WO2020161803A1 - 冷凍装置の室外機およびそれを備える冷凍装置 - Google Patents

冷凍装置の室外機およびそれを備える冷凍装置 Download PDF

Info

Publication number
WO2020161803A1
WO2020161803A1 PCT/JP2019/004076 JP2019004076W WO2020161803A1 WO 2020161803 A1 WO2020161803 A1 WO 2020161803A1 JP 2019004076 W JP2019004076 W JP 2019004076W WO 2020161803 A1 WO2020161803 A1 WO 2020161803A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
outdoor unit
expansion valve
Prior art date
Application number
PCT/JP2019/004076
Other languages
English (en)
French (fr)
Inventor
智隆 石川
寛也 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020570246A priority Critical patent/JP7105933B2/ja
Priority to EP19914434.6A priority patent/EP3922928A4/en
Priority to CN201980090375.2A priority patent/CN113348333B/zh
Priority to PCT/JP2019/004076 priority patent/WO2020161803A1/ja
Publication of WO2020161803A1 publication Critical patent/WO2020161803A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass

Definitions

  • the present invention relates to an outdoor unit of a refrigeration system and a refrigeration system including the outdoor unit.
  • the refrigeration system is equipped with a defrosting mode to melt the frost that adheres to the cooler.
  • a defrosting method for example, a reverse hot gas defrosting method is known in which the circulation direction of the refrigerant is changed by a four-way valve so that the high-temperature gas from the compressor is sent to a cooler that normally functions as an evaporator.
  • Patent Document 1 discloses a refrigeration apparatus that performs defrosting by a reverse hot gas defrosting method in a low temperature side cycle of a binary cycle.
  • Patent Document 1 the high pressure during defrosting is increased by cooling with a cascade condenser that performs heat exchange between the refrigerant of the high temperature side cycle and the refrigerant of the low temperature side cycle. Can be suppressed.
  • a plate heat exchanger is generally used as the two-cycle cascade capacitor.
  • the plate heat exchanger has a small internal volume. Therefore, even if the cascade condenser accelerates the condensation of the refrigerant during defrosting, the pressure suppressing effect is limited. Therefore, when the frost adhering to the evaporator is completely melted during the defrosting operation in which the fan is stopped, the refrigerant is not cooled sufficiently and the refrigerant pressure rapidly rises to the design pressure, and the operation is automatically stopped for protection. there's a possibility that. It is desirable to avoid the situation where the refrigerant pressure rises excessively during the defrosting operation, because the design pressure is low, not only in the dual cycle but also in a normal refrigeration cycle apparatus.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a refrigeration system capable of suppressing an increase in refrigerant pressure during defrosting operation.
  • the present disclosure relates to an outdoor unit of a refrigeration system having a refrigeration mode and a defrost mode.
  • the outdoor unit includes a first compressor and a second heat exchanger, a four-way valve, and a refrigerant amount adjustment mechanism.
  • the first compressor and the second heat exchanger are connected so that the first refrigerant circulates between the first expansion valve and the indoor unit in which the first heat exchanger is connected in series.
  • the four-way valve causes the first refrigerant to flow in the positive direction toward the first expansion valve via the first compressor and the second heat exchanger in the refrigeration mode, and also allows the first refrigerant to flow from the first compressor in the defrost mode.
  • the discharge port of the first compressor and the first compressor are connected so as to flow in the reverse direction in which they flow to the first heat exchanger and from the first expansion valve to the second heat exchanger and back to the first compressor. Replace the connection of the suction port.
  • the refrigerant amount adjustment mechanism adjusts the circulation amount of the first refrigerant in the defrosting mode.
  • the circulation amount of the first refrigerant can be adjusted during the operation in the defrosting mode, so that the refrigerant pressure can be kept in an appropriate range during the operation in the defrosting mode. ..
  • FIG. 5 is a diagram showing a flow of a refrigerant in the defrosting mode of the refrigerating apparatus according to the first embodiment. 5 is a flowchart for explaining control executed by the control device in the first embodiment. It is a figure which shows the structure of the refrigerating apparatus which concerns on Embodiment 2.
