WO2023054481A1 - 電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム - Google Patents

電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム Download PDF

Info

Publication number
WO2023054481A1
WO2023054481A1 PCT/JP2022/036200 JP2022036200W WO2023054481A1 WO 2023054481 A1 WO2023054481 A1 WO 2023054481A1 JP 2022036200 W JP2022036200 W JP 2022036200W WO 2023054481 A1 WO2023054481 A1 WO 2023054481A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
dielectric layer
film forming
foil
porous portion
Prior art date
Application number
PCT/JP2022/036200
Other languages
English (en)
French (fr)
Inventor
満久 吉村
美和 小川
直美 栗原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280065871.4A priority Critical patent/CN118077025A/zh
Publication of WO2023054481A1 publication Critical patent/WO2023054481A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Definitions

  • the present disclosure relates to an electrolytic capacitor electrode foil, an electrolytic capacitor, a method for manufacturing an electrolytic capacitor electrode foil, and an electrolytic capacitor electrode foil manufacturing system.
  • the electrolytic capacitor electrode foil comprises a metal foil (etching foil) having both surfaces roughened by etching, and a dielectric layer covering both surfaces of the etching foil. Formation of the dielectric layer by chemical conversion treatment (anodization) of the etched foil is advantageous in terms of mass production. On the other hand, techniques related to formation of dielectric layers by atomic layer deposition or the like are being studied, but there are problems in terms of mass production.
  • Patent Document 1 (i) a step of preparing a core portion and a porous body integrally formed of the first metal with the core portion, and (ii) chemically forming the porous body forming a first dielectric layer containing an oxide of the first metal so as to cover at least a portion of the porous body; and (iii) the first dielectric layer by an atomic layer deposition method. forming a second dielectric layer comprising an oxide of a second metal different from the first metal to cover at least a portion of the electrode.
  • the electrode foils may be curved.
  • the bending of the electrode foil occurs, for example, when forming the roll, when the electrode foil is transported or wound by rollers.
  • Tensile stress is generated on one surface side of the electrode foil, which becomes convex when the electrode foil is bent, and this tends to cause cracks and damage to the dielectric layer on the one surface side.
  • the crack the damaged portion of the dielectric layer
  • the foil may cause the foil to break.
  • One aspect of the present disclosure has a first main surface and a second main surface opposite to the first main surface, and a first porous portion on the first main surface side and a second main surface on the second main surface side.
  • a metal foil having two porous portions, a first dielectric layer covering the surface of the first porous portion, and a second dielectric layer covering the surface of the second porous portion;
  • the thickness F1 of the dielectric layer and the thickness F2 of the second dielectric layer are 0.75 ⁇ F1/F2 ⁇ 0.97 It relates to an electrode foil for an electrolytic capacitor (first electrode foil) that satisfies the relationship of
  • Another aspect of the present disclosure has a first main surface and a second main surface opposite to the first main surface, and a first porous portion on the first main surface side and a porous portion on the second main surface side.
  • a metal foil having a second porous portion; a first dielectric layer covering the surface of the first porous portion; and a second dielectric layer covering the surface of the second porous portion;
  • the electrostatic capacitance C1 expressed on the first main surface side having one dielectric layer and the electrostatic capacitance C2 expressed on the second main surface side having the second dielectric layer are 0.80 ⁇ C2/C1 ⁇ 0.99 It relates to an electrode foil for an electrolytic capacitor (second electrode foil) that satisfies the relationship of
  • the metal foil of the first electrode foil or the second electrode foil has an anode lead-out portion and a cathode formation portion, and the cathode formation portion includes the first porous
  • the present invention relates to an electrode foil for an electrolytic capacitor (third electrode foil), wherein the surfaces of the portion and the second porous portion are covered with the first dielectric layer and the second dielectric layer, respectively.
  • Yet another aspect of the present disclosure includes a winding body and an electrolyte, the winding body winding an anode foil, a cathode foil, and a separator disposed between the anode foil and the cathode foil. and wherein the anode foil is the first electrode foil or the second electrode foil described above.
  • Yet another aspect of the present disclosure includes a laminate in which a plurality of capacitor elements are laminated, each of which includes an anode body having an anode lead-out portion and a cathode formation portion, and a cathode portion covering the cathode formation portion, the laminate comprising: At least one of the anode bodies of the plurality of capacitor elements has an anode laminate section in which a plurality of the anode lead-out sections are laminated and a cathode laminate section in which a plurality of the cathode formation sections covered with the cathode section are laminated.
  • the electrolytic capacitor which is the third electrode foil described above.
  • Yet another aspect of the present disclosure has a first main surface and a second main surface opposite to the first main surface, and a first porous portion on the side of the first main surface and a side of the second main surface.
  • Yet another aspect of the present disclosure has a first main surface and a second main surface opposite to the first main surface, and a first porous portion on the side of the first main surface and a side of the second main surface.
  • a first dielectric layer covering the surface of the first porous portion and a second The present invention relates to a manufacturing system for electrode foils for electrolytic capacitors, which includes a film forming section for forming dielectric layers individually.
  • an electrode foil for an electrolytic capacitor that has a large capacity and excellent reliability.
  • FIG. 1 is a schematic cross-sectional view of a metal foil prepared in a first step of a method for manufacturing an electrode foil for electrolytic capacitors according to an embodiment of the present disclosure
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a configuration diagram showing an example of a manufacturing system for electrode foils for electrolytic capacitors according to an embodiment of the present disclosure
  • FIG. 2 is a configuration diagram showing another example of a manufacturing system for electrode foils for electrolytic capacitors according to an embodiment of the present disclosure
  • 1 is a cross-sectional schematic diagram of an electrolytic capacitor according to an embodiment of the present disclosure
  • FIG. FIG. 5 is a perspective view schematically showing the configuration of the wound body of FIG. 4;
  • the present disclosure encompasses a combination of matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims. In other words, as long as there is no technical contradiction, the items described in two or more claims arbitrarily selected from the multiple claims described in the attached claims can be combined.
  • a method for manufacturing an electrode foil for an electrolytic capacitor according to an embodiment of the present disclosure has a first main surface and a second main surface opposite to the first main surface, and a first porous portion on the first main surface side and a first step of preparing a metal foil having a second porous portion on the second main surface side; a first dielectric layer covering the surface of the first porous portion; and a second step of separately forming two dielectric layers.
  • the first porous portion and the second porous portion are simultaneously formed by roughening both surfaces of the base sheet containing the first metal by etching, and the unetched portion remains as the core portion. That is, the metal foil has a first porous portion, a second porous portion, and a core portion continuous with the first porous portion and the second porous portion.
  • the metal foil is an integrated product of the first porous portion, the second porous portion, and the core portion. Both surfaces of the base sheet are roughened simultaneously by etching.
  • the etching may be chemical etching or electrolytic etching.
  • the first porous portion and the second porous portion may be collectively referred to simply as the “porous portion”.
  • the thickness T of the porous portion is not particularly limited, and may be appropriately selected according to the application of the electrolytic capacitor, the required withstand voltage, rated capacity, and the like.
  • the thickness T of the porous portion may be selected, for example, from a range of 10 ⁇ m or more and 160 ⁇ m or less.
  • the thickness T of the porous portion may be, for example, 1/10 or more and 5/10 or less of the thickness of the metal foil.
  • the thickness T of the porous portion is determined by cutting the electrode foil (or metal foil) so that a cross section in the thickness direction of the core and the porous portion can be obtained, taking an electron microscope photograph of the cross section, and determining the thickness T of the porous portion. It can be obtained as the average value of the thickness of 10 points.
  • the porous part has many pits (or pores) surrounded by metal parts.
  • the pit diameter peak of the pits (or the pore diameter peak of the pores) of the pits possessed by the porous portion is not particularly limited, but from the viewpoint of increasing the surface area and forming the dielectric layer deep into the porous portion, for example, from 50 nm to 50 nm.
  • the thickness may be 2000 nm, or may be 100 nm to 300 nm.
  • the pit diameter (pore diameter) peak is the most frequent pore diameter in the volume-based pore diameter distribution measured, for example, by a mercury porosimeter.
  • FIG. 1 is a cross-sectional view schematically showing the metal foil prepared in the first step of the method for manufacturing the electrode foil for electrolytic capacitors according to the embodiment of the present disclosure.
  • the metal foil 300 has a first principal surface S1 and a second principal surface S2 opposite to the first principal surface.
  • the metal foil 300 is continuous with the first porous portion 310a on the first main surface S1 side, the second porous portion 310b on the second main surface S2 side, and the first porous portion 310a and the second porous portion 310b. and a core portion 320 to perform.
  • the first porous portion 310a and the second porous portion 310b have numerous pits (not shown) surrounded by metal portions.
  • the first porous portion 310a and the second porous portion 310b each have a thickness T. As shown in FIG.
  • a first dielectric layer covering the surface of the first porous portion and a second dielectric layer covering the surface of the second porous portion are separately formed. That is, in the second step, the step of forming the second dielectric layer is provided separately from the step of forming the first dielectric layer, and the step of forming the first dielectric layer does not form the second dielectric layer. Therefore, the step of forming the second dielectric layer does not form the first dielectric layer.
  • the first dielectric layer and the second dielectric layer may be collectively referred to simply as "dielectric layer".
  • the dielectric layer is provided so as to cover at least part of the surface of the metal portion that constitutes the porous portion.
  • the dielectric layer can be formed, for example, by atomic layer deposition (ALD).
  • the dielectric layer may contain an oxide of the first metal contained in the metal portion (the base sheet in the first step) that constitutes the porous portion.
  • the dielectric layer may comprise an oxide of a second metal different from the first metal.
  • the second metal can be appropriately selected without being restricted by the first metal. can be formed, which is advantageous for increasing the capacity of electrolytic capacitors. Moreover, since the range of selection of the second metal is widened, various performances can be imparted to the dielectric layer without being restricted by the first metal.
  • valve action metals such as aluminum (Al), tantalum (Ta), and niobium (Nb) or alloys containing valve action metals can be used as the first metal.
  • the second metal examples include Al, Ta, Nb, silicon (Si), titanium (Ti), zirconium (Zr), hafnium (Hf), and the like. These may be used alone or in combination of two or more. That is, the dielectric layer may contain Al 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , SiO 2 , TiO 2 , ZrO 2 , HfO 2 or the like alone or in combination of two or more. When the dielectric layer contains oxides of two or more second metals, two or more oxides may be mixed, or may be arranged in layers. From the viewpoint of increasing the capacity of the electrolytic capacitor, the oxide of the second metal preferably has a dielectric constant higher than that of the oxide of the first metal.
  • one of the first dielectric layer and the second dielectric layer is formed with a dielectric layer A that is advantageous for increasing the capacity
  • the other of the first dielectric layer and the second dielectric layer is formed with a dielectric layer A that is resistant to tensile stress.
  • a dielectric layer B having excellent resistance can be formed.
  • formation of the dielectric layer A can increase the capacity of the electrode foil.
  • by bending the electrode foil so that the main surface side having the dielectric layer A has a concave shape it is possible to suppress damage to the dielectric layer when the electrode foil is bent. That is, when the electrode foil is bent, one surface of the electrode foil becomes convex, and tensile stress is generated. Body layer damage is suppressed.
  • the other surface side of the electrode foil is concave, and compressive stress is generated.
  • the other surface side the main surface side having the dielectric layer A, damage to the dielectric layer due to tensile stress can be avoided. Therefore, the reliability of the electrode foil is improved.
  • the second step of individually forming the first dielectric layer and the second dielectric layer can be performed using, for example, the manufacturing system described later. If the dielectric layer is formed by chemical conversion treatment, chemical conversion coatings are simultaneously formed on both surfaces of the metal foil in the chemical conversion solution. Generally, when a dielectric layer is formed by the ALD method, metal oxide films are simultaneously formed on both surfaces of a metal foil housed in a reaction chamber using a film forming apparatus. In these cases, the step of forming the dielectric layer on one surface side of the metal foil also serves as the step of forming the dielectric layer on the other surface side, and the first dielectric layer and the second dielectric layer are separately formed. difficult to form.
  • the second step may include a 2A step of forming a first dielectric layer at a first temperature TA1 by ALD and a 2B step of forming a second dielectric layer at a second temperature TA2 by ALD. good.
  • the first temperature TA1 may be the same as or different from the second temperature TA2.
  • the metal M1 contained in the first dielectric layer may be the same as or different from the metal M2 contained in the second dielectric layer.
  • the metal M1 and the metal M2 may be a second metal different from the first metal contained in the metal portion forming the porous portion.
  • the second metal is preferably Ti, Si, Hf, or Nb.
  • the metal M2 may include Al and metals other than Al.
  • Atomic Layer Deposition (ALD) method alternately supplies a raw material gas containing metal M and an oxidizing agent to a reaction chamber in which an object is placed to form an oxide of metal M on the surface of the object.
  • a film forming method for forming a dielectric layer comprising
  • the ALD method a self-limiting action functions, so the metal M is deposited on the surface of the object in units of atomic layers. Therefore, the thickness of the dielectric layer is controlled by the number of cycles in which one cycle is supply of source gas ⁇ purge of source gas ⁇ supply of oxidant ⁇ purge of oxidant. That is, the ALD method can easily control the thickness of the dielectric layer that is formed.
  • oxidizing agents used in the ALD method include water, oxygen, and ozone.
  • the oxidant may be supplied to the reaction chamber as an oxidant-based plasma.
  • the metal M may contain the first metal and may contain the second metal.
  • the metal M is supplied to the reaction chamber as a precursor gas containing the metal M (raw material gas).
  • the precursor is, for example, an organometallic compound containing a second metal, which facilitates chemisorption of the metal M to the target.
  • organometallic compounds conventionally used in the ALD method can be used as precursors.
  • Al-containing precursors include, for example, trimethylaluminum ((CH 3 ) 3 Al).
  • Ta-containing precursors include, for example, (t-butylimido)tris(ethylmethylamino)tantalum (V) (C 13 H 33 N 4 Ta, TBTEMT), tantalum (V) pentaethoxide (Ta(OC 2 H 5 ) 5 ), etc.
  • Nb-containing precursors examples include niobium (V) ethoxide (Nb(OCH 2 CH 3 ) 5 , tris(diethylamide) (t-butylimide) niobium (V) (C 16 H 39 N 4 Nb), and the like.
  • Si-containing precursors include, for example, N-sec-butyl(trimethylsilyl)amine (C 7 H 19 NSi), tetraethylsilane (Si(C 2 H 5 ) 4 ), tetraethoxysilane (Si(OC 2 H 5 ) 4 ), silicon tetrachloride (SiCl 4 ), and the like.
  • Precursors containing Ti include, for example, tetrakis(dimethylamino) titanium (IV) ([(CH 3 ) 2 N] 4 Ti, TDMAT), titanium tetrachloride (TiCl 4 ), titanium (IV) ethoxide (Ti[O (C 2 H 5 )] 4 ) and the like.
  • Zr-containing precursors include, for example, tetrakis(ethylmethylamido)zirconium (IV) (Zr(NCH 3 C 2 H 5 ) 4 ), zirconium (IV) t-butoxide (Zr[OC(CH 3 ) 3 ] 4 ) and the like.
  • Hf-containing precursors include, for example, hafnium tetrachloride (HfCl 4 ), tetrakisdimethylaminohafnium (Hf[N(CH 3 ) 2 ] 4 ), hafnium-t-butoxide (Hf[OC(CH 3 ) 3 ] 4 ) and the like.
  • the thickness of the first dielectric layer may be controlled by the first temperature TA1 (second temperature TA2). Together with the first temperature TA1 (second temperature TA2), the thickness of the first dielectric layer (second dielectric layer) may be controlled by film formation time, purge time, number of cycles, and the like.
  • the film formation conditions such as the temperature and pressure during film formation, the type of source gas (metal M), and the number of cycles may be changed between the 2A process and the 2B process.
  • the 2A step preferably also serves as a step of heat-treating the second main surface at the first temperature TA1.
  • the second main surface is heat-treated using the heat generated during film formation on the first main surface.
  • an oxide film of the metal portion forming the second porous portion can be formed on the surface of the second porous portion.
  • the second dielectric layer is formed on the surface of the second porous portion via the oxide film, which has excellent adhesion to the metal portion.
  • the adhesion of the second dielectric layer to the metal portion is improved, and peeling of the second dielectric layer from the surface of the second porous portion is suppressed.
  • the second dielectric layer can be formed as the dielectric layer B having excellent resistance to tensile stress on the second main surface side.
