WO2020171114A1 - 製膜方法、製膜装置および電極箔の製造方法 - Google Patents

製膜方法、製膜装置および電極箔の製造方法 Download PDF

Info

Publication number
WO2020171114A1
WO2020171114A1 PCT/JP2020/006465 JP2020006465W WO2020171114A1 WO 2020171114 A1 WO2020171114 A1 WO 2020171114A1 JP 2020006465 W JP2020006465 W JP 2020006465W WO 2020171114 A1 WO2020171114 A1 WO 2020171114A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
contact
film forming
gas
metal
Prior art date
Application number
PCT/JP2020/006465
Other languages
English (en)
French (fr)
Inventor
直美 栗原
晶大 山口
吉村 満久
小川 美和
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/426,039 priority Critical patent/US12112896B2/en
Priority to JP2021502075A priority patent/JPWO2020171114A1/ja
Priority to CN202310884294.8A priority patent/CN116926493A/zh
Priority to CN202080015119.XA priority patent/CN113454263A/zh
Publication of WO2020171114A1 publication Critical patent/WO2020171114A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45597Reactive back side gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/006Apparatus or processes for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00

Definitions

  • the present invention relates to a film forming method using an atomic layer deposition method, a film forming apparatus, and an electrode foil manufacturing method, and to a method and an apparatus for forming a layer containing a metal oxide (dielectric layer) on both surfaces of a metal foil.
  • a metal oxide (dielectric) layer is formed on the surface of the metal foil used as the electrode foil of the electrolytic capacitor.
  • Patent Document 1 teaches that a dielectric layer is formed on the main surface of a metal foil by an atomic layer deposition method (ALD method).
  • the dielectric layer is usually formed on both main surfaces of the metal foil. From the viewpoint of productivity, it is required to efficiently form the dielectric layer on both main surfaces of the metal foil.
  • WHEREIN The heating process which contacts a part of metal foil containing a 1st metal with one or more heating elements, and heats the said metal foil, and a part of said metal foil were supported.
  • a second aspect of the present invention includes at least one chamber, a pressure control unit that controls the pressure in the chamber to a reduced pressure atmosphere, and a first supply port that supplies a first gas containing a second metal to the chamber.
  • a second supply port for supplying a second gas containing an oxidant to the chamber, a first exhaust port for discharging the first gas from the chamber, and a second exhaust port for discharging the second gas from the chamber
  • one or more heating elements that are disposed in the chamber and that heat the metal foil by contacting a portion of the metal foil that is a film-forming target, and the first gas and the second gas. Relates to a film forming apparatus which is supplied so as to contact both main surfaces of the metal foil.
  • a third aspect of the present invention is a preparation step of preparing a metal foil containing a first metal, a roughening step of roughening both main surfaces of the metal foil, and the roughened metal foil.
  • a step of heating the metal foil by bringing a part of the metal foil into contact with one or more heating elements, and a first metal containing a second metal on both sides of the metal foil with a part of the metal foil supported.
  • WHEREIN The 1st contact process which contacts the 1st gas containing a 2nd metal on both surfaces of the metal foil containing a 1st metal, and the 2nd gas containing an oxidizing agent on the both surfaces of the said metal foil.
  • the present invention relates to a method for forming a layer containing a metal oxide.
  • a fifth aspect of the present invention is a preparation step of preparing a metal foil containing a first metal, a roughening step of roughening both main surfaces of the metal foil, and a roughened metal foil.
  • a sixth aspect of the present invention is a first contact step of contacting both sides of a metal foil containing a first metal with a first gas containing a second metal, and a second gas containing an oxidizing agent on both sides of the metal foil. And a second contacting step of contacting the metal foil with an applying step of contacting a part of the metal foil with one or more power feeding bodies and applying a voltage to the metal foil in the presence of the second gas.
  • the present invention relates to a method for forming a layer containing a metal oxide.
  • a seventh aspect of the present invention is a preparatory step of preparing a metal foil containing a first metal, a roughening step of roughening both main surfaces of the metal foil, and a roughened metal foil.
  • An eighth aspect of the present invention includes at least one chamber, a pressure control unit that controls the pressure in the chamber to a reduced pressure atmosphere, and a first supply port that supplies a first gas containing a second metal to the chamber.
  • a second supply port for supplying a second gas containing an oxidant to the chamber, a first exhaust port for discharging the first gas from the chamber, and a second exhaust port for discharging the second gas from the chamber
  • the second gas relates to a film forming apparatus that is supplied so as to contact both main surfaces of the metal foil.
  • a heating step of heating a part of the metal foil by bringing a part of the metal foil containing the first metal into contact with one or more heating elements to support the part of the metal foil.
  • an applying step of applying a metal oxide layer is an applying step of applying a metal oxide layer.
  • the film-forming target on which the dielectric layer is formed is a metal foil.
  • the metal foil has higher heat resistance, higher thermal conductivity and higher conductivity than a resin film or the like, and has a certain degree of rigidity.
  • a layer containing a metal oxide (dielectric layer) is simultaneously formed on both main surfaces of the metal foil.
  • the film forming method includes a heating step of heating a metal foil by bringing a part of the metal foil containing the first metal into contact with one or more heating elements, and a state in which a part of the metal foil is supported. Then, a first contact step of contacting a first gas containing a second metal with both surfaces of the metal foil, and a second gas containing an oxidant on both surfaces of the metal foil with a part of the metal foil being supported. And a second contacting step.
  • the film forming method according to the first aspect is performed using the following film forming apparatus.
  • the present embodiment includes this film forming apparatus. That is, the film forming apparatus according to the first aspect includes at least one chamber, a pressure control unit that controls the pressure in the chamber to a depressurized atmosphere, and a first supply port that supplies the chamber with a first gas containing a second metal.
  • a second supply port for supplying a second gas containing an oxidant to the chamber; a first exhaust port for discharging the first gas from the chamber; a second exhaust port for discharging the second gas from the chamber;
  • one or more heating elements for heating the metal foil by contacting a part of the metal foil which is a film formation target.
  • the first gas and the second gas are supplied so as to contact both main surfaces of the metal foil.
  • An electrode foil of an electrolytic capacitor can be manufactured using the film forming apparatus and/or the film forming method according to the first aspect.
  • the present embodiment includes a method for manufacturing this electrode foil. That is, the manufacturing method of the electrode foil according to the first aspect includes a preparation step of preparing a metal foil containing the first metal, a roughening step of roughening both main surfaces of the metal foil, and a roughening step.
  • a film forming method includes a first contact step of contacting both sides of a metal foil containing a first metal with a first gas containing a second metal, and a second gas containing an oxidant on both sides of the metal foil.
  • An electrode foil of an electrolytic capacitor can be manufactured by using the film forming method according to the second aspect.
  • the present embodiment includes a method for manufacturing this electrode foil. That is, the manufacturing method of the electrode foil according to the second aspect includes a preparation step of preparing a metal foil containing the first metal, a roughening step of roughening both main surfaces of the metal foil, and a roughening step.
  • a first contact step of contacting both sides of the metal foil with a first gas containing a second metal a second contact step of contacting both sides of the metal foil with a second gas containing an oxidant, and a part of the metal foil.
  • a first applying step of applying a voltage to the metal foil in the presence of the first gas by contacting with one or more first power feeding bodies.
  • the film forming method includes a first contact step of contacting both sides of a metal foil containing a first metal with a first gas containing a second metal, and a second gas containing an oxidizing agent on both sides of the metal foil.
  • the electrode foil of an electrolytic capacitor can be manufactured by using the film forming method according to the third aspect.
  • the present embodiment includes a method for manufacturing this electrode foil. That is, the manufacturing method of the electrode foil according to the third aspect includes a preparation step of preparing a metal foil containing the first metal, a roughening step of roughening both main surfaces of the metal foil, and a roughening step.
  • a first contact step of contacting both sides of the metal foil with a first gas containing a second metal a second contact step of contacting both sides of the metal foil with a second gas containing an oxidant, and a part of the metal foil.
  • a second applying step of applying a voltage to the metal foil in the presence of the second gas by contacting the one or more second power feeding bodies.
  • the film forming method according to the second aspect and the third aspect is performed using the following film forming apparatus.
  • the present embodiment includes this film forming apparatus. That is, the film forming apparatus according to the second aspect and the third aspect supplies at least one chamber, a pressure control unit that controls the pressure inside the chamber to a reduced pressure atmosphere, and a first gas containing a second metal into the chamber.
  • a mouth one or more power feeding bodies that contact a part of the metal foil that is the film-forming target, and a counter electrode that generates a voltage difference between the metal foil and the power feeding body.
  • the first gas and the second gas are supplied so as to contact both main surfaces of the metal foil.
  • a heating step of heating a metal foil by bringing a part of the metal foil containing the first metal into contact with one or more heating elements, and a state in which a part of the metal foil is supported Then, a first contacting step of contacting the first gas containing the second metal with both surfaces of the metal foil, and a second gas containing an oxidant on both surfaces of the metal foil with a part of the metal foil supported.
  • the metal foil is heated.
  • the heat accelerates the reaction between the molecule containing the second metal and/or the oxidizing agent and the surface of the metal foil. Therefore, a uniform dielectric layer is formed.
  • the film forming method according to the first aspect includes a heating step of heating a metal foil.
  • FIG. 1 is a flowchart showing the film forming method according to the first aspect.
  • the metal foil contains the first metal.
  • the type of the first metal is not particularly limited.
  • the first metal may be a valve-action metal such as aluminum (Al), tantalum (Ta), or niobium (Nb) or an alloy containing a valve-action metal from the viewpoint of easy formation of the dielectric layer.
  • the thickness of the metal foil is not particularly limited, but may be, for example, 10 ⁇ m or more and 300 ⁇ m or less, and may be 15 ⁇ m or more and 250 ⁇ m or less.
  • the purity of the metal foil is not particularly limited. The purity of the metal foil may be, for example, 99% or more and 99.99% or less.
  • the surface of the metal foil may be roughened. Further, another dielectric layer may be formed on the surface of the metal foil.
  • the metal foil may have another dielectric layer formed inside the pits formed by roughening.
  • the other dielectric film is formed by, for example, anodic oxidation.
  • a surface modification treatment for modifying the surface of the metal foil may be performed before the first contact step, preferably before the heating step.
  • a surface modification treatment is performed to remove impurities on the surface of the metal foil and modify the surface condition of the metal foil.
  • the uniformity, adhesion, and denseness of the formed film, the effect of preventing diffusion of metal atoms in the metal foil, and the insulating property are improved, and the characteristics such as leakage current and capacitance are further improved.
  • the withstand voltage of the obtained electrode foil is 200 V or less, further 50 V or less, the effect of the surface modification step is easily obtained.
  • the surface modification treatment is not particularly limited, and examples thereof include plasma treatment and atmospheric pressure plasma treatment.
  • the surface modification treatment may be performed in the atmosphere or under reduced pressure.
  • the surface modification for example, hydroxyl groups are added to the surface of the metal foil, or impurities such as organic substances are decomposed or vaporized.
  • Heating step (S112)
  • the metal foil is brought into contact with the heating element. Since metal foils generally have high heat resistance, a method of heating by contact can be applied. Since atomic layer deposition (ALD) is performed in a reduced pressure atmosphere, heat propagation by convection cannot be expected so much. Therefore, the method of the present embodiment that can heat by utilizing heat conduction is suitable for the ALD method. A part of the metal foil comes into contact with the heating element. Since the metal foil has high thermal conductivity, the whole metal foil can be rapidly heated by bringing a part of the metal foil into contact with the heating element.
  • ALD atomic layer deposition
  • the metal foil When heating, the metal foil may be pressed toward the heating element by a pressing member arranged at a position corresponding to the heating element. As a result, the metal foil and the heating element are brought into closer contact with each other, and the metal foil is efficiently heated.
  • the pressing member is brought into contact with a part of the metal foil, like the heating element.
  • the pressing member may be a heating element. The heating efficiency is further improved by bringing the heating element into contact with both main surfaces of the metal foil.
  • the heating temperature is not particularly limited and may be appropriately set according to the conditions of the method for forming the dielectric layer (atomic layer deposition method).
  • the heating temperature is, for example, 80° C. or higher and 550° C. or lower.
  • the heating temperature is preferably 90°C or higher and 525°C or lower.
  • the heating temperature is in this range, the effect of heating is easily obtained, and the deformation of the metal foil is easily suppressed.
  • stress is applied to the metal foil by a roller or the like, and pit deformation or plastic deformation easily occurs.
  • the transportation becomes unstable and the film formation is likely to be uneven.
  • the heating temperature is preferably 90°C or higher and 480°C or lower. When the heating temperature is within this range, the pit shape deformation and the plastic deformation can be further reduced.
  • the second metal examples include Al, Ta, Nb, silicon (Si), titanium (Ti), zirconium (Zr), hafnium (Hf) and the like. These may be used alone or in combination of two or more. That is, the dielectric layer may include Al 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , SiO 2 , TiO 2 , ZrO 2 , and HfO 2 alone or in combination of two or more. When the dielectric layer contains two or more kinds of oxides of the second metal, the oxides may be mixed or may be arranged in layers. Among them, the second metal is preferably a metal species different from the first metal contained in the metal foil.
  • the oxide of the second metal preferably has a higher relative dielectric constant than the oxide of the first metal in that the capacity of the obtained electrolytic capacitor increases.
  • the oxide of the second metal is preferably Ta 2 O 5, SiO 2, ZrO 2 , or HfO 2 in that the withstand voltage of the electrolytic capacitor is improved.
  • the first gas contains a precursor (precursor) containing a second metal in a gas state.
  • the first gas may include a plurality of types of precursors. Different types of precursors may be supplied to the chamber simultaneously or sequentially. Alternatively, the type of precursor contained in the first gas may be changed for each cycle.
  • the precursor is an organometallic compound containing a second metal, which facilitates the chemical adsorption of the second metal to the target.
  • various organometallic compounds conventionally used in the ALD method can be used.
  • the precursor containing Ti e.g., bis (t-butylcyclopentadienyl) titanium (IV) dichloride (C 18 H 26 C l2 Ti ), tetrakis (dimethylamino) titanium (IV) ([(CH 3) 2 N] 4 Ti, TDMAT), tetrakis (diethylamino) titanium (IV) ([(C 2 H 5) 2 N] 4 Ti), tetrakis (ethylmethylamino) titanium (IV) (Ti [N ( C 2 H 5 )(CH 3 )] 4 ), titanium (IV) (diisopropoxide-bis(2,2,6,6-tetramethyl-3,5-heptanedionate (Ti[OCC(CH 3 ) 3 CHCOC( CH 3) 3] 2 (OC 3 H 7) 2), titanium tetrachloride (TiCl 4), titanium (IV) isopropoxide (Ti [OCH (CH 3) 2]
  • Examples of the precursor containing Al include trimethylaluminum ((CH 3 ) 3 Al) and the like.
  • the precursor containing Zr for example, bis (methyl - ⁇ 5- cyclopentadienyl) methoxymethyl zirconium (Zr (CH 3 C 5 H 4) 2 CH 3 OCH 3), tetrakis (dimethylamido) zirconium (IV) ( [(CH 3) 2 N] 4 Zr), tetrakis (ethylmethylamido) zirconium (IV) (Zr (NCH 3 C 2 H 5) 4), zirconium (IV) t-butoxide (Zr [OC (CH 3) 3 ] 4 ) and the like.
  • Examples of the precursor containing Nb include niobium(V) ethoxide (Nb(OCH 2 CH 3 ) 5 and tris(diethylamido)(t-butylimido) niobium(V)(C 16 H 39 N 4 Nb). ..
  • Examples of the precursor containing Si include N-sec-butyl(trimethylsilyl)amine (C 7 H 19 NSi), 1,3-diethyl-1,1,3,3-tetramethyldisilazane (C 8 H 23 NSi).
  • tris(ethylmethylamide)(t-butylamido)tantalum (V) C 13 H 33 N 4 Ta
  • tantalum (V) pentaethoxide Ta(OC 2 H 5 ) 5
  • tris(diethylamido)(t-butylimido)tantalum V)((CH 3 ) 3 CNTa(N(C 2 H 5 ) 2 ) 3
  • pentakis(dimethylamino)tantalum (V)(Ta(N(CH(CH 3 ) 2 ) 5 ) etc. are mentioned.
  • Examples of the precursor containing Hf include hafnium tetrachloride (HfCl 4 ), tetrakisdimethylaminohafnium (Hf[N(CH 3 ) 2 ] 4 ) and tetrakisethylmethylaminohafnium (Hf[N(C 2 H 5 )( CH 3 )] 4 ), tetrakisdiethylaminohafnium (Hf[N(C 2 H 5 ) 2 ] 4 ), hafnium-t-butoxide (Hf[OC(CH 3 ) 3 ] 4 ), and the like.
  • HfCl 4 hafnium tetrachloride
  • HfCl 4 tetrakisdimethylaminohafnium
  • Hf[N(C 2 H 5 )( CH 3 )] 4 tetrakisdiethylaminohafnium
  • hafnium-t-butoxide H
  • Second contact step After exhausting (purging) the first gas, the second gas is brought into contact with the metal foil. Also at this time, a part of the metal foil is supported. Therefore, the second gas can contact both surfaces of the metal foil. Molecules containing the second metal attached to both sides of the metal foil react with the oxidant contained in the second gas to generate an oxide of the second metal. As a result, the dielectric layers containing the oxide of the second metal are formed on both surfaces of the metal foil without performing the operation of replacing the upper and lower surfaces of the metal foil.
  • the second gas contains an inert gas and an oxidant.
  • the inert gas the inert gas conventionally used in the ALD method can be used.
  • the inert gas is, for example, nitrogen or argon.
  • the oxidizing agent As the oxidizing agent, the oxidizing agent conventionally used in the ALD method can be used.
  • the oxidant include water, oxygen, ozone, hydrogen peroxide, and carbon dioxide.
  • the oxidant may be supplied to the reaction chamber as plasma using the oxidant as a raw material.
  • the order of each process is not particularly limited.
  • the first gas is contacted with the metal foil, and then the second gas is contacted with the metal foil.
  • the first contacting step may be performed while heating the metal foil.
  • the second contacting step may be performed while heating the metal foil.
  • the first contact step and the second contact step may be repeated multiple times. Specifically, the supply of the first gas (pulse) ⁇ the exhaust of the first gas (purge) ⁇ the supply of the second gas (pulse) ⁇ the exhaust of the second gas (purge) may be repeated in the chamber. The type of the first gas and/or the second gas may be changed for each cycle. After the dielectric layer made of the first gas and the second gas is formed, another dielectric layer made of the other first gas and the second gas may be further formed.
  • the second metal is deposited on the surface of the target object in atomic layer units. Therefore, the thickness of the dielectric layer is controlled by the number of cycles including the first contact step and the second contact step as one cycle.
  • the thickness of the dielectric layer is not particularly limited and may be, for example, 0.5 nm or more and 200 nm or less.
  • the heating step and the first contact step and/or the second contact step are preferably performed in the same chamber space.
  • the same chamber does not include the case where, for example, 80% or more of the walls connecting the two chambers are physically closed.
  • the method for manufacturing an electrode foil according to the first aspect includes a heating step of heating a metal foil by bringing a part of the metal foil into contact with one or more heating elements.
  • both the metal foil having a predetermined size and the elongated metal foil are film forming objects.
  • the electrode foil manufactured by the above method is preferably used as an anode body of an electrolytic capacitor.
  • FIG. 2 is a flowchart showing the method for manufacturing the electrode foil according to the first aspect.
  • Preparation step (S11) A metal foil similar to that described in the film forming method according to the first aspect is prepared.
  • the metal foil may have another dielectric layer formed inside the pit formed by roughening.
  • the surface of the metal foil may be roughened before heating the metal foil. Due to the roughening, a plurality of pits are formed on the surface of the metal foil. By forming a dielectric layer even inside the pits in a later step, it can be expected that the capacitance will increase. On the other hand, if the surface of the metal foil is roughened in this way, it is usually difficult to form the dielectric layer even inside the pits by a method other than anodization. By performing the heat treatment as in this embodiment, it becomes easy to form a uniform dielectric layer even inside the pits.
  • this step After forming the dielectric layer containing the oxide of the second metal and then performing anodic oxidation to form the third dielectric layer described later, it is preferable to perform this step.
  • this step may be omitted.
  • Roughening is performed, for example, by etching a metal foil.
  • the etching treatment is preferably performed by an electrolytic etching method.
  • the electrolytic etching is performed by passing a direct current or an alternating current through the metal foil.
  • the electrolytic etching is performed, for example, in a hydrochloric acid aqueous solution.
  • the hole diameter of the pit is not particularly limited.
  • the hole diameter of the pit is preferably 50 nm or more and 2000 nm or less from the viewpoint of easily increasing the surface area. From the viewpoint of the contact between the metal foil and the heating element, the transport roll, or the like, it is preferable that the hole diameter of the pit is not too large.
  • the hole diameter of the pit is more preferably 80 nm or more and 1300 nm or less.
  • the pore diameter of the pit is the most frequent pore diameter of the pore distribution measured by, for example, a mercury porosimeter (hereinafter the same).
  • the thickness of the etching layer formed by a plurality of pits is not particularly limited, and may be set appropriately according to the thickness of the metal foil.
  • the thickness of the etching layer is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, from the viewpoint of capacitance. When the thickness of the etching layer is in this range, the effect of heating is easily obtained.
  • the thickness of the etching layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the thickness of the etching layer is the thickness of the etching layer formed on one main surface of the metal foil.
  • the thickness of the etching layer is an average value at arbitrary 10 points in the SEM or TEM image of the cross section of the metal foil.