  • FIG. 7 is a diagram showing a flow of a refrigerant in a defrosting mode of the refrigeration system of the second embodiment. It is a figure which shows the structure of the refrigerating apparatus which concerns on Embodiment 3. It is a figure which shows the structure of the refrigerating apparatus which concerns on Embodiment 4.
  • FIG. 1 is a diagram showing the configuration of the refrigerating apparatus according to the first embodiment.
  • the refrigeration apparatus 100 includes an outdoor unit 101, an indoor unit 102, and pipes 27 and 31 that connect the outdoor unit 101 and the indoor unit 102.
  • the indoor unit 102 includes a first expansion valve 3 and a first heat exchanger 4.
  • the first expansion valve 3 and the first heat exchanger 4 are connected in series.
  • the outdoor unit 101 includes a first compressor 1 and a second heat exchanger 2, a four-way valve 7, a refrigerant amount adjusting mechanism 10, and a control device 50.
  • FIG. 2 is a diagram showing a configuration of a control device 50 that controls the refrigeration system.
  • control device 50 includes a processor 51, a memory 52, a communication interface (not shown), and the like.
  • the processor 51 controls the operating frequency of the first compressor 1, the connection of the four-way valve 7, etc. according to the data stored in the memory 52 and the information obtained via the communication interface.
  • the memory 52 is configured to include, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory.
  • the flash memory stores an operating system, application programs, and various data.
  • the control device 50 shown in FIG. 1 is realized by the processor 51 executing the operating system and application programs stored in the memory 52. When executing the application program, various data stored in the memory 52 is referred to.
  • the first compressor 1 and the second heat exchanger 2 are connected to the indoor unit 102 so that the first refrigerant circulates.
  • the refrigeration apparatus 100 has a freezing mode and a defrosting mode as operation modes.
  • the freezing mode the refrigerant flows in the direction shown by the arrow in FIG.
  • FIG. 3 is a diagram showing a refrigerant flow in the defrosting mode of the refrigerating apparatus according to the first embodiment.
  • the four-way valve 7 switches the connection destination of the discharge port of the first compressor 1 and the connection destination of the suction port of the first compressor 1 in the freezing mode and the defrosting mode.
  • the four-way valve 7 allows the first refrigerant to flow in the forward direction toward the first expansion valve 3 via the first compressor 1 and the second heat exchanger 2.
  • the four-way valve 7 allows the first refrigerant to flow from the first compressor 1 to the first heat exchanger 4, and also passes from the first expansion valve 3 to the second heat exchanger 2 and then to the first heat exchanger 2.
  • the 1st compressor 1 is connected so that it may return to the 1st compressor 1 and may flow in the reverse direction.
  • the refrigerant amount adjustment mechanism 10 is configured to adjust the circulation amount of the first refrigerant in the defrosting mode.
  • the refrigerant amount adjustment mechanism 10 includes a liquid receiver 8, refrigerant discharge pipes 34 and 35, and a flow rate adjustment valve 45.
  • the liquid receiver 8 is installed between the second heat exchanger 2 and the first expansion valve 3.
  • the refrigerant discharge pipes 34 and 35 connect the outlet of the liquid receiver 8 and the suction port of the first compressor 1.
  • the flow rate adjusting valve 45 adjusts the flow rate of the first refrigerant flowing through the refrigerant discharge pipes 34, 35.
  • the outdoor unit 101 has the bypass flow passages 36 and 37 that allow the first refrigerant to flow from the first expansion valve 3 toward the second heat exchanger 2 without passing through the liquid receiver 8. Further prepare.
  • the outdoor unit 101 is provided in the second expansion valve 46 provided in the bypass flow paths 36 and 37 and the bypass flow path 37, and causes the refrigerant flow direction to flow from the second expansion valve 46 toward the second heat exchanger 2. And a check valve 43 for limiting the direction.
  • the check valves 41 to 43 are provided, so that the refrigerant circulates in the direction shown by the arrow in FIG.
  • a sufficient amount of the refrigerant is stored in the liquid receiver 8 of the refrigerant amount adjusting mechanism 10.
  • the flow rate adjusting valve 45 may be closed when the amount of the refrigerant reaches the appropriate amount.