  • the first temperature TA1 the thickness of the oxide film can be controlled.
  • the oxide film has a thickness of, for example, 90% to 97% of the thickness F2 of the second dielectric layer.
  • the oxide film also functions as a dielectric together with the film formed by the ALD method.
  • a dielectric layer with a large thickness e.g., 16 nm or higher
  • the effect of the oxide film is reduced, and the capacitance is reduced. is relatively suppressed.
  • the effect is even greater.
  • the 2B process preferably also serves as a process of heat-treating the first main surface having the first dielectric layer at the second temperature TA2.
  • the first main surface is heat-treated using the heat generated during film formation on the second main surface.
  • the heat treatment can improve the crystallinity of the first dielectric layer. Therefore, the first dielectric layer can be formed on the first main surface side as the dielectric layer A, which is advantageous for increasing the capacity.
  • the crystallinity of the first dielectric layer can be controlled by appropriately adjusting the second temperature TA2.
  • the first dielectric layer, which is the dielectric layer A is more advantageous in increasing the capacity than the second dielectric layer, which is the dielectric layer B, but tends to be fragile and have low adhesion to the porous portion. .
  • the first dielectric layer is formed as the dielectric layer A
  • a thin native oxide film may exist between the first dielectric layer and the metal portion that constitutes the porous portion, but the thickness is much thinner than that of the oxide film on the second dielectric layer side. is desirable.
  • the 2A process may be performed, and the first dielectric layer and the second dielectric layer may be formed as the dielectric layer B and the dielectric layer A, respectively.
  • the first temperature TA1 and the second temperature TA2 preferably satisfy, for example, the following formulas (i) to (iii).
  • Film formation by the ALD method and heat treatment using heat during film formation can be performed at 90° C. or higher and 400° C. or lower, and thermal damage to the metal foil can be suppressed.
  • ⁇ 50 0 ⁇
  • 90 ⁇ TA1 ⁇ 400 iii) 90 ⁇ TA2 ⁇ 400
  • a manufacturing system for an electrode foil for an electrolytic capacitor has a first main surface and a second main surface opposite to the first main surface, and a first porous portion on the first main surface side and A first dielectric layer covering the surface of the first porous portion and the surface of the second porous portion are formed by atomic layer deposition on the metal foil having the second porous portion on the second main surface side.
  • a deposition unit is provided for separately forming a second dielectric layer for covering. That is, in the film-forming section, the second film-forming section for forming the second dielectric layer covering the surface of the second porous section forms the first dielectric layer for forming the first dielectric layer covering the surface of the first porous section.
  • the second dielectric layer is not formed in the first film forming section, and the first dielectric layer is not formed in the second film forming section.
  • One of the first dielectric layer and the second dielectric layer can be formed as the dielectric layer A, and the other of the first dielectric layer and the second dielectric layer can be formed as the dielectric layer B by the film forming section.
  • the film forming unit includes a plurality of first nozzles facing the first main surface and supplying a first raw material gas to the first main surface, and a second nozzle isolated from the first film forming region.
  • a plurality of second nozzles may be provided in the film formation region, facing the second main surface and supplying the second raw material gas to the second main surface.
  • the manufacturing system includes a first moving means for moving the plurality of first nozzles along the first main surface in the first film formation region, and a plurality of nozzles along the second main surface in the second film formation region. and a second moving means for moving the second nozzle.
  • film formation is performed for a predetermined number of cycles by moving a plurality of first nozzles (nozzles a to d described later) by the first moving means with respect to the first main surface of the metal foil. may be performed to form a first dielectric layer.
  • the second moving means moves a plurality of second nozzles (nozzles a to d described later) with respect to the second main surface of the metal foil, thereby performing film formation for a predetermined number of cycles. may be performed to form a second dielectric layer.
  • the manufacturing system may include transport means for transporting the metal foil in the first film forming area and the second film forming area.
  • the first moving means moves the plurality of first nozzles along the transport path of the metal foil within the first film forming area
  • the second moving means transports the metal foil within the second film forming area.
  • a plurality of second nozzles may be moved along the path.
  • a plurality of nozzles may be moved by the moving means while the metal foil is being transported by the transporting means, and film formation may be performed for a predetermined number of cycles.
  • Conveying rollers may be used as the conveying means. In this case, a roll-to-roll method can be adopted, and productivity can be improved.
  • the conveying route of the metal foil may include a straight route and/or a curved route in which the metal foil is curved and conveyed in each of the first film forming region and the second film forming region.
  • the first moving means and the second moving means may respectively move the plurality of first nozzles and the plurality of second nozzles along straight paths and/or curved paths.
  • the first moving means may move the plurality of first nozzles in the same direction as or opposite to the transport direction of the metal foil in the first film forming area, or may reciprocate on the transport path.
  • the second moving means may move the plurality of second nozzles in the second film forming area in the same direction as or in the opposite direction to the conveying direction of the metal foil, or may reciprocate on the conveying path.
  • the dielectric layer B is formed on the main surface side where the convex portions are formed by the bending of the metal foil, and the concave portions are formed by the bending of the metal foil. It is desirable to form the dielectric layer A on the main surface side forming the . Formation of the dielectric layer B suppresses damage to the dielectric layer due to tensile stress.
  • the manufacturing system may also include a transport roller that transports the metal foil in the first film forming area and the second film forming area isolated from the first film forming area.
  • the film forming section includes a first film forming apparatus that supplies the first source gas to the first main surface in the first film forming region, and a second source gas to the second main surface in the second film forming region. and a second film forming apparatus.
  • the film forming apparatus may include moving means, and may be configured to be movable by the moving means.
  • the film forming section may include a plurality of nozzles in each of the first film forming area (first film forming apparatus) and the second film forming area (second film forming apparatus).
  • the plurality of nozzles includes a nozzle a for supplying the raw material gas to the main surface (porous portion) of the metal foil, a nozzle b for discharging the raw material gas from the main surface (porous portion) of the metal foil, and a main surface of the metal foil. It includes a nozzle c that supplies an oxidant (or plasma gas) to the (porous portion) and a nozzle d that exhausts the oxidant (or plasma gas) from the main surface (porous portion) of the metal foil.
  • the above first and second nozzles are nozzles a.
  • a plurality of nozzles are repeatedly arranged in the order of nozzles a to d in the length direction of the long metal foil (conveying direction of the metal foil).
  • Each nozzle has an opening with a width corresponding to the width direction of the elongated metal foil.
  • the distance between the nozzle opening and the main surface of the metal foil facing the nozzle opening is very close, and the source gas (oxidizing agent or plasma gas) is efficiently supplied or exhausted in the area facing the nozzle opening.
  • the nozzles a to d are sequentially moved over arbitrary points on the main surface of the metal foil by moving or reciprocating a plurality of nozzles (film forming apparatus) to form a film.
  • Film formation may be performed in the first film formation region first, and then film formation may be performed in the second film formation region.
  • the heat generated by the first film forming apparatus (the plurality of nozzles in the first film forming region) during film formation on the first main surface can be used for the heat treatment of the second main surface.
  • the first film-forming device (the plurality of nozzles in the first film-forming region) can also serve as the first heat treatment device for heat-treating the second main surface in the first film-forming region.
  • an oxide film of the metal portion (the oxide of the first metal contained in the metal portion) forming the second porous portion can be formed on the surface of the second porous portion on the second main surface side.
  • the second dielectric layer is deposited on the surface of the second porous portion through the oxide film having excellent adhesion to the metal portion by the second film forming apparatus (the plurality of nozzles in the second film forming region). A layer is formed. In this case, peeling of the second dielectric layer from the surface of the second porous portion is suppressed. In addition, although the formation of the oxide film can reduce the leakage current, the capacitance on the second main surface side tends to decrease. Therefore, the second dielectric layer can be obtained as the dielectric layer B having excellent resistance to tensile stress on the second principal surface side.
  • the second film formation device (a plurality of nozzles in the second film formation region).
  • Time heat can be utilized for the heat treatment of the first main surface. That is, the second film forming apparatus (the plurality of nozzles in the second film forming area) can also serve as the second heat treatment apparatus for heat-treating the first main surface having the first dielectric layer in the second film forming area. can.
  • the heat treatment can improve the crystallinity of the first dielectric layer.
  • the first dielectric layer can be obtained as the dielectric layer A which is advantageous for increasing the capacitance on the first main surface side.
  • the first dielectric layer which is the dielectric layer A, is advantageous in increasing the capacity, but tends to be fragile and have low adhesion to the porous portion. be.
  • the second film forming apparatus (the plurality of nozzles in the second film forming region) also serves as the second heat treatment apparatus
  • the heat generated during the film formation on the second main surface is transferred to the first main surface through the core.
  • the first main surface can be heat-treated using the heat that is conducted. If the heat transferred to the first main surface is insufficient due to the influence of heat radiation and thermal conductivity, the first main surface is heated from the first main surface side in addition to the heat source during film formation on the second main surface.
  • a separate means may be provided.
  • the second temperature TA2 at the time of film formation (or at the time of heat treatment as the second heat treatment device) by a plurality of nozzles in the inside may be the same or different.
  • TA1 and TA2 preferably satisfy the relationships of formulas (i) to (iii) above, for example.
  • the number X1 of the first nozzles may be the same as or different from the number X2 of the second nozzles.
  • the number X1 of the first nozzles may be less than the number X2 of the second nozzles.
  • the number of film formation cycles N1 by the first film formation device is the number of film formation cycles N2 by the second film formation device (the plurality of nozzles in the second film formation region).
  • the cycle number N1 may be smaller than the cycle number N2. The smaller the number of film formation cycles, the smaller the thickness of the dielectric layer A, which is advantageous in increasing the capacity.
  • the metal M1 contained in the first raw material gas may be the same as or different from the metal M2 contained in the second raw material gas.
  • the metal M1 and the metal M2 may be a second metal different from the first metal contained in the metal portion forming the porous portion.
  • the second metal may be at least one selected from the group consisting of Ti, Si, Hf, and Nb.
  • the metal foil may be transported in the order of the first film forming area and the second film forming area, or may be transported in the order of the second film forming area and the first film forming area.
  • FIG. 2 is a configuration diagram showing an example of a manufacturing system for electrode foils for electrolytic capacitors according to an embodiment of the present disclosure.
  • the manufacturing system 400 includes rollers 410a to 410c for conveying the metal foil 300 from the first film forming area 430a to the second film forming area 430b isolated from the first film forming area 430a.
  • the manufacturing system 400 also includes a film forming section.
  • the film forming section includes a first film forming device 420a that supplies the first raw material gas to the first main surface S1 of the metal foil 300 while swinging the first film forming region 430a, and a second film forming region 430b. and a second film forming device 420b that supplies the second source gas to the second main surface S2 of the metal foil 300 while the second film forming device 420b is provided.
  • the film formation process (second process) by the manufacturing system 400 shown in FIG. 2 will be described in detail below.
  • the metal foil 300 is conveyed to the first film forming area 430a by rollers. While the arbitrary point P1 of the metal foil 300 passes through the first film forming region 430a (the conveying path of the metal foil 300 of the distance L1 in the first film forming region 430a), the first film forming device 420a performs the first film forming. It rocks the region 430a. That is, the first film forming device 420a reciprocates the distance L1 along the conveying path of the metal foil 300 in the first film forming region 430a.
  • the first film forming device 420a performs film formation for the number of cycles N1 on the first main surface S1 at an arbitrary point P1 of the metal foil 300 while performing the reciprocating motion.
  • the first film deposition apparatus 420a may perform film deposition on both the outward and return trips, or may perform film deposition on one of the outward and return trips.
  • the first film forming apparatus 420a includes a plurality of first nozzles that supply the first raw material gas to the first main surface S1.
  • an arbitrary point P1 of the metal foil 300 moves along the conveying path at a speed V2a at which the first nozzle moves along the conveying path due to the reciprocating motion of the first film forming device 420a. It is performed at a speed greater than V1a.
  • V1a and V2a may be appropriately set according to the desired cycle number N1 and the number X1 of the first nozzles. For 50 cycles or more, V2a/V1a ⁇ 2 is preferable. From the viewpoint of productivity, V2a/V1a ⁇ 5 is preferable.
  • the metal foil 300 is conveyed to the second film forming area 430b by rollers. While the arbitrary point P2 on the second main surface S2 of the metal foil 300 passes through the second film forming region 430b (the conveying path of the metal foil 300 at the distance L2 in the second film forming region 430b), the second film forming apparatus 420b swings in the second deposition region 430b. That is, the second film forming device 420b reciprocates the distance L2 along the conveying path of the metal foil 300 in the second film forming region 430b.
  • the second film forming device 420b performs film formation for the number of cycles N2 on the second main surface S2 of the metal foil 300 at an arbitrary point P2 while performing the reciprocating motion.
  • the second film deposition apparatus 420b may perform film deposition on both the outward and return trips, or may perform film deposition on only one of the outward and return trips.
  • the second film forming apparatus 420b includes a plurality of second nozzles that supply the second raw material gas to the second main surface S2.
  • the film formation of the number of cycles N2 is usually performed by moving the second nozzle along the conveying path at a speed V2b due to the reciprocating motion of the second film forming device 420b, and the arbitrary point P2 of the metal foil 300 moving on the conveying path. It is performed at a speed greater than V1b.
  • V1b and V2b may be appropriately set according to the desired number of cycles N2 and the number X2 of the second nozzles. For 50 cycles or more, V2b/V1b ⁇ 2 is preferable. From the viewpoint of productivity, V2b/V1b ⁇ 5 is preferable.
  • the film forming apparatus 420a (420b) more specifically includes the nozzles a to d described above.
  • the film forming apparatus swings (reciprocating motion) to cause an arbitrary point on the main surface of the metal foil to move.
  • the nozzles a to d are sequentially moved over the point P to form a film.
  • FIG. 3 is a configuration diagram showing another example of the manufacturing system for the electrode foil for electrolytic capacitors according to the embodiment of the present disclosure.
  • the manufacturing system 500 transports the metal foil 300 from the first film forming region 530a to the second film forming region 530b isolated from the first film forming region 530a, and the first film forming region 530a and the second film forming region 530a. There are rollers 510a-510c reciprocated in each of 530b.
  • the manufacturing system 500 also includes a film forming section.
  • the film forming section includes a first film forming device 520a that supplies a first raw material gas to the first main surface S1 of the metal foil 300 in the first film forming region 530a, and a second and a second film forming device 520b that supplies a second source gas to the main surface S2.
  • the first film forming apparatus 520a includes a plurality of first nozzles that supply the first raw material gas to the first main surface S1.
  • the second film forming apparatus 520b includes a plurality of second nozzles that supply the second raw material gas to the second main surface S2.
  • the film formation process (second process) by the manufacturing system 500 shown in FIG. 3 will be described in detail below.
  • the metal foil 300 is conveyed to the first film forming area 530a by the rollers 510a to 510c, and an arbitrary point P1 of the metal foil 300 reciprocates along the conveying path of the distance L3 within the first film forming area 530a.
  • the first film forming apparatus 520a performs film formation for the number of cycles N1 on the first main surface S1 of the metal foil 300 at an arbitrary point P1.
  • the metal foil 300 is transported to the second film forming area 530b by the rollers 510a to 510c, and the arbitrary point P2 of the metal foil 300 is the second film forming area.
  • the film forming area 530b it reciprocates along the transport path of the distance L4.
  • the second film forming device 520b performs film formation for the number of cycles N2 on the second main surface S2 of the metal foil 300 at an arbitrary point P2.
