物と、下記式(Host-B)で表される第2ホスト化合物と、を含む、請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Zは、それぞれ独立して、N又はCRaを表し、Zのうちの少なくとも一つは、Nであり、
     R~R10及びRaは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換若しくは無置換の炭素原子数1ないし15のアルキル基、又は置換若しくは無置換の炭素原子数6ないし12のアリール基を表し、
     L及びLは、それぞれ独立して、単結合、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数2ないし30のヘテロアリール基を表し、
     n1及びn2は、それぞれ独立して、0又は1の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Y及びYは、それぞれ独立して、単結合、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表し、
     Ar及びAr10は、それぞれ独立して、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表し、
     R11~R16は、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1ないし15のアルキル基、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表し、
     mは、0~4の整数を表す。)
  5.  前記燐光発光性ドーパントが、下記式(4)で表される金属錯体である、請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R17~R32は、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、トリメチルシリル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、置換若しくは無置換のアリールオキシ基、又は芳香族炭化水素基、芳香族複素環基若しくは縮合多環芳香族基から選ばれる基によって置換された二置換アミノ基を表し、
     nは、1~3の整数を表す。)
  6.  前記第二正孔輸送層が、下記式(5)で表されるアリールアミン化合物を含有する、請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
    (式中、隣接する2個の*は、下記式(6)の2個の*と結合して環を形成しており、残りの2個の*は、CRb及びCRcを表し、
     R33~R35、Rb及びRcは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換若しくは無置換の炭素原子数1ないし15のアルキル基、又は置換若しくは無置換の炭素原子数6ないし12のアリール基を表し、
     Ar11及びAr12は、それぞれ独立して、置換若しくは無置換の炭素原子数6ないし30のアリール基、又は置換若しくは無置換の炭素原子数5ないし30のヘテロアリール基を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R36~R39、Rb及びRcは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換若しくは無置換の炭素原子数1ないし15のアルキル基、又は置換若しくは無置換の炭素原子数6ないし12のアリール基を表す。)
  7.  前記キャッピング層の厚さが、30nm~120nmの範囲内である、請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  前記キャッピング層の屈折率が、波長450nm~650nmの範囲内において1.85以上である、請求項1~7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9.  下記式(1)で表される基を有するアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000009
    (式中、R~Rは、それぞれ独立して、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、シリル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を表し、
     Arは、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、又は置換若しくは無置換の縮合多環芳香族基を表し、
     R~R及びArのいずれか1つは、結合部位としての連結基であり、
     Xは、酸素原子又は硫黄原子を表す。
     R~Rは、単結合、置換若しくは無置換のメチレン基、置換若しくは無置換のアミノ基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。)
  10.  下記式(2)又は下記式(3)で表される、請求項9記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000010
    (式中、Ar、Ar及びArは、それぞれ独立して、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は式(1)で表される基を表し、Ar、Ar及びArの少なくとも1つは、式(1)で表される基である。)
    Figure JPOXMLDOC01-appb-C000011
    (式中、Ar、Ar、Ar及びArは、それぞれ独立して、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基、又は式(1)で表される基を表し、Ar、Ar、Ar及びArの少なくとも1つは、式(1)で表される基であり、
     Lは、置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニレン基、又は置換若しくは無置換のターフェニレン基を表す。)
PCT/JP2020/007158 2019-02-22 2020-02-21 ベンゾアゾール環構造を有するアリールアミン化合物および有機エレクトロルミネッセンス素子 WO2020171221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021502203A JP7499748B2 (ja) 2019-02-22 2020-02-21 ベンゾアゾール環構造を有するアリールアミン化合物および有機エレクトロルミネッセンス素子
US17/427,772 US20220119360A1 (en) 2019-02-22 2020-02-21 Arylamine compound having benzoazole ring structure, and organic electroluminescent element
CN202080011823.8A CN113382993A (zh) 2019-02-22 2020-02-21 具有苯并唑环结构的芳基胺化合物及有机电致发光元件
EP20759116.5A EP3929193A4 (en) 2019-02-22 2020-02-21 ARYLAMINE COMPOUND WITH BENZOAZOLE RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT ELEMENT
KR1020217024115A KR20210131321A (ko) 2019-02-22 2020-02-21 벤조아졸 고리 구조를 갖는 아릴아민 화합물 및 유기 일렉트로 루미네선스 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-030036 2019-02-22
JP2019030036 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020171221A1 true WO2020171221A1 (ja) 2020-08-27

