WO2020166202A1 - 膜電極接合体および燃料電池 - Google Patents

膜電極接合体および燃料電池 Download PDF

Info

Publication number
WO2020166202A1
WO2020166202A1 PCT/JP2019/049751 JP2019049751W WO2020166202A1 WO 2020166202 A1 WO2020166202 A1 WO 2020166202A1 JP 2019049751 W JP2019049751 W JP 2019049751W WO 2020166202 A1 WO2020166202 A1 WO 2020166202A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode side
membrane
electrode assembly
air electrode
fuel electrode
Prior art date
Application number
PCT/JP2019/049751
Other languages
English (en)
French (fr)
Inventor
孝祐 布尾
丈人 後藤
祐一 見神
健 寺山
智宏 黒羽
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020572108A priority Critical patent/JP7378040B2/ja
Priority to EP19914719.0A priority patent/EP3926719A4/en
Publication of WO2020166202A1 publication Critical patent/WO2020166202A1/ja
Priority to US17/355,263 priority patent/US20210320314A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a membrane electrode assembly of an electrochemical device.
  • it relates to a membrane electrode assembly of a fuel cell.
  • a solid oxide fuel cell (hereinafter referred to as SOFC), for example, is known as one of electrochemical devices using an electrolyte material made of solid oxide.
  • Oxide ion conductors typified by stabilized zirconia are widely used as electrolyte materials for SOFCs. Since the ionic conductivity of the oxide ion conductor decreases as the temperature lowers, the SOFC using the stabilized zirconia as an electrolyte material requires an operating temperature of 700° C. or higher, for example.
  • an SOFC using an electrolyte material having proton conductivity can be operated at 600° C., and therefore has been drawing attention from the viewpoint of chemical stability of members and cost reduction.
  • the cell shape of the solid oxide fuel cell is roughly classified into a cylindrical type and a flat type.
  • the current path becomes long and the resistance loss becomes large. Therefore, the development of the flat type is recommended in order to obtain higher output.
  • Patent Document 1 In the past (Patent Document 1), sufficient examination has not been made on the shape change of the membrane electrode assembly under the operating environment. That is, if the electrode material serving as the support and the electrolyte material have different coefficients of linear expansion or contraction, the shape of the membrane electrode assembly will inevitably change in various operating environments. The change in body shape has not been sufficiently studied.
  • the present disclosure proposes, as an example, a membrane electrode assembly that can suppress the shape change even in an operating environment.
  • a membrane electrode assembly including a solid electrolyte membrane containing an electrolyte material, and an electrode in contact with a hydrogen-containing gas, wherein the electrode is made of a ceramic member. And a hole formed in the structure support portion from the boundary surface in contact with the hydrogen-containing gas toward the solid electrolyte membrane side and filled with a filler having hydrogen oxidation activity and electrical conductivity.
  • a membrane electrode assembly including a solid electrolyte membrane containing an electrolyte material, and an electrode in contact with a reaction gas, the electrode being a structural support made of a ceramic member. And a portion extending from the boundary surface in contact with the reaction gas in the structure supporting portion toward the solid electrolyte membrane side, and at least hydrogen oxidation activity, oxygen reduction activity, proton reduction activity, steam decomposition activity, and oxide ion oxidation.
  • a membrane electrode assembly having a hole filled with a filler having any one of the activities.
  • the present disclosure is configured as described above, and has an effect of suppressing a shape change even in an operating environment.
  • FIG. 3 is a plan view of the membrane electrode assembly according to the first embodiment of the present disclosure as viewed from the first fuel electrode side boundary surface side in contact with a hydrogen-containing gas.
  • FIG. 2 is a schematic diagram showing an example of an AA cross section in the membrane electrode assembly shown in FIG. 1. It is a figure which shows the modification of the membrane electrode assembly shown in FIG.
  • FIG. 8 is a schematic diagram showing an example of a cross section of a membrane electrode assembly according to a modified example 1 of the first embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing an example of a cross section of a membrane electrode assembly according to a modification 2 of the first embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing an example of a cross section of a membrane electrode assembly according to a modified example 3 of the first embodiment of the present disclosure. It is a perspective view which shows typically the positional relationship of the 1st fuel electrode side hole part and the 2nd fuel electrode side hole part with which the fuel electrode of the membrane electrode assembly shown in FIG. 6 is equipped.
  • FIG. 11 is a schematic diagram showing an example of a cross section of a membrane electrode assembly according to a modified example 4 of the first embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing an example of a cross section of a membrane electrode assembly according to a modified example 5 of the first embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram showing an example of a cross section of a membrane electrode assembly according to a modification 6 of the first embodiment of the present disclosure.
  • FIG. 6 is a plan view of a membrane electrode assembly according to a second embodiment of the present disclosure as viewed from a first air electrode side boundary surface side in contact with an oxidant gas.
  • FIG. 12 is a schematic diagram showing an example of an AA cross section in the membrane electrode assembly shown in FIG. 11. It is a figure which shows the modification of the membrane electrode assembly shown in FIG. It is a schematic diagram which shows an example of the cross section of the membrane electrode assembly which concerns on the modification 1 of 2nd Embodiment of this indication.
  • FIG. 7 is a plan view of a membrane electrode assembly according to a third embodiment of the present disclosure as viewed from the electrode side.
  • FIG. 22 is a cross-sectional view taken along the line AA schematically showing the structure of the membrane electrode assembly shown in FIG. 21. It is a figure which shows the modification of the membrane electrode assembly shown in FIG. It is a schematic diagram which shows an example of the cross section of the membrane electrode assembly which concerns on the modification 1 of 3rd Embodiment of this indication.
  • FIG. 29 is a perspective view schematically showing an arrangement relationship between a first hole portion and a second hole portion included in the electrode of the membrane electrode assembly shown in FIG. 28.
  • FIG. 8 is a plan view of a membrane electrode assembly according to a fourth embodiment of the present disclosure, as viewed from the first fuel electrode side boundary surface side in contact with a hydrogen-containing gas.
  • FIG. 32 is a cross-sectional view taken along the line AA schematically showing the structure of the membrane electrode assembly shown in FIG. 31. It is a figure which shows the modification of the air electrode with which the membrane electrode assembly shown in FIG. 31 is equipped.
  • FIG. 33 is a diagram showing a modified example of the fuel electrode included in the membrane electrode assembly shown in FIG. 32. It is sectional drawing which shows typically the structure of the membrane electrode assembly which concerns on the modification 1 of 4th Embodiment of this indication. A schematic diagram showing the positional relationship between the air electrode side holes and the fuel electrode side holes when the membrane electrode assembly according to the modified example 1 of the fourth embodiment of the present disclosure is viewed in plan from the first air electrode side boundary surface. It is a figure. It is a sectional view showing typically the structure of the membrane electrode assembly concerning the modification 2 of a 4th embodiment of this indication.
  • FIG. 11 is a plan view of a membrane electrode assembly according to a modified example 3 of the fourth embodiment of the present disclosure as viewed from the first air electrode side boundary surface side in contact with an oxidant gas.
  • FIG. 41 is a BB sectional view schematically showing the structure of the membrane electrode assembly shown in FIG. 40.
  • FIG. 20 is a cross-sectional view schematically showing the structure of a membrane electrode assembly according to a modified example 8 of the fourth embodiment of the present disclosure.
  • FIG. 20 is a cross-sectional view schematically showing the structure of a membrane electrode assembly according to a modified example 9 of the fourth embodiment of the present disclosure.
  • the shape change of the membrane electrode assembly is caused by the difference in the linear expansion coefficient between the bonding materials.
  • the coefficient of linear expansion corresponds to the coefficient of linear expansion (K ⁇ 1 ) determined by the method for measuring thermal expansion of JIS R1618 fine ceramics by thermomechanical analysis.
  • ceramic materials such as partially stable zirconia (YSZ), lanthanum gallate-based oxide, barium zirconate-based oxide, and barium cerium-based oxide used in solid electrolyte materials have linear expansion coefficients of 8 to 11 ⁇ 10 ⁇ 6 / K is small, and metals such as nickel, iron, cobalt, and palladium that are commonly used in electrodes (fuel electrodes) have large linear expansion coefficients of 11 to 20 ⁇ 10 ⁇ 6 /K. Further, the oxides of these metals also have a coefficient of linear expansion larger than that of the above-mentioned ceramic materials and about 10 to 20 ⁇ 10 ⁇ 6 /K. For example, NiO is about 14 ⁇ 10 ⁇ 6 /K.
  • Metals such as nickel, iron, cobalt, and lanthanum which are commonly used in electrodes (air electrodes), have large linear expansion coefficients of 11 to 20 ⁇ 10 ⁇ 6 /K. Further, these metal oxides also have a coefficient of linear expansion larger than that of the above-mentioned ceramic materials and about 10 to 20 ⁇ 10 ⁇ 6 /K.
  • the lanthanum strontium cobalt iron complex oxide is about 15 to 18 ⁇ 10 ⁇ 6 /K.
  • the linear expansion coefficient of the electrode material composed of the composite material of metal or metal oxide and ceramics is larger than the linear expansion coefficient of the solid electrolyte material.
  • the shape of the flat plate type cell is flat at the sintering temperature, since the solvent, binder, plasticizer, etc. are removed during the temperature rising process.
  • the fuel electrode with a larger linear expansion coefficient has a larger volume change than the solid electrolyte membrane.
  • Warps upward in the configuration in which the solid electrolyte membrane is laminated on the fuel electrode, Warps upward. Therefore, in Patent Document 1, in order to reduce the difference in linear expansion coefficient between the bonding materials, a layer having an intermediate linear expansion coefficient between the electrode (fuel electrode in Patent Document 1) serving as a support and the solid electrolyte membrane. The warp is reduced by providing.
  • Patent Document 1 only relaxation of warpage during sintering of the cell and relaxation of thermal stress at the interface between different materials are examined, and the warpage and thermal stress in the actual operating environment of the cell are examined.
  • the present inventors have found that sufficient consideration has not been given to the above.
  • the operating environment refers to a temperature rising process up to an operating temperature, a reduction process, and a fastening state by a current collecting member.
  • the reduction treatment is, for example, to change the nickel oxide of the fuel electrode in Patent Document 1 to metallic nickel.
  • the linear expansion coefficients of the bonding materials are different from each other. This causes a change in shape of the membrane electrode assembly.
  • the air electrode material a material having both oxygen reduction activity and electrical conductivity is used.
  • general air electrode materials lanthanum strontium cobalt iron complex oxide (LSCF), lanthanum strontium cobalt complex oxide ( LSC), lanthanum strontium iron complex oxide (LSF), lanthanum strontium manganese complex oxide (LSM), barium strontium cobalt iron complex oxide (BSCF).
  • the linear expansion coefficient of these oxides is about 11 to 23 ⁇ 10 ⁇ 6 /K, which is larger than the linear expansion coefficient of the solid electrolyte material.
  • the air electrode has a larger volume change at the time of rising and lowering temperatures than the solid electrolyte membrane, which causes the membrane electrode assembly to warp and crack or It causes a crack. Further, it causes separation between the solid electrolyte membrane and the air electrode.
  • oxygen reduction activity and electrical conductivity can be obtained in the air electrode, particularly in the portion adjacent to the electrolyte layer (that is, near the interface). It is conceivable that the difference in the linear expansion coefficient between the solid electrolyte membrane and the air electrode is reduced by using a mixture of a material satisfying both requirements and an electrolyte material. However, the present inventors have found that, from the viewpoint of maintaining the oxygen reduction activity and electric conductivity of the air electrode, there is a limit in reducing the difference in linear expansion coefficient by mixing the electrolyte materials.
  • the membrane electrode assembly in order to suppress the cell shape change due to the difference in the linear expansion coefficient described above, it is desirable to support the structure of the membrane electrode assembly by the solid electrolyte membrane itself, but when configured in this way, the membrane of the solid electrolyte membrane It will increase the thickness.
  • the ionic conductivity of the solid electrolyte material is poor as compared with the electrode material. Therefore, an increase in the thickness of the solid electrolyte membrane results in a decrease in battery performance.
  • the electrode of the electrode-supported membrane electrode assembly can be composed of, for example, a mixture of nickel and a solid electrolyte material, and is referred to as electric conduction, ionic conduction, gas diffusion ability, and structural support of the membrane electrode assembly. Guarantees four functions.
  • the present inventors have made a structure in which at least the function of ensuring structural support among the functions of these four electrodes is made independent from other functions. It has been found that the shape change of the electrode assembly can be suppressed. That is, by making the portion of the electrode that ensures the structural support (hereinafter referred to as the structural support portion) have a coefficient of linear expansion equivalent to that of the solid electrolyte membrane, it is possible to suppress the warpage of the cell even in the operating environment. Found.
  • the electrode is composed of the above-mentioned structural support part and a member responsible for electric conduction, ionic conduction, and gas diffusion ability.
  • a member that plays a role of gas diffusion among the electric conduction, the ionic conduction, and the gas diffusion ability in the structure supporting member, a plurality of flow paths for allowing the reaction gas to flow in are made to communicate between the reaction gas flow path and the solid electrolyte membrane.
  • a filler having electrical conductivity and ionic conductivity is provided in the hole as a member responsible for electrical conduction and ionic conduction.
  • the electrode when the electrode is a fuel electrode, in order to oxidize hydrogen in the hydrogen-containing gas flowing into the hole, the hole is filled with a filler having hydrogen oxidation activity and electrical conductivity, and the electrode is an air electrode.
  • the pores are filled with a filler having oxygen reduction activity and electrical conductivity.
  • the present inventors have found that in order to improve the performance of the membrane/electrode assembly, it is necessary to study the gas diffusibility, which is carried by a plurality of holes. In particular, it has been found that the concentration overvoltage can be reduced and the performance of the membrane electrode assembly can be improved by increasing the gas diffusibility on the downstream side in the reaction gas flow direction.
  • the above findings of the present inventors have not been clarified until now, and they solve the problem of warpage of the membrane electrode assembly. Furthermore, it also solves the problem of performance deterioration due to concentration overvoltage on the downstream side in the reaction gas flow direction.
  • the present disclosure specifically provides the following aspects.
  • a membrane electrode assembly is a membrane electrode assembly including a solid electrolyte membrane containing an electrolyte material and an electrode in contact with a reaction gas, wherein the electrode is made of a ceramic member. And the extended structure support portion, extending from the boundary surface in contact with the reaction gas in the structure support portion toward the solid electrolyte membrane side, at least hydrogen oxidation activity, oxygen reduction activity, proton reduction activity, steam decomposition activity, and And a hole filled with a filler having any one of oxide ion oxidation activities.
  • the electrode since the electrode is provided with the structure supporting portion made of the ceramic member, the structure of the membrane electrode assembly can be supported and the difference in thermal expansion coefficient from the solid electrolyte membrane can be reduced. Therefore, it is possible to suppress the occurrence of warpage in the membrane electrode assembly in the operating environment.
  • the electrode since the electrode has pores filled with the filler, when the filler has hydrogen oxidation activity, it oxidizes hydrogen, when it has oxygen reduction activity, it reduces oxygen, and when it has proton reduction activity, The reduction of protons, the decomposition of steam when having steam decomposition activity, and the oxidation of oxide ions when having oxide ion oxidation activity can be promoted.
  • the membrane electrode assembly according to the first aspect of the present disclosure has an effect that it is possible to suppress a change in shape even in an operating environment.
  • the reaction gas is a hydrogen-containing gas
  • the filler has hydrogen oxidation activity and electrical conductivity. Good.
  • the electrode can promote the oxidation of hydrogen and ensure the electric conductivity.
  • the hole is provided in the boundary surface, and the first opening into which the hydrogen-containing gas flows as the reaction gas, and the first opening.
  • the second opening may be provided at the end on the solid electrolyte membrane side opposite to the section.
  • the first opening and the second opening are provided, so hydrogen can flow into the hole through the first opening. Further, a filling material is filled in the hole. Therefore, hydrogen is oxidized on the surface of the filling material, and is divided into protons and electrons. Then, the protons can be moved from the electrode toward the solid electrolyte membrane through the second opening, and the electron can be taken out of the electrode.
  • the membrane electrode assembly according to the second aspect of the present disclosure is used as, for example, an electrode (that is, an anode) of a fuel cell, power generation performance can be ensured.
  • the hole portion connects the first hole portion, the second hole portion, and the first hole portion and the second hole portion.
  • the communication path may be provided.
  • the communication passage since the communication passage is provided, it is possible to increase the channels through which the hydrogen-containing gas can flow. Therefore, it can have higher hydrogen oxidation activity and higher electrical conductivity. Further, even if some trouble occurs in the passage of the first hole portion or the second hole portion and the circulation of the hydrogen-containing gas is hindered, the hydrogen-containing gas can be circulated by another route via the communication passage. Therefore, the electrode can maintain hydrogen oxidation activity and electrical conductivity.
  • the filler may be a compound containing Ni.
  • the filler is a compound containing Ni, it is possible to have higher hydrogen oxidation activity and higher electrical conductivity.
  • the filler may be cermet.
  • the filling material is cermet, it is possible to increase the reaction field of hydrogen oxidation. Therefore, it can have a higher hydrogen oxidation activity.
  • the filling material may be a porous body.
  • the filler is a porous body, the hydrogen-containing gas that contributes to the reaction can easily flow through the pores. Therefore, higher power generation performance can be obtained.
  • the structural support portion may be composed of the ceramic member containing the electrolyte material.
  • the ceramic member of the structure supporting portion contains the electrolyte material, the linear expansion coefficient of the structure supporting portion and the linear expansion coefficient of the solid electrolyte membrane are close to each other. Therefore, it is possible to suppress the occurrence of warpage in the operating environment.
  • the reaction gas is an oxidant gas
  • the filler has oxygen reduction activity and electrical conductivity. Good.
  • the electrode can promote reduction of oxygen and ensure electric conductivity.
  • the hole is provided in the boundary surface, the first opening into which the oxidant gas flows as the reaction gas, and the first opening.
  • the second opening may be provided at the end on the solid electrolyte membrane side opposite to the section.
  • the oxidant gas oxygen
  • the oxidant gas oxygen
  • a filling material is filled in the hole. Therefore, water is generated by oxygen that has been reduced on the surface of the filler and has been conducted to the vicinity of the second opening, protons that have moved through the solid electrolyte membrane, and electrons that have reached the electrodes via the external circuit.
  • the membrane electrode assembly according to the fifth aspect of the present disclosure is used, for example, as an electrode (that is, cathode) of a fuel cell, it is possible to ensure power generation performance.
  • the hole portion includes a first hole portion, a second hole portion, and a connection that connects the first hole portion and the second hole portion. And a passage.
  • the communication passage since the communication passage is provided, it is possible to increase the passages through which the oxidant gas can flow. Therefore, it can have higher oxygen reduction activity and higher electrical conductivity. Further, even if some trouble occurs in the route of the first hole portion or the second hole portion and the flow of the oxidizing gas is obstructed, it can be flowed through another route via the communication passage. Therefore, the electrode can maintain oxygen reduction activity and electrical conductivity.
  • the filler may be a porous body.
  • the filler is a porous material, the oxidant gas that contributes to the reaction can easily flow through the pores. Therefore, higher power generation performance can be obtained.
  • the filler may include at least one element of Mn, Fe, Co, and Ni.
  • the filler filled in the pores is a compound containing at least one element of Mn, Fe, Co, and Ni, it may have high oxygen reduction activity and high electrical conductivity. it can.
  • a membrane electrode assembly according to a seventh aspect of the present disclosure is the above-described fifth aspect, wherein the filler is a lanthanum strontium cobalt complex oxide, a lanthanum strontium cobalt iron complex oxide, a lanthanum strontium iron complex oxide, One or more compounds selected from and lanthanum nickel iron complex oxide may be used.
  • the filler to be filled in the pores is one or more selected from lanthanum strontium cobalt composite oxide, lanthanum strontium cobalt iron composite oxide, lanthanum strontium iron composite oxide, and lanthanum nickel iron composite oxide. Since it is a compound of (1), it can have high oxygen reduction activity and high electrical conductivity at around 600 degrees, which is the operating temperature of a fuel cell or the like.
  • the structural support section may be made of a ceramic member containing the electrolyte material.
  • the ceramic member of the structure supporting portion contains the electrolyte material, the linear expansion coefficient of the structure supporting portion and the linear expansion coefficient of the solid electrolyte membrane are close to each other. Therefore, it is possible to suppress the occurrence of warpage in the operating environment.
  • the structural support portion has regions in the boundary surface in which the opening areas of the hole portions per unit area are different.
  • the opening area of the hole portion per unit area of the upstream side area in the flow direction of the reaction gas is the first area ratio
  • the opening area of the hole portion per unit area of the downstream side area is When the second area ratio is used, the relationship of first area ratio ⁇ second area ratio may be satisfied.
  • the electrode since the electrode has the structure supporting portion, it is possible to support the structure of the membrane electrode assembly and reduce the difference in thermal expansion coefficient from the solid electrolyte membrane. Therefore, it is possible to suppress the occurrence of warpage in the membrane electrode assembly in the operating environment.
  • the electrode has a hole filled with a filler in the structure supporting portion, and the opening area of the hole per unit area at the interface with the reaction gas in the structure supporting portion has a first area ratio ⁇ Since the relationship of the two area ratios is satisfied, the concentration overvoltage in the region on the downstream side in the reaction gas flow direction can be reduced. Therefore, it is possible to suppress the performance degradation in the downstream region and improve the performance.
  • the above-mentioned opening area of the hole per unit area means the ratio of the opening area of all the holes included per unit area in a predetermined area including the hole. Therefore, the first area ratio is defined as the total area of the openings of the holes existing in the upstream area of the boundary surface (that is, “the total area of the openings of the holes existing in the upstream area”). + Area of the structural support portion in the upstream region”).
  • the second area ratio is the total area of the openings of the holes existing in the downstream area of the boundary surface, ie, the area of the area of the downstream side (that is, "the total opening area of the holes existing in the area of the downstream side". + Area of the structural support portion in the region on the downstream side").
  • the membrane electrode assembly according to the ninth aspect of the present disclosure is the membrane electrode assembly according to the eighth aspect, wherein the hole per unit area in the region between the upstream side region and the downstream side region When the opening area is the third area ratio, the configuration may satisfy the relationship of first area ratio ⁇ third area ratio ⁇ second area ratio.
  • the opening area of the hole per unit area satisfies the relationship of the first area ratio ⁇ the third area ratio ⁇ the second area ratio, in addition to the region on the downstream side in the reaction gas flow direction,
  • the gas diffusion effect can be promoted also in the region between the side and the downstream side. Therefore, the concentration overvoltage can be reduced in the region on the downstream side and the region between the upstream side and the downstream side, and the performance deterioration can be suppressed.
  • the membrane electrode assembly according to the tenth aspect of the present disclosure is the membrane electrode assembly according to the eighth aspect, wherein the hole per unit area in the region between the upstream side region and the downstream side region When the opening area is the third area ratio, the configuration may satisfy the relationship of third area ratio ⁇ first area ratio ⁇ second area ratio.
  • the opening area of the hole per unit area satisfies the relationship of the third area ratio ⁇ the first area ratio ⁇ the second area ratio, the gas diffusion effect is obtained in the region on the downstream side in the reaction gas flow direction. Can be promoted. Therefore, the concentration overvoltage can be reduced in the downstream region, and the performance deterioration can be suppressed.
  • the membrane electrode assembly of the present disclosure when used in, for example, a fuel cell, the temperature of the region between the upstream side and the downstream side in the reaction gas flow direction becomes higher than in other regions. Since the third area ratio is smaller than the first area ratio and the second area ratio, the gas diffusibility is suppressed in the region between the upstream side and the downstream side. For this reason, in the region between the upstream side and the downstream side, it is more difficult for current to flow than in the other regions, and the temperature rise can be suppressed.
  • the hole portion includes a first hole portion, a second hole portion, the first hole portion, and the first hole portion.
  • a communication passage that communicates with the second hole may be provided.
  • the communication passage since the communication passage is provided, it is possible to increase the paths through which the reaction gas can flow. Therefore, when the reaction gas is hydrogen and the filler has hydrogen oxidation activity and electrical conductivity, it is possible to have higher hydrogen oxidation activity and electrical conductivity. On the other hand, when the reaction gas is oxygen and the filler has oxygen reduction activity and electrical conductivity, it can have higher oxygen reduction property and electrical conductivity.
  • the electrode can maintain hydrogen oxidation activity and electrical conductivity, or redox property and electrical conductivity.
  • the filler may be a porous body.
  • the filling material is a porous body, the reaction gas that contributes to the reaction can easily flow through the pores. Therefore, higher power generation performance can be obtained.
  • the filler when the filler has oxygen reduction activity and electrical conductivity, is at least Mn. It may be a compound containing any one element of Fe, Co, and Ni.
  • the filler filled in the pores is a compound containing at least one element of Mn, Fe, Co and Ni. Therefore, it can have high oxygen reduction activity and high electrical conductivity.
  • the filler when the filler has hydrogen oxidation activity and electrical conductivity, the filler is Ni. It is a compound containing.
  • the filler filled in the pores is a compound containing Ni, it is possible to have higher hydrogen oxidation activity and higher electrical conductivity.
  • the filler may be cermet.
  • the filling material is cermet, it is possible to increase the reaction field of hydrogen oxidation and have a higher hydrogen oxidation activity.
  • the structural support portion may be formed of a ceramic member containing the electrolyte material.
  • the ceramic member of the structure supporting portion contains the electrolyte material, the linear expansion coefficient of the structure supporting portion and the linear expansion coefficient of the solid electrolyte membrane are close to each other. Therefore, it is possible to suppress the occurrence of warpage in the operating environment.
  • a membrane electrode assembly according to an eleventh aspect of the present disclosure is the membrane electrode assembly according to any one of the first to tenth aspects, in which the hole is provided in the boundary surface and the reaction gas flows in.
  • a configuration having a first opening and a second opening provided at an end on the solid electrolyte membrane side opposite to the first opening may be adopted.
  • the reaction gas can flow into the hole through the first opening. Further, a filling material is filled in the hole.
  • the membrane electrode assembly according to the eleventh aspect of the present disclosure is used as, for example, an electrode of a fuel cell, it is possible to ensure power generation performance.
  • a membrane electrode assembly according to a twelfth aspect of the present disclosure is, in any one of the above-described first to eleventh aspects, the hole portion, a first hole portion, a second hole portion, the It may be configured to include a communication passage that connects the first hole and the second hole.
  • the communication passage since the communication passage is provided, it is possible to increase the paths through which the reaction gas can flow. Therefore, it can have at least one of higher hydrogen oxidation activity, higher oxygen reduction activity, higher proton reduction activity, higher steam decomposition activity, and higher oxide ion oxidation activity.
  • the electrode can maintain at least one of hydrogen oxidation activity, oxygen reduction activity, proton reduction activity, steam decomposition activity, and oxide ion oxidation activity.
  • the filler may be a porous body.
  • the filling material is a porous body, the reaction gas that contributes to the reaction can easily flow through the pores. Therefore, higher power generation performance can be obtained.
  • a membrane electrode assembly is the fuel electrode according to the first aspect, wherein the reaction gas is a hydrogen-containing gas and an oxidant gas, and the electrode is a fuel electrode in contact with the hydrogen-containing gas. And an air electrode in contact with an oxidant gas, wherein the air electrode, the solid electrolyte membrane, and the fuel electrode are laminated in this order, and the fuel electrode serves as the structure supporting portion and has a fuel electrode side structure.
  • the support part and the hole part extend toward the solid electrolyte membrane side from the fuel electrode side boundary surface in contact with the hydrogen-containing gas in the fuel electrode side structure support part, and have hydrogen oxidation activity and electrical conductivity.
  • the fuel electrode since the fuel electrode has the fuel electrode side structure support portion and the air electrode has the air electrode side structure support portion, respectively, the structure of the membrane electrode assembly should be supported on both the fuel electrode side and the air electrode side.
  • the difference in thermal expansion coefficient from the solid electrolyte membrane can be reduced. Therefore, it is possible to suppress the occurrence of warpage in the membrane electrode assembly in the operating environment.
  • the fuel electrode has a fuel electrode side hole filled with the fuel electrode side filler
  • the air electrode has an air electrode side hole filled with the air electrode side filler. Therefore, it is possible to promote the oxidation of hydrogen at the fuel electrode, ensure electrical conductivity, promote the reduction of oxygen at the air electrode, and ensure electrical conductivity.
  • the membrane electrode assembly according to the first aspect of the present disclosure has an effect that it is possible to suppress a change in shape even in an operating environment.
  • air electrode side boundary surface and the “first air electrode side boundary surface” in this specification have the same meaning.
  • the membrane electrode assembly according to a fifteenth aspect of the present disclosure is the membrane electrode assembly according to the fourteenth aspect, wherein the fuel electrode side hole is provided on the fuel electrode side boundary surface, and the hydrogen-containing gas flows in first.
  • a configuration having the provided second air electrode side opening may be used.
  • the fuel electrode side hole has the first fuel electrode side opening and the second fuel electrode side opening, hydrogen flows into the fuel electrode side hole through the first fuel electrode side opening. be able to. Further, a fuel electrode side filler is filled in the fuel electrode side hole. For this reason, hydrogen is oxidized on the surface of the fuel electrode side filler, and is divided into protons and electrons. Then, the protons can be moved from the fuel electrode toward the solid electrolyte membrane through the second fuel electrode side opening, and the electrons can be taken out of the fuel electrode.
  • the air electrode side hole has the first air electrode side opening and the second air electrode side opening
  • the oxidant gas oxygen
  • the air electrode side hole is filled with an air electrode side filler. Therefore, oxygen that has been reduced on the surface of the air electrode side filler and has been conducted to the vicinity of the second air electrode side opening, and protons that have moved through the solid electrolyte membrane and reached the electrode via the external circuit. Water is generated by the electrons.
  • the membrane electrode assembly according to the present disclosure when used in, for example, a fuel cell, it is possible to ensure power generation performance.
  • a membrane electrode assembly according to a sixteenth aspect of the present disclosure is the membrane electrode assembly according to the fifteenth aspect, in which the peripheral edge of the second fuel electrode side opening portion of the fuel electrode side hole portion and the air electrode side hole portion are The peripheral edge of the second air electrode side opening may be arranged so as not to overlap each other when viewed in a plan view in the stacking direction of the membrane electrode assembly.
  • stress is generated at the peripheral edge of each of the second air electrode side opening and the second fuel electrode side opening.
  • the peripheral edge of the second air electrode side opening and the peripheral edge of the second fuel electrode side opening are arranged so as not to overlap each other when viewed in plan in the stacking direction of the membrane electrode assembly. It is possible to prevent the stress from being concentrated and acting on a specific region of the solid electrolyte membrane.
  • the membrane electrode assembly can suppress warpage and prevent cracks or cracks from occurring.
  • a membrane electrode assembly according to a seventeenth aspect of the present disclosure is the peripheral edge of the second fuel electrode side opening when viewed in a plan view in the stacking direction of the membrane electrode assembly according to the fifteenth or sixteenth aspect. It may be configured such that the surface formed by the peripheral edge of the second air electrode side opening is included in the surface formed by.
  • the surface formed by the peripheral edge of the second air electrode side opening is included in the surface formed by the peripheral edge of the second fuel electrode side opening. It is arranged as follows. That is, when viewed in plan in the stacking direction of the membrane electrode assembly, the peripheral edge of the second fuel electrode side opening and the peripheral edge of the second air electrode side opening do not overlap, so that in the operating environment, the specific electrolyte in the solid electrolyte membrane is It is possible to prevent the stress from being concentrated and acting on the region.
  • the surface formed by the peripheral edge of the second fuel electrode side opening and the surface formed by the peripheral edge of the second air electrode side opening are separated from each other so that they do not overlap each other.
  • the diffusion length of ions in the solid electrolyte membrane can be shortened during the electrochemical reaction. Therefore, the internal resistance during the electrochemical reaction can be suppressed.
  • the filling region of the material having hydrogen oxidation activity and electrical conductivity can be expanded, and the hydrogen oxidation reaction field and electrical conductivity can be increased.
  • the path can be increased. Thereby, it can have higher hydrogen oxidation activity and higher electrical conductivity.
  • a membrane electrode assembly according to an eighteenth aspect of the present disclosure is, in the fifteenth or sixteenth aspect described above, a peripheral edge of the second air electrode side opening when viewed in plan in the stacking direction of the membrane electrode assembly.
  • the surface formed by the peripheral edge of the second fuel electrode side opening may be included in the surface formed by.
  • stress is generated at the peripheral edge of each of the second air electrode side opening and the second fuel electrode side opening.
  • the surface formed by the peripheral edge of the second fuel electrode side opening is included in the surface formed by the peripheral edge of the second air electrode side opening. It is arranged as follows. That is, when viewed in a plan view in the stacking direction of the membrane electrode assembly, the peripheral edge of the second air electrode side opening and the peripheral edge of the second fuel electrode side opening do not overlap with each other. It is possible to prevent the stress from being concentrated and acting on the region.
  • the surface formed by the peripheral edge of the second air electrode side opening and the surface formed by the peripheral edge of the second fuel electrode side opening are separated from each other so that they do not overlap each other.
  • the diffusion length of ions in the solid electrolyte membrane can be shortened during the electrochemical reaction. Therefore, the internal resistance during the electrochemical reaction can be suppressed.
  • the filling region of the material having oxygen reduction activity and electrical conductivity can be expanded, and the reaction field of oxygen reduction and the electrical conductivity can be obtained.
  • the path can be increased. Thereby, it can have higher oxygen reduction activity and higher electrical conductivity.
  • a membrane electrode assembly according to a nineteenth aspect of the present disclosure is the membrane electrode assembly according to the fifteenth aspect described above, in which the periphery of the second fuel electrode side opening portion of the fuel electrode side hole portion and the air electrode side hole portion are The peripheral edge of the second air electrode side opening may be arranged such that at least some of them overlap each other when viewed in plan in the stacking direction of the membrane electrode assembly.
  • the periphery of the second fuel electrode side opening and the second air electrode side opening are arranged. Since the peripheral edges of the portions may at least partially overlap each other, the degree of freedom in arranging the fuel electrode side hole portion and the air electrode side hole portion is increased, and a large number can be formed for each. Therefore, the occupied area of each of the fuel electrode side hole portion of the fuel electrode and the air electrode side hole portion of the air electrode can be increased.
  • reaction field and electric conduction path of oxygen reduction can be expanded, and the reaction field and electric conduction path of hydrogen oxidation can be expanded, and higher oxygen reduction activity, hydrogen oxidation activity, and electric conductivity can be obtained. it can.
  • a membrane electrode assembly according to a twentieth aspect of the present disclosure is the membrane electrode assembly according to any one of the above-mentioned fourteenth to nineteenth aspects, wherein the fuel electrode side hole portion is a first fuel electrode side hole portion, and It may be configured to include a second fuel electrode side hole portion and a fuel electrode side communication passage that communicates the first fuel electrode side hole portion and the second fuel electrode side hole portion.
  • the fuel electrode side communication passage since the fuel electrode side communication passage is provided, it is possible to increase the passages through which the hydrogen-containing gas can flow. Therefore, it can have higher hydrogen oxidation activity and higher electrical conductivity. Further, even if some trouble occurs in the path of the first fuel electrode side hole or the second fuel electrode side hole and the flow of the hydrogen-containing gas is hindered, the hydrogen-containing gas flows through another route through the fuel electrode side communication passage. Can be made. Therefore, the fuel electrode can maintain hydrogen oxidation activity and electrical conductivity.
  • the membrane electrode assembly according to a twenty-first aspect of the present disclosure is the membrane electrode assembly according to any one of the above-mentioned fourteenth to twentieth aspects, wherein the air electrode side hole portion is a first air electrode side hole portion, and It may be configured to include a second air electrode side hole portion and an air electrode side communication passage that communicates the first air electrode side hole portion and the second air electrode side hole portion.
  • the air electrode side communication passage since the air electrode side communication passage is provided, it is possible to increase the passages through which the oxidant gas can flow. Therefore, it can have higher oxygen reduction activity and higher electrical conductivity. Further, in the route of the first air electrode side hole or the second air electrode side hole, even if some trouble occurs and the flow of the oxidant gas is obstructed, it is flowed through another route via the air electrode side communication passage. Can be made. Therefore, the air electrode can maintain oxygen reduction activity and electrical conductivity.
  • the fuel electrode side filler may contain Ni.
  • the fuel electrode side filler contains Ni, it is possible to have higher hydrogen oxidation activity and higher electrical conductivity.
  • the fuel electrode side filler may be a cermet.
  • the air electrode side filler is cermet, it is possible to increase the hydrogen oxidation reaction field. Therefore, it can have a higher hydrogen oxidation activity.
  • a membrane electrode assembly according to a twenty-fourth aspect of the present disclosure is the membrane electrode assembly according to any one of the above-mentioned fourteenth to twenty-third aspects, wherein the air electrode side filler is at least Mn, Fe, Co, and Ni. It may be a compound containing any one element.
  • the filler filled in the pores is a compound containing at least one element of Mn, Fe, Co, and Ni, it can have high oxygen reduction activity and electrical conductivity. ..
  • a membrane electrode assembly according to a twenty-fifth aspect of the present disclosure is the membrane electrode assembly according to any one of the fourteenth to twenty-fourth aspects, wherein at least one of the fuel electrode side filler and the air electrode side filler is It may be a porous body.
  • At least one of the fuel electrode side filler and the air electrode side filler is a porous body. Therefore, when the fuel electrode side filler is a porous body, the hydrogen-containing gas that contributes to the reaction easily flows through the fuel electrode side holes. Further, when the air electrode side filler is a porous body, the oxidant gas that contributes to the reaction easily flows through the air electrode side pores. Therefore, higher power generation performance can be obtained.
  • a membrane electrode assembly according to a twenty-sixth aspect of the present disclosure is the membrane electrode assembly according to any one of the above-mentioned fourteenth to twenty-fifth aspects, wherein at least one of the fuel electrode side structure support portion and the air electrode side structure support portion is provided. May be composed of the ceramic member containing the electrolyte material.
  • the ceramic member of at least one of the fuel electrode side structure support portion and the air electrode side structure support portion contains the electrolyte material, the coefficient of linear expansion can be made close to the coefficient of linear expansion of the solid electrolyte membrane. Therefore, it is possible to suppress the occurrence of warpage in the operating environment.
  • the degree of curvature of the void of the hole may be 1.5 or less. ..
  • the degree of bending of the void of the hole is 1.5 or less, the gas diffusibility can be improved.
  • a membrane electrode assembly according to a twenty-eighth aspect of the present disclosure is the membrane electrode assembly according to any one of the above-described first to twenty-seventh aspects, in which the degree of bending of the structural support portion is 1 or more and 1.2 or less. Good.
  • the bending degree of the structure supporting portion is 1 or more and 1.2 or less, the strength of the structure supporting portion can be improved.
  • the electrolyte material may have proton conductivity.
  • a fuel cell is a membrane electrode assembly including a solid electrolyte membrane containing an electrolyte material and an electrode in contact with a reaction gas, the electrode being composed of a ceramic member.
  • a membrane electrode assembly having: a hole filled with a filler having any one of ionic oxidation activities.
  • the electrode included in the membrane electrode assembly includes the structure supporting portion formed of the ceramic member, so that the structure of the membrane electrode assembly can be supported and the difference in thermal expansion coefficient from the solid electrolyte membrane can be achieved. Can be made smaller. Therefore, in the operating environment of the fuel cell, the occurrence of warpage in the membrane electrode assembly can be suppressed.
  • the electrode of the membrane electrode assembly has pores filled with the filler, hydrogen is oxidized when the filler has hydrogen oxidation activity, and oxygen is reduced when the filler has oxygen reduction activity.
  • it has a reducing activity, it can promote the reduction of protons, when it has a steam decomposing activity, it can promote the decomposition of steam, and when it has an oxide ion oxidizing activity, it can promote the oxidation of oxide ions.
  • the fuel cell according to the thirtieth aspect of the present disclosure has an effect that it is possible to suppress the shape change even in the operating environment.
  • FIG. 1 is a plan view of a membrane electrode assembly 10 according to a first embodiment of the present disclosure as viewed from the surface in contact with a hydrogen-containing gas (that is, the first fuel electrode side boundary surface 17 in FIG. 2).
  • 2 is a schematic diagram showing an example of the AA cross section in the membrane electrode assembly 10 shown in FIG.
  • the membrane electrode assembly 10 includes a solid electrolyte membrane 11 containing an electrolyte material, and a fuel electrode 12 that comes into contact with a hydrogen-containing gas.
  • the membrane electrode assembly 10 is, for example, a member used to form an electrochemical device, and is formed by stacking a solid electrolyte membrane 11 and a fuel electrode 12 as shown in FIG.
  • the fuel electrode 12 includes a fuel electrode side structure support portion 14 formed of a ceramic member, and a first fuel electrode side boundary surface 17 (hereinafter, referred to as a boundary surface) in contact with the hydrogen-containing gas in the fuel electrode side structure support portion 14. From the above) to the solid electrolyte membrane 11 side, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15 having hydrogen oxidation activity and electrical conductivity is provided. Then, the structure of the membrane electrode assembly 10 is supported by the fuel electrode side structure support portion 14. Note that, as shown in FIG. 2, the fuel electrode side hole portion 13 linearly extends from the first fuel electrode side boundary surface 17 toward the solid electrolyte membrane 11 side.
  • Examples of the electrolyte material included in the solid electrolyte membrane 11 include a proton conductor such as barium zirconium oxide or barium cerium oxide, or an oxide ion conductor such as stabilized zirconia, a lanthanum gallate oxide, or a ceria oxide. Is mentioned.
  • the proton conductor may contain a dopant such as ytterbium. In other words, barium zirconium oxide, barium cerium oxide, etc. may be used.
  • the fuel electrode side structure support portion 14 is composed of a ceramic member containing an electrolyte material.
  • a material having a small linear expansion coefficient difference from the solid electrolyte membrane 11 is used for the ceramic member forming the fuel electrode side structure support portion 14.
  • small difference in linear expansion coefficient means that the difference in linear expansion coefficient with the solid electrolyte membrane 11 is preferably 2 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the ceramic member may be a dense body.
  • the dense body is, for example, a relative density of 85% or more measured by the Archimedes method or the mercury intrusion method. If it is a dense body, the cell strength can be improved.
  • the fuel electrode 12 since the fuel electrode 12 includes the fuel electrode side structure support portion 14, it is possible to support the structure of the membrane electrode assembly 10 and reduce the difference in thermal expansion coefficient from the solid electrolyte membrane 11. it can. Therefore, it is possible to suppress the occurrence of warpage in the membrane electrode assembly 10 in the operating environment.
  • the hydrogen-containing gas may be hydrogen, for example, a reformed gas such as methane gas generated by a reforming reaction, a hydrogen gas containing steam generated by electrolysis of water, or the like.
  • the fuel electrode side hole portion 13 is provided in the first fuel electrode side boundary surface 17 in contact with the hydrogen containing gas in the fuel electrode side structure supporting portion 14, and the first fuel electrode into which the hydrogen containing gas flows in. It has a side opening 16a and a second fuel electrode side opening 16b provided at an end on the side of the solid electrolyte membrane 11 opposite to the first fuel electrode side opening 16a.
  • the second fuel electrode side opening 16b is provided in the second fuel electrode side boundary surface 18 in contact with the solid electrolyte membrane 11 in the fuel electrode side structure support portion 14.
  • a gas flow path (not shown) through which the hydrogen-containing gas flows is provided on the first fuel electrode side boundary surface 17 side where the first fuel electrode side opening 16a of the fuel electrode side hole 13 is provided.
  • the hydrogen-containing gas flowing through this gas flow channel flows into the fuel electrode side hole 13 through the first fuel electrode side opening 16a.
  • a fuel electrode side filler 15 described later is filled in the fuel electrode side hole 13, and hydrogen is oxidized on the surface of the fuel electrode side filler 15 to be divided into protons and electrons. Then, the protons move from the fuel electrode 12 toward the solid electrolyte membrane 11 via the second fuel electrode side opening 16b. Further, the electrons move inside the fuel electrode side hole 13 and are taken out of the fuel electrode 12.
  • the opening shape of the fuel electrode side hole portion 13 may be a round hole, or may be a square hole as shown in FIG.
  • the opening shape of the fuel electrode side hole portion 13 is not particularly limited. From the viewpoint of strength of the fuel electrode side structure support portion 14, a round hole is preferable.
  • FIG. 3 is a diagram showing a modified example of the membrane electrode assembly 10 shown in FIG.
  • the arrangement pattern of the fuel electrode side hole portions 13 may be a parallel pattern in which the fuel electrode side hole portions 13 are arranged in parallel as shown in FIG. 1 or FIG. 3, or may be a staggered arrangement. It may be a striped pattern. Alternatively, the fuel electrode side holes 13 may be arranged randomly.
  • the shape and arrangement pattern of the fuel electrode side hole portion 13 are such that the fuel electrode side structure support portion 14 maintains sufficient strength, and necessary hydrogen oxidation by the fuel electrode side filler 15 filled in the fuel electrode side hole portion 13 is performed. It is arbitrary as long as activity and electric conductivity can be obtained.
  • the opening size of the fuel electrode side hole 13 may be, for example, a diameter of 0.01 mm to 1 mm in the case of a round hole, and a side size of 0.01 mm to 1 mm in the case of a square hole. Further, the ratio of the area occupied by the fuel electrode side hole portion 13 in the main surface of the fuel electrode 12 (that is, the first fuel electrode side boundary surface 17 or the second fuel electrode side boundary surface 18) is the whole main surface of the fuel electrode 12. May be 50% or less, preferably 30% or less. If the area occupied by the fuel electrode side holes 13 on the main surface of the fuel electrode 12 is large, the power generation performance is improved. However, the warp that occurs in the fuel electrode 12 becomes large.
  • the fuel electrode side hole portion 13 can promote the oxidation of hydrogen and secure electric conductivity by the fuel electrode side filler 15.
  • the fuel electrode side filler 15 may be made of one or more kinds of materials having hydrogen oxidation activity and electrical conductivity.
  • the fuel electrode side filler 15 may be composed of one kind of material having hydrogen oxidation activity and electrical conductivity.
  • the fuel electrode side filler 15 may be configured by combining a material having hydrogen oxidation activity and a material having electrical conductivity.
  • the fuel electrode side filler 15 may be composed of a compound composed of a plurality of materials so as to have hydrogen oxidation activity and electrical conductivity.
  • examples of the material having hydrogen oxidation activity and electrical conductivity include Ni, Pt, Pd, and Ir, and the fuel electrode side filler 15 may be a compound that desirably contains Ni.
  • Ni is a material having excellent hydrogen oxidation activity and electrical conductivity, which is used for a fuel electrode of an electrochemical device such as a solid oxide fuel cell.
  • the fuel electrode side filler 15 may be a cermet.
  • Cermet is a mixture of a metal and a ceramic material, for example, Ni to the metal, the ceramic material, a proton conductor such as barium zirconium oxide, barium cerium oxide, or stabilized zirconia, lanthanum gallate oxide, Cermets composed of oxide ion conductors such as ceria-based oxides are mentioned.
  • the proton conductor may contain a dopant such as ytterbium. In other words, barium zirconium oxide, barium cerium oxide, etc. may be used.
  • the cermet is, for example, a mixture of Ni and an electrolyte material, the hydrogen oxidation activity can be improved by increasing the reaction field of hydrogen oxidation.
  • the fuel electrode side filler 15 may be a porous body containing Ni.
  • porous body as used herein means that the porosity is 20% or more as measured by the Archimedes method or the mercury intrusion method.
  • FIG. 4 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 10 according to Modification 1 of the first embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 10 shown in FIG. 4 also has a cross sectional structure cut out along the line AA in the membrane electrode assembly 10 shown in FIG.
  • the membrane electrode assembly 10 according to the modified example 1 of the first embodiment includes a solid electrolyte membrane 11 and a fuel electrode 12, and the fuel electrode 12 is filled with a fuel electrode side structure support portion 14 and a fuel electrode side filler 15. It is common to the membrane electrode assembly 10 according to the first embodiment in that the fuel electrode side hole 13 is provided. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode 12 has a plurality of fuel electrode side hole portions 13 (for example, the first fuel electrode side hole portion 13a and It is different from the membrane electrode assembly 10 according to the first embodiment in that a fuel electrode side communication passage 19 for communicating the second fuel electrode side hole portion 13b) is further provided.
  • the membrane electrode assembly 10 has one or more fuel electrode side communication passages 19 for communicating one first fuel electrode side hole 13a with the other second fuel electrode side hole 13b.
  • the membrane electrode assembly 10 according to the first modification of the first embodiment can increase the paths through which the hydrogen-containing gas can flow. Therefore, it can have higher hydrogen oxidation activity and higher electrical conductivity.
  • another passage is generated via the fuel electrode side communication passage 19.
  • a hydrogen-containing gas can be passed through the route. Therefore, the fuel electrode 12 can maintain hydrogen oxidation activity and electrical conductivity.
  • the fuel electrode side communication passage 19 is also filled with the fuel electrode side filling material 15. However, if it is sufficient to secure a flow path for the hydrogen-containing gas, the fuel electrode side communication passage 19 is not always necessary.
  • the fuel electrode side filler 15 may not be filled inside.
  • the fuel electrode side communication passage 19 is filled with the fuel electrode side filler 15 as shown in FIG. 4, it is preferable in that hydrogen oxidation activity and electric conductivity are improved.
  • FIG. 5 is a schematic diagram which shows an example of the cross section of the membrane electrode assembly 10 which concerns on the modification 2 of 1st Embodiment of this indication.
  • the cross section of the membrane electrode assembly 10 shown in FIG. 5 also has a cross sectional structure cut along AA in the membrane electrode assembly 10 shown in FIG.
  • the membrane electrode assembly 10 according to the modified example 2 of the first embodiment includes a solid electrolyte membrane 11 and a fuel electrode 12, and the fuel electrode 12 is filled with a fuel electrode side structure support portion 14 and a fuel electrode side filler 15. It is common to the membrane electrode assembly 10 according to the first embodiment in that the fuel electrode side hole 13 is provided. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode side hole portion 13 included in the membrane electrode assembly 10 according to the modified example 2 of the first embodiment is the fuel electrode side hole included in the membrane electrode assembly 10 according to the first embodiment.