  • the check valve 42 Since the check valve 42 is provided between the pipe 25 and the pipe 26 after the refrigerant discharge pipe 34 is branched, even if the flow rate adjusting valve 45 is opened in the defrosting mode, the check valve 42 from the first expansion valve 3 is removed. The refrigerant does not flow back to the liquid receiver 8 side.
  • FIG. 4 is a flowchart for explaining control executed by the control device in the first embodiment.
  • the process of this flowchart is repeatedly executed during the operation of the refrigeration system, every time a fixed time elapses, or every time a predetermined condition is satisfied.
  • the control device 50 executes the process of the flowchart of FIG. 4 when a constant time has elapsed since the previous defrosting of the first heat exchanger 4.
  • the determination of the shift to the defrosting mode may be made based on the temperature of the refrigerant or the state of frost adhering to the first heat exchanger 4, and based on these.
  • control device 50 switches four-way valve 7 from the state of FIG. 1 to the state of FIG. 3 in step S1.
  • step S2 the control device 50 monitors the outputs of the temperature sensor 61 and the pressure sensor 62, and the supercooling degree (SC: subcool) of the first refrigerant in the bypass flow passage 36 before the second expansion valve 46 is determined. It is determined whether it is lower than the determination value.
  • SC supercooling degree
  • the controller 50 opens the flow rate adjusting valve 45 to add the amount of refrigerant to be circulated.
  • SC is equal to or greater than the determination value (NO in S2), the amount of refrigerant to be circulated is sufficient, so the control device 50 closes the flow rate adjusting valve 45.
  • Steps S2 to S4 are repeated until it is determined in step S5 that defrosting is completed. As a result, the amount of refrigerant that circulates in the defrost mode is adjusted to an appropriate amount.
  • control device 50 When it is determined that the defrosting is completed (YES in S5), the control device 50 returns the four-way valve 7 to the state of the refrigeration mode in FIG. 1 in step S6.
  • the refrigerating apparatus 100 described in the first embodiment it is possible to appropriately maintain the refrigerant circulation amount during defrosting, so that it is possible to avoid a decrease in defrosting capacity and an excessive increase in high pressure due to insufficient refrigerant. Therefore, the frost can be surely melted in a short time, and the design pressure can be suppressed low.
  • FIG. 5 is a diagram showing the configuration of the refrigerating apparatus according to the second embodiment.
  • the refrigeration apparatus 200 includes an outdoor unit 201, an indoor unit 202, and pipes 27 and 31 connecting the outdoor unit 201 and the indoor unit 202.
  • the indoor unit 202 has the same configuration as the indoor unit 102 of the first embodiment.
  • the outdoor unit 201 has the configuration of the outdoor unit 101 according to the first embodiment as a low temperature side first refrigeration cycle device 207, and further includes a third heat exchanger 214 and a high temperature side second refrigeration cycle device 206, and controls A control device 250 is provided instead of the device 50.
  • the first refrigerant used in the first refrigeration cycle device 207 is CO 2 or the like
  • the second refrigerant used in the second refrigeration cycle device 206 is CO 2 , propane, or the like.
  • the configuration of the outdoor unit 201 in the other parts is the same as that of the outdoor unit 101 in FIG. 1, and therefore the description will not be repeated here.
  • control device 250 has the same configuration as control device 50 shown in FIG. 2, and therefore description thereof will not be repeated.
  • the second refrigeration cycle device 206 is configured so that the second refrigerant circulates through the second compressor 211, the fourth heat exchanger 212, the third expansion valve 213, and the third heat exchanger 214 in this order.
  • the third heat exchanger 214 performs heat exchange between the second refrigerant and the first refrigerant discharged from the second heat exchanger 2 and flowing into the liquid receiver 8 in the refrigeration mode. Since the refrigerant flowing into the liquid receiver 8 is cooled by the third heat exchanger 214, the pressure increase in the liquid receiver 8 is suppressed.
  • the first compressor 1 and the second heat exchanger 2 are connected to the indoor unit 202 so that the first refrigerant circulates.