Family

ID=72144986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007158 WO2020171221A1 (ja) 2019-02-22 2020-02-21 ベンゾアゾール環構造を有するアリールアミン化合物および有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20220119360A1 (ja)
EP (1) EP3929193A4 (ja)
JP (1) JP7499748B2 (ja)
KR (1) KR20210131321A (ja)
CN (1) CN113382993A (ja)
TW (1) TW202041503A (ja)
WO (1) WO2020171221A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138948A1 (ja) * 2020-12-25 2022-06-30 出光興産株式会社 有機エレクトロルミネッセンス素子、発光装置、有機エレクトロルミネッセンス表示装置及び電子機器
US11575087B1 (en) 2020-12-25 2023-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device, light emitting device, organic electroluminescence display device and electronic device
EP4141978A1 (en) * 2021-08-24 2023-03-01 Dongjin Semichem Co., Ltd. New organic compound for capping layer and organic light emitting diode comprising to the same
CN114989109B (zh) * 2021-03-01 2024-01-05 武汉天马微电子有限公司 一种化合物、用于有机电致发光器件的材料及其应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117677263A (zh) * 2017-03-28 2024-03-08 保土谷化学工业株式会社 有机电致发光元件
KR20220012459A (ko) * 2020-07-22 2022-02-04 삼성디스플레이 주식회사 유기 발광 소자
KR20220038911A (ko) * 2020-09-21 2022-03-29 (주)피엔에이치테크 복합 굴절률을 갖는 광효율 개선층을 구비한 유기발광소자
CN117343078A (zh) 2021-11-25 2024-01-05 北京夏禾科技有限公司 有机电致发光材料和器件
KR20230108769A (ko) * 2022-01-10 2023-07-19 삼성디스플레이 주식회사 발광 소자 및 이를 포함한 전자 장치
KR20230108768A (ko) * 2022-01-10 2023-07-19 삼성디스플레이 주식회사 발광 소자 및 이를 포함한 전자 장치
CN114057718A (zh) * 2022-01-17 2022-02-18 浙江华显光电科技有限公司 三苯胺衍生物、制剂、有机光电器件及显示或照明装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639914A (en) 1993-11-01 1997-06-17 Hodogaya Chemical Co., Ltd. Tetraaryl benzidines
US5792557A (en) 1994-02-08 1998-08-11 Tdk Corporation Organic EL element
JP2002105055A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd イリジウム錯体またはその互変異性体の製造方法
US7102282B1 (en) 1999-11-22 2006-09-05 Sony Corporation Display device with a cavity structure for resonating light
JP2008069120A (ja) * 2006-09-15 2008-03-27 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2013028597A (ja) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd トリアリールアミン化合物、発光素子、発光装置、電子機器、および照明装置
EP2684932A1 (en) 2012-07-09 2014-01-15 Novaled AG Diarylamino matrix material doped with a mesomeric radialene compound
EP2730583A1 (en) 2012-11-09 2014-05-14 Universal Display Corporation Iridium complexes with aza-benzo fused ligands
US20140225100A1 (en) 2011-09-12 2014-08-14 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
WO2015001726A1 (ja) 2013-07-03 2015-01-08 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US20150200373A1 (en) * 2014-01-16 2015-07-16 Samsung Display Co., Ltd. Organic light-emitting device
EP3042943A1 (en) 2013-09-06 2016-07-13 Samsung SDI Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
US20170104163A1 (en) 2014-07-21 2017-04-13 Samsung Sdi Co., Ltd. Composition for organic optoelectric diode, organic optoelectric diode, and display device
CN107868067A (zh) * 2016-09-28 2018-04-03 株式会社Lg化学 杂环化合物及包含其的有机发光元件
US20180093962A1 (en) 2016-10-05 2018-04-05 Sfc Co., Ltd. Novel organic compound and oranic light-emitting diode comprising same background of the invention
CN107973786A (zh) * 2016-10-25 2018-05-01 株式会社Lg化学 新型化合物以及利用其的有机发光元件
US10147891B2 (en) 2014-01-09 2018-12-04 Samsung Sdi Co., Ltd. Organic compound, organic optoelectronic device, and display device
JP2019500314A (ja) * 2016-02-23 2019-01-10 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機発光素子
KR20190007257A (ko) * 2017-07-12 2019-01-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170030427A (ko) * 2015-09-09 2017-03-17 주식회사 엘지화학 유기전계발광소자
US11056653B2 (en) * 2016-04-22 2021-07-06 Hodogaya Chemical Co., Ltd. Organic electroluminescence device
CN113195679A (zh) * 2018-12-25 2021-07-30 保土谷化学工业株式会社 有机电致发光元件