  • the stretching direction is different from that of the portion 13. That is, in the membrane electrode assembly 10 according to the first embodiment, in the fuel electrode side structure support portion 14, the fuel electrode side hole portion 13 is in contact with the hydrogen-containing gas (that is, the first fuel electrode side boundary surface 17). From the solid electrolyte membrane 11 side (that is, the second fuel electrode side boundary surface 18) to the main surface of the fuel electrode 12 (that is, the first fuel electrode side boundary surface 17 or the second fuel electrode side boundary surface 18). The structure was such that the film was stretched so as to be perpendicular to it.
  • the plurality of fuel electrode side hole portions 13 are arranged from the first fuel electrode side boundary surface 17 side.
  • the configuration is such that it extends obliquely toward the second fuel electrode side boundary surface 18 side with respect to the main surface of the fuel electrode 12 at an acute angle.
  • the plurality of fuel electrode side hole portions 13 are similarly stretched from the state perpendicular to the main surface of the fuel electrode 12 toward the downstream side in the flow direction of the hydrogen-containing gas.
  • the membrane electrode assembly 10 according to the second modification of the first embodiment can improve the hydrogen oxidation activity by increasing the supply of the hydrogen-containing gas.
  • FIG. 6 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 10 according to Modification 3 of the first embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 10 shown in FIG. 6 also has a cross sectional structure taken along line AA in the membrane electrode assembly 10 shown in FIG.
  • FIG. 7 is a perspective view schematically showing the positional relationship between the first fuel electrode side hole portion 13a and the second fuel electrode side hole portion 13b included in the fuel electrode 12 of the membrane electrode assembly 10 shown in FIG. is there.
  • a membrane electrode assembly 10 according to Modification 3 of the first embodiment includes a solid electrolyte membrane 11 and a fuel electrode 12, and the fuel electrode 12 is filled with a fuel electrode side structure support portion 14 and a fuel electrode side filler 15. It is common to the membrane electrode assembly 10 according to the first embodiment in that the fuel electrode side hole 13 is provided. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode side hole portion 13 included in the membrane electrode assembly 10 according to the modified example 3 of the first embodiment is the fuel electrode included in the membrane electrode assembly 10 according to the first embodiment.
  • the extending direction is different from that of the side hole portion 13. That is, in the membrane electrode assembly 10 according to the first embodiment, in the fuel electrode side structure support portion 14, from the side in contact with the hydrogen-containing gas (that is, the first fuel electrode side boundary surface 17) to the solid electrolyte membrane 11 side ( That is, toward the second fuel electrode side boundary surface 18), it is perpendicular to the main surface of the fuel electrode 12 (that is, the first fuel electrode side boundary surface 17 or the second fuel electrode side boundary surface 18).
  • the fuel electrode side hole portion 13 was configured to extend.
  • the first fuel electrode side hole portion 13a and the first fuel electrode side hole portion 13a are formed in the fuel electrode side structure support portion 14.
  • the two fuel electrode side holes 13b are arranged so as to intersect and communicate with each other. Then, a plurality of these arrangements are combined to form a three-dimensional mesh structure, and the fuel electrode side hole portion 13 extends from the first fuel electrode side boundary surface 17 side toward the second fuel electrode side boundary surface 18 side. Has become.
  • first fuel electrode side hole portion 13a and the second fuel electrode side hole portion 13b intersect each other. Further, another fuel electrode side hole portion 13 may be arranged so as to intersect with each of the first fuel electrode side hole portion 13a and the second fuel electrode side hole portion 13b.
  • FIG. 8 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 10 according to Modification 4 of the first embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 10 shown in FIG. 8 also has a cross sectional structure taken along line AA in the membrane electrode assembly 10 shown in FIG.
  • the membrane electrode assembly 10 according to the modified example 4 of the first embodiment includes a solid electrolyte membrane 11 and a fuel electrode 12, and the fuel electrode 12 is filled with a fuel electrode side structure support portion 14 and a fuel electrode side filler 15. It is common to the membrane electrode assembly 10 according to the first embodiment in that the fuel electrode side hole 13 is provided. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode side functional layer 30 is further provided between the solid electrolyte membrane 11 and the fuel electrode 12. Therefore, it is different from the membrane electrode assembly 10 according to the first embodiment.
  • the fuel electrode side functional layer 30 is a layer made of a material having the same hydrogen oxidation activity and electric conductivity as the fuel electrode side filler 15.
  • the fuel electrode side functional layer 30 is arranged so as to contact the fuel electrode 12 at the second fuel electrode side boundary surface 18 and contact the solid electrolyte membrane 11 at the third fuel electrode side boundary surface 31.
  • the fuel electrode side functional layer 30 may be made of the same material as the fuel electrode side filling material 15 or a different material.
  • the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the hydrogen oxidation reaction occurs. Therefore, the hydrogen oxidation activity can be improved.
  • the membrane electrode assembly 10 has a configuration in which the plurality of fuel electrode side hole portions 13 are extended so as to be perpendicular to the main surface of the fuel electrode 12, but the configuration is not limited to this. is not.
  • the plurality of fuel electrode side hole portions 13 form an acute angle with the main surface of the fuel electrode 12 and extend obliquely. May be.
  • a configuration having a three-dimensional mesh structure formed by intersecting a plurality of fuel electrode side hole portions 13 may be used.
  • FIG. 9 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 10 according to Modification 5 of the first embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 10 shown in FIG. 9 also has a cross sectional structure taken along line AA in the membrane electrode assembly 10 shown in FIG.
  • a membrane electrode assembly 10 according to a modified example 5 of the first embodiment includes a solid electrolyte membrane 11 and a fuel electrode 12, and the fuel electrode 12 is filled with a fuel electrode side structure support portion 14 and a fuel electrode side filler 15. It is common to the membrane electrode assembly 10 according to the first embodiment in that the fuel electrode side hole 13 is provided. Therefore, detailed description of these common members will be omitted.
  • the membrane electrode assembly 10 according to the modified example 5 of the first embodiment includes the fuel electrode side communication passage 19, and the fuel electrode side communication passage 19 has the second fuel electrode side boundary surface 18. It is different from the membrane electrode assembly 10 according to the first embodiment in that it is arranged along. Since the fuel electrode side communication passage 19 is the same as the fuel electrode side communication passage 19 included in the membrane electrode assembly 10 according to the first modification of the first embodiment, detailed description thereof will be omitted.
  • the fuel electrode side communication passage 19 is arranged along the second fuel electrode side boundary surface 18 forming the interface between the solid electrolyte membrane 11 and the fuel electrode 12, and the fuel electrode side filler 15 is provided inside. Is filled. Further, the wall surface of the fuel electrode side communication passage 19 on the side of the second fuel electrode side boundary surface 18 is open to form a second fuel electrode side opening 16b. Therefore, the contact area between the solid electrolyte membrane 11 and the fuel electrode side filler 15 can be increased as compared with the configuration in which the fuel electrode side communication passage 19 is not provided along the second fuel electrode side boundary surface 18. it can. Therefore, the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the hydrogen oxidation reaction occurs, and the hydrogen oxidation activity can be improved.
  • FIG. 10 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 10 according to Modification 6 of the first embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 10 shown in FIG. 10 also has a cross sectional structure taken along line AA in the membrane electrode assembly 10 shown in FIG.
  • a membrane electrode assembly 10 according to Modification 6 of the first embodiment includes a solid electrolyte membrane 11 and a fuel electrode 12, and the fuel electrode 12 is filled with a fuel electrode side structure support portion 14 and a fuel electrode side filler 15. It is common to the membrane electrode assembly 10 according to the first embodiment in that the fuel electrode side hole 13 is provided. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode 12 has a fuel electrode side communication passage 19 that communicates the plurality of fuel electrode side hole portions 13. And is different from the membrane electrode assembly 10 according to the first embodiment in that a fuel electrode side functional layer 30 is further provided between the solid electrolyte membrane 11 and the fuel electrode 12.
  • the membrane electrode assembly 10 according to Modification 6 of the first embodiment is the membrane electrode assembly 10 according to Modification 1 of the first embodiment and the membrane electrode assembly according to Modification 4 of the first embodiment. This is a combination of 10 and 10.
  • the fuel electrode side communication passage 19 has been described in the first modification of the first embodiment, and the fuel electrode side functional layer 30 has been described in the fourth modification of the first embodiment, so detailed description thereof will be omitted.
  • the membrane electrode assembly 10 according to Modification 6 of the first embodiment includes the fuel electrode side functional layer 30, a reaction field is generated in the vicinity of the solid electrolyte membrane 11 where the hydrogen oxidation reaction occurs. Can be increased. Therefore, the hydrogen oxidation activity can be improved. Further, since the fuel electrode side communication passage 19 is provided, it is possible to increase the passages through which the hydrogen-containing gas can flow. Therefore, it can have higher hydrogen oxidation activity and higher electrical conductivity. Further, even if some trouble occurs in the path of the fuel electrode side hole portion 13 and the flow of the hydrogen containing gas is obstructed, the hydrogen containing gas can be circulated by another route via the fuel electrode side communication passage 19. .. Therefore, the fuel electrode 12 can maintain hydrogen oxidation activity and electrical conductivity.
  • FIG. 11 is a plan view of the membrane electrode assembly 110 according to the second embodiment of the present disclosure as viewed from the surface in contact with the oxidant gas (that is, the first air electrode side boundary surface 7 in FIG. 12).
  • 12 is a schematic diagram showing an example of the AA cross section in the membrane electrode assembly 110 shown in FIG.
  • the membrane electrode assembly 110 includes a solid electrolyte membrane 11 containing an electrolyte material, and an air electrode 2 in contact with an oxidant gas.
  • the membrane electrode assembly 110 is, for example, a member used to form an electrochemical device, and is formed by stacking a solid electrolyte membrane 11 and an air electrode 2 as shown in FIG. 11.
  • the air electrode 2 includes an air electrode side structure support portion 4 made of a ceramic member, and a first air electrode side boundary surface 7 (hereinafter referred to as a boundary surface) in contact with the oxidant gas in the air electrode side structure support portion 4. From the above) to the side of the solid electrolyte membrane 11 and filled with the air electrode side filler 5 having oxygen reduction activity and electrical conductivity. Then, the structure of the membrane electrode assembly 10 is supported by the air electrode side structure supporting portion 4. In addition, as shown in FIG. 12, the air electrode side hole portion 3 linearly extends from the first air electrode side boundary surface 7 toward the solid electrolyte membrane 11 side.
  • Examples of the electrolyte material included in the solid electrolyte membrane 11 include a proton conductor such as barium zirconium oxide or barium cerium oxide, or an oxide ion conductor such as stabilized zirconia, a lanthanum gallate oxide, or a ceria oxide. Is mentioned.
  • the proton conductor may contain a dopant such as ytterbium. In other words, barium zirconium oxide, barium cerium oxide, etc. may be used.
  • the air electrode side structure support portion 4 is composed of a ceramic member containing an electrolyte material.
  • a material having a small linear expansion coefficient difference from the solid electrolyte membrane 11 is used for the ceramic member forming the air electrode side structure supporting portion 4.
  • small difference in linear expansion coefficient means that the difference in linear expansion coefficient with the solid electrolyte membrane 11 is preferably 2 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the ceramic member may be a dense body.
  • the dense body is, for example, a relative density of 85% or more measured by the Archimedes method or the mercury intrusion method. If it is a dense body, the cell strength can be improved.
  • the air electrode 2 since the air electrode 2 includes the air electrode side structure supporting portion 4, it is possible to support the structure of the membrane electrode assembly 110 and reduce the difference in thermal expansion coefficient from the solid electrolyte membrane 11. it can. Therefore, it is possible to suppress the occurrence of warpage in the membrane electrode assembly 110 in the operating environment.
  • the oxidant gas may be oxygen or may be a gas containing oxygen, such as air.
  • the air electrode side hole 3 is provided in the first air electrode side boundary surface 7 in contact with the oxidant gas in the air electrode side structure supporting portion 4 as shown in FIG. 12, and the first air electrode into which the oxidant gas flows in. It has a side opening 6a and a second air electrode side opening 6b provided at an end on the solid electrolyte membrane 11 side opposite to the first air electrode side opening 6a.
  • the second air electrode side opening 6b is provided in the second air electrode side boundary surface 8 in contact with the solid electrolyte membrane 11 in the air electrode side structure supporting portion 4.
  • a gas flow path (not shown) through which the oxygen-containing gas flows is provided.
  • the oxidant gas for example, oxygen
  • the air electrode side hole 5 is filled with an air electrode side filling material 5. Therefore, oxygen that has been reduced on the surface of the air electrode side filler 5 and has been conducted to the vicinity of the second air electrode side opening 6b, protons that have moved through the solid electrolyte membrane 11, and an external circuit (not shown). Water is generated by the electrons that have reached the air electrode 2 via
  • the opening shape of the air electrode side hole portion 3 may be a round hole, or may be a square hole as shown in FIG.
  • the opening shape of the air electrode side hole 3 is not particularly limited. From the viewpoint of strength of the air electrode side structure support portion 4, a round hole is preferable.
  • FIG. 13: is a figure which shows the modification of the membrane electrode assembly 10 shown in FIG.
  • the array pattern of the air electrode side holes 3 may be a parallel pattern in which the air electrode side holes 3 are arranged in parallel as shown in FIG. 11 or FIG. 13, or in a staggered arrangement. It may be a striped pattern. Alternatively, the air electrode side holes 3 may be arranged randomly.
  • the shape and arrangement pattern of the air electrode side holes 3 are such that the air electrode side structure supporting portion 4 maintains sufficient strength, and necessary oxygen reduction is performed by the air electrode side filler 5 filled in the air electrode side holes 3. It is arbitrary as long as activity and electric conductivity can be obtained.
  • the opening size of the air electrode side hole 3 may be, for example, a diameter of 0.01 mm to 1 mm in the case of a round hole, and a side size of 0.01 mm to 1 mm in the case of a square hole.
  • the ratio of the area occupied by the air electrode side hole portion 3 in the main surface of the air electrode 2 (that is, the first air electrode side boundary surface 7 or the second air electrode side boundary surface 8) is the whole of the main surface of the air electrode 2. May be 50% or less, preferably 30% or less. If the area occupied by the air electrode side holes 3 on the main surface of the air electrode 2 is large, the power generation performance is improved. However, the warp generated in the air electrode 2 becomes large.
  • the air electrode side hole portion 3 can promote reduction of oxygen and ensure electrical conductivity by the air electrode side filling material 5.
  • the air electrode side filler 5 may be made of one or more kinds of materials having oxygen reduction activity and electrical conductivity.
  • the air electrode side filler 5 may be composed of one kind of material having oxygen reduction activity and electrical conductivity.
  • the air electrode side filler 5 may be configured by combining a material having oxygen reduction activity and a material having electrical conductivity.
  • the air electrode side filler 5 may be composed of a compound composed of a plurality of materials so as to have oxygen reduction activity and electrical conductivity.
  • the material having oxygen reduction activity and electrical conductivity that constitutes the air electrode side filler 5 may be a compound containing at least one element of Mn, Fe, Co and Ni. More specifically, for example, lanthanum strontium cobalt iron complex oxide (LSCF), lanthanum strontium cobalt complex oxide (LSC), lanthanum strontium iron complex oxide (LSF), lanthanum strontium manganese complex oxide (LSM), barium. Examples thereof include strontium cobalt iron complex oxide (BSCF), samarium strontium cobalt complex oxide (SSC), lanthanum nickel iron complex oxide, lanthanum nickel complex oxide, and barium gadolinium lanthanum cobalt complex oxide.
  • LSCF lanthanum strontium cobalt iron complex oxide
  • LSC lanthanum strontium cobalt complex oxide
  • LSF lanthanum strontium iron complex oxide
  • LSM lanthanum strontium manganese complex oxide
  • barium examples thereof include strontium
  • the material having oxygen reduction activity and electric conductivity is preferably lanthanum strontium cobalt iron complex oxide.
  • the lanthanum strontium cobalt iron composite oxide is a material having excellent oxygen reduction activity and electrical conductivity, which is used for an air electrode of an electrochemical device such as a solid oxide fuel cell.
  • the air electrode side filler 5 may be composed of a mixture of materials having either oxygen reduction or electrical conductivity.
  • a lanthanum strontium cobalt iron composite oxide may be used as the oxygen reducing material
  • a lanthanum strontium manganese composite oxide may be used as the electrically conductive material.
  • the air electrode side filler 5 may be a porous body of an oxide containing at least one element of Mn, Fe, Co and Ni.
  • porous body as used herein means that the porosity is 20% or more as measured by the Archimedes method or the mercury intrusion method.
  • FIG. 14 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 110 according to Modification 1 of the second embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 110 shown in FIG. 14 also has a cross sectional structure taken along line AA in the membrane electrode assembly 110 shown in FIG. 11.
  • the membrane electrode assembly 110 according to the modified example 1 of the second embodiment includes the solid electrolyte membrane 11 and the air electrode 2, and the air electrode 2 is filled with the air electrode side structure support portion 4 and the air electrode side filler 5. It is common to the membrane electrode assembly 110 according to the second embodiment in that the air electrode side hole portion 3 is provided. Therefore, detailed description of these common members will be omitted.
  • the air electrode 2 has a plurality of air electrode side hole portions 3 (that is, the first air electrode side hole portion 3a and
  • the membrane electrode assembly 110 according to the second embodiment differs from the membrane electrode assembly 110 according to the second embodiment in that it further includes an air electrode side communication passage 9 for communicating the second air electrode side hole 3b).
  • the membrane electrode assembly 110 has one or more air electrode side communication passages 9 that communicate one first air electrode side hole 3a and the other second air electrode side hole 3b.
  • the membrane electrode assembly 110 according to the first modification of the second embodiment can increase the paths through which the oxidant gas can flow. Therefore, it can have higher oxygen reduction activity and higher electrical conductivity.
  • the air electrode 2 can maintain oxygen reduction activity and electrical conductivity.
  • the air electrode side communication passage 9 is also filled with the air electrode side filling material 5. However, if it is sufficient to secure a flow path for the oxidant gas, the air electrode side communication passage 9 is not always necessary. The inside of the air electrode side filler 5 may not be filled. As shown in FIG. 14, when the air electrode side communication passage 9 is filled with the air electrode side filling material 5, it is preferable in terms of improving oxygen reduction activity and electric conductivity.
  • FIG. 15 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 110 according to Modification 2 of the second embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 110 shown in FIG. 15 also has a cross sectional structure taken along line AA in the membrane electrode assembly 110 shown in FIG. 11.
  • the membrane electrode assembly 110 according to the modified example 2 of the second embodiment includes the solid electrolyte membrane 11 and the air electrode 2, and the air electrode 2 is filled with the air electrode side structure support portion 4 and the air electrode side filler 5. It is common to the membrane electrode assembly 110 according to the second embodiment in that the air electrode side hole portion 3 is provided. Therefore, detailed description of these common members will be omitted.
  • the air electrode side hole portion 3 included in the membrane electrode assembly 110 according to the modified example 2 of the second embodiment is the air electrode side hole included in the membrane electrode assembly 110 according to the second embodiment.
  • the stretching direction is different from that of the part 3. That is, in the membrane electrode assembly 110 according to the second embodiment, in the air electrode side structure support portion 4, the air electrode side hole portion 3 is in contact with the oxidant gas (that is, the first air electrode side boundary surface 7). From the solid electrolyte membrane 11 side (that is, the second air electrode side boundary surface 8) to the main surface of the air electrode 2 (that is, the first air electrode side boundary surface 7 or the second air electrode side boundary surface 8). The structure was such that the film was stretched so as to be perpendicular thereto.
  • the plurality of air electrode side hole portions 3 are arranged from the first air electrode side boundary surface 7 side.
  • the main surface of the air electrode 2 forms an acute angle and extends obliquely toward the second air electrode side boundary surface 8 side.
  • the plurality of air electrode side holes 3 are similarly stretched from the state perpendicular to the main surface of the air electrode 2 toward the downstream side in the flow direction of the oxidant gas.
  • the membrane electrode assembly 110 according to the second modification of the second embodiment can improve the oxygen reduction activity by increasing the supply of the oxidizing gas.
  • FIG. 16 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 110 according to Modification 3 of the second embodiment of the present disclosure. Note that the cross section of the membrane electrode assembly 110 shown in FIG. 16 also has a cross sectional structure taken along line AA in the membrane electrode assembly 110 shown in FIG. 11. 17 is a perspective view schematically showing the positional relationship between the first air electrode side hole 3a and the second air electrode side hole 3b included in the air electrode 2 of the membrane electrode assembly 110 shown in FIG. is there.
  • the membrane electrode assembly 110 according to the modified example 3 of the second embodiment includes the solid electrolyte membrane 11 and the air electrode 2, and the air electrode 2 is filled with the air electrode side structure support portion 4 and the air electrode side filler 5. It is common to the membrane electrode assembly 110 according to the second embodiment in that the air electrode side hole portion 3 is provided. Therefore, detailed description of these common members will be omitted.
  • the air electrode side hole portion 3 included in the membrane electrode assembly 110 according to the modified example 3 of the second embodiment is the air electrode included in the membrane electrode assembly 110 according to the second embodiment.
  • the stretching direction is different from that of the side hole portion 3. That is, in the membrane electrode assembly 110 according to the second embodiment, in the air electrode side structure support portion 4, from the side in contact with the oxidant gas (that is, the first air electrode side boundary surface 7) to the solid electrolyte membrane 11 side ( That is, toward the second air electrode side boundary surface 8), it becomes perpendicular to the main surface of the air electrode 2 (that is, the first air electrode side boundary surface 7 or the second air electrode side boundary surface 8).
  • the air electrode side hole 3 was configured to extend.
  • the first air electrode side hole portion 3a and the first air electrode side hole portion 3a are formed in the air electrode side structure support portion 4.
  • the two air electrode side holes 3b are arranged so as to intersect with each other and communicate with each other.
  • the air electrode side hole portion 3 extends from the first air electrode side boundary surface 7 toward the second air electrode side boundary surface 8 while forming a three-dimensional mesh structure by combining a plurality of these arrangements. ..
  • the first air electrode side hole 3a and the second air electrode side hole 3b intersect each other. Further, another air electrode side hole portion 3 may be arranged so as to intersect with each of the first air electrode side hole portion 3a and the second air electrode side hole portion 3b.
  • the first air electrode side hole 3a and the second air electrode side hole 3b can have a mesh structure in which they communicate with each other. Therefore, it is possible to promote the flow of the oxidant gas and improve the oxygen reduction activity. Further, since the air electrode side filler 5 can be densely filled, the electrical conductivity can be improved.
  • FIG. 18 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 110 according to Modification 4 of the second embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 110 shown in FIG. 18 also has a cross sectional structure taken along line AA in the membrane electrode assembly 110 shown in FIG.
  • the membrane electrode assembly 110 according to the modified example 4 of the second embodiment includes the solid electrolyte membrane 11 and the air electrode 2, and the air electrode 2 is filled with the air electrode side structure support portion 4 and the air electrode side filler 5. It is common to the membrane electrode assembly 110 according to the second embodiment in that the air electrode side hole portion 3 is provided. Therefore, detailed description of these common members will be omitted.
  • the membrane electrode assembly 110 according to the modified example 4 of the second embodiment is further provided with the air electrode side functional layer 20 between the solid electrolyte membrane 11 and the air electrode 2. Therefore, it is different from the membrane electrode assembly 110 according to the second embodiment.
  • the air electrode side functional layer 20 is a layer made of a material having the same oxygen reduction activity and electric conductivity as the air electrode side filler 5.
  • the air electrode side functional layer 20 is arranged so as to contact the air electrode 2 at the second air electrode side boundary surface 8 and to contact the solid electrolyte membrane 11 at the third air electrode side boundary surface 21.
  • the air electrode side functional layer 20 may be made of the same material as the air electrode side filling material 5 or may be made of a different material.
  • the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the oxygen reduction reaction occurs. Therefore, the oxygen reduction activity can be improved.
  • the membrane electrode assembly 110 has a configuration in which the plurality of air electrode side hole portions 3 are extended so as to be perpendicular to the main surface of the air electrode 2, but the configuration is not limited to this. is not.
  • the plurality of air electrode side hole portions 3 form an acute angle with the main surface of the air electrode 2 and extend obliquely. May be.
  • a configuration having a three-dimensional mesh structure formed by intersecting a plurality of air electrode side hole portions 3 may be adopted.
  • FIG. 19 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 110 according to Modification 5 of the second embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 110 shown in FIG. 19 also has a cross sectional structure taken along line AA in the membrane electrode assembly 110 shown in FIG.
  • the membrane electrode assembly 110 according to the modified example 5 of the second embodiment includes the solid electrolyte membrane 11 and the air electrode 2, and the air electrode 2 is filled with the air electrode side structure support portion 4 and the air electrode side filler 5. It is common to the membrane electrode assembly 110 according to the second embodiment in that the air electrode side hole portion 3 is provided. Therefore, detailed description of these common members will be omitted.
  • the membrane electrode assembly 110 according to the modified example 5 of the second embodiment includes the air electrode side communication passage 9, and the air electrode side communication passage 9 has the second air electrode side boundary surface 8. It is different from the membrane electrode assembly 110 according to the second embodiment in that it is arranged along the. Since the air electrode side communication passage 9 is the same as the air electrode side communication passage 9 included in the membrane electrode assembly 110 according to the modified example 1 of the second embodiment, detailed description thereof will be omitted.
  • the air electrode side communication passage 9 is arranged along the second air electrode side boundary surface 8 forming the interface between the solid electrolyte membrane 11 and the air electrode 2, and the air electrode side filler 5 is provided inside. Is filled. Further, the wall surface of the air electrode side communication passage 9 on the second air electrode side boundary surface 8 side is open to form a second air electrode side opening 6b. Therefore, the contact area between the solid electrolyte membrane 11 and the air electrode side filler 5 can be increased as compared with the configuration in which the air electrode side communication passage 9 is not provided along the second air electrode side boundary surface 8. it can. Therefore, the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the oxygen reduction reaction occurs, and the oxygen reduction activity can be improved.
  • FIG. 20 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 110 according to Modification 6 of the second embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 110 shown in FIG. 20 also has a cross sectional structure taken along line AA in the membrane electrode assembly 110 shown in FIG.
  • the membrane electrode assembly 110 according to the modified example 6 of the second embodiment includes the solid electrolyte membrane 11 and the air electrode 2, and the air electrode 2 is filled with the air electrode side structure support portion 4 and the air electrode side filler 5. It is common to the membrane electrode assembly 110 according to the second embodiment in that the air electrode side hole portion 3 is provided. Therefore, detailed description of these common members will be omitted.
  • the air electrode 2 has the air electrode side communication passage 9 that communicates the plurality of air electrode side hole portions 3. And is different from the membrane electrode assembly 110 according to the second embodiment in that an air electrode side functional layer 20 is further provided between the solid electrolyte membrane 11 and the air electrode 2.
  • the membrane electrode assembly 110 according to the modified example 6 of the second embodiment is the membrane electrode assembly 110 according to the modified example 1 of the second embodiment and the membrane electrode assembly according to the modified example 4 of the second embodiment. This is a configuration in which 110 and 110 are combined.
  • the air electrode side communication passage 9 has been described in the first modification of the second embodiment, and the air electrode side functional layer 20 has been described in the fourth modification of the second embodiment, so detailed description thereof will be omitted.
  • the membrane electrode assembly 110 according to the modified example 6 of the second embodiment includes the air electrode side functional layer 20, a reaction field is generated in the vicinity of the solid electrolyte membrane 11 where the oxygen reduction reaction occurs. Can be increased. Therefore, the oxygen reduction activity can be improved. Further, since the air electrode side communication passage 9 is provided, it is possible to increase the passages through which the oxidant gas can flow. Therefore, it can have higher oxygen reduction activity and higher electrical conductivity. Further, even if some trouble occurs in the path of the air electrode side hole portion 3 and the flow of the oxidant gas is hindered, the oxidant gas can be circulated through another route via the air electrode side communication passage 9. .. Therefore, the air electrode 2 can maintain oxygen reduction activity and electrical conductivity.
  • FIG. 21 is a plan view of the membrane electrode assembly 210 according to the third embodiment of the present disclosure as viewed from the surface in contact with the reaction gas (that is, the first boundary surface 217 in FIG. 22).
  • 22 is a cross-sectional view taken along line AA schematically showing the structure of the membrane electrode assembly 210 shown in FIG.
  • the membrane electrode assembly 210 includes a solid electrolyte membrane 11 containing an electrolyte material and an electrode 212 that comes into contact with a reaction gas.
  • the membrane electrode assembly 210 is, for example, a member used for constructing an electrochemical device, and is constituted by stacking a solid electrolyte membrane 11 and an electrode 212 as shown in FIG.
  • the electrode 212 is located on the side of the solid electrolyte membrane 11 from the structure supporting portion 214 formed of a ceramic member and the first boundary surface 217 (hereinafter, may be referred to as a boundary surface) in contact with the reaction gas in the structure supporting portion 214. And a hole 213 that is filled with the filler 215 having oxygen reduction activity and electrical conductivity, or the filler 215 having hydrogen oxidation activity and electrical conductivity.
  • the electrode 212 may be, for example, a fuel electrode of an electrochemical device such as a fuel cell or an air electrode.
  • the reaction gas contacting at the first boundary surface 217 is a hydrogen-containing gas
  • the filler 215 has hydrogen oxidation activity and electric conductivity.
  • the hydrogen-containing gas may be hydrogen, or may be, for example, a reformed gas generated by a reforming reaction such as methane gas or a hydrogen gas containing water vapor generated by electrolysis of water.
  • the reaction gas contacting at the first boundary surface 217 is the oxidant gas
  • the filler 215 has oxygen reduction activity and electrical conductivity.
  • the oxidant gas may be oxygen or a gas containing oxygen, such as air.
  • the structure supporting portion 214 has regions in the first boundary surface 217 in which the opening areas of the holes 213 per unit area are different, and per unit area of the upstream side region (upstream region) in the reaction gas flow direction.
  • the opening area of the hole portion 213 is defined as the first area ratio
  • the opening area of the hole portion 213 per unit area of the downstream side area (downstream area) is defined as the second area ratio, “first area ratio ⁇ first The two area ratio" is satisfied.
  • the first area ratio is the total area of openings of the holes 213 existing in the upstream area on the first boundary surface 217, that is, the area of the upstream area (that is, "the total area of openings of the holes 213 existing in the upstream area + It can be determined by dividing by the area “of the structural support portion 214 in the upstream region”).
  • the second area ratio is the total of the opening areas of the hole portions 213 existing in the downstream area on the first boundary surface 217, ie, the area of the downstream area (that is, “the total opening area of the hole portions 213 existing in the downstream area+ The area of the structural support portion 214 in the downstream region”).
  • the range of the upstream region and the range of the downstream region are separately shown by a broken line for convenience. In the following, similarly, the range of each region is indicated by a broken line in the drawings.
  • the plurality of holes 213 are arranged on the first boundary surface 217 so as to satisfy the relationship of “first area ratio ⁇ second area ratio”.
  • each hole arranged in the downstream region is larger than the opening area of each hole 213 arranged in the upstream region of the first boundary surface 217.
  • the opening area of the portion 213 is larger.
  • the opening area of each hole 213 arranged in the upstream region and the opening area of each hole 213 arranged in the downstream region are the same, and the downstream region is smaller than the number of holes 213 per unit area in the upstream region.
  • the number of holes 213 per unit area may be larger.
  • the opening area of each hole 213 and the number of holes 213 per unit area may be larger in the downstream area than in the upstream area.
  • the reaction gas moves and diffuses in the electrode 212 through the hole 213, but due to the difference in the moving speed of the reaction gas, in the reaction field formed in the electrode 212 in the vicinity of the solid electrolyte membrane 11.
  • concentration difference occurs in the reaction field
  • the electromotive force of the electrochemical device decreases.
  • concentration overvoltage the decrease in electromotive force due to the diffusion of the reaction gas.
  • the electromotive force in the downstream region in the reaction gas flow direction is lower than that in the upstream region, and the performance of the electrochemical device using the membrane electrode assembly 210 is reduced.
  • the gas diffusivity in the downstream region of the electrode 212 can be enhanced. As a result, it is possible to reduce the concentration overvoltage in the downstream region in the reaction gas flow direction. Therefore, it is possible to suppress the performance deterioration of the downstream region and improve the performance of the electrochemical device.
  • the relationship of the first area ratio ⁇ the second area ratio may be satisfied only by adjusting the number of the hole portions 213 or the opening area provided in the structure supporting portion 214. It is possible to increase the diffusivity of the reaction gas in the downstream region than in the upstream region.
  • the electrode is manufactured by combining the compositions having different porosities to increase the diffusivity of the reaction gas in the downstream region of the membrane electrode assembly, but in this case, the third embodiment As compared with the membrane electrode assembly 210, it is difficult to manufacture the membrane electrode assembly. Furthermore, it becomes difficult to provide a structure in which the function of ensuring structural support is independent of other functions, like the membrane electrode assembly 210 according to the third embodiment.
  • FIG. 21 shows a configuration in which the upstream region and the downstream region are divided by the line BB which is perpendicular to the reaction gas flow direction
  • the range of each of the upstream region and the downstream region is limited to this. Not something.
  • the first boundary surface 217 can be arbitrarily divided into an upstream region and a downstream region.
  • the upstream region and the downstream region are divided by the line BB, but the upstream region and the downstream region do not necessarily have to be in contact with each other.
  • a predetermined range from the end of the first boundary surface 217 located on the upstream side in the reaction gas flow direction toward the downstream side in the reaction gas flow direction may be the upstream region.
  • a predetermined range extending from the end of the first boundary surface 217 located on the downstream side in the reaction gas flow direction to the upstream side in the reaction gas flow direction may be the downstream region. That is, the upstream region is a predetermined range on the upstream side in the reaction gas flow direction on the first boundary surface 217, and the downstream region is a predetermined range on the downstream side in the reaction gas flow direction in the first boundary surface 217. Is. Then, the range of the upstream region and the range of the downstream region are in a relationship of not overlapping.
  • the opening shape of the hole portion 213 may be a round hole, or may be a square hole as shown in FIG.
  • the opening shape of the hole portion 213 is not particularly limited, but a round hole is preferable from the viewpoint of the strength of the structure supporting portion 214.
  • FIG. 23 is a diagram showing a modified example of the membrane electrode assembly 210 shown in FIG.
  • the array pattern of the holes 213 may be a parallel pattern in which the holes 213 are arranged in parallel as shown in FIG. 21 or 23, or may be a staggered pattern in which the holes 213 are arranged in a staggered pattern. Good. Alternatively, the holes 213 may be arranged randomly.
  • the shape and arrangement pattern of the holes 213 are such that the structure supporting part 214 maintains sufficient strength, and the filling material 215 filled in the holes 213 requires the necessary oxygen reduction activity and electrical conductivity or the necessary hydrogen oxidation activity. And is arbitrary as long as electrical conductivity can be obtained.
  • the opening dimension of the hole portion 213 may be, for example, a diameter dimension of 0.01 mm to 1 mm in the case of a round hole, and a side dimension of 0.01 mm to 1 mm in the case of a square hole.
  • the ratio of the area occupied by the hole 213 in the main surface of the electrode 212 (that is, the first boundary surface 217) may be 50% or less, preferably 30% or less of the entire main surface of the electrode 212. If the area occupied by the hole 213 on the main surface of the electrode 212 is large, the power generation performance is improved, but the warp generated in the electrode 212 is increased.
  • the filler 215 filled in the hole 213 can promote reduction of oxygen and ensure electrical conductivity.
  • the filler 215 may be made of one or more kinds of materials having oxygen reduction activity and electrical conductivity.
  • the filler 215 may be made of one type of material having oxygen reduction activity and electrical conductivity.
  • the filler 215 may be formed by combining a material having oxygen reduction activity and a material having electrical conductivity.
  • the filler 215 may be made of a compound composed of a plurality of materials so as to have oxygen reduction activity and electric conductivity.
  • the material having oxygen reduction activity and electrical conductivity that constitutes the filler 215 may be a compound containing at least one element of Mn, Fe, Co, and Ni. More specifically, for example, lanthanum strontium cobalt iron complex oxide (LSCF), lanthanum strontium cobalt complex oxide (LSC), lanthanum strontium iron complex oxide (LSF), lanthanum strontium manganese complex oxide (LSM), barium. Examples thereof include strontium cobalt iron complex oxide (BSCF), samarium strontium cobalt complex oxide (SSC), lanthanum nickel iron complex oxide, lanthanum nickel complex oxide, and barium gadolinium lanthanum cobalt complex oxide.
  • LSCF lanthanum strontium cobalt iron complex oxide
  • LSC lanthanum strontium cobalt complex oxide
  • LSF lanthanum strontium iron complex oxide
  • LSM lanthanum strontium manganese complex oxide
  • barium examples thereof include strontium co
  • the filler 215 may be a composite of an oxide containing at least one of Mn, Fe, Co, and Ni, another oxide, or a metal. Furthermore, the filler 215 may be composed of a mixture of materials that have either oxygen reduction or electrical conductivity. In the case of such a configuration, for example, a lanthanum strontium cobalt iron composite oxide may be used as the oxygen reducing material, and a lanthanum strontium manganese composite oxide may be used as the electrically conductive material. Further, the filler 215 may be a porous body of an oxide containing at least one element of Mn, Fe, Co and Ni.
  • porous body as used herein means that the porosity is 20% or more as measured by the Archimedes method or the mercury intrusion method.
  • the filler 215 filled in the hole 213 can promote the oxidation of hydrogen and ensure electrical conductivity.
  • the filler 215 may be made of one or more materials having hydrogen oxidation activity and electrical conductivity.
  • the filler 215 may be composed of one type of material having hydrogen oxidation activity and electrical conductivity.
  • the filler 215 may be formed by combining a material having hydrogen oxidation activity and a material having electrical conductivity.
  • the filler 215 may be made of a compound composed of a plurality of materials so as to have hydrogen oxidation activity and electrical conductivity.
  • examples of the material having hydrogen oxidation activity and electrical conductivity that constitutes the filler 215 include Ni, Pt, Pd, and Ir, and the filler 215 may desirably be a compound containing Ni. .. Ni is a material having excellent hydrogen oxidation activity and electrical conductivity, which is used for a fuel electrode of an electrochemical device such as a solid oxide fuel cell.
  • the filler 215 may be cermet.
  • Cermet is a mixture of a metal and a ceramic material, for example, Ni to the metal, the ceramic material, a proton conductor such as barium zirconium oxide, barium cerium oxide, or stabilized zirconia, lanthanum gallate oxide, Cermets composed of oxide ion conductors such as ceria-based oxides are mentioned.
  • the proton conductor may contain a dopant such as ytterbium. In other words, barium zirconium oxide, barium cerium oxide, etc. may be used.
  • the cermet is, for example, a mixture of Ni and an electrolyte material, the hydrogen oxidation activity can be improved by increasing the reaction field of hydrogen oxidation.
  • the filler 215 may be a porous body containing Ni.
  • porous body as used herein means that the porosity is 20% or more as measured by the Archimedes method or the mercury intrusion method.
  • the solid electrolyte membrane 11 is configured to include an electrolyte material.
  • the electrolyte material include a proton conductor such as barium zirconium oxide or barium cerium oxide, or an oxide ion conductor such as stabilized zirconia, a lanthanum gallate oxide, or a ceria oxide.
  • the proton conductor may contain a dopant such as ytterbium. In other words, barium zirconium oxide, barium cerium oxide, etc. may be used.
  • the structure support portion 214 is composed of a ceramic member containing the above-mentioned electrolyte material.
  • a material having a small linear expansion coefficient difference from the solid electrolyte membrane 11 is used for the ceramic member forming the structure supporting portion 214.
  • the term “small difference in linear expansion coefficient” as used herein means that the difference in linear expansion coefficient with the solid electrolyte membrane 11 is preferably 2 ⁇ 10 ⁇ 6 K ⁇ 1 or less. By reducing the difference in coefficient of linear expansion, it becomes possible to suppress changes in cell shape.
  • the ceramic member may be a dense body.
  • the dense body is, for example, a relative density of 85% or more measured by the Archimedes method or the mercury intrusion method. If it is a dense body, the cell strength can be improved.
  • the electrode 212 since the electrode 212 includes the structure supporting portion 214, it is possible to support the structure of the membrane electrode assembly 210 and reduce the difference in thermal expansion coefficient from the solid electrolyte membrane 11. Therefore, it is possible to suppress the occurrence of warpage in the membrane electrode assembly 210 in the operating environment.
  • FIG. 24 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 210 according to Modification Example 1 of the third embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 210 shown in FIG. 24 is also a cross sectional structure cut out at a position AA in the membrane electrode assembly 210 shown in FIG.
  • the membrane electrode assembly 210 according to the modified example 1 of the third embodiment includes the solid electrolyte membrane 11 and the electrode 212, and the electrode 212 includes the structure support portion 214 and the hole portion 213 filled with the filler 215. In terms of having it, it is common to the membrane electrode assembly 210 according to the third embodiment. Therefore, detailed description of these common members will be omitted.
  • the first boundary surface 217 of the electrode 212 is divided into three regions of an upstream region, a midstream region, and a downstream region in the reaction gas flow direction, and each region has a unit area per unit area. This is different from the membrane electrode assembly 210 according to the third embodiment in that the opening areas of the holes 213 are different.
  • the membrane electrode assembly 210 according to the modified example 1 of the third embodiment is provided with a midstream region as a region between the above-mentioned upstream region and downstream region, and the hole portion 213 per unit area in the midstream region.
  • the opening area of is the third area ratio, it is configured to satisfy the relationship of “first area ratio ⁇ third area ratio ⁇ second area ratio”. That is, in the membrane electrode assembly 210 according to the modified example 1 of the third embodiment, in the first boundary surface 217 of the electrode 212, the opening area of the hole 213 per unit area is in the upstream region, the midstream region, and the downstream region. It is configured so that it becomes larger in order.
  • the boundaries of the upstream area, the downstream area, and the midstream area may be defined by line segments that divide the first boundary surface 217 into three equal parts in the reaction gas flow direction as shown in FIG. 24, but the range of each area Is not limited to this.
  • the range of each region can be arbitrarily determined in consideration of the diffusivity of the reaction gas in the electrode 212.
  • the membrane electrode assembly 210 according to the modified example 1 of the third embodiment can reduce the concentration overvoltage not only in the downstream region but also in the midstream region that is a region between the upstream region and the downstream region. You can
  • FIG. 25 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 210 according to the second modification of the third embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 210 shown in FIG. 25 is also a cross sectional structure cut out at a position AA in the membrane electrode assembly 210 shown in FIG.
  • the membrane electrode assembly 210 according to the modified example 2 of the third embodiment includes the solid electrolyte membrane 11 and the electrode 212, and the electrode 212 includes the structure support portion 214 and the hole portion 213 filled with the filler 215. In terms of having it, it is common to the membrane electrode assembly 210 according to the third embodiment. Therefore, detailed description of these common members will be omitted.
  • the first boundary surface 217 of the electrode 212 is arranged in the reaction gas flow direction in the upstream region, the midstream region, and the downstream region.
  • the membrane electrode assembly 210 according to the third embodiment is different from the membrane electrode assembly 210 according to the third embodiment in that it is divided into three regions, that is, a region and the opening area of the hole 213 is different in each region.
  • the membrane electrode assembly 210 according to the modified example 2 of the third embodiment is provided with a midstream region as a region between the above-mentioned upstream region and downstream region, and the hole portion 213 per unit area in the midstream region.
  • the opening area of is the third area ratio, it is configured to satisfy the relationship of “third area ratio ⁇ first area ratio ⁇ second area ratio”. That is, in the membrane electrode assembly 210 according to the modified example 1 of the third embodiment, in the first boundary surface 217 of the electrode 212, the opening area of the hole 213 per unit area is the middle flow area, the upstream area, and the downstream area. It is configured so that it becomes larger in order.
  • the boundaries of the upstream area, the midstream area, and the downstream area may be defined by line segments that divide the first boundary surface 217 into three equal parts in the reaction gas flow direction as shown in FIG. 25, but the range of each area Is not limited to this.
  • the range of each region can be arbitrarily determined in consideration of the diffusivity of the reaction gas in the electrode 212.
  • the membrane electrode assembly 210 according to the second modification of the third embodiment can promote the gas diffusion effect in the downstream region (downstream region) in the reaction gas flow direction. Therefore, the concentration overvoltage can be reduced in the downstream region, and the performance deterioration can be suppressed.
  • the membrane electrode assembly 210 according to the modified example 2 of the third embodiment when used in, for example, a fuel cell, the temperature of the midstream region becomes higher than the temperatures of other regions. Therefore, in the membrane electrode assembly 210 according to the modified example 2 of the third embodiment, the hole portions 213 are arranged so that the third area ratio is smaller than the first area ratio and the second area ratio, and in the middle-flow region. It is configured to suppress gas diffusibility. By suppressing the gas diffusibility in this way, the membrane electrode assembly 210 according to the second modification of the third embodiment makes it more difficult for a current to flow in the middle-flow region than in other regions, and suppresses a temperature rise. it can.
  • FIG. 26 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 210 according to Modification 3 of the third embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 210 shown in FIG. 26 is also a cross sectional structure cut out at a position AA in the membrane electrode assembly 210 shown in FIG.
  • the membrane electrode assembly 210 according to the modified example 3 of the third embodiment includes the solid electrolyte membrane 11 and the electrode 212, and the electrode 212 includes the structure support portion 214 and the hole portion 213 filled with the filler 215. In terms of having it, it is common to the membrane electrode assembly 210 according to the third embodiment. Further, the membrane electrode assembly 210 according to the modified example 3 of the third embodiment is provided in the structure support portion 214 in the upstream region and the downstream region so as to satisfy the relationship of “first area ratio ⁇ second area ratio”. The membrane electrode assembly 210 according to the third embodiment is also common in that the number of holes 213 or the opening area is adjusted. Therefore, detailed description of these common members will be omitted.
  • the hole portion 213 is provided with the communication passage 219 that allows the first hole portion 213a and the second hole portion 213b to communicate with each other. It is different from the membrane electrode assembly 210 according to the embodiment.
  • one of the plurality of holes 213 provided in the upstream region or the downstream region is the first hole 213a and the other is the first hole 213a.
  • the two-hole portion 213b has one or more communication passages 219 for communicating one first hole portion 213a and the other second hole portion 213b.
  • the reaction gas can be flowed by another route via the communication passage 219. .. Therefore, the electrode 212 can maintain hydrogen oxidation activity and electrical conductivity, or redox property and electrical conductivity.
  • the filler 215 is filled also in the communication passage 219 in FIG. 26, the filler 215 is not necessarily filled in the communication passage 219 when the flow path of the reaction gas is ensured. You don't have to. However, as shown in FIG. 26, the structure in which the filler 215 is filled in the communication passage 219 is preferable in terms of improving hydrogen oxidation activity and electric conductivity, or oxygen reduction activity and electric conductivity.
  • the downstream region has a larger number of communication passages 219 for communicating the holes 213 with each other than the upstream region.
  • the membrane electrode assembly 210 according to the modified example 3 of the third embodiment can diffuse the reaction gas in the downstream region. Can be increased.
  • the first boundary surface 217 is divided into the upstream region and the downstream region, and the relationship of “first area ratio ⁇ second area ratio” is satisfied.
  • the present invention is not limited to this.
  • the first boundary surface 217 is divided into an upstream region, a midstream region, and a downstream region, and “first area ratio ⁇ third The configuration may satisfy the relationship of area ratio ⁇ second area ratio.
  • the first boundary surface 217 is divided into three regions, that is, an upstream region, a midstream region, and a downstream region, and "the third area ratio ⁇ first The configuration may satisfy the relationship of area ratio ⁇ second area ratio.
  • FIG. 27 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 210 according to Modification 4 of the third embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 210 shown in FIG. 27 is also a cross sectional structure cut out at a position AA in the membrane electrode assembly 210 shown in FIG.
  • the membrane electrode assembly 210 according to the modified example 4 of the third embodiment includes the solid electrolyte membrane 11 and the electrode 212, and the electrode 212 has the structure support portion 214 and the hole portion 213 filled with the filler 215. This is the same as the membrane electrode assembly 210 according to the third embodiment. Further, the membrane electrode assembly 210 according to the modified example 4 of the third embodiment is provided in the structure supporting portion 214 in the upstream region and the downstream region so as to satisfy the relationship of “first area ratio ⁇ second area ratio”. The membrane electrode assembly 210 according to the third embodiment is also common in that the number of holes 213 or the opening area is adjusted. Therefore, detailed description of these common members will be omitted.
  • the hole 213 provided in the membrane electrode assembly 210 according to the modified example 4 of the third embodiment is different from the hole 213 provided in the membrane electrode assembly 210 according to the third embodiment.
  • the directions are different. That is, in the membrane electrode assembly 210 according to the third embodiment, in the structure supporting portion 214, from the side where the hole 213 contacts the reaction gas (that is, the first boundary surface 217) to the solid electrolyte membrane 11 side (that is, the first boundary surface 217). It was configured to extend toward the two boundary surfaces 218) so as to be perpendicular to the main surface of the electrode 212 (that is, the first boundary surface 217 or the second boundary surface 218).
  • the plurality of holes 213 are directed from the first boundary surface 217 side toward the second boundary surface 218 side.
  • the electrode 212 has an acute angle to the main surface and extends obliquely.
  • the plurality of holes 213 are similarly extended from the state perpendicular to the main surface of the electrode 212 toward the downstream side in the flow direction of the oxidant gas.
  • the membrane electrode assembly 210 according to the second modification of the third embodiment can improve the hydrogen oxidation activity or the oxygen reduction activity by increasing the supply of the reaction gas.
  • the first boundary surface 217 is divided into the upstream region and the downstream region, and the relationship of “first area ratio ⁇ second area ratio” is satisfied.
  • the present invention is not limited to this.
  • the first boundary surface 217 is divided into an upstream region, a midstream region, and a downstream region, and “first area ratio ⁇ third The configuration may satisfy the relationship of area ratio ⁇ second area ratio.
  • the first boundary surface 217 is divided into three regions, that is, an upstream region, a midstream region, and a downstream region, and "the third area ratio ⁇ first The configuration may satisfy the relationship of area ratio ⁇ second area ratio.
  • FIG. 28 is a schematic diagram showing an example of a cross section of the membrane electrode assembly 210 according to Modification 5 of the third embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 210 shown in FIG. 28 is also a cross sectional structure cut out at a position AA in the membrane electrode assembly 210 shown in FIG.