  • the refrigerating apparatus 200 has a freezing mode and a defrosting mode as operation modes.
  • the freezing mode the refrigerant flows in the direction shown by the arrow in FIG.
  • FIG. 6 is a diagram showing the flow of the refrigerant in the defrosting mode of the refrigerating apparatus according to the second embodiment.
  • the difference in the circulation direction of the refrigerant between the freezing mode and the defrosting mode in the second embodiment is basically the same as that in the first embodiment described with reference to FIGS. 1 and 3. Further, the control for adjusting the refrigerant amount is also common to the flowchart shown in FIG. Therefore, description thereof will not be repeated.
  • the first refrigeration cycle device 207 on the low temperature side Design pressure is set low. Therefore, adjusting the refrigerant circulation amount in the defrosting mode by the refrigerant amount adjusting mechanism 10 is effective in suppressing the pressure of the first refrigeration cycle device 207 on the low temperature side, and when carbon dioxide gas or the like is applied as the second refrigerant. Is effective for.
  • FIG. 7 is a diagram showing the configuration of the refrigerating apparatus according to the third embodiment.
  • refrigeration apparatus 300 includes an outdoor unit 301, an indoor unit 302, and pipes 27 and 31 connecting the outdoor unit 301 and the indoor unit 302.
  • the indoor unit 302 has the same configuration as the indoor unit 202 of the second embodiment.
  • the outdoor unit 301 further includes a fifth heat exchanger 310 in addition to the configuration of the outdoor unit 201 of the second embodiment.
  • the fifth heat exchanger 310 is configured to perform heat exchange between the first refrigerant discharged from the liquid receiver 8 and the first refrigerant flowing through the refrigerant discharge pipe 35 in the defrosting mode.
  • the configuration of the outdoor unit 301 in the other parts is the same as that of the outdoor unit 201 in FIG.
  • the difference in the circulation direction of the refrigerant between the refrigerating mode and the defrosting mode in the third embodiment is basically the same as the first embodiment described in FIGS. 1 and 3 and the second embodiment described in FIGS. Are the same. Further, the control for adjusting the refrigerant amount is also common to the flowchart shown in FIG. Therefore, description thereof will not be repeated.
  • the refrigerating apparatus 300 according to the third embodiment has the effect of the refrigerating apparatus 200 according to the second embodiment, and in addition, the fifth heat exchanger 310 liquefies the refrigerant flowing into the flow rate adjusting valve 45. It is possible to prevent the gas refrigerant from mixing with the valve 45 and flowing into the valve 45 to reduce the flow rate. Thereby, the effect that the adjustment of the refrigerant amount in the defrost mode is completed early is further obtained.
  • FIG. 8 is a diagram showing the configuration of the refrigeration apparatus according to the fourth embodiment.
  • the refrigeration apparatus 400 includes an outdoor unit 401, an indoor unit 402, and pipes 27 and 31 connecting the outdoor unit 401 and the indoor unit 402.
  • the indoor unit 402 has the same configuration as the indoor unit 202 of the second embodiment.
  • the outdoor unit 401 connects between the first refrigerant inlet of the third heat exchanger 214 and the first refrigerant outlet of the liquid receiver 8, and the third unit
  • a circulation passage 410 for circulating the first refrigerant between the heat exchanger 214 and the liquid receiver 8 and a solenoid valve 411 provided in the circulation passage 410 are further provided.
  • the circulation flow path 410 and opening the solenoid valve 411 in the defrosting mode the liquefied first refrigerant cooled in the third heat exchanger moves to the liquid receiver 8 and the liquid receiver 8
  • the circulation of the first refrigerant occurs in which the warm refrigerant of (3) moves to the third heat exchanger and is cooled.
  • the temperature of the refrigerant in the receiver 8 is kept low during the defrosting mode, so that when the defrosting mode is returned to the freezing mode, the cooling of the indoor unit 402 at a low temperature can be restarted promptly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍装置(100)は、室外機(101)と、室内機(102)とを備える。室外機(101)は、第1圧縮機(1)、第2熱交換器(2)、四方弁(7)、および冷媒量調整機構(10)を備える。四方弁(7)は、冷凍モードにおいては、第1冷媒を第1圧縮機(1)、第2熱交換器(2)を経て第1膨張弁(3)に向かう正方向に流すように第1圧縮機(1)を接続する。四方弁(7)は、除霜モードにおいては、第1冷媒を第1圧縮機(1)から第1熱交換器(4)に流し、かつ第1膨張弁(3)から第2熱交換器(2)を経て第1圧縮機(1)に戻す逆方向に流すように第1圧縮機(1)を接続する。冷媒量調整機構(10)は、除霜モードにおける第1冷媒の循環量を調整するように構成される。