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639914A (en) 1993-11-01 1997-06-17 Hodogaya Chemical Co., Ltd. Tetraaryl benzidines
US5792557A (en) 1994-02-08 1998-08-11 Tdk Corporation Organic EL element
US7102282B1 (en) 1999-11-22 2006-09-05 Sony Corporation Display device with a cavity structure for resonating light
JP2002105055A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd イリジウム錯体またはその互変異性体の製造方法
JP2008069120A (ja) * 2006-09-15 2008-03-27 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2013028597A (ja) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd トリアリールアミン化合物、発光素子、発光装置、電子機器、および照明装置
US20140225100A1 (en) 2011-09-12 2014-08-14 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
EP2684932A1 (en) 2012-07-09 2014-01-15 Novaled AG Diarylamino matrix material doped with a mesomeric radialene compound
EP2730583A1 (en) 2012-11-09 2014-05-14 Universal Display Corporation Iridium complexes with aza-benzo fused ligands
JP2015092485A (ja) * 2013-07-03 2015-05-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2015001726A1 (ja) 2013-07-03 2015-01-08 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
EP3042943A1 (en) 2013-09-06 2016-07-13 Samsung SDI Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
US10147891B2 (en) 2014-01-09 2018-12-04 Samsung Sdi Co., Ltd. Organic compound, organic optoelectronic device, and display device
US20150200373A1 (en) * 2014-01-16 2015-07-16 Samsung Display Co., Ltd. Organic light-emitting device
US20170104163A1 (en) 2014-07-21 2017-04-13 Samsung Sdi Co., Ltd. Composition for organic optoelectric diode, organic optoelectric diode, and display device
JP2019500314A (ja) * 2016-02-23 2019-01-10 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機発光素子
CN107868067A (zh) * 2016-09-28 2018-04-03 株式会社Lg化学 杂环化合物及包含其的有机发光元件
US20180093962A1 (en) 2016-10-05 2018-04-05 Sfc Co., Ltd. Novel organic compound and oranic light-emitting diode comprising same background of the invention
CN107973786A (zh) * 2016-10-25 2018-05-01 株式会社Lg化学 新型化合物以及利用其的有机发光元件
KR20190007257A (ko) * 2017-07-12 2019-01-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPAN SOCIETY OF APPLIED PHYSICS, 2001, pages 55 - 61
See also references of EP3929193A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138948A1 (ja) * 2020-12-25 2022-06-30 出光興産株式会社 有機エレクトロルミネッセンス素子、発光装置、有機エレクトロルミネッセンス表示装置及び電子機器
US11575087B1 (en) 2020-12-25 2023-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device, light emitting device, organic electroluminescence display device and electronic device
CN114989109B (zh) * 2021-03-01 2024-01-05 武汉天马微电子有限公司 一种化合物、用于有机电致发光器件的材料及其应用
EP4141978A1 (en) * 2021-08-24 2023-03-01 Dongjin Semichem Co., Ltd. New organic compound for capping layer and organic light emitting diode comprising to the same

Also Published As

Publication number Publication date
TW202041503A (zh) 2020-11-16
EP3929193A1 (en) 2021-12-29
US20220119360A1 (en) 2022-04-21
EP3929193A4 (en) 2022-11-30
CN113382993A (zh) 2021-09-10
KR20210131321A (ko) 2021-11-02
JPWO2020171221A1 (ja) 2021-12-16
JP7499748B2 (ja) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2020171221A1 (ja) ベンゾアゾール環構造を有するアリールアミン化合物および有機エレクトロルミネッセンス素子
US11056653B2 (en) Organic electroluminescence device
JP7179754B2 (ja) 有機エレクトロルミネッセンス素子
WO2019124550A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5850835B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR20170102950A (ko) 유기 일렉트로루미네선스 소자
WO2017138569A1 (ja) 有機エレクトロルミネッセンス素子
JP7285221B2 (ja) 有機el素子、ベンゾアゾール環構造を有するアミン化合物、およびそれを有機el素子のキャッピング層に用いる方法
WO2020184219A1 (ja) 有機エレクトロルミネッセンス素子
WO2017122813A1 (ja) 有機エレクトロルミネッセンス素子
KR102651663B1 (ko) 인데노카르바졸 고리 구조를 갖는 화합물 및 유기 일렉트로루미네선스 소자
JP7163311B2 (ja) 有機エレクトロルミネッセンス素子
WO2023074767A1 (ja) アミン化合物およびそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020759116

Country of ref document: EP

Effective date: 20210922