  • FIG. 29 is a perspective view schematically showing the positional relationship between the first hole portion 213a and the second hole portion 213b included in the electrode 212 of the membrane electrode assembly 210 shown in FIG.
  • the membrane electrode assembly 210 according to the modified example 5 of the third embodiment includes the solid electrolyte membrane 11 and the electrode 212, and the electrode 212 has the structure supporting portion 214 and the hole portion 213 filled with the filler 215. This is the same as the membrane electrode assembly 210 according to the third embodiment. Further, in the membrane electrode assembly 210 according to the modified example 5 of the third embodiment, the holes 213 are formed in the first boundary surface 217 so as to satisfy the relationship of “first area ratio ⁇ second area ratio”. Common in points. Therefore, detailed description of these common members will be omitted.
  • the hole 213 included in the membrane electrode assembly 210 according to the modified example 5 of the third embodiment is different from the hole 213 included in the membrane electrode assembly 210 according to the third embodiment.
  • the opening areas of all the hole portions 213 in the first boundary surface 217 have the same size.
  • the membrane electrode assembly 210 according to the modified example 5 of the third embodiment is arranged per unit area. This is different from the membrane electrode assembly 210 according to the third embodiment in that the number of the formed holes 213 in the downstream region is larger than that in the upstream region.
  • the membrane electrode assembly 210 in the structure support portion 214, from the side that contacts the reaction gas (that is, the first boundary surface 217) to the solid electrolyte membrane 11 side (that is, the second interface).
  • the hole 213 extends toward the boundary surface 218 so as to be perpendicular to the main surface of the electrode 212 (that is, the first boundary surface 217 or the second boundary surface 218).
  • a plurality of holes 213 for example, the first holes 213a
  • the second holes 213b are crossed and arranged so as to communicate with each other. A plurality of these arrangements are combined to form a three-dimensional mesh structure, and the hole portion 213 extends from the first boundary surface 217 toward the second boundary surface 218.
  • first hole portion 213a and the second hole portion 213b intersect each other, but yet another hole portion 213 intersects each of the first hole portion 213a and the second hole portion 213b. May be arranged as follows.
  • the membrane electrode assembly 210 in order to satisfy the relationship of “first area ratio ⁇ second area ratio” in the first boundary surface 217, in the membrane electrode assembly 210 according to the modified example 5 of the third embodiment, as shown in FIG. 28.
  • the number of holes 213 intersecting one hole 213 is larger in the downstream region than in the upstream region.
  • a plurality of holes 213 can have a network structure in which they communicate with each other, the flow of the reaction gas can be promoted and the hydrogen oxidation activity or oxygen reduction activity can be improved. Moreover, since the filling material 215 can be densely filled, the electrical conductivity can be improved.
  • the first boundary surface 217 is divided into the upstream region and the downstream region, and the relationship of “first area ratio ⁇ second area ratio” is satisfied.
  • the present invention is not limited to this.
  • the first boundary surface 217 is divided into an upstream region, a midstream region, and a downstream region, and “first area ratio ⁇ third The configuration may satisfy the relationship of area ratio ⁇ second area ratio.
  • the first boundary surface 217 is divided into three regions, that is, an upstream region, a midstream region, and a downstream region, and "the third area ratio ⁇ first The configuration may satisfy the relationship of area ratio ⁇ second area ratio.
  • FIG. 30 is a schematic diagram showing an example of a cross section of a membrane electrode assembly 210 according to Modification 6 of the third embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 210 shown in FIG. 30 is also a cross sectional structure cut out at a position AA in the membrane electrode assembly 210 shown in FIG.
  • the membrane electrode assembly 210 according to the modified example 6 of the third embodiment includes the solid electrolyte membrane 11 and the electrode 212, and the electrode 212 has the structure support portion 214 and the hole portion 213 filled with the filler 215. This is the same as the membrane electrode assembly 210 according to the third embodiment. Further, the membrane electrode assembly 210 according to the modified example 6 of the third embodiment is provided in the structure support portion 214 in the upstream region and the downstream region so as to satisfy the relationship of “first area ratio ⁇ second area ratio”. The membrane electrode assembly 210 according to the third embodiment is also common in that the number of holes 213 or the opening area is adjusted. Therefore, detailed description of these common members will be omitted.
  • the membrane electrode assembly 210 according to the modified example 6 of the third embodiment is the third embodiment in that the functional layer 220 is further provided between the solid electrolyte membrane 11 and the electrode 212. It is different from the membrane electrode assembly 210 according to the embodiment.
  • the functional layer 220 is a layer made of the same material as the filler 215. That is, when the electrode 212 is, for example, the fuel electrode of an electrochemical device such as a fuel cell, the functional layer 220 is composed of a material having hydrogen oxidation activity and electrical conductivity. On the other hand, when the electrode 212 is, for example, the air electrode of an electrochemical device such as a fuel cell, it is made of a material having oxygen reduction activity and electrical conductivity.
  • the functional layer 220 is arranged so as to contact the electrode 212 at the second boundary surface 218 and contact the solid electrolyte membrane 11 at the third boundary surface 221.
  • the functional layer 220 may be made of the same material as the filler 215 or may be made of a different material.
  • the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the hydrogen oxidation reaction occurs, that is, in the vicinity of the third boundary surface 221.
  • the electrode 212 is the air electrode of the electrochemical device
  • the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the oxygen reduction reaction occurs, that is, in the vicinity of the third boundary surface 221. Therefore, the membrane electrode assembly 210 according to the modified example 6 of the third embodiment can improve the hydrogen oxidation activity or the oxygen reduction activity.
  • the membrane electrode assembly 210 is configured such that the plurality of holes 213 are extended so as to be perpendicular to the main surface of the electrode 212 (that is, the first boundary surface 217 or the second boundary surface 218).
  • the plurality of holes 213 may form an acute angle with respect to the main surface of the electrode 212, and may extend obliquely. ..
  • a configuration having a three-dimensional mesh structure formed by intersecting a plurality of holes 213 may be adopted.
  • the first boundary surface 217 is divided into the upstream region and the downstream region, and the relationship of “first area ratio ⁇ second area ratio” is satisfied.
  • the present invention is not limited to this.
  • the first boundary surface 217 is divided into an upstream region, a midstream region, and a downstream region, and “first area ratio ⁇ first The configuration may satisfy the relationship of three area ratio ⁇ second area ratio.
  • the first boundary surface 217 is divided into three regions, that is, an upstream region, a midstream region, and a downstream region, and "the third area ratio ⁇ first The configuration may satisfy the relationship of area ratio ⁇ second area ratio.
  • the membrane electrode assembly 210 further includes another electrode on the main surface opposite to the main surface on which the electrode 212 is provided in the solid electrolyte membrane 11, and the other electrode, the solid electrolyte membrane 11, and the electrode 212. It may be configured to be laminated in this order.
  • the other electrodes may have the same structure as the electrode 212.
  • FIG. 31 is a plan view of the membrane electrode assembly 310 according to the fourth embodiment of the present disclosure as viewed from the surface in contact with the oxidant gas (that is, the first air electrode side boundary surface 7 in FIG. 33).
  • FIG. 32 is a plan view of the membrane electrode assembly 310 according to the fourth embodiment of the present disclosure as viewed from the surface in contact with the hydrogen-containing gas (that is, the first fuel electrode side boundary surface 17 in FIG. 33).
  • 33 is a schematic cross-sectional view taken along the line AA of the structure of the membrane electrode assembly 310 shown in FIG. In addition, in the membrane electrode assembly 310 shown in FIG.
  • the oxidant gas and the hydrogen-containing gas are configured to flow in opposite directions, but the flow directions of both are not limited to this.
  • the oxidant gas and the hydrogen-containing gas may be configured to flow in the same direction.
  • the membrane electrode assembly 310 is planarly viewed from the upper surface side in the stacking direction, the two may flow so as to intersect each other.
  • the membrane electrode assembly 310 includes a solid electrolyte membrane 11 containing an electrolyte material, a fuel electrode 12 that contacts a hydrogen-containing gas, and an air electrode 2 that contacts an oxidant gas.
  • the membrane electrode assembly 310 is, for example, a member used for forming an electrochemical device, and as shown in FIG. 33, the air electrode 2, the solid electrolyte membrane 11, and the fuel electrode 12 are laminated in this order. There is. That is, the air electrode 2 is arranged on one main surface of the solid electrolyte membrane 11, and the fuel electrode 12 is arranged on the other main surface, and the solid electrolyte membrane 11 is sandwiched between the air electrode 2 and the fuel electrode 12.
  • the fuel electrode 12 includes a fuel electrode side structure support portion 14 formed of a ceramic member, and a first fuel electrode side boundary surface 17 (that is, a fuel electrode side boundary surface) in contact with the hydrogen-containing gas in the fuel electrode side structure support portion 14. 2) toward the solid electrolyte membrane 11 side and filled with a fuel electrode side filler 15 having hydrogen oxidation activity and electrical conductivity. Then, the structure of the membrane electrode assembly 310 is supported by the fuel electrode side structure support portion 14. The fuel electrode side hole 13 extends linearly from the first fuel electrode side boundary surface 17 toward the solid electrolyte membrane 11 side as shown in FIG.
  • the air electrode 2 includes an air electrode side structure supporting portion 4 made of a ceramic member and a first air electrode side boundary surface 7 (that is, an air electrode side boundary surface) in contact with the oxidant gas in the air electrode side structure supporting portion 4. 2) toward the solid electrolyte membrane 11 side and filled with the air electrode side filler 5 having oxygen reduction activity and electrical conductivity.
  • the air electrode side structure support portion 4 is also configured to support the structure of the membrane electrode assembly 310. It should be noted that the air electrode side hole portion 3 linearly extends from the first air electrode side boundary surface 7 toward the solid electrolyte membrane 11 side as shown in FIG.
  • Examples of the electrolyte material included in the solid electrolyte membrane 11 include a proton conductor such as barium zirconium oxide or barium cerium oxide, or an oxide ion conductor such as stabilized zirconia, a lanthanum gallate oxide, or a ceria oxide. Is mentioned.
  • the proton conductor may contain a dopant such as ytterbium. In other words, barium zirconium oxide, barium cerium oxide, etc. may be used.
  • the air electrode side structure support portion 4 and the fuel electrode side structure support portion 14 are made of ceramic members containing an electrolyte material.
  • a material having a small linear expansion coefficient difference from the solid electrolyte membrane 11 is used for the ceramic members forming the air electrode side structure support portion 4 and the fuel electrode side structure support portion 14.
  • the term “small difference in linear expansion coefficient” as used herein means that the difference in linear expansion coefficient with the solid electrolyte membrane 11 is preferably 2 ⁇ 10 ⁇ 6 K ⁇ 1 or less. By reducing the difference in coefficient of linear expansion, it becomes possible to suppress changes in cell shape.
  • the ceramic member forming the air electrode side structure support portion 4 or the fuel electrode side structure support portion 14 may be a dense body.
  • the dense body is, for example, a relative density of 85% or more measured by the Archimedes method or the mercury intrusion method. If it is a dense body, the cell strength can be improved.
  • the air electrode 2 has the air electrode side structure support portion 4 and the fuel electrode 12 has the fuel electrode side structure support portion 14, the air electrode 2 and the fuel electrode 12 form the membrane electrode assembly 310.
  • the structure can be supported, and the difference in thermal expansion coefficient from the solid electrolyte membrane 11 can be reduced. Therefore, it is possible to suppress the occurrence of warpage in the membrane electrode assembly 310 in the operating environment.
  • the oxidant gas may be oxygen or may be a gas containing oxygen, such as air.
  • the hydrogen-containing gas may be hydrogen, or may be, for example, a reformed gas generated by a reforming reaction such as methane gas or a hydrogen gas containing water vapor generated by electrolysis of water.
  • the air electrode side hole 3 is provided in the first air electrode side boundary surface 7 in contact with the oxidant gas in the air electrode side structure support portion 4, and the first air electrode into which the oxidant gas flows in. It has a side opening 6a and a second air electrode side opening 6b provided at an end on the solid electrolyte membrane 11 side opposite to the first air electrode side opening 6a.
  • the second air electrode side opening 6b is provided in the second air electrode side boundary surface 8 in contact with the solid electrolyte membrane 11 in the air electrode side structure support portion 4.
  • a gas flow path (not shown) through which the oxygen-containing gas flows is provided on the first air electrode side boundary surface 7 side where the first air electrode side opening 6a is provided.
  • the flowing oxidant gas oxygen
  • the air electrode side hole 3 is filled with an air electrode side filler 5, which will be described later. Therefore, oxygen that has been reduced on the surface of the air electrode side filling material 5 and has been transferred to the vicinity of the second air electrode side opening 6b and the protons that have moved through the solid electrolyte membrane 11 and the external circuit (not shown). Water is generated by the electrons that have reached the air electrode 2 via
  • the fuel electrode side hole portion 13 is provided on the first fuel electrode side boundary surface 17 in contact with the hydrogen containing gas in the fuel electrode side structure supporting portion 14 as shown in FIG. It has a fuel electrode side opening 16a and a second fuel electrode side opening 16b provided at an end on the solid electrolyte membrane 11 side opposite to the first fuel electrode side opening 16a.
  • the second fuel electrode side opening 16b is provided in the second fuel electrode side boundary surface 18 in contact with the solid electrolyte membrane 11 in the fuel electrode side structure support portion 14.
  • a gas flow path (not shown) through which the hydrogen-containing gas flows is provided on the first fuel electrode side boundary surface 17 side where the first fuel electrode side opening 16a is provided.
  • the flowing hydrogen-containing gas flows into the fuel electrode side hole 13 through the first fuel electrode side opening 16a.
  • the fuel electrode side hole 15 is filled with a fuel electrode side filler 15, which will be described later. For this reason, hydrogen is oxidized on the surface of the fuel electrode side filler 15 to be divided into protons and electrons. Then, the protons move from the fuel electrode 12 toward the solid electrolyte membrane 11 via the second fuel electrode side opening 16b. Further, the electrons move inside the fuel electrode side hole 13 and are taken out of the fuel electrode 12.
  • the opening shape of the air electrode side hole portion 3 may be a round hole.
  • the opening shape of the fuel electrode side hole portion 13 may be a round hole as shown in FIG. 32.
  • the opening shape of the air electrode side hole portion 3 may be a square hole.
  • the opening shape of the fuel electrode side hole portion 13 may be a square hole.
  • 34 is a diagram showing a modification of the air electrode 2 included in the membrane electrode assembly 310 shown in FIG. 35: is a figure which shows the modification of the fuel electrode 12 with which the membrane electrode assembly 310 shown in FIG. 32 is equipped.
  • the opening shapes of the air electrode side hole 3 and the fuel electrode side hole 13 are not particularly limited. From the viewpoint of strength in the air electrode side structure support portion 4 and the fuel electrode side structure support portion 14, a round hole is preferable.
  • the arrangement pattern of the air electrode side holes 3 and the fuel electrode side holes 13 is such that each air electrode side hole 3 and each fuel electrode side hole 13 are arranged in parallel as shown in FIGS. It may be a parallel pattern arranged, or may be a staggered pattern arranged in a staggered pattern. Alternatively, the air electrode side holes 3 and the fuel electrode side holes 13 may be arranged at random.
  • the shape and arrangement pattern of the air electrode side holes 3 are such that the air electrode side structure supporting portion 4 maintains sufficient strength, and necessary oxygen reduction is performed by the air electrode side filler 5 filled in the air electrode side holes 3. It is arbitrary as long as activity and electric conductivity can be obtained.
  • the shape and arrangement pattern of the fuel electrode side hole portion 13 are required by the fuel electrode side filling material 15 filled in the fuel electrode side hole portion 13 while the fuel electrode side structure support portion 14 maintains sufficient strength. Any hydrogen oxidation activity and electrical conductivity can be obtained.
  • each of the air electrode side hole 3 and the fuel electrode side hole 13 is, for example, 0.01 mm to 1 mm in diameter in the case of a round hole, and 0.01 mm in one side in the case of a square hole. It may be 1 mm.
  • the ratio of the area occupied by the air electrode side hole portion 3 in the main surface of the air electrode 2 (that is, the first air electrode side boundary surface 7 or the second air electrode side boundary surface 8) is the whole of the main surface of the air electrode 2. May be 50% or less, preferably 30% or less. If the area occupied by the air electrode side holes 3 on the main surface of the air electrode 2 is large, the power generation performance is improved, but the warpage that occurs in the air electrode 2 is increased.
  • the ratio of the area occupied by the fuel electrode side hole 13 on the main surface of the fuel electrode 12 (that is, the first fuel electrode side boundary surface 17 or the second fuel electrode side boundary surface 18) is the main surface of the fuel electrode 12. It may be 50% or less, preferably 30% or less of the whole. If the area occupied by the fuel electrode side holes 13 on the main surface of the fuel electrode 12 is large, the power generation performance is improved. However, the warp that occurs in the fuel electrode 12 becomes large.
  • the positional relationship between the air electrode side hole 3 and the fuel electrode side hole 13 is as follows. That is, the peripheral edge of the second fuel electrode side opening portion 16b of the fuel electrode side hole portion 13 and the peripheral edge of the second air electrode side opening portion 6b of the air electrode side hole portion 3 are membranes as shown in FIG.
  • the electrode assemblies 310 are arranged so as not to overlap each other when viewed in a plane in the stacking direction. Note that the arrangement in which the peripheral edge of the second fuel electrode side opening 16b and the peripheral edge of the second air electrode side opening 6b do not overlap each other is, as shown in FIG. 33, a plane in the stacking direction of the membrane electrode assembly 310.
  • stress is generated at the periphery of each of the second air electrode side opening 6b and the second fuel electrode side opening 16b when the temperature is raised or lowered.
  • the peripheral edge of the second air electrode side opening 6b and the peripheral edge of the second fuel electrode side opening 16b are arranged so as not to overlap each other when viewed in plan in the stacking direction of the membrane electrode assembly 310. Therefore, it is possible to prevent stress from being concentrated and acting on a specific region of the solid electrolyte membrane 11.
  • the membrane electrode assembly 310 can suppress warpage and prevent cracks or cracks from occurring.
  • the air electrode side hole portion 3 can promote reduction of oxygen and ensure electrical conductivity by the air electrode side filling material 5.
  • the air electrode side filler 5 may be made of one or more kinds of materials having oxygen reduction activity and electrical conductivity.
  • the air electrode side filler 5 may be composed of one kind of material having oxygen reduction activity and electrical conductivity.
  • the air electrode side filler 5 may be configured by combining a material having oxygen reduction activity and a material having electrical conductivity.
  • the air electrode side filler 5 may be composed of a compound composed of a plurality of materials so as to have oxygen reduction activity and electrical conductivity.
  • lanthanum strontium cobalt iron complex oxide LSCF
  • LSC lanthanum strontium cobalt complex oxide
  • LSF lanthanum strontium iron complex oxide
  • LSM lanthanum strontium manganese complex oxide
  • strontium cobalt iron complex oxide BSCF
  • SSC samarium strontium cobalt complex oxide
  • lanthanum nickel iron complex oxide lanthanum nickel complex oxide
  • barium gadolinium lanthanum cobalt complex oxide barium gadolinium lanthanum cobalt complex oxide.
  • the air electrode side filler 5 may be a complex of an oxide containing at least one of Mn, Fe, Co, and Ni, another oxide, or a metal.
  • the cathode side filler 5 may be composed of a mixture of materials having either oxygen reduction or electrical conductivity.
  • a lanthanum strontium cobalt iron composite oxide may be used as the oxygen reducing material
  • a lanthanum strontium manganese composite oxide may be used as the electrically conductive material.
  • the air electrode side filler 5 may be a porous body.
  • porous body as used herein means that the porosity is 20% or more as measured by the Archimedes method or the mercury intrusion method.
  • the fuel electrode side hole 13 can promote the oxidation of hydrogen and ensure electrical conductivity by the fuel electrode side filler 15.
  • the fuel electrode side filler 15 may be made of one or more kinds of materials having hydrogen oxidation activity and electrical conductivity.
  • the fuel electrode side filler 15 may be composed of one kind of material having hydrogen oxidation activity and electrical conductivity.
  • the fuel electrode side filler 15 may be configured by combining a material having hydrogen oxidation activity and a material having electrical conductivity.
  • the fuel electrode side filler 15 may be composed of a compound composed of a plurality of materials so as to have hydrogen oxidation activity and electrical conductivity.
  • examples of the material having hydrogen oxidation activity and electrical conductivity that constitutes the fuel electrode side filler 15 include Ni, Pt, Pd, and Ir, and the fuel electrode side filler 15 desirably contains Ni. It may be a compound.
  • Ni is a material having excellent hydrogen oxidation activity and electrical conductivity, which is used for a fuel electrode of an electrochemical device such as a solid oxide fuel cell.
  • the fuel electrode side filler 15 may be a cermet.
  • Cermet is a mixture of a metal and a ceramic material, for example, Ni to the metal, the ceramic material, a proton conductor such as barium zirconium oxide, barium cerium oxide, or stabilized zirconia, lanthanum gallate oxide, Cermets composed of oxide ion conductors such as ceria-based oxides are mentioned.
  • the proton conductor may contain a dopant such as ytterbium. In other words, barium zirconium oxide, barium cerium oxide, etc. may be used.
  • the cermet is, for example, a mixture of Ni and an electrolyte material, the hydrogen oxidation activity can be improved by increasing the reaction field of hydrogen oxidation.
  • the fuel electrode side filler 15 may be a porous body containing Ni.
  • porous body as used herein means that the porosity is 20% or more as measured by the Archimedes method or the mercury intrusion method.
  • FIG. 36 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to the modified example 1 of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the first modification of the fourth embodiment shown in FIG. 36 is a cross section structure cut out at a position AA in the membrane electrode assembly 310 shown in FIG.
  • FIG. 37 is a plan view of the membrane electrode assembly 310 according to the modified example 1 of the fourth embodiment of the present disclosure from the first air electrode side boundary surface 7, and the air electrode side hole portion 3 and the fuel electrode side hole portion. It is a schematic diagram which shows the arrangement relationship with 13.
  • the membrane electrode assembly 310 according to the modified example 1 of the fourth embodiment includes a solid electrolyte membrane 11, an air electrode 2, and a fuel electrode 12, and the air electrode 2 includes an air electrode side structure support portion 4 and an air electrode side filling.
  • the fuel electrode 12 has the air electrode side hole 3 filled with the material 5
  • the fuel electrode 12 has the fuel electrode side structure support 14, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15. It has common points with the membrane electrode assembly 310 according to the fourth embodiment. Therefore, detailed description of these common members will be omitted.
  • the arrangement relationship between the air electrode side hole portion 3 and the fuel electrode side hole portion 13 is different. Specifically, when viewed in plan in the stacking direction of the membrane electrode assembly 310, it is formed by the peripheral edge of the second air electrode side opening 6b in the plane formed by the peripheral edge of the second fuel electrode side opening 16b. It is arranged so that it includes the plane.
  • the peripheral edge of the second fuel electrode side opening 16b and the peripheral edge of the second air electrode side opening 6b when viewed in plan in the stacking direction, the peripheral edge of the second fuel electrode side opening 16b and the peripheral edge of the second air electrode side opening 6b. Since and do not overlap with each other, it is possible to prevent stress from being concentrated and acting on a specific region of the solid electrolyte membrane 11 in the operating environment.
  • the membrane electrode assembly 310 according to the modified example 1 of the fourth embodiment has a surface formed by the periphery of the second fuel electrode side opening 16b when the membrane electrode assembly 310 is viewed in plan in the stacking direction.
  • the two air electrode side openings 6b are in a positional relationship in which they are separated from each other so as not to overlap with the surface formed by the peripheral edge of the opening 6b.
  • the diffusion length of ions in the solid electrolyte membrane 11 can be shortened. Therefore, the internal resistance during the electrochemical reaction can be suppressed.
  • the filling region of the material having hydrogen oxidation activity and electrical conductivity can be expanded, and the reaction field of hydrogen oxidation and the electric field can be obtained.
  • the conduction path can be increased. Thereby, it can have higher hydrogen oxidation activity and higher electrical conductivity.
  • FIG. 38 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to the second modification of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the modified example 2 of the fourth embodiment shown in FIG. 38 is a cross section structure cut out at a position AA in the membrane electrode assembly 310 shown in FIG. FIG. 39: is the air electrode side hole part 3 and the fuel electrode side hole part when the membrane electrode assembly 310 which concerns on the modification 2 of 4th Embodiment of this indication is planarly viewed from the 1st air electrode side boundary surface 7. It is a schematic diagram which shows the arrangement relationship with 13.
  • the membrane electrode assembly 310 according to the modified example 2 of the fourth embodiment includes the solid electrolyte membrane 11, the air electrode 2, and the fuel electrode 12, and the air electrode 2 includes the air electrode side structure support portion 4 and the air electrode side filler. 5 and the air electrode side hole 3 filled with the fuel electrode 5 and the fuel electrode 12 includes a fuel electrode side structure support 14 and a fuel electrode side hole 13 filled with the fuel electrode side filler 15. In terms of having it, it is common to the membrane electrode assembly 310 according to the fourth embodiment. Therefore, detailed description of these common members will be omitted.
  • the membrane electrode assembly 310 according to the modified example 2 of the fourth embodiment has the second fuel within the plane formed by the peripheral edge of the second air electrode side opening 6b when viewed in plan in the stacking direction. It is arranged so as to include the surface formed by the peripheral edge of the pole-side opening 16b.
  • the peripheral edge of the second air electrode side opening 6b and the peripheral edge of the second fuel electrode side opening 16b when viewed in plan in the stacking direction, the peripheral edge of the second air electrode side opening 6b and the peripheral edge of the second fuel electrode side opening 16b. Since and do not overlap with each other, it is possible to prevent stress from being concentrated and acting on a specific region of the solid electrolyte membrane 11 in the operating environment.
  • the membrane electrode assembly 310 is formed by the surface formed by the peripheral edge of the second air electrode side opening 6b and the peripheral edge of the second fuel electrode side opening 16b when seen in a plan view in the stacking direction.
  • a configuration example is shown in which the two are separated from each other so that they do not overlap each other.
  • the diffusion length of ions in the solid electrolyte membrane 11 can be shortened during the electrochemical reaction, as compared with the configuration shown in FIG. Therefore, the internal resistance during the electrochemical reaction can be suppressed.
  • the filling region of the material having oxygen reduction activity and electrical conductivity can be expanded, and the reaction field of oxygen reduction and the electricity can be reduced.
  • the conduction path can be increased. Thereby, it can have higher oxygen reduction activity and higher electrical conductivity.
  • FIG. 40 is a plan view of the membrane electrode assembly 310 according to Modification 3 of the fourth embodiment of the present disclosure, as viewed from the first air electrode side boundary surface 7 side in contact with the oxidant gas.
  • 41 is a BB sectional view schematically showing the structure of the membrane electrode assembly 310 shown in FIG.
  • FIG. 42 is a plan view of the membrane electrode assembly 310 according to Modification 3 of the fourth embodiment of the present disclosure from the first air electrode side boundary surface 7, and the air electrode side hole portion 3 and the fuel electrode side hole portion. It is a schematic diagram which shows the arrangement relationship with 13.
  • the membrane electrode assembly 310 according to the modified example 3 of the fourth embodiment includes the solid electrolyte membrane 11, the air electrode 2, and the fuel electrode 12, and the air electrode 2 includes the air electrode side structure support portion 4 and the air electrode side filler. 5 and the air electrode side hole 3 filled with the fuel electrode 5 and the fuel electrode 12 includes a fuel electrode side structure support 14 and a fuel electrode side hole 13 filled with the fuel electrode side filler 15. In terms of having it, it is common to the membrane electrode assembly 310 according to the fourth embodiment. Therefore, detailed description of these common members will be omitted.
  • each of the air electrode side hole portion 3 and the fuel electrode side hole portion 13 is composed of two types of holes having different opening diameters. That is, as shown in FIG. 42, the air electrode side hole 3 includes a second air electrode side opening 6b1 having a large opening diameter and a second air electrode side opening 6b2 having a small opening diameter. Then, as shown in FIG.
  • the fuel electrode side hole portion 13 includes a second fuel electrode side opening portion 16b1 having a large opening diameter and a second fuel electrode side opening portion 16b2 having a small opening diameter. Then, similar to the air electrode side holes 3, the second air electrode side openings 6b1 and the second air electrode side openings 6b2 are alternately arranged.
  • the second fuel electrode side opening 16b2 when viewed in plan in the stacking direction of the membrane electrode assembly 10, is formed in the plane formed by the peripheral edge of the second air electrode side opening 6b1. It is arranged so as to include the surface formed by the peripheral edge. Moreover, it is arranged so that the surface formed by the peripheral edge of the second air electrode side opening 6b2 is included in the surface formed by the peripheral edge of the second fuel electrode side opening 16b1.
  • the peripheral edge of the second fuel electrode side opening 16b1 and the peripheral edge of the second air electrode side opening 6b2. Does not overlap, and the peripheral edge of the second fuel electrode side opening 16b2 and the peripheral edge of the second air electrode side opening 6b1 do not overlap.
  • the diffusion length of ions in the solid electrolyte membrane 11 can be shortened during the electrochemical reaction. Therefore, the internal resistance during the electrochemical reaction can be suppressed.
  • the total area of the surface formed by the peripheral edge of the second fuel electrode side opening 16b and the total area of the surface formed by the peripheral edge of the second air electrode side opening 6b can be arbitrarily controlled.
  • the total area of the surface formed by the peripheral edge of the second fuel electrode side opening 16b and the total area of the surface formed by the peripheral edge of the second air electrode side opening 6b can be equalized.
  • the hydrogen oxidation activity, the oxygen reduction activity, and the electrical conductivity can be well balanced.
  • FIG. 43 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to Modification 4 of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the modified example 4 shown in FIG. 43 is a cross section structure cut out at a position BB in the membrane electrode assembly 310 shown in FIG.
  • FIG. 44 is a plan view of the membrane electrode assembly 310 according to the modified example 4 of the fourth embodiment of the present disclosure from the first air electrode side boundary surface 7, and the air electrode side hole portion 3 and the fuel electrode side hole portion. It is a schematic diagram which shows the arrangement relationship with 13.
  • the membrane electrode assembly 310 according to the modified example 4 of the fourth embodiment includes a solid electrolyte membrane 11, an air electrode 2, and a fuel electrode 12, and the air electrode 2 includes an air electrode side structure support portion 4 and an air electrode side filling.
  • the fuel electrode 12 has the air electrode side hole 3 filled with the material 5
  • the fuel electrode 12 has the fuel electrode side structure support 14, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15. It has common points with the membrane electrode assembly 310 according to the fourth embodiment. Therefore, detailed description of these common members will be omitted.
  • the arrangement relationship between the air electrode side hole portion 3 and the fuel electrode side hole portion 13 is different.
  • the peripheral edge of the second fuel electrode side opening 16b of the fuel electrode side hole 13 and the peripheral edge of the second air electrode side opening 6b of the air electrode side hole 3 are the membrane electrode assembly.
  • they are arranged so that at least some of them overlap each other.
  • at least a part of each other overlaps with each other, as shown in FIG. 44, when viewed in a plan view in the stacking direction of the membrane electrode assembly 310, when viewed in plan. It may be in a state where the peripheral edge of 6b intersects.
  • the peripheral edge of the second fuel electrode side opening 16b and the peripheral edge of the second air electrode side opening 6b may completely overlap with each other.
  • reaction field and electric conduction path of oxygen reduction can be expanded, and the reaction field and electric conduction path of hydrogen oxidation can be expanded, and higher oxygen reduction activity or hydrogen oxidation activity and electric conductivity can be obtained. it can.
  • FIG. 45 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to Modification 5 of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment shown in FIG. 45 is a cross section structure cut out at a position BB in the membrane electrode assembly 310 shown in FIG.
  • the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment includes a solid electrolyte membrane 11, an air electrode 2, and a fuel electrode 12, and the air electrode 2 includes an air electrode side structure support portion 4 and an air electrode side filling.
  • the fuel electrode 12 has the air electrode side hole 3 filled with the material 5
  • the fuel electrode 12 has the fuel electrode side structure support 14, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15. It has common points with the membrane electrode assembly 310 according to the fourth embodiment. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode side hole portion 13 is the first A point including a fuel electrode side hole portion 13a, a second fuel electrode side hole portion 13b, and a fuel electrode side communication passage 19 that communicates the first fuel electrode side hole portion 13a and the second fuel electrode side hole portion 13b.
  • the air electrode side hole 3 includes a first air electrode side hole 3a, a second air electrode side hole 3b, a first air electrode side hole 3a and a second air electrode side hole 3b. It is also different in that it is provided with an air electrode side communication passage 9 that communicates.
  • the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment includes the fuel electrode side communication passage 19, it is possible to increase the passages through which the hydrogen-containing gas can flow. Therefore, it can have higher hydrogen oxidation activity and higher electrical conductivity.
  • another passage is generated via the fuel electrode side communication passage 19. It can be distributed through the route. Therefore, the fuel electrode 12 can maintain hydrogen oxidation activity and electrical conductivity.
  • the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment includes the air electrode side communication passage 9, it is possible to increase the passages through which the oxidant gas can flow. Therefore, it can have higher oxygen reduction activity and higher electrical conductivity.
  • the air electrode 2 can maintain the oxygen reduction activity and the electrical conductivity.
  • the fuel electrode side communication passage 19 is filled with the fuel electrode side filler 15, and the air electrode side communication passage 9 is also filled with the air electrode side filler 5.
  • the fuel electrode side communication passage 19 does not necessarily have to have the fuel electrode side.
  • the filling material 15 may not be filled in the air electrode side communication passage 9 with the air electrode side filling material 5, respectively.
  • the configuration in which the fuel electrode side communication passage 19 is filled with the fuel electrode side filling material 15 and the air electrode side communication passage 9 is filled with the air electrode side filling material 5, respectively, has a higher hydrogen oxidation activity. It is preferable in that it improves the oxygen reduction activity and the electrical conductivity.
  • the fuel electrode 12 and the air electrode 2 each have a communication passage (the fuel electrode side communication passage 19 and the air electrode side communication passage 9), but the communication passage is the fuel electrode 12 or the air electrode 2.
  • the configuration may be provided in only one of the above.
  • FIG. 46 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to Modification 6 of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the modified example 6 shown in FIG. 46 is a cross section structure cut out at a position BB in the membrane electrode assembly 310 shown in FIG.
  • the membrane electrode assembly 310 according to the modified example 6 of the fourth embodiment includes a solid electrolyte membrane 11, an air electrode 2, and a fuel electrode 12, and the air electrode 2 includes an air electrode side structure support portion 4 and an air electrode side filling.
  • the fuel electrode 12 has the air electrode side hole 3 filled with the material 5
  • the fuel electrode 12 has the fuel electrode side structure support 14, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15. It has common points with the membrane electrode assembly 310 according to the fourth embodiment. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode side hole 13 and the air electrode side hole 3 included in the membrane electrode assembly 310 according to the modified example 6 of the fourth embodiment are the membrane electrode assembly according to the fourth embodiment.
  • the fuel electrode side hole 13 and the air electrode side hole 3 included in 310 are different in the extending direction. That is, in the membrane electrode assembly 310 according to the fourth embodiment, in the fuel electrode side structure support portion 14, the plurality of fuel electrode side hole portions 13 is in contact with the hydrogen-containing gas (that is, the first fuel electrode side boundary surface). 17) toward the solid electrolyte membrane 11 side (that is, the second fuel electrode side boundary surface 18), the main surface of the fuel electrode 12 (that is, the first fuel electrode side boundary surface 17 or the second fuel electrode side boundary surface 18).
  • the membrane electrode assembly 310 in the modified example 6 of the fourth embodiment, the plurality of fuel electrode side hole portions 13 are arranged from the first fuel electrode side boundary surface 17 to the first fuel electrode side boundary surface 17. It is configured to extend obliquely toward the two fuel electrode side boundary surface 18 with respect to the main surface of the fuel electrode 12 at an acute angle. In other words, the configuration is such that the plurality of fuel electrode side hole portions 13 are extended from the state perpendicular to the main surface of the fuel electrode 12 toward the downstream side in the flow direction of the hydrogen-containing gas at the same angle. There is.
  • the membrane electrode assembly 310 according to the modified example 6 of the fourth embodiment can improve the hydrogen oxidation activity by increasing the supply of the hydrogen-containing gas.
  • the membrane electrode assembly 310 according to the fourth embodiment in the air electrode side structure support portion 4, the side where the plurality of air electrode side hole portions 3 come into contact with the oxidant gas (that is, the first air electrode side boundary surface). 7) toward the solid electrolyte membrane 11 side (that is, the second air electrode side boundary surface 8), the main surface of the air electrode 2 (that is, the first air electrode side boundary surface 7 or the second air electrode side boundary surface 8). 2) was stretched so as to be perpendicular to.
  • the membrane electrode assembly 310 according to the modified example 6 of the fourth embodiment in the air electrode side structure support portion 4, the plurality of air electrode side hole portions 3 are arranged from the first air electrode side boundary surface 7 side.
  • the main surface of the air electrode 2 forms an acute angle and extends obliquely toward the second air electrode side boundary surface 8 side.
  • the plurality of air electrode side holes 3 are configured to extend from the state perpendicular to the main surface of the air electrode 2 toward the downstream side in the flow direction of the oxidant gas so as to be inclined at the same angle. There is.
  • the oxygen reduction activity can be improved by increasing the supply of the oxidizing gas.
  • the fuel electrode side hole portion 13 and the air electrode side hole portion 3 are configured to extend while being inclined with respect to the main surfaces of the fuel electrode 12 and the air electrode 2, respectively. Only one of 13 and the air electrode side hole portion 3 may be configured to extend while being inclined with respect to the main surface.
  • FIG. 47 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to Modification 7 of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the modified example 7 shown in FIG. 47 is a cross section structure cut out at a position BB in the membrane electrode assembly 310 shown in FIG.
  • FIG. 48 shows a positional relationship between the first fuel electrode side hole portion 13a and the second fuel electrode side hole portion 13b included in the fuel electrode 12 of the membrane electrode assembly 310 shown in FIG. It is a perspective view which shows typically the positional relationship of the one air electrode side hole part 3a and the 2nd air electrode side hole part 3b.
  • the membrane electrode assembly 310 according to the modified example 7 of the fourth embodiment includes a solid electrolyte membrane 11, an air electrode 2, and a fuel electrode 12, and the air electrode 2 includes an air electrode side structure support portion 4 and an air electrode side filling.
  • the fuel electrode 12 has the air electrode side hole 3 filled with the material 5
  • the fuel electrode 12 has the fuel electrode side structure support 14, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15. It has common points with the membrane electrode assembly 310 according to the fourth embodiment. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode side hole portion 13 and the air electrode side hole portion 3 included in the membrane electrode assembly 310 according to the modified example 7 of the fourth embodiment are the membrane electrode according to the fourth embodiment.
  • the fuel electrode side hole 13 and the air electrode side hole 3 included in the joined body 310 are different in the extending direction.
  • the membrane electrode assembly 310 for example, as shown in FIG. 33, in the fuel electrode side structure support portion 14, the side where the plurality of fuel electrode side hole portions 13 come into contact with the hydrogen-containing gas (that is, , From the first fuel electrode side boundary surface 17) toward the solid electrolyte membrane 11 side (that is, the second fuel electrode side boundary surface 18), the main surface of the fuel electrode 12 (that is, the first fuel electrode side boundary surface 17 or The structure was such that it extends perpendicular to the second fuel electrode side boundary surface 18).
  • the hydrogen-containing gas that is, , From the first fuel electrode side boundary surface 17
  • the solid electrolyte membrane 11 side that is, the second fuel electrode side boundary surface 18
  • the main surface of the fuel electrode 12 that is, the first fuel electrode side boundary surface 17 or The structure was such that it extends perpendicular to the second fuel electrode side boundary surface 18).
  • the first fuel electrode side hole portion 13a and the first fuel electrode side hole portion 13a are formed in the fuel electrode side structure support portion 14.
  • the two fuel electrode side holes 13b are arranged so as to intersect and communicate with each other. A plurality of these arrangements are combined to form a three-dimensional mesh structure, and the fuel electrode side hole portion 13 extends from the first fuel electrode side boundary surface 17 toward the second fuel electrode side boundary surface 18. ..
  • the first fuel electrode side hole 13a and the second fuel electrode side hole 13b intersect each other, but yet another fuel electrode side hole 13 is a first fuel electrode side hole. It may be arranged so as to intersect with each of the portion 13a and the second fuel electrode side hole portion 13b.
  • the first fuel electrode side hole portion 13a and the second fuel electrode side hole portion 13b can have a mesh structure in which they communicate with each other, so that the flow of the hydrogen-containing gas is promoted and the hydrogen oxidation activity is improved. Can be made. Moreover, since the fuel electrode side filler 15 can be densely filled, the electrical conductivity can be improved.
  • the membrane electrode assembly 310 for example, in the air electrode side structure support portion 4, the side on which the plurality of air electrode side hole portions 3 come into contact with the oxidant gas ( That is, from the first air electrode side boundary surface 7) toward the solid electrolyte membrane 11 side (that is, the second fuel electrode side boundary surface 18), the main surface of the fuel electrode 12 (that is, the first fuel electrode side boundary surface 17).
  • the structure is such that it extends perpendicularly to the second fuel electrode side boundary surface 18).
  • the membrane electrode assembly 310 in the modified example 7 of the fourth embodiment, as shown in FIGS. 47 and 48, in the air electrode side structure support portion 4, the first air electrode side hole portion 3a and the first air electrode side hole portion 3a are formed.
  • the two air electrode side holes 3b are arranged so as to intersect with each other and communicate with each other. Then, the air electrode side hole portion 3 extends from the first air electrode side boundary surface 7 toward the second air electrode side boundary surface 8 while forming a three-dimensional mesh structure by combining a plurality of these arrangements. ..
  • the first air electrode side hole portion 3a and the second air electrode side hole portion 3b intersect each other, but yet another air electrode side hole portion 3 is a first air electrode side hole. You may arrange
  • the first air electrode side hole portion 3a and the second air electrode side hole portion 3b can have a network structure in which they communicate with each other, so that the flow of the oxidant gas is promoted and the oxygen reduction activity is improved. Can be made. Further, since the air electrode side filler 5 can be densely filled, the electrical conductivity can be improved.
  • FIG. 49 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to Modification 8 of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the modified example 8 shown in FIG. 49 is a cross section structure cut out at a position BB in the membrane electrode assembly 310 shown in FIG.
  • the membrane electrode assembly 310 according to the modified example 8 of the fourth embodiment includes a solid electrolyte membrane 11, an air electrode 2, and a fuel electrode 12, and the air electrode 2 includes an air electrode side structure support portion 4 and an air electrode side filling.
  • the fuel electrode 12 has the air electrode side hole 3 filled with the material 5
  • the fuel electrode 12 has the fuel electrode side structure support 14, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15.
  • the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment is provided. Further, it is common in that the fuel electrode 12 is provided with the fuel electrode side communication passage 19 and the air electrode 2 is provided with the air electrode side communication passage 9, respectively. Therefore, detailed description of these common members will be omitted.
  • the fuel electrode side functional layer 30 is further provided between the solid electrolyte membrane 11 and the fuel electrode 12.
  • the air electrode side functional layer 20 is further provided between the solid electrolyte membrane 11 and the air electrode 2, which is different from the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment.
  • the fuel electrode side functional layer 30 is a layer made of a material having the same hydrogen oxidation activity and electric conductivity as the fuel electrode side filler 15.
  • the fuel electrode side functional layer 30 is arranged so as to contact the fuel electrode 12 at the second fuel electrode side boundary surface 18 and contact the solid electrolyte membrane 11 at the third fuel electrode side boundary surface 31.
  • the fuel electrode side functional layer 30 may be made of the same material as the fuel electrode side filling material 15 or a different material.
  • the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the hydrogen oxidation reaction occurs. Therefore, the hydrogen oxidation activity can be improved.
  • the air electrode side functional layer 20 is a layer made of a material having the same oxygen reduction activity and electric conductivity as the air electrode side filler 5.
  • the air electrode side functional layer 20 is arranged so as to contact the air electrode 2 at the second air electrode side boundary surface 8 and contact the solid electrolyte membrane 11 at the third air electrode side boundary surface 21.
  • the air electrode side functional layer 20 may be made of the same material as the air electrode side filling material 5 or may be made of a different material.
  • the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the oxygen reduction reaction occurs. Therefore, the oxygen reduction activity can be improved.
  • the membrane electrode assembly 310 according to the modified example 8 shown in FIG. 49 is configured to include the fuel electrode side functional layer 30 and the air electrode side functional layer 20, respectively, but may be configured to include only one of them. Good.
  • FIG. 50 is a cross-sectional view schematically showing the structure of the membrane electrode assembly 310 according to Modification 9 of the fourth embodiment of the present disclosure.
  • the cross section of the membrane electrode assembly 310 according to the modified example 9 shown in FIG. 50 is a cross sectional structure cut out at a position BB in the membrane electrode assembly 310 shown in FIG.
  • the membrane electrode assembly 310 according to the modified example 9 of the fourth embodiment includes a solid electrolyte membrane 11, an air electrode 2, and a fuel electrode 12, and the air electrode 2 includes an air electrode side structure support portion 4 and an air electrode side filling.
  • the fuel electrode 12 has the air electrode side hole 3 filled with the material 5
  • the fuel electrode 12 has the fuel electrode side structure support 14, and the fuel electrode side hole 13 filled with the fuel electrode side filler 15.
  • the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment is provided. Further, it is common in that the fuel electrode 12 is provided with the fuel electrode side communication passage 19 and the air electrode 2 is provided with the air electrode side communication passage 9, respectively. Therefore, detailed description of these common members will be omitted.
  • the membrane electrode assembly 310 according to the modified example 9 of the fourth embodiment is the first in that the fuel electrode side communication passage 19 is arranged along the second fuel electrode side boundary surface 18. It is different from the membrane electrode assembly 310 according to the modified example 5 of the fourth embodiment.
  • the membrane electrode assembly 310 according to Modification 9 is that the air electrode side communication passage 9 is arranged along the second air electrode side boundary surface 8 also in the membrane electrode assembly according to Modification 5 of the fourth embodiment. Different from the bonded body 310.
  • the fuel electrode side communication passage 19 is arranged along the second fuel electrode side boundary surface 18 forming the interface between the solid electrolyte membrane 11 and the fuel electrode 12, and the fuel electrode side filler 15 is provided inside. Is filled. Further, the wall surface of the fuel electrode side communication passage 19 on the second fuel electrode side boundary surface 18 side is open to form a second fuel electrode side opening 16b. Therefore, the contact area between the solid electrolyte membrane 11 and the fuel electrode side filler 15 can be increased as compared with the configuration in which the fuel electrode side communication passage 19 is not provided along the second fuel electrode side boundary surface 18. it can. Therefore, the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the hydrogen oxidation reaction occurs, and the hydrogen oxidation activity can be improved.
  • the air electrode side communication passage 9 is arranged along the second air electrode side boundary surface 8 that forms the interface between the solid electrolyte membrane 11 and the air electrode 2, and the inside thereof is filled with the air electrode side.
  • the material 5 is filled.
  • the wall surface on the second air electrode side boundary surface 8 side of the air electrode side communication passage 9 is open to form a second air electrode side opening 6b. Therefore, the contact area between the solid electrolyte membrane 11 and the air electrode side filler 5 can be increased as compared with the configuration in which the air electrode side communication passage 9 is not provided along the second air electrode side boundary surface 8. it can. Therefore, the reaction field can be increased in the vicinity of the solid electrolyte membrane 11 where the oxygen reduction reaction occurs, and the oxygen reduction activity can be improved.
  • both the fuel electrode side communication passage 19 and the air electrode side communication passage 9 were arranged along the interface of the solid electrolyte membrane 11.
  • the configuration is not limited to this.
  • One of the fuel electrode side communication passage 19 and the air electrode side communication passage 9 may be arranged along the interface of the solid electrolyte membrane 11.
  • the fuel electrode side filler 15 having hydrogen oxidation activity and the air electrode side filler 5 having oxygen reduction activity have been described as an example. Is not limited to hydrogen oxidation activity and oxygen reduction activity.
  • the filler may have at least one of hydrogen oxidation activity, oxygen reduction activity, proton reduction activity, steam decomposition activity, and oxide ion oxidation activity.
  • the properties of the filling material are appropriately selected according to the function of the filled electrode. Examples of the material having proton reducing activity include metals such as Ni, Pt, Pd, and Ir, and cermets of these and a proton conductive oxide.
  • examples of the material having steam decomposition activity include metals such as Ni, Pt, Pd, and Ir, and cermets of these and oxide ion conductive oxides.
  • a material having oxide ion oxidation activity a compound containing at least one element of Mn, Fe, Co, and Ni, more specifically, for example, lanthanum strontium cobalt iron complex oxide (LSCF), Lanthanum strontium cobalt complex oxide (LSC), lanthanum strontium iron complex oxide (LSF), lanthanum strontium manganese complex oxide (LSM), barium strontium cobalt iron complex oxide (BSCF), samarium strontium cobalt complex oxide (SSC) , Lanthanum nickel iron complex oxide, lanthanum nickel complex oxide, barium gadolinium lanthanum cobalt complex oxide and the like.
  • LSC Lanthanum strontium cobalt iron complex oxide
  • LSC Lanthanum strontium cobalt complex oxide
  • LSF Lanthanum str
  • the structure supporting portion included in the electrode may be configured by a cermet, and in this case, the hole of the structure supporting portion can be defined such that the bending degree of the void is 1.5 or less.
  • the degree of bending of the structure supporting portion forming the hole can be defined as 1 or more and 1.2 or less. The degree of bending is measured using a scanning electron microscope (FIB-SEM).
  • the membrane electrode assembly according to the present disclosure can be used as a membrane electrode assembly of an electrochemical device such as a fuel cell or a gas sensor. It can also be used as a membrane electrode assembly of an electrochemical device such as an electrochemical hydrogen pump in a hydrogen purification device or a hydrogen compression device.
  • Air electrode side communication passage 10 Membrane electrode assembly 11 Solid electrolyte membrane 12 Fuel electrode 13 Fuel electrode side hole 13a First fuel electrode side Hole 13b Second fuel electrode side hole 14 Fuel electrode side structure support 15 Fuel electrode side filler 16a First fuel electrode side opening 16b Second fuel electrode side opening 17 First fuel electrode side boundary surface 18 Second Fuel electrode side boundary surface 19 Fuel electrode side communication passage 20 Air electrode side functional layer 21 Third air electrode side boundary surface 30 Fuel electrode side functional layer 31 Third fuel electrode side boundary surface 110 Membrane electrode assembly 210 Membrane electrode assembly 212 Electrode 213 Hole 213a First hole 213b Second hole 214 Structural support 215 Filler 217 First interface 218 Second interface 219 Communication path 220 Functional layer 221 Third interface 310 Membrane electrode assembly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本開示の膜電極接合体は、電解質材料を含む固体電解質膜と、反応ガスと接触する電極とを備えた膜電極接合体であって、電極は、セラミックス部材で構成された構造支持部と、構造支持部において反応ガスと接触する境界面から固体電解質膜側に向かって延伸し、少なくとも水素酸化活性、酸素還元活性、プロトン還元活性、水蒸気分解活性、および酸化物イオン酸化活性のいずれか1つを有する充填材が充填されている孔部と、を備える。