  • the film forming apparatus 520a (520b) includes the above nozzles a to d.
  • the reciprocating motion of the metal foil within the film forming area sequentially moves an arbitrary point P on the main surface of the metal foil to a position facing the nozzles a to d, thereby forming a film. conduct.
  • the stress applied to the metal foil may increase.
  • the direction of rotation of the roller must be changed in order to reciprocate the metal foil, the stress applied to the roller may be increased.
  • the manufacturing system of FIG. 2 and the manufacturing system of FIG. 3 may be combined, and the combination may be more effective.
  • the first film forming device 420a (520a) is arranged on the first main surface S1 side of the metal foil 300 conveyed by rollers in the first film forming area 430a (530a).
  • the second film forming device 420b (520b) is arranged on the second main surface S2 side of the metal foil 300 conveyed by rollers in the second film forming area 430b (530b).
  • the first film forming apparatus 420a (520a) and the second film forming apparatus 420b (520b) are isolated from each other. It is Therefore, the second source gas is not supplied to the first main surface S1 and the second main surface S2 of the metal foil 300 from the second film forming device 420b (520b) in the first film forming region 430a (530a). In the second film forming region 430b (530b), the first source gas is not supplied to the first main surface S1 and the second main surface S2 of the metal foil 300 from the first film forming device 420a (520a).
  • the first film-forming device 420a (520a) supplies the first raw material gas to the first main surface S1 of the metal foil 300, No first source gas is supplied.
  • the second film forming device 420b (520b) supplies the second raw material gas to the second main surface S2 of the metal foil 300, No second source gas is supplied.
  • the transport rollers 410a to 410c (510a to 510c) shown in FIG. 2 (FIG. 3) transport the metal foil 300 to the first film forming area 430a (530a) and the second film forming area 430b (530b) in this order.
  • the first film forming device 420a (520a) can also serve as a first heat treatment device for heat-treating the second main surface S2 in the first film forming region 430a (530a).
  • a first heat treatment device for heat-treating the second main surface S2 in the first film forming region 430a (530a).
  • an oxide film of the metal portion (oxide of the first metal contained in the metal portion) forming the second porous portion can be formed on the surface of the second porous portion on the side of the second main surface S2.
  • the second film-forming device 420b (520b) forms the second dielectric layer on the surface of the second porous portion via the oxide film having excellent adhesion to the metal portion. In this case, peeling of the second dielectric layer from the surface of the second porous portion is suppressed.
  • the second dielectric layer can be obtained as the dielectric layer B having excellent resistance to tensile stress on the second principal surface side.
  • the second film formation device 420b (520b) can also serve as a second heat treatment device for heat-treating the first main surface S1 having the first dielectric layer in the second film formation region 430b (530b).
  • the heat treatment can improve the crystallinity of the first dielectric layer.
  • the first dielectric layer can be obtained as the dielectric layer A which is advantageous for increasing the capacitance on the first main surface side.
  • the first dielectric layer, which is the dielectric layer A is more advantageous in increasing the capacity than the second dielectric layer, which is the dielectric layer B, but tends to be fragile and have low adhesion to the porous portion. .
  • the second temperature TA2 during the heat treatment as the second temperature may be the same as or different from each other.
  • TA1 and TA2 preferably satisfy the relationships of formulas (i) to (iii) above, for example.
  • the number X1 of the first nozzles may be the same as or different from the number X2 of the second nozzles. From the viewpoint of forming the first dielectric layer as the dielectric layer A, the number X1 of the first nozzles may be less than the number X2 of the second nozzles.
  • the number N1 of film formation cycles by the first film formation device 420a may be the same as or different from the number N2 of film formation cycles by the second film formation device 420b (520b). From the viewpoint of forming the first dielectric layer as the dielectric layer A, the cycle number N1 may be smaller than the cycle number N2. The smaller the number of film formation cycles, the smaller the thickness of the dielectric layer A, which is advantageous in increasing the capacity.
  • the metal foil 300 may be curved by the rollers 410c (510a, 510c) during film formation.
  • the second main surface S2 side on which the second dielectric layer is formed as the dielectric layer B forms a convex portion
  • the first main surface S1 side on which the first dielectric layer is formed as the dielectric layer A forms a concave portion. Since the metal foil 300 is curved in this manner, damage to the dielectric layer due to tensile stress is suppressed.
  • the metal foil 300 is transported in the order of the first film forming area and the second film forming area, but may be conveyed in the order of the second film forming area and the first film forming area.
  • the first dielectric layer and the second dielectric layer may be formed as dielectric layer B and dielectric layer A, respectively.
  • the first dielectric layer and the second dielectric layer are formed as the dielectric layer A and the dielectric layer B, respectively, in the second step (or the film forming section).
  • the first dielectric layer and the second dielectric layer are formed such that the thickness F1 of the first dielectric layer and the thickness F2 of the second dielectric layer satisfy the relationship of the following formula (1): can.
  • the capacitance C1 developed on the first main surface side having the first dielectric layer and the capacitance C2 developed on the second main surface side having the second dielectric layer are as follows:
  • the first dielectric layer and the second dielectric layer can be formed so as to satisfy the relationship of formula (2).
  • the electrode foil for an electrolytic capacitor has a first main surface and a second main surface opposite to the first main surface, and has a first porous portion on the side of the first main surface and a second porous portion on the side of the second main surface.
  • a metal foil having portions; a first dielectric layer covering the surface of the first porous portion; and a second dielectric layer covering the surface of the second porous portion.
  • the thickness F1 of the first dielectric layer and the thickness F2 of the second dielectric layer are satisfies the relationship of formula (1). That is, F1/F2 is 0.75 or more and 0.97 or less. F1/F2 may be 0.85 or more and 0.95 or less.
  • the thicknesses F1 and F2 of the dielectric layers referred to here refer to the thicknesses of the dielectric layers covering the outer surface of the porous portion (metal foil).
  • the thicknesses F1 and F2 of the dielectric layer are obtained by measuring the thickness of the dielectric layer at arbitrary 10 points using a cross-sectional image of the electrode foil in the thickness direction by SEM or TEM and averaging them.
  • the electrode foil for an electrolytic capacitor (hereinafter also referred to as “second electrode foil”) according to another embodiment of the present disclosure has a capacitance C1 expressed on the first main surface side having the first dielectric layer and the capacitance C2 developed on the second main surface side having the second dielectric layer satisfy the relationship of the above formula (2). That is, C2/C1 is 0.8 or more and 0.99 or less. C2/C1 may be 0.8 or more and 0.97 or less, or may be 0.8 or more and 0.95 or less.
  • the capacitances C1 and C2 are obtained by sealing (or coating) one of the first main surface and the second main surface of the electrode foil, Obtained by measuring.
  • the above electrode foil can be obtained by separately forming the first dielectric layer and the second dielectric layer as the dielectric layer A and the dielectric layer B by the above manufacturing method (manufacturing system).
  • the metal foil of the first electrode foil or the second electrode foil has an anode lead-out portion and a cathode formation portion, and in the cathode formation portion, the surfaces of the first porous portion and the second porous portion It may be covered with one dielectric layer and a second dielectric layer.
  • electrode foil is also referred to as "third electrode foil”.
  • An electrolytic capacitor includes a wound body and an electrolyte, and the wound body includes an anode foil, a cathode foil, and a separator disposed between the anode foil and the cathode foil. configured as follows.
  • the anode foil is the first electrode foil or the second electrode foil described above.
  • the wound body is constructed by winding strip-shaped anode foil and cathode foil around a winding core with a separator interposed therebetween, and winding the strip into a columnar shape.
  • the first electrode foil or the second electrode foil has a first main surface (the main surface on the side of the first dielectric layer formed as the dielectric layer A) facing the axial center of the wound body (the winding core). side).
  • the electrolytic capacitor may further include lead members connected to the anode foil.
  • the anode foil and the lead member are connected by a crimped portion at the overlapping portion where the second main surface of the anode foil and the lead member overlap.
  • the lead member is arranged on the second main surface side of the anode foil in the overlapped portion (crimped portion).
  • the lead member is crimped onto the anode foil, the anode foil tends to have a tensile stress on one main surface side that overlaps the lead member. Therefore, from the viewpoint of suppressing damage to the dielectric layer, it is desirable to overlap the lead member with the second main surface having the second dielectric layer formed as the dielectric layer B.
  • the above method is preferable from the viewpoint of reducing the contact resistance because the cracks are suppressed from occurring at the damaged portion of the dielectric layer.
  • the crimped part is formed as follows. A lead member is superimposed on one main surface of the anode foil, and a needle-shaped member is used to perforate a predetermined position of the overlapped portion from the lead member side. At this time, part of the lead member is pulled out to the other surface side of the anode foil. The pulled out portion is brought into close contact with the other main surface of the anode foil.
  • cathode foil A metal foil containing a valve action metal such as Al, Ta, or Nb can be used for the cathode foil. If necessary, the surface of the metal foil may be roughened by etching. That is, the cathode foil may be a metal foil having a porous portion and a core portion continuous with the porous portion.
  • the separator 30 is not particularly limited, and may be, for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (for example, aromatic polyamide such as aliphatic polyamide or aramid).
  • the electrolyte includes at least one of a solid electrolyte and an electrolytic solution.
  • the cathode part may contain a solid electrolyte and an electrolytic solution, or may contain a solid electrolyte and a non-aqueous solvent.
  • the electrolytic solution and the non-aqueous solvent are collectively referred to as "liquid component”.
  • Coating of the dielectric layer with a solid electrolyte (or electrolytic solution) is performed, for example, by impregnating the electrode foil (or wound body) with a treatment solution (or electrolytic solution) containing a conductive polymer.
  • the treatment liquid may contain a non-aqueous solvent.
  • the solid electrolyte contains a conductive polymer.
  • conductive polymers include ⁇ -conjugated polymers.
  • conductive polymers include polypyrrole, polythiophene, polyfuran, and polyaniline.
  • the conductive polymer may be used singly or in combination of two or more, or may be a copolymer of two or more monomers.
  • the weight average molecular weight of the conductive polymer is, for example, 1000-100000.
  • polypyrrole, polythiophene, polyfuran, polyaniline and the like mean polymers having a basic skeleton of polypyrrole, polythiophene, polyfuran, polyaniline and the like, respectively. Therefore, polypyrrole, polythiophene, polyfuran, polyaniline, etc. may also include their respective derivatives.
  • polythiophenes include poly(3,4-ethylenedioxythiophene) and the like.
  • Conductive polymers can be doped with dopants.
  • the solid electrolyte may contain a dopant together with the conductive polymer. Dopants include polystyrene sulfonic acid and the like. The solid electrolyte may further contain additives as needed.
  • the liquid component is in contact with the dielectric layer directly or via a conductive polymer.
  • the liquid component may be a non-aqueous solvent or an electrolytic solution.
  • the electrolyte contains a non-aqueous solvent and an ionic substance (solute (eg, organic salt)) dissolved therein.
  • the non-aqueous solvent may be an organic solvent or an ionic liquid.
  • a solvent with a high boiling point is preferable as the non-aqueous solvent.
  • examples include polyol compounds such as ethylene glycol, sulfone compounds such as sulfolane, lactone compounds such as ⁇ -butyrolactone, ester compounds such as methyl acetate, carbonate compounds such as propylene carbonate, ether compounds such as 1,4-dioxane, and methyl ethyl ketone.
  • a ketone compound or the like can be used.
  • the liquid component may contain an acid component (anion) and a base component (cation).
  • a salt may be formed by the acid component and the base component.
  • the acid component contributes to the film repair function.
  • acid components include organic carboxylic acids and inorganic acids.
  • inorganic acids include phosphoric acid, boric acid, sulfuric acid, and the like.
  • base component include primary to tertiary amine compounds.
  • An organic salt is a salt in which at least one of the anion and cation contains an organic substance.
  • organic salts include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono-1,2,3,4-tetramethylimidazolinium phthalate, mono-1,3-dimethyl-2-phthalate, Ethylimidazolinium or the like may also be used.
  • the liquid component preferably contains more acid components than base components. Also, since the acid component contributes to the film-repairing function of the liquid component, it is preferable that the acid component is contained in a larger amount than the base component.
  • the molar ratio of the acid component to the base component: (acid component/base component) is, for example, 1.1 or more.
  • the pH of the liquid component may be 6 or less, or 1 or more and 5 or less.
  • FIG. 4 is a cross-sectional view schematically showing an electrolytic capacitor according to one embodiment of the present disclosure.
  • FIG. 4 shows an example of an electrolytic capacitor having a wound capacitor element.
  • FIG. 5 is a perspective view schematically showing the configuration of the wound body of FIG. 4.
  • the electrolytic capacitor 200 includes a wound body 100.
  • the wound body 100 is constructed by winding an anode foil 10 and a cathode foil 20 with a separator 30 interposed therebetween.
  • Lead tabs 50A and 50B are connected to the anode foil 10 and the cathode foil 20, respectively, and the wound body 100 is formed by winding the lead tabs 50A and 50B.
  • Lead wires 60A and 60B are connected to the other ends of lead tabs 50A and 50B, respectively.
  • a winding stop tape 40 is arranged on the outer surface of the cathode foil 20 located in the outermost layer of the wound body 100 , and the ends of the cathode foil 20 are fixed by the winding stop tape 40 .
  • the anode foil 10 is prepared by cutting from a large-sized foil, the rolled body 100 may be further subjected to a chemical conversion treatment in order to provide a dielectric layer on the cut surface.
  • the wound body 100 contains an electrolyte, and the electrolyte is interposed between the anode foil 10 (dielectric layer) and the cathode foil 20.
  • the electrolyte-containing wound body 100 is formed by, for example, impregnating the wound body 100 with a treatment liquid (or electrolytic solution) containing a conductive polymer. Impregnation may be performed under reduced pressure, for example in an atmosphere of 10 kPa to 100 kPa.
  • the wound body 100 is housed in the bottomed case 211 so that the lead wires 60A and 60B are located on the opening side of the bottomed case 211.
  • metals such as aluminum, stainless steel, copper, iron, and brass, or alloys thereof can be used.
  • a sealing member 212 is placed in the opening of the bottomed case 211 in which the wound body 100 is accommodated, and the opening end of the bottomed case 211 is crimped to the sealing member 212 for curling, and the seat plate 213 is attached to the curled portion. By arranging them, the wound body 100 is sealed in the bottomed case 211 .
  • the sealing member 212 is formed so that the lead wires 60A and 60B pass therethrough.
  • the sealing member 212 may be an insulating material, preferably an elastic material. Among them, silicone rubber, fluororubber, ethylene propylene rubber, hypalon rubber, butyl rubber, isoprene rubber and the like having high heat resistance are preferable.
  • An electrolytic capacitor according to another embodiment of the present disclosure includes a laminate in which a plurality of capacitor elements are laminated, each of which includes an anode body having an anode lead-out portion and a cathode forming portion, and a cathode portion covering the cathode forming portion.
  • the laminate has an anode laminate portion in which a plurality of anode lead portions are laminated, and a cathode laminate portion in which a plurality of cathode formation portions covered with a cathode portion are laminated.
  • At least one of the anode bodies of the plurality of capacitor elements is the above-described third electrode foil.
  • the thickness of the cathode laminate tends to increase in the stacking direction at the central portion of the plane perpendicular to the stacking direction of the cathode laminate, and the thickness of the cathode laminate in the stacking direction tends to decrease at the periphery. and the electrode foil tends to bend. That is, in the electrode foil, the surface on the center side in the stacking direction of the laminate tends to be concave. Therefore, in the laminate, the third electrode foil is arranged such that the first main surface (the main surface on the side of the first dielectric layer formed as the dielectric layer A) faces the central side in the lamination direction of the laminate. preferably.
  • a laminated electrolytic capacitor includes, for example, the above laminated body and a resin-made exterior body that seals the laminated body.
  • the cathode section includes a solid electrolyte layer covering at least a portion of the cathode forming section, and a cathode extraction layer covering at least a portion of the solid electrolyte layer.
  • the cathode extraction layer includes, for example, a silver paste layer and a carbon layer.
  • An anode lead is connected to the anode laminate.
  • a cathode lead is connected to the cathode lead layer at one end in the lamination direction of the laminate. A part of the anode lead and the cathode lead are exposed from the outer package.
  • the electrode foil for electrolytic capacitors according to the present disclosure is suitably used for electrolytic capacitors that require high capacity and high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