  • the thickness of the dielectric layer is calculated in the same manner (hereinafter the same).
  • FIG. 3 is a SEM image (300 times) of a cross section of the roughened metal foil according to the present embodiment.
  • the region shown in light gray in the center is the core with lower porosity.
  • the core is an unetched area of the metal foil.
  • the area adjacent to the core and shown in dark gray is the etching layer.
  • the etching layers are respectively formed on both main surface sides of the metal foil.
  • the part shown in black outside the etching layer is the background.
  • a surface modification treatment for modifying the surface of the metal foil may be performed before the first contact step, preferably before the heating step.
  • the surface modification step is performed in the same manner as (i) the surface modification step in the film forming method according to the first aspect.
  • the metal foil is heated in the same manner as (ii) the heating step in the film forming method according to the first aspect.
  • the heating of the metal foil is performed by bringing the heating element into contact with part of the metal foil.
  • the heating of the metal foil is preferably performed in the chamber to which the first gas is supplied. During heating, the inside of the chamber may be depressurized.
  • First contact step (S15) and second contact step (S16) The first gas and the second gas are respectively brought into contact with both surfaces of the metal foil using the above film forming apparatus.
  • Each contacting step is performed in the same manner as the (iii) first contacting step and the (iv) second contacting step in the film forming method according to the first aspect. Thereby, the dielectric layers containing the oxide of the second metal are formed on both surfaces of the metal foil.
  • the metal foil may be formed.
  • the third dielectric layer containing the oxide of the first metal forming the metal foil is formed between the metal foil and the dielectric layer. Therefore, as a whole dielectric layer, a layer having a uniform thickness without pinholes is easily formed.
  • the method for forming the metal foil is not particularly limited.
  • the chemical conversion is performed, for example, by immersing the metal foil in a chemical conversion liquid and applying a voltage (anodic oxidation).
  • the film forming apparatus includes a heating element that is disposed in the chamber and that contacts a part of the metal foil that is a film forming object to heat the metal foil.
  • the first gas and the second gas are supplied so as to contact both main surfaces of the metal foil.
  • the heating element heats the metal foil by contacting a part of the metal foil which is a film formation target.
  • the number of heating elements may be one or more, and may be two or more.
  • the shape of the heating element is not particularly limited as long as it can contact the metal foil in a certain area.
  • the heating element may be, for example, a stage that supports the metal foil, a transport roll, or a positioning member that positions the metal foil.
  • the film forming apparatus includes at least one chamber.
  • the film forming apparatus may include one chamber capable of supplying and exhausting the first gas and the second gas.
  • the film forming apparatus may include a plurality of chambers capable of supplying and exhausting the first gas and the second gas.
  • the same type of first gas may be supplied to the plurality of chambers, and the plurality of types of first gas containing different second metals may be supplied respectively.
  • the same type of second gas may be supplied, and the plurality of types of second gas containing different oxidants may be supplied respectively.
  • the heating element may be arranged in at least one of the plurality of chambers.
  • the film forming apparatus may include a first chamber that can supply and exhaust the first gas, and a second chamber that can supply and exhaust the second gas.
  • the heating element may be arranged in at least one of these chambers.
  • the heating element is located in the first chamber.
  • the film forming apparatus may include a plurality of the first chambers and/or the second chambers.
  • the same type of first gas may be supplied to the plurality of first chambers, and the plurality of types of first gas containing different second metals may be supplied respectively.
  • the plurality of second chambers the same type of second gas may be supplied, and the plurality of types of second gas containing different oxidants may be supplied respectively.
  • the heating element may be arranged in at least one of the plurality of chambers.
  • the heating element is arranged in at least one first chamber.
  • the film forming apparatus includes at least one chamber capable of supplying and exhausting the first gas and the second gas. This completes the formation of at least one dielectric layer in one chamber.
  • the chamber comprises a pressure controller.
  • the pressure in the chamber is controlled by the pressure control unit so that the pressure is reduced.
  • the pressure control unit includes, for example, a computer.
  • the chamber includes a first supply port that supplies the first gas into the chamber and a first exhaust port that discharges the first gas.
  • the chamber includes a second supply port that supplies the second gas into the chamber and a second exhaust port that discharges the second gas.
  • the first gas and the second gas may be supplied from the same supply port.
  • the first gas and the second gas may be exhausted from the same exhaust port.
  • the chamber may include a support that contacts a part of the metal foil and supports the metal foil.
  • the number of supports may be one or more, and may be two or more.
  • the shape of the support is not particularly limited as long as it can stably support the metal foil.
  • the support may be, for example, a stage that supports the metal foil, a transport roll, or a positioning member that positions the metal foil.
  • the chamber may further include a pressing member arranged at a position corresponding to the heating element and pressing the metal foil toward the heating element.
  • a pressing member arranged at a position corresponding to the heating element and pressing the metal foil toward the heating element.
  • the pressing member is brought into contact with a part of the metal foil, like the heating element.
  • the pressing member may be a heating element. The heating efficiency is further improved by bringing the heating element into contact with both main surfaces of the metal foil.
  • a metal foil having a predetermined size can be used as the film forming target, or a long metal foil can be used as the film forming target.
  • the long metal foil is, for example, transported in a chamber, and a dielectric layer is continuously formed on the transported metal foil.
  • a metal foil that has been cut into a predetermined size is a film-forming target (hereinafter, referred to as a batch method) and when a long metal foil is a film-forming target (hereinafter, a roll to The film forming apparatus according to the first aspect will be described separately.
  • the heating element is, for example, a stage.
  • the metal foil is heated by being placed on the stage in the chamber.
  • the stage contacts a portion of the metal foil.
  • FIG. 4 is a side view conceptually showing an example of the film forming apparatus according to the first aspect, which is used in a batch system.
  • the film forming apparatus 10A includes a chamber 11 capable of supplying and exhausting the first gas and the second gas.
  • the chamber 11 includes a first supply port 121 that supplies the first gas G1 into the chamber 11 and a second supply port 122 that supplies the second gas G2 into the chamber 11.
  • the chamber 11 further includes an exhaust port 13 that exhausts the first gas G1 and the second gas G2.
  • the first gas G1 and the second gas G2 may be exhausted from different exhaust ports.
  • the pressure in the chamber 11 is controlled by the pressure controller 16.
  • the pressure control unit 16 controls the inside of the chamber 11 to have a reduced pressure atmosphere.
  • a stage 14 is arranged in the chamber 11.
  • the stage 14 includes a flat surface portion that contacts the metal foil 100.
  • the metal foil 100 is placed on the stage 14 so that a part of the metal foil 100 contacts. Since the metal foil 100 has an appropriate rigidity, it is supported by the stage 14 without excessive sagging or sagging.
  • the stage 14 is a heating element 19. Since the metal foil 100 has good thermal conductivity, the entire stage can be quickly heated by the stage 14 that is in contact with a part of the metal foil 100.
  • the first gas G1 and the second gas G2 supplied into the chamber 11 can contact both main surfaces of the metal foil 100. Thereby, at least one dielectric layer is formed on both main surfaces of the metal foil 100 by a single treatment.
  • a pressing member 15 for pressing the metal foil 100 toward the stage 14 is arranged at a position corresponding to the stage 14.
  • the pressing member 15 includes a flat surface portion that contacts the metal foil 100.
  • the pressing member 15 may be the heating element 19.
  • FIG. 5 is a side view conceptually showing another example of the film forming apparatus according to the first aspect.
  • the film forming apparatus 10B has the same configuration as the film forming apparatus 10A except that there are a plurality of stages 14. At least one stage 14 is a heating element 19.
  • the heating element contacts a part of the metal foil transported in the first chamber.
  • the metal foil is heated while being transported.
  • the heating element may be a transport roll, a positioning member that positions the metal foil to be transported, or a stage that supports the metal foil to be transported.
  • the chamber When supplying and exhausting the first gas and the second gas in one chamber, the chamber may be divided into a plurality of chambers.
  • the chamber includes a first supply zone to which the first gas is supplied, a second supply zone to which the second gas is supplied, a first exhaust zone for purging the first gas, and a second exhaust zone for purging the second gas.
  • An exhaust zone may be provided.
  • Each zone is divided by, for example, a wall of an inert gas (nitrogen, argon, etc.).
  • the above-mentioned plurality of zones can be regarded as one space.
  • the portion of the chamber other than the zone also forms one space together with the plurality of zones.
  • the metal foil may pass through each zone multiple times.
  • FIG. 6 is a side view conceptually showing an example of the film forming apparatus according to the first aspect, which is used in a roll-to-roll system.
  • the film forming apparatus 20A includes a chamber 21 capable of supplying and exhausting the first gas and the second gas.
  • the chamber 21 includes a first supply zone SZ1 to which the first gas G1 is supplied, a second supply zone SZ2 to which the second gas G2 is supplied, a first exhaust zone EZ1 for purging the first gas G1, and a second gas.
  • a second exhaust zone EZ2 for purging G2 is provided. The zones are arranged in this order so as to separate the chamber 21 in a direction intersecting the transport direction.
  • the chamber 21 includes a first supply port 221 that supplies the first gas G1 to the first supply zone SZ1 and a second supply port 222 that supplies the second gas G2 to the second supply zone SZ2.
  • the chamber 21 includes a first exhaust port 231 that exhausts the first gas G1 from the first exhaust zone EZ1 and a second exhaust port 232 that exhausts the second gas G2 from the second exhaust zone EZ2.
  • a stage 241 that supports the transported metal foil 200 is arranged on the upstream side of the chamber 21, a stage 241 that supports the transported metal foil 200 is arranged.
  • the stage 241 is the heating element 29.
  • the stage 241 includes a flat surface portion that is in contact with the metal foil 200.
  • the heating element 29 is arranged on the upstream side of the first supply zone SZ1.
  • the heating element 29 may be arranged in the most upstream first supply zone SZ1.
  • the heating element 29 may be further arranged in at least one place in the first exhaust zone EZ1, the second supply zone SZ2, and the second exhaust zone EZ2.
  • the inert gas G3 (for example, nitrogen gas) is supplied to the first exhaust zone EZ1 from the third supply port 223.
  • the first supply zone SZ1 and the second supply zone SZ2 are separated, and the unreacted first gas G1 is purged from the first exhaust port 231.
  • the inert gas G3 is supplied from the third supply port 223 to the second exhaust zone EZ2.
  • the second supply zone SZ2 is separated from the other part inside the chamber 21, and the unreacted second gas G2 is purged from the second exhaust port 232.
  • the third gas G3 supplied in the first exhaust zone EZ1 and the second exhaust zone EZ2 may be the same or different. Purging from each exhaust port is appropriately performed.
  • the exhaust port to be used may be determined as necessary. The exhaust port may be further added if necessary.
  • the film forming apparatus 20A may include a plurality of combinations of the first supply zone SZ1, the first exhaust zone EZ1, the second supply zone SZ2, and the second exhaust zone EZ2 according to the desired thickness of the dielectric layer.
  • the first gas G1 supplied in the plurality of first supply zones SZ1 may be of the same type or of different types.
  • the second gas G2 supplied in the plurality of second supply zones SZ2 may be the same or different.
  • the metal foil 200 may pass through a combination of the first supply zone SZ1, the first exhaust zone EZ1, the second supply zone SZ2, and the second exhaust zone EZ2 multiple times depending on the desired thickness of the dielectric layer.
  • the pressure inside the chamber 21 is controlled by the pressure control unit 26 so as to create a reduced pressure atmosphere.
  • the pressure control unit 26 may appropriately control the pressure in each zone.
  • the metal foil 200 is wound around a supply reel 201 which is rotationally driven by a motor, and is supplied upstream in the chamber 21 while being unwound from the supply reel 201.
  • the metal foil 200 is brought into contact with the stage 241 (heating element 29) upstream in the chamber 21 to be heated, and then is transported downstream.
  • a pressing member 25 for pressing the metal foil 200 toward the stage 241 is arranged at a position corresponding to the stage 241.
  • the pressing member 25 has a roll shape and supports the transport of the metal foil 200.
  • the pressing member 25 may be a heating element.
  • the stage 241 is not a heating element
  • the holding member 25 is a heating element
  • the heated metal foil 200 is carried into the first supply zone SZ1.
  • the first gas G1 is supplied to both surfaces of the metal foil 200 from the first supply port 221, and molecules containing the second metal adhere to both surfaces of the metal foil 200.
  • the metal foil 200 is carried into the first exhaust zone EZ1.
  • the inert gas G3 is supplied from the third supply port 223, and the unreacted first gas G1 is exhausted from the first exhaust port 231.
  • the metal foil 200 is carried into the second supply zone SZ2.
  • the second gas G2 is supplied to both surfaces of the metal foil 200 from the second supply port 222.
  • Molecules containing the second metal attached to both sides of the metal foil 200 react with the oxidant to form a dielectric layer containing the oxide of the second metal.
  • a dielectric layer containing the oxide of the second metal is formed on both surfaces of the metal foil 200.
  • the metal foil 200 is carried into the second exhaust zone EZ2.
  • the inert gas G3 is supplied from the third supply port 223, and the unreacted second gas G2 is exhausted from the second exhaust port 232.
  • the metal foil 200 is unloaded from the chamber 21 and wound on the recovery reel 202 after the oxide having a desired thickness is deposited.
  • the recovery reel 202 is rotationally driven by a motor.
  • FIG. 7 is a side view which shows notionally the principal part of the other film forming apparatus which concerns on a 1st aspect.
  • the film forming apparatus 20B has the same configuration as the film forming apparatus 20A, except for the shape and arrangement of the heating element.
  • the metal foil 200 unwound from the supply reel 201 is placed on the conveyor belt 28 and carried into the upstream of the chamber 21.
  • a positioning member 243 for fixing and positioning the metal foil 200 is arranged on the conveyor belt 28.
  • One or more through holes 200a are formed in the metal foil 200, and the metal foil 200 is positioned by inserting the positioning member 243 into the through hole 200a.
  • the positioning member 243 is the heating element 29. Therefore, the metal foil 200 contacts the positioning member 243 around the through hole 200a and is heated.
  • the metal foil 200 is separated from the conveyor belt 28 and is conveyed to the first supply zone SZ1 by the conveyor roll 27.
  • the metal foil 200 is processed in the same manner as the film forming apparatus 20A, and the dielectric layers are formed on both surfaces.
  • FIG. 8 is a side view conceptually showing another example of the film forming apparatus according to the first aspect.
  • the film forming apparatus 20C has the same configuration as the film forming apparatus 20A except for the shape of the heating element.
  • the metal foil 200 unwound from the supply reel 201 is carried into the first supply zone SZ1 by the transport roll 27.
  • the transport roll 27 is a heating element 29. Therefore, the metal foil 200 is transported by the transport roll 27 and heated.
  • a roll-shaped pressing member 25 is arranged at a position corresponding to the transport roll 27. The pressing member 25 may be the heating element 29. Then, the metal foil 200 is conveyed to the first supply zone SZ1. After that, the metal foil 200 is processed in the same manner as the film forming apparatus 20A, and the dielectric layers are formed on both surfaces.
  • FIG. 9 is a side view conceptually showing another example of the film forming apparatus according to the first aspect.
  • the film forming apparatus 20D includes a chamber 21 capable of supplying and exhausting the first gas and the second gas.
  • the metal foil 200 is conveyed while being folded back a plurality of times in the chamber 21.
  • the number of folding back is not particularly limited.
  • the chamber 21 includes a first supply zone SZ1 to which the first gas G1 is supplied, a second supply zone SZ2 to which the second gas G2 is supplied, and an exhaust zone EZ for purging the first gas G1 and the second gas G2.
  • Each zone is arranged so as to separate the chamber 21 along the transport direction.
  • a plurality of first transport rolls 271 are arranged in the first supply zone SZ1.
  • a plurality of second transport rolls 272 are arranged in the second supply zone SZ2. At least one of the first transport roll 271 and the second transport roll 272 is the heating element 29.
  • the third transport roll 273 arranged in the exhaust zone EZ may be the heating element 29.
  • the metal foil 200 is supplied to the upstream side in the chamber 21 while being unwound from the supply reel 201.
  • the metal foil 200 is turned around by the third transport roll 273 and carried into the first supply zone SZ1.
  • the first gas G1 is supplied to both surfaces of the metal foil 200 from the first supply port 221, and molecules containing the second metal adhere to both surfaces of the metal foil 200.
  • the metal foil 200 is folded back by the first transport roll 271 and carried into the exhaust zone EZ.
  • the inert gas G3 (for example, nitrogen gas) is supplied from the third supply port 223, and the unreacted first gas G1 is purged from the exhaust port 23.
  • the exhaust port may be added to, for example, the first supply zone SZ1 and/or the second supply zone SZ2, if necessary.
  • the metal foil 200 is carried into the second supply zone SZ2.
  • the second gas G2 is supplied to both surfaces of the metal foil 200 from the second supply port 222.
  • Molecules containing the second metal attached to both surfaces of the metal foil 200 react with an oxidizing agent to generate an oxide of the second metal.
  • a dielectric layer containing the oxide of the second metal is formed on both surfaces of the metal foil 200.
  • the metal foil 200 is folded back by the second transfer roll 272, and is carried into the exhaust zone EZ again.
  • the unreacted second gas G2 is also purged from the exhaust port 23.
  • the metal foil 200 is carried into the first supply zone SZ1 again. Thereafter, the loading and unloading of the first supply zone SZ1, the exhaust zone EZ, and the second supply zone SZ2 described above are repeated, and the oxide of desired thickness is deposited on the metal foil 200. Finally, the metal foil 200 is unloaded from the chamber 21 and wound on the recovery reel 202.
  • Second Mode In this mode, a voltage is applied to the metal foil in the presence of the first gas.
  • the molecule containing the second metal is electrically attracted to the metal foil, and the concentration of the second metal near the metal foil can be increased.
  • the reaction efficiency is improved and a uniform dielectric layer is formed.
  • the molecules containing the second metal are used efficiently. Further, since the second metal is easily adsorbed on the metal foil, the denseness of the formed layer containing the metal oxide is improved.
  • the film forming method according to the second aspect includes a first applying step (hereinafter, simply referred to as an applying step) of applying a voltage to the metal foil in the presence of the first gas.
  • FIG. 10 is a flowchart showing the film forming method according to the second aspect.
  • the film forming method according to the second aspect is the same as the (iii) first contacting step and the (iv) second contacting step in the film forming method according to the first aspect, except that an applying step is provided instead of the heating step. Equipped with.
  • the film forming method according to the second aspect may include the same step as (i) the surface modification step in the film forming method according to the first aspect.
  • First contact step (S212) and application step (S214) The metal foil is brought into contact with the first gas containing the second metal in the same manner as in (iii) the first contact step in the film forming method according to the first aspect. At this time, a voltage is applied to the metal foil in contact with one or more first power feeding bodies (hereinafter, simply referred to as power feeding bodies). The contact of the power feeder with the metal foil may be performed inside the chamber or outside the chamber.
  • the voltage application to the metal foil is executed by creating a potential difference between the electrode foil and the counter electrode.
  • the voltage difference can be generated using a constant voltage, a pulsed voltage, a waveform in which an alternating current is superimposed, or another irregular waveform.
  • the voltage difference is not particularly limited.
  • the voltage difference is preferably 5 V or more and 1000 V or less, and more preferably 10 V or more and 800 V or less. When the potential difference is within this range, the effect of voltage application is easily obtained, and damage to the metal foil and the film forming apparatus is easily suppressed.
  • the voltage may be applied with the metal foil as the positive electrode, or the voltage may be applied as the negative electrode.
  • the polarity of the metal foil may be set appropriately according to the charged state of the first gas.
  • the order of each process is not particularly limited.
  • the first gas is contacted with the metal foil, and then the second gas is contacted with the metal foil.
  • the first contacting step and the second contacting step may be repeated multiple times.
  • the method for manufacturing the electrode foil according to the second aspect includes an applying step of applying a voltage to the metal foil in the presence of the first gas.
  • both the metal foil having a predetermined size and the elongated metal foil are film forming objects.
  • the electrode foil manufactured by the above method is preferably used as an anode body of an electrolytic capacitor.
  • FIG. 11 is a flowchart showing the method for manufacturing the electrode foil according to the second aspect.
  • Preparation step (S21) A metal foil similar to that described in the film forming method according to the first aspect is prepared.
  • the metal foil may have another dielectric layer formed inside the pit formed by roughening.
  • the surface of the metal foil may be roughened before the first contact step.
  • the roughening is performed in the same manner as (2) the roughening step in the method for manufacturing the electrode foil according to the first aspect.
  • the surface of the metal foil is roughened in this way, it is difficult to form the dielectric layer even inside the pits by a method other than anodization.
  • a voltage As in this embodiment, it becomes easy to form a uniform dielectric layer even inside the pits.
  • this step may be omitted.
  • the hole diameter of the pit is not particularly limited.