Description

膜電極接合体および燃料電池
 本開示は、電気化学デバイスの膜電極接合体に関するものである。特に燃料電池の膜電極接合体に関する。
 固体酸化物からなる電解質材料を用いた電気化学デバイスの一つとして、例えば、固体酸化物形燃料電池(以下、SOFC)が知られている。SOFCの電解質材料には、一般に安定化ジルコニアに代表される酸化物イオン伝導体が広く用いられている。酸化物イオン伝導体は、低温になるほどイオン伝導率が低下するため、安定化ジルコニアを電解質材料に用いたSOFCは、例えば、700℃以上の動作温度を必要としている。一方で、プロトン伝導性を有する電解質材料を用いたSOFCは、600℃で動作可能であるため、部材の化学安定性や低コスト化の観点から注目されている。
 ところで固体酸化物形燃料電池のセルの形状は、大別して円筒型と平板型が知られている。円筒型では、電流経路が長くなり抵抗損が大きくなるため、より高出力を得るために平板型の開発がすすめられている。
 しかしながら、平板型では、セルの割れおよびクラックが円筒型よりも発生しやすい。特に、平板型のSOFCでは、昇降温時に電極材料と電解質材料の線膨張係数差によって形状変化が生じ、セルの割れおよびクラックが発生することが課題となっている(例えば、特許文献1)。そこで特許文献1では、燃料極と電解質との線膨張率または収縮量を制御することで、膜電極接合体の反りを改善する。
国際公開2017/014069号
 しかしながら、従来(特許文献1)では、動作環境下での膜電極接合体の形状変化について十分な検討がされていなかった。すなわち、支持体となる電極材料と電解質材料との線膨張率または収縮率が異なれば、種々の動作環境において、膜電極接合体の形状変化は必然的に生じるが、この動作環境における膜電極接合体の形状変化について十分な検討がなされていなかった。
 本開示は、一例として、動作環境においても、形状変化を抑制できる、膜電極接合体を提案する。
 本開示に係る膜電極接合体の一態様は、電解質材料を含む固体電解質膜と、水素含有ガスと接触する電極とを備えた膜電極接合体であって、前記電極は、セラミックス部材で構成された構造支持部と、前記構造支持部において前記水素含有ガスと接触する境界面から前記固体電解質膜側に向かって形成され、水素酸化活性および電気伝導性を有する充填材が充填されている孔部と、を備える。
 本開示に係る燃料電池の一態様は、電解質材料を含む固体電解質膜と、反応ガスと接触する電極とを備えた膜電極接合体であって、前記電極は、セラミックス部材で構成された構造支持部と、前記構造支持部において前記反応ガスと接触する境界面から前記固体電解質膜側に向かって延伸し、少なくとも水素酸化活性、酸素還元活性、プロトン還元活性、水蒸気分解活性、および酸化物イオン酸化活性のいずれか1つを有する充填材が充填されている孔部と、を有する膜電極接合体を備える。
 本開示は、以上に説明したように構成され、動作環境においても、形状変化を抑制できるという効果を奏する。
本開示の第1実施形態に係る膜電極接合体を、水素含有ガスと接する第一燃料極側境界面側から見た平面図である。 図1に示す膜電極接合体におけるA-A断面の一例を示す模式図である。 図1に示す膜電極接合体の変形例を示す図である。 本開示の第1実施形態の変形例1に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第1実施形態の変形例2に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第1実施形態の変形例3に係る膜電極接合体の断面の一例を示す模式図である。 図6に示す膜電極接合体の燃料極が備える第一燃料極側孔部と第二燃料極側孔部との配置関係を模式的に示す斜視図である。 本開示の第1実施形態の変形例4に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第1実施形態の変形例5に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第1実施形態の変形例6に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第2実施形態に係る膜電極接合体を、酸化剤ガスと接する第一空気極側境界面側から見た平面図である。 図11に示す膜電極接合体におけるA-A断面の一例を示す模式図である。 図11に示す膜電極接合体の変形例を示す図である。 本開示の第2実施形態の変形例1に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第2実施形態の変形例2に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第2実施形態の変形例3に係る膜電極接合体の断面の一例を示す模式図である。 図16に示す膜電極接合体の空気極が備える第一空気極側孔部と第二空気極側孔部との配置関係を模式的に示す斜視図である。 本開示の第2実施形態の変形例4に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第2実施形態の変形例5に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第2実施形態の変形例6に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第3実施形態に係る膜電極接合体を、電極側から見た平面図である。 図21に示す膜電極接合体の構造を模式的に示すA-A断面の断面図である。 図21に示す膜電極接合体の変形例を示す図である。 本開示の第3実施形態の変形例1に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第3実施形態の変形例2に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第3実施形態の変形例3に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第3実施形態の変形例4に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第3実施形態の変形例5に係る膜電極接合体の断面の一例を示す模式図である。 図28に示す膜電極接合体の電極が備える第一孔部と第二孔部との配置関係を模式的に示す斜視図である。 本開示の第3実施形態の変形例6に係る膜電極接合体の断面の一例を示す模式図である。 本開示の第4実施形態に係る膜電極接合体を、酸化剤ガスと接する第一空気極側境界面側から見た平面図である。 本開示の第4実施形態に係る膜電極接合体を、水素含有ガスと接する第一燃料極側境界面側から見た平面図である。 図31に示す膜電極接合体の構造を模式的に示すA-A断面図である。 図31に示す膜電極接合体が備える空気極の変形例を示す図である。 図32に示す膜電極接合体が備える燃料極の変形例を示す図である。 本開示の第4実施形態の変形例1に係る膜電極接合体の構造を模式的に示す断面図である。 本開示の第4実施形態の変形例1に係る膜電極接合体を、第一空気極側境界面から平面視したときの空気極側孔部と燃料極側孔部との配置関係を示す模式図である。 本開示の第4実施形態の変形例2に係る膜電極接合体の構造を模式的に示す断面図である。 本開示の第4実施形態の変形例2に係る膜電極接合体を、第一空気極側境界面から平面視したときの空気極側孔部と燃料極側孔部との配置関係を示す模式図である。 本開示の第4実施形態の変形例3に係る膜電極接合体を、酸化剤ガスと接する第一空気極側境界面側から見た平面図である。 図40に示す膜電極接合体の構造を模式的に示すB-B断面図である。 本開示の第4実施形態の変形例3に係る膜電極接合体を、第一空気極側境界面から平面視したときの空気極側孔部と燃料極側孔部との配置関係を示す模式図である。 本開示の第4実施形態の変形例4に係る膜電極接合体の構造を模式的に示す断面図である。 本開示の第4実施形態の変形例4に係る膜電極接合体を、第一空気極側境界面から平面視したときの空気極側孔部と燃料極側孔部との配置関係を示す模式図である。 本開示の第4実施形態の変形例5に係る膜電極接合体の構造を模式的に示す断面図である。 本開示の第4実施形態の変形例6に係る膜電極接合体の構造を模式的に示す断面図である。 本開示の第4実施形態の変形例7に係る膜電極接合体の構造を模式的に示す断面図である。 図47に示す膜電極接合体の燃料極が備える第一燃料極側孔部と第二燃料極側孔部との配置関係、ならびに空気極が備える第一空気極側孔部と第二空気極側孔部との配置関係を模式的に示す斜視図である。 本開示の第4実施形態の変形例8に係る膜電極接合体の構造を模式的に示す断面図である。 本開示の第4実施形態の変形例9に係る膜電極接合体の構造を模式的に示す断面図である。
 (本開示の一形態を得るに至った経緯)
 一般的に膜電極接合体の形状変化は、接合材料同士の線膨張係数が異なることにより生じる。ここで、線膨張係数とは、JISR1618ファインセラミックスの熱機械分析による熱膨張の測定方法にて定められている線膨張率(K-1)にあたる。例えば、固体電解質材料で使用される部分安定ジルコニア(YSZ)、ランタンガレート系酸化物、バリウムジルコネート系酸化物、バリウムセリウム系酸化物のセラミックス材料は、線膨張係数8~11×10-6/Kと小さく、電極(燃料極)で一般的に用いられるニッケル、鉄、コバルト、パラジウムなどの金属は、線膨張係数11~20×10-6/Kと大きい。また、これらの金属の酸化物も、上記に挙げたセラミックス材料より線膨張係数が大きく、10~20×10-6/K程度である。例えば、NiOは、14×10-6/K程度である。
 また、電極(空気極)で一般的に用いられるニッケル、鉄、コバルト、ランタンなどの金属も、線膨張係数11~20×10-6/Kと大きい。また、これらの金属酸化物も、上記に挙げたセラミックス材料より線膨張係数が大きく、10~20×10-6/K程度である。例えば、ランタンストロンチウムコバルト鉄複合酸化物は、15~18×10-6/K程度である。
 したがって、金属または金属酸化物とセラミックスとの複合材料から構成される電極材料の線膨張係数は、固体電解質材料の線膨張係数よりも大きくなる。
 ところで、平板型セルの形状は、昇温過程では溶媒、バインダー、可塑剤などを飛ばしているため形状は変化せず、焼結温度においてフラットである。そこから降温することで、より線膨張係数が大きくなる燃料極の方が、固体電解質膜よりも体積変化が大きくなり、例えば、燃料極の上に固体電解質膜が積層された構成では、燃料極は上に凸に反る。このため、特許文献1では、接合材料間の線膨張係数差を小さくするため、支持体となる電極(特許文献1では燃料極)と固体電解質膜との間において線膨張係数が中間になる層を設けることで反りの低減を行っている。
 しかしならが、特許文献1では、セルの焼結時における反りの緩和および異種材料間の境界面での熱応力緩和についてのみ検討しており、実際のセルの動作環境での反り、および熱応力等については十分な検討がなされていないことを本発明者らは見出した。なお、動作環境とは、動作温度までの昇温過程、還元処理過程、集電部材による締結状態を指す。実際に、還元処理過程で反り形状は変化するため、上記の動作環境下における割れ制御を考える必要がある。ここで、還元処理とは、例えば、特許文献1における燃料極の酸化ニッケルを金属ニッケルにすることである。
 つまり、特許文献1のように線膨張係数を制御することで焼結時の反りの低減を行っても、酸化ニッケルの還元処理など動作環境下における体積収縮により、反り量は増大し、割れまたはクラックの原因となることが想定される。
 また、固体電解質層と燃料極とを備えた上記した膜電極接合体と同様に、固体電解質膜と空気極とを備えた膜電極接合体においても、接合材料同士の線膨張係数が異なることに起因して膜電極接合体の形状変化が生じる。
 空気極材料には、酸素還元活性と電気伝導性を両立する材料が使用されており、一般的な空気極材料としては、ランタンストロンチウムコバルト鉄複合酸化物(LSCF)、ランタンストロンチウムコバルト複合酸化物(LSC)、ランタンストロンチウム鉄複合酸化物(LSF)、ランタンストロンチウムマンガン複合酸化物(LSM)、バリウムストロンチウムコバルト鉄複合酸化物(BSCF)といった酸化物が挙げられる。これらの酸化物は、線膨張係数が11~23×10-6/K程度と、固体電解質材料の線膨張係数よりも大きくなる。
 したがって、固体電解質膜と空気極とを備えた膜電極接合体では、空気極は、固体電解質膜よりも昇降温度時における体積変化が大きくなり、それにより膜電極接合体の反りが生じて割れやクラックの原因となる。さらには固体電解質膜と空気極との間での剥離の原因となる。
 この固体電解質膜と空気極とを備える膜電極接合体で生じる形状変化に対する対策として、例えば、空気極における特に電解質層との隣接部分(すなわち、界面近傍)において、酸素還元活性と電気伝導性とを両立する材料と、電解質材料と、の混合物を用いることで、固体電解質膜と空気極との線膨張係数差を低減することが考えらえる。しかしながら、空気極としての酸素還元活性および電気伝導性を維持する観点から、電解質材料の混合による線膨張係数差の低減には限界があることを本発明者等は見出した。
 また、上記の線膨張係数の差によるセルの形状変化を抑制するためには固体電解質膜自身によって膜電極接合体の構造を支持する構成が望ましいが、このように構成すると、固体電解質膜の膜厚を増加させることとなる。固体電解質材料のイオン伝導率は電極材料と比して乏しい。このため、固体電解質膜の膜厚の増加は、結果として電池性能の低下を招くこととなる。
 ところで、電極支持型の膜電極接合体の電極は、例えば、ニッケルと固体電解質材料との混合物で構成することができ、電気伝導、イオン伝導、ガス拡散能、および膜電極接合体の構造支持という4つの機能を担保する。
 そこで、本発明者らは、線膨張係数差による反りを抑制するために、これら4つの電極の機能のうち、少なくとも構造支持を担保する機能を他の機能から独立させた構造とすることで膜電極接合体の形状変化を抑制することができることを見出した。つまり、電極において、構造支持を担保する部位(以下、構造支持部と称する。)を、固体電解質膜と同等の線膨張係数とすることで、動作環境においてもセルの反りを抑制することができることを見出した。
 具体的には、電極を、上記した構造支持部と、電気伝導、イオン伝導、およびガス拡散能を担う部材とから構成する。この電気伝導、イオン伝導、およびガス拡散能のうちガス拡散能を担う部材として、構造支持部材において、反応ガスの流通経路と固体電解質膜との間を連通させて、反応ガスを流入させる複数の孔部を設ける。また、電気伝導およびイオン伝導を担う部材として、孔部内に電気伝導性およびイオン伝導性を有する充填材を設ける構成とする。例えば、電極が燃料極である場合、孔部内に流入した水素含有ガス中の水素を酸化させるために、孔部内には水素酸化活性および電気伝導性を有する充填材を充填させ、電極が空気極である場合、孔部内に流入した酸化剤ガス中の酸素を還元させるために、孔部内には酸素還元活性および電気伝導性を有する充填材を充填させた構成とすることを見出した。この構成により、動作環境において膜電極接合体の形状変化を抑制することができる。また、水素酸化活性および電気伝導性、または酸素還元活性および電気伝導性を促進することができる。
 さらにこの構成について鋭意検討した結果、本発明者らは、膜電極接合体の性能を向上させるためには、複数の孔部により担う、ガス拡散性を検討する必要があることを見出した。特に、反応ガス流通方向の下流側において、ガス拡散性を高めることで濃度過電圧を低減でき、膜電極接合体の性能を向上させることができるという知見を得た。
 上記本発明者らの知見は、これまで明らかにされていなかったものであり、膜電極接合体の反りの課題を解決するものである。さらには、反応ガス流通方向の下流側における濃度過電圧に起因した性能低下の課題を解決するものでもある。本開示では、具体的には以下に示す態様を提供する。
 本開示の第1の態様に係る膜電極接合体は、電解質材料を含む固体電解質膜と、反応ガスと接触する電極とを備えた膜電極接合体であって、前記電極は、セラミックス部材で構成された構造支持部と、前記構造支持部において前記反応ガスと接触する境界面から前記固体電解質膜側に向かって延伸し、少なくとも水素酸化活性、酸素還元活性、プロトン還元活性、水蒸気分解活性、および酸化物イオン酸化活性のいずれか1つを有する充填材が充填されている孔部と、を備える。
 上記構成によると、電極がセラミックス部材で構成された構造支持部を備えるため、膜電極接合体の構造を支持することができるとともに、固体電解質膜との熱膨張係数差を小さくすることができる。このため、動作環境において、膜電極接合体における反りの発生を抑制することができる。
 また、電極は充填材が充填された孔部を備えるため、充填材が水素酸化活性を有する場合は水素の酸化を、酸素還元活性を有する場合は酸素の還元を、プロトン還元活性を有する場合はプロトンの還元を、水蒸気分解活性を有する場合は水蒸気の分解を、酸化物イオン酸化活性を有する場合は酸化物イオンの酸化を促進させることができる。
 よって、本開示の第1の態様に係る膜電極接合体は、動作環境においても、形状変化が生じることを抑制することができるという効果を奏する。
 なお、「境界面」と本明細書中の「第一境界面」とは、同義である。
 本開示の第2の態様に係る膜電極接合体は、上記した第1の態様において、前記反応ガスは、水素含有ガスであり、前記充填材は、水素酸化活性および電気伝導性を有してもよい。
 上記構成によると、充填材が水素酸化活性および電気伝導性を有しているため、電極は水素の酸化を促進させるとともに電気伝導性を担保することができる。
 なお、本開示の第2の態様に係る膜電極接合体では、前記孔部は、前記境界面に設けられ、前記反応ガスとして前記水素含有ガスが流入する第一開口部と、前記第一開口部とは反対側となる前記固体電解質膜側の端部に設けられた第二開口部とを有する構成であってもよい。
 この構成により第一開口部および第二開口部を有するため、第一開口部を介して水素が孔部内に流入することができる。また、孔部内には充填材が充填されている。このため、充填材の表面で水素が酸化し、プロトンと電子とに分かれる。そして、プロトンを第二開口部を介して電極から固体電解質膜に向かって移動させるとともに、電子を電極の外部に取り出すことができる。
 このため、本開示の第2の態様に係る膜電極接合体を、例えば、燃料電池の電極(すなわち、アノード)として用いた場合、発電性能を担保することができる。
 さらにまた、本開示の第2の態様に係る膜電極接合体では、前記孔部は、第一孔部と、第二孔部と、前記第一孔部と前記第二孔部とを連通させる連通路と、を備える構成であってもよい。
 上記構成によると連通路を備えるため、水素含有ガスが流通可能な経路を増やすことができる。このため、より高い水素酸化活性、電気伝導性を有することができる。また、第一孔部または第二孔部の経路中において、なんらかの不具合が生じて水素含有ガスの流通が阻害されたとしても連通路を介して別ルートで流通させることができる。このため、電極は水素酸化活性、および電気伝導性を維持することができる。
 本開示の第3の態様に係る膜電極接合体は、上記した第1または第2の態様において、前記充填材は、Niを含む化合物であってもよい。
 上記構成によると、充填材がNiを含む化合物であるため、より高い水素酸化活性と電気伝導性を有することができる。
 本開示の第4の態様に係る膜電極接合体は、上記した第1から第3のいずれか1つの態様において、前記充填材は、サーメットであってもよい。
 上記構成によると、充填材がサーメットであるため、水素酸化の反応場を増やすことができる。このため、より高い水素酸化活性を有することができる。
 なお、本開示の第3または第4の態様に係る膜電極接合体では、前記充填材は、多孔体であってもよい。
 上記構成によると、充填材が多孔体であるため、反応に寄与する水素含有ガスが孔部を流通しやすくなる。このため、より高い発電性能を有することができる。
 さらにまた、本開示の第2から第4の態様のいずれか1つの態様に係る膜電極接合体では、前記構造支持部は、前記電解質材料を含む前記セラミックス部材から構成されてもよい。
 上記構成によると、構造支持部は、セラミックス部材が電解質材料を含むため、構造支持部の線膨張係数と固体電解質膜の線膨張係数とが近くなる。このため、動作環境において反りの発生を抑制することができる。
 本開示の第5の態様に係る膜電極接合体は、上記した第1の態様において、前記反応ガスは、酸化剤ガスであり、前記充填材は、酸素還元活性および電気伝導性を有してもよい。
 上記構成によると、充填材が酸素還元活性および電気伝導性を有しているため、電極は酸素の還元を促進させるとともに電気伝導性を担保することができる。
 なお、本開示の第5の態様に係る膜電極接合体では、前記孔部は、前記境界面に設けられ、前記反応ガスとして前記酸化剤ガスが流入する第一開口部と、前記第一開口部とは反対側となる前記固体電解質膜側の端部に設けられた第二開口部とを有する構成であってもよい。
 上記構成によると第一開口部および第二開口部を有するため、第一開口部を介して酸化剤ガス(酸素)が孔部内に流入し孔部内を移動することができる。また、孔部内には充填材が充填されている。このため、充填材表面で還元され、第二開口部近傍に伝導してきた酸素と、固体電解質膜を通過して移動してきたプロトンと、外部回路を経て電極に到達した電子とによって水が生成される。
 このため、本開示の第5の態様に係る膜電極接合体を、例えば、燃料電池の電極(すなわち、カソード)として用いた場合、発電性能を担保することができる。
 また、本開示の第5の態様に係る膜電極接合体では、前記孔部は、第一孔部と、第二孔部と、前記第一孔部と前記第二孔部とを連通させる連通路と、を備える構成であってもよい。
 上記構成によると連通路を備えるため、酸化剤ガスが流通可能な経路を増やすことができる。このため、より高い酸素還元活性、電気伝導性を有することができる。また、第一孔部または第二孔部の経路中において、なんらかの不具合が生じて酸化剤ガスの流通が阻害されたとしても連通路を介して別ルートで流通させることができる。このため、電極は酸素還元活性、および電気伝導性を維持することができる。
 さらにまた、本開示の第5の態様に係る膜電極接合体は、前記充填材は、多孔体であってもよい。
 上記構成によると、充填材が多孔体であるため、反応に寄与する酸化剤ガスが孔部を流通しやすくなる。このため、より高い発電性能を有することができる。
 本開示の第6の態様に係る膜電極接合体は、上記した第5の態様において、前記充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含んでもよい。
 上記構成によると、孔部に充填される充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物であるため、高い酸素還元活性と電気伝導性とを有することができる。
 本開示の第7の態様に係る膜電極接合体は、上記した第5の態様において、前記充填材は、ランタンストロンチウムコバルト複合酸化物、ランタンストロンチウムコバルト鉄複合酸化物、ランタンストロンチウム鉄複合酸化物、およびランタンニッケル鉄複合酸化物から選ばれる1種類以上の化合物であってもよい。
 上記構成によると、孔部に充填される充填材は、ランタンストロンチウムコバルト複合酸化物、ランタンストロンチウムコバルト鉄複合酸化物、ランタンストロンチウム鉄複合酸化物、およびランタンニッケル鉄複合酸化物から選ばれる1種類以上の化合物であるため、燃料電池などの動作温度となる600度付近において、高い酸素還元活性ならびに電気伝導性を有することができる。
 なお、本開示の第5から第7の態様のいずれか1つの態様に係る膜電極接合体では、前記構造支持部は、前記電解質材料を含むセラミックス部材から構成されてもよい。
 上記構成によると、構造支持部は、セラミックス部材が電解質材料を含むため、構造支持部の線膨張係数と固体電解質膜の線膨張係数とが近くなる。このため、動作環境において反りの発生を抑制することができる。
 本開示の第8の態様に係る膜電極接合体は、上記した第1の態様において、前記構造支持部は、前記境界面において、単位面積あたりの前記孔部の開口面積が異なる領域を有しており、前記反応ガスの流通方向において上流側となる領域の単位面積あたりの前記孔部の開口面積を第一面積比とし、下流側となる領域の単位面積あたりの前記孔部の開口面積を第二面積比としたとき、第一面積比<第二面積比の関係を満たしてもよい。
 上記構成によると、電極が構造支持部を備えるため、膜電極接合体の構造を支持することができるとともに、固体電解質膜との熱膨張係数差を小さくすることができる。このため、動作環境において、膜電極接合体における反りの発生を抑制することができる。
 また、電極は、構造支持部において充填材が充填された孔部を有し、構造支持部における反応ガスとの境界面において、単位面積あたりの孔部の開口面積が、第一面積比<第二面積比の関係を満たすため、反応ガス流通方向の下流側の領域における濃度過電圧を低減させることができる。このため、下流側の領域の性能低下を抑制し、性能の向上を図ることができる。
 よって、動作環境においても、形状変化が生じることを抑制するとともに性能を向上させることができるという効果を奏する。
 なお、上記した単位面積当たりの孔部の開口面積とは、孔部を含む所定の領域における、単位面積当たりに含まれる孔部すべての開口面積の割合を意味する。したがって、第一面積比は、境界面における上流側の領域に存在する孔部の開口面積の合計を上流側の領域の面積(すなわち、「上流側の領域に存在する孔部の開口面積の合計+上流側の領域における構造支持部の面積」)で除することで求めることができる。一方、第二面積比は、境界面における下流側の領域に存在する孔部の開口面積の合計を下流側の領域の面積(すなわち、「下流側の領域に存在する孔部の開口面積の合計+下流側の領域における構造支持部の面積」)で除することで求めることができる。
 本開示の第9の態様に係る膜電極接合体は、上記した第8の態様において、前記上流側となる領域と前記下流側となる領域との間の領域における単位面積あたりの前記孔部の開口面積を第三面積比としたとき、第一面積比<第三面積比<第二面積比の関係を満たす構成であってもよい。
 上記構成によると、単位面積あたりの孔部の開口面積が、第一面積比<第三面積比<第二面積比の関係を満たすため、反応ガス流通方向の下流側の領域に加えて、上流側と下流側との間の領域においてもガス拡散効果を促進することができる。このため、下流側の領域ならびに上流側と下流側との間の領域において濃度過電圧を低減させることができ、性能低下を抑制することができる。
 本開示の第10の態様に係る膜電極接合体は、上記した第8の態様において、前記上流側となる領域と前記下流側となる領域との間の領域における単位面積あたりの前記孔部の開口面積を第三面積比としたとき、第三面積比<第一面積比<第二面積比の関係を満たす構成であってもよい。
 上記構成によると、単位面積あたりの孔部の開口面積が、第三面積比<第一面積比<第二面積比の関係を満たすため、反応ガス流通方向の下流側の領域においてガス拡散効果を促進することができる。このため、下流側の領域において濃度過電圧を低減させることができ、性能低下を抑制することができる。
 ここで、本開示の膜電極接合体が例えば燃料電池に用いられた場合、反応ガス流通方向の上流側と下流側との間の領域の温度が、他の領域に比べて高くなる。第三面積比が第一面積比および第二面積比よりも小さくなる関係にあるため、上流側と下流側との間の領域ではガス拡散性が抑制される。このため、上流側と下流側との間の領域は、他の領域よりも電流が流れにくくなり温度上昇を抑えることができる。
 なお、本開示の第8から第10の態様のいずれか1つの態様に係る膜電極接合体では、前記孔部は、第一孔部と、第二孔部と、前記第一孔部と前記第二孔部とを連通させる連通路と、を備える構成であってもよい。
 上記構成によると連通路を備えるため、反応ガスが流通可能な経路を増やすことができる。このため、反応ガスが水素でかつ、充填材が水素酸化活性および電気伝導性を有している場合、より高い水素酸化活性、電気伝導性を有することができる。一方、反応ガスが酸素でかつ、充填材が酸素還元活性および電気伝導性を有している場合、より高い酸素還元性、電気伝導性を有することができる。
 また、第一孔部または第二孔部の経路中において、なんらかの不具合が生じて反応ガスの流通が阻害されたとしても連通路を介して別ルートで流通させることができる。このため、電極は水素酸化活性と電気伝導性、あるいは酸化還元性と電気伝導性を維持することができる。
 また、本開示の第8から第10の態様のいずれか1つの態様に係る膜電極接合体では、前記充填材は、多孔体であってもよい。
 上記構成によると、充填材が多孔体であるため、反応に寄与する反応ガスが孔部を流通しやすくなる。このため、より高い発電性能を有することができる。
 また、本開示の第8から第10の態様のいずれか1つの態様に係る膜電極接合体では、前記充填材が、酸素還元活性と電気伝導性とを有する場合、前記充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物であってもよい。
 上記構成によると、孔部に充填される充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物である。このため、高い酸素還元活性と電気伝導性を有することができる。
 また、本開示の第8から第10の態様のいずれか1つの態様に係る膜電極接合体では、前記充填材が、水素酸化活性と電気伝導性とを有する場合、前記充填材は、Niを含む化合物である。
 上記構成によると、孔部に充填される充填材は、Niを含む化合物であるため、より高い水素酸化活性と電気伝導性を有することができる。
 さらにまた、本開示の第8から第10の態様のいずれか1つの態様に係る膜電極接合体では、前記充填材は、サーメットであってもよい。
 上記構成によると、充填材がサーメットであるため、水素酸化の反応場を増やすことができ、より高い水素酸化活性を有することができる。
 さらにまた、本開示の第8から第10の態様のいずれか1つの態様に係る膜電極接合体では、前記構造支持部は、前記電解質材料を含むセラミックス部材から構成されてもよい。
 上記構成によると、構造支持部は、セラミックス部材が電解質材料を含むため、構造支持部の線膨張係数と固体電解質膜の線膨張係数とが近くなる。このため、動作環境において反りの発生を抑制することができる。
 本開示の第11の態様に係る膜電極接合体は、上記した第1から第10の態様のいずれか1つの態様において、前記孔部は、前記境界面に設けられ、前記反応ガスが流入する第一開口部と、前記第一開口部とは反対側となる固体電解質膜側の端部に設けられた第二開口部とを有する構成であってもよい。
 上記構成によると第一開口部を介して反応ガスが孔部内に流入することができる。また、孔部内には充填材が充填されている。
 このため、本開示の第11の態様に係る膜電極接合体を、例えば、燃料電池の電極として用いた場合、発電性能を担保することができる。
 本開示の第12の態様に係る膜電極接合体は、上記した第1から第11の態様のいずれか1つの態様において、前記孔部は、第一孔部と、第二孔部と、前記第一孔部と前記第二孔部とを連通させる連通路と、を備える構成であってもよい。
 上記構成によると連通路を備えるため、反応ガスが流通可能な経路を増やすことができる。このため、少なくともより高い水素酸化活性、より高い酸素還元活性、より高いプロトン還元活性、より高い水蒸気分解活性、およびより高い酸化物イオン酸化活性のいずれか1つを有することができる。
 また、第一孔部または第二孔部の経路中において、なんらかの不具合が生じて反応ガスの流通が阻害されたとしても連通路を介して別ルートで流通させることができる。このため、電極は、少なくとも水素酸化活性、酸素還元活性、プロトン還元活性、水蒸気分解活性、および酸化物イオン酸化活性のいずれか1つを維持することができる。
 本開示の第13の態様に係る膜電極接合体は、上記した第1から第12の態様のいずれか1つの態様において、前記充填材は、多孔体であってもよい。
 上記構成によると、充填材が多孔体であるため、反応に寄与する反応ガスが孔部を流通しやすくなる。このため、より高い発電性能を有することができる。
 本開示の第14の態様に係る膜電極接合体は、上記した第1の態様において、前記反応ガスは、水素含有ガスおよび酸化剤ガスであり、前記電極は、水素含有ガスと接触する燃料極と、酸化剤ガスと接触する空気極とであって、前記空気極、前記固体電解質膜および前記燃料極がこの順に積層されており、前記燃料極は、前記構造支持部として、燃料極側構造支持部と、前記孔部として、前記燃料極側構造支持部において前記水素含有ガスと接触する燃料極側境界面から前記固体電解質膜側に向かって延伸し、水素酸化活性および電気伝導性を有する燃料極側充填材が充填されている燃料極側孔部と、を有し、前記空気極は、前記構造支持部として、空気極側構造支持部と、前記孔部として、前記空気極側構造支持部において前記酸化剤ガスと接触する空気極側境界面から前記固体電解質膜側に向かって延伸し、酸素還元活性および電気伝導性を有する空気極側充填材が充填されている空気極側孔部と、を有する構成であってもよい。
 上記構成によると、燃料極が燃料極側構造支持部を、空気極が空気極側構造支持部をそれぞれ備えるため、燃料極側および空気極側の両方で膜電極接合体の構造を支持することができるとともに、固体電解質膜との熱膨張係数差を小さくすることができる。このため、動作環境において、膜電極接合体における反りの発生を抑制することができる。
 また、燃料極は、燃料極側充填材が充填された燃料極側孔部を、空気極は、空気極側充填材が充填された空気極側孔部をそれぞれ備える。このため、燃料極において水素の酸化を促進させるとともに、電気伝導性を担保し、空気極において酸素の還元を促進させるとともに、電気伝導性を担保することができる。
 よって、本開示の第1の態様に係る膜電極接合体は、動作環境においても、形状変化が生じることを抑制することができるという効果を奏する。
 なお、「燃料極側境界面」と本明細書中の「第一燃料極側境界面」とは、同義である。
 また、「空気極側境界面」と本明細書中の「第一空気極側境界面」とは、同義である。
 本開示の第15の態様に係る膜電極接合体は、上記した第14の態様において、前記燃料極側孔部は、前記燃料極側境界面に設けられ、前記水素含有ガスが流入する第一燃料極側開口部と、前記第一燃料極側開口部とは反対側となる固体電解質膜側の端部に設けられた第二燃料極側開口部とを有し、前記空気極側孔部は、前記空気極側境界面に設けられ、前記酸化剤ガスが流入する第一空気極側開口部と、前記第一空気極側開口部とは反対側となる固体電解質膜側の端部に設けられた第二空気極側開口部とを有する構成であってもよい。
 上記構成によると、燃料極側孔部が第一燃料極側開口部および第二燃料極側開口部を有するため、第一燃料極側開口部を介して水素が燃料極側孔部内に流入することができる。また、燃料極側孔部内には燃料極側充填材が充填されている。このため、燃料極側充填材の表面で水素が酸化し、プロトンと電子とに分かれる。そして、プロトンを第二燃料極側開口部を介して燃料極から固体電解質膜に向かって移動させるとともに、電子を燃料極の外部に取り出すことができる。
 また、空気極側孔部が第一空気極側開口部および第二空気極側開口部を有するため、第一空気極側開口部を介して酸化剤ガス(酸素)が空気極側孔部内に流入し空気極側孔部内を移動することができる。また、空気極側孔部内には空気極側充填材が充填されている。このため、空気極側充填材の表面で還元され、第二空気極側開口部近傍に伝導してきた酸素と、固体電解質膜を通過して移動してきたプロトンと、外部回路を経て電極に到達した電子とによって水が生成される。
 このため、本開示の膜電極接合体を、例えば、燃料電池に用いた場合、発電性能を担保することができる。
 本開示の第16の態様に係る膜電極接合体は、上記した第15の態様において、前記燃料極側孔部が有する前記第二燃料極側開口部の周縁と、前記空気極側孔部が有する前記第二空気極側開口部の周縁とは、前記膜電極接合体の積層方向で平面視したとき、互いに重ならないように配置される構成であってもよい。
 ここで動作環境において、第二空気極側開口部および第二燃料極側開口部それぞれの周縁に応力が生じる。
 上記構成によると、第二空気極側開口部の周縁と第二燃料極側開口部の周縁とが膜電極接合体の積層方向で平面視したとき、互いに重ならないように配置されているため、固体電解質膜における特定の領域に応力が集中して作用することを抑制することができる。
 よって、膜電極接合体は、反りを抑制し、かつ割れまたはクラックが生じることを防ぐことができる。
 本開示の第17の態様に係る膜電極接合体は、上記した第15または第16の態様において、前記膜電極接合体の積層方向で平面視したとき、前記第二燃料極側開口部の周縁により形成される面内に前記第二空気極側開口部の周縁により形成される面が含まれるように配置される構成であってもよい。
 ここで動作環境において、第二開口部および第四開口部それぞれの周縁に応力が生じる。
 上記構成によると、膜電極接合体の積層方向で平面視したとき、第二燃料極側開口部の周縁により形成される面内に第二空気極側開口部の周縁により形成される面が含まれるように配置されている。つまり、膜電極接合体の積層方向で平面視したとき、第二燃料極側開口部の周縁と第二空気極側開口部の周縁とが重ならないため、動作環境において、固体電解質膜における特定の領域に応力が集中して作用することを抑制することができる。
 さらにまた、平面視したときに第二燃料極側開口部の周縁により形成される面と第二空気極側開口部の周縁により形成される面とが重ならないように両者が離れた位置関係となる構成と比較して、電気化学反応時において、固体電解質膜におけるイオンの拡散長さを短くできる。それゆえ、電気化学反応時の内部抵抗を抑制することができる。
 また、第二燃料極側開口部の周縁により形成される面を大きくすることで、水素酸化活性と電気伝導性とを有する材料の充填領域を広げることができ、水素酸化の反応場や電気伝導パスを増大させることができる。これにより、より高い水素酸化活性、電気伝導性を有することができる。
 本開示の第18の態様に係る膜電極接合体は、上記した第15または第16の態様において、前記膜電極接合体の積層方向で平面視したとき、前記第二空気極側開口部の周縁により形成される面内に前記第二燃料極側開口部の周縁により形成される面が含まれるように配置される構成であってもよい。
 ここで動作環境において、第二空気極側開口部および第二燃料極側開口部それぞれの周縁に応力が生じる。
 上記構成によると、膜電極接合体の積層方向で平面視したとき、第二空気極側開口部の周縁により形成される面内に第二燃料極側開口部の周縁により形成される面が含まれるように配置されている。つまり、膜電極接合体の積層方向で平面視したとき、第二空気極側開口部の周縁と第二燃料極側開口部の周縁とが重ならないため、動作環境において、固体電解質膜における特定の領域に応力が集中して作用することを抑制することができる。
 さらにまた、平面視したときに第二空気極側開口部の周縁により形成される面と第二燃料極側開口部の周縁により形成される面とが重ならないように両者が離れた位置関係となる構成と比較して、電気化学反応時において、固体電解質膜におけるイオンの拡散長さを短くできる。それゆえ、電気化学反応時の内部抵抗を抑制することができる。
 また、第二空気極側開口部の周縁により形成される面を大きくすることで、酸素還元活性と電気伝導性とを有する材料の充填領域を広げることができ、酸素還元の反応場や電気伝導パスを増大することができる。これにより、より高い酸素還元活性、電気伝導性を有することができる。
 本開示の第19の態様に係る膜電極接合体は、上記した第15の態様において、前記燃料極側孔部が有する前記第二燃料極側開口部の周縁と、前記空気極側孔部が有する前記第二空気極側開口部の周縁とは、前記膜電極接合体の積層方向で平面視したとき、少なくとも一部が互いに重なるように配置される構成であってもよい。
 上記構成によると、燃料極側孔部および空気極側孔部を配置する際、膜電極接合体の積層方向で平面視したとき、第二燃料極側開口部の周縁と第二空気極側開口部の周縁とが少なくとも一部が互いに重なってもよいため、燃料極側孔部および空気極側孔部それぞれの配置の自由度が大きくなり、それぞれ多数形成することができる。それ故、燃料極における燃料極側孔部、ならびに空気極における空気極側孔部それぞれの占有面積を広くとることができる。
 したがって、酸素還元の反応場および電気伝導パスを広げたり、水素酸化の反応場および電気伝導パスを広げたりすることができ、より高い酸素還元活性、水素酸化活性、および電気伝導性を有することができる。
 本開示の第20の態様に係る膜電極接合体は、上記した第14から第19の態様のいずれか1つの態様において、前記燃料極側孔部は、第一燃料極側孔部と、第二燃料極側孔部と、前記第一燃料極側孔部と前記第二燃料極側孔部とを連通させる燃料極側連通路と、を備える構成であってもよい。
 上記構成によると燃料極側連通路を備えるため、水素含有ガスが流通可能な経路を増やすことができる。このため、より高い水素酸化活性、電気伝導性を有することができる。また、第一燃料極側孔部または第二燃料極側孔部の経路中において、なんらかの不具合が生じて水素含有ガスの流通が阻害されたとしても燃料極側連通路を介して別ルートで流通させることができる。このため、燃料極は水素酸化活性、および電気伝導性を維持することができる。