電解コンデンサ用電極箔は、第1主面および第1主面と反対側の第2主面を有し、第1主面側の第1多孔質部および第2主面側の第2多孔質部を有する金属箔と、第1多孔質部の表面を覆う第1誘電体層と、第2多孔質部の表面を覆う第2誘電体層と、を備える。第1誘電体層の厚みF1と、前記第2誘電体層の厚みF2とは、0.75≦F1/F2≦0.97の関係を満たす。

Description

電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム
 本開示は、電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システムに関する。
 電解コンデンサ電極箔は、エッチングにより両方の表面が粗面化された金属箔(エッチング箔)と、エッチング箔の両方の表面を覆う誘電体層と、を備える。エッチング箔の化成処理(陽極酸化)による誘電体層の形成は、量産化の面で有利である。一方、原子層堆積法等による誘電体層の形成に関する技術が検討されているが、量産化の面で課題がある。
 特許文献1では、(i)芯材部と、前記芯材部と一体に前記第1金属により形成されている多孔質体と、を準備する工程と、(ii)前記多孔質体を化成して、前記多孔質体の少なくとも一部を覆うように、前記第1金属の酸化物を含む第1誘電体層を形成する工程と、(iii)原子層堆積法により、前記第1誘電体層の少なくとも一部を覆うように、前記第1金属とは異なる第2金属の酸化物を含む第2誘電体層を形成する工程と、を含む、電極の製造方法が提案されている。
国際公開第2018/180029号パンフレット
 電解コンデンサ(もしくは電極箔)の製造過程において、電極箔を湾曲させることがある。電極箔の湾曲は、例えば、巻回体の構成時、ローラによる電極箔の搬送もしくは巻取り時に生じる。
 電極箔の湾曲時に凸形状となる電極箔の一方の表面側では、引張応力が生じ、それによりクラックが生じ易く、一方の表面側の誘電体層が損傷し易い。また、当該クラック(誘電体層の損傷箇所)を起点に箔切れが生じることがある。
 一方、近年、電極箔の高容量化への要求が高まっている。高容量化に有利な誘電体層の形成方法としては、原子層堆積法によりエッチング箔の表面に高誘電率の金属酸化物の層を形成し、熱処理により当該層の結晶性を高める方法が考えられる。しかし、この方法で形成される誘電体層は、化成処理により形成される誘電体層(化成皮膜)よりも、脆く、エッチング箔との密着性が低く、電極箔の湾曲時に凸形状となる一方の表面側で誘電体層が損傷し易く、電極箔の信頼性が低下し易い。
 本開示の一側面は、第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔と、前記第1多孔質部の表面を覆う第1誘電体層と、前記第2多孔質部の表面を覆う第2誘電体層と、を備え、前記第1誘電体層の厚みF1と、前記第2誘電体層の厚みF2とは、
 0.75≦F1/F2≦0.97
の関係を満たす、電解コンデンサ用電極箔(第1電極箔)に関する。
 本開示の別の側面は、第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔と、前記第1多孔質部の表面を覆う第1誘電体層と、前記第2多孔質部の表面を覆う第2誘電体層と、を備え、前記第1誘電体層を有する前記第1主面側で発現する静電容量C1と、前記第2誘電体層を有する前記第2主面側で発現する静電容量C2とは、
 0.80≦C2/C1≦0.99
の関係を満たす、電解コンデンサ用電極箔(第2電極箔)に関する。
 本開示の更に別の側面は、上記の第1電極箔または第2電極箔の前記金属箔が、陽極引出部と、陰極形成部とを有し、前記陰極形成部において、前記第1多孔質部および前記第2多孔質部の表面が、それぞれ、前記第1誘電体層および前記第2誘電体層で覆われている、電解コンデンサ用電極箔(第3電極箔)に関する。
 本開示の更に別の側面は、巻回体と、電解質とを備え、前記巻回体は、陽極箔、陰極箔、および前記陽極箔と前記陰極箔との間に配されるセパレータを巻回して構成されており、前記陽極箔は、上記の第1電極箔または第2電極箔である、電解コンデンサに関する。
 本開示の更に別の側面は、陽極引出部および陰極形成部を有する陽極体と、前記陰極形成部を覆う陰極部とを備えるコンデンサ素子が複数積層された積層体を備え、前記積層体は、前記陽極引出部が複数積層された陽極積層部と、前記陰極部で覆われた前記陰極形成部が複数積層された陰極積層部とを有し、前記複数のコンデンサ素子の前記陽極体の少なくとも1つは、上記の第3電極箔である、電解コンデンサに関する。
 本開示の更に別の側面は、第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔を準備する第1工程と、前記第1多孔質部の表面を覆う第1誘電体層、および、前記第2多孔質部の表面を覆う第2誘電体層を、それぞれ個別に形成する第2工程と、を含む、電解コンデンサ用電極箔の製造方法に関する。
 本開示の更に別の側面は、第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔に対して、原子層堆積法により、前記第1多孔質部の表面を覆う第1誘電体層、および、前記第2多孔質部の表面を覆う第2誘電体層を、それぞれ個別に形成する成膜部を備える、電解コンデンサ用電極箔の製造システムに関する。
 本開示によれば、容量が大きく、信頼性に優れる電解コンデンサ用電極箔を提供することができる。
 本開示の新規な特徴を添付の請求の範囲に記述するが、本開示は、構成および内容の両方に関し、本開示の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の実施形態に係る電解コンデンサ用電極箔の製造方法の第1工程で準備する金属箔の断面模式図である。 本開示の実施形態に係る電解コンデンサ用電極箔の製造システムの一例を示す構成図である。 本開示の実施形態に係る電解コンデンサ用電極箔の製造システムの別の例を示す構成図である。 本開示の実施形態に係る電解コンデンサの断面模式図である。 図4の巻回体の構成を模式的に示す斜視図である。
 以下では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などの数値に関して下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本開示は、添付の請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。
[電解コンデンサ用電極箔の製造方法]
 本開示の実施形態に係る電解コンデンサ用電極箔の製造方法は、第1主面および第1主面と反対側の第2主面を有し、第1主面側の第1多孔質部および第2主面側の第2多孔質部を有する金属箔を準備する第1工程と、第1多孔質部の表面を覆う第1誘電体層、および、第2多孔質部の表面を覆う第2誘電体層を、それぞれ個別に形成する第2工程と、を含む。
(第1工程)
 第1多孔質部および第2多孔質部は、エッチングにより第1金属を含む基材シートの両方の表面を粗面化することにより同時に形成され、エッチングされない部分は芯部として残る。すなわち、金属箔は、第1多孔質部および第2多孔質部と、第1多孔質部および第2多孔質部に連続する芯部と、を有する。金属箔は、第1多孔質部および第2多孔質部と芯部との一体化物である。エッチングにより基材シートの両方の表面が同時に粗面化される。エッチングは、化学エッチングでもよく、電解エッチングでもよい。以下、第1多孔質部および第2多孔質部を合わせて、単に「多孔質部」と称する場合がある。
 多孔質部の厚さTは、特に限定されず、電解コンデンサの用途、要求される耐電圧・定格容量等によって適宜選択すればよい。多孔質部の厚さTは、例えば、10μm以上、160μm以下の範囲から選択すればよい。また、多孔質部の厚さTは、例えば、金属箔の厚さの1/10以上、5/10以下としてもよい。多孔質部の厚さTは、芯部と多孔質部の厚み方向の断面が得られるように電極箔(もしくは金属箔)を切断し、断面の電子顕微鏡写真を撮影し、多孔質部の任意の10点の厚さの平均値として求めればよい。
 多孔質部は金属部分で囲まれる多数のピット(もしくは細孔)を有する。多孔質部が有するピットのピット径ピーク(もしくは細孔の細孔径ピーク)は、特に限定されないが、表面積を大きくするとともに誘電体層を多孔質部の深部にまで形成する観点から、例えば50nm~2000nmとすればよく、100nm~300nmとしてもよい。ピット径(細孔径)ピークは、例えば水銀ポロシメータで測定される体積基準の細孔径分布の最頻度孔径である。
 ここで、図1は、本開示の実施形態に係る電解コンデンサ用電極箔の製造方法の第1工程で準備する金属箔を模式的に示す断面図である。
 金属箔300は、第1主面S1と、第1主面と反対側の第2主面S2と、を有する。金属箔300は、第1主面S1側の第1多孔質部310aと、第2主面S2側の第2多孔質部310bと、第1多孔質部310aおよび第2多孔質部310bに連続する芯部320と、を有する。第1多孔質部310aおよび第2多孔質部310bは、金属部分で囲まれた多数のピット(図示しない)を有する。第1多孔質部310aおよび第2多孔質部310bは、それぞれ厚さTを有する。
(第2工程)
 第2工程では、第1多孔質部の表面を覆う第1誘電体層、および、第2多孔質部の表面を覆う第2誘電体層を、それぞれ個別に形成する。すなわち、第2工程では、第2誘電体層の形成工程が、第1誘電体層の形成工程とは別途に設けられており、第1誘電体層の形成工程では第2誘電体層は形成されず、第2誘電体層の形成工程では第1誘電体層は形成されない。以下、第1誘電体層および第2誘電体層を合わせて、単に、「誘電体層」と称する場合がある。
 誘電体層は、多孔質部を構成する金属部分の表面の少なくとも一部を覆うように設けられている。誘電体層は、例えば、原子層堆積法(ALD法)により形成できる。誘電体層は、多孔質部を構成する金属部分(第1工程の基材シート)に含まれる第1金属の酸化物を含んでもよい。誘電体層は、第1金属とは異なる第2金属の酸化物を含んでもよい。ALD法により誘電体層を形成する場合、第1金属の制限を受けずに第2金属を適宜選択することができ、第1金属の酸化物よりも誘電率が高い第2金属の酸化物を形成でき、電解コンデンサの高容量化に有利である。また、第2金属の選択の幅が広がるため、第1金属の制限を受けずに誘電体層に様々な性能を付与することができる。
 第1金属の種類は特に限定されないが、第1金属としては、アルミニウム(Al)、タンタル(Ta)、ニオブ(Nb)などの弁作用金属または弁作用金属を含む合金を用い得る。
 第2金属としては、Al、Ta、Nb、ケイ素(Si)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などが挙げられる。これらは、単独で、あるいは2種以上組み合わされてもよい。すなわち、誘電体層には、Al、Ta、Nb、SiO、TiO、ZrO、HfOなどが単独で、あるいは2種以上含まれ得る。誘電体層が2種以上の第2金属の酸化物を含む場合、2種以上の酸化物が混在していてもよいし、それぞれが層状に配置されていてもよい。電解コンデンサの容量を増加させる観点から、第2金属の酸化物が第1金属の酸化物よりも高い比誘電率を有することが好ましい。
 第2工程により、第1誘電体層および第2誘電体層の一方に高容量化に有利な誘電体層Aを形成し、第1誘電体層および第2誘電体層の他方に引張応力に対する耐性に優れる誘電体層Bを形成することができる。この場合、誘電体層Aの形成により、電極箔を高容量化できる。また、誘電体層Aを有する主面側が凹形状となるように電極箔を湾曲させることにより、電極箔の湾曲時の誘電体層の損傷を抑制することができる。すなわち、電極箔の湾曲時に、電極箔の一方の表面側は凸形状となり、引張応力が生じるが、当該一方の表面側を誘電体層Bを有する主面側とすることで、引張応力による誘電体層の損傷が抑制される。一方、電極箔の他方の表面側は凹形状となり、圧縮応力が生じることから、誘電体層Aは誘電体層Bと比べて強度および多孔質部との密着性が比較的低い場合でも、当該他方の表面側を誘電体層Aを有する主面側とすることで、引張応力による誘電体層の損傷を回避できる。よって、電極箔の信頼性が向上する。
 第1誘電体層および第2誘電体層をそれぞれ個別に形成する第2工程は、例えば、後述する製造システムを用いて行うことができる。仮に化成処理により誘電体層を形成する場合、化成液中で金属箔の両面に化成皮膜が同時に形成される。また、一般的に、ALD法により誘電体層を形成する場合、成膜装置を用いて、反応室内に収容された金属箔の両面に金属酸化物の膜が同時に形成される。これらの場合、金属箔の一方の表面側の誘電体層の形成工程が他方の表面側の誘電体層の形成工程を兼ねており、第1誘電体層および第2誘電体層をそれぞれ個別に形成することは難しい。
 第2工程は、ALD法により第1温度TA1で第1誘電体層を形成する第2A工程と、ALD法により第2温度TA2で第2誘電体層を形成する第2B工程と、を含んでもよい。第1温度TA1は第2温度TA2と、同じであってもよく、異なっていてもよい。第1温度TA1および第2温度TA2を適宜調整することにより、ALD法による第1主面および第2主面への成膜性を制御できる。