Description

冷凍装置の室外機およびそれを備える冷凍装置
 本発明は、冷凍装置の室外機およびそれを備える冷凍装置に関する。
 冷凍装置には、クーラーに付着する霜を融解させるための除霜モードが設けられる。除霜方式としては、たとえば、四方弁によって圧縮機からの高温ガスを通常は蒸発器として働くクーラーに送るように冷媒の循環方向を変更するリバースホットガス除霜方式が知られている。
 特許第5595245号公報(特許文献1)は、二元サイクルの低温側サイクルにおいて、リバースホットガス除霜方式で除霜を行なう冷凍装置を開示する。
特許第5595245号公報
 特許第5595245号公報(特許文献1)に開示された冷凍装置では、高温側サイクルの冷媒と低温側サイクルの冷媒との間の熱交換を行なうカスケードコンデンサによる冷却で、除霜時の高圧上昇を抑制できる。
 二元サイクルのカスケードコンデンサとしては一般的にプレート型熱交換器が用いられる。プレート型熱交換器は、内容積が小さい。このため、カスケードコンデンサで除霜時の冷媒凝縮を促進させても、圧力抑制効果には限度がある。したがって、ファンを停止している除霜運転中に蒸発器に付着した霜の融解が完了すると、冷媒が十分に冷却されずに冷媒圧力が設計圧力まで急上昇し、保護のために運転が自動停止する可能性がある。二元サイクルに限らず、通常の冷凍サイクル装置であっても、設計圧力が低くて済む点で、除霜運転中に冷媒圧力が上昇しすぎる事態を避けることが望ましい。
 本発明は、上記課題を解決するためになされたものであって、除霜運転中に冷媒圧力の上昇を抑制できる冷凍装置を提供することを目的とする。
 本開示は、冷凍モードと除霜モードとを有する冷凍装置の室外機に関する。室外機は、第1圧縮機および第2熱交換器と、四方弁と、冷媒量調整機構とを備える。第1圧縮機および第2熱交換器は、第1膨張弁および第1熱交換器が直列接続された室内機との間で第1冷媒が循環するように接続される。四方弁は、冷凍モードにおいて、第1冷媒を第1圧縮機、第2熱交換器を経て第1膨張弁に向かう正方向に流すとともに、除霜モードにおいて、第1冷媒を第1圧縮機から第1熱交換器に流し、かつ第1膨張弁から第2熱交換器を経て第1圧縮機に戻す逆方向に流すように、第1圧縮機の吐出口の接続先と第1圧縮機の吸入口の接続先とを入れ替える。冷媒量調整機構は、除霜モードにおける第1冷媒の循環量を調整する。
 本開示の冷凍装置によれば、除霜モードでの運転中に第1冷媒の循環量を調整することができるので、除霜モードでの運転中に冷媒圧力を適切な範囲に保つことができる。
実施の形態1に係る冷凍装置の構成を示す図である。 冷凍装置の制御を行なう制御装置50の構成を示す図である。 実施の形態1の冷凍装置の除霜モードにおける冷媒の流れを示す図である。 実施の形態1において制御装置が実行する制御を説明するためのフローチャートである。 実施の形態2に係る冷凍装置の構成を示す図である。 実施の形態2の冷凍装置の除霜モードにおける冷媒の流れを示す図である。 実施の形態3に係る冷凍装置の構成を示す図である。 実施の形態4に係る冷凍装置の構成を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 実施の形態1.
 図1は、実施の形態1に係る冷凍装置の構成を示す図である。図1を参照して、冷凍装置100は、室外機101と、室内機102と、室外機101と室内機102とを接続する配管27,31とを備える。
 室内機102は、第1膨張弁3と、第1熱交換器4とを含む。第1膨張弁3と第1熱交換器4とは直列接続される。第1膨張弁3として、たとえば、第1熱交換器4の冷媒出口の温度に基づいて制御される温度膨張弁を使用することができる。
 室外機101は、第1圧縮機1および第2熱交換器2と、四方弁7と、冷媒量調整機構10と、制御装置50とを備える。
 図2は、冷凍装置の制御を行なう制御装置50の構成を示す図である。図2を参照して、制御装置50は、プロセッサ51と、メモリ52と、図示しない通信インターフェース等とを含む。プロセッサ51は、メモリ52に記憶されたデータおよび通信インターフェースを経由して得た情報に従って、第1圧縮機1の運転周波数、四方弁7の接続等を制御する。
 メモリ52は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。なお、図1に示した制御装置50は、プロセッサ51がメモリ52に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。アプリケーションプログラムの実行の際には、メモリ52に記憶されている各種のデータが参照される。
 再び図1を参照して、第1圧縮機1および第2熱交換器2は、室内機102との間で第1冷媒が循環するように接続される。
 冷凍装置100は、動作モードとして、冷凍モードと除霜モードとを有する。冷凍モードでは、図1の矢印に示す向きに冷媒が流れる。図3は、実施の形態1の冷凍装置の除霜モードにおける冷媒の流れを示す図である。