 本開示の第21の態様に係る膜電極接合体は、上記した第14から第20の態様のいずれか1つの態様において、前記空気極側孔部は、第一空気極側孔部と、第二空気極側孔部と、前記第一空気極側孔部と前記第二空気極側孔部とを連通させる空気極側連通路と、を備える構成であってもよい。
 上記構成によると空気極側連通路を備えるため、酸化剤ガスが流通可能な経路を増やすことができる。このため、より高い酸素還元活性、電気伝導性を有することができる。また、第一空気極側孔部または第二空気極側孔部の経路中において、なんらかの不具合が生じて酸化剤ガスの流通が阻害されたとしても空気極側連通路を介して別ルートで流通させることができる。このため、空気極は酸素還元活性、および電気伝導性を維持することができる。
 本開示の第22の態様に係る膜電極接合体は、上記した第14から第21の態様のいずれか1つの態様において、前記燃料極側充填材は、Niを含んでもよい。
 上記構成によると、燃料極側充填材がNiを含むため、より高い水素酸化活性と電気伝導性を有することができる。
 本開示の第23の態様に係る膜電極接合体は、上記した第14から第22の態様のいずれか1つの態様において、前記燃料極側充填材は、サーメットであってもよい。
 上記構成によると、空気極側充填材がサーメットであるため、水素酸化の反応場を増やすことができる。このため、より高い水素酸化活性を有することができる。
 本開示の第24の態様に係る膜電極接合体は、上記した第14から第23の態様のいずれか1つの態様において、前記空気極側充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物であってもよい。
 上記構成によると、孔部に充填される充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物であるため、高い酸素還元活性と電気伝導性を有することができる。
 本開示の第25の態様に係る膜電極接合体は、上記した第14から第24の態様のいずれか1つの態様において、前記燃料極側充填材および前記空気極側充填材のうち少なくとも一方は、多孔体であってもよい。
 上記構成によると、燃料極側充填材および空気極側充填材の少なくとも一方が多孔体である。このため、燃料極側充填材が多孔体である場合、反応に寄与する水素含有ガスが燃料極側孔部を流通しやすくなる。また、空気極側充填材が多孔体である場合、反応に寄与する酸化剤ガスが空気極側孔部を流通しやすくなる。このため、より高い発電性能を有することができる。
 本開示の第26の態様に係る膜電極接合体は、上記した第14から第25の態様のいずれか1つの態様において、前記燃料極側構造支持部および空気極側構造支持部のうち少なくとも一方は、前記電解質材料を含む前記セラミックス部材から構成されてもよい。
 上記構成によると、燃料極側構造支持部および空気極側構造支持部のうち少なくとも一方は、セラミックス部材が電解質材料を含むため、線膨張係数を固体電解質膜の線膨張係数に近づけることができる。このため、動作環境において反りの発生を抑制することができる。
 本開示の第27の態様に係る膜電極接合体は、上記した第1から第26の態様のいずれか1つの態様において、前記孔部の空隙の屈曲度が1.5以下であってもよい。
 上記構成によると、孔部の空隙の屈曲度が1.5以下であるため、ガス拡散性を向上させることができる。
 本開示の第28の態様に係る膜電極接合体は、上記した第1から第27の態様のいずれか1つの態様において、前記構造支持部の屈曲度が、1以上1.2以下であってもよい。
 上記構成によると、構造支持部の屈曲度が、1以上1.2以下であるため、構造支持部の強度を向上させることができる。
 本開示の第29の態様に係る膜電極接合体は、上記した第1から第28の態様のいずれか1つの態様において、前記電解質材料は、プロトン伝導性を有していてもよい。
 本開示の第30の態様に係る燃料電池は、電解質材料を含む固体電解質膜と、反応ガスと接触する電極とを備えた膜電極接合体であって、前記電極は、セラミックス部材で構成された構造支持部と、前記構造支持部において前記反応ガスと接触する境界面から前記固体電解質膜側に向かって延伸し、少なくとも水素酸化活性、酸素還元活性、プロトン還元活性、水蒸気分解活性、および酸化物イオン酸化活性のいずれか1つを有する充填材が充填されている孔部と、を有する膜電極接合体を備える。
 上記構成によると、膜電極接合体が有する電極がセラミックス部材で構成された構造支持部を備えるため、膜電極接合体の構造を支持することができるとともに、固体電解質膜との熱膨張係数差を小さくすることができる。このため、燃料電池の動作環境において、膜電極接合体における反りの発生を抑制することができる。
 また、膜電極接合体が有する電極は充填材が充填された孔部を備えるため、充填材が水素酸化活性を有する場合は水素の酸化を、酸素還元活性を有する場合は酸素の還元を、プロトン還元活性を有する場合はプロトンの還元を、水蒸気分解活性を有する場合は水蒸気の分解を、酸化物イオン酸化活性を有する場合は酸化物イオンの酸化を促進させることができる。
 よって、本開示の第30の態様に係る燃料電池は、動作環境においても、形状変化が生じることを抑制することができるという効果を奏する。
 以下、添付図面を参照しながら、本開示の実施形態について説明する。なお、以下で説明する実施形態は、いずれも上記の各態様の一例を示すものである。よって、以下で示される形状、材料、構成要素、および、構成要素の配置位置および接続形態などは、あくまで一例であり、請求項に記載されていない限り、上記の各態様を限定するものではない。また、以下の構成要素のうち、上記の各態様の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比などについては正確な表示ではない場合がある。
 (第1実施形態)
 図1、2を参照して第1実施形態に係る膜電極接合体10の構成を説明する。図1は、本開示の第1実施形態に係る膜電極接合体10を、水素含有ガスと接する面(すなわち、図2における第一燃料極側境界面17)側から見た平面図である。また、図2は、図1に示す膜電極接合体10におけるA-A断面の一例を示す模式図である。
 図1、2に示すように、膜電極接合体10は、電解質材料を含む固体電解質膜11と、水素含有ガスと接触する燃料極12とを備える。膜電極接合体10は、例えば、電気化学デバイスを構成するために用いられる部材であり、図1に示すように固体電解質膜11と燃料極12とを積層して構成される。
 燃料極12は、セラミックス部材で構成された燃料極側構造支持部14と、燃料極側構造支持部14において水素含有ガスと接触する第一燃料極側境界面17(以下、境界面と称することがある。)から固体電解質膜11側に向かって延伸し、水素酸化活性および電気伝導性を有する燃料極側充填材15が充填されている燃料極側孔部13と、を備える。そして、燃料極側構造支持部14によって膜電極接合体10の構造を支持する。なお、図2に示すように燃料極側孔部13は、第一燃料極側境界面17から固体電解質膜11側に向かって直線状に延伸している。
 固体電解質膜11が含む電解質材料としては、例えば、バリウムジルコニウム酸化物若しくはバリウムセリウム酸化物などのプロトン伝導体、または安定化ジルコニア、ランタンガレート系酸化物、セリア系酸化物などの酸化物イオン伝導体が挙げられる。なお、プロトン伝導体は、イッテルビウムなどのドーパントを含んでいてもよい。いいかえると、バリウムジルコニウム系酸化物、バリウムセリウム系酸化物などであってもよい。
 燃料極側構造支持部14は、電解質材料を含むセラミックス部材から構成されている。燃料極側構造支持部14を構成するセラミックス部材には、固体電解質膜11との線膨張係数差が小さいような材料が使用される。なお、ここでいう「線膨張係数差が小さい」とは、例えば、固体電解質膜11との線膨張係数差を2×10-6-1以下にすることが望ましい。線膨張係数差を小さくすることで、セルの形状変化を抑制することが可能となる。
 また、セラミックス部材は緻密体であってもよい。緻密体とは、例えば、アルキメデス法や水銀圧入法によって測定される相対密度が85%以上のことである。緻密体であればセル強度を向上させることができる。
 このように、燃料極12は、燃料極側構造支持部14を備えるため、膜電極接合体10の構造を支持することができるとともに、固体電解質膜11との熱膨張係数差を小さくすることができる。このため、動作環境において膜電極接合体10における反りの発生を抑制することができる。
 なお、水素含有ガスは、水素であってもよいし、例えば、メタンガスなどの改質反応により発生する改質ガス、水の電気分解により発生する水蒸気を含む水素ガスなどであってもよい。
 燃料極側孔部13は、図2に示すように燃料極側構造支持部14において水素含有ガスと接触する第一燃料極側境界面17に設けられ、水素含有ガスが流入する第一燃料極側開口部16aと、第一燃料極側開口部16aとは反対側となる固体電解質膜11側の端部に設けられた第二燃料極側開口部16bとを有する。図2の例では、第二燃料極側開口部16bは、燃料極側構造支持部14において固体電解質膜11と接する第二燃料極側境界面18に設けられる。
 すなわち、燃料極側孔部13の第一燃料極側開口部16aが設けられている第一燃料極側境界面17側には水素含有ガスが流通するガス流路(不図示)が備えられており、このガス流路を流通する水素含有ガスが第一燃料極側開口部16aを介して燃料極側孔部13内に流入する。また、燃料極側孔部13内には後述する燃料極側充填材15が充填されており、燃料極側充填材15の表面で、水素が酸化し、プロトンと電子とに分かれる。そして、プロトンは第二燃料極側開口部16bを介して燃料極12から固体電解質膜11に向かって移動する。また電子は燃料極側孔部13内を移動して燃料極12の外部に取り出される。
 また図1に示すように、燃料極側孔部13の開口形状は丸孔であってもよいし、図3に示すように角孔であってもよい。なお、燃料極側孔部13の開口形状は特に限定されない。燃料極側構造支持部14における強度面の観点から丸孔が好適である。図3は、図1に示す膜電極接合体10の変形例を示す図である。
 燃料極側孔部13の配列パターンは、図1または図3に示すように、各燃料極側孔部13が並列に配置された並列パターンであってもよいし、千鳥状に配置された千鳥状パターンであってもよい。あるいは、燃料極側孔部13はランダムに配列されてもよい。燃料極側孔部13の形状および配列パターンは、燃料極側構造支持部14が充分な強度を保つとともに、燃料極側孔部13内に充填された燃料極側充填材15によって必要な水素酸化活性と電気伝導性とを得ることができる限り任意である。
 燃料極側孔部13の開口寸法は、例えば、丸孔の場合、径寸法が、0.01mmから1mmとし、角孔の場合、一辺の寸法が0.01mmから1mmとしてもよい。また、燃料極側孔部13が燃料極12の主面(すなわち、第一燃料極側境界面17または第二燃料極側境界面18)において占める面積の割合は、燃料極12の主面全体の50%以下、望ましくは30%以下であってもよい。燃料極12の主面における燃料極側孔部13の占有面積が大きいと発電性能は向上する。しかしながら、燃料極12において生じる反りが大きくなる。
 また燃料極側孔部13は、燃料極側充填材15によって、水素の酸化を促進させるとともに電気伝導性を担保することができる。なお、燃料極側充填材15は、水素酸化活性および電気伝導性を有した1種類以上の材料から構成されてもよい。例えば、燃料極側充填材15は水素酸化活性および電気伝導性を有した1種類の材料から構成されてもよい。または、燃料極側充填材15は、水素酸化活性を有する材料と、電気伝導性を有する材料とを組み合わせて構成されてもよい。または、燃料極側充填材15は、水素酸化活性と電気伝導性とを有するように、複数の材料からなる化合物によって構成されてもよい。
 なお、水素酸化活性と電気伝導性とを有する材料として、例えば、Ni、Pt、Pd、Irがあげられ、燃料極側充填材15は、望ましくはNiを含む化合物であってもよい。Niは、例えば固体酸化物形燃料電池等の電気化学デバイスの燃料極に使用される、優れた水素酸化活性と電気伝導性とを有する材料である。
 また、燃料極側充填材15は、サーメットであってもよい。サーメットとは、金属とセラミックス材料との混合物であり、たとえば、金属にNi、セラミックス材料に、バリウムジルコニウム酸化物、バリウムセリウム酸化物などのプロトン伝導体、または安定化ジルコニア、ランタンガレート系酸化物、セリア系酸化物などの酸化物イオン伝導体からなるサーメットがあげられる。なお、プロトン伝導体は、イッテルビウムなどのドーパントを含んでいてもよい。いいかえると、バリウムジルコニウム系酸化物、バリウムセリウム系酸化物などであってもよい。サーメットが、例えば、Niと、電解質材料との混合物である場合、水素酸化の反応場の増加により水素酸化活性を向上させることができる。
 なお、燃料極側充填材15は、Niを含む多孔体であってもよい。なお、ここでいう多孔体とは、アルキメデス法や水銀圧入法によって測定される空隙率が20%以上のことである。燃料極側充填材15を多孔体にすることで、水素酸化に寄与する水素含有ガスの供給が増加し、水素酸化活性を向上させることが可能となる。
 (変形例1)
 次に図4を参照して本開示の第1実施形態の変形例1に係る膜電極接合体10の構成について説明する。図4は、本開示の第1実施形態の変形例1に係る膜電極接合体10の断面の一例を示す模式図である。なお、図4に示す膜電極接合体10の断面も、図1に示す膜電極接合体10におけるA-Aで切り出した断面構造とする。
 第1実施形態の変形例1に係る膜電極接合体10は、固体電解質膜11および燃料極12を備え、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第1実施形態に係る膜電極接合体10と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図4に示すように第1実施形態の変形例1に係る膜電極接合体10では、燃料極12が、複数の燃料極側孔部13(例えば、第一燃料極側孔部13aおよび第二燃料極側孔部13b)を連通させる燃料極側連通路19をさらに備える点で第1実施形態に係る膜電極接合体10と相違する。
 すなわち、膜電極接合体10は、一方の第一燃料極側孔部13aと、他方の第二燃料極側孔部13bとを連通させる燃料極側連通路19を1つ以上有している。この構造によって、第1実施形態の変形例1に係る膜電極接合体10は、水素含有ガスが流通可能な経路を増やすことができる。このため、より高い水素酸化活性および電気伝導性を有することができる。また、第一燃料極側孔部13aまたは第二燃料極側孔部13bの経路中において、なんらかの不具合が生じて水素含有ガスの流通が阻害されたとしても燃料極側連通路19を介して別ルートで水素含有ガスを流通させることができる。このため、燃料極12は水素酸化活性および電気伝導性を維持することができる。
 なお、図4では燃料極側連通路19内においても燃料極側充填材15が充填された構成となっているが、水素含有ガスの流通経路を確保できればよい場合は必ずしも燃料極側連通路19内に燃料極側充填材15が充填されていなくてもよい。図4に示すように燃料極側連通路19内に燃料極側充填材15が充填された場合、水素酸化活性および電気伝導性を向上させる点で好適である。
 (変形例2)
 次に図5を参照して本開示の第1実施形態の変形例2に係る膜電極接合体10の構成について説明する。図5は、本開示の第1実施形態の変形例2に係る膜電極接合体10の断面の一例を示す模式図である。なお、図5に示す膜電極接合体10の断面も、図1に示す膜電極接合体10におけるA-Aで切り出した断面構造とする。
 第1実施形態の変形例2に係る膜電極接合体10は、固体電解質膜11および燃料極12を備え、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第1実施形態に係る膜電極接合体10と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図5に示すように第1実施形態の変形例2に係る膜電極接合体10が備える燃料極側孔部13は、第1実施形態に係る膜電極接合体10が備える燃料極側孔部13とは、延伸する方向が異なっている。つまり、第1実施形態に係る膜電極接合体10では、燃料極側構造支持部14において、燃料極側孔部13が水素含有ガスと接触する側(すなわち、第一燃料極側境界面17)から固体電解質膜11側(すなわち、第二燃料極側境界面18)に向かって、燃料極12の主面(すなわち、第一燃料極側境界面17または第二燃料極側境界面18)に対して垂直となるように延伸する構成であった。これに対して、第1実施形態の変形例2に係る膜電極接合体10では、燃料極側構造支持部14において、複数の燃料極側孔部13が第一燃料極側境界面17側から第二燃料極側境界面18側に向かって、燃料極12の主面に対して鋭角をなし、斜めに延伸する構成となっている。換言すると複数の燃料極側孔部13が燃料極12の主面に対して垂直な状態から水素含有ガスの流れ方向の下流側に向かって、同様に傾くように延伸した構成となっている。
 この構成により、燃料極側孔部13に流入し、燃料極側孔部13内を流れる水素含有ガスの流れの分配を良化させることができる。このため、第1実施形態の変形例2に係る膜電極接合体10は、水素含有ガスの供給の増加により水素酸化活性を向上させることができる。
 (変形例3)
 次に図6、7を参照して本開示の第1実施形態の変形例3に係る膜電極接合体10の構成について説明する。図6は、本開示の第1実施形態の変形例3に係る膜電極接合体10の断面の一例を示す模式図である。なお、図6に示す膜電極接合体10の断面も、図1に示す膜電極接合体10におけるA-Aで切り出した断面構造とする。また、図7は、図6に示す膜電極接合体10の燃料極12が備える第一燃料極側孔部13aと第二燃料極側孔部13bとの配置関係を模式的に示す斜視図である。
 第1実施形態の変形例3に係る膜電極接合体10は、固体電解質膜11および燃料極12を備え、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第1実施形態に係る膜電極接合体10と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図6、7に示すように第1実施形態の変形例3に係る膜電極接合体10が備える燃料極側孔部13は、第1実施形態に係る膜電極接合体10が備える燃料極側孔部13とは、延伸する方向が異なる。つまり、第1実施形態に係る膜電極接合体10では、燃料極側構造支持部14において、水素含有ガスと接触する側(すなわち、第一燃料極側境界面17)から固体電解質膜11側(すなわち、第二燃料極側境界面18)に向かって、燃料極12の主面(すなわち、第一燃料極側境界面17または第二燃料極側境界面18)に対して垂直となるように燃料極側孔部13が延伸する構成であった。これに対して、第1実施形態の変形例3に係る膜電極接合体10では、図6、7に示すように、燃料極側構造支持部14において、第一燃料極側孔部13aと第二燃料極側孔部13bとを交差させて互いに連通するように配置する。そして、この配置を複数組み合わせて3次元網目構造を形成しながら、第一燃料極側境界面17側から第二燃料極側境界面18側に向かって燃料極側孔部13が延伸する構成となっている。
 なお、図6、7では第一燃料極側孔部13aと第二燃料極側孔部13bとが互いに交差する構成である。また、さらに別の燃料極側孔部13が第一燃料極側孔部13aおよび第二燃料極側孔部13bそれぞれと交差するように配置されていてもよい。
 この構成により、第一燃料極側孔部13aと第二燃料極側孔部13bとが互いに連通した網目状の構造とすることができる。したがって、水素含有ガスの流通を促進させて水素酸化活性を向上させることができる。また、燃料極側充填材15を密に充填することができるため電気伝導性を向上させることができる。
 (変形例4)
 次に図8を参照して本開示の第1実施形態の変形例4に係る膜電極接合体10の構成について説明する。図8は、本開示の第1実施形態の変形例4に係る膜電極接合体10の断面の一例を示す模式図である。なお、図8に示す膜電極接合体10の断面も、図1に示す膜電極接合体10におけるA-Aで切り出した断面構造とする。
 第1実施形態の変形例4に係る膜電極接合体10は、固体電解質膜11および燃料極12を備え、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第1実施形態に係る膜電極接合体10と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図8に示すように第1実施形態の変形例4に係る膜電極接合体10は、固体電解質膜11と燃料極12との間に燃料極側機能層30がさらに設けられている点で第1実施形態に係る膜電極接合体10と異なる。
 燃料極側機能層30は、燃料極側充填材15と同様な水素酸化活性と電気伝導性とを有する材料から構成された層である。そして燃料極側機能層30は、第二燃料極側境界面18で燃料極12と接し、第三燃料極側境界面31で固体電解質膜11と接するように配置されている。なお、燃料極側機能層30は燃料極側充填材15と同じ材料であってもよいし、異なっている材料であってもよい。
 この構成により、水素酸化反応の起きる固体電解質膜11の近傍において、反応場を増加させることができる。このため、水素酸化活性を向上させることができる。
 なお、図8では、膜電極接合体10は、複数の燃料極側孔部13が燃料極12の主面に対して垂直となるように延伸した構成となっているがこれに限定されるものではない。例えば、第1実施形態の変形例2に係る膜電極接合体10と同様に、複数の燃料極側孔部13が燃料極12の主面に対して鋭角をなし、斜めに延伸する構成であってもよい。また、第1実施形態の変形例3に係る膜電極接合体10と同様に複数の燃料極側孔部13が交差して形成した3次元網目構造を有する構成であってもよい。
 (変形例5)
 次に図9を参照して本開示の第1実施形態の変形例5に係る膜電極接合体10の構成について説明する。図9は、本開示の第1実施形態の変形例5に係る膜電極接合体10の断面の一例を示す模式図である。なお、図9に示す膜電極接合体10の断面も、図1に示す膜電極接合体10におけるA-Aで切り出した断面構造とする。
 第1実施形態の変形例5に係る膜電極接合体10は、固体電解質膜11および燃料極12を備え、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第1実施形態に係る膜電極接合体10と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図9に示すように第1実施形態の変形例5に係る膜電極接合体10は、燃料極側連通路19を備え、この燃料極側連通路19が第二燃料極側境界面18に沿って配置されている点で第1実施形態に係る膜電極接合体10と異なる。なお、この燃料極側連通路19は、第1実施形態の変形例1に係る膜電極接合体10が備える燃料極側連通路19と同様であるため詳細な説明は省略する。
 図9に示すように燃料極側連通路19は、固体電解質膜11と燃料極12との界面をなす第二燃料極側境界面18に沿って配置され、内部には燃料極側充填材15が充填されている。また、燃料極側連通路19の第二燃料極側境界面18の側の壁面は開口し、第二燃料極側開口部16bを形成している。このため、第二燃料極側境界面18に沿って燃料極側連通路19が設けられていない構成と比較して固体電解質膜11と燃料極側充填材15との接触面積を大きくすることができる。それゆえ、水素酸化反応の起きる固体電解質膜11の近傍において反応場を増加させることができ、水素酸化活性を向上させることができる。
 (変形例6)
 次に図10を参照して本開示の第1実施形態の変形例5に係る膜電極接合体10の構成について説明する。図10は、本開示の第1実施形態の変形例6に係る膜電極接合体10の断面の一例を示す模式図である。なお、図10に示す膜電極接合体10の断面も、図1に示す膜電極接合体10におけるA-Aで切り出した断面構造とする。
 第1実施形態の変形例6に係る膜電極接合体10は、固体電解質膜11および燃料極12を備え、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第1実施形態に係る膜電極接合体10と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図10に示すように第1実施形態の変形例6に係る膜電極接合体10では、燃料極12が、複数の燃料極側孔部13を連通させる燃料極側連通路19を有する点と、固体電解質膜11と燃料極12との間に燃料極側機能層30をさらに備える点で第1実施形態に係る膜電極接合体10と相違する。換言すると、第1実施形態の変形例6に係る膜電極接合体10は、第1実施形態の変形例1に係る膜電極接合体10と第1実施形態の変形例4に係る膜電極接合体10とを組み合わせた構成である。なお、燃料極側連通路19については第1実施形態の変形例1において、燃料極側機能層30については第1実施形態の変形例4においてそれぞれ説明したため詳細な説明は省略する。
 図10に示すように、第1実施形態の変形例6に係る膜電極接合体10は、燃料極側機能層30を備えるため、水素酸化反応の起きる固体電解質膜11の近傍において、反応場を増加させることができる。このため、水素酸化活性を向上させることができる。また、燃料極側連通路19を備えるため、水素含有ガスが流通可能な経路を増やすことができる。このため、より高い水素酸化活性および電気伝導性を有することができる。また、燃料極側孔部13の経路中において、なんらかの不具合が生じて水素含有ガスの流通が阻害されたとしても燃料極側連通路19を介して別ルートで水素含有ガスを流通させることができる。このため、燃料極12は水素酸化活性および電気伝導性を維持することができる。
 (第2実施形態)
 図11、12を参照して第2実施形態に係る膜電極接合体110の構成を説明する。図11は、本開示の第2実施形態に係る膜電極接合体110を、酸化剤ガスと接する面(すなわち、図12における第一空気極側境界面7)側から見た平面図である。また、図12は、図11に示す膜電極接合体110におけるA-A断面の一例を示す模式図である。
 図11、12に示すように、膜電極接合体110は、電解質材料を含む固体電解質膜11と、酸化剤ガスと接触する空気極2とを備える。膜電極接合体110は、例えば、電気化学デバイスを構成するために用いられる部材であり、図11に示すように固体電解質膜11と空気極2とを積層して構成される。
 空気極2は、セラミックス部材で構成された空気極側構造支持部4と、空気極側構造支持部4において酸化剤ガスと接触する第一空気極側境界面7(以下、境界面と称することがある。)から固体電解質膜11側に向かって延伸し、酸素還元活性および電気伝導性を有する空気極側充填材5が充填されている空気極側孔部3と、を備える。そして、空気極側構造支持部4によって膜電極接合体10の構造を支持する。なお、図12に示すように空気極側孔部3は、第一空気極側境界面7から固体電解質膜11側に向かって直線状に延伸している。
 固体電解質膜11が含む電解質材料としては、例えば、バリウムジルコニウム酸化物若しくはバリウムセリウム酸化物などのプロトン伝導体、または安定化ジルコニア、ランタンガレート系酸化物、セリア系酸化物などの酸化物イオン伝導体が挙げられる。なお、プロトン伝導体は、イッテルビウムなどのドーパントを含んでいてもよい。いいかえると、バリウムジルコニウム系酸化物、バリウムセリウム系酸化物などであってもよい。
 空気極側構造支持部4は、電解質材料を含むセラミックス部材から構成されている。空気極側構造支持部4を構成するセラミックス部材には、固体電解質膜11との線膨張係数差が小さいような材料が使用される。なお、ここでいう「線膨張係数差が小さい」とは、例えば、固体電解質膜11との線膨張係数差を2×10-6-1以下にすることが望ましい。線膨張係数差を小さくすることで、セルの形状変化を抑制することが可能となる。
 また、セラミックス部材は緻密体であってもよい。緻密体とは、例えば、アルキメデス法や水銀圧入法によって測定される相対密度が85%以上のことである。緻密体であればセル強度を向上させることができる。
 このように、空気極2は、空気極側構造支持部4を備えるため、膜電極接合体110の構造を支持することができるとともに、固体電解質膜11との熱膨張係数差を小さくすることができる。このため、動作環境において膜電極接合体110における反りの発生を抑制することができる。
 なお、酸化剤ガスは、酸素であってもよいし、酸素を含有する例えば空気などのガスであってもよい。
 空気極側孔部3は、図12に示すように空気極側構造支持部4において酸化剤ガスと接触する第一空気極側境界面7に設けられ、酸化剤ガスが流入する第一空気極側開口部6aと、第一空気極側開口部6aとは反対側となる固体電解質膜11側の端部に設けられた第二空気極側開口部6bとを有する。図12の例では、第二空気極側開口部6bは、空気極側構造支持部4において固体電解質膜11と接する第二空気極側境界面8に設けられる。
 すなわち、空気極側孔部3の第一空気極側開口部6aが設けられている第一空気極側境界面7側には酸素含有ガスが流通するガス流路(不図示)が備えられており、このガス流路を流通する酸化剤ガス(例えば、酸素)が第一空気極側開口部6aを介して空気極側孔部3内に流入する。また、空気極側孔部3内には空気極側充填材5が充填されている。このため、空気極側充填材5の表面で還元され、第二空気極側開口部6b近傍に伝導してきた酸素と、固体電解質膜11を通過して移動してきたプロトンと、外部回路(不図示)を経て空気極2に到達した電子とによって水が生成される。
 また図11に示すように、空気極側孔部3の開口形状は丸孔であってもよいし、図13に示すように角孔であってもよい。なお、空気極側孔部3の開口形状は特に限定されない。空気極側構造支持部4における強度面の観点から丸孔が好適である。図13は、図11に示す膜電極接合体10の変形例を示す図である。
 空気極側孔部3の配列パターンは、図11または図13に示すように、各空気極側孔部3が並列に配置された並列パターンであってもよいし、千鳥状に配置された千鳥状パターンであってもよい。あるいは、各空気極側孔部3はランダムに配列されてもよい。空気極側孔部3の形状および配列パターンは、空気極側構造支持部4が充分な強度を保つとともに、空気極側孔部3内に充填された空気極側充填材5によって必要な酸素還元活性と電気伝導性とを得ることができる限り任意である。
 空気極側孔部3の開口寸法は、例えば、丸孔の場合、径寸法が、0.01mmから1mmとし、角孔の場合、一辺の寸法が0.01mmから1mmとしてもよい。また、空気極側孔部3が空気極2の主面(すなわち、第一空気極側境界面7または第二空気極側境界面8)において占める面積の割合は、空気極2の主面全体の50%以下、望ましくは30%以下であってもよい。空気極2の主面における空気極側孔部3の占有面積が大きいと発電性能は向上する。しかしながら、空気極2において生じる反りが大きくなる。
 また空気極側孔部3は、空気極側充填材5によって、酸素の還元を促進させるとともに電気伝導性を担保することができる。なお、空気極側充填材5は、酸素還元活性および電気伝導性を有した1種類以上の材料から構成されてもよい。例えば、空気極側充填材5は酸素還元活性および電気伝導性を有した1種類の材料から構成されてもよい。または、空気極側充填材5は、酸素還元活性を有する材料と、電気伝導性を有する材料とを組み合わせて構成されてもよい。または、空気極側充填材5は、酸素還元活性と電気伝導性とを有するように、複数の材料からなる化合物によって構成されてもよい。
 なお、空気極側充填材5を構成する酸素還元活性と電気伝導性とを有する材料としては、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物が挙げられる。より具体的には、例えば、ランタンストロンチウムコバルト鉄複合酸化物(LSCF)、ランタンストロンチウムコバルト複合酸化物(LSC)、ランタンストロンチウム鉄複合酸化物(LSF)、ランタンストロンチウムマンガン複合酸化物(LSM)、バリウムストロンチウムコバルト鉄複合酸化物(BSCF)、サマリウムストロンチウムコバルト複合酸化物(SSC)、ランタンニッケル鉄複合酸化物、ランタンニッケル複合酸化物、バリウムガドリニウムランタンコバルト複合酸化物などが挙げられる。
 酸素還元活性と電気伝導性とを有する材料は、望ましくはランタンストロンチウムコバルト鉄複合酸化物がよい。ランタンストロンチウムコバルト鉄複合酸化物は、例えば固体酸化物形燃料電池等の電気化学デバイスの空気極に使用される、優れた酸素還元活性と電気伝導性とを有する材料である。
 また、空気極側充填材5は、酸素還元または電気伝導性どちらかを有する材料の混合物で構成されてもよい。このような構成の場合、例えば、酸素還元材料としてランタンストロンチウムコバルト鉄複合酸化物、電気伝導性材料にランタンストロンチウムマンガン複合酸化物を用いても良い。
 さらにまた、空気極側充填材5は、Mn、Fe、Co、Niのいずれか1つの元素を少なくとも含む酸化物の多孔体であってもよい。なお、ここでいう多孔体とは、アルキメデス法や水銀圧入法によって測定される空隙率が20%以上のことである。空気極側充填材5を多孔体にすることで、酸素還元に寄与する酸化剤ガスの供給が増加し、酸素還元活性を向上させることが可能となる。
 (変形例1)
 次に図14を参照して本開示の第2実施形態の変形例1に係る膜電極接合体110の構成について説明する。図14は、本開示の第2実施形態の変形例1に係る膜電極接合体110の断面の一例を示す模式図である。なお、図14に示す膜電極接合体110の断面も、図11に示す膜電極接合体110におけるA-Aで切り出した断面構造とする。
 第2実施形態の変形例1に係る膜電極接合体110は、固体電解質膜11および空気極2を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有している点で、第2実施形態に係る膜電極接合体110と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図14に示すように第2実施形態の変形例1に係る膜電極接合体110では、空気極2が、複数の空気極側孔部3(すなわち、第一空気極側孔部3aおよび第二空気極側孔部3b)を連通させる空気極側連通路9をさらに備える点で第2実施形態に係る膜電極接合体110と相違する。
 すなわち、膜電極接合体110は、一方の第一空気極側孔部3aと、他方の第二空気極側孔部3bとを連通させる空気極側連通路9を1つ以上有している。この構造によって、第2実施形態の変形例1に係る膜電極接合体110は、酸化剤ガスが流通可能な経路を増やすことができる。このため、より高い酸素還元活性および電気伝導性を有することができる。また、第一空気極側孔部3aまたは第二空気極側孔部3bの経路中において、なんらかの不具合が生じて酸化剤ガスの流通が阻害されたとしても空気極側連通路9を介して別ルートで酸化剤ガスを流通させることができる。このため、空気極2は酸素還元活性および電気伝導性を維持することができる。
 なお、図14では空気極側連通路9内においても空気極側充填材5が充填された構成となっているが、酸化剤ガスの流通経路を確保できればよい場合は必ずしも空気極側連通路9内に空気極側充填材5が充填されていなくてもよい。図14に示すように空気極側連通路9内に空気極側充填材5が充填された場合、酸素還元活性および電気伝導性を向上させる点で好適である。
 (変形例2)
 次に図15を参照して本開示の第2実施形態の変形例2に係る膜電極接合体110の構成について説明する。図15は、本開示の第2実施形態の変形例2に係る膜電極接合体110の断面の一例を示す模式図である。なお、図15に示す膜電極接合体110の断面も、図11に示す膜電極接合体110におけるA-Aで切り出した断面構造とする。
 第2実施形態の変形例2に係る膜電極接合体110は、固体電解質膜11および空気極2を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有している点で、第2実施形態に係る膜電極接合体110と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図15に示すように第2実施形態の変形例2に係る膜電極接合体110が備える空気極側孔部3は、第2実施形態に係る膜電極接合体110が備える空気極側孔部3とは、延伸する方向が異なっている。つまり、第2実施形態に係る膜電極接合体110では、空気極側構造支持部4において、空気極側孔部3が酸化剤ガスと接触する側(すなわち、第一空気極側境界面7)から固体電解質膜11側(すなわち、第二空気極側境界面8)に向かって、空気極2の主面(すなわち、第一空気極側境界面7または第二空気極側境界面8)に対して垂直となるように延伸する構成であった。これに対して、第2実施形態の変形例2に係る膜電極接合体110では、空気極側構造支持部4において、複数の空気極側孔部3が第一空気極側境界面7側から第二空気極側境界面8側に向かって、空気極2の主面に対して鋭角をなし、斜めに延伸する構成となっている。換言すると複数の空気極側孔部3が空気極2の主面に対して垂直な状態から酸化剤ガスの流れ方向の下流側に向かって、同様に傾くように延伸した構成となっている。
 この構成により、空気極側孔部3に流入し、空気極側孔部3内を流れる酸化剤ガスの流れの分配を良化させることができる。このため、第2実施形態の変形例2に係る膜電極接合体110は、酸化剤ガスの供給の増加により酸素還元活性を向上させることができる。
 (変形例3)
 次に図16、17を参照して本開示の第2実施形態の変形例3に係る膜電極接合体110の構成について説明する。図16は、本開示の第2実施形態の変形例3に係る膜電極接合体110の断面の一例を示す模式図である。なお、図16に示す膜電極接合体110の断面も、図11に示す膜電極接合体110におけるA-Aで切り出した断面構造とする。また、図17は、図16に示す膜電極接合体110の空気極2が備える第一空気極側孔部3aと第二空気極側孔部3bとの配置関係を模式的に示す斜視図である。
 第2実施形態の変形例3に係る膜電極接合体110は、固体電解質膜11および空気極2を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有している点で、第2実施形態に係る膜電極接合体110と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図16、17に示すように第2実施形態の変形例3に係る膜電極接合体110が備える空気極側孔部3は、第2実施形態に係る膜電極接合体110が備える空気極側孔部3とは、延伸する方向が異なる。つまり、第2実施形態に係る膜電極接合体110では、空気極側構造支持部4において、酸化剤ガスと接触する側(すなわち、第一空気極側境界面7)から固体電解質膜11側(すなわち、第二空気極側境界面8)に向かって、空気極2の主面(すなわち、第一空気極側境界面7または第二空気極側境界面8)に対して垂直となるように空気極側孔部3が延伸する構成であった。これに対して、第2実施形態の変形例3に係る膜電極接合体110では、図16、17に示すように、空気極側構造支持部4において、第一空気極側孔部3aと第二空気極側孔部3bとを交差させて互いに連通するように配置する。そしてこの配置を複数組み合わせて3次元網目構造を形成しながら、第一空気極側境界面7から第二空気極側境界面8に向かって空気極側孔部3が延伸する構成となっている。
 なお、図16、17では第一空気極側孔部3aと第二空気極側孔部3bとが互いに交差する構成である。また、さらに別の空気極側孔部3が第一空気極側孔部3aおよび第二空気極側孔部3bそれぞれと交差するように配置されていてもよい。
 この構成により、第一空気極側孔部3aと第二空気極側孔部3bとが互いに連通した網目状の構造とすることができる。したがって、酸化剤ガスの流通を促進させて酸素還元活性を向上させることができる。また、空気極側充填材5を密に充填することができるため電気伝導性を向上させることができる。
 (変形例4)
 次に図18を参照して本開示の第2実施形態の変形例4に係る膜電極接合体110の構成について説明する。図18は、本開示の第2実施形態の変形例4に係る膜電極接合体110の断面の一例を示す模式図である。なお、図18に示す膜電極接合体110の断面も、図11に示す膜電極接合体110におけるA-Aで切り出した断面構造とする。
 第2実施形態の変形例4に係る膜電極接合体110は、固体電解質膜11および空気極2を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有している点で、第2実施形態に係る膜電極接合体110と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図18に示すように第2実施形態の変形例4に係る膜電極接合体110は、固体電解質膜11と空気極2との間に空気極側機能層20がさらに設けられている点で第2実施形態に係る膜電極接合体110と異なる。
 空気極側機能層20は、空気極側充填材5と同様な酸素還元活性と電気伝導性とを有する材料から構成された層である。そして空気極側機能層20は、第二空気極側境界面8で空気極2と接し、第三空気極側境界面21で固体電解質膜11と接するように配置されている。なお、空気極側機能層20は空気極側充填材5と同じ材料であってもよいし、異なっている材料であってもよい。
 この構成により、酸素還元反応の起きる固体電解質膜11の近傍において、反応場を増加させることができる。このため、酸素還元活性を向上させることができる。