 第1誘電体層に含まれる金属M1は、第2誘電体層に含まれる金属M2と、同じであってもよく、異なっていてもよい。金属M1および金属M2は、多孔質部を構成する金属部分に含まれる第1金属と異なる第2金属であってもよい。高容量化の観点から、第1金属がAlである場合、第2金属はTi、Si、Hf、Nbが好ましい。金属M2は、AlとAl以外の金属を含んでもよい。
 原子層堆積法(Atomic Layer Deposition:ALD法)は、対象物が配置された反応室に金属Mを含む原料ガスと酸化剤とを交互に供給して、対象物の表面に金属Mの酸化物を含む誘電体層を形成する製膜法である。ALD法では、自己停止(Self-limiting)作用が機能するため、金属Mは原子層単位で対象物の表面に堆積する。そのため、原料ガスの供給→原料ガスの排気(パージ)→酸化剤の供給→酸化剤の排気(パージ)を1サイクルとしたサイクル数により、誘電体層の厚さは制御される。つまり、ALD法は、形成される誘電体層の厚さを容易に制御し得る。
 ALD法で用いる酸化剤としては、例えば、水、酸素、オゾンなどが挙げられる。酸化剤は、酸化剤を原料とするプラズマとして反応室に供給されてもよい。
 金属Mは、第1金属を含んでもよく、第2金属を含んでもよい。金属Mは、金属Mを含むプリカーサ(前駆体)のガス(原料ガス)として反応室に供給される。プリカーサは、例えば、第2金属を含む有機金属化合物であり、これにより、金属Mは対象物に化学吸着し易くなる。プリカーサとしては、従来、ALD法で用いられている各種の有機金属化合物を使用することができる。
 Alを含むプリカーサとしては、例えば、トリメチルアルミニウム((CHAl)等が挙げられる。Taを含むプリカーサとしては、例えば、(t-ブチルイミド)トリス(エチルメチルアミノ)タンタル(V)(C13334Ta、TBTEMT)、タンタル(V)ペンタエトキシド(Ta(OC255)等が挙げられる。
 Nbを含むプリカーサとしては、例えば、ニオブ(V)エトキシド(Nb(OCH2CH35、トリス(ジエチルアミド)(t-ブチルイミド)ニオブ(V)(C16394Nb)等が挙げられる。Siを含むプリカーサとしては、例えば、N-sec-ブチル(トリメチルシリル)アミン(C719NSi)、テトラエチルシラン(Si(C254)、テトラエトキシシラン(Si(OC254)、四塩化ケイ素(SiCl4)等が挙げられる。
 Tiを含むプリカーサとしては、例えば、テトラキス(ジメチルアミノ)チタン(IV)([(CH32N]4Ti、TDMAT)、四塩化チタン(TiCl4)、チタン(IV)エトキシド(Ti[O(C25)]4)等が挙げられる。Zrを含むプリカーサとしては、例えば、テトラキス(エチルメチルアミド)ジルコニウム(IV)(Zr(NCH3254)、ジルコニウム(IV)t-ブトキシド(Zr[OC(CH334)等が挙げられる。
 Hfを含むプリカーサとしては、例えば、ハフニウムテトラクロライド(HfCl4)、テトラキスジメチルアミノハフニウム(Hf[N(CH324)、ハフニウム-t-ブトキシド(Hf[OC(CH334)等が挙げられる。
 第2A工程(第2B工程)では、第1温度TA1(第2温度TA2)により第1誘電体層(第2誘電体層)の厚みを制御してもよい。第1温度TA1(第2温度TA2)と併せて、成膜時間、パージ時間、サイクル数等により第1誘電体層(第2誘電体層)の厚みを制御してもよい。
 第2A工程と第2B工程とで、成膜時の温度および圧力、原料ガス(金属M)の種類、サイクル数などの成膜条件を変えてもよい。
 第2A工程の後、第2B工程を行ってもよい。この場合、第2A工程は、第2主面を第1温度TA1で熱処理する工程を兼ねることが好ましい。この場合、第2A工程では、第1主面への成膜時の熱を利用して第2主面が熱処理される。当該熱処理により、第2多孔質部の表面に第2多孔質部を構成する金属部分の酸化皮膜を形成できる。この場合、第2B工程では、当該金属部分との密着性に優れている当該酸化皮膜を介して、第2多孔質部の表面に第2誘電体層が形成される。この場合、第2誘電体層の当該金属部分との密着性が向上し、第2多孔質部の表面からの第2誘電体層の剥離が抑制される。また、当該酸化皮膜の形成により、漏れ電流を低減できる反面、第2主面側の容量は低下する傾向がある。よって、第2主面側では引張応力に対する耐性に優れる誘電体層Bとして第2誘電体層を形成できる。第1温度TA1を適宜調整することで、当該酸化皮膜の厚みを制御できる。当該酸化皮膜は、例えば、第2誘電体層の厚みF2の90%~97%の厚みを有する。ALD法により形成される膜とともに酸化皮膜も誘電体として機能する。
 耐電圧が小さい(例えば16V未満の)電解コンデンサに用いられる電極箔の場合、厚みが小さい(例えば16nm未満の)誘電体層が形成されるため、当該酸化皮膜の影響が大きく、漏れ電流の低減効果が顕著に得られる反面、容量が低下し易い。よって、第1誘電体層および第2誘電体層をそれぞれ個別に形成することによる効果が顕著に得られる。
 耐電圧が大きい(例えば16V以上の)電解コンデンサに用いられる電極箔の場合、厚みが大きい(例えば16nm以上の)誘電体層が形成されるため、当該酸化皮膜の影響が低減され、容量の低下は比較的抑えられる。更に耐電圧が大きい(例えば20V以上の)ハイブリッド電解コンデンサの場合は更に効果が大きい。
 第2A工程の後、第2B工程を行う場合、第2B工程は、第1誘電体層を有する第1主面を第2温度TA2で熱処理する工程を兼ねることが好ましい。この場合、第2B工程では、第2主面への成膜時の熱を利用して第1主面が熱処理される。当該熱処理により、第1誘電体層の結晶性を高めることができる。よって、第1主面側では高容量化に有利な誘電体層Aとして第1誘電体層を形成できる。第2温度TA2を適宜調整することで、第1誘電体層の結晶性を制御できる。誘電体層Aである第1誘電体層は、誘電体層Bである第2誘電体層よりも、高容量化に有利である反面、脆く、多孔質部との密着性が低い傾向がある。
 第1誘電体層を誘電体層Aとして形成する場合、第1誘電体層と、多孔質部を構成する金属部分との間には、薄い酸化皮膜は実質的に形成されていないことが好ましい。第1誘電体層と、多孔質部を構成する金属部分との間には、薄い自然酸化皮膜が存在していてもよいが、第2誘電体層側の酸化皮膜よりも厚みが非常に薄いことが望ましい。
 また、第2B工程の後、第2A工程を行ってもよく、第1誘電体層および第2誘電体層を、それぞれ誘電体層Bおよび誘電体層Aとして形成してもよい。
 第1温度TA1および第2温度TA2は、例えば、下記の式(i)~(iii)の関係を満たすことが好ましい。ALD法による成膜、および成膜時の熱を利用した熱処理を、90℃以上、400℃以下で行うことができ、金属箔への熱的ダメージを抑制することができる。
 (i)0≦|TA1-TA2|≦50
 (ii)90≦TA1≦400
 (iii)90≦TA2≦400
[電解コンデンサ用電極箔の製造システム]
 本開示の実施形態に係る電解コンデンサ用電極箔の製造システムは、第1主面および第1主面と反対側の第2主面を有し、第1主面側の第1多孔質部および第2主面側の第2多孔質部を有する金属箔に対して、原子層堆積法により、第1多孔質部の表面を覆う第1誘電体層、および、第2多孔質部の表面を覆う第2誘電体層を、それぞれ個別に形成する成膜部を備える。すなわち、成膜部では、第2多孔質部の表面を覆う第2誘電体層を形成する第2成膜部が、第1多孔質部の表面を覆う第1誘電体層を形成する第1成膜部とは別途に設けられており、第1成膜部では第2誘電体層は形成されず、第2成膜部では第1誘電体層は形成されない。当該成膜部により、第1誘電体層および第2誘電体層の一方を誘電体層Aとして形成でき、第1誘電体層および第2誘電体層の他方を誘電体層Bとして形成できる。
 成膜部は、第1成膜領域において、第1主面に対向し、第1主面に第1原料ガスを供給する複数の第1ノズルと、第1成膜領域と隔離された第2成膜領域において、第2主面に対向し、第2主面に第2原料ガスを供給する複数の第2ノズルと、を備えてもよい。この場合、当該製造システムは、第1成膜領域において第1主面に沿って複数の第1ノズルを移動させる第1移動手段と、第2成膜領域において第2主面に沿って複数の第2ノズルを移動させる第2移動手段と、を備えてもよい。
 第1成膜領域において、金属箔の第1主面に対して、第1移動手段により複数の第1ノズル(後述のノズルa~d)を移動させることにより、所定のサイクル数の成膜を行い、第1誘電体層を形成してもよい。第2成膜領域において、金属箔の第2主面に対して、第2移動手段により複数の第2ノズル(後述のノズルa~d)を移動させることにより、所定のサイクル数の成膜を行い、第2誘電体層を形成してもよい。
 当該製造システムは、金属箔を、第1成膜領域および第2成膜領域において搬送する搬送手段を備えてもよい。この場合、第1移動手段は、第1成膜領域内の金属箔の搬送経路に沿って複数の第1ノズルを移動させ、第2移動手段は、第2成膜領域内の金属箔の搬送経路に沿って複数の第2ノズルを移動させてもよい。搬送手段により金属箔を搬送しながら、移動手段により複数のノズルを移動させて所定のサイクル数の成膜を行ってもよい。搬送手段には搬送ローラを用いてもよい。この場合、ロール・ツー・ロール方式を採用することができ、生産性を向上できる。
 金属箔の搬送経路は、第1成膜領域および第2成膜領域のそれぞれにおいて、直線経路、および/または、金属箔が湾曲して搬送される曲線経路を含んでもよい。この場合、第1移動手段および第2移動手段は、それぞれ、複数の第1ノズルおよび複数の第2ノズルを、直線経路および/または曲線経路に沿って移動させればよい。
 第1移動手段により、第1成膜領域において、複数の第1ノズルを、金属箔の搬送方向と同じ方向もしくはその反対方向に移動させるか、または、搬送経路上を往復させてもよい。第2移動手段により、第2成膜領域において、複数の第2ノズルを、金属箔の搬送方向と同じ方向もしくはその反対方向に移動させるか、または、搬送経路上を往復させてもよい。
 金属箔の搬送経路が、金属箔が湾曲して搬送される曲線経路を含む場合、金属箔の湾曲により凸部を形成する主面側に誘電体層Bを形成し、金属箔の湾曲により凹部を形成する主面側に誘電体層Aを形成することが望ましい。誘体層Bの形成により引張応力による誘電体層の損傷が抑制される。
 また、当該製造システムは、金属箔を、第1成膜領域および第1成膜領域と隔離された第2成膜領域において搬送する搬送ローラを備えてもよい。この場合、成膜部は、第1成膜領域において第1主面に第1原料ガスを供給する第1成膜装置と、第2成膜領域において第2主面に第2原料ガスを供給する第2成膜装置と、を備えてもよい。成膜装置は、移動手段を備えていてもよく、移動手段により移動可能に構成されていてもよい。
 成膜部は、より具体的には、第1成膜領域(第1成膜装置)および第2成膜領域(第2成膜装置)において、それぞれ、複数のノズルを備えてもよい。複数のノズルは、金属箔の主面(多孔質部)に原料ガスを供給するノズルaと、金属箔の主面(多孔質部)から原料ガスを排気するノズルbと、金属箔の主面(多孔質部)に酸化剤(もしくはプラズマガス)を供給するノズルcと、金属箔の主面(多孔質部)から酸化剤(もしくはプラズマガス)を排気するノズルdと、を含む。上記の第1ノズルおよび第2ノズルは、ノズルaである。
 複数のノズルは、長尺状の金属箔の長さ方向(金属箔の搬送方向)にノズルa~dの順で繰り返し配列している。各ノズルは、長尺状の金属箔の幅方向に対応する幅寸法の開口を有する。ノズルの開口と、ノズルの開口と対向する金属箔の主面との距離は非常に近く、ノズルの開口と対向する領域において原料ガス(酸化剤もしくはプラズマガス)の供給もしくは排気が効率的に行われる。成膜領域内において、複数のノズル(成膜装置)の移動もしくは往復運動により、金属箔の主面の任意の点の上にノズルa~dを順次移動させ、成膜を行う。
 先に第1成膜領域で成膜を行い、その後、第2成膜領域で成膜を行ってもよい。この場合、第1成膜装置(第1成膜領域内の複数のノズル)による第1主面への成膜時の熱を第2主面の熱処理に利用できる。すなわち、第1成膜装置(第1成膜領域内の複数のノズル)は、第1成膜領域において、第2主面を熱処理する第1熱処理装置を兼ねることができる。当該熱処理により、第2主面側の第2多孔質部の表面に第2多孔質部を構成する金属部分の酸化皮膜(当該金属部分に含まれる第1金属の酸化物)を形成できる。この場合、第2成膜装置(第2成膜領域内の複数のノズル)により、当該金属部分との密着性に優れる当該酸化皮膜を介して、第2多孔質部の表面に第2誘電体層が形成される。この場合、第2多孔質部の表面からの第2誘電体層の剥離が抑制される。また、当該酸化皮膜の形成により、漏れ電流を低減できる反面、第2主面側の容量は低下する傾向がある。よって、第2主面側では引張応力に対する耐性に優れる誘電体層Bとして第2誘電体層が得られる。
 また、第1成膜領域で成膜後、第2成膜領域で成膜を行う場合、第2成膜装置(第2成膜領域内の複数のノズル)による第2主面への成膜時の熱を第1主面の熱処理に利用できる。すなわち、第2成膜装置(第2成膜領域内の複数のノズル)は、第2成膜領域において、第1誘電体層を有する第1主面を熱処理する第2熱処理装置を兼ねることができる。当該熱処理により、第1誘電体層の結晶性を高めることができる。これにより、第1主面側では高容量化に有利な誘電体層Aとして第1誘電体層が得られる。誘電体層Aである第1誘電体層は、誘電体層Bである第2誘電体層と比べて、高容量化に有利である反面、脆く、多孔質部との密着性が低い傾向がある。