 四方弁7は、冷凍モードと除霜モードとで第1圧縮機1の吐出口の接続先と第1圧縮機1の吸入口の接続先とを入れ替える。四方弁7は、図1に示す冷凍モードにおいては、第1冷媒を第1圧縮機1、第2熱交換器2を経て第1膨張弁3に向かう正方向に流すように第1圧縮機1を接続する。四方弁7は、図3に示す除霜モードにおいては、第1冷媒を第1圧縮機1から第1熱交換器4に流し、かつ第1膨張弁3から第2熱交換器2を経て第1圧縮機1に戻す逆方向に流すように第1圧縮機1を接続する。
 冷媒量調整機構10は、除霜モードにおける第1冷媒の循環量を調整するように構成される。
 冷媒量調整機構10は、受液器8と、冷媒排出管34,35と、流量調整弁45とを含む。受液器8は、第2熱交換器2と第1膨張弁3との間に設置される。冷媒排出管34,35は、受液器8の出口と第1圧縮機1の吸入口との間を接続する。流量調整弁45は、冷媒排出管34,35を流通する第1冷媒の流量を調整する。
 室外機101は、図3に示す除霜モードにおいて、受液器8を経由せずに第1冷媒を第1膨張弁3から第2熱交換器2に向けて流すバイパス流路36,37をさらに備える。
 室外機101は、バイパス流路36,37に設けられた第2膨張弁46と、バイパス流路37に設けられ、冷媒流通方向を第2膨張弁46から第2熱交換器2に向けて流す向きに制限する逆止弁43とをさらに備える。
 四方弁7を図3に示す状態に切り替えると、逆止弁41~43があるので、図3の矢印に示す向きに冷媒が循環する。冷凍モードから除霜モードに切り替えるときには、冷媒量調整機構10の受液器8には十分な量の冷媒が貯留されている。除霜モードにおいて、流量調整弁45を開けると循環する冷媒量が追加される。したがって、除霜モードで循環する冷媒量を適切な量に設定するには、冷媒量が適量となった時点で流量調整弁45を閉じればよい。なお、逆止弁42が冷媒排出管34が分岐した後の配管25と配管26との間に設けられているので、除霜モードにおいて流量調整弁45を開けても第1膨張弁3からの冷媒が受液器8側に逆流することはない。
 図4は、実施の形態1において制御装置が実行する制御を説明するためのフローチャートである。このフローチャートの処理は、冷凍装置の運転中において、一定時間経過ごと、または予め定められた条件が成立するごとに繰返し実行される。たとえば、一定時間ごとに除霜を行なう場合には、制御装置50は、前回の第1熱交換器4の除霜から一定時間が経過した場合に図4のフローチャートの処理を実行する。なお、この除霜モードへの移行の判断は、冷媒温度または第1熱交換器4への霜の付着状態を検出し、これらに基づいて行なっても良い。
 図4を参照して、制御装置50は、除霜モードに切り替える条件が成立すると、ステップS1において、四方弁7を図1の状態から図3の状態に切り換える。
 そして、ステップS2において、制御装置50は、温度センサ61および圧力センサ62の出力を監視し、第2膨張弁46の手前のバイパス流路36における第1冷媒の過冷却度(SC:サブクール)が判定値よりも低いか否かを判断する。
 SCが判定値よりも低い場合には(S2でYES)、循環させる冷媒量を追加するために、制御装置50は流量調整弁45を開く。一方、SCが判定値以上であった場合には(S2でNO)、循環させる冷媒量は十分であるので、制御装置50は流量調整弁45を閉じる。
 ステップS5において除霜完了と判断されるまで、ステップS2~S4の処理が繰返される。これによって、除霜モードにおいて循環する冷媒量が適量に調整される。
 除霜完了と判断された場合には(S5でYES)、ステップS6において、制御装置50は、四方弁7を図1の冷凍モードの状態に戻す。
 実施の形態1に示した冷凍装置100によれば、除霜時の冷媒循環量を適正に保つことができるので、冷媒不足による除霜能力の低下および高圧の過上昇を避けることができる。したがって、短時間で確実に霜を融解させることができるとともに、設計圧力を低く抑えることができる。
 実施の形態2.
 図5は、実施の形態2に係る冷凍装置の構成を示す図である。図5を参照して、冷凍装置200は、室外機201と、室内機202と、室外機201と室内機202とを接続する配管27,31とを備える。
 室内機202は、実施の形態1の室内機102と同様な構成である。
 室外機201は、実施の形態1の室外機101の構成を低温側の第1冷凍サイクル装置207とし、第3熱交換器214と、高温側の第2冷凍サイクル装置206とをさらに備え、制御装置50に代えて制御装置250を備える。たとえば、第1冷凍サイクル装置207で用いられる第1冷媒はCO等であり、第2冷凍サイクル装置206で用いられる第2冷媒は、CO、プロパン等である。他の部分の室外機201の構成については、図1の室外機101と共通するので、ここでは説明は繰返さない。また、制御装置250の構成も図2に示した制御装置50と同様であるので、説明は繰返さない。