 なお、図18では、膜電極接合体110は、複数の空気極側孔部3が空気極2の主面に対して垂直となるように延伸した構成となっているがこれに限定されるものではない。例えば、第2実施形態の変形例2に係る膜電極接合体110と同様に、複数の空気極側孔部3が空気極2の主面に対して鋭角をなし、斜めに延伸する構成であってもよい。また、第2実施形態の変形例3に係る膜電極接合体110と同様に複数の空気極側孔部3が交差して形成した3次元網目構造を有する構成であってもよい。
 (変形例5)
 次に図19を参照して本開示の第2実施形態の変形例5に係る膜電極接合体110の構成について説明する。図19は、本開示の第2実施形態の変形例5に係る膜電極接合体110の断面の一例を示す模式図である。なお、図19に示す膜電極接合体110の断面も、図11に示す膜電極接合体110におけるA-Aで切り出した断面構造とする。
 第2実施形態の変形例5に係る膜電極接合体110は、固体電解質膜11および空気極2を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有している点で、第2実施形態に係る膜電極接合体110と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図19に示すように第2実施形態の変形例5に係る膜電極接合体110は、空気極側連通路9を備え、この空気極側連通路9が第二空気極側境界面8に沿って配置されている点で第2実施形態に係る膜電極接合体110と異なる。なお、この空気極側連通路9は、第2実施形態の変形例1に係る膜電極接合体110が備える空気極側連通路9と同様であるため詳細な説明は省略する。
 図19に示すように空気極側連通路9は、固体電解質膜11と空気極2との界面をなす第二空気極側境界面8に沿って配置され、内部には空気極側充填材5が充填されている。また、空気極側連通路9の第二空気極側境界面8の側の壁面は開口し、第二空気極側開口部6bを形成している。このため、第二空気極側境界面8に沿って空気極側連通路9が設けられていない構成と比較して固体電解質膜11と空気極側充填材5との接触面積を大きくすることができる。それゆえ、酸素還元反応の起きる固体電解質膜11の近傍において反応場を増加させることができ、酸素還元活性を向上させることができる。
 (変形例6)
 次に図20を参照して本開示の第2実施形態の変形例6に係る膜電極接合体110の構成について説明する。図20は、本開示の第2実施形態の変形例6に係る膜電極接合体110の断面の一例を示す模式図である。なお、図20に示す膜電極接合体110の断面も、図11に示す膜電極接合体110におけるA-Aで切り出した断面構造とする。
 第2実施形態の変形例6に係る膜電極接合体110は、固体電解質膜11および空気極2を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有している点で、第2実施形態に係る膜電極接合体110と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図20に示すように第2実施形態の変形例6に係る膜電極接合体110では、空気極2が、複数の空気極側孔部3を連通させる空気極側連通路9を有する点と、固体電解質膜11と空気極2との間に空気極側機能層20をさらに備える点で第2実施形態に係る膜電極接合体110と相違する。換言すると、第2実施形態の変形例6に係る膜電極接合体110は、第2実施形態の変形例1に係る膜電極接合体110と第2実施形態の変形例4に係る膜電極接合体110とを組み合わせた構成である。なお、空気極側連通路9については第2実施形態の変形例1において、空気極側機能層20については第2実施形態の変形例4においてそれぞれ説明したため詳細な説明は省略する。
 図20に示すように、第2実施形態の変形例6に係る膜電極接合体110は、空気極側機能層20を備えるため、酸素還元反応の起きる固体電解質膜11の近傍において、反応場を増加させることができる。このため、酸素還元活性を向上させることができる。また、空気極側連通路9を備えるため、酸化剤ガスが流通可能な経路を増やすことができる。このため、より高い酸素還元活性および電気伝導性を有することができる。また、空気極側孔部3の経路中において、なんらかの不具合が生じて酸化剤ガスの流通が阻害されたとしても空気極側連通路9を介して別ルートで酸化剤ガスを流通させることができる。このため、空気極2は酸素還元活性および電気伝導性を維持することができる。
 (第3実施形態)
 図21、22を参照して第3実施形態に係る膜電極接合体210の構成を説明する。図21は、本開示の第3実施形態に係る膜電極接合体210を、反応ガスと接する面(すなわち、図22における第一境界面217)側から見た平面図である。図22は、図21に示す膜電極接合体210の構造を模式的に示すA-A断面の断面図である。
 図21、22に示すように、膜電極接合体210は、電解質材料を含む固体電解質膜11と、反応ガスと接触する電極212とを備える。膜電極接合体210は、例えば、電気化学デバイスを構成するために用いられる部材であり、図22に示すように、固体電解質膜11と電極212とが積層されて構成されている。
 電極212は、セラミックス部材で構成された構造支持部214と、構造支持部214において反応ガスと接触する第一境界面217(以下、境界面と称することがある。)から固体電解質膜11側に向かって延伸し、酸素還元活性および電気伝導性を有する充填材215、あるいは水素酸化活性および電気伝導性を有する充填材215が充填されている孔部213と、を備える。
 電極212は、例えば、燃料電池等の電気化学デバイスの燃料極であってもよいし、空気極であってもよい。電極212が燃料極である場合、第一境界面217で接触する反応ガスは水素含有ガスであり、充填材215は、水素酸化活性および電気伝導性を有する。なお、水素含有ガスは、水素であってもよいし、例えば、メタンガスなどの改質反応により発生する改質ガス、水の電気分解により発生する水蒸気を含む水素ガスなどであってもよい。
 一方、電極212が電気化学デバイスの空気極である場合、第一境界面217で接触する反応ガスは酸化剤ガスであり、充填材215は、酸素還元活性および電気伝導性を有する。なお、酸化剤ガスは、酸素であってもよいし、酸素を含有する例えば空気などのガスであってもよい。
 構造支持部214は、第一境界面217において、単位面積あたりの孔部213の開口面積が異なる領域を有しており、反応ガス流通方向において上流側となる領域(上流領域)の単位面積あたりの孔部213の開口面積を第一面積比とし、下流側となる領域(下流領域)の単位面積あたりの孔部213の開口面積を第二面積比としたとき、「第一面積比<第二面積比」の関係を満たすようになっている。なお、第一面積比は、第一境界面217における上流領域に存在する孔部213の開口面積の合計を上流領域の面積(すなわち、「上流領域に存在する孔部213の開口面積の合計+上流領域における構造支持部214の面積」)で除することで求めることができる。また、第二面積比は、第一境界面217における下流領域に存在する孔部213の開口面積の合計を下流領域の面積(すなわち、「下流領域に存在する孔部213の開口面積の合計+下流領域における構造支持部214の面積」)で除することで求めることができる。図21では、破線により便宜的に上流領域の範囲と下流領域の範囲とを区別して示している。以下においても同様に図面において破線により各領域の範囲を示すものとする。
 第3実施形態に係る膜電極接合体210では、第一境界面217において、「第一面積比<第二面積比」の関係を満たすように、複数の孔部213が配置されている。第3実施形態に係る膜電極接合体210では、図21に示すように、第一境界面217における上流領域に配置された各孔部213の開口面積よりも、下流領域に配置された各孔部213の開口面積の方が大きくなっている。しかしながら、上流領域に配置された各孔部213の開口面積と下流領域に配置された各孔部213の開口面積とを同じとし、上流領域における単位面積当たりの孔部213の数よりも下流領域における単位面積当たりの孔部213の数の方が多くなるように構成してもよい。あるいは、上流領域よりも下流領域の方が、各孔部213の開口面積も、単位面積当たりの孔部213の個数も多くなるように構成されていてもよい。
 ここで、反応ガスは、孔部213内を介して電極212内を移動して拡散するが、この反応ガスの移動速度の違いにより、電極212における固体電解質膜11近傍に形成される反応場では反応ガス流通方向における上流領域と下流領域とでは濃度差が生じる。このように反応場において濃度差が生じると電気化学デバイスの起電力が低下する。この反応ガスの拡散に起因する起電力の減少分は、濃度過電圧、または拡散過電圧と呼ばれる。特に、膜電極接合体210において反応ガス流通方向における下流領域では上流領域よりも起電力が引き下がることとなり、膜電極接合体210を用いた電気化学デバイスの性能を低下させることとなる。
 そこで、下流領域における第二面積比の方が上流領域における第一面積比よりも大きくなるようにすることで、電極212における下流領域でのガスの拡散性を高めることができる。その結果、反応ガス流通方向の下流側の領域における濃度過電圧を低減させることができる。このため、下流領域の性能低下を抑制し、電気化学デバイスの性能の向上を図ることができる。
 また、第3実施形態に係る膜電極接合体210では、構造支持部214において備える孔部213の個数または開口面積を調整するだけで、第一面積比<第二面積比の関係を満たすように構成し、上流領域よりも下流領域の反応ガスの拡散性を高めることができる。
 ここで、気孔率が異なる組成物を組み合わせて電極を製作し、膜電極接合体の下流領域における反応ガスの拡散性を高めた構成とすることも考えられるが、この場合、第3実施形態に係る膜電極接合体210と比較して膜電極接合体の製作が困難となる。さらに、第3実施形態に係る膜電極接合体210のように、構造支持を担保する機能を他の機能から独立させた構造とすることが困難となる。
 なお、図21では、反応ガス流通方向に対して垂直となるB-B線によって上流領域と下流領域とに分割された構成を示しているが上流領域および下流領域それぞれの範囲はこれに限定されるものではない。反応ガス流通方向において、第一境界面217を上流領域と下流領域とに任意に区分けすることができる。また、図21では、B-B線により上流領域と下流領域とが分割された構成となっているが、必ずしも上流領域と下流領域とが接した領域となる必要はない。例えば、反応ガス流通方向において上流側に位置する第一境界面217の端部から、反応ガス流通方向における下流側に向かう所定の範囲を上流領域としてもよい。また、反応ガス流通方向において下流側に位置する第一境界面217の端部から、反応ガス流通方向における上流側にさかのぼった所定の範囲を下流領域としてもよい。つまり、上流領域は、第一境界面217における、反応ガス流通方向の上流側にある所定の範囲であり、下流領域は第一境界面217における、反応ガス流通方向の下流側にある所定の範囲である。そして、上流領域の範囲と下流領域の範囲とは重畳しない関係にある。
 また図21に示すように、孔部213の開口形状は丸孔であってもよいし、図23に示すように角孔であってもよい。なお、孔部213の開口形状は特に限定されないが、構造支持部214における強度面の観点から丸孔が好適である。図23は、図21に示す膜電極接合体210の変形例を示す図である。
 孔部213の配列パターンは、図21または図23に示すように、各孔部213が並列に配置された並列パターンであってもよいし、千鳥状に配置された千鳥状パターンであってもよい。あるいは、各孔部213はランダムに配列されてもよい。孔部213の形状および配列パターンは、構造支持部214が充分な強度を保つとともに、孔部213内に充填された充填材215によって必要な酸素還元活性と電気伝導性、または必要な水素酸化活性と電気伝導性を得ることができる限り任意である。
 孔部213の開口寸法は、例えば、丸孔の場合、径寸法が、0.01mmから1mmとし、角孔の場合、一辺の寸法が0.01mmから1mmとしてもよい。また、孔部213が電極212の主面(すなわち、第一境界面217)において占める面積の割合は、電極212の主面全体の50%以下、望ましくは30%以下であってもよい。電極212の主面における孔部213の占有面積が大きいと発電性能は向上するが、電極212において生じる反りが大きくなる。
 ここで、電極212が、例えば、燃料電池等の電気化学デバイスの空気極の場合、孔部213に充填される充填材215によって、酸素の還元を促進させるとともに電気伝導性を担保することができる。この場合、充填材215は、酸素還元活性および電気伝導性を有した1種類以上の材料から構成されてもよい。例えば、充填材215は、酸素還元活性および電気伝導性を有した1種類の材料から構成されてもよい。または、充填材215は、酸素還元活性を有する材料と、電気伝導性を有する材料とを組み合わせて構成されてもよい。または、充填材215は、酸素還元活性と電気伝導性とを有するように、複数の材料からなる化合物によって構成されてもよい。
 なお、充填材215を構成する酸素還元活性と電気伝導性とを有する材料として、少なくとも、Mn、Fe、Co、およびNiのいずれか1つの元素を含む化合物が挙げられる。より具体的には、例えば、ランタンストロンチウムコバルト鉄複合酸化物(LSCF)、ランタンストロンチウムコバルト複合酸化物(LSC)、ランタンストロンチウム鉄複合酸化物(LSF)、ランタンストロンチウムマンガン複合酸化物(LSM)、バリウムストロンチウムコバルト鉄複合酸化物(BSCF)、サマリウムストロンチウムコバルト複合酸化物(SSC)、ランタンニッケル鉄複合酸化物、ランタンニッケル複合酸化物、バリウムガドリニウムランタンコバルト複合酸化物などが挙げられる。
 また、充填材215は、Mn、Fe、Co、およびNiの少なくともいずれかを含む酸化物と、他の酸化物、あるいは金属との複合体であってもよい。さらにまた、充填材215は、酸素還元または電気伝導性どちらかを有する材料の混合物で構成されてもよい。このような構成の場合、例えば、酸素還元材料としてランタンストロンチウムコバルト鉄複合酸化物、電気伝導性材料にランタンストロンチウムマンガン複合酸化物を用いても良い。また、充填材215は、Mn、Fe、Co、Niのいずれか1つの元素を少なくとも含む酸化物の多孔体であってもよい。なお、ここでいう多孔体とは、アルキメデス法や水銀圧入法によって測定される空隙率が20%以上のことである。充填材215を多孔体にすることで、酸素還元に寄与する酸化剤ガスの供給が増加し、酸素還元活性を向上させることが可能となる。
 一方、電極212が、例えば、燃料電池等の電気化学デバイスの燃料極の場合、孔部213に充填される充填材215によって、水素の酸化を促進させるとともに電気伝導性を担保することができる。この場合、充填材215は、水素酸化活性および電気伝導性を有した1種類以上の材料から構成されてもよい。例えば、充填材215は水素酸化活性および電気伝導性を有した1種類の材料から構成されてもよい。または、充填材215は、水素酸化活性を有する材料と、電気伝導性を有する材料とを組み合わせて構成されてもよい。または、充填材215は、水素酸化活性と電気伝導性とを有するように、複数の材料からなる化合物によって構成されてもよい。
 なお、充填材215を構成する水素酸化活性と電気伝導性とを有する材料として、例えば、Ni、Pt、Pd、Irがあげられ、充填材215は、望ましくはNiを含む化合物であってもよい。Niは、例えば固体酸化物形燃料電池等の電気化学デバイスの燃料極に使用される、優れた水素酸化活性と電気伝導性とを有する材料である。
 また、充填材215は、サーメットであってもよい。サーメットとは、金属とセラミックス材料との混合物であり、たとえば、金属にNi、セラミックス材料に、バリウムジルコニウム酸化物、バリウムセリウム酸化物などのプロトン伝導体、または安定化ジルコニア、ランタンガレート系酸化物、セリア系酸化物などの酸化物イオン伝導体からなるサーメットがあげられる。なお、プロトン伝導体は、イッテルビウムなどのドーパントを含んでいてもよい。いいかえると、バリウムジルコニウム系酸化物、バリウムセリウム系酸化物などであってもよい。サーメットが、例えば、Niと、電解質材料との混合物である場合、水素酸化の反応場の増加により水素酸化活性を向上させることができる。
 なお、充填材215は、Niを含む多孔体であってもよい。なお、ここでいう多孔体とは、アルキメデス法や水銀圧入法によって測定される空隙率が20%以上のことである。充填材215を多孔体にすることで、水素酸化に寄与する水素含有ガスの供給が増加し、水素酸化活性を向上させることが可能となる。
 固体電解質膜11は電解質材料を含んで構成される。この電解質材料としては、例えば、バリウムジルコニウム酸化物若しくはバリウムセリウム酸化物などのプロトン伝導体、または安定化ジルコニア、ランタンガレート系酸化物、セリア系酸化物などの酸化物イオン伝導体が挙げられる。なお、プロトン伝導体は、イッテルビウムなどのドーパントを含んでいてもよい。いいかえると、バリウムジルコニウム系酸化物、バリウムセリウム系酸化物などであってもよい。
 構造支持部214は、上記した電解質材料を含むセラミックス部材から構成されている。構造支持部214を構成するセラミックス部材には、固体電解質膜11との線膨張係数差が小さいような材料が使用される。なお、ここでいう「線膨張係数差が小さい」とは、例えば、固体電解質膜11との線膨張係数差を2×10-6-1以下にすることが望ましい。線膨張係数差を小さくすることで、セルの形状変化を抑制することが可能となる。
 また、セラミックス部材は緻密体であってもよい。緻密体とは、例えば、アルキメデス法や水銀圧入法によって測定される相対密度が85%以上のことである。緻密体であればセル強度を向上させることができる。
 このように、電極212は、構造支持部214を備えるため、膜電極接合体210の構造を支持することができるとともに、固体電解質膜11との熱膨張係数差を小さくすることができる。このため、動作環境において膜電極接合体210における反りの発生を抑制することができる。
 (変形例1)
 次に図24を参照して本開示の第3実施形態の変形例1に係る膜電極接合体210の構成について説明する。図24は、本開示の第3実施形態の変形例1に係る膜電極接合体210の断面の一例を示す模式図である。なお、図24に示す膜電極接合体210の断面も、図21に示す膜電極接合体210におけるA-Aの位置で切り出した断面構造である。
 第3実施形態の変形例1に係る膜電極接合体210は、固体電解質膜11および電極212を備え、電極212が、構造支持部214と、充填材215が充填されている孔部213とを有している点で、第3実施形態に係る膜電極接合体210と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図24に示すように、電極212の第一境界面217を反応ガス流通方向において、上流領域と中流領域と下流領域との3つの領域に分割して、それぞれの領域で単位面積あたりの孔部213の開口面積を異ならせている点で第3実施形態に係る膜電極接合体210と相違する。
 具体的には、第3実施形態の変形例1に係る膜電極接合体210は、上記した上流領域と下流領域との間の領域として中流領域を設け、中流領域における単位面積あたりの孔部213の開口面積を第三面積比としたとき、「第一面積比<第三面積比<第二面積比」の関係を満たすように構成する。すなわち、第3実施形態の変形例1に係る膜電極接合体210では、電極212の第一境界面217において、単位面積当たりの孔部213の開口面積が、上流領域、中流領域、下流領域の順に大きくなるように構成する。
 なお、上流領域、下流領域、中流領域それぞれの境界は、図24に示すように第一境界面217を反応ガス流通方向に3等分する線分により画定されてもよいが、各領域の範囲はこれに限定されるものではない。電極212における反応ガスの拡散性を考慮して、各領域の範囲を任意に決めることができる。
 この構成によって、第3実施形態の変形例1に係る膜電極接合体210は、下流領域に加えて、上流領域と下流領域との間の領域である中流領域においても、濃度過電圧を低減させることができる。
 (変形例2)
 次に図25を参照して本開示の第3実施形態の変形例2に係る膜電極接合体210の構成について説明する。図25は、本開示の第3実施形態の変形例2に係る膜電極接合体210の断面の一例を示す模式図である。なお、図25に示す膜電極接合体210の断面も、図21に示す膜電極接合体210におけるA-Aの位置で切り出した断面構造である。
 第3実施形態の変形例2に係る膜電極接合体210は、固体電解質膜11および電極212を備え、電極212が、構造支持部214と、充填材215が充填されている孔部213とを有している点で、第3実施形態に係る膜電極接合体210と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図25に示すように、第3実施形態の変形例1に係る膜電極接合体210と同様に、電極212の第一境界面217を反応ガス流通方向において、上流領域と中流領域と下流領域との3つの領域に分割して、それぞれの領域で孔部213の開口面積を異ならせている点で第3実施形態に係る膜電極接合体210と相違する。
 具体的には、第3実施形態の変形例2に係る膜電極接合体210は、上記した上流領域と下流領域との間の領域として中流領域を設け、中流領域における単位面積あたりの孔部213の開口面積を第三面積比としたとき、「第三面積比<第一面積比<第二面積比」の関係を満たすように構成する。すなわち、第3実施形態の変形例1に係る膜電極接合体210では、電極212の第一境界面217において、単位面積当たりの孔部213の開口面積が、中流領域、上流領域、下流領域の順に大きくなるように構成する。
 なお、上流領域、中流領域、下流領域それぞれの境界は、図25に示すように第一境界面217を反応ガス流通方向に3等分する線分により画定されてもよいが、各領域の範囲はこれに限定されるものではない。電極212における反応ガスの拡散性を考慮して、各領域の範囲を任意に決めることができる。
 この構成により、第3実施形態の変形例2に係る膜電極接合体210は、反応ガス流通方向の下流側の領域(下流領域)においてガス拡散効果を促進することができる。このため、下流領域において濃度過電圧を低減させることができ、性能低下を抑制することができる。
 またここで、第3実施形態の変形例2に係る膜電極接合体210が例えば燃料電池に用いられた場合、中流領域の温度は、他の領域の温度に比べて高くなる。そこで、第3実施形態の変形例2に係る膜電極接合体210は、第三面積比が第一面積比および第二面積比よりも小さくなるように孔部213を配置して、中流領域におけるガス拡散性を抑制する構成となっている。このようにガス拡散性を抑制させることによって、第3実施形態の変形例2に係る膜電極接合体210は、中流領域において他の領域よりも電流を流れにくくさせて、温度上昇を抑えることができる。
 (変形例3)
 次に図26を参照して本開示の第3実施形態の変形例3に係る膜電極接合体210の構成について説明する。図26は、本開示の第3実施形態の変形例3に係る膜電極接合体210の断面の一例を示す模式図である。なお、図26に示す膜電極接合体210の断面も、図21に示す膜電極接合体210におけるA-Aの位置で切り出した断面構造である。
 第3実施形態の変形例3に係る膜電極接合体210は、固体電解質膜11および電極212を備え、電極212が、構造支持部214と、充填材215が充填されている孔部213とを有している点で、第3実施形態に係る膜電極接合体210と共通する。また、第3実施形態の変形例3に係る膜電極接合体210は、「第一面積比<第二面積比」の関係を満たすように、上流領域および下流領域において、構造支持部214に備える孔部213の個数または開口面積を調整した構成となっている点でも第3実施形態に係る膜電極接合体210と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、第3実施形態の変形例3に係る膜電極接合体210は、孔部213が、第一孔部213aと第二孔部213bとを連通させる連通路219と、備える点で、第3実施形態に係る膜電極接合体210と相違する。
 具体的には、第3実施形態の変形例3に係る膜電極接合体210は、上流領域または下流領域において複数設けられた孔部213のうち、一方を第一孔部213aとし、他方を第二孔部213bとしたとき、一方の第一孔部213aと、他方の第二孔部213bとを連通させる連通路219を1つ以上有している。この構成によって、第3実施形態の変形例3に係る膜電極接合体210は、反応ガスが流通可能な経路を増やすことができる。このため、より高い酸素還元活性および電気伝導性、またはより高い水素酸化活性および電気伝導性を有することができる。
 また、第一孔部213aまたは第二孔部213bの経路中において、なんらかの不具合が生じて反応ガスの流通が阻害されたとしても連通路219を介して別ルートで反応ガスを流通させることができる。このため、電極212は、水素酸化活性と電気伝導性、あるいは酸化還元性と電気伝導性を維持することができる。
 なお、図26では連通路219内においても充填材215が充填された構成となっているが、反応ガスの流通経路を確保できればよい場合は、必ずしも連通路219内に充填材215が充填されていなくてもよい。ただし、図26に示すように連通路219内に充填材215が充填された構成の方が、水素酸化活性と電気伝導性、あるいは酸素還元活性および電気伝導性を向上させる点で好適である。
 また、図26に示すように上流領域よりも下流領域の方が、孔部213同士を連通させる連通路219の数が多くなっている。このように上流領域よりも下流領域の方が多くの連通路219を備える構成とすることで、第3実施形態の変形例3に係る膜電極接合体210は、下流領域における反応ガスの拡散性を高めることができる。
 なお、第3実施形態の変形例3に係る膜電極接合体210では、第一境界面217を上流領域と下流領域とに分割し、「第一面積比<第二面積比」の関係を満たす構成について説明したがこれに限定されるものではない。例えば、第3実施形態の変形例1に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第一面積比<第三面積比<第二面積比」の関係を満たす構成としてもよい。あるいは、第3実施形態の変形例2に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第三面積比<第一面積比<第二面積比」の関係を満たす構成としてもよい。
 (変形例4)
 次に図27を参照して本開示の第3実施形態の変形例4に係る膜電極接合体210の構成について説明する。図27は、本開示の第3実施形態の変形例4に係る膜電極接合体210の断面の一例を示す模式図である。なお、図27に示す膜電極接合体210の断面も、図21に示す膜電極接合体210におけるA-Aの位置で切り出した断面構造である。
 第3実施形態の変形例4に係る膜電極接合体210は、固体電解質膜11および電極212を備え、電極212が、構造支持部214と、充填材215が充填されている孔部213を有している点で、第3実施形態に係る膜電極接合体210と共通する。また、第3実施形態の変形例4に係る膜電極接合体210は、「第一面積比<第二面積比」の関係を満たすように、上流領域および下流領域において、構造支持部214に備える孔部213の個数または開口面積を調整した構成となっている点でも第3実施形態に係る膜電極接合体210と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図27に示すように第3実施形態の変形例4に係る膜電極接合体210が備える孔部213は、第3実施形態に係る膜電極接合体210が備える孔部213とは、延伸する方向が異なっている。つまり、第3実施形態に係る膜電極接合体210では、構造支持部214において、孔部213が反応ガスと接触する側(すなわち、第一境界面217)から固体電解質膜11側(すなわち、第二境界面218)に向かって、電極212の主面(すなわち、第一境界面217または第二境界面218)に対して垂直となるように延伸する構成であった。これに対して、第3実施形態の変形例2に係る膜電極接合体210では、構造支持部214において、複数の孔部213が第一境界面217側から第二境界面218側に向かって、電極212の主面に対して鋭角をなし、斜めに延伸する構成となっている。換言すると複数の孔部213が電極212の主面に対して垂直な状態から酸化剤ガスの流通方向の下流側に向かって、同様に傾くように延伸した構成となっている。
 この構成により、孔部213に流入し、孔部213内を流れる反応ガスの流れの分配を良化させることができる。このため、第3実施形態の変形例2に係る膜電極接合体210は、反応ガスの供給の増加により、水素酸化活性または酸素還元活性を向上させることができる。
 なお、第3実施形態の変形例4に係る膜電極接合体210では、第一境界面217を上流領域と下流領域とに分割し、「第一面積比<第二面積比」の関係を満たす構成について説明したがこれに限定されるものではない。例えば、第3実施形態の変形例1に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第一面積比<第三面積比<第二面積比」の関係を満たす構成としてもよい。あるいは、第3実施形態の変形例2に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第三面積比<第一面積比<第二面積比」の関係を満たす構成としてもよい。
 (変形例5)
 次に図28、29を参照して本開示の第3実施形態の変形例5に係る膜電極接合体210の構成について説明する。図28は、本開示の第3実施形態の変形例5に係る膜電極接合体210の断面の一例を示す模式図である。なお、図28に示す膜電極接合体210の断面も、図21に示す膜電極接合体210におけるA-Aの位置で切り出した断面構造である。図29は、図28に示す膜電極接合体210の電極212が備える第一孔部213aと第二孔部213bとの配置関係を模式的に示す斜視図である。
 第3実施形態の変形例5に係る膜電極接合体210は、固体電解質膜11および電極212を備え、電極212が、構造支持部214と、充填材215が充填されている孔部213を有している点で、第3実施形態に係る膜電極接合体210と共通する。また、第3実施形態の変形例5に係る膜電極接合体210は、第一境界面217において「第一面積比<第二面積比」の関係を満たすように孔部213が形成されている点で共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図28に示すように第3実施形態の変形例5に係る膜電極接合体210が備える孔部213は、第3実施形態に係る膜電極接合体210が備える孔部213とは、延伸する方向および、第一境界面217における全ての孔部213の開口面積が同じ大きさとなっている点で相違する。さらに、第一境界面217において「第一面積比<第二面積比」の関係を満たすようにするため、第3実施形態の変形例5に係る膜電極接合体210では、単位面積当たりに配置される孔部213の個数が上流領域より下流領域の方が多くなっている点で第3実施形態に係る膜電極接合体210と相違する。
 具体的には、第3実施形態に係る膜電極接合体210では、構造支持部214において、反応ガスと接触する側(すなわち、第一境界面217)から固体電解質膜11側(すなわち、第二境界面218)に向かって、電極212の主面(すなわち、第一境界面217または第二境界面218)に対して垂直となるように孔部213が延伸する構成であった。これに対して、第3実施形態の変形例5に係る膜電極接合体210では、図28、29に示すように、構造支持部214において、複数の孔部213(例えば、第一孔部213aおよび第二孔部213b)を交差させて互いに連通するように配置する。そしてこの配置を複数組み合わせて3次元網目構造を形成しながら、第一境界面217から第二境界面218に向かって孔部213が延伸する構成となっている。
 なお、図28、29では第一孔部213aと第二孔部213bとが互いに交差する構成であるが、さらに別の孔部213が第一孔部213aおよび第二孔部213bそれぞれと交差するように配置されていてもよい。
 また、第一境界面217において「第一面積比<第二面積比」の関係を満たすようにするため、第3実施形態の変形例5に係る膜電極接合体210では、図28に示すように1つの孔部213に対して交差する孔部213の数が上流領域よりも下流領域の方が多くなっている。
 この構成により、複数の孔部213が互いに連通した網目状の構造とすることができるため反応ガスの流通を促進させて、水素酸化活性または酸素還元活性を向上させることができる。また、充填材215を密に充填することができるため電気伝導性を向上させることができる。
 なお、第3実施形態の変形例5に係る膜電極接合体210では、第一境界面217を上流領域と下流領域とに分割し、「第一面積比<第二面積比」の関係を満たす構成について説明したがこれに限定されるものではない。例えば、第3実施形態の変形例1に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第一面積比<第三面積比<第二面積比」の関係を満たす構成としてもよい。あるいは、第3実施形態の変形例2に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第三面積比<第一面積比<第二面積比」の関係を満たす構成としてもよい。
 (変形例6)
 次に図30を参照して本開示の第3実施形態の変形例6に係る膜電極接合体210の構成について説明する。図30は、本開示の第3実施形態の変形例6に係る膜電極接合体210の断面の一例を示す模式図である。なお、図30に示す膜電極接合体210の断面も、図21に示す膜電極接合体210におけるA-Aの位置で切り出した断面構造である。
 第3実施形態の変形例6に係る膜電極接合体210は、固体電解質膜11および電極212を備え、電極212が、構造支持部214と、充填材215が充填されている孔部213を有している点で、第3実施形態に係る膜電極接合体210と共通する。また、第3実施形態の変形例6に係る膜電極接合体210は、「第一面積比<第二面積比」の関係を満たすように、上流領域および下流領域において、構造支持部214に備える孔部213の個数または開口面積を調整した構成となっている点でも第3実施形態に係る膜電極接合体210と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図30に示すように第3実施形態の変形例6に係る膜電極接合体210は、固体電解質膜11と電極212との間に機能層220がさらに設けられている点で第3実施形態に係る膜電極接合体210と異なる。
 機能層220は、充填材215と同様な材料から構成された層である。すなわち、機能層220は、電極212が、例えば、燃料電池等の電気化学デバイスの燃料極である場合、水素酸化活性と電気伝導性とを有する材料から構成される。一方、電極212が、例えば、燃料電池等の電気化学デバイスの空気極である場合、酸素還元活性と電気伝導性とを有する材料から構成される。そして、機能層220は、第二境界面218で電極212と接し、第三境界面221で固体電解質膜11と接するように配置されている。なお、機能層220は充填材215と同じ材料であってもよいし、異なっている材料であってもよい。
 この構成により、電極212が電気化学デバイスの燃料極である場合、水素酸化反応の起きる固体電解質膜11の近傍、つまり第三境界面221の近傍において、反応場を増加させることができる。また、電極212が電気化学デバイスの空気極である場合、酸素還元反応の起きる固体電解質膜11の近傍、つまり第三境界面221の近傍において、反応場を増加させることができる。このため、第3実施形態の変形例6に係る膜電極接合体210は、水素酸化活性または酸素還元活性を向上させることができる。
 なお、図30では、膜電極接合体210は、複数の孔部213が電極212の主面(すなわち、第一境界面217または第二境界面218)に対して垂直となるように延伸した構成となっているがこれに限定されるものではない。例えば、第3実施の形態の変形例4に係る膜電極接合体210と同様に、複数の孔部213が電極212の主面に対して鋭角をなし、斜めに延伸する構成であってもよい。また、第3実施形態の変形例5に係る膜電極接合体210と同様に複数の孔部213が交差して形成した3次元網目構造を有する構成であってもよい。
 また、第3実施形態の変形例6に係る膜電極接合体210では、第一境界面217を上流領域と下流領域とに分割し、「第一面積比<第二面積比」の関係を満たす構成について説明したがこれに限定されるものではない。例えば、第3実施の形態の変形例1に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第一面積比<第三面積比<第二面積比」の関係を満たす構成としてもよい。あるいは、第3実施形態の変形例2に係る膜電極接合体210と同様に、第一境界面217を上流領域、中流領域、下流領域の3つに分割し、「第三面積比<第一面積比<第二面積比」の関係を満たす構成としてもよい。
 なお、上記した第3実施形態、ならびに第3実施形態の変形例1~6に係る膜電極接合体210は、一層の電極212を備えた構成であったがこれに限定されるものではない。例えば、膜電極接合体210は、固体電解質膜11において電極212が備えられている主面とは反対側となる主面に他の電極をさらに備え、他の電極、固体電解質膜11、電極212の順に積層した構成としてもよい。そして、他の電極についても、電極212と同様の構成を有していてもよい。
 (第4実施形態)
 図31~33を参照して第4実施形態に係る膜電極接合体310の構成を説明する。図31は、本開示の第4実施形態に係る膜電極接合体310を、酸化剤ガスと接する面(すなわち、図33における第一空気極側境界面7)側から見た平面図である。図32は、本開示の第4実施形態に係る膜電極接合体310を、水素含有ガスと接する面(すなわち、図33における第一燃料極側境界面17)側から見た平面図である。また、図33は、図31に示す膜電極接合体310の構造を模式的に示すA-A断面図である。なお、図33に示す膜電極接合体310では、酸化剤ガスと水素含有ガスとが対向する方向に流れるように構成されているが両者の流れる方向はこれに限定されるものではない。例えば、酸化剤ガスと水素含有ガスとが同じ方向に流れるように構成されていてもよい。あるいは膜電極接合体310を上面側から積層方向で平面視したとき両者が交差して流れるように構成されていてもよい。
 図31~33に示すように、膜電極接合体310は、電解質材料を含む固体電解質膜11と水素含有ガスと接触する燃料極12と、酸化剤ガスと接触する空気極2とを備える。膜電極接合体310は、例えば、電気化学デバイスを構成するために用いられる部材であり、図33に示すように、空気極2、固体電解質膜11、および燃料極12が、この順に積層されている。すなわち固体電解質膜11の一方の主面に空気極2が、他方の主面に燃料極12が配置され、空気極2と燃料極12とによって固体電解質膜11を挟持する構成となっている。
 燃料極12は、セラミックス部材で構成された燃料極側構造支持部14と、燃料極側構造支持部14において水素含有ガスと接触する第一燃料極側境界面17(すなわち、燃料極側境界面)から固体電解質膜11側に向かって延伸し、水素酸化活性および電気伝導性を有する燃料極側充填材15が充填されている燃料極側孔部13とを備える。そして、燃料極側構造支持部14によって膜電極接合体310の構造を支持する。なお、燃料極側孔部13は、図33に示すように第一燃料極側境界面17から固体電解質膜11側に向かって直線状に延伸している。
 空気極2は、セラミックス部材で構成された空気極側構造支持部4と、空気極側構造支持部4において酸化剤ガスと接触する第一空気極側境界面7(すなわち、空気極側境界面)から固体電解質膜11側に向かって延伸し、酸素還元活性および電気伝導性を有する空気極側充填材5が充填されている空気極側孔部3と、を備える。そして、空気極側構造支持部4によっても膜電極接合体310の構造を支持することができるように構成されている。なお、空気極側孔部3は、図33に示すように第一空気極側境界面7から固体電解質膜11側に向かって直線状に延伸している。
 固体電解質膜11が含む電解質材料としては、例えば、バリウムジルコニウム酸化物若しくはバリウムセリウム酸化物などのプロトン伝導体、または安定化ジルコニア、ランタンガレート系酸化物、セリア系酸化物などの酸化物イオン伝導体が挙げられる。なお、プロトン伝導体は、イッテルビウムなどのドーパントを含んでいてもよい。いいかえると、バリウムジルコニウム系酸化物、バリウムセリウム系酸化物などであってもよい。
 空気極側構造支持部4および燃料極側構造支持部14は、電解質材料を含むセラミックス部材から構成されている。空気極側構造支持部4および燃料極側構造支持部14を構成するセラミックス部材には、固体電解質膜11との線膨張係数差が小さいような材料が使用される。なお、ここでいう「線膨張係数差が小さい」とは、例えば、固体電解質膜11との線膨張係数差を2×10-6-1以下にすることが望ましい。線膨張係数差を小さくすることで、セルの形状変化を抑制することが可能となる。
 また、空気極側構造支持部4または燃料極側構造支持部14を構成するセラミックス部材は緻密体であってもよい。緻密体とは、例えば、アルキメデス法や水銀圧入法によって測定される相対密度が85%以上のことである。緻密体であればセル強度を向上させることができる。