 第2成膜装置(第2成膜領域内の複数のノズル)が、上記第2熱処理装置を兼ねる場合、第2主面での成膜時の熱は芯部を介して第1主面に伝導し、その伝導した熱を利用して第1主面を熱処理できる。放熱や熱伝導性の影響で、第1主面に伝導する熱が不十分な場合は、第2主面での成膜時の熱源以外に、第1主面側より第1主面を加熱する手段を別途設けてもよい。更に、第1主面の温度を測定する手段を設けることが好ましい。第1主面の温度を測定する手段により第1主面の温度を測定し、第1主面を加熱する手段にフィードバックして、第1主面の温度を制御する手段を設けることが更に好ましい。
 第1成膜装置(第1成膜領域内の複数のノズル)による成膜時(もしくは第1熱処理装置としての熱処理時)の第1温度TA1と、第2成膜装置(第2成膜領域内の複数のノズル)による成膜時(もしくは第2熱処理装置としての熱処理時)の第2温度TA2とは、互いに、同じであってもよく、異なっていてもよい。TA1およびTA2は、例えば、上記の式(i)~(iii)の関係を満たすことが好ましい。
 第1ノズルの個数X1は、第2ノズルの個数X2と、同じでもよく、異なっていてもよい。第1誘電体層を誘電体層Aとして形成する場合、第1ノズルの個数X1が第2ノズルの個数X2よりも少なくてもよい。
 第1成膜装置(第1成膜領域内の複数のノズル)による成膜のサイクル数N1は、第2成膜装置(第2成膜領域内の複数のノズル)による成膜のサイクル数N2と、同じでもよく、異なっていてもよい。第1誘電体層を誘電体層Aとして形成する場合、サイクル数N1はサイクル数N2よりも小さくてもよい。成膜のサイクル数は小さい方が誘電体層Aの厚みを小さくでき、高容量化の面で有利である。
 第1原料ガスに含まれる金属M1は、第2原料ガスに含まれる金属M2と、同じであってもよく、異なっていてもよい。金属M1および金属M2は、多孔質部を構成する金属部分に含まれる第1金属と異なる第2金属であってもよい。高容量化の観点から、第1金属がAlである場合、第2金属はTi、Si、Hf、およびNbからなる群より選択される少なくとも1種であってもよい。
 搬送ローラにより、金属箔は、第1成膜領域および第2成膜領域の順に搬送してもよく、第2成膜領域および第1成膜領域の順に搬送してもよい。
 ここで、図2は、本開示の実施形態に係る電解コンデンサ用電極箔の製造システムの一例を示す構成図である。
 製造システム400は、金属箔300を、第1成膜領域430aから第1成膜領域430aと隔離された第2成膜領域430bに搬送するローラ410a~410cを備える。
 また、製造システム400は、成膜部を備える。成膜部は、第1成膜領域430aを揺動しながら金属箔300の第1主面S1に第1原料ガスを供給する第1成膜装置420aと、第2成膜領域430bを揺動しながら金属箔300の第2主面S2に第2原料ガスを供給する第2成膜装置420bと、を備える。
 以下、図2に示す製造システム400による成膜工程(第2工程)について詳述する。
 ローラにより金属箔300が第1成膜領域430aに搬送される。金属箔300の任意の点P1が第1成膜領域430a(第1成膜領域430a内の距離L1の金属箔300の搬送経路)を通過する間、第1成膜装置420aは第1成膜領域430aを揺動する。すなわち、第1成膜装置420aは第1成膜領域430a内の金属箔300の搬送経路に沿って距離L1を往復運動する。第1成膜装置420aは、当該往復運動を行いながら、金属箔300の任意の点P1の第1主面S1に対してサイクル数N1の成膜を行う。所望のサイクル数N1に応じて、第1成膜装置420aは、往路および復路の両方で成膜を行ってもよく、往路および復路の一方で成膜を行ってもよい。
 第1成膜装置420aは、第1主面S1に第1原料ガスを供給する複数の第1ノズルを備える。サイクル数N1の成膜は、通常、第1成膜装置420aの往復運動により第1ノズルが搬送経路に沿って移動する速度V2aを、金属箔300の任意の点P1が搬送経路上を移動する速度V1aよりも大きくして行われる。V1aおよびV2aは、所望のサイクル数N1および第1ノズルの個数X1に応じて適宜設定すればよい。50サイクル以上であれば、V2a/V1a≧2が好ましい。生産性の観点から、V2a/V1a≧5が好ましい。
 第1成膜装置420aによる第1主面S1上への成膜後、ローラにより金属箔300が第2成膜領域430bに搬送される。金属箔300の第2主面S2の任意の点P2が第2成膜領域430b(第2成膜領域430b内の距離L2の金属箔300の搬送経路)を通過する間、第2成膜装置420bは第2成膜領域430bを揺動する。すなわち、第2成膜装置420bは第2成膜領域430b内の金属箔300の搬送経路に沿って距離L2を往復運動する。第2成膜装置420bは、当該往復運動を行いながら、金属箔300の第2主面S2の任意の点P2の第2主面S2に対してサイクル数N2の成膜を行う。所望のサイクル数N2に応じて、第2成膜装置420bは、往路および復路の両方で成膜を行ってもよく、往路および復路の一方で成膜を行ってもよい。
 第2成膜装置420bは、第2主面S2に第2原料ガスを供給する複数の第2ノズルを備える。サイクル数N2の成膜は、通常、第2成膜装置420bの往復運動により第2ノズルが搬送経路に沿って移動する速度V2bを、金属箔300の任意の点P2が搬送経路上を移動する速度V1bよりも大きくして行われる。V1bおよびV2bは、所望のサイクル数N2および第2ノズルの個数X2に応じて適宜設定すればよい。50サイクル以上であれば、V2b/V1b≧2が好ましい。生産性の観点から、V2b/V1b≧5が好ましい。
 成膜装置420a(420b)は、より具体的には、上記のノズルa~dを備える。図2に示す製造システムの場合、金属箔の主面上の任意の点が成膜領域を移動する間に、成膜装置の揺動(往復運動)により、金属箔の主面上の任意の点Pの上にノズルa~dを順次移動させ、成膜を行う。
 ここで、図3は、本開示の実施形態に係る電解コンデンサ用電極箔の製造システムの別の例を示す構成図である。
 製造システム500は、金属箔300を、第1成膜領域530aから第1成膜領域530aと隔離された第2成膜領域530bに搬送するとともに、第1成膜領域530aおよび第2成膜領域530bのそれぞれにおいて往復運動させるローラ510a~510cを備える。
 また、製造システム500は、成膜部を備える。成膜部は、第1成膜領域530aにおいて金属箔300の第1主面S1に第1原料ガスを供給する第1成膜装置520aと、第2成膜領域400bにおいて金属箔300の第2主面S2に第2原料ガスを供給する第2成膜装置520bと、を備える。第1成膜装置520aは、第1主面S1に第1原料ガスを供給する複数の第1ノズルを備える。第2成膜装置520bは、第2主面S2に第2原料ガスを供給する複数の第2ノズルを備える。
 以下、図3に示す製造システム500による成膜工程(第2工程)について詳述する。
 ローラ510a~510cにより、金属箔300は第1成膜領域530aに搬送され、金属箔300の任意の点P1は、第1成膜領域530a内において距離L3の搬送経路を往復する。その間に、第1成膜装置520aは、金属箔300の任意の点P1の第1主面S1に対してサイクル数N1の成膜を行う。
 第1成膜装置520aによる第1主面S1への成膜後、ローラ510a~510cにより、金属箔300は第2成膜領域530bに搬送され、金属箔300の任意の点P2は、第2成膜領域530b内において距離L4の搬送経路を往復する。その間に、第2成膜装置520bは、金属箔300の任意の点P2の第2主面S2に対してサイクル数N2の成膜を行う。
 成膜装置520a(520b)は、より具体的には、上記のノズルa~dを備える。図3に示す製造システムの場合、金属箔の成膜領域内での往復運動により、ノズルa~dと対向する位置に金属箔の主面上の任意の点Pを順次移動させ、成膜を行う。
 図2に示す製造システムでは、図3に示す製造システムと比べて、金属箔およびローラにかかるストレスは小さい。ただし、所望するサイクル数N1(N2)が多い場合、成膜装置420a(420b)のノズルの個数X1(X2)を多くしたり、移動距離L1(L2)を長くしたり、V2a/V1a(V2b/V1b)を大きくする必要がある。よって、装置が大きくなり、装置コストが高くなることがある。一方、図2に示す製造システムと比べて、図3に示す製造システムの場合、成膜装置が固定される分、装置コストは小さくできる。ただし、ローラにより金属箔が往復するため、金属箔にかかるストレスが大きくなることがある。また、金属箔を往復させるためにローラの回転方向を変える必要がある点で、ローラにかかるストレスも大きくなることがある。図2の製造システムと図3の製造システムを組み合わせてもよく、組み合わせる方が、効果的な場合もある。
 以下、図2の製造システム400および図3の製造システム500に共通する事項について説明する。
 第1成膜装置420a(520a)は、第1成膜領域430a(530a)内において、ローラにより搬送される金属箔300の第1主面S1側に配置されている。第2成膜装置420b(520b)は、第2成膜領域430b(530b)内において、ローラにより搬送される金属箔300の第2主面S2側に配置されている。
 第1成膜領域430a(530a)および第2成膜領域430b(530b)が互いに隔離されることで、第1成膜装置420a(520a)および第2成膜装置420b(520b)は、互いに隔離されている。よって、第1成膜領域430a(530a)では、第2成膜装置420b(520b)より第2原料ガスが金属箔300の第1主面S1および第2主面S2に供給されない。第2成膜領域430b(530b)では、第1成膜装置420a(520a)より第1原料ガスが金属箔300の第1主面S1および第2主面S2に供給されない。
 第1成膜領域430a(530a)において、第1成膜装置420a(520a)は、金属箔300の第1主面S1に第1原料ガスを供給し、金属箔300の第2主面S2に第1原料ガスを供給しない。第2成膜領域430b(530b)において、第2成膜装置420b(520b)は、金属箔300の第2主面S2に第2原料ガスを供給し、金属箔300の第1主面S1に第2原料ガスを供給しない。
 図2(図3)に示す搬送ローラ410a~410c(510a~510c)は、金属箔300を、第1成膜領域430a(530a)および第2成膜領域430b(530b)の順に搬送する。
 第1成膜装置420a(520a)は、第1成膜領域430a(530a)において、第2主面S2を熱処理する第1熱処理装置を兼ねることができる。当該熱処理により、第2主面S2側の第2多孔質部の表面に第2多孔質部を構成する金属部分の酸化皮膜(当該金属部分に含まれる第1金属の酸化物)を形成できる。この場合、第2成膜装置420b(520b)により、当該金属部分との密着性に優れる当該酸化皮膜を介して、第2多孔質部の表面に第2誘電体層が形成される。この場合、第2多孔質部の表面からの第2誘電体層の剥離が抑制される。また、当該酸化皮膜の形成により、漏れ電流を低減できる反面、第2主面側の容量は低下する傾向がある。よって、第2主面側では引張応力に対する耐性に優れる誘電体層Bとして第2誘電体層が得られる。
 また、第2成膜装置420b(520b)は、第2成膜領域430b(530b)において、第1誘電体層を有する第1主面S1を熱処理する第2熱処理装置を兼ねることができる。当該熱処理により、第1誘電体層の結晶性を高めることができる。これにより、第1主面側では高容量化に有利な誘電体層Aとして第1誘電体層が得られる。誘電体層Aである第1誘電体層は、誘電体層Bである第2誘電体層よりも、高容量化に有利である反面、脆く、多孔質部との密着性が低い傾向がある。
 第1成膜装置420a(520a)による成膜時(もしくは第1熱処理装置としての熱処理時)の第1温度TA1と、第2成膜装置420b(520b)による成膜時(もしくは第2熱処理装置としての熱処理時)の第2温度TA2とは、互いに、同じであってもよく、異なっていてもよい。TA1およびTA2は、例えば、上記の式(i)~(iii)の関係を満たすことが好ましい。
 第1ノズルの個数X1は、第2ノズルの個数X2と、同じでもよく、異なっていてもよい。第1誘電体層を誘電体層Aとして形成する観点から、第1ノズルの個数X1が第2ノズルの個数X2よりも少なくてもよい。
 第1成膜装置420a(520a)による成膜のサイクル数N1は、第2成膜装置420b(520b)による成膜のサイクル数N2と、同じでもよく、異なっていてもよい。第1誘電体層を誘電体層Aとして形成する観点から、サイクル数N1はサイクル数N2よりも小さくてもよい。成膜のサイクル数は小さい方が誘電体層Aの厚みを小さくでき、高容量化の面で有利である。
 製造システム400(500)では、成膜時において、ローラ410c(510a、510c)により、金属箔300が湾曲してもよい。誘電体層Bとして第2誘電体層が形成される第2主面S2側が凸部を形成し、誘電体層Aとして第1誘電体層が形成される第1主面S1側が凹部を形成するように金属箔300が湾曲するため、引張応力による誘電体層の損傷が抑制される。
 製造システム400(500)では、金属箔300は、第1成膜領域および第2成膜領域の順に搬送されるが、第2成膜領域および第1成膜領域の順に搬送されてもよい。第1誘電体層および第2誘電体層を、それぞれ誘電体層Bおよび誘電体層Aとして形成してもよい。
 上記の製造方法(もしくは上記の製造システム)では、第2工程(もしくは成膜部)において、第1誘電体層および第2誘電体層を、それぞれ誘電体層Aおよび誘電体層Bとして形成してもよい。この場合、第1誘電体層の厚みF1と、第2誘電体層の厚みF2とが、下記の式(1)の関係を満たすように、第1誘電体層および第2誘電体層を形成できる。