  • the hole diameter of the pit is preferably 50 nm or more and 2000 nm or less from the viewpoint of easily increasing the surface area. From the viewpoint of the contact property between the metal foil and the power feeder, it is preferable that the hole diameter of the pit is not excessively large.
  • the hole diameter of the pit is more preferably 80 nm or more and 1300 nm or less. When the hole diameter of the pit is within this range, the metal foil and the power feeding body are likely to come into contact with each other, and the voltage is easily applied to the metal foil uniformly.
  • the thickness of the etching layer is not particularly limited and may be set appropriately according to the thickness of the metal foil.
  • the thickness of the etching layer is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, from the viewpoint of capacitance. When the thickness of the etching layer is within this range, the effect of voltage application is easily obtained. From the viewpoint of the strength of the metal foil, the thickness of the etching layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • First contact step (S24) and application step (S26) It is performed in the same manner as (ii) the first contact step and the applying step in the film forming method according to the second aspect.
  • Second contact step (S25) It is performed in the same manner as (iii) the second contact step in the film forming method according to the second aspect. Thereby, the dielectric layers containing the oxide of the second metal are formed on both surfaces of the metal foil.
  • the metal foil may be formed.
  • the third dielectric layer containing the oxide of the first metal forming the metal foil is formed between the metal foil and the dielectric layer. Therefore, as a whole dielectric layer, a layer having a uniform thickness without pinholes is easily formed.
  • the method for forming the metal foil is not particularly limited. The chemical conversion is performed by, for example, anodic oxidation.
  • the film forming method according to the third aspect includes a second applying step (hereinafter simply referred to as an applying step) of applying a voltage to the metal foil in the presence of the second gas.
  • FIG. 12 is a flowchart showing the film forming method according to the third aspect.
  • the film forming method according to the third aspect performs the same steps as the film forming method and the electrode foil producing method according to the second aspect, except that the voltage is applied in the presence of the second gas instead of the first gas.
  • Second contact step (S313) and application step (S314) The second gas is brought into contact with the metal foil in the same manner as in (iii) the second contact step in the film forming method according to the first aspect.
  • a part of the metal foil is brought into contact with one or more second power feeding bodies (hereinafter, simply referred to as a power feeding body), and a voltage is applied to the metal foil.
  • a layer containing a metal oxide is formed on the surface of the metal foil.
  • the contact of the power feeder with the metal foil may be performed inside the chamber or outside the chamber.
  • the order of each process is not particularly limited.
  • the first gas is contacted with the metal foil, and then the second gas is contacted with the metal foil.
  • the first contacting step and the second contacting step may be repeated multiple times.
  • the metal foil may be formed.
  • the third dielectric layer containing the oxide of the first metal forming the metal foil is formed between the metal foil and the dielectric layer. Therefore, as a whole dielectric layer, a layer having a uniform thickness without pinholes is easily formed.
  • the method for forming the metal foil is not particularly limited. The chemical conversion is performed by, for example, anodic oxidation.
  • the electrode foil manufacturing method includes an applying step of applying a voltage to the metal foil in the presence of the second gas.
  • both the metal foil having a predetermined size and the elongated metal foil are film forming objects.
  • the electrode foil manufactured by the above method is preferably used as an anode body of an electrolytic capacitor.
  • FIG. 13 is a flowchart showing a method for manufacturing an electrode foil according to the third aspect.
  • Preparation step (S31) A metal foil similar to that described in the film forming method according to the first aspect is prepared.
  • the metal foil may have another dielectric layer formed inside the pit formed by roughening.
  • the surface of the metal foil may be roughened before the first contact step.
  • the roughening is performed in the same manner as (2) the roughening step in the method for manufacturing the electrode foil according to the first aspect.
  • First contact step (S34) It is performed in the same manner as in (ii) the first contact step in the film forming method according to the third aspect.
  • Second contact step (S35) and second application step (S36) This is performed in the same manner as (iii) the second contact step and the second application step in the film forming method according to the third aspect.
  • FIG. 14 is a flowchart showing the film forming method according to this embodiment.
  • FIG. 15 is a flowchart showing the method for manufacturing the electrode foil according to this embodiment.
  • This mode is different from the second mode in that (iii) the voltage is applied to the metal foil in the second contact step, and (ii) is the third mode in that the voltage is applied to the metal foil in the first contact step. different. Except for these, this aspect has the same steps as the second and third aspects.
  • the film forming apparatus includes a power feeding body that contacts a part of the metal foil that is the film forming target, and a counter electrode that generates a voltage difference between the metal foil and the power feeding body.
  • the first gas and the second gas are supplied so as to contact both main surfaces of the metal foil.
  • the power feeding body (first and second power feeding bodies) contacts a part of the metal foil which is a film-forming target and applies a voltage to the metal foil.
  • the number of power supply members may be one or more, and may be two or more.
  • the shape of the power feeding body is not particularly limited as long as it can contact the metal foil in a certain area.
  • the power supply body may be, for example, a supply reel and/or a collection reel, may be a stage that supports the metal foil, may be a transport roll, and may be a positioning member that positions the metal foil.
  • the power supply body may be inside the chamber or outside the chamber. From the viewpoint of reducing energy loss, the power supply body is preferably arranged in the chamber, particularly near the contact point between the metal foil and the first and/or second gas. On the other hand, in consideration of the ease of maintenance and the degree of freedom in device design, it is preferable that the power supply body is arranged outside the chamber.
  • the counter electrode is used together with the power supply body to generate a voltage difference between the metal foil and the power supply body.
  • the arrangement of the counter electrode is not particularly limited as long as the voltage is applied to at least both surfaces of the metal foil.
  • the counter electrode may not face the main surface of the metal foil.
  • the counter electrode may be one or more, and may be two or more.
  • the shape of the counter electrode is not particularly limited.
  • the distance between the metal foil and the counter electrode is not particularly limited.
  • the distance between the metal foil and the counter electrode is preferably 0.5 mm or more and 500 mm or less. When the distance between the metal foil and the counter electrode is within this range, it becomes easy to maintain the distance between the metal foil and the counter electrode constant when the metal foil is transported. Therefore, it becomes easy to avoid that the applied voltage locally becomes high and that the metal foil and the counter electrode come into contact with each other. Furthermore, it becomes easy to form a uniform layer.
  • the distance between the metal foil and the counter electrode is more preferably 1 mm or more and 200 mm or less, and particularly preferably 1 mm or more and 130 mm or less. When the distance between the metal foil and the counter electrode is within this range, the equipment can be downsized and the energy loss can be reduced. When there are a plurality of counter electrodes, the distance between the metal foil and each counter electrode may not be the same.
  • the counter electrode may be placed in at least one of these chambers.
  • the film forming apparatus according to the second and third aspects is provided with the same chamber, pressure control unit, supply port, and exhaust port as the film forming apparatus according to the first aspect except that a power supply body is provided instead of the heating element.
  • the film forming apparatus according to the second and third aspects may include the support, the pressing member and the like in the film forming apparatus according to the first aspect.
  • the second mode is executed.
  • the third aspect is executed.
  • a metal foil having a predetermined size can be used as the film forming target, or a long metal foil can be used as the film forming target.
  • the long metal foil is, for example, transported in a chamber, and a dielectric layer is continuously formed on the transported metal foil.
  • the power feeding body (first and/or second power feeding body) is, for example, a stage.
  • a counter electrode is arranged near the metal foil.
  • FIG. 16 is a side view conceptually showing an example of the film forming apparatus according to the second and third aspects, and is used in a batch system.
  • the film forming apparatus 30 has the same configuration as the film forming apparatus 10A shown in FIG. 4 except that it has a stage 34 that also serves as a power supply 39 and a counter electrode 38 instead of the stage that also serves as a heating element.
  • the film forming apparatus 30 includes a chamber 31.
  • the chamber 31 includes a first supply port 321, a second supply port 322, and an exhaust port 33.
  • the pressure in the chamber 31 is controlled by the pressure controller 36.
  • the metal foil 300 is pressed toward the stage 34 by the pressing member 35.
  • the film forming apparatus 30 further includes a voltage adjusting device 303 and an AC power supply 304. However, these are installed arbitrarily.
  • the counter electrode 38 is arranged such that a voltage is applied to both sides of the metal foil with one sheet.
  • the arrangement of the counter electrodes is not limited to this, and for example, a plurality of counter electrodes may be arranged so as to face both main surfaces of the metal foil. When arranging a plurality of counter electrodes, it is preferable to arrange them so as to be point-symmetrical or line-symmetrical with respect to the metal foil.
  • the power feeder is arranged inside or outside the chamber.
  • the power supply body may be a supply or recovery reel, may be a transfer roll, may be a positioning member that positions the metal foil to be transferred, and may be a stage that supports the metal foil to be transferred.
  • the chamber When supplying and exhausting the first gas and the second gas in one chamber, the chamber may be divided into a plurality of chambers, as in the first aspect.
  • the metal foil may pass through each zone multiple times.
  • FIG. 17 is a side view conceptually showing an example of the film forming apparatus according to the second and third aspects, and is used in a roll-to-roll system.
  • the film forming apparatus 40A has a configuration similar to that of the film forming apparatus 20A shown in FIG. Have.
  • the film forming apparatus 40A includes a chamber 41.
  • the chamber 41 includes a first supply zone SZ1 to which the first gas G1 is supplied, a second supply zone SZ2 to which the second gas G2 is supplied, a first exhaust zone EZ1 for purging the first gas G1, and a second gas.
  • a second exhaust zone EZ2 for purging G2 is provided.
  • the zones are arranged in this order so as to separate the chamber 21 in a direction intersecting the transport direction.
  • a first supply port 421, a second supply port 422, a third supply port 423, a first exhaust port 431, and a second exhaust port 432 are appropriately provided in each zone. Purging from each exhaust port is appropriately performed.
  • the exhaust port to be used may be determined as necessary.
  • At least one counter electrode may be arranged so as to face both main surfaces of the metal foil. In this case, variations in the voltage applied to the metal foil are suppressed.
  • the counter electrode may be arranged in the first supply zone SZ1 and/or the second supply zone SZ2.
  • the pressure inside the chamber 41 is controlled by the pressure control unit 46 so that a reduced pressure atmosphere is obtained.
  • the pressure controller 46 may appropriately control the pressure in each zone.
  • the metal foil 400 is wound around a supply reel 401 that is rotationally driven by a motor, and is unwound from the supply reel 401 and is supplied upstream in the chamber 41.
  • the metal foil 400 is collected on the collecting reel 402 after the processing.
  • a third transfer roll 473 that transfers the metal foil 400 is disposed on the upstream side of the chamber 21.
  • the third transport roll 473 is the power feeding body 49.
  • the power feeder 49 is arranged in the chamber 41 upstream of the first supply zone SZ1.
  • the metal foil 400 is transported while being supported by the power feeder 49 (third transport roll 473).
  • the counter electrode 48 is arranged downstream of the power feeder 49 and upstream of the first supply zone SZ1.
  • the counter electrode may be arranged in the most upstream first supply zone SZ1.
  • the counter electrode may be further arranged in at least one place in the first exhaust zone EZ1, the second supply zone SZ2, and the second exhaust zone EZ2.
  • the film forming apparatus 40A includes a pressing member 45. However, these are installed arbitrarily.
  • the pressing member 45 has a roll shape and supports the transportation of the metal foil 400.
  • the film forming apparatus 40A further includes a voltage adjusting device 403 and an AC power supply 404. However, these are installed arbitrarily.
  • the pressing member 45 is a power feeding body. At this time, it is desirable that the third transport roll 473 is not a power feeder. When a voltage is applied to members that are close to each other, a potential difference occurs between the members, and the members may corrode.
  • FIG. 18 is a side view conceptually showing still another film forming apparatus according to the second and third aspects.
  • the film forming apparatus 40B has the same configuration as that of the film forming apparatus 40A, except for the arrangement of the power feeder, the number and arrangement of the counter electrodes.
  • the power supply 49 is a supply reel 401 and a collection reel 402, and is arranged outside the chamber 41.
  • the power supply 49 may be either the supply reel 401 or the recovery reel 402.
  • Two counter electrodes 48 are arranged in each of the first supply zone SZ1 and the second supply zone SZ2. In each zone, the two counter electrodes 48 are arranged so as to face each other with the metal foil 400 in between.
  • FIG. 19 is a side view conceptually showing still another film forming apparatus according to the second and third aspects.
  • the film forming apparatus 40C has the same configuration as the film forming apparatus 20D shown in FIG. 9, except that the supply reel 401 and the recovery reel 402 also serve as the power supply body 49 and that the plurality of counter electrodes 48 are provided.
  • the film forming apparatus 40C includes a chamber 41.
  • the metal foil 400 is conveyed while being folded back a plurality of times in the chamber 41.
  • the number of folding back is not particularly limited.
  • the chamber 41 includes a first supply port 421 for supplying the first gas G1 to the first supply zone SZ1 and a fourth supply zone 421 for supplying the fourth gas G4 (second gas G2 or inert gas G3) to the fourth supply zone SZ4.
  • a supply port 424 and a fifth supply port 425 for supplying the fifth gas G5 (first gas G1, inert gas G3 or other first gas G1) to the fifth supply zone SZ5 are provided.
  • a plurality of first transport rolls 471 are arranged in the first supply zone SZ1.
  • a plurality of third transport rolls 473 are arranged in the fourth supply zone SZ4.
  • a plurality of second transport rolls 472 are arranged in the fifth supply zone SZ5.
  • the chamber 41 includes a first exhaust port 431 for discharging the first gas G1 from the first supply zone SZ1, a fourth exhaust port 434 for discharging the fourth gas G4 from the fourth supply zone SZ4, and a fifth gas G5. 5 exhaust zone 435 which discharges from 5 supply zone SZ5.
  • the power supply 49 is a supply reel 401 and a collection reel 402, and is arranged outside the chamber 41.
  • the power supply 49 may be either the supply reel 401 or the recovery reel 402.
  • At least one of the first transport roll 471, the second transport roll 472, and the third transport roll 473 may be a power feeder.
  • Two counter electrodes 48 are arranged in each of the first supply zone SZ1 and the fourth supply zone SZ4. In each zone, the two counter electrodes 48 are arranged so as to face each other with the metal foil 400 in between.
  • FIG. 20 is a side view conceptually showing still another film forming apparatus according to the second and third aspects.
  • the film forming apparatus 40D has the same configuration as the film forming apparatus 40C shown in FIG. 19 except for the shape and arrangement of the counter electrode 48.
  • All the three counter electrodes 48 are long, and are arranged such that the longitudinal direction extends from each supply zone from the supply reel 401 to the collection reel 402.
  • the counter electrode 48 is formed with a plurality of slits (not shown) through which the metal foil can pass.
  • the inner wall of the slit serves as a counter electrode. When the metal foil passes through the slit, a potential difference is generated between the inner wall of the metal foil and the metal foil.
  • the counter electrode 48 may be arranged in any one of the supply zones.
  • the size of the counter electrode 48 is not particularly limited. Considering the degree of freedom in device design and the gas flow, it is desirable that the counter electrode 48 has a size that does not partition the chamber 41 into a plurality of chambers.
  • the size of the counter electrode 48 is, for example, less than 80% of the area of the bottom of the film forming apparatus 40D.
  • FIG. 21 is a side view conceptually showing still another film forming apparatus according to the second and third aspects.
  • the film forming apparatus 40E has the same configuration as the film forming apparatus 40C shown in FIG. 19 except that the chamber 41 also serves as the counter electrode 48.
  • the inner wall of the chamber 41 is electrically conductive. An arbitrary point on the inner wall is used as a contact point to generate a potential difference with the metal foil 400.
  • the film forming method according to the fourth aspect includes a heating step of heating the metal foil and an applying step of applying a voltage to the metal foil in the presence of at least one of the first gas and the second gas.
  • FIG. 22 is a flowchart showing the film forming method according to the fourth aspect.
  • the heating step and the applying step are performed in the same manner as the film forming method according to the first aspect, the second aspect, and the third aspect.
  • the first contacting step may be performed while heating the metal foil to which the voltage is applied.
  • the second contacting step may be performed while heating the metal foil to which the voltage is applied.
  • the metal foil may be heated by the heat generated by the power feeding body.
  • the method for manufacturing the electrode foil according to the fourth aspect includes a heating step of heating the metal foil and an applying step of applying a voltage to the metal foil in the presence of at least one of the first gas and the second gas.
  • FIG. 23 is a flowchart showing the method for manufacturing the electrode foil according to the fourth aspect. The heating step and the applying step are performed in the same manner as the film forming method according to the first aspect, the second aspect, and the third aspect.
  • a film forming apparatus is arranged in a chamber, a heating element that contacts a part of a metal foil that is a film forming object to heat the metal foil, and a power feeding body that contacts a part of the metal foil. And a counter electrode that generates a voltage difference between the metal foil and the power feeding body.
  • the first gas and the second gas are supplied so as to contact both main surfaces of the metal foil.
  • the film forming apparatus according to the fourth aspect includes the same chamber, pressure control unit, supply port, and exhaust port as those of the film forming apparatus according to the first to third aspects.
  • the film forming apparatus according to the fourth aspect further includes a heat generating body similar to the film forming apparatus according to the first aspect, and a power feeding body and a counter electrode similar to the film forming apparatuses according to the second and third aspects.
  • the film forming apparatus according to the fourth aspect may include the support, the pressing member, and the like in the film forming apparatus according to the first to third aspects.
  • FIG. 24 is a side view conceptually showing an example of the film forming apparatus according to the fourth aspect.
  • the film forming apparatus 50 has the same configuration as the film forming apparatus 20A shown in FIG. 6, except that the film forming apparatus 40B shown in FIG. 18 includes a supply reel 501 that also serves as a power supply 59 and a counter electrode 58.
  • the film forming apparatus 50 includes a chamber 51.
  • the chamber 51 includes a first supply zone SZ1 to which the first gas G1 is supplied, a second supply zone SZ2 to which the second gas G2 is supplied, a first exhaust zone EZ1 for purging the first gas G1, and a second gas.
  • a second exhaust zone EZ2 for purging G2 is provided.
  • the zones are arranged in this order so as to separate the chamber 51 in a direction intersecting with the transport direction.
  • a first supply port 521, a second supply port 522, a third supply port 523, a first exhaust port 531 and a second exhaust port 532 are appropriately provided in each zone. Purging from each exhaust port is appropriately performed.
  • the exhaust port to be used may be determined as necessary.
  • the pressure inside the chamber 51 is controlled by the pressure control unit 56 so as to create a reduced pressure atmosphere.
  • the pressure controller 56 may appropriately control the pressure in each zone.
  • the metal foil 500 is wound around a supply reel 501 that is rotationally driven by a motor, and is supplied upstream in the chamber 51 while being unwound from the supply reel 501. After processing, the metal foil 500 is collected on the collecting reel 502.
  • the supply reel 501 and the recovery reel 502 are the power feeding body 59.
  • the counter electrode 58 is arranged downstream of the power feeder 59 and upstream of the first supply zone SZ1.
  • the counter electrode may be arranged in the most upstream first supply zone SZ1.
  • the counter electrode may be further arranged in at least one place in the first exhaust zone EZ1, the second supply zone SZ2, and the second exhaust zone EZ2.
  • a stage 541 that supports the metal foil 500 to be conveyed is arranged on the upstream side of the chamber 51.
  • the stage 541 is the heating element 60.
  • a pressing member 55 for pressing the metal foil 500 toward the stage 541 is arranged at a position corresponding to the stage 541.
  • the pressing member 55 is also the heating element 60.
  • the pressing member 55 has a roll shape and supports the conveyance of the metal foil 500.
  • the film forming apparatus 50 further includes a voltage adjusting device 503 and an AC power supply 504. However, these are installed arbitrarily.
  • the electrode foil produced by the method according to the present invention has improved capacity and withstand voltage, and thus can be used in electrolytic capacitors for various purposes.
  • 10A, 10B Film forming apparatus 11: Chamber 121: First supply port 122: Second supply port 13: Exhaust port 14: Stage 15: Pressing member 16: Pressure control unit 19: Heating element 100: Metal foil
  • 40A, 40B, 40C, 40D, 40E Film forming apparatus 41: Chamber 421: First supply port 422: Second supply port 423: Third supply port 424: Fourth supply port 425: Fifth supply port 431: First Exhaust port 432: Second exhaust port 434: Fourth exhaust port 435: Fifth exhaust port 45: Pressing member 46: Pressure control unit 471: First transport roll 472: Second transport roll 473: Third transport roll 48: Counter electrode 49: Power feeder 401: Supply reel 402: Recovery reel 403: Voltage adjusting device 404: AC power supply 400: Metal foil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