 第2冷凍サイクル装置206は、第2冷媒が、第2圧縮機211、第4熱交換器212、第3膨張弁213および第3熱交換器214の順に循環するように構成される。第3熱交換器214は、冷凍モードにおいて、第2冷媒と第2熱交換器2から排出され受液器8に流入する第1冷媒との間の熱交換を行なう。受液器8に流入する冷媒を第3熱交換器214で冷却するので、受液器8内の圧力上昇が抑制される。
 第1圧縮機1および第2熱交換器2は、室内機202との間で第1冷媒が循環するように接続される。
 冷凍装置200は、動作モードとして、冷凍モードと除霜モードとを有する。冷凍モードでは、図5の矢印に示す向きに冷媒が流れる。図6は、実施の形態2の冷凍装置の除霜モードにおける冷媒の流れを示す図である。
 実施の形態2における冷凍モードと除霜モードにおける冷媒の循環方向の違いについては、図1および図3で説明した実施の形態1と基本的には同じである。また、冷媒量を調整する制御についても、図4で示したフローチャートと共通する。したがって、これらについては説明を繰返さない。
 実施の形態2に示したような、高温側の第2冷凍サイクル装置206と低温側の第1冷凍サイクル装置207とを含む2元サイクルの場合には、低温側の第1冷凍サイクル装置207の設計圧力は低く設定される。したがって、除霜モードにおける冷媒循環量を冷媒量調整機構10で調整することは、低温側の第1冷凍サイクル装置207の圧力抑制に効果的であり、炭酸ガスなどを第2冷媒として適用した場合に有効である。
 実施の形態3.
 図7は、実施の形態3に係る冷凍装置の構成を示す図である。図7を参照して、冷凍装置300は、室外機301と、室内機302と、室外機301と室内機302とを接続する配管27,31とを備える。
 室内機302は、実施の形態2の室内機202と同様な構成である。
 室外機301は、実施の形態2の室外機201の構成に加えて、第5熱交換器310をさらに備える。第5熱交換器310は、除霜モードにおいて、受液器8から排出される第1冷媒と冷媒排出管35を流通する第1冷媒との間で熱交換を行なうように構成される。
 他の部分の室外機301の構成については、図5の室外機201と共通するので、ここでは説明は繰返さない。
 実施の形態3における冷凍モードと除霜モードにおける冷媒の循環方向の違いについては、図1および図3で説明した実施の形態1および図5、図6で説明した実施の形態2と基本的には同じである。また、冷媒量を調整する制御についても、図4で示したフローチャートと共通する。したがって、これらについては説明を繰返さない。
 実施の形態3に示す冷凍装置300は、実施の形態2に示した冷凍装置200が奏する効果に加え、第5熱交換器310によって、流量調整弁45に流入する冷媒を液化させるので、流量調整弁45にガス冷媒が混入して流入し流量が低下することを防止することができる。これにより、除霜モードによる冷媒量の調整が早期に完了するという効果がさらに得られる。
 実施の形態4.
 図8は、実施の形態4に係る冷凍装置の構成を示す図である。図8を参照して、冷凍装置400は、室外機401と、室内機402と、室外機401と室内機402とを接続する配管27,31とを備える。
 室内機402は、実施の形態2の室内機202と同様な構成である。
 室外機401は、実施の形態2の室外機201の構成に加えて、第3熱交換器214の第1冷媒の入口と受液器8の第1冷媒出口との間を接続し、第3熱交換器214と受液器8との間で第1冷媒を循環させる循環流路410と、循環流路410に設けられた電磁弁411とをさらに備える。
 このように、循環流路410を設け、除霜モード中において電磁弁411を開くことによって第3熱交換器で冷却され液化された第1冷媒が受液器8に移動し、受液器8の温かい冷媒が第3熱交換器に移動し冷却されるという第1冷媒の循環が生じる。
 これによって、除霜モード中に、受液器8の冷媒の温度が低く維持されるので、除霜モードから冷凍モードに戻った場合に、速やかに室内機402における低温での冷却が再開できる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 第1圧縮機、2 第2熱交換器、3 第1膨張弁、4 第1熱交換器、7 四方弁、8 受液器、10 冷媒量調整機構、25~27,31 配管、34,35 冷媒排出管、36,37,410 流路、41~43 逆止弁、45 流量調整弁、46 第2膨張弁、50,250 制御装置、51 プロセッサ、52 メモリ、61 温度センサ、62 圧力センサ、100,200,300,400 冷凍装置、101,201,301,401 室外機、102,202,302,402 室内機、206 第2冷凍サイクル装置、207 第1冷凍サイクル装置、211 第2圧縮機、212 第4熱交換器、213 第3膨張弁、214 第3熱交換器、310 第5熱交換器、411 電磁弁。