 0.75≦F1/F2≦0.97   (1)
 もしくは、上記の場合、第1誘電体層を有する第1主面側で発現する静電容量C1と、第2誘電体層を有する第2主面側で発現する静電容量C2とが、下記の式(2)の関係を満たすように、第1誘電体層および第2誘電体層を形成できる。
 0.80≦C2/C1≦0.99   (2)
[電解コンデンサ用電極箔]
 電解コンデンサ用電極箔は、第1主面および第1主面と反対側の第2主面を有し、第1主面側の第1多孔質部および第2主面側の第2多孔質部を有する金属箔と、第1多孔質部の表面を覆う第1誘電体層と、第2多孔質部の表面を覆う第2誘電体層と、を備える。
 本開示の一実施形態に係る電解コンデンサ用電極箔(以下、「第1電極箔」とも称する。)は、第1誘電体層の厚みF1と、第2誘電体層の厚みF2とが、上記の式(1)の関係を満たす。すなわち、F1/F2は、0.75以上、0.97以下である。F1/F2は、0.85以上、0.95以下であってもよい。
 なお、ここでいう誘電体層の厚みF1、F2とは、多孔質部(金属箔)の外表面を覆う誘電体層の厚みを指す。誘電体層の厚みF1、F2は、SEMまたはTEMによる電極箔の厚み方向の断面画像を用いて任意の10点の誘電体層の厚みを測定し、それらを平均化して求められる。
 また、本開示の別の実施形態に係る電解コンデンサ用電極箔(以下、「第2電極箔」とも称する。)は、第1誘電体層を有する第1主面側で発現する静電容量C1と、第2誘電体層を有する第2主面側で発現する静電容量C2とが、上記の式(2)の関係を満たす。すなわち、C2/C1は、0.8以上、0.99以下である。C2/C1は、0.8以上、0.97以下であってもよく、0.8以上、0.95以下であってもよい。
 なお、上記の静電容量C1およびC2は、電極箔の第1主面および第2主面の一方の主面をシール(もしくはコーティング)し、シールしていない他方の主面を電解液中で測定することにより求められる。
 上記の製造方法(製造システム)により、第1誘電体層および第2誘電体層を誘電体層Aおよび誘電体層Bとしてそれぞれ個別に形成することにより、上記の電極箔を得ることができる。
 第1電極箔もしくは第2電極箔の金属箔は、陽極引出部と、陰極形成部とを有し、陰極形成部において、第1多孔質部および第2多孔質部の表面が、それぞれ、第1誘電体層および第2誘電体層で覆われていてもよい。以下、このような電極箔を、「第3電極箔」とも称する。
[電解コンデンサ]
 本開示の一実施形態に係る電解コンデンサは、巻回体と、電解質とを備え、巻回体は、陽極箔、陰極箔、および陽極箔と陰極箔との間に配されるセパレータを巻回して構成されている。陽極箔は、上記の第1電極箔または第2電極箔である。第1電極箔または第2電極箔を用いることにより、高容量および高信頼性の電解コンデンサを得ることができる。
 巻回体は、セパレータを介して帯状の陽極箔および陰極箔を巻芯に巻き付けて柱状に巻回することにより構成される。巻回体において、第1電極箔または第2電極箔は、第1主面(誘電体層Aとして形成される第1誘電体層側の主面)が巻回体の軸心側(巻芯側)を向くように配置されていることが好ましい。
 電解コンデンサは、さらに、陽極箔に接続されるリード部材を備えてもよい。この場合、陽極箔と、リード部材とは、陽極箔の第2主面とリード部材とが重なる重なり部において、かしめ部により接続されていることが好ましい。重なり部(かしめ部)において、陽極箔の第2主面側にリード部材が配置されていることが好ましい。リード部材を陽極箔にかしめ付ける際に、陽極箔は、リード部材と重ね合わせる一方の主面の側において引張応力が生じ易い傾向がある。よって、誘電体層Bとして形成される第2誘電体層を有する第2主面をリード部材と重ね合わせる方が、誘電体層の損傷の抑制の観点から望ましい。また、上記の方が、誘電体層の損傷箇所を起点にクラックが生じることが抑制され、接触抵抗の低減の観点からも望ましい。
 かしめ部は、以下のようにして形成される。陽極箔の一方の主面上にリード部材を重ね合わせ、重なり部分の所定位置をリード部材の側から針状部材を用いて穿孔する。このとき、リード部材の一部が、陽極箔の他方の表面側に引き出される。引き出された部分を陽極箔の他方の主面上に密着させる。
(陰極箔)
 陰極箔には、Al、Ta、Nb等の弁作用金属を含む金属箔を用いることができる。必要に応じて、金属箔の表面はエッチング処理により粗面化されていてもよい。すなわち、陰極箔は、多孔質部と多孔質部に連続する芯部とを有する金属箔であってもよい。
(セパレータ)
 セパレータ30としては、特に制限されず、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミド等の芳香族ポリアミド)の繊維を含む不織布等を用いてもよい。
(電解質)
 電解質は、固体電解質および電解液の少なくとも一方を含む。陰極部は、固体電解質および電解液を含んでもよく、固体電解質および非水溶媒を含んでもよい。以下、電解液および非水溶媒を合わせて、「液状成分」とも称する。誘電体層の固体電解質(もしくは電解液)による被覆は、例えば、導電性高分子を含む処理液(もしくは電解液)を電極箔(もしくは巻回体)に含浸させることで行われる。処理液は、非水溶媒を含んでもよい。
 固体電解質は、導電性高分子を含む。導電性高分子としては、例えば、π共役系高分子が挙げられる。導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等が挙げられる。導電性高分子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよく、2種以上のモノマーの共重合体でもよい。導電性高分子の重量平均分子量は、例えば、1000~100000である。
 なお、本明細書では、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等は、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等を基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等には、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)等が含まれる。
 導電性高分子はドーパントをドープし得る。固体電解質は、導電性高分子とともにドーパントを含んでもよい。ドーパントとしては、ポリスチレンスルホン酸等が挙げられる。固体電解質は、必要に応じて、さらに、添加剤を含んでもよい。
 液状成分は、誘電体層と直にもしくは導電性高分子を介して接触している。液状成分は、非水溶媒であってもよく、電解液であってもよい。電解液は、非水溶媒と、それに溶解しているイオン性物質(溶質(例えば有機塩))とを含む。非水溶媒は、有機溶媒でもよく、イオン性液体でもよい。
 非水溶媒としては、高沸点溶媒が好ましい。例えば、エチレングリコール等のポリオール化合物、スルホラン等のスルホン化合物、γ-ブチロラクトン等のラクトン化合物、酢酸メチル等のエステル化合物、炭酸プロピレン等のカーボネート化合物、1,4-ジオキサン等のエーテル化合物、メチルエチルケトン等のケトン化合物等を用いることができる。
 液状成分は、酸成分(アニオン)と、塩基成分(カチオン)とを含んでもよい。酸成分と塩基成分により塩(溶質)が形成されていてもよい。酸成分は皮膜修復機能に寄与する。酸成分としては、有機カルボン酸、無機酸等が挙げられる。無機酸としては、例えば、リン酸、ホウ酸、硫酸等が挙げられる。塩基成分としては、例えば、1級~3級のアミン化合物等が挙げられる。
 有機塩とは、アニオンおよびカチオンの少なくとも一方が有機物を含む塩である。有機塩としては、例えば、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウム等を用いてもよい。
 導電性高分子からのドーパントの脱ドープ(固体電解質の劣化)を抑制する観点から、液状成分は、塩基成分よりも酸成分を多く含むことが好ましい。また、酸成分は、液状成分の皮膜修復機能に寄与していることからも、塩基成分よりも酸成分を多く含むことが好ましい。塩基成分に対する酸成分のモル比:(酸成分/塩基成分)は、例えば1.1以上である。導電性高分子からのドーパントの脱ドープの抑制等の観点から、液状成分のpHは、6以下であってもよく、1以上、5以下であってもよい。
 ここで、図4は、本開示の一実施形態に係る電解コンデンサを模式的に示す断面図である。図4では、巻回型のコンデンサ素子を備える電解コンデンサの一例を示す。図5は、図4の巻回体の構成を模式的に示す斜視図である。
 電解コンデンサ200は、巻回体100を備える。巻回体100は、陽極箔10と陰極箔20とを、セパレータ30を介して巻回して構成されている。
 陽極箔10および陰極箔20には、それぞれリードタブ50Aおよび50Bの一方の端部が接続されており、リードタブ50Aおよび50Bを巻き込みながら巻回体100が構成される。リードタブ50Aおよび50Bの他方の端部には、リード線60Aおよび60Bがそれぞれ接続されている。
 巻回体100の最外層に位置する陰極箔20の外側表面に巻止めテープ40が配置され、陰極箔20の端部は巻止めテープ40により固定されている。なお、陽極箔10を大判の箔から裁断して準備する場合、裁断面に誘電体層を設けるために、巻回体100に対して更に化成処理を行ってもよい。
 巻回体100は電解質を含み、陽極箔10(誘電体層)と陰極箔20との間に電解質が介在している。電解質を含む巻回体100は、例えば、導電性高分子を含む処理液(もしくは電解液)を巻回体100に含浸させることで行われる。含浸は、減圧下、例えば10kPa~100kPaの雰囲気で行ってもよい。
 リード線60A、60Bが有底ケース211の開口側に位置するように、巻回体100が有底ケース211に収納されている。有底ケース211の材料としては、アルミニウム、ステンレス鋼、銅、鉄、真鍮等の金属あるいはこれらの合金を用いることができる。
 巻回体100が収納された有底ケース211の開口部に封止部材212を配置し、有底ケース211の開口端を封止部材212にかしめてカール加工し、カール部分に座板213を配置することにより、巻回体100が有底ケース211内に封止されている。
 封止部材212は、リード線60A、60Bが貫通するようにが貫通するように形成されている。封止部材212は、絶縁性物質であればよく、弾性体が好ましい。中でも耐熱性の高いシリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、ハイパロンゴム、ブチルゴム、イソプレンゴム等が好ましい。
 本開示の別の実施形態に係る電解コンデンサは、陽極引出部および陰極形成部を有する陽極体と、陰極形成部を覆う陰極部とを備えるコンデンサ素子が複数積層された積層体を備える。積層体は、陽極引出部が複数積層された陽極積層部と、陰極部で覆われた陰極形成部が複数積層された陰極積層部とを有する。複数のコンデンサ素子の陽極体の少なくとも1つは、上記の第3電極箔である。第3電極箔を用いることにより、高容量および高信頼性の電解コンデンサを得ることができる。
 積層体を構成すると、陰極積層部の積層方向と垂直な面の中央部において、陰極積層部の積層方向の厚みが大きくなり、その周縁部において陰極積層部の積層方向の厚みが小さくなる傾向があり、電極箔が湾曲しやすい。すなわち、電極箔において、積層体の積層方向の中心側の表面が凹形状となりやすい。よって、積層体において、第3電極箔は、第1主面(誘電体層Aとして形成される第1誘電体層側の主面)が積層体の積層方向の中心側を向くように配置されていることが好ましい。
 積層型の電解コンデンサは、例えば、上記の積層体と、当該積層体を封止する樹脂製の外装体と、を備える。陰極部は、陰極形成部の少なくとも一部を覆う固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層と、を備える。陰極引出層は、例えば、銀ペースト層と、カーボン層と、を備える。陽極積層部に陽極リードが接続されている。積層体の積層方向の一端部の陰極引出層に陰極リードが接続されている。陽極リードおよび陰極リードの一部は、外装体より露出している。
 本開示に係る電解コンデンサ用電極箔は、高容量および高信頼性が求められる電解コンデンサに好適に用いられる。
 本開示を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本開示に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本開示の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 10:陽極箔、20:陰極箔、30:セパレータ、40:巻止めテープ、60A,60B:リード線、50A,50B:リードタブ、100:巻回体、200:電解コンデンサ、211:有底ケース、212:封止部材、213:座板、300:金属箔、S1:第1主面、S2:第2主面、310a:第1多孔質部、310b:第2多孔質部、320:芯部、400,400:電極箔の製造システム、410a~410c,510a~510c:ローラ、420a,520a:第1成膜装置、420b,520b:第2成膜装置、430a,530a:第1成膜領域、430b,530b:第2成膜領域
 