第1金属を含む金属箔の一部を1以上の発熱体に接触させて、前記金属箔を加熱する加熱工程と、前記金属箔の一部が支持された状態で、前記金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の一部が支持された状態で、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、を備える、金属酸化物を含む層の製膜方法。

Description

製膜方法、製膜装置および電極箔の製造方法
 本発明は、原子層堆積法を利用した製膜方法、製膜装置および電極箔の製造方法に関し、金属箔の両面に金属酸化物を含む層(誘電体層)を形成する方法および装置に関する。
 電解コンデンサの電極箔として用いられる金属箔の表面には、金属酸化物(誘電体)の層が形成されている。特許文献1は、金属箔の主面に、原子層堆積法(ALD法)により誘電体層を形成することを教示している。
国際公開第2017-154461号公報
 誘電体層は、通常、金属箔の両方の主面に形成される。生産性の観点から、金属箔の両方の主面に、効率的に誘電体層を形成することが求められる。
 本発明の第一の局面は、第1金属を含む金属箔の一部を1以上の発熱体に接触させて、前記金属箔を加熱する加熱工程と、前記金属箔の一部が支持された状態で、前記金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の一部が支持された状態で、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、を備える、金属酸化物を含む層の製膜方法に関する。
 本発明の第二の局面は、少なくとも1つのチャンバと、前記チャンバ内の圧力を減圧雰囲気に制御する圧力制御部と、前記チャンバに第2金属を含む第1ガスを供給する第1供給口と、前記チャンバに酸化剤を含む第2ガスを供給する第2供給口と、前記チャンバから前記第1ガスを排出する第1排気口と、前記チャンバから前記第2ガスを排出する第2排気口と、前記チャンバ内に配置され、製膜対象物である金属箔の一部に接触して前記金属箔を加熱する、1以上の発熱体と、を備え、前記第1ガスおよび前記第2ガスは、前記金属箔の両方の主面に接触するように供給される、製膜装置に関する。
 本発明の第三の局面は、第1金属を含む金属箔を準備する準備工程と、前記金属箔の両方の主面を粗面化する粗面化工程と、粗面化された前記金属箔の一部を1以上の発熱体に接触させて、前記金属箔を加熱する加熱工程と、前記金属箔の一部が支持された状態で、前記金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の一部が支持された状態で、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させて、誘電体層を形成する第2接触工程と、を備える、電極箔の製造方法に関する。
 本発明の第四の局面は、第1金属を含む金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、前記金属箔の一部を1以上の第1給電体に接触させて、前記第1ガスの存在下で前記金属箔に電圧を印加する第1印加工程と、を備える、金属酸化物を含む層の製膜方法に関する。
 本発明の第五の局面は、第1金属を含む金属箔を準備する準備工程と、前記金属箔の両方の主面を粗面化する粗面化工程と、粗面化された金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、前記金属箔の一部を1以上の第1給電体に接触させて、前記第1ガスの存在下で前記金属箔に電圧を印加する第1印加工程と、を備える、電極箔の製造方法に関する。
 本発明の第六の局面は、第1金属を含む金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、前記金属箔の一部を1以上の給電体に接触させて、前記第2ガスの存在下で前記金属箔に電圧を印加する印加工程を備える、を備える、金属酸化物を含む層の製膜方法に関する。
 本発明の第七の局面は、第1金属を含む金属箔を準備する準備工程と、前記金属箔の両方の主面を粗面化する粗面化工程と、粗面化された金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、前記金属箔の一部を1以上の第2給電体に接触させて、前記第2ガスの存在下で前記金属箔に電圧を印加する第2印加工程と、を備える、電極箔の製造方法に関する。
 本発明の第八の局面は、少なくとも1つのチャンバと、前記チャンバ内の圧力を減圧雰囲気に制御する圧力制御部と、前記チャンバに第2金属を含む第1ガスを供給する第1供給口と、前記チャンバに酸化剤を含む第2ガスを供給する第2供給口と、前記チャンバから前記第1ガスを排出する第1排気口と、前記チャンバから前記第2ガスを排出する第2排気口と、製膜対象物である金属箔の一部に接触する1以上の給電体と、前記金属箔と前記給電体の間に電圧差を発生させる対極と、を備え、前記第1ガスおよび前記第2ガスは、前記金属箔の両方の主面に接触するように供給される、製膜装置に関する。
 本発明の第九の局面は、第1金属を含む金属箔の一部を1以上の発熱体に接触させて、前記金属箔を加熱する加熱工程と、前記金属箔の一部が支持された状態で、前記金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、前記金属箔の一部が支持された状態で、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、前記金属箔の一部を1以上の給電体に接触させて、前記第1ガスおよび前記第2ガスの少なくとも一方の存在下で前記金属箔に電圧を印加する印加工程と、を備える、金属酸化物を含む層の製膜方法に関する。
 本発明によれば、金属箔の両方の主面に、原子層堆積法を用いて効率的に誘電体層を形成することができる。
本発明の第1態様に係る製膜方法を示すフローチャートである。 本発明の第1態様に係る電極箔の製造方法を示すフローチャートである。 本発明の一実施形態に係る粗面化された金属箔の断面のSEM画像(300倍)である。 本発明の第1態様に係る製膜装置の一例を概念的に示す側面図である。 本発明の第1態様に係る製膜装置の他の例を概念的に示す側面図である。 本発明の第1態様に係る製膜装置の他の例を概念的に示す側面図である。 本発明の第1態様に係る他の製膜装置の要部を概念的に示す側面図である。 本発明の第1態様に係る製膜装置の他の例を概念的に示す側面図である。 本発明の第1態様に係る製膜装置の他の例を概念的に示す側面図である。 本発明の第2態様に係る製膜方法を示すフローチャートである。 本発明の第2態様に係る電極箔の製造方法を示すフローチャートである。 本発明の第3態様に係る製膜方法を示すフローチャートである。 本発明の第3態様に係る電極箔の製造方法を示すフローチャートである。 本発明の第2および第3態様に係る製膜方法を示すフローチャートである。 本発明の第2および第3態様に係る電極箔の製造方法を示すフローチャートである。 本発明の第2および第3態様に係る製膜装置の一例を概念的に示す側面図である。 本発明の第2および第3態様に係る他の製膜装置の一例を概念的に示す側面図である。 本発明の第2および第3態様に係るさらに他の製膜装置の一例を概念的に示す側面図である。 本発明の第2および第3態様に係るさらに他の製膜装置の一例を概念的に示す側面図である。 本発明の第2および第3態様に係るさらに他の製膜装置の一例を概念的に示す側面図である。 本発明の第2および第3態様に係るさらに他の製膜装置の一例を概念的に示す側面図である。 本発明の第4態様に係る製膜方法を示すフローチャートである。 本発明の第4態様に係る電極箔の製造方法を示すフローチャートである。 本発明の第4態様に係る製膜装置の一例を概念的に示す側面図である。
 本実施形態において、誘電体層が形成される製膜対象物は、金属箔である。金属箔は、樹脂フィルム等と比較して耐熱性、熱伝導率および導電性が高く、さらにある程度の剛性を有している。本実施形態は、金属箔のこのような性質を利用して、金属箔の両方の主面に同時に金属酸化物を含む層(誘電体層)を形成する。
 第1態様に係る製膜方法は、第1金属を含む金属箔の一部を1以上の発熱体に接触させて、金属箔を加熱する加熱工程と、金属箔の一部が支持された状態で、金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、金属箔の一部が支持された状態で、金属箔の両面に酸化剤を含む第2ガスを接触させる第2接触工程と、を備える。
 第1態様に係る製膜方法は、以下のような製膜装置を用いて実行される。本実施形態は、この製膜装置を包含する。
 すなわち、第1態様に係る製膜装置は、少なくとも1つのチャンバと、チャンバ内の圧力を減圧雰囲気に制御する圧力制御部と、チャンバに第2金属を含む第1ガスを供給する第1供給口と、チャンバに酸化剤を含む第2ガスを供給する第2供給口と、チャンバから第1ガスを排出する第1排気口と、チャンバから第2ガスを排出する第2排気口と、チャンバ内に配置され、製膜対象物である金属箔の一部に接触して金属箔を加熱する、1以上の発熱体と、を備える。第1ガスおよび第2ガスは、金属箔の両方の主面に接触するように供給される。
 第1態様に係る製膜装置および/または製膜方法を用いて、電解コンデンサの電極箔を製造することができる。本実施形態は、この電極箔の製造方法を包含する。
 すなわち、第1態様に係る電極箔の製造方法は、第1金属を含む金属箔を準備する準備工程と、金属箔の両方の主面を粗面化する粗面化工程と、粗面化された金属箔の一部を1以上の発熱体に接触させて、金属箔を加熱する加熱工程と、金属箔の一部が支持された状態で、金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、金属箔の一部が支持された状態で、金属箔の両面に酸化剤を含む第2ガスを接触させて、誘電体層を形成する第2接触工程と、を備える。
 第2態様に係る製膜方法は、第1金属を含む金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、金属箔の両面に酸化剤を含む第2ガスを接触させる第2接触工程と、金属箔の一部を1以上の第1給電体に接触させて、第1ガスの存在下で金属箔に電圧を印加する第1印加工程と、を備える。
 第2態様に係る製膜方法を用いて、電解コンデンサの電極箔を製造することができる。本実施形態は、この電極箔の製造方法を包含する。
 すなわち、第2態様に係る電極箔の製造方法は、第1金属を含む金属箔を準備する準備工程と、金属箔の両方の主面を粗面化する粗面化工程と、粗面化された金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、金属箔の両面に酸化剤を含む第2ガスを接触させる第2接触工程と、金属箔の一部を1以上の第1給電体に接触させて、第1ガスの存在下で金属箔に電圧を印加する第1印加工程と、を備える。
 第3態様に係る製膜方法は、第1金属を含む金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、金属箔の両面に酸化剤を含む第2ガスを接触させる第2接触工程と、金属箔の一部を1以上の給電体に接触させて、第2ガスの存在下で金属箔に電圧を印加する印加工程を備える、を備える。
 第3態様に係る製膜方法を用いて、電解コンデンサの電極箔を製造することができる。本実施形態は、この電極箔の製造方法を包含する。
 すなわち、第3態様に係る電極箔の製造方法は、第1金属を含む金属箔を準備する準備工程と、金属箔の両方の主面を粗面化する粗面化工程と、粗面化された金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、金属箔の両面に酸化剤を含む第2ガスを接触させる第2接触工程と、金属箔の一部を1以上の第2給電体に接触させて、第2ガスの存在下で金属箔に電圧を印加する第2印加工程と、を備える。
 第2態様および第3態様に係る製膜方法は、以下のような製膜装置を用いて実行される。本実施形態は、この製膜装置を包含する。
 すなわち、第2態様および第3態様に係る製膜装置は、少なくとも1つのチャンバと、チャンバ内の圧力を減圧雰囲気に制御する圧力制御部と、チャンバに第2金属を含む第1ガスを供給する第1供給口と、チャンバに酸化剤を含む第2ガスを供給する第2供給口と、チャンバから前記第1ガスを排出する第1排気口と、チャンバから第2ガスを排出する第2排気口と、製膜対象物である金属箔の一部に接触する1以上の給電体と、金属箔と給電体の間に電圧差を発生させる対極と、を備える。第1ガスおよび第2ガスは、金属箔の両方の主面に接触するように供給される。
 第4態様に係る製膜方法は、第1金属を含む金属箔の一部を1以上の発熱体に接触させて、金属箔を加熱する加熱工程と、金属箔の一部が支持された状態で、金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、金属箔の一部が支持された状態で、金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、金属箔の一部を1以上の給電体に接触させて、第1ガスおよび前記第2ガスの少なくとも一方の存在下で金属箔に電圧を印加する印加工程と、を備える。
 I.第1態様
 本態様では、金属箔が加熱される。熱によって、第2金属を含む分子および/または酸化剤と金属箔表面との反応が促進される。よって、均一な誘電体層が形成される。
 [製膜方法]
 第1態様に係る製膜方法は、金属箔を加熱する加熱工程を含む。図1は、第1態様に係る製膜方法を示すフローチャートである。
(金属箔)
 金属箔は、第1金属を含む。第1金属の種類は特に限定されない。第1金属は、誘電体層の形成が容易である点から、アルミニウム(Al)、タンタル(Ta)、ニオブ(Nb)などの弁作用金属または弁作用金属を含む合金であってよい。金属箔の厚みは特に限定されないが、例えば、10μm以上300μm以下であってよく、15μm以上250μm以下であってよい。金属箔の純度は特に限定されない。金属箔の純度は、例えば、99%以上99.99%以下であってよい。
 金属箔の表面は粗面化されていてもよい。さらに、金属箔の表面には、他の誘電体層が形成されていてもよい。例えば、金属箔は、粗面化により形成されたピットの内部に形成された他の誘電体層を有していてもよい。他の誘電体被膜は、例えば、陽極酸化により形成される。
(i)表面改質工程(S111)
 第1接触工程の前、望ましくは加熱工程の前に、金属箔の表面を改質する表面改質処理を行ってもよい。表面改質処理を行って、金属箔表面の不純物の除去および金属箔の表面状態を改質する。これにより、形成される膜の均一性、密着性、緻密性、金属箔の金属原子の拡散防止効果および絶縁性が向上し、漏れ電流、静電容量等の特性がさらに向上する。特に、得られる電極箔の耐電圧が200V以下、さらには50V以下である場合、表面改質工程の効果が得られ易い。
 表面改質処理は特に限定されず、例えば、プラズマ処理、大気圧プラズマ処理である。表面改質処理は、大気中で行われてもよいし、減圧下で行われてもよい。表面改質によって、例えば、金属箔の表面に水酸基が付加されたり、有機物等の不純物が分解または気化される。
(ii)加熱工程(S112)
 加熱工程において、金属箔は、発熱体に接触させられる。金属箔は一般的に高い耐熱性を有するため、接触により加熱する方法を適用することができる。原子層堆積法(Atomic Layer Deposition:ALD法)は減圧雰囲気で行われるため、対流による熱の伝搬はあまり期待できない。そのため、熱伝導を利用して加熱できる本実施形態の方法は、ALD法に好適である。発熱体には、金属箔の一部が接触する。金属箔は熱伝導率が高いため、その一部を発熱体に接触させることにより、金属箔全体が速やかに加熱され得る。
 加熱する際、金属箔は、発熱体に対応する位置に配置された押さえ部材で、発熱体に向けて押圧されてもよい。これにより、金属箔と発熱体とがより密着して、金属箔は効率的に加熱される。押さえ部材は、発熱体と同様に、金属箔の一部と接触させる。押さえ部材は、発熱体であってもよい。金属箔の両方の主面に発熱体を接触させることにより、加熱の効率はさらに向上する。
 加熱温度は特に限定されず、誘電体層を形成する方法(原子層堆積法)の条件に応じて適宜設定すればよい。加熱温度は、例えば、80℃以上550℃以下である。
 金属箔がアルミニウムを含む場合、加熱温度は90℃以上525℃以下が好ましい。加熱温度がこの範囲であれば、加熱による効果が得られ易く、また、金属箔の変形が抑制され易い。特に、金属箔をロールtoロールで搬送する場合、金属箔にはローラなどによるストレスがかかって、ピットの変形や塑性変形が生じ易い。金属箔が変形すると、搬送が不安定になって、製膜が不均一になり易い。
 金属箔がアルミニウムを含む場合、加熱温度は特に90℃以上480℃以下が好ましい。加熱温度がこの範囲であれば、ピット形状の変形や塑性変形をより小さくできる。
(iii)第1接触工程(S113)
 加熱された金属箔を、その一部が支持された状態で第2金属を含む第1ガスに接触させる。これにより、第1ガスは金属箔の両方の主面(両面)に接触することができる。金属箔の両面には、第1ガスに含まれていた第2金属を含む分子が付着する。
 第2金属としては、Al、Ta、Nb、ケイ素(Si)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等が挙げられる。これらは、単独で、あるいは2種以上組み合わされてもよい。すなわち、誘電体層には、Al、Ta、Nb、SiO、TiO、ZrO、HfOが単独で、あるいは2種以上組み合わされて含まれ得る。誘電体層が2種以上の第2金属の酸化物を含む場合、各酸化物は混在していてもよいし、それぞれ層状に配置されていてもよい。なかでも、第2金属は、金属箔に含まれる第1金属とは異なる金属種であることが好ましい。特に、得られる電解コンデンサの容量が増加する点で、第2金属の酸化物は、第1金属の酸化物よりも高い比誘電率を有することが好ましい。また、電解コンデンサの耐電圧が向上する点で、第2金属の酸化物は、Ta5、SiO2、ZrO、HfOであることが好ましい。
 第1ガスは、第2金属を含むプリカーサ(前駆体)をガスの状態で含む。第1ガスは、複数種のプリカーサを含んでいてもよい。チャンバには、異なる種類のプリカーサが同時にあるいは順に供給されてもよい。あるいは、第1ガスに含まれるプリカーサの種類をサイクルごとに変えてもよい。