 このように、空気極2が空気極側構造支持部4を備え、燃料極12が燃料極側構造支持部14を備える構成であるため、空気極2および燃料極12によって膜電極接合体310の構造を支持することができるとともに、固体電解質膜11との熱膨張係数差を小さくすることができる。このため、動作環境において膜電極接合体310における反りの発生を抑制することができる。
 なお、酸化剤ガスは、酸素であってもよいし、酸素を含有する例えば空気などのガスであってもよい。また、水素含有ガスは、水素であってもよいし、例えば、メタンガスなどの改質反応により発生する改質ガス、水の電気分解により発生する水蒸気を含む水素ガスなどであってもよい。
 空気極側孔部3は、図33に示すように空気極側構造支持部4において酸化剤ガスと接触する第一空気極側境界面7に設けられ、酸化剤ガスが流入する第一空気極側開口部6aと、第一空気極側開口部6aとは反対側となる固体電解質膜11側の端部に設けられた第二空気極側開口部6bとを有する。図33の例では、第二空気極側開口部6bは、空気極側構造支持部4において固体電解質膜11と接する第二空気極側境界面8に設けられる。
 すなわち、第一空気極側開口部6aが設けられている第一空気極側境界面7側には酸素含有ガスが流通するガス流路(不図示)が備えられており、このガス流路を流通する酸化剤ガス(酸素)が第一空気極側開口部6aを介して空気極側孔部3内に流入する。また、空気極側孔部3内には後述する空気極側充填材5が充填されている。このため、この空気極側充填材5の表面で還元され、第二空気極側開口部6b近傍に伝導してきた酸素と固体電解質膜11を通過して移動してきたプロトンと、外部回路(不図示)を経て空気極2に到達した電子とによって水が生成される。
 一方、燃料極側孔部13は、図33に示すように燃料極側構造支持部14において水素含有ガスと接触する第一燃料極側境界面17に設けられ、水素含有ガスが流入する第一燃料極側開口部16aと、第一燃料極側開口部16aとは反対側となる固体電解質膜11側の端部に設けられた第二燃料極側開口部16bとを有する。図32の例では、第二燃料極側開口部16bは、燃料極側構造支持部14において固体電解質膜11と接する第二燃料極側境界面18に設けられる。
 すなわち、第一燃料極側開口部16aが設けられている第一燃料極側境界面17側には水素含有ガスが流通するガス流路(不図示)が備えられており、このガス流路を流通する水素含有ガスが第一燃料極側開口部16aを介して燃料極側孔部13内に流入する。また、燃料極側孔部13内には後述する燃料極側充填材15が充填されている。このため、燃料極側充填材15の表面で水素が酸化してプロトンと電子とに分かれる。そして、プロトンは、第二燃料極側開口部16bを介して燃料極12から固体電解質膜11に向かって移動する。また電子は燃料極側孔部13内を移動して燃料極12の外部に取り出される。
 また図31に示すように、空気極側孔部3の開口形状は丸孔であってもよい。同様に、図32に示すように燃料極側孔部13の開口形状も丸孔であってもよい。あるいは、図34に示すように空気極側孔部3の開口形状は角孔であってもよい。同様に、図35に示すように燃料極側孔部13の開口形状は角孔であってもよい。図34は、図31に示す膜電極接合体310が備える空気極2の変形例を示す図である。図35は、図32に示す膜電極接合体310が備える燃料極12の変形例を示す図である。
 なお、空気極側孔部3および燃料極側孔部13の開口形状は特に限定されない。空気極側構造支持部4および燃料極側構造支持部14における強度面の観点から、丸孔が好適である。
 空気極側孔部3および燃料極側孔部13の配列パターンは、図31、32または図34、35に示すように、各空気極側孔部3および各燃料極側孔部13が並列に配置された並列パターンであってもよいし、千鳥状に配置された千鳥状パターンであってもよい。あるいは、各空気極側孔部3および各燃料極側孔部13はランダムに配列されてもよい。
 空気極側孔部3の形状および配列パターンは、空気極側構造支持部4が充分な強度を保つとともに、空気極側孔部3内に充填された空気極側充填材5によって必要な酸素還元活性と電気伝導性とを得ることができる限り任意である。同様に、燃料極側孔部13の形状および配列パターンは、燃料極側構造支持部14が充分な強度を保つとともに、燃料極側孔部13内に充填された燃料極側充填材15によって必要な水素酸化活性と電気伝導性とを得ることができる限り任意である。
 空気極側孔部3および燃料極側孔部13それぞれの開口寸法は、例えば、丸孔の場合、径寸法が、0.01mmから1mmとし、角孔の場合、一辺の寸法が0.01mmから1mmとしてもよい。また、空気極側孔部3が空気極2の主面(すなわち、第一空気極側境界面7または第二空気極側境界面8)において占める面積の割合は、空気極2の主面全体の50%以下、望ましくは30%以下であってもよい。空気極2の主面における空気極側孔部3の占有面積が大きいと発電性能は向上するが、空気極2において生じる反りが大きくなる。同様に、燃料極側孔部13が燃料極12の主面(すなわち、第一燃料極側境界面17または第二燃料極側境界面18)において占める面積の割合は、燃料極12の主面全体の50%以下、望ましくは30%以下であってもよい。燃料極12の主面における燃料極側孔部13の占有面積が大きいと発電性能は向上する。しかしながら、燃料極12において生じる反りが大きくなる。
 また、膜電極接合体310では、空気極側孔部3と燃料極側孔部13との位置関係は、以下のようになっている。すなわち、燃料極側孔部13が有する第二燃料極側開口部16bの周縁と、空気極側孔部3が有する第二空気極側開口部6bの周縁とは、図33に示すように膜電極接合体310の積層方向で平面視したとき、互いに重ならないように配置される。なお、第二燃料極側開口部16bの周縁と第二空気極側開口部6bの周縁とが重ならないような配置とは、図33に示すように、膜電極接合体310の積層方向で平面視したとき、第二燃料極側開口部16bの周縁により形成される面と、第二空気極側開口部6bの周縁により形成される面とが重ならない場合が挙げられる。その他、詳細は後述するが膜電極接合体310の積層方向で平面視したとき、第二燃料極側開口部16bの周縁により形成される面と、第二空気極側開口部6bの周縁により形成される面とは重畳する部分があるが両者の周縁が重ならない場合も挙げられる。
 ここで、例えば燃料電池等の電気化学デバイスの動作環境において、例えば、昇降温時に第二空気極側開口部6bおよび第二燃料極側開口部16bそれぞれの周縁に応力が生じる。
 上記構成によると、第二空気極側開口部6bの周縁と第二燃料極側開口部16bの周縁とが膜電極接合体310の積層方向で平面視したとき、互いに重ならないように配置されているため、固体電解質膜11における特定の領域に応力が集中して作用することを抑制することができる。
 よって、膜電極接合体310は、反りを抑制し、かつ割れまたはクラックが生じることを防ぐことができる。
 また空気極側孔部3は、空気極側充填材5によって、酸素の還元を促進させるとともに電気伝導性を担保することができる。なお、空気極側充填材5は、酸素還元活性および電気伝導性を有した1種類以上の材料から構成されてもよい。例えば、空気極側充填材5は酸素還元活性および電気伝導性を有した1種類の材料から構成されてもよい。または、空気極側充填材5は、酸素還元活性を有する材料と、電気伝導性を有する材料とを組み合わせて構成されてもよい。または、空気極側充填材5は、酸素還元活性と電気伝導性とを有するように、複数の材料からなる化合物によって構成されてもよい。
 なお、空気極側充填材5を構成する酸素還元活性と電気伝導性とを有する材料として、少なくとも、Mn、Fe、Co、およびNiのいずれか1つの元素を含む化合物が挙げられる。より具体的には、例えば、ランタンストロンチウムコバルト鉄複合酸化物(LSCF)、ランタンストロンチウムコバルト複合酸化物(LSC)、ランタンストロンチウム鉄複合酸化物(LSF)、ランタンストロンチウムマンガン複合酸化物(LSM)、バリウムストロンチウムコバルト鉄複合酸化物(BSCF)、サマリウムストロンチウムコバルト複合酸化物(SSC)、ランタンニッケル鉄複合酸化物、ランタンニッケル複合酸化物、バリウムガドリニウムランタンコバルト複合酸化物などが挙げられる。
 また、空気極側充填材5は、Mn、Fe、Co、およびNiの少なくともいずれかを含む酸化物と、他の酸化物、あるいは金属との複合体であってもよい。さらにまた、空気極側充填材5は、酸素還元または電気伝導性どちらかを有する材料の混合物で構成されてもよい。このような構成の場合、例えば、酸素還元材料としてランタンストロンチウムコバルト鉄複合酸化物、電気伝導性材料にランタンストロンチウムマンガン複合酸化物を用いても良い。
 また、空気極側充填材5は、多孔体であってもよい。なお、ここでいう多孔体とは、アルキメデス法や水銀圧入法によって測定される空隙率が20%以上のことである。空気極側充填材5を多孔体にすることで、酸素還元に寄与する酸化剤ガスの供給が増加し、酸素還元活性を向上させることが可能となる。
 一方、燃料極側孔部13は、燃料極側充填材15によって、水素の酸化を促進させるとともに電気伝導性を担保することができる。なお、燃料極側充填材15は、水素酸化活性および電気伝導性を有した1種類以上の材料から構成されてもよい。例えば、燃料極側充填材15は水素酸化活性および電気伝導性を有した1種類の材料から構成されてもよい。または、燃料極側充填材15は、水素酸化活性を有する材料と、電気伝導性を有する材料とを組み合わせて構成されてもよい。または、燃料極側充填材15は、水素酸化活性と電気伝導性とを有するように、複数の材料からなる化合物によって構成されてもよい。
 なお、燃料極側充填材15を構成する水素酸化活性と電気伝導性とを有する材料として、例えば、Ni、Pt、Pd、Irがあげられ、燃料極側充填材15は、望ましくはNiを含む化合物であってもよい。Niは、例えば固体酸化物形燃料電池等の電気化学デバイスの燃料極に使用される、優れた水素酸化活性と電気伝導性とを有する材料である。
 また、燃料極側充填材15は、サーメットであってもよい。サーメットとは、金属とセラミックス材料との混合物であり、たとえば、金属にNi、セラミックス材料に、バリウムジルコニウム酸化物、バリウムセリウム酸化物などのプロトン伝導体、または安定化ジルコニア、ランタンガレート系酸化物、セリア系酸化物などの酸化物イオン伝導体からなるサーメットがあげられる。なお、プロトン伝導体は、イッテルビウムなどのドーパントを含んでいてもよい。いいかえると、バリウムジルコニウム系酸化物、バリウムセリウム系酸化物などであってもよい。サーメットが、例えば、Niと、電解質材料との混合物である場合、水素酸化の反応場の増加により水素酸化活性を向上させることができる。
 なお、燃料極側充填材15は、Niを含む多孔体であってもよい。なお、ここでいう多孔体とは、アルキメデス法や水銀圧入法によって測定される空隙率が20%以上のことである。燃料極側充填材15を多孔体にすることで、水素酸化に寄与する水素含有ガスの供給が増加し、水素酸化活性を向上させることが可能となる。
 (変形例1)
 次に図36、37を参照して本開示の第4実施形態の変形例1に係る膜電極接合体310の構成について説明する。図36は、本開示の第4実施形態の変形例1に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図36に示す第4実施形態の変形例1に係る膜電極接合体310の断面は、図31に示す膜電極接合体310におけるA-Aの位置で切り出した断面構造である。図37は、本開示の第4実施形態の変形例1に係る膜電極接合体310を、第一空気極側境界面7から平面視したときの空気極側孔部3と燃料極側孔部13との配置関係を示す模式図である。
 第4実施形態の変形例1に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態に係る膜電極接合体310と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図36、37に示すように第4実施形態の変形例1に係る膜電極接合体310では、空気極側孔部3と燃料極側孔部13との配置関係が異なっている。具体的には、膜電極接合体310の積層方向で平面視したとき、第二燃料極側開口部16bの周縁により形成される面内に前記第二空気極側開口部6bの周縁により形成される面が含まれるように配置されている。
 この構成により、第4実施形態の変形例1に係る膜電極接合体310では、積層方向で平面視したとき、第二燃料極側開口部16bの周縁と第二空気極側開口部6bの周縁とが重ならないため、動作環境において、固体電解質膜11における特定の領域に応力が集中して作用することを抑制することができる。
 さらにまた、第4実施形態の変形例1に係る膜電極接合体310は、膜電極接合体310を積層方向で平面視したときに第二燃料極側開口部16bの周縁により形成される面と第二空気極側開口部6bの周縁により形成される面とが重ならないように両者が離れた位置関係となる図33に示す第4実施形態に係る膜電極接合体310の構成と比較して、電気化学反応時において、固体電解質膜11におけるイオンの拡散長さを短くできる。それゆえ、電気化学反応時の内部抵抗を抑制することができる。
 また、第二燃料極側開口部16bの周縁により形成される面を大きくすることで、水素酸化活性と電気伝導性とを有する材料の充填領域を広げることができ、水素酸化の反応場や電気伝導パスを増大させることができる。これにより、より高い水素酸化活性、電気伝導性を有することができる。
 (変形例2)
 次に図38、39を参照して本開示の第4実施形態の変形例2に係る膜電極接合体310の構成について説明する。図38は、本開示の第4実施形態の変形例2に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図38に示す第4実施形態の変形例2に係る膜電極接合体310の断面は、図31に示す膜電極接合体310におけるA-Aの位置で切り出した断面構造である。図39は、本開示の第4実施形態の変形例2に係る膜電極接合体310を、第一空気極側境界面7から平面視したときの空気極側孔部3と燃料極側孔部13との配置関係を示す模式図である。
 第4実施形態の変形例2に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態に係る膜電極接合体310と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図38、39に示すように、第4実施形態の変形例2に係る膜電極接合体310では、空気極側孔部3と燃料極側孔部13との配置関係が第4実施形態に係る膜電極接合体310とは異なっている。具体的には、第4実施形態の変形例2に係る膜電極接合体310は、積層方向で平面視したとき、第二空気極側開口部6bの周縁により形成される面内に第二燃料極側開口部16bの周縁により形成される面が含まれるように配置されている。
 この構成により、第4実施形態の変形例2に係る膜電極接合体310では、積層方向で平面視したとき、第二空気極側開口部6bの周縁と第二燃料極側開口部16bの周縁とが重ならないため、動作環境において、固体電解質膜11における特定の領域に応力が集中して作用することを抑制することができる。
 さらに図33では、膜電極接合体310を、積層方向で平面視したときに第二空気極側開口部6bの周縁により形成される面と第二燃料極側開口部16bの周縁により形成される面とが重ならないように両者が離れた位置関係となる構成例が示されている。このような図33の構成と比較して、図38で示す膜電極接合体310では、電気化学反応時において、固体電解質膜11におけるイオンの拡散長さを短くできる。それゆえ、電気化学反応時の内部抵抗を抑制することができる。
 また、第二空気極側開口部6bの周縁により形成される面を大きくすることで、酸素還元活性と電気伝導性とを有する材料の充填領域を広げることができ、酸素還元の反応場や電気伝導パスを増大することができる。これにより、より高い酸素還元活性、電気伝導性を有することができる。
 (変形例3)
 次に図40~42を参照して本開示の第4実施形態の変形例3に係る膜電極接合体310の構成について説明する。図40は、本開示の第4実施形態の変形例3に係る膜電極接合体310を、酸化剤ガスと接する第一空気極側境界面7側から見た平面図である。図41は、図40に示す膜電極接合体310の構造を模式的に示すB-B断面図である。図42は、本開示の第4実施形態の変形例3に係る膜電極接合体310を、第一空気極側境界面7から平面視したときの空気極側孔部3と燃料極側孔部13との配置関係を示す模式図である。
 第4実施形態の変形例3に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態に係る膜電極接合体310と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図41、42に示すように第4実施形態の変形例1に係る膜電極接合体310では、空気極側孔部3と燃料極側孔部13との配置関係および空気極側孔部3および燃料極側孔部13それぞれの開口径が異なっている。具体的には、空気極側孔部3および燃料極側孔部13それぞれは、開口径が異なる2種類の孔から構成されている。つまり、図42に示すように、空気極側孔部3は、開口径が大きい第二空気極側開口部6b1と、開口径が小さい第二空気極側開口部6b2とを備える。そして、図40に示すように第二空気極側開口部6b1と第二空気極側開口部6b2とが交互に配置されている。また、図42に示すように、燃料極側孔部13は、開口径が大きい第二燃料極側開口部16b1と、開口径が小さい第二燃料極側開口部16b2とを備える。そして、空気極側孔部3と同様に、第二空気極側開口部6b1と第二空気極側開口部6b2とが交互に配置されている。さらに、図42に示すように、膜電極接合体10の積層方向で平面視したとき、第二空気極側開口部6b1の周縁により形成される面内に、第二燃料極側開口部16b2の周縁により形成される面が含まれるように配置されている。また、第二燃料極側開口部16b1の周縁により形成される面内に、第二空気極側開口部6b2の周縁により形成される面が含まれるように配置されている。
 この構成により、第4実施形態の変形例3に係る膜電極接合体310では、積層方向で平面視したとき、第二燃料極側開口部16b1の周縁と第二空気極側開口部6b2の周縁とが重ならず、かつ第二燃料極側開口部16b2の周縁と第二空気極側開口部6b1の周縁とが重ならない。これにより、動作環境において、固体電解質膜11における特定の領域に応力が集中して作用することを抑制することができる。
 さらにまた、電気化学反応時において、固体電解質膜11におけるイオンの拡散長さを短くできる。それゆえ、電気化学反応時の内部抵抗を抑制することができる。
 また、第二燃料極側開口部16bの周縁により形成される面の総面積と第二空気極側開口部6bの周縁により形成される面の総面積は任意に制御できる。例えば、第二燃料極側開口部16bの周縁により形成される面の総面積と第二空気極側開口部6bの周縁により形成される面の総面積とをそれぞれ均等とすることができる。これにより、水素酸化活性、酸素還元活性、および電気伝導性をバランスよく有することができる。
 (変形例4)
 次に図43、44を参照して本開示の第4実施形態の変形例4に係る膜電極接合体310の構成について説明する。図43は、本開示の第4実施形態の変形例4に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図43に示す変形例4に係る膜電極接合体310の断面は、図40に示す膜電極接合体310におけるB-Bの位置で切り出した断面構造である。図44は、本開示の第4実施形態の変形例4に係る膜電極接合体310を、第一空気極側境界面7から平面視したときの空気極側孔部3と燃料極側孔部13との配置関係を示す模式図である。
 第4実施形態の変形例4に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態に係る膜電極接合体310と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図43、44に示すように第4実施形態の変形例4に係る膜電極接合体310では、空気極側孔部3と燃料極側孔部13との配置関係が異なっている。具体的には、燃料極側孔部13が有する第二燃料極側開口部16bの周縁と、空気極側孔部3が有する第二空気極側開口部6bの周縁とは、膜電極接合体310の積層方向で平面視したとき、少なくとも一部が互いに重なるように配置される。なお、少なくとも一部が互いに重なるとは、図44に示すように、膜電極接合体310の積層方向で平面視したとき、第二燃料極側開口部16bの周縁と第二空気極側開口部6bの周縁とが交差する状態であってもよい。また、第二燃料極側開口部16bの周縁と第二空気極側開口部6bの周縁とが完全に重なり合う状態であってもよい。
 上記構成によると、燃料極側孔部13および空気極側孔部3を配置する際、膜電極接合体310の積層方向で平面視したとき、第二燃料極側開口部16bの周縁と第二空気極側開口部6bの周縁とが互いに重なってもよいため、燃料極側孔部13および空気極側孔部3それぞれの配置の自由度が大きくなり、それぞれ多数形成することができる。それ故、燃料極12における燃料極側孔部13、ならびに空気極2における空気極側孔部3それぞれの占有面積を広くとることができる。
 したがって、酸素還元の反応場および電気伝導パスを広げたり、水素酸化の反応場および電気伝導パスを広げたりすることができ、より高い酸素還元活性あるいは水素酸化活性、および電気伝導性を有することができる。
 (変形例5)
 次に図45を参照して本開示の第4実施形態の変形例5に係る膜電極接合体310の構成について説明する。図45は、本開示の第4実施形態の変形例5に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図45に示す第4実施形態の変形例5に係る膜電極接合体310の断面は、図40に示す膜電極接合体310におけるB-Bの位置で切り出した断面構造である。
 第4実施形態の変形例5に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態に係る膜電極接合体310と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図45に示すように第4実施形態の変形例5に係る膜電極接合体310では、第4実施形態に係る膜電極接合体310の構成において、燃料極側孔部13は、第一燃料極側孔部13aと、第二燃料極側孔部13bと、第一燃料極側孔部13aと第二燃料極側孔部13bとを連通させる燃料極側連通路19と、を備える点で異なっている。さらにまた、空気極側孔部3は、第一空気極側孔部3aと、第二空気極側孔部3bと、第一空気極側孔部3aと第二空気極側孔部3bとを連通させる空気極側連通路9と、を備える点でも異なっている。
 図45に示すように、第4実施形態の変形例5に係る膜電極接合体310は、燃料極側連通路19を備えるため、水素含有ガスが流通可能な経路を増やすことができる。このため、より高い水素酸化活性、電気伝導性を有することができる。また、第一燃料極側孔部13aまたは第二燃料極側孔部13bの経路中において、なんらかの不具合が生じて水素含有ガスの流通が阻害されたとしても燃料極側連通路19を介して別ルートで流通させることができる。このため、燃料極12は水素酸化活性、および電気伝導性を維持することができる。
 また、図45に示すように第4実施形態の変形例5に係る膜電極接合体310は、空気極側連通路9を備えるため、酸化剤ガスが流通可能な経路を増やすことができる。このため、より高い酸素還元活性、電気伝導性を有することができる。また、第一空気極側孔部3aまたは第二空気極側孔部3bの経路中において、なんらかの不具合が生じて酸化剤ガスの流通が阻害されたとしても空気極側連通路9を介して別ルートで流通させることができる。このため、空気極2は酸素還元活性、および電気伝導性を維持することができる。
 なお、図45では燃料極側連通路19内にも燃料極側充填材15が、空気極側連通路9内にも空気極側充填材5がそれぞれ充填された構成となっている。しかしながら、燃料極側連通路19において水素含有ガスの流通経路が、空気極側連通路9において酸化剤ガスの流通経路が確保さえできればよい場合は、必ずしも燃料極側連通路19内において燃料極側充填材15を、空気極側連通路9内において空気極側充填材5をそれぞれ充填されていなくてもよい。
 ただし、図45に示すように燃料極側連通路19内に燃料極側充填材15、空気極側連通路9内に空気極側充填材5がそれぞれ充填された構成の方が、水素酸化活性、酸素還元活性、および電気伝導性を向上させる点で好適である。
 なお、図45では、燃料極12および空気極2それぞれにおいて連通路(燃料極側連通路19、空気極側連通路9)を備える構成であったが、連通路は燃料極12または空気極2のいずれか一方にだけ設けられる構成であってもよい。
 (変形例6)
 次に図46を参照して本開示の第4実施形態の変形例6に係る膜電極接合体310の構成について説明する。図46は、本開示の第4実施形態の変形例6に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図46に示す変形例6に係る膜電極接合体310の断面は、図40に示す膜電極接合体310におけるB-Bの位置で切り出した断面構造である。
 第4実施形態の変形例6に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態に係る膜電極接合体310と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図46に示すように第4実施形態の変形例6に係る膜電極接合体310が備える燃料極側孔部13および空気極側孔部3は、第4実施形態に係る膜電極接合体310が備える燃料極側孔部13および空気極側孔部3とは、延伸する方向が異なっている。つまり、第4実施形態に係る膜電極接合体310では、燃料極側構造支持部14において、複数の燃料極側孔部13が水素含有ガスと接触する側(すなわち、第一燃料極側境界面17)から固体電解質膜11側(すなわち、第二燃料極側境界面18)に向かって、燃料極12の主面(すなわち、第一燃料極側境界面17または第二燃料極側境界面18)に対して垂直となるように延伸する構成であった。これに対して、第4実施形態の変形例6に係る膜電極接合体310では、燃料極側構造支持部14において、複数の燃料極側孔部13が第一燃料極側境界面17から第二燃料極側境界面18に向かって、燃料極12の主面に対して鋭角をなし、斜めに延伸する構成となっている。換言すると複数の燃料極側孔部13が燃料極12の主面に対して垂直な状態から水素含有ガスの流れ方向の下流側に向かって、同様な角度で傾くように延伸した構成となっている。
 この構成により、燃料極側孔部13に流入し、燃料極側孔部13内を流れる水素含有ガスの流れの分配を良化させることができる。このため、第4実施形態の変形例6に係る膜電極接合体310は、水素含有ガスの供給の増加により水素酸化活性を向上させることができる。
 また、第4実施形態に係る膜電極接合体310では、空気極側構造支持部4において、複数の空気極側孔部3が酸化剤ガスと接触する側(すなわち、第一空気極側境界面7)から固体電解質膜11側(すなわち、第二空気極側境界面8)に向かって、空気極2の主面(すなわち、第一空気極側境界面7または第二空気極側境界面8)に対して垂直となるように延伸する構成であった。これに対して、第4実施形態の変形例6に係る膜電極接合体310では、空気極側構造支持部4において、複数の空気極側孔部3が第一空気極側境界面7側から第二空気極側境界面8側に向かって、空気極2の主面に対して鋭角をなし、斜めに延伸する構成となっている。換言すると複数の空気極側孔部3が空気極2の主面に対して垂直な状態から酸化剤ガスの流れ方向の下流側に向かって、同様な角度で傾くように延伸した構成となっている。
 この構成により、空気極側孔部3に流入し、空気極側孔部3内を流れる酸化剤ガスの流れの分配を良化させることができる。このため、第4実施形態の変形例6に係る膜電極接合体310は、酸化剤ガスの供給の増加により酸素還元活性を向上させることができる。
 なお、図46では、燃料極側孔部13および空気極側孔部3それぞれが、燃料極12および空気極2の主面に対して傾いて延伸する構成であったが、燃料極側孔部13または空気極側孔部3のいずれか一方だけが、主面に対して傾いて延伸する構成としてもよい。
 (変形例7)
 次に図47、48を参照して本開示の第4実施形態の変形例7に係る膜電極接合体310の構成について説明する。図47は、本開示の第4実施形態の変形例7に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図47に示す変形例7に係る膜電極接合体310の断面は、図40に示す膜電極接合体310におけるB-Bの位置で切り出した断面構造である。また、図48は、図47に示す膜電極接合体310の燃料極12が備える第一燃料極側孔部13aと第二燃料極側孔部13bとの配置関係、ならびに空気極2が備える第一空気極側孔部3aと第二空気極側孔部3bとの配置関係を模式的に示す斜視図である。
 第4実施形態の変形例7に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態に係る膜電極接合体310と共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図47、48に示すように第4実施形態の変形例7に係る膜電極接合体310が備える燃料極側孔部13および空気極側孔部3は、第4実施形態に係る膜電極接合体310が備える燃料極側孔部13および空気極側孔部3とは、延伸する方向が異なっている。
 つまり、第4実施形態に係る膜電極接合体310では、例えば図33で示すように、燃料極側構造支持部14において、複数の燃料極側孔部13が水素含有ガスと接触する側(すなわち、第一燃料極側境界面17)から固体電解質膜11側(すなわち、第二燃料極側境界面18)に向かって、燃料極12の主面(すなわち、第一燃料極側境界面17または第二燃料極側境界面18)に対して垂直となるように延伸する構成であった。
 これに対して、第4実施形態の変形例7に係る膜電極接合体310では、図47、48に示すように、燃料極側構造支持部14において、第一燃料極側孔部13aと第二燃料極側孔部13bとを交差させて互いに連通するように配置する。そしてこの配置を複数組み合わせて3次元網目構造を形成しながら、第一燃料極側境界面17から第二燃料極側境界面18に向かって燃料極側孔部13が延伸する構成となっている。
 なお、図47、48では第一燃料極側孔部13aと第二燃料極側孔部13bとが互いに交差する構成であるが、さらに別の燃料極側孔部13が第一燃料極側孔部13aおよび第二燃料極側孔部13bそれぞれと交差するように配置されていてもよい。
 この構成により、第一燃料極側孔部13aと第二燃料極側孔部13bとが互いに連通した網目状の構造とすることができるため水素含有ガスの流通を促進させて水素酸化活性を向上させることができる。また、燃料極側充填材15を密に充填することができるため電気伝導性を向上させることができる。
 さらにまた、第4実施形態に係る膜電極接合体310では、例えば図33で示すように、空気極側構造支持部4において、複数の空気極側孔部3が酸化剤ガスと接触する側(すなわち、第一空気極側境界面7)から固体電解質膜11側(すなわち、第二燃料極側境界面18)に向かって、燃料極12の主面(すなわち、第一燃料極側境界面17または第二燃料極側境界面18)に対して垂直となるように延伸する構成であった。
 これに対して、第4実施形態の変形例7に係る膜電極接合体310では、図47、48に示すように、空気極側構造支持部4において、第一空気極側孔部3aと第二空気極側孔部3bとを交差させて互いに連通するように配置する。そしてこの配置を複数組み合わせて3次元網目構造を形成しながら、第一空気極側境界面7から第二空気極側境界面8に向かって空気極側孔部3が延伸する構成となっている。
 なお、図47、48では第一空気極側孔部3aと第二空気極側孔部3bとが互いに交差する構成であるが、さらに別の空気極側孔部3が第一空気極側孔部3aおよび第二空気極側孔部3bそれぞれと交差するように配置されていてもよい。
 この構成により、第一空気極側孔部3aと第二空気極側孔部3bとが互いに連通した網目状の構造とすることができるため酸化剤ガスの流通を促進させて酸素還元活性を向上させることができる。また、空気極側充填材5を密に充填することができるため電気伝導性を向上させることができる。
 (変形例8)
 次に図49を参照して本開示の第4実施形態の変形例8に係る膜電極接合体310の構成について説明する。図49は、本開示の第4実施形態の変形例8に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図49に示す変形例8に係る膜電極接合体310の断面は、図40に示す膜電極接合体310におけるB-Bの位置で切り出した断面構造である。
 第4実施形態の変形例8に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態の変形例5に係る膜電極接合体310と共通する。また、燃料極12において燃料極側連通路19および空気極2において空気極側連通路9をそれぞれ備えている点でも共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図49に示すように第4実施形態の変形例8に係る膜電極接合体310は、固体電解質膜11と燃料極12との間に燃料極側機能層30がさらに設けられている点、ならびに固体電解質膜11と空気極2との間に空気極側機能層20がさらに設けられている点で、第4実施形態の変形例5に係る膜電極接合体310と異なる。
 燃料極側機能層30は、燃料極側充填材15と同様な水素酸化活性と電気伝導性とを有する材料から構成された層である。そして燃料極側機能層30は、第二燃料極側境界面18で燃料極12と接し、第三燃料極側境界面31で固体電解質膜11と接するように配置されている。なお、燃料極側機能層30は燃料極側充填材15と同じ材料であってもよいし、異なっている材料であってもよい。
 この構成により、水素酸化反応の起きる固体電解質膜11の近傍において、反応場を増加させることができる。このため、水素酸化活性を向上させることができる。
 また、空気極側機能層20は、空気極側充填材5と同様な酸素還元活性と電気伝導性とを有する材料から構成された層である。そして、空気極側機能層20は、第二空気極側境界面8で空気極2と接し、第三空気極側境界面21で固体電解質膜11と接するように配置されている。なお、空気極側機能層20は空気極側充填材5と同じ材料であってもよいし、異なっている材料であってもよい。
 この構成により、酸素還元反応の起きる固体電解質膜11の近傍において、反応場を増加させることができる。このため、酸素還元活性を向上させることができる。
 なお、図49に示す変形例8に係る膜電極接合体310では、燃料極側機能層30および空気極側機能層20をそれぞれ備える構成であるが、いずれか一方のみを備える構成であってもよい。
 (変形例9)
 次に図50を参照して本開示の第4実施形態の変形例9に係る膜電極接合体310の構成について説明する。図50は、本開示の第4実施形態の変形例9に係る膜電極接合体310の構造を模式的に示す断面図である。なお、図50に示す変形例9に係る膜電極接合体310の断面は、図50に示す膜電極接合体310におけるB-Bの位置で切り出した断面構造である。
 第4実施形態の変形例9に係る膜電極接合体310は、固体電解質膜11、空気極2、燃料極12を備え、空気極2が、空気極側構造支持部4と、空気極側充填材5が充填されている空気極側孔部3とを有し、燃料極12が、燃料極側構造支持部14と、燃料極側充填材15が充填されている燃料極側孔部13とを有している点で、第4実施形態の変形例5に係る膜電極接合体310と共通する。また、燃料極12において燃料極側連通路19および空気極2において空気極側連通路9をそれぞれ備えている点でも共通する。したがって、これら共通する部材についての詳細な説明は省略する。
 しかしながら、図50に示すように第4実施形態の変形例9に係る膜電極接合体310は、燃料極側連通路19が第二燃料極側境界面18に沿って配置されている点で第4実施形態の変形例5に係る膜電極接合体310と異なる。また、変形例9に係る膜電極接合体310は、空気極側連通路9が第二空気極側境界面8に沿って配置されている点でも第4実施形態の変形例5に係る膜電極接合体310と異なる。
 図50に示すように燃料極側連通路19は、固体電解質膜11と燃料極12との界面をなす第二燃料極側境界面18に沿って配置され、内部には燃料極側充填材15が充填されている。また、燃料極側連通路19における第二燃料極側境界面18の側の壁面は開口し、第二燃料極側開口部16bを形成している。このため、第二燃料極側境界面18に沿って燃料極側連通路19が設けられていない構成と比較して固体電解質膜11と燃料極側充填材15との接触面積を大きくすることができる。それゆえ、水素酸化反応の起きる固体電解質膜11の近傍において反応場を増加させることができ、水素酸化活性を向上させることができる。
 また、図50に示すように空気極側連通路9は、固体電解質膜11と空気極2との界面をなす第二空気極側境界面8に沿って配置され、内部には空気極側充填材5が充填されている。また、空気極側連通路9における第二空気極側境界面8の側の壁面は開口し、第二空気極側開口部6bを形成している。このため、第二空気極側境界面8に沿って空気極側連通路9が設けられていない構成と比較して固体電解質膜11と空気極側充填材5との接触面積を大きくすることができる。それゆえ、酸素還元反応の起きる固体電解質膜11の近傍において反応場を増加させることができ、酸素還元活性を向上させることができる。
 なお、図50に示す変形例9に係る膜電極接合体310では、燃料極側連通路19および空気極側連通路9がともに固体電解質膜11の界面に沿って配置される構成であったが、この構成に限定されるものではない。燃料極側連通路19または空気極側連通路9のいずれか一方が固体電解質膜11の界面に沿って配置される構成であってもよい。
 上記では、孔部に充填される充填材として、水素酸化活性を有する燃料極側充填材15および酸素還元活性を有する空気極側充填材5を例に挙げて説明したが、充填材の有する性質は、水素酸化活性および酸素還元活性に限定されるものではない。充填材は、水素酸化活性、酸素還元活性、プロトン還元活性、水蒸気分解活性、および酸化物イオン酸化活性の少なくともいずれか1つを有するものであってもよい。充填材が有する性質は、充填される電極の機能に応じて、適宜選択される。なお、プロトン還元活性を有する材料として、Ni、Pt、Pd、Irなどの金属や、これらとプロトン伝導性酸化物とのサーメットがあげられる。また、水蒸気分解活性を有する材料として、Ni、Pt、Pd、Irなどの金属や、これらと酸化物イオン伝導性酸化物とのサーメットがあげられる。さらに、酸化物イオン酸化活性を有する材料として、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物、より具体的には、例えば、ランタンストロンチウムコバルト鉄複合酸化物(LSCF)、ランタンストロンチウムコバルト複合酸化物(LSC)、ランタンストロンチウム鉄複合酸化物(LSF)、ランタンストロンチウムマンガン複合酸化物(LSM)、バリウムストロンチウムコバルト鉄複合酸化物(BSCF)、サマリウムストロンチウムコバルト複合酸化物(SSC)、ランタンニッケル鉄複合酸化物、ランタンニッケル複合酸化物、バリウムガドリニウムランタンコバルト複合酸化物などがあげられる。
 また、電極が備える構造支持部を、サーメットによって構成してもよく、この場合、構造支持部が有する孔部は、その空隙の屈曲度が1.5以下と定義することができる。逆に、孔部を形成する構造支持部の屈曲度を1以上1.2以下と定義することができる。なお、屈曲度は、走査型電子顕微鏡(FIB-SEM)を用いて、測定される。
 本開示に係る膜電極接合体は、燃料電池またはガスセンサなどの電気化学デバイスの膜電極接合体として利用できる。また、水素純化デバイスまたは水素圧縮デバイスなどにおける電気化学的水素ポンプ等の電気化学デバイスの膜電極接合体としても利用できる。
   2  空気極
   3  空気極側孔部
   3a 第一空気極側孔部
   3b 第二空気極側孔部
   4  空気極側構造支持部
   5  空気極側充填材
   6a 第一空気極側開口部
   6b 第二空気極側開口部
   7  第一空気極側境界面
   8  第二空気極側境界面
   9  空気極側連通路
  10  膜電極接合体
  11  固体電解質膜
  12  燃料極
  13  燃料極側孔部
  13a 第一燃料極側孔部
  13b 第二燃料極側孔部
  14  燃料極側構造支持部
  15  燃料極側充填材
  16a 第一燃料極側開口部
  16b 第二燃料極側開口部
  17  第一燃料極側境界面
  18  第二燃料極側境界面
  19  燃料極側連通路
  20  空気極側機能層
  21  第三空気極側境界面
  30  燃料極側機能層
  31  第三燃料極側境界面
 110  膜電極接合体
 210  膜電極接合体
 212  電極
 213  孔部
 213a 第一孔部
 213b 第二孔部
 214  構造支持部
 215  充填材
 217  第一境界面
 218  第二境界面
 219  連通路
 220  機能層
 221  第三境界面
 310  膜電極接合体