 
 

Claims (28)

  1.  第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔と、
     前記第1多孔質部の表面を覆う第1誘電体層と、
     前記第2多孔質部の表面を覆う第2誘電体層と、
    を備え、
     前記第1誘電体層の厚みF1と、前記第2誘電体層の厚みF2とは、
     0.75≦F1/F2≦0.97
    の関係を満たす、電解コンデンサ用電極箔。
  2.  第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔と、
     前記第1多孔質部の表面を覆う第1誘電体層と、
     前記第2多孔質部の表面を覆う第2誘電体層と、
    を備え、
     前記第1誘電体層を有する前記第1主面側で発現する静電容量C1と、前記第2誘電体層を有する前記第2主面側で発現する静電容量C2とは、
     0.80≦C2/C1≦0.99
    の関係を満たす、電解コンデンサ用電極箔。
  3.  前記金属箔は、陽極引出部と、陰極形成部とを有し、
     前記陰極形成部において、前記第1多孔質部および前記第2多孔質部の表面が、それぞれ、前記第1誘電体層および前記第2誘電体層で覆われている、請求項1または2に記載の電解コンデンサ用電極箔。
  4.  巻回体と、電解質とを備え、
     前記巻回体は、陽極箔、陰極箔、および前記陽極箔と前記陰極箔との間に配されるセパレータを巻回して構成されており、
     前記陽極箔は、請求項1または2に記載の電極箔である、電解コンデンサ。
  5.  前記巻回体において、前記電極箔は、前記第1主面が前記巻回体の軸心側を向くように配置されている、請求項4に記載の電解コンデンサ。
  6.  さらに、前記陽極箔に接続されるリード部材を備え、
     前記陽極箔と、前記リード部材とは、前記陽極箔の前記第2主面と前記リード部材とが重なる重なり部において、かしめ部により接続されている、請求項4に記載の電解コンデンサ。
  7.  陽極引出部および陰極形成部を有する陽極体と、前記陰極形成部を覆う陰極部とを備えるコンデンサ素子が複数積層された積層体を備え、
     前記積層体は、前記陽極引出部が複数積層された陽極積層部と、前記陰極部で覆われた前記陰極形成部が複数積層された陰極積層部とを有し、
     前記複数のコンデンサ素子の前記陽極体の少なくとも1つは、請求項3に記載の電極箔である、電解コンデンサ。
  8.  前記積層体において、前記電極箔は、前記第1主面が前記積層体の積層方向の中心側を向くように配置されている、請求項7に記載の電解コンデンサ。
  9.  第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔を準備する第1工程と、
     前記第1多孔質部の表面を覆う第1誘電体層、および、前記第2多孔質部の表面を覆う第2誘電体層を、それぞれ個別に形成する第2工程と、
    を含む、電解コンデンサ用電極箔の製造方法。
  10.  前記第2工程は、
     原子層堆積法により、第1温度TA1℃で前記第1誘電体層を形成する第2A工程と、
     原子層堆積法により、第2温度TA2℃で前記第2誘電体層を形成する第2B工程と、を含む、請求項9に記載の電解コンデンサ用電極箔の製造方法。
  11.  前記第2A工程の後、前記第2B工程を行い、
     前記第2B工程は、前記第1誘電体層を有する前記第1表面を前記第2温度TA2で熱処理して、前記第1誘電体層の結晶性を高める工程を兼ねる、請求項10に記載の電解コンデンサ用電極箔の製造方法。
  12.  前記第2A工程は、前記第2主面を前記第1温度TA1で熱処理して、前記第2多孔質部の表面に前記第2多孔質部を構成する金属部分の酸化皮膜を形成する工程を兼ねており、
     前記第2B工程では、前記酸化皮膜を介して、前記第2多孔質部の表面に前記第2誘電体層を形成する、請求項11に記載の電解コンデンサ用電極箔の製造方法。
  13.  前記第1温度TA1と、前記第2温度TA2とが、
     0≦|TA1-TA2|≦50、90≦TA1≦400、かつ、90≦TA2≦400の関係を満たす、請求項10~12のいずれか1項に記載の電解コンデンサ用電極箔の製造方法。
  14.  前記第1誘電体層の厚みF1と、前記第2誘電体層の厚みF2とが、
     0.75≦F1/F2≦0.97
    の関係を満たす、請求項9~13のいずれか1項に記載の電解コンデンサ用電極箔の製造方法。
  15.  前記第1誘電体層を有する前記第1主面側で発現する静電容量C1と、前記第2誘電体層を有する前記第2主面側で発現する静電容量C2とが、
     0.80≦C2/C1≦0.99
    の関係を満たす、請求項9~13のいずれか1項に記載の電解コンデンサ用電極箔の製造方法。
  16.  第1主面および前記第1主面と反対側の第2主面を有し、前記第1主面側の第1多孔質部および前記第2主面側の第2多孔質部を有する金属箔に対して、原子層堆積法により、前記第1多孔質部の表面を覆う第1誘電体層、および、前記第2多孔質部の表面を覆う第2誘電体層を、それぞれ個別に形成する成膜部を備える、電解コンデンサ用電極箔の製造システム。
  17.  前記成膜部は、
     第1成膜領域において、前記第1主面に対向し、前記第1主面に第1原料ガスを供給する複数の第1ノズルと、
     前記第1成膜領域と隔離された第2成膜領域において、前記第2主面に対向し、前記第2主面に第2原料ガスを供給する複数の第2ノズルと、を備え、
     前記電解コンデンサ用電極箔の製造システムは、
     前記第1成膜領域において前記第1主面に沿って前記複数の第1ノズルを移動させる第1移動手段と、
     前記第2成膜領域において前記第2主面に沿って前記複数の第2ノズルを移動させる第2移動手段と、を備える、請求項16に記載の電解コンデンサ用電極箔の製造システム。
  18.  前記金属箔を、前記第1成膜領域および前記第2成膜領域において搬送する搬送手段を備え、
     前記第1移動手段は、前記第1成膜領域内の前記金属箔の搬送経路に沿って前記複数の第1ノズルを移動させ、
     前記第2移動手段は、前記第2成膜領域内の前記金属箔の搬送経路に沿って前記複数の第2ノズルを移動させる、請求項17に記載の電解コンデンサ用電極箔の製造システム。
  19.  前記金属箔の搬送経路は、前記第1成膜領域および前記第2成膜領域のそれぞれにおいて、直線経路、および/または、前記金属箔が湾曲して搬送される曲線経路を含み、
     前記第1移動手段および前記第2移動手段は、それぞれ、前記複数の第1ノズルおよび前記複数の第2ノズルを、前記直線経路および/または前記曲線経路に沿って移動させる、請求項18に記載の電解コンデンサ用電極箔の製造システム。
  20.  前記第1移動手段により、前記第1成膜領域において、前記複数の第1ノズルは、前記金属箔の搬送方向と同じ方向もしくはその反対方向に移動するか、または、前記搬送経路上を往復する、請求項18または19に記載の電解コンデンサ用電極箔の製造システム。
  21.  前記第2移動手段により、前記第2成膜領域において、前記複数の第2ノズルは、前記金属箔の搬送方向と同じ方向もしくはその反対方向に移動するか、または、前記搬送経路上を往復する、請求項18~20のいずれか1項に記載の電解コンデンサ用電極箔の製造システム。
  22.  前記金属箔を、第1成膜領域および前記第1成膜領域と隔離された第2成膜領域において搬送する搬送ローラを備え、
     前記成膜部は、
     前記第1成膜領域において前記第1主面に第1原料ガスを供給する第1成膜装置と、
     前記第2成膜領域において前記第2主面に第2原料ガスを供給する第2成膜装置と、
    を備える、請求項16に記載の電解コンデンサ用電極箔の製造システム。
  23.  前記金属箔を、第1成膜領域および前記第1成膜領域と隔離された第2成膜領域において搬送する搬送ローラを備え、
     前記第1成膜装置は、前記第1成膜領域において揺動しながら前記第1主面に前記第1原料ガスを供給し、
     前記第2成膜装置は、前記第2成膜領域において揺動しながら前記第2主面に前記第2原料ガスを供給する、請求項22に記載の電解コンデンサ用電極箔の製造システム。
  24.  前記金属箔を、第1成膜領域および前記第1成膜領域と隔離された第2成膜領域において搬送するとともに、前記第1成膜領域および前記第2成膜領域のそれぞれにおいて往復運動させる搬送ローラを備え、
     前記成膜部は、
     前記第1成膜領域において前記第1主面に第1原料ガスを供給する第1成膜装置と、
     前記第2成膜領域において前記第2主面に第2原料ガスを供給する第2成膜装置と、
    を備える、請求項16に記載の電解コンデンサ用電極箔の製造システム。
  25.  前記第1成膜装置は、前記第1主面に前記第1原料ガスを供給する複数の第1ノズルを備え、
     前記第2成膜装置は、前記第2主面に前記第2原料ガスを供給する複数の第2ノズルを備え、
     前記第1ノズルの個数と、前記第2ノズルの個数とは、互いに異なっている、請求項22~24のいずれか1項に記載の電解コンデンサ用電極箔の製造システム。
  26.  前記搬送ローラは、前記金属箔を、前記第1成膜領域および前記第2成膜領域の順に搬送し、
     前記第1成膜装置は、前記第1成膜領域において、前記第2主面を熱処理して、前記第2多孔質部の表面に前記第2多孔質部を構成する金属部分の酸化皮膜を形成する第1熱処理装置を兼ねており、
     前記第2成膜装置は、前記第2成膜領域において、前記第1誘電体層を有する前記第1主面を熱処理して、前記第1誘電体層の結晶性を高める第2熱処理装置を兼ねている、請求項22~25のいずれか1項に記載の電解コンデンサ用電極箔の製造システム。
  27.  前記第1誘電体層の厚みF1と、前記第2誘電体層の厚みF2とが、
     0.75≦F1/F2≦0.97
    の関係を満たす、請求項16~26のいずれか1項に記載の電解コンデンサ用電極箔の製造システム。
  28.  前記第1誘電体層を有する前記第1主面側で発現する静電容量C1と、前記第2誘電体層を有する前記第2主面側で発現する静電容量C2とが、
     0.80≦C2/C1≦0.99
    の関係を満たす、請求項16~26のいずれか1項に記載の電解コンデンサ用電極箔の製造システム。
PCT/JP2022/036200 2021-09-30 2022-09-28 電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム WO2023054481A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280065871.4A CN118077025A (zh) 2021-09-30 2022-09-28 电解电容器用电极箔、电解电容器、电解电容器用电极箔的制造方法和电解电容器用电极箔的制造系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161958 2021-09-30
JP2021161958 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054481A1 true WO2023054481A1 (ja) 2023-04-06

Family

ID=85782854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036200 WO2023054481A1 (ja) 2021-09-30 2022-09-28 電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム

Country Status (2)

Country Link
CN (1) CN118077025A (ja)
WO (1) WO2023054481A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167773A1 (ja) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 電解コンデンサ用電極箔および電解コンデンサ、ならびに、それらの製造方法
WO2020171114A1 (ja) * 2019-02-20 2020-08-27 パナソニックIpマネジメント株式会社 製膜方法、製膜装置および電極箔の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167773A1 (ja) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 電解コンデンサ用電極箔および電解コンデンサ、ならびに、それらの製造方法
WO2020171114A1 (ja) * 2019-02-20 2020-08-27 パナソニックIpマネジメント株式会社 製膜方法、製膜装置および電極箔の製造方法

Also Published As

Publication number Publication date
CN118077025A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
JP7220438B2 (ja) 電極箔の製造方法および電解コンデンサの製造方法
US8213159B2 (en) Electrode foil, method of manufacturing electrode foil, and electrolytic capacitor
US11222753B2 (en) Electrode, electrolytic capacitor, and method for manufacturing those
US20200373090A1 (en) Electrode foil for electrolytic capacitor, electrolytic capacitor, and methods for manufacturing same
CN106688066A (zh) 具有钙钛矿电介质的卷起电容器及生产其的工艺
WO2023054481A1 (ja) 電解コンデンサ用電極箔、電解コンデンサ、電解コンデンサ用電極箔の製造方法、および電解コンデンサ用電極箔の製造システム
US11848163B2 (en) Electrode foil for electrolytic capacitor, electrolytic capacitor, and method for manufacturing same
JP5104008B2 (ja) 電解コンデンサ
JP2007080907A (ja) 金属化フィルムコンデンサとその製造方法
WO2022024772A1 (ja) 電解コンデンサ用電極箔および電解コンデンサ
JP5104007B2 (ja) 電極箔及びその製造方法
WO2023145920A1 (ja) 電解コンデンサ用電極箔、電解コンデンサ、および電解コンデンサ用電極箔の製造方法
WO2023042681A1 (ja) 電解コンデンサ用電極箔および電解コンデンサ
US11915885B2 (en) Electrode foil for electrolytic capacitor, electrolytic capacitor, and method for manufacturing electrolytic capacitor
JP2010050387A (ja) 金属化フィルムの製造方法、金属化フィルム、フィルム材、フィルムコンデンサの製造方法及びフィルムコンデンサ
WO2023042594A1 (ja) 電解コンデンサ用電極箔、電解コンデンサ、および電解コンデンサ用電極箔の製造方法
US20230131142A1 (en) Electrode foil for electrolytic capacitor, electrolytic capacitor, and method for manufacturing electrolytic capacitor
WO2022071221A1 (ja) 成膜装置、電解コンデンサ用電極箔の製造方法、および電解コンデンサの製造方法
JP2011049436A (ja) 巻取り式電子ビーム真空蒸着法を用いた積層セラミックコンデンサー及びその製造方法。
CN116721873A (zh) 一种复合腐蚀铝箔及其制备方法和应用
JP5831140B2 (ja) コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551607

Country of ref document: JP