 プリカーサは、第2金属を含む有機金属化合物であり、これにより、第2金属は対象物に化学吸着され易くなる。プリカーサとしては、従来、ALD法で用いられている各種の有機金属化合物を使用することができる。
 Tiを含むプリカーサとしては、例えば、ビス(t-ブチルシクロペンタジエニル)チタン(IV)ジクロライド(C1826l2Ti)、テトラキス(ジメチルアミノ)チタン(IV)([(CHN]Ti、TDMAT)、テトラキス(ジエチルアミノ)チタン(IV)([(CN]Ti)、テトラキス(エチルメチルアミノ)チタン(IV)(Ti[N(C)(CH)])、チタン(IV)(ジイソプロポキシド-ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート(Ti[OCC(CHCHCOC(CH](OC)、四塩化チタン(TiCl)、チタン(IV)イソプロポキシド(Ti[OCH(CH)、チタン(IV)エトキシド(Ti[O(C)])等が挙げられる。
 Alを含むプリカーサとしては、例えば、トリメチルアルミニウム((CHAl)等が挙げられる。Zrを含むプリカーサとしては、例えば、ビス(メチル-η5-シクロペンタジエニル)メトキシメチルジルコニウム(Zr(CHCHOCH)、テトラキス(ジメチルアミド)ジルコニウム(IV)([(CHN]Zr)、テトラキス(エチルメチルアミド)ジルコニウム(IV)(Zr(NCHジルコニウム(IV)t-ブトキシド(Zr[OC(CH)等が挙げられる。Nbを含むプリカーサとしては、例えば、ニオブ(V)エトキシド(Nb(OCHCH、トリス(ジエチルアミド)(t-ブチルイミド)ニオブ(V)(C1639Nb)等が挙げられる。
 Siを含むプリカーサとしては、例えば、N-sec-ブチル(トリメチルシリル)アミン(C19NSi)、1,3-ジエチル-1,1,3,3-テトラメチルジシラザン(C23NSi)、2,4,6,8,10-ペンタメチルシクロペンタシロキサン((CHSiHO))、ペンタメチルジシラン((CHSiSi(CHH)、トリス(イソプロポキシ)シラノール([(HC)CHO]SiOH)、クロロペンタンメチルジシラン((CHSiSi(CHCl)、ジクロロシラン(SiHCl)、トリジメチルアミノシラン(Si[N(CH)、テトラエチルシラン(Si(C)、テトラメチルシラン(Si(CH)、テトラエトキシシラン(Si(OC)、ドデカメチルシクロヘキサシラン((Si(CH)、四塩化ケイ素(SiCl)、四臭化ケイ素(SiBr)等が挙げられる。
 Taを含むプリカーサとしては、例えば、トリス(エチルメチルアミド)(t-ブチルアミド)タンタル(V)(C1333Ta)、タンタル(V)ペンタエトキシド(Ta(OC)、トリス(ジエチルアミド)(t-ブチルイミド)タンタル(V)((CHCNTa(N(C)、ペンタキス(ジメチルアミノ)タンタル(V)(Ta(N(CH)等が挙げられる。
 Hfを含むプリカーサとしては、例えば、ハフニウムテトラクロライド(HfCl)、テトラキスジメチルアミノハフニウム(Hf[N(CH)、テトラキスエチルメチルアミノハフニウム(Hf[N(C)(CH)])、テトラキスジエチルアミノハフニウム(Hf[N(C)、ハフニウム-t-ブトキシド(Hf[OC(CH)等が挙げられる。
(iv)第2接触工程(S114)
 第1ガスを排気(パージ)した後、金属箔に第2ガスを接触させる。このときも、金属箔は、その一部が支持されている。そのため、第2ガスは金属箔の両面に接触することができる。金属箔の両面に付着している第2金属を含む分子は、第2ガスに含まれる酸化剤と反応し、第2金属の酸化物が生成する。その結果、金属箔の上下面を入れ替える操作を行わなくても、金属箔の両面に第2金属の酸化物を含む誘電体層が形成される。
 第2ガスは、不活性ガスと、酸化剤とを含む。不活性ガスとしては、従来、ALD法で用いられている不活性ガスを使用することができる。不活性ガスは、例えば、窒素、アルゴンである。
 酸化剤としては、従来、ALD法で用いられている酸化剤を使用することができる。酸化剤としては、例えば、水、酸素、オゾン、過酸化水素、二酸化炭素が挙げられる。酸化剤は、酸化剤を原料とするプラズマとして反応室に供給されてもよい。
 各工程の順序は特に限定されない。通常、第1ガスを金属箔に接触させた後、第2ガスを金属箔に接触させる。第1接触工程は、金属箔を加熱しながら行われてもよい。第2接触工程は、金属箔を加熱しながら行われてもよい。
 第1接触工程と第2接触工程とは、繰り返し複数回行われてもよい。具体的には、チャンバ内で、第1ガスの供給(パルス)→第1ガスの排気(パージ)→第2ガスの供給(パルス)→第2ガスの排気(パージ)を繰り返してもよい。サイクル毎に第1ガスおよび/または第2ガスの種類を変えてもよい。第1ガスおよび第2ガスによる誘電体層が形成された後、他の第1ガスおよび第2ガスによる誘電体層をさらに形成してもよい。
 ALD法では、自己停止(Self-limiting)作用が機能するため、第2金属は原子層単位で対象物の表面に堆積する。そのため、第1接触工程および第2接触工程を1サイクルとしたサイクル数により、誘電体層の厚みは制御される。誘電体層の厚みは特に限定されず、例えば、0.5nm以上、200nm以下であってよい。
 加熱工程と、第1接触工程および/または第2接触工程とは、同じチャンバの空間内で行われることが好ましい。同じチャンバには、例えば、2つのチャンバを繋ぐ壁の80%以上が物理的に塞がれたような場合を含まない。これにより、金属箔は、加熱された後、速やかに第1ガスと接触できるため、第1ガスに含まれる第2金属を含む分子および/または酸化剤が金属箔に付着し易くなって、さらに効率的に製膜が進行する。
[電極箔の製造方法]
 第1態様に係る電極箔の製造方法は、金属箔の一部を1以上の発熱体に接触させて、金属箔を加熱する加熱工程を備える。
 第1態様に係る製膜方法および電極箔の製造方法において、所定の大きさを有する金属箔および長尺の金属箔のいずれもが製膜対象物である。上記の方法により製造される電極箔は、電解コンデンサの陽極体として好適に用いられる。
 以下、第1態様に係る電極箔の製造方法を工程ごとに詳細に説明する。図2は、第1態様に係る電極箔の製造方法を示すフローチャートである。
(1)準備工程(S11)
 第1態様に係る製膜方法で記載されたのと同様の金属箔を準備する。金属箔は、粗面化により形成されたピットの内部に形成された他の誘電体層を有していてもよい。
(2)粗面化工程(S12)
 金属箔を加熱する前に、金属箔の表面を粗面化してもよい。粗面化により金属箔の表面に複数のピットが形成される。後工程において、このピットの内部にまで誘電体層が形成されることにより、静電容量が増加することが期待できる。一方、このように金属箔の表面が粗面化されていると、陽極酸化以外の方法でピットの内部にまで誘電体層を形成することは、通常、困難である。本態様のように加熱処理を行うことにより、ピットの内部にまで、均一な誘電体層を形成することが容易になる。第2金属の酸化物を含む誘電体層を形成した後、陽極酸化して後述する第3の誘電体層を形成する場合、本工程を行うことが好ましい。形成される第3の誘電体層がポーラス構造である場合、本工程は省略されてもよい。
 粗面化は、例えば、金属箔をエッチング処理することにより行われる。エッチング処理は、電解エッチング法により行われることが好ましい。電解エッチングは、直流電流または交流電流を金属箔に流すことにより行われる。電解エッチングは、例えば、塩酸水溶液中で行われる。
 金属箔の表面に形成されるピットの孔径は特に限定されない。ピットの孔径は、表面積が大きくなり易い点で、50nm以上2000nm以下であることが好ましい。金属箔と発熱体あるいは搬送ロール等との接触性の観点から、ピットの孔径は過度に大きくないことが好ましい。ピットの孔径は、80nm以上1300nm以下であることがより好ましい。ピットの孔径とは、例えば水銀ポロシメータで測定される細孔分布の最頻度孔径である(以下、同じ。)。
 複数のピットによって形成されるエッチング層の厚みは特に限定されず、金属箔の厚みに応じて適宜設定すればよい。金属箔を電解コンデンサの陽極として使用する場合、静電容量の観点から、エッチング層の厚みは5μm以上が好ましく、15μm以上がより好ましい。エッチング層の厚みがこの範囲であると、加熱による効果が得られ易い。金属箔の強度の観点から、エッチング層の厚みは100μm以下が好ましく、80μm以下がより好ましい。エッチング層の厚みは、金属箔の一方の主面に形成されたエッチング層の厚みである。エッチング層の厚みは、金属箔の断面のSEMあるいはTEM画像における、任意の10点の平均値である。誘電体層の厚みも同様にして算出される(以下、同じ。)。
 図3は、本実施形態に係る粗面化された金属箔の断面のSEM画像(300倍)である。図3において、中央部に明るいグレーで示されている領域は、多孔度がより低い芯部である。芯部は、金属箔のエッチングされていない領域である。芯部に隣接しており、濃いグレーで示されている領域は、エッチング層である。エッチング層は、金属箔の両方の主面側にそれぞれ形成されている。エッチング層の外側にある黒色で示された部分は、背景である。
(3)表面改質工程(S13)
 第1接触工程の前、望ましくは加熱工程の前に、金属箔の表面を改質する表面改質処理を行ってもよい。表面改質工程は、第1態様に係る製膜方法における(i)表面改質工程と同様にして行われる。
(4)加熱工程(S14)
 第1態様に係る製膜方法における(ii)加熱工程と同様にして、金属箔を加熱する。
 金属箔の加熱は、発熱体を金属箔の一部に接触させることにより行われる。金属箔の加熱は、第1ガスが供給されるチャンバ内で行われることが好ましい。加熱の際、チャンバ内は減圧されていてもよい。
(5)第1接触工程(S15)および第2接触工程(S16)
 上記の製膜装置を用いて、金属箔の両面に第1ガスおよび第2ガスをそれぞれ接触させる。各接触工程は、第1態様に係る製膜方法における(iii)第1接触工程および(iv)第2接触工程と同様にして行われる。これにより、金属箔の両面には、第2金属の酸化物を含む誘電体層が形成される。
 誘電体層を形成した後、金属箔を化成してもよい。これにより、金属箔と誘電体層との間に、金属箔を構成する第1金属の酸化物を含む第3の誘電体層が形成される。よって、誘電体層全体として、ピンホールのない均一な厚みを備える層が形成され易くなる。金属箔を化成する方法は特に限定されない。化成は、例えば、金属箔を化成液に浸漬して、電圧を印加すること(陽極酸化)により行われる。
[製膜装置]
 第1態様に係る製膜装置は、チャンバ内に配置され、製膜対象物である金属箔の一部に接触して金属箔を加熱する発熱体を備える。第1ガスおよび第2ガスは、金属箔の両方の主面に接触するように供給される。
(発熱体)
 発熱体は、製膜対象物である金属箔の一部に接触して金属箔を加熱する。発熱体は1以上あればよく、2以上であってもよい。発熱体の形状は、金属箔とある程度の面積で接触できる限り、特に限定されない。発熱体は、例えば、金属箔を支持するステージであってよく、搬送ロールであってよく、金属箔を位置決めする位置決め部材であってよい。
(チャンバ)
 製膜装置は、少なくとも1つのチャンバを備える。
 製膜装置は、第1ガスおよび第2ガスを供給および排気することのできるチャンバを1つ備えていてもよい。
 製膜装置は、第1ガスおよび第2ガスを供給および排気することのできるチャンバを、複数備えてよい。この場合、複数のチャンバにおいて、同種の第1ガスが供給されてよく、異なる第2金属を含む複数種の第1ガスがそれぞれ供給されてよい。複数のチャンバにおいて、同種の第2ガスが供給されてよく、異なる酸化剤を含む複数種の第2ガスがそれぞれ供給されてよい。ただし、発熱体は、複数のチャンバの少なくとも1つに配置されていればよい。
 製膜装置は、第1ガスを供給および排気することのできる第1チャンバと、第2ガスを供給および排気することのできる第2チャンバと、を備えてよい。ただし、発熱体は、これらチャンバの少なくとも1つに配置されていればよい。好ましくは、発熱体は、第1チャンバに配置される。
 製膜装置は、上記第1チャンバおよび/または第2チャンバを複数備えてよい。この場合、複数の第1チャンバにおいて、同種の第1ガスが供給されてよく、異なる第2金属を含む複数種の第1ガスがそれぞれ供給されてよい。複数の第2チャンバにおいて、同種の第2ガスが供給されてよく、異なる酸化剤を含む複数種の第2ガスがそれぞれ供給されてよい。ただし、発熱体は、複数のチャンバの少なくとも1つに配置されていればよい。好ましくは、発熱体は、少なくとも1つの第1チャンバに配置される。
 生産性の観点から、製膜装置は、第1ガスおよび第2ガスを供給および排気することのできる少なくとも1つのチャンバを備えることが好ましい。これにより、1つのチャンバ内で少なくとも1層の誘電体層の形成が完了する。
(圧力制御部)
 チャンバは圧力制御部を備える。チャンバ内の圧力は、減圧雰囲気になるよう圧力制御部により制御される。圧力制御部は、例えばコンピュータを備える。
(供給口および排気口)
 チャンバは、第1ガスをチャンバ内に供給する第1供給口と、第1ガスを排出する第1排気口と、を備える。チャンバは、第2ガスをチャンバ内に供給する第2供給口と、第2ガスを排出する第2排気口と、を備える。第1ガスおよび第2ガスは、同じ供給口から供給されてもよい。第1ガスおよび第2ガスは、同じ排気口から排気されてもよい。
(支持体)
 チャンバは、発熱体以外に、金属箔の一部に接触して金属箔を支持する支持体を備えてよい。支持体は1以上あればよく、2以上であってもよい。支持体の形状は、金属箔を安定して支持できる限り、特に限定されない。支持体は、例えば、金属箔を支持するステージであってよく、搬送ロールであってよく、金属箔を位置決めする位置決め部材であってよい。
(押さえ部材)
 チャンバは、さらに、発熱体に対応する位置に配置され、金属箔を発熱体に向けて押圧するための押さえ部材を備えてよい。これにより、金属箔と発熱体とが密着して、金属箔は効率的に加熱される。押さえ部材は、発熱体と同様に、金属箔の一部と接触させる。押さえ部材は、発熱体であってもよい。金属箔の両方の主面に発熱体を接触させることにより、加熱の効率はさらに向上する。
 第1態様に係る製膜方法および製膜装置は、所定の大きさを有する金属箔を製膜対象物とすることもできるし、長尺の金属箔を製膜対象物とすることもできる。長尺の金属箔は、例えば、チャンバ内で搬送されており、搬送されている金属箔に対して連続的に誘電体層が形成される。
 以下、予め所定の大きさに切断された金属箔を製膜対象物とする場合(以下、バッチ方式と称する。)と、長尺の金属箔を製膜対象物とする場合(以下、ロールtoロール方式と称する。)とに分けて、第1態様に係る製膜装置を説明する。
A.バッチ方式
 本実施形態において、発熱体は例えばステージである。金属箔は、チャンバ内でステージに載置されることにより加熱される。ステージは、金属箔の一部と接触する。
[第I-i実施形態]
 図4は、第1態様に係る製膜装置の一例を概念的に示す側面図であり、バッチ方式で用いられる。
 製膜装置10Aは、第1ガスおよび第2ガスを供給および排気することのできるチャンバ11を備える。チャンバ11は、第1ガスG1をチャンバ11内に供給する第1供給口121と、第2ガスG2をチャンバ11内に供給する第2供給口122とを備える。チャンバ11は、さらに、第1ガスG1および第2ガスG2を排出する排気口13を備える。第1ガスG1および第2ガスG2は、異なる排気口から排気されてもよい。
 チャンバ11内の圧力は、圧力制御部16により制御される。第1ガスG1および第2ガスG2がチャンバ11内に供給される際、圧力制御部16は、チャンバ11内が減圧雰囲気になるよう制御する。
 チャンバ11内には、ステージ14が配置されている。ステージ14は、金属箔100と接触する平面部を備える。ステージ14には、金属箔100の一部が接触するように、金属箔100が載置される。金属箔100は適度な剛性を有するため、過度にダレたり弛んだりすることなくステージ14によって支持される。ステージ14は発熱体19である。金属箔100は良好な熱伝導性を有するため、一部に接触するステージ14によって、その全体が速やかに加熱され得る。
 金属箔100はステージ14によって略平面状に支持されているため、チャンバ11内に供給された第1ガスG1および第2ガスG2は、金属箔100の両方の主面に接触することができる。これにより、一度の処理により、金属箔100の両方の主面に少なくとも1層の誘電体層が形成される。
 ステージ14に対応する位置には、金属箔100をステージ14に向けて押圧するための押さえ部材15が配置されている。押さえ部材15は、金属箔100と接触する平面部を備える。押さえ部材15は発熱体19であってもよい。
[第I-ii実施形態]
 図5は、第1態様に係る製膜装置の他の例を概念的に示す側面図である。製膜装置10Bは、ステージ14が複数あること以外、製膜装置10Aと同様の構成を備える。少なくとも1つのステージ14は発熱体19である。
B.ロールtoロール方式
 本実施形態において、発熱体は、第1チャンバ内で搬送される金属箔の一部に接触する。金属箔は搬送されながら加熱される。発熱体は、搬送ロールであってよく、搬送される金属箔を位置決めする位置決め部材であってよく、搬送される金属箔を支持するステージであってよい。
 1つのチャンバ内で第1ガスおよび第2ガスの供給および排気を行う場合、チャンバは複数に区分されてよい。例えば、チャンバは、第1ガスが供給される第1供給ゾーン、第2ガスが供給される第2供給ゾーン、第1ガスをパージする第1排気ゾーン、および、第2ガスをパージする第2排気ゾーンを備えてよい。各ゾーンは、例えば、不活性ガス(窒素、アルゴン等)の壁により区分される。ただし、上記の複数のゾーンは、1つの空間であるとみなすことができる。さらに、上記チャンバの上記ゾーン以外の部分もまた、上記の複数のゾーンとともに1つの空間を形成している。金属箔は、各ゾーンを複数回経由してもよい。
[第I-iii実施形態]
 図6は、第1態様に係る製膜装置の一例を概念的に示す側面図であり、ロールtoロール方式で用いられる。
 製膜装置20Aは、第1ガスおよび第2ガスを供給および排気することのできるチャンバ21を備える。チャンバ21は、第1ガスG1が供給される第1供給ゾーンSZ1、第2ガスG2が供給される第2供給ゾーンSZ2、第1ガスG1をパージする第1排気ゾーンEZ1、および、第2ガスG2をパージする第2排気ゾーンEZ2を備える。各ゾーンは、チャンバ21を搬送方向に交わる方向に分離するように、この順に配置されている。