Claims (30)

  1.  電解質材料を含む固体電解質膜と、反応ガスと接触する電極とを備えた膜電極接合体であって、
    前記電極は、
    セラミックス部材で構成された構造支持部と、
     前記構造支持部において前記反応ガスと接触する境界面から前記固体電解質膜側に向かって延伸し、
    少なくとも水素酸化活性、酸素還元活性、プロトン還元活性、水蒸気分解活性、および酸化物イオン酸化活性のいずれか1つを有する充填材が充填されている孔部と、を備える、膜電極接合体。
  2.  前記反応ガスは、水素含有ガスであり、
     前記充填材は、水素酸化活性および電気伝導性を有する、
    請求項1に記載の膜電極接合体。
  3. 前記充填材は、Niを含む化合物である、
    請求項1または2に記載の膜電極接合体。
  4. 前記充填材は、サーメットである、
    請求項1から3のいずれか1項に記載の膜電極接合体。
  5.  前記反応ガスは、酸化剤ガスであり、
     前記充填材は、酸素還元活性および電気伝導性を有する、
    請求項1に記載の膜電極接合体。
  6.  前記充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物である、
    請求項5に記載の膜電極接合体。
  7.  前記充填材は、ランタンストロンチウムコバルト複合酸化物、ランタンストロンチウムコバルト鉄複合酸化物、ランタンストロンチウム鉄複合酸化物、およびランタンニッケル鉄複合酸化物から選ばれる1種類以上の化合物である、請求項5に記載の膜電極接合体。
  8.  前記構造支持部は、前記境界面において、単位面積あたりの前記孔部の開口面積が異なる領域を有しており、前記反応ガスの流通方向において上流側となる領域の単位面積あたりの前記孔部の開口面積を第一面積比とし、下流側となる領域の単位面積あたりの前記孔部の開口面積を第二面積比としたとき、第一面積比<第二面積比の関係を満たす、
    請求項1に記載の膜電極接合体。
  9.  前記上流側となる領域と前記下流側となる領域との間の領域における単位面積あたりの前記孔部の開口面積を第三面積比としたとき、第一面積比<第三面積比<第二面積比の関係を満たす、
    請求項8に記載の膜電極接合体。
  10.  前記上流側となる領域と前記下流側となる領域との間の領域における単位面積あたりの前記孔部の開口面積を第三面積比としたとき、第三面積比<第一面積比<第二面積比の関係を満たす、
    請求項8に記載の膜電極接合体。
  11.  前記孔部は、
    前記境界面に設けられ、前記反応ガスが流入する第一開口部と、
    前記第一開口部とは反対側となる固体電解質膜側の端部に設けられた第二開口部とを有する、
    請求項1から10のいずれか1項に記載の膜電極接合体。
  12.  前記孔部は、
    第一孔部と、
    第二孔部と、
    前記第一孔部と前記第二孔部とを連通させる連通路と、を備える、
    請求項1から11のいずれか1項に記載の膜電極接合体。
  13.  前記充填材は、多孔体である、
    請求項1から12のいずれか1項に記載の膜電極接合体。
  14.  前記反応ガスは、水素含有ガスおよび酸化剤ガスであり、
     前記電極は、前記水素含有ガスと接触する燃料極と、前記酸化剤ガスと接触する空気極とであって、前記空気極、前記固体電解質膜および前記燃料極がこの順に積層されており、
     前記燃料極は、
    前記構造支持部として、燃料極側構造支持部と、
    前記孔部として、前記燃料極側構造支持部において前記水素含有ガスと接触する燃料極側境界面から前記固体電解質膜側に向かって延伸し、水素酸化活性および電気伝導性を有する燃料極側充填材が充填されている燃料極側孔部と、を有し、
     前記空気極は、
    前記構造支持部として、空気極側構造支持部と、
    前記孔部として、前記空気極側構造支持部において前記酸化剤ガスと接触する空気極側境界面から前記固体電解質膜側に向かって延伸し、酸素還元活性および電気伝導性を有する空気極側充填材が充填されている空気極側孔部と、を有する
    請求項1に記載の膜電極接合体。
  15.  前記燃料極側孔部は、
    前記燃料極側境界面に設けられ、前記水素含有ガスが流入する第一燃料極側開口部と、
    前記第一燃料極側開口部とは反対側となる固体電解質膜側の端部に設けられた第二燃料極側開口部と、を有し、
     前記空気極側孔部は、
    前記空気極側境界面に設けられ、前記酸化剤ガスが流入する第一空気極側開口部と、
    前記第一空気極側開口部とは反対側となる固体電解質膜側の端部に設けられた第二空気極側開口部とを有する、
    請求項14に記載の膜電極接合体。
  16.  前記燃料極側孔部が有する前記第二燃料極側開口部の周縁と、前記空気極側孔部が有する前記第二空気極側開口部の周縁とは、前記膜電極接合体の積層方向で平面視したとき、互いに重ならないように配置される、
    請求項15に記載の膜電極接合体。
  17.  前記膜電極接合体の積層方向で平面視したとき、前記第二燃料極側開口部の周縁により形成される面内に前記第二空気極側開口部の周縁により形成される面が含まれるように配置される、
    請求項15または16に記載の膜電極接合体。
  18.  前記膜電極接合体の積層方向で平面視したとき、前記第二空気極側開口部の周縁により形成される面内に前記第二燃料極側開口部の周縁により形成される面が含まれるように配置される、
    請求項15または16に記載の膜電極接合体。
  19.  前記燃料極側孔部が有する前記第二燃料極側開口部の周縁と、前記空気極側孔部が有する前記第二空気極側開口部の周縁とは、前記膜電極接合体の積層方向で平面視したとき、少なくとも一部が互いに重なるように配置される、
    請求項15に記載の膜電極接合体。
  20.  前記燃料極側孔部は、
     第一燃料極側孔部と、
     第二燃料極側孔部と、
     前記第一燃料極側孔部と前記第二燃料極側孔部とを連通させる燃料極側連通路と、を備える、
    請求項14から19のいずれか1項に記載の膜電極接合体。
  21.  前記空気極側孔部は、
     第一空気極側孔部と、
     第二空気極側孔部と、
     前記第一空気極側孔部と前記第二空気極側孔部とを連通させる空気極側連通路と、を備える、
    請求項14から20のいずれか1項に記載の膜電極接合体。
  22.  前記燃料極側充填材は、Niを含む、
    請求項14から21のいずれか1項に記載の膜電極接合体。
  23.  前記燃料極側充填材は、サーメットである、
    請求項14から22のいずれか1項に記載の膜電極接合体。
  24.  前記空気極側充填材は、少なくともMn、Fe、Co、およびNiのいずれか1つの元素を含む化合物である、
    請求項14から23のいずれか1項に記載の膜電極接合体。
  25.  前記燃料極側充填材および前記空気極側充填材のうち少なくとも一方は、多孔体である、
    請求項14から24のいずれか1項に記載の膜電極接合体。
  26.  前記燃料極側構造支持部および空気極側構造支持部のうち少なくとも一方は、前記電解質材料を含む前記セラミックス部材から構成される、
    請求項14から25のいずれか1項に記載の膜電極接合体。
  27.  前記孔部の空隙の屈曲度が1.5以下である、
    請求項1から26のいずれか1項に記載の膜電極接合体。
  28.  前記構造支持部の屈曲度が、1以上1.2以下である、
    請求項1から27のいずれか1項に記載の膜電極接合体。
  29.  前記電解質材料は、プロトン伝導性を有する、
     請求項1から28のいずれか1項に記載の膜電極接合体。
  30.  請求項1から29のいずれか1項に記載の膜電極接合体を備える、燃料電池。
PCT/JP2019/049751 2019-02-13 2019-12-19 膜電極接合体および燃料電池 WO2020166202A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020572108A JP7378040B2 (ja) 2019-02-13 2019-12-19 膜電極接合体および燃料電池
EP19914719.0A EP3926719A4 (en) 2019-02-13 2019-12-19 DIAPHRAGM ELECTRODE ASSEMBLY AND FUEL CELL
US17/355,263 US20210320314A1 (en) 2019-02-13 2021-06-23 Membrane electrode assembly and fuel cell

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2019-023504 2019-02-13
JP2019023506 2019-02-13
JP2019023505 2019-02-13
JP2019-023505 2019-02-13
JP2019023503 2019-02-13
JP2019023504 2019-02-13
JP2019-023503 2019-02-13
JP2019-023506 2019-02-13
JP2019193285 2019-10-24
JP2019-193285 2019-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/355,263 Continuation US20210320314A1 (en) 2019-02-13 2021-06-23 Membrane electrode assembly and fuel cell

Publications (1)

Publication Number Publication Date
WO2020166202A1 true WO2020166202A1 (ja) 2020-08-20

Family

ID=72044629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049751 WO2020166202A1 (ja) 2019-02-13 2019-12-19 膜電極接合体および燃料電池

Country Status (4)

Country Link
US (1) US20210320314A1 (ja)
EP (1) EP3926719A4 (ja)
JP (1) JP7378040B2 (ja)
WO (1) WO2020166202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101163A1 (ja) * 2022-11-08 2024-05-16 日本碍子株式会社 電気化学セル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184057B2 (ja) * 2020-02-19 2022-12-06 トヨタ自動車株式会社 燃料電池セルの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127635A (ja) * 2002-10-01 2004-04-22 Nissan Motor Co Ltd 固体酸化物形燃料電池用セル板及びその製造方法
JP2005026055A (ja) * 2003-07-02 2005-01-27 Nissan Motor Co Ltd 燃料電池用複合電極及び固体電解質型燃料電池
JP2007035435A (ja) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The 固体酸化物形燃料電池及びその製造方法
JP2013201061A (ja) * 2012-03-26 2013-10-03 Miura Co Ltd アノード支持型の固体酸化物形燃料電池セル及びその製造方法
WO2017014069A1 (ja) 2015-07-17 2017-01-26 住友電気工業株式会社 燃料電池用電解質層-アノード複合部材およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0125276D0 (en) * 2001-10-20 2001-12-12 Strathclyde Improvements in fuel cells related devices
DE10219096A1 (de) * 2002-04-29 2003-11-13 Siemens Ag Hochtemperatur-Brennstoffzelle und Verfahren zu deren Herstellung
US20040121222A1 (en) * 2002-09-10 2004-06-24 Partho Sarkar Crack-resistant anode-supported fuel cell
JP2004207088A (ja) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd ガス透過性基体及びこれを用いた固体酸化物形燃料電池
US7285348B2 (en) * 2003-02-28 2007-10-23 Kyocera Corporation Fuel cell
WO2008003976A1 (en) * 2006-07-07 2008-01-10 Ceres Intellectual Property Company Limited Metal substrate for fuel cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127635A (ja) * 2002-10-01 2004-04-22 Nissan Motor Co Ltd 固体酸化物形燃料電池用セル板及びその製造方法
JP2005026055A (ja) * 2003-07-02 2005-01-27 Nissan Motor Co Ltd 燃料電池用複合電極及び固体電解質型燃料電池
JP2007035435A (ja) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The 固体酸化物形燃料電池及びその製造方法
JP2013201061A (ja) * 2012-03-26 2013-10-03 Miura Co Ltd アノード支持型の固体酸化物形燃料電池セル及びその製造方法
WO2017014069A1 (ja) 2015-07-17 2017-01-26 住友電気工業株式会社 燃料電池用電解質層-アノード複合部材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101163A1 (ja) * 2022-11-08 2024-05-16 日本碍子株式会社 電気化学セル

Also Published As

Publication number Publication date
EP3926719A1 (en) 2021-12-22
JP7378040B2 (ja) 2023-11-13
EP3926719A4 (en) 2022-05-04
JPWO2020166202A1 (ja) 2021-12-16
US20210320314A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP4800439B1 (ja) 燃料電池の構造体
JP5646779B2 (ja) 燃料電池
US20120034547A1 (en) Structure of solid oxide fuel cell
WO2020166202A1 (ja) 膜電極接合体および燃料電池
JP5198675B1 (ja) 燃料電池の構造体
JP6394143B2 (ja) 固体酸化物形燃料電池セル
JP5443648B1 (ja) 燃料電池の構造体
JP4902013B1 (ja) 燃料電池セル
JP6504249B2 (ja) 固体酸化物形燃料電池用セルモジュール及びそれを用いた固体酸化物形燃料電池
JP5075268B1 (ja) 燃料電池の構造体
JP5883536B1 (ja) 燃料電池
JP6638834B2 (ja) 固体酸化物形燃料電池用セルモジュール及びそれを用いた固体酸化物形燃料電池
JP5122676B1 (ja) 燃料電池の構造体
JP5062786B1 (ja) 燃料電池の構造体
JP4824136B1 (ja) 燃料電池の構造体
JP2012094324A (ja) 燃料電池セル
JP6021126B2 (ja) 燃料電池
JP2015230845A (ja) 燃料電池
TW202328499A (zh) 包含耐電解之空氣側電極的固體氧化物電解電池
JP5703355B2 (ja) 燃料電池
JP2012094322A (ja) 燃料電池セル
JP2015064930A (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914719

Country of ref document: EP

Effective date: 20210913