 チャンバ21は、第1ガスG1を第1供給ゾーンSZ1に供給する第1供給口221と、第2ガスG2を第2供給ゾーンSZ2に供給する第2供給口222と、を備える。チャンバ21は、第1ガスG1を第1排気ゾーンEZ1から排出する第1排気口231と、第2ガスG2を第2排気ゾーンEZ2から排出する第2排気口232と、を備える。
 チャンバ21の上流側には、搬送される金属箔200を支持するステージ241が配置されている。ステージ241は発熱体29である。ステージ241は、金属箔200と接触する平面部を備える。発熱体29は、第1供給ゾーンSZ1より上流側に配置されている。発熱体29は、最も上流側の第1供給ゾーンSZ1内に配置されてもよい。発熱体29は、さらに、第1排気ゾーンEZ1内、第2供給ゾーンSZ2内および第2排気ゾーンEZ2内の少なくとも1箇所に配置されてよい。
 第1排気ゾーンEZ1には、第3供給口223から不活性ガスG3(例えば、窒素ガス)が供給される。これにより、第1供給ゾーンSZ1と第2供給ゾーンSZ2とが区分されるとともに、未反応の第1ガスG1が第1排気口231からパージされる。
 第2排気ゾーンEZ2にも同様に、第3供給口223から不活性ガスG3が供給される。これにより、第2供給ゾーンSZ2とチャンバ21内の他の部分とが区分されるとともに、未反応の第2ガスG2が第2排気口232からパージされる。第1排気ゾーンEZ1および第2排気ゾーンEZ2で供給される第3ガスG3は、同種であってもよく、異種であってもよい。各排気口からのパージは、適宜行われる。必要に応じて、使用する排気口を決定すればよい。排気口は、必要に応じて、さらに追加されてもよい。
 製膜装置20Aは、所望の誘電体層の厚みに応じて、第1供給ゾーンSZ1、第1排気ゾーンEZ1、第2供給ゾーンSZ2および第2排気ゾーンEZ2の組み合わせを複数備えてよい。複数の第1供給ゾーンSZ1で供給される第1ガスG1は、同種であってもよく、異種であってもよい。複数の第2供給ゾーンSZ2で供給される第2ガスG2は、同種であってもよく、異種であってもよい。
 金属箔200は、所望の誘電体層の厚みに応じて、第1供給ゾーンSZ1、第1排気ゾーンEZ1、第2供給ゾーンSZ2および第2排気ゾーンEZ2の組み合わせを複数回経由してもよい。
 チャンバ21内の圧力は、減圧雰囲気になるよう圧力制御部26により制御される。圧力制御部26は、各ゾーンの圧力をそれぞれ適宜制御してもよい。
 金属箔200は、モータにより回転駆動される供給リール201に巻回されており、供給リール201から巻き出されながら、チャンバ21内の上流に供給される。金属箔200は、チャンバ21内の上流でステージ241(発熱体29)に接触して加熱された後、下流へと搬送される。
 ステージ241に対応する位置には、金属箔200をステージ241に向けて押圧するための押さえ部材25が配置されている。押さえ部材25はロール状であり、金属箔200の搬送をサポートする。押さえ部材25は発熱体であってもよい。
 別の形態では、ステージ241は発熱体ではなく、押さえ部材25は発熱体である。
 加熱された金属箔200は、まず第1供給ゾーンSZ1に搬入される。第1供給ゾーンSZ1では、金属箔200の両面に第1供給口221から第1ガスG1が供給されて、第2金属を含む分子が金属箔200の両面に付着する。
 次に、金属箔200は、第1排気ゾーンEZ1に搬入される。第1排気ゾーンEZ1では、第3供給口223から不活性ガスG3が供給されるとともに、未反応の第1ガスG1が第1排気口231から排気される。
 続いて、金属箔200は、第2供給ゾーンSZ2に搬入される。第2供給ゾーンSZ2では、金属箔200の両面に第2供給口222から第2ガスG2が供給される。金属箔200の両面に付着している第2金属を含む分子は酸化剤と反応し、第2金属の酸化物を含む誘電体層が生成する。これにより、金属箔200の両面には、第2金属の酸化物を含む誘電体層が形成される。
 最後に、金属箔200は、第2排気ゾーンEZ2に搬入される。第2排気ゾーンEZ2では、第3供給口223から不活性ガスG3が供給されるとともに、未反応の第2ガスG2が第2排気口232から排気される。
 金属箔200は、所望の厚みの酸化物が堆積された後、チャンバ21から搬出されて、回収リール202に巻き取られる。回収リール202は、モータにより回転駆動する。
[第I-iv実施形態]
 図7は、第1態様に係る他の製膜装置の要部を概念的に示す側面図である。製膜装置20Bは、発熱体の形状および配置以外、製膜装置20Aと同様の構成を備える。
 製膜装置20Bにおいて、供給リール201から巻き出された金属箔200は、搬送ベルト28に載せられてチャンバ21の上流に搬入される。搬送ベルト28には、金属箔200を固定し位置決めするための位置決め部材243が配置されている。金属箔200には、1以上の貫通孔200aが形成されており、位置決め部材243が貫通孔200aに挿入されることにより、金属箔200は位置決めされる。位置決め部材243は、発熱体29である。そのため、金属箔200は、貫通孔200aの周囲で位置決め部材243と接触して、加熱される。その後、金属箔200は、搬送ベルト28から離脱して、搬送ロール27により第1供給ゾーンSZ1へと搬送される。以降、金属箔200は、製膜装置20Aと同様に処理されて、両面に誘電体層が形成される。
[第I-v実施形態]
 図8は、第1態様に係る製膜装置の他の例を概念的に示す側面図である。製膜装置20Cは、発熱体の形状以外、製膜装置20Aと同様の構成を備える。
 製膜装置20Cにおいて、供給リール201から巻き出された金属箔200は、搬送ロール27によって第1供給ゾーンSZ1に搬入される。搬送ロール27は、発熱体29である。そのため、金属箔200は、搬送ロール27で搬送されるとともに加熱される。搬送ロール27に対応する位置にはロール状の押さえ部材25が配置されている。押さえ部材25は発熱体29であってもよい。その後、金属箔200は、第1供給ゾーンSZ1へと搬送される。以降、金属箔200は、製膜装置20Aと同様に処理されて、両面に誘電体層が形成される。
[第I-vi実施形態]
 図9は、第1態様に係る製膜装置の他の例を概念的に示す側面図である。
 製膜装置20Dは、第1ガスおよび第2ガスを供給および排気することのできるチャンバ21を備える。金属箔200は、チャンバ21内で複数回折り返されながら搬送される。折り返しの回数は、特に限定されない。
 チャンバ21は、第1ガスG1が供給される第1供給ゾーンSZ1、第2ガスG2が供給される第2供給ゾーンSZ2、第1ガスG1および第2ガスG2をパージする排気ゾーンEZを備える。各ゾーンは、チャンバ21を、搬送方向に沿って分離するように配置されている。第1供給ゾーンSZ1には、複数の第1搬送ロール271が配置されている。第2供給ゾーンSZ2には、複数の第2搬送ロール272が配置されている。第1搬送ロール271および第2搬送ロール272の少なくとも1つは、発熱体29である。排気ゾーンEZに配置されている第3搬送ロール273が発熱体29であってもよい。
 金属箔200は、供給リール201から巻き出されながら、チャンバ21内の上流に供給される。金属箔200は第3搬送ロール273で方向転換されて、第1供給ゾーンSZ1に搬入される。第1供給ゾーンSZ1では、金属箔200の両面に第1供給口221から第1ガスG1が供給されて、第2金属を含む分子が金属箔200の両面に付着する。
 金属箔200は、第1搬送ロール271で折り返されて排気ゾーンEZに搬入される。排気ゾーンEZでは、第3供給口223から不活性ガスG3(例えば、窒素ガス)が供給されるとともに、未反応の第1ガスG1が排気口23からパージされる。排気口は、必要に応じて、例えば第1供給ゾーンSZ1および/または第2供給ゾーンSZ2に追加されてもよい。
 続いて、金属箔200は、第2供給ゾーンSZ2に搬入される。第2供給ゾーンSZ2では、金属箔200の両面に第2供給口222から第2ガスG2が供給される。金属箔200の両面に付着している第2金属を含む分子は、酸化剤と反応して第2金属の酸化物が生成する。これにより、金属箔200の両面には、第2金属の酸化物を含む誘電体層が形成される。
 金属箔200は、第2搬送ロール272で折り返されて、再び排気ゾーンEZに搬入される。排気ゾーンEZでは、未反応の第2ガスG2も排気口23からパージされる。
 金属箔200はその後、再び第1供給ゾーンSZ1に搬入される。以降、上記の第1供給ゾーンSZ1、排気ゾーンEZ、第2供給ゾーンSZ2への搬入および搬出が繰り返されて、金属箔200には、所望の厚みの酸化物が堆積される。最後に、金属箔200はチャンバ21から搬出されて、回収リール202に巻き取られる。
 II.第2態様
 本態様では、第1ガスの存在下で、金属箔に電圧が印加される。これにより、第2金属を含む分子が電気的に金属箔に引き付けられて、金属箔付近の第2金属の濃度を高めることができる。その結果、反応効率が向上して、均一な誘電体層が形成される。加えて、第2金属を含む分子が効率的に使用される。さらに、第2金属が金属箔に吸着し易くなるため、形成される金属酸化物を含む層の緻密性が向上する。
 [製膜方法]
 第2態様に係る製膜方法は、第1ガスの存在下で金属箔に電圧を印加する第1印加工程(以下、単に印加工程と称す。)を含む。図10は、第2態様に係る製膜方法を示すフローチャートである。
 第2態様に係る製膜方法は、加熱工程に替えて印加工程を備えること以外、第1態様に係る製膜方法における(iii)第1接触工程および(iv)第2接触工程と同様の工程を備える。第2態様に係る製膜方法は、第1態様に係る製膜方法における(i)表面改質工程と同様の工程を備えてもよい。
(i)表面改質工程(S211)
 第1態様に係る製膜方法における(i)表面改質工程と同様にして、金属箔の表面を改質してもよい。
(ii)第1接触工程(S212)および印加工程(S214)
 第1態様に係る製膜方法における(iii)第1接触工程と同様にして、金属箔を第2金属を含む第1ガスに接触させる。このとき、1以上の第1給電体(以下、単に給電体と称す。)に接触した金属箔に電圧を印加する。給電体の金属箔への接触は、チャンバ内で行われてもよいし、チャンバ外で行われてもよい。
 金属箔への電圧印加は、電極箔と対極との間に電位差を生じさせることにより実行される。電圧差は、定電圧、パルス状電圧、交流を重畳した波形、その他の異形波形を用いて発生させることができる。上記電圧差は特に限定されない。上記電圧差は、5V以上1000V以下が好ましく、10V以上800V以下が好ましい。電位差がこの範囲であれば、電圧印加による効果が得られ易く、また、金属箔や製膜装置へのダメージが抑制され易い。
 金属箔を正極として電圧を印加してもよいし、負極として電圧を印加してもよい。金属箔の極性は、第1ガスの帯電状態に応じて適宜設定すればよい。
(iii)第2接触工程(S213)
 第1態様に係る製膜方法における(iv)第2接触工程と同様にして、金属箔に第2ガスを接触させる。これにより、金属箔の表面に金属酸化物を含む層が形成される。
 各工程の順序は特に限定されない。通常、第1ガスを金属箔に接触させた後、第2ガスを金属箔に接触させる。第1接触工程と第2接触工程とは、繰り返し複数回行われてもよい。
[電極箔の製造方法]
 第2態様に係る電極箔の製造方法は、第1ガスの存在下で金属箔に電圧を印加する印加工程を含む。
 第2態様に係る製膜方法および電極箔の製造方法において、所定の大きさを有する金属箔および長尺の金属箔のいずれもが製膜対象物である。上記の方法により製造される電極箔は、電解コンデンサの陽極体として好適に用いられる。
 以下、第2態様に係る電極箔の製造方法を工程ごとに詳細に説明する。図11は、第2態様に係る電極箔の製造方法を示すフローチャートである。
(1)準備工程(S21)
 第1態様に係る製膜方法で記載されたのと同様の金属箔を準備する。金属箔は、粗面化により形成されたピットの内部に形成された他の誘電体層を有していてもよい。
(2)粗面化工程(S22)
 第1接触工程の前に、金属箔の表面を粗面化してもよい。粗面化は、第1態様に係る電極箔の製造方法における(2)粗面化工程と同様にして行われる。通常、このように金属箔の表面が粗面化されていると、陽極酸化以外の方法でピットの内部にまで誘電体層を形成することは困難である。本態様のように電圧の印加を行うことにより、ピットの内部にまで、均一な誘電体層を形成することが容易になる。第2金属の酸化物を含む誘電体層を形成した後、陽極酸化して後述する第3の誘電体層を形成する場合、本工程を行うことが好ましい。形成される第3の誘電体層がポーラス構造である場合、本工程は省略されてもよい。
 金属箔の表面に形成されるピットの孔径は特に限定されない。ピットの孔径は、表面積が大きくなり易い点で、50nm以上2000nm以下であることが好ましい。金属箔と給電体との接触性の観点から、ピットの孔径は過度に大きくないことが好ましい。ピットの孔径は、80nm以上1300nm以下であることがより好ましい。ピットの孔径がこの範囲であれば、金属箔と給電体とが接触し易くなって、金属箔に均一に電圧が印加され易い。
 エッチング層の厚みは特に限定されず、金属箔の厚みに応じて適宜設定すればよい。金属箔を電解コンデンサの陽極として使用する場合、静電容量の観点から、エッチング層の厚みは5μm以上が好ましく、15μm以上がより好ましい。エッチング層の厚みがこの範囲であると、電圧印加による効果が得られ易い。金属箔の強度の観点から、エッチング層の厚みは100μm以下が好ましく、80μm以下がより好ましい。
(3)表面改質工程(S23)
 第1接触工程の前に、金属箔の表面を改質する表面改質処理を行ってもよい。表面改質工程は、第1態様に係る製膜方法における表面改質工程(i)と同様にして行われる。
(4)第1接触工程(S24)および印加工程(S26)
 第2態様に係る製膜方法における(ii)第1接触工程および印加工程と同様にして行われる。
(5)第2接触工程(S25)
 第2態様に係る製膜方法における(iii)第2接触工程と同様にして行われる。これにより、金属箔の両面には、第2金属の酸化物を含む誘電体層が形成される。
 誘電体層を形成した後、金属箔を化成してもよい。これにより、金属箔と誘電体層との間に、金属箔を構成する第1金属の酸化物を含む第3の誘電体層が形成される。よって、誘電体層全体として、ピンホールのない均一な厚みを備える層が形成され易くなる。金属箔を化成する方法は特に限定されない。化成は、例えば、陽極酸化により行われる。
 III.第3態様
 本態様では、第2ガスの存在下で、金属箔に電圧が印加される。これにより、酸化剤が電気的に金属箔に引き付けられて金属箔付近の酸素濃度が高まる。そのため、金属箔は酸化されやすい状態になって、均一な誘電体層が形成される。加えて、酸化剤が効率的に使用される。さらに、酸化剤が金属箔に吸着し易くなるため、形成される金属酸化物を含む層の緻密性が向上する。
 [製膜方法]
 第3態様に係る製膜方法は、第2ガスの存在下で金属箔に電圧を印加する第2印加工程(以下、単に印加工程と称す。)を含む。図12は、第3態様に係る製膜方法を示すフローチャートである。
 第3態様に係る製膜方法は、第1ガスに替えて第2ガスの存在下で電圧の印加を行うこと以外、第2態様に係る製膜方法および電極箔の製造方法と同様の工程を備える。
(i)表面改質工程(S311)
 第2態様に係る製膜方法における(i)表面改質工程と同様にして、金属箔の表面を改質してもよい。
(ii)第1接触工程(S312)
 第2態様に係る製膜方法における(ii)第1接触工程同様にして、金属箔を第2金属を含む第1ガスに接触させる。
(iii)第2接触工程(S313)および印加工程(S314)
 第1態様に係る製膜方法における(iii)第2接触工程と同様にして、金属箔に第2ガスを接触させる。このとき、金属箔の一部を1以上の第2給電体(以下、単に給電体と称す。)に接触させ、金属箔に電圧を印加する。これにより、金属箔の表面に金属酸化物を含む層が形成される。給電体の金属箔への接触は、チャンバ内で行われてもよいし、チャンバ外で行われてもよい。
 各工程の順序は特に限定されない。通常、第1ガスを金属箔に接触させた後、第2ガスを金属箔に接触させる。第1接触工程と第2接触工程とは、繰り返し複数回行われてもよい。
 誘電体層を形成した後、金属箔を化成してもよい。これにより、金属箔と誘電体層との間に、金属箔を構成する第1金属の酸化物を含む第3の誘電体層が形成される。よって、誘電体層全体として、ピンホールのない均一な厚みを備える層が形成され易くなる。金属箔を化成する方法は特に限定されない。化成は、例えば、陽極酸化により行われる。
[電極箔の製造方法]
 第3態様に係る電極箔の製造方法は、第2ガスの存在下で金属箔に電圧を印加する印加工程を含む。
 第3態様に係る製膜方法および電極箔の製造方法において、所定の大きさを有する金属箔および長尺の金属箔のいずれもが製膜対象物である。上記の方法により製造される電極箔は、電解コンデンサの陽極体として好適に用いられる。
 以下、第3態様に係る電極箔の製造方法を工程ごとに詳細に説明する。図13は、第3態様に係る電極箔の製造方法を示すフローチャートである。
(1)準備工程(S31)
 第1態様に係る製膜方法で記載されたのと同様の金属箔を準備する。金属箔は、粗面化により形成されたピットの内部に形成された他の誘電体層を有していてもよい。
(2)粗面化工程(S32)
 第1接触工程の前に、金属箔の表面を粗面化してもよい。粗面化は、第1態様に係る電極箔の製造方法における(2)粗面化工程と同様にして行われる。
(3)表面改質工程(S33)
 第1接触工程の前に、金属箔の表面を改質する表面改質処理を行ってもよい。表面改質工程は、第1態様に係る製膜方法における(i)表面改質工程と同様にして行われる。
(4)第1接触工程(S34)
 第3態様に係る製膜方法における(ii)第1接触工程と同様にして行われる。
(5)第2接触工程(S35)および第2印加工程(S36)
 第3態様に係る製膜方法における(iii)第2接触工程および第2印加工程と同様にして行われる。
 電極箔への電圧印加は、第1ガスの存在下および第2ガスの存在下の双方で行ってもよい。これにより、さらに均一な層が形成される。図14は、本態様に係る製膜方法を示すフローチャートである。図15は、本態様に係る電極箔の製造方法を示すフローチャートである。
 本態様は、(iii)第2接触工程でも金属箔に電圧が印加される点で第2態様と異なり、(ii)第1接触工程でも金属箔に電圧が印加される点で第3態様と異なる。本態様は、これら以外、第2態様および第3態様と同様の工程を有する。
[製膜装置]
 第2および第3態様に係る製膜装置は、製膜対象物である金属箔の一部に接触する給電体と、金属箔と給電体の間に電圧差を発生させる対極と、を備える。第1ガスおよび第2ガスは、金属箔の両方の主面に接触するように供給される。
(給電体)
 給電体(第1および第2給電体)は、製膜対象物である金属箔の一部に接触して金属箔に電圧を印加する。給電体は1以上あればよく、2以上であってもよい。給電体の形状は、金属箔とある程度の面積で接触できる限り、特に限定されない。
 給電体は、例えば、供給リールおよび/または回収リールであってよく、金属箔を支持するステージであってよく、搬送ロールであってよく、金属箔を位置決めする位置決め部材であってよい。ロールtoロールで製膜する場合、給電体は、チャンバ内にあってもよいし、チャンバの外にあってもよい。エネルギーロスが小さくなる点で、給電体は、チャンバ内、特に金属箔と第1および/または第2ガスとの接触地点の近くに配置されていることが好ましい。一方、メンテナンスの容易性および装置設計の自由度を考慮すると、給電体は、チャンバ外に配置されていることが好ましい。
(対極)
 対極は、給電体とともに用いられ、金属箔と給電体の間に電圧差を発生させる。対極の配置は特に限定されず、少なくとも金属箔の両面に電圧が印加されるような場所であればよい。対極は、金属箔の主面に対面していなくてもよい。対極は1以上あればよく、2以上であってもよい。対極の形状も特に限定されない。
 金属箔と対極との距離は特に限定されない。金属箔と対極との距離は、0.5mm以上500mm以下が好ましい。金属箔と対極との距離がこの範囲であれば、金属箔を搬送する際、金属箔と対極との距離を一定に維持し易くなる。そのため、印加電圧が局部的に高くなったり、金属箔と対極とが接触することが回避され易くなる。さらに、均一な層が形成され易くなる。金属箔と対極との距離は、1mm以上200mm以下がより好ましく、1mm以上130mm以下が特に好ましい。金属箔と対極との距離がこの範囲であると、設備を小さくできるとともに、エネルギーロスを低減することができる。対極が複数ある場合、金属箔とそれぞれの対極との距離は同じでなくてもよい。
 複数のチャンバがある場合、対極は、これらチャンバの少なくとも1つに配置されていればよい。
 第2および第3態様に係る製膜装置は、発熱体に替えて給電体を備えること以外、第1態様に係る製膜装置と同様のチャンバ、圧力制御部、供給口、排気口を備える。第2および第3態様に係る製膜装置は、第1態様に係る製膜装置における支持体、押さえ部材等を備えてもよい。
 金属箔が第1ガスに接触している状態で給電体に電圧を印加すると、第2態様が実行される。金属箔が第2ガスに接触している状態で給電体に電圧を印加すると、第3態様が実行される。
 第2および第3態様に係る製膜方法および製膜装置は、所定の大きさを有する金属箔を製膜対象物とすることもできるし、長尺の金属箔を製膜対象物とすることもできる。長尺の金属箔は、例えば、チャンバ内で搬送されており、搬送されている金属箔に対して連続的に誘電体層が形成される。
 以下、第1態様と同様、バッチ方式とロールtoロール方式とに分けて、第2および第3態様に係る製膜装置を説明する。
A.バッチ方式
 本実施形態において、給電体(第1および/または第2給電体)は例えばステージである。金属箔の近傍には、対極が配置される。金属箔がチャンバ内でステージに載置されることにより、金属箔に電圧を印加することが可能となって金属箔と対極との間に電位差を発生させることができる。ステージは、金属箔の一部と接触する。
[第II-i実施形態]
 図16は、第2および第3態様に係る製膜装置の一例を概念的に示す側面図であり、バッチ方式で用いられる。
 製膜装置30は、発熱体を兼ねたステージに替えて、給電体39を兼ねたステージ34と、対極38とを備えること以外、図4に示す製膜装置10Aと同様の構成を備える。
 すなわち、製膜装置30はチャンバ31を備える。チャンバ31は、第1供給口321と、第2供給口322と、排気口33とを備える。チャンバ31内の圧力は、圧力制御部36により制御される。金属箔300は、押さえ部材35によりステージ34に向けて押圧される。
 製膜装置30は、さらに、電圧調整装置303および交流電源304を備えている。ただし、これらは任意に設置される。
 対極38は、1枚で金属箔の両面に電圧が印加されるように配置されている。ただし、対極の配置はこれに限定されず、例えば、複数の対極を金属箔の両方の主面に対向するようにそれぞれ配置してもよい。複数の対極を配置する場合、金属箔を中心にして点対称あるいは線対称になるように配置することが好ましい。
B.ロールtoロール方式
 本実施形態において、搬送される金属箔に電圧が印加される。給電体は、チャンバ内あるいはチャンバ外に配置されている。給電体は、供給または回収リールであってよく、搬送ロールであってよく、搬送される金属箔を位置決めする位置決め部材であってよく、搬送される金属箔を支持するステージであってよい。
 1つのチャンバ内で第1ガスおよび第2ガスの供給および排気を行う場合、第1態様と同様に、チャンバは複数に区分されてよい。金属箔は、各ゾーンを複数回経由してもよい。
[第II-ii実施形態]
 図17は、第2および第3態様に係る製膜装置の一例を概念的に示す側面図であり、ロールtoロール方式で用いられる。
 製膜装置40Aは、発熱体を兼ねたステージに替えて、給電体49を兼ねた第3搬送ロール473と、対極48とを備えること以外、図6に示す製膜装置20Aと同様の構成を有する。
 すなわち、製膜装置40Aはチャンバ41を備える。チャンバ41は、第1ガスG1が供給される第1供給ゾーンSZ1、第2ガスG2が供給される第2供給ゾーンSZ2、第1ガスG1をパージする第1排気ゾーンEZ1、および、第2ガスG2をパージする第2排気ゾーンEZ2を備える。各ゾーンは、チャンバ21を搬送方向に交わる方向に分離するように、この順に配置されている。各ゾーンには、第1供給口421、第2供給口422、第3供給口423、第1排気口431、第2排気口432が適宜設けられている。各排気口からのパージは適宜行われる。必要に応じて、使用する排気口を決定すればよい。
 対極は、金属箔の両方の主面に対向するように、少なくとも1つずつ配置されていてもよい。この場合、金属箔に印加される電圧のバラつきが抑制される。対極は、第1供給ゾーンSZ1内および/または第2供給ゾーンSZ2内に配置されてもよい。
 チャンバ41内の圧力は、減圧雰囲気になるよう圧力制御部46により制御される。圧力制御部46は、各ゾーンの圧力をそれぞれ適宜制御してもよい。金属箔400は、モータにより回転駆動される供給リール401に巻回されており、供給リール401から巻き出されながら、チャンバ41内の上流に供給される。金属箔400は、処理後、回収リール402に回収される。
 チャンバ21の上流側には、金属箔400を搬送する第3搬送ロール473が配置されている。第3搬送ロール473は、給電体49である。給電体49は、チャンバ41内の第1供給ゾーンSZ1より上流に配置されている。金属箔400は、給電体49(第3搬送ロール473)で支持されながら搬送される。対極48は、給電体49より下流であって、第1供給ゾーンSZ1より上流に配置されている。
 対極は、最も上流側の第1供給ゾーンSZ1内に配置されてもよい。対極は、さらに、第1排気ゾーンEZ1内、第2供給ゾーンSZ2内および第2排気ゾーンEZ2内の少なくとも1箇所に配置されてよい。
 製膜装置40Aは、押さえ部材45を備えている。ただし、これらは任意に設置される。押さえ部材45はロール状であり、金属箔400の搬送をサポートする。製膜装置40Aは、さらに、電圧調整装置403および交流電源404を備えている。ただし、これらは任意に設置される。
 別の形態では、押さえ部材45が給電体である。このとき、第3搬送ロール473は給電体ではないことが望ましい。近接した部材に電圧が印加されると、当該部材間に電位差が生じ、部材が腐食する場合がある。
[第II-iii実施形態]
 図18は、第2および第3態様に係るさらに他の製膜装置を概念的に示す側面図である。製膜装置40Bは、給電体の配置、対極の数および配置以外、製膜装置40Aと同様の構成を備える。
 給電体49は、供給リール401および回収リール402であり、チャンバ41の外に配置されている。給電体49は、供給リール401および回収リール402のいずれか一方であってよい。対極48は、第1供給ゾーンSZ1および第2供給ゾーンSZ2に、2つずつ配置されている。各ゾーンにおいて、2つの対極48は、金属箔400を挟んで対向するように配置されている。
[第II-iv実施形態]
 図19は、第2および第3態様に係るさらに他の製膜装置を概念的に示す側面図である。製膜装置40Cは、供給リール401および回収リール402が給電体49を兼ねていること、および、複数の対極48を備えること以外、図9に示す製膜装置20Dと同様の構成を備える。
 すなわち、製膜装置40Cはチャンバ41を備える。金属箔400は、チャンバ41内で複数回折り返されながら搬送される。折り返しの回数は、特に限定されない。
 チャンバ41は、第1ガスG1を第1供給ゾーンSZ1に供給する第1供給口421と、第4ガスG4(第2ガスG2あるいは不活性ガスG3)を第4供給ゾーンSZ4に供給する第4供給口424と、第5ガスG5(第1ガスG1、不活性ガスG3あるいは他の第1ガスG1)を第5供給ゾーンSZ5に供給する第5供給口425とを備える。
 第1供給ゾーンSZ1には、複数の第1搬送ロール471が配置されている。第4供給ゾーンSZ4には、複数の第3搬送ロール473が配置されている。第5供給ゾーンSZ5には、複数の第2搬送ロール472が配置されている。
 チャンバ41は、第1ガスG1を第1供給ゾーンSZ1から排出する第1排気口431と、第4ガスG4を第4供給ゾーンSZ4から排出する第4排気口434と、第5ガスG5を第5供給ゾーンSZ5から排出する第5排気口435と、を備える。
 給電体49は、供給リール401および回収リール402であり、チャンバ41の外に配置されている。給電体49は、供給リール401および回収リール402のいずれか一方であってよい。第1搬送ロール471、第2搬送ロール472、第3搬送ロール473の少なくとも1つが給電体であってもよい。
 対極48は、第1供給ゾーンSZ1および第4供給ゾーンSZ4に、2つずつ配置されている。各ゾーンにおいて、2つの対極48は、金属箔400を挟んで対向するように配置されている。
[第II-v実施形態]
 図20は、第2および第3態様に係るさらに他の製膜装置を概念的に示す側面図である。製膜装置40Dは、対極48の形状および配置以外、図19に示す製膜装置40Cと同様の構成を備える。
 3つの対極48は、いずれも長尺であり、長手方向が各供給ゾーンを供給リール401から回収リール402に向かうように配置されている。対極48には、金属箔が通過できる複数のスリット(図示せず)が形成されている。スリットの内壁が対極としての機能を果たす。金属箔がスリットを通過する際、その内壁と金属箔との間に電位差が生じる。対極48は、いずれか1つの供給ゾーンに配置されていればよい。
 対極48の大きさは特に限定されない。装置設計の自由度やガスの流れを考慮すると、対極48は、チャンバ41を複数のチャンバに仕切らない程度の大きさであることが望ましい。対極48の大きさは、例えば、製膜装置40Dの底部の面積の80%未満である。
[第II-vi実施形態]
 図21は、第2および第3態様に係るさらに他の製膜装置を概念的に示す側面図である。製膜装置40Eは、チャンバ41が対極48を兼ねていること以外、図19に示す製膜装置40Cと同様の構成を備える。チャンバ41の内壁は導電性である。内壁上の任意の点を接点にして、金属箔400との間に電位差を生じさせる。
 IV.第4態様
 本態様では、金属箔が加熱されるとともに、第1ガスおよび第2ガスの少なくとも一方の存在下で金属箔に電圧が印加される。これにより、均一な誘電体層が、効率よく形成される。
 [製膜方法]
 第4態様に係る製膜方法は、金属箔を加熱する加熱工程と、第1ガスおよび第2ガスの少なくとも一方の存在下で金属箔に電圧を印加する印加工程と、を含む。図22は、第4態様に係る製膜方法を示すフローチャートである。
 加熱工程および印加工程は、第1態様、第2態様、第3態様に係る製膜方法と同様にして行われる。第1接触工程は、電圧が印加された金属箔を加熱しながら行われてもよい。第2接触工程は、電圧が印加された金属箔を加熱しながら行われてもよい。給電体が発生する熱により、金属箔が加熱されてもよい。
[電極箔の製造方法]
 第4態様に係る電極箔の製造方法は、金属箔を加熱する加熱工程と、第1ガスおよび第2ガスの少なくとも一方の存在下で金属箔に電圧を印加する印加工程と、を含む。図23は、第4態様に係る電極箔の製造方法を示すフローチャートである。加熱工程および印加工程は、第1態様、第2態様、第3態様に係る製膜方法と同様にして行われる。
[製膜装置]
 第4態様に係る製膜装置は、チャンバ内に配置され、製膜対象物である金属箔の一部に接触して金属箔を加熱する発熱体と、金属箔の一部に接触する給電体と、金属箔と給電体の間に電圧差を発生させる対極と、を備える。第1ガスおよび第2ガスは、金属箔の両方の主面に接触するように供給される。
 第4態様に係る製膜装置は、第1から第3態様に係る製膜装置と同様のチャンバ、圧力制御部、供給口、排気口を備える。第4態様に係る製膜装置は、さらに、第1態様に係る製膜装置と同様の発熱体と、第2および第3態様に係る製膜装置と同様の給電体および対極と、を備える。第4態様に係る製膜装置は、第1から第3態様に係る製膜装置における支持体、押さえ部材等を備えてもよい。
[第IV実施形態]
 図24は、第4態様に係る製膜装置の一例を概念的に示す側面図である。
 製膜装置50は、図18に示す製膜装置40Bと同様の給電体59を兼ねた供給リール501と対極58とを備えること以外、図6に示す製膜装置20Aと同様の構成を備える。
 すなわち、製膜装置50はチャンバ51を備える。チャンバ51は、第1ガスG1が供給される第1供給ゾーンSZ1、第2ガスG2が供給される第2供給ゾーンSZ2、第1ガスG1をパージする第1排気ゾーンEZ1、および、第2ガスG2をパージする第2排気ゾーンEZ2を備える。各ゾーンは、チャンバ51を搬送方向に交わる方向に分離するように、この順に配置されている。各ゾーンには、第1供給口521、第2供給口522、第3供給口523、第1排気口531、第2排気口532が適宜設けられている。各排気口からのパージは適宜行われる。必要に応じて、使用する排気口を決定すればよい。
 チャンバ51内の圧力は、減圧雰囲気になるよう圧力制御部56により制御される。圧力制御部56は、各ゾーンの圧力をそれぞれ適宜制御してもよい。金属箔500は、モータにより回転駆動される供給リール501に巻回されており、供給リール501から巻き出されながら、チャンバ51内の上流に供給される。金属箔500は、処理後、回収リール502に回収される。供給リール501および回収リール502は給電体59である。対極58は、給電体59より下流であって、第1供給ゾーンSZ1より上流に配置されている。
 対極は、最も上流側の第1供給ゾーンSZ1内に配置されてもよい。対極は、さらに、第1排気ゾーンEZ1内、第2供給ゾーンSZ2内および第2排気ゾーンEZ2内の少なくとも1箇所に配置されてよい。
 チャンバ51の上流側には、搬送される金属箔500を支持するステージ541が配置されている。ステージ541は発熱体60である。ステージ541に対応する位置には、金属箔500をステージ541に向けて押圧するための押さえ部材55が配置されている。押さえ部材55もまた発熱体60である。押さえ部材55はロール状であり、金属箔500の搬送をサポートする。
 製膜装置50は、さらに、電圧調整装置503および交流電源504を備えている。ただし、これらは任意に設置される。
 本発明に係る方法により製造される電極箔は、容量および耐電圧性を向上させるため、様々な用途の電解コンデンサに利用できる。
 10A、10B:製膜装置
  11:チャンバ
   121:第1供給口
   122:第2供給口
  13:排気口
  14:ステージ
  15:押さえ部材
  16:圧力制御部
  19:発熱体
 100:金属箔
 20A、20B、20C、20D:製膜装置
  21:チャンバ
   221:第1供給口
   222:第2供給口
   223:第3供給口
  23:排気口
   231:第1排気口
   232:第2排気口
  241:ステージ
  243:位置決め部材
  25:押さえ部材
  26:圧力制御部
  27:搬送ロール
   271:第1搬送ロール
   272:第2搬送ロール
   273:第3搬送ロール
  28:搬送ベルト
  29:発熱体
  201:供給リール
  202:回収リール
 200:金属箔
  200a:貫通孔
 30:製膜装置
  31:チャンバ
   321:第1供給口
   322:第2供給口
  33:排気口
  34:ステージ
  35:押さえ部材
  36:圧力制御部
  38:対極
  39:給電体
  303:電圧調整装置
  304:交流電源
 300:金属箔
 40A、40B、40C、40D、40E:製膜装置
  41:チャンバ
   421:第1供給口
   422:第2供給口
   423:第3供給口
   424:第4供給口
   425:第5供給口
   431:第1排気口
   432:第2排気口
   434:第4排気口
   435:第5排気口
  45:押さえ部材
  46:圧力制御部
   471:第1搬送ロール
   472:第2搬送ロール
   473:第3搬送ロール
  48:対極
  49:給電体
  401:供給リール
  402:回収リール
  403:電圧調整装置
  404:交流電源
 400:金属箔
 50:製膜装置
  51:チャンバ
   521:第1供給口
   522:第2供給口
   523:第3供給口
   531:第1排気口
   532:第2排気口
  541:ステージ
  55:押さえ部材
  56:圧力制御部
  58:対極
  59:給電体
  60:発熱体
  501:供給リール
  502:回収リール
  503:電圧調整装置
  504:交流電源
 500:金属箔

Claims (54)

  1.  第1金属を含む金属箔の一部を1以上の発熱体に接触させて、前記金属箔を加熱する加熱工程と、
     前記金属箔の一部が支持された状態で、前記金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、
     前記金属箔の一部が支持された状態で、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、を備える、金属酸化物を含む層の製膜方法。
  2.  前記加熱工程は、前記発熱体に対応する位置に配置された押さえ部材で、前記金属箔を前記発熱体に向けて押圧しながら行われる、請求項1に記載の製膜方法。
  3.  前記第1接触工程において、前記金属箔の一部は、前記発熱体により支持されている、請求項1または2に記載の製膜方法。
  4.  前記第2接触工程において、前記金属箔の一部は、発熱体により支持されている、請求項1~3のいずれか一項に記載の製膜方法。
  5.  前記発熱体は、搬送ロールである、請求項1~4のいずれか一項に記載の製膜方法。
  6.  前記加熱工程では、前記金属箔を2以上の前記発熱体に接触させる、請求項1~5のいずれか一項に記載の製膜方法。
  7.  前記加熱工程と前記第1接触工程とは、同じチャンバの空間内で行われる、請求項1~6のいずれか一項に記載の製膜方法。
  8.  前記第1接触工程の前に、前記金属箔の表面を改質する表面改質工程をさらに備える、請求項1~7のいずれか一項に記載の製膜方法。
  9.  少なくとも1つのチャンバと、
     前記チャンバ内の圧力を減圧雰囲気に制御する圧力制御部と、
     前記チャンバに第2金属を含む第1ガスを供給する第1供給口と、
     前記チャンバに酸化剤を含む第2ガスを供給する第2供給口と、
     前記チャンバから前記第1ガスを排出する第1排気口と、
     前記チャンバから前記第2ガスを排出する第2排気口と、
     前記チャンバ内に配置され、製膜対象物である金属箔の一部に接触して前記金属箔を加熱する、1以上の発熱体と、を備え、
     前記第1ガスおよび前記第2ガスは、前記金属箔の両方の主面に接触するように供給される、製膜装置。
  10.  さらに、前記発熱体に対応する位置に配置され、前記金属箔を前記発熱体に向けて押圧するための押さえ部材を備える、請求項9に記載の製膜装置。
  11.  前記発熱体は、搬送ロールである、請求項9または10に記載の製膜装置。
  12.  2以上の前記発熱体を備える、請求項9~11のいずれか一項に記載の製膜装置。
  13.  第1金属を含む金属箔を準備する準備工程と、
     前記金属箔の両方の主面を粗面化する粗面化工程と、
     粗面化された前記金属箔の一部を1以上の発熱体に接触させて、前記金属箔を加熱する加熱工程と、
     前記金属箔の一部が支持された状態で、前記金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、
     前記金属箔の一部が支持された状態で、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させて、誘電体層を形成する第2接触工程と、を備える、電極箔の製造方法。
  14.  前記加熱工程は、前記発熱体に対応する位置に配置された押さえ部材で、前記金属箔を前記発熱体に向けて押圧しながら行われる、請求項13に記載の電極箔の製造方法。
  15.  前記第1接触工程において、前記金属箔の一部は、前記発熱体により支持されている、請求項13または14に記載の電極箔の製造方法。
  16.  前記第2接触工程において、前記金属箔の一部が発熱体により支持されている、請求項13~15のいずれか一項に記載の電極箔の製造方法。
  17.  前記発熱体は、搬送ロールである、請求項13~16のいずれか一項に記載の電極箔の製造方法。
  18.  前記加熱工程では、前記金属箔を2以上の前記発熱体に接触させる、請求項13~17のいずれか一項に記載の電極箔の製造方法。
  19.  第1金属を含む金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、
     前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、
     前記金属箔の一部を1以上の第1給電体に接触させて、前記第1ガスの存在下で前記金属箔に電圧を印加する第1印加工程と、を備える、金属酸化物を含む層の製膜方法。
  20.  前記第1接触工程において、前記金属箔の一部は、前記第1給電体により支持されている、請求項19に記載の製膜方法。
  21.  前記第1給電体は、搬送ロールである、請求項19または20に記載の製膜方法。
  22.  前記第1印加工程では、前記金属箔を2以上の前記第1給電体に接触させる、請求項19~21のいずれか一項に記載の製膜方法。
  23.  前記金属箔の一部を1以上の第2給電体に接触させて、前記第2ガスの存在下で前記金属箔に電圧を印加する第2印加工程を備える、請求項19~22のいずれか一項に記載の製膜方法。
  24.  前記第2接触工程において、前記金属箔の一部は、前記第2給電体により支持されている、請求項23に記載の製膜方法。
  25.  前記第2給電体は、搬送ロールである、請求項23または24に記載の製膜方法。
  26.  前記第2印加工程では、前記金属箔を2以上の前記第2給電体に接触させる、請求項23~25のいずれか一項に記載の製膜方法。
  27.  前記金属箔は粗面化されている、請求項19~26のいずれか一項に記載の製膜方法。
  28.  印加前記第1接触工程の前に、前記金属箔の表面を改質する表面改質工程をさらに備える、請求項19~27のいずれか一項に記載の製膜方法。
  29.  第1金属を含む金属箔を準備する準備工程と、
     前記金属箔の両方の主面を粗面化する粗面化工程と、
     粗面化された金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、
     前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、
     前記金属箔の一部を1以上の第1給電体に接触させて、前記第1ガスの存在下で前記金属箔に電圧を印加する第1印加工程と、を備える、電極箔の製造方法。
  30.  前記第1接触工程において、前記金属箔の一部は、前記第1給電体により支持されている、請求項29に記載の電極箔の製造方法。
  31.  前記第1給電体は、搬送ロールである、請求項29または30に記載の電極箔の製造方法。
  32.  前記第1印加工程では、前記金属箔を2以上の前記第1給電体に接触させる、請求項29~31のいずれか一項に記載の電極箔の製造方法。
  33.  前記第1印加工程と前記第1接触工程とは、同じチャンバの空間内で行われる、請求項29~32のいずれか一項に記載の電極箔の製造方法。
  34.  前記金属箔の一部を1以上の第2給電体に接触させて、前記第2ガスの存在下で前記金属箔に電圧を印加する第2印加工程を備える、請求項29~33のいずれか一項に記載の電極箔の製造方法。
  35.  前記第2接触工程において、前記金属箔の一部は、前記第2給電体により支持されている、請求項34に記載の電極箔の製造方法。
  36.  前記第2給電体は、搬送ロールである、請求項34または35に記載の電極箔の製造方法。
  37.  前記第2印加工程では、前記金属箔を2以上の前記第2給電体に接触させる、請求項34~36のいずれか一項に記載の電極箔の製造方法。
  38.  前記第2印加工程と前記第2接触工程とは、同じチャンバの空間内で行われる、請求項34~37のいずれか一項に記載の電極箔の製造方法。
  39.  前記第1接触工程の前に、前記金属箔の表面を改質する表面改質工程をさらに備える、請求項29~38のいずれか一項に記載の電極箔の製造方法。
  40.  第1金属を含む金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、
     前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、
     前記金属箔の一部を1以上の給電体に接触させて、前記第2ガスの存在下で前記金属箔に電圧を印加する印加工程を備える、を備える、金属酸化物を含む層の製膜方法。
  41.  前記第2接触工程において、前記金属箔の一部は、前記給電体により支持されている、請求項40に記載の製膜方法。
  42.  前記給電体は、搬送ロールである、請求項40または41に記載の製膜方法。
  43.  前記金属箔は粗面化されている、請求項40~42のいずれか一項に記載の製膜方法。
  44.  前記印加工程では、前記金属箔を2以上の前記給電体に接触させる、請求項40~43のいずれか一項に記載の製膜方法。
  45.  前記第1接触工程の前に、前記金属箔の表面を改質する表面改質工程をさらに備える、請求項40~44のいずれか一項に記載の製膜方法。
  46.  第1金属を含む金属箔を準備する準備工程と、
     前記金属箔の両方の主面を粗面化する粗面化工程と、
     粗面化された金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、
     前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、
     前記金属箔の一部を1以上の第2給電体に接触させて、前記第2ガスの存在下で前記金属箔に電圧を印加する第2印加工程と、を備える、電極箔の製造方法。
  47.  前記第2接触工程において、前記金属箔の一部は、前記給電体により支持されている、請求項46に記載の電極箔の製造方法。
  48.  前記第2給電体は、搬送ロールである、請求項46または47に記載の電極箔の製造方法。
  49.  前記第2印加工程では、前記金属箔を2以上の前記第2給電体に接触させる、請求項46~48のいずれか一項に記載の電極箔の製造方法。
  50.  前記第1接触工程の前に、前記金属箔の表面を改質する表面改質工程をさらに備える、請求項46~49のいずれか一項に記載の電極箔の製造方法。
  51.  少なくとも1つのチャンバと、
     前記チャンバ内の圧力を減圧雰囲気に制御する圧力制御部と、
     前記チャンバに第2金属を含む第1ガスを供給する第1供給口と、
     前記チャンバに酸化剤を含む第2ガスを供給する第2供給口と、
     前記チャンバから前記第1ガスを排出する第1排気口と、
     前記チャンバから前記第2ガスを排出する第2排気口と、
     製膜対象物である金属箔の一部に接触する1以上の給電体と、
     前記金属箔と前記給電体の間に電圧差を発生させる対極と、を備え、
     前記第1ガスおよび前記第2ガスは、前記金属箔の両方の主面に接触するように供給される、製膜装置。
  52.  前記給電体は、搬送ロールである、請求項51に記載の製膜装置。
  53.  2以上の前記給電体を備える、請求項51または52に記載の製膜装置。
  54.  第1金属を含む金属箔の一部を1以上の発熱体に接触させて、前記金属箔を加熱する加熱工程と、
     前記金属箔の一部が支持された状態で、前記金属箔の両面に第2金属を含む第1ガスを接触させる第1接触工程と、
     前記金属箔の一部が支持された状態で、前記金属箔の前記両面に酸化剤を含む第2ガスを接触させる第2接触工程と、
     前記金属箔の一部を1以上の給電体に接触させて、前記第1ガスおよび前記第2ガスの少なくとも一方の存在下で前記金属箔に電圧を印加する印加工程と、を備える、金属酸化物を含む層の製膜方法。
     
PCT/JP2020/006465 2019-02-20 2020-02-19 製膜方法、製膜装置および電極箔の製造方法 WO2020171114A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/426,039 US12112896B2 (en) 2019-02-20 2020-02-19 Film production method and electrode foil production method for producing layer containing metal oxide
JP2021502075A JPWO2020171114A1 (ja) 2019-02-20 2020-02-19 製膜方法、製膜装置および電極箔の製造方法
CN202310884294.8A CN116926493A (zh) 2019-02-20 2020-02-19 制膜方法、制膜装置及电极箔的制造方法
CN202080015119.XA CN113454263A (zh) 2019-02-20 2020-02-19 制膜方法、制膜装置及电极箔的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019028526 2019-02-20
JP2019-028526 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020171114A1 true WO2020171114A1 (ja) 2020-08-27

Family

ID=72144013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006465 WO2020171114A1 (ja) 2019-02-20 2020-02-19 製膜方法、製膜装置および電極箔の製造方法

Country Status (4)

Country Link
US (1) US12112896B2 (ja)
JP (1) JPWO2020171114A1 (ja)
CN (2) CN113454263A (ja)
WO (1) WO2020171114A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520429A (zh) * 2017-12-07 2019-11-29 株式会社Lg化学 含氮化合物、包含其的色彩转换膜以及包含其的背光单元和显示装置
WO2022071221A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 成膜装置、電解コンデンサ用電極箔の製造方法、および電解コンデンサの製造方法
WO2023054481A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム
WO2024111505A1 (ja) * 2022-11-25 2024-05-30 パナソニックIpマネジメント株式会社 電解コンデンサ用の電極箔の製造装置および製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537385A (ja) * 2000-04-09 2005-12-08 アクタール リミテッド 基板上の温度制御された気相成長のための方法および装置
JP2011202235A (ja) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc 被覆部材およびその製造方法
JP2012041582A (ja) * 2010-08-17 2012-03-01 Fujifilm Corp 原反ロール、原反ロールの製造方法、および、基材処理方法
US20120219708A1 (en) * 2006-03-26 2012-08-30 Lotus Applied Technology, Llc Atomic layer deposition method utilizing multiple precursor zones for coating flexible substrates
JP2017218611A (ja) * 2016-06-03 2017-12-14 凸版印刷株式会社 成膜装置および成膜方法
JP2019143233A (ja) * 2018-02-16 2019-08-29 株式会社プラズマイオンアシスト プラズマ処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG70035A1 (en) * 1996-11-13 2000-01-25 Applied Materials Inc Systems and methods for high temperature processing of semiconductor wafers
US10443139B2 (en) * 2003-09-05 2019-10-15 Brilliant Light Power, Inc. Electrical power generation systems and methods regarding same
US8211235B2 (en) * 2005-03-04 2012-07-03 Picosun Oy Apparatuses and methods for deposition of material on surfaces
US7393736B2 (en) * 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US20070264427A1 (en) * 2005-12-21 2007-11-15 Asm Japan K.K. Thin film formation by atomic layer growth and chemical vapor deposition
JP5178064B2 (ja) * 2007-06-27 2013-04-10 富士フイルム株式会社 金属表面粗化層を有する金属層積層体及びその製造方法
JP6070166B2 (ja) 2012-12-21 2017-02-01 富士ゼロックス株式会社 面状発熱体、面状発熱体の製造方法、定着装置、及び画像形成装置
JP5938716B2 (ja) * 2013-11-01 2016-06-22 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法
JP6287783B2 (ja) 2014-11-28 2018-03-07 京セラドキュメントソリューションズ株式会社 画像形成装置
US10566187B2 (en) * 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
JP7029675B2 (ja) 2016-03-10 2022-03-04 パナソニックIpマネジメント株式会社 電極箔の製造方法および電解コンデンサの製造方法
WO2017191682A1 (ja) * 2016-05-02 2017-11-09 小林製薬株式会社 発熱具
JP6616365B2 (ja) * 2017-09-11 2019-12-04 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
CN110158058A (zh) 2018-02-16 2019-08-23 等离子体成膜有限公司 等离子体处理装置
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537385A (ja) * 2000-04-09 2005-12-08 アクタール リミテッド 基板上の温度制御された気相成長のための方法および装置
US20120219708A1 (en) * 2006-03-26 2012-08-30 Lotus Applied Technology, Llc Atomic layer deposition method utilizing multiple precursor zones for coating flexible substrates
JP2011202235A (ja) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc 被覆部材およびその製造方法
JP2012041582A (ja) * 2010-08-17 2012-03-01 Fujifilm Corp 原反ロール、原反ロールの製造方法、および、基材処理方法
JP2017218611A (ja) * 2016-06-03 2017-12-14 凸版印刷株式会社 成膜装置および成膜方法
JP2019143233A (ja) * 2018-02-16 2019-08-29 株式会社プラズマイオンアシスト プラズマ処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520429A (zh) * 2017-12-07 2019-11-29 株式会社Lg化学 含氮化合物、包含其的色彩转换膜以及包含其的背光单元和显示装置
CN110520429B (zh) * 2017-12-07 2022-03-08 株式会社Lg化学 含氮化合物、包含其的色彩转换膜以及包含其的背光单元和显示装置
WO2022071221A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 成膜装置、電解コンデンサ用電極箔の製造方法、および電解コンデンサの製造方法
WO2023054481A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム
WO2024111505A1 (ja) * 2022-11-25 2024-05-30 パナソニックIpマネジメント株式会社 電解コンデンサ用の電極箔の製造装置および製造方法

Also Published As

Publication number Publication date
US12112896B2 (en) 2024-10-08
JPWO2020171114A1 (ja) 2021-12-16
US20220115185A1 (en) 2022-04-14
CN113454263A (zh) 2021-09-28
CN116926493A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2020171114A1 (ja) 製膜方法、製膜装置および電極箔の製造方法
US7968437B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP6095825B2 (ja) 基板処理装置および半導体装置の製造方法
JP5075325B2 (ja) バッチリアクター内でのTiN膜の堆積
US9496134B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and semiconductor device
KR101247828B1 (ko) 반도체 처리용 성막 방법 및 성막 장치와, 컴퓨터로 판독 가능한 매체
CN100568463C (zh) 薄膜形成方法
US7666474B2 (en) Plasma-enhanced pulsed deposition of metal carbide films
WO2006134930A1 (ja) 半導体装置の製造方法、及び基板処理装置
KR101577964B1 (ko) 질화 티탄막의 형성 방법, 질화 티탄막의 형성 장치 및 프로그램을 기록한 기록 매체
EP2044620A2 (en) Ald of metal silicate films
JP5726281B1 (ja) 基板処理装置及び半導体装置の製造方法
US10513778B2 (en) Native or uncontrolled oxide reduction by HWCVD H* using specific metal chamber liner
JP2017168788A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR100985363B1 (ko) 반도체 장치의 제조방법 및 기판처리 장치
JP6021977B2 (ja) 基板処理装置および半導体装置の製造方法
JP4589591B2 (ja) 金属膜作製方法及び金属膜作製装置
TW200525616A (en) Film formation method and apparatus for semiconductor process
JP2008205325A (ja) 半導体装置の製造方法、及び基板処理装置
TW202436675A (zh) 原子層沈積方法及系統
JP2009299101A (ja) 半導体装置の製造方法および基板処理装置
JP2011052287A (ja) 基板処理装置及び半導体装置の製造方法
JP2007281524A (ja) 金属膜作製方法
KR20060074991A (ko) 캐패시터 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758947

Country of ref document: EP

Kind code of ref document: A1