Claims (7)

  1.  冷凍モードと除霜モードとを有する冷凍装置の室外機であって、
     第1膨張弁および第1熱交換器が直列接続された室内機との間で第1冷媒が循環するように接続された、第1圧縮機および第2熱交換器と、
     前記冷凍モードにおいて、前記第1冷媒を前記第1圧縮機、前記第2熱交換器を経て前記第1膨張弁に向かう正方向に流すとともに、前記除霜モードにおいて、前記第1冷媒を前記第1圧縮機から前記第1熱交換器に流し、かつ前記第1膨張弁から前記第2熱交換器を経て前記第1圧縮機に戻す逆方向に流すように前記第1圧縮機の吐出口の接続先と前記第1圧縮機の吸入口の接続先とを入れ替える四方弁と、
     前記除霜モードにおける前記第1冷媒の循環量を調整する冷媒量調整機構とを備える、室外機。
  2.  前記冷媒量調整機構は、
     前記第2熱交換器と前記第1膨張弁との間に設置される受液器と、
     前記受液器の出口と前記第1圧縮機の吸入口との間を接続する冷媒排出管と、
     前記冷媒排出管を流通する前記第1冷媒の流量を調整する流量調整弁とを含み、
     前記室外機は、
     前記除霜モードにおいて、前記受液器を経由せずに前記第1冷媒を前記第1膨張弁から前記第2熱交換器に向けて流すバイパス流路をさらに備える、請求項1に記載の室外機。
  3.  前記バイパス流路に設けられた第2膨張弁と、
     前記バイパス流路に設けられ、冷媒流通方向を前記第2膨張弁から前記第2熱交換器に向けて流す向きに制限する逆止弁とをさらに備える、請求項2に記載の室外機。
  4.  前記第1圧縮機、前記第2熱交換器、前記第1膨張弁および前記第1熱交換器は、前記第1冷媒を用いる第1冷凍サイクル装置を構成し、
     前記冷凍モードにおいて前記第2熱交換器から排出され前記受液器に流入する前記第1冷媒と第2冷媒との間の熱交換を行なう第3熱交換器と、
     前記第2冷媒が、第2圧縮機、第4熱交換器、第3膨張弁および前記第3熱交換器の順に循環する第2冷凍サイクル装置をさらに備える、請求項2に記載の室外機。
  5.  前記除霜モードにおいて、前記受液器から排出される前記第1冷媒と前記冷媒排出管を流通する前記第1冷媒との間で熱交換を行なう第5熱交換器をさらに備える、請求項4に記載の室外機。
  6.  前記第3熱交換器の前記第1冷媒の入口と前記受液器の前記第1冷媒出口との間を接続し、前記第3熱交換器と前記受液器との間で前記第1冷媒を循環させる循環流路と、
     前記循環流路に設けられた電磁弁とをさらに備える、請求項4に記載の室外機。
  7.  請求項1~6のいずれか1項に記載の室外機と、
     前記室内機とを備える、冷凍装置。
PCT/JP2019/004076 2019-02-05 2019-02-05 冷凍装置の室外機およびそれを備える冷凍装置 WO2020161803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020570246A JP7105933B2 (ja) 2019-02-05 2019-02-05 冷凍装置の室外機およびそれを備える冷凍装置
EP19914434.6A EP3922928A4 (en) 2019-02-05 2019-02-05 REFRIGERATION DEVICE OUTDOOR UNIT AND REFRIGERATION DEVICE INCLUDING THEREOF
CN201980090375.2A CN113348333B (zh) 2019-02-05 2019-02-05 制冷装置的室外机以及具备该室外机的制冷装置
PCT/JP2019/004076 WO2020161803A1 (ja) 2019-02-05 2019-02-05 冷凍装置の室外機およびそれを備える冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004076 WO2020161803A1 (ja) 2019-02-05 2019-02-05 冷凍装置の室外機およびそれを備える冷凍装置

Publications (1)

Publication Number Publication Date
WO2020161803A1 true WO2020161803A1 (ja) 2020-08-13

Family

ID=71948173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004076 WO2020161803A1 (ja) 2019-02-05 2019-02-05 冷凍装置の室外機およびそれを備える冷凍装置

Country Status (4)

Country Link
EP (1) EP3922928A4 (ja)
JP (1) JP7105933B2 (ja)
CN (1) CN113348333B (ja)
WO (1) WO2020161803A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162730A1 (ja) * 2021-01-26 2022-08-04 三菱電機株式会社 冷凍装置の室外機およびそれを備える冷凍装置
WO2022195727A1 (ja) * 2021-03-16 2022-09-22 三菱電機株式会社 冷凍装置の熱源機およびそれを備える冷凍装置
WO2022219666A1 (ja) * 2021-04-12 2022-10-20 三菱電機株式会社 冷凍装置の室外機およびそれを備える冷凍装置
CN116026052A (zh) * 2023-02-15 2023-04-28 中联云港数据科技股份有限公司 具有除湿功能的空调制冷系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220037723A1 (en) 2018-11-30 2022-02-03 Panasonic Intellectual Property Management Co., Ltd. Battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177766A (ja) * 1989-12-06 1991-08-01 Hitachi Ltd 冷凍装置
JPH06341741A (ja) * 1993-06-01 1994-12-13 Daikin Ind Ltd 冷凍装置のデフロスト制御装置
JP2013002678A (ja) * 2011-06-14 2013-01-07 Daikin Industries Ltd コンデンシングユニットセット及び冷凍装置
JP5595245B2 (ja) 2010-11-26 2014-09-24 三菱電機株式会社 冷凍装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177766B2 (ja) 1996-04-18 2001-06-18 オークマ株式会社 工具搬送装置
JP5653451B2 (ja) * 2010-11-24 2015-01-14 三菱電機株式会社 ヒートポンプ式給湯装置
CN104024752B (zh) * 2011-12-12 2017-06-23 三菱电机株式会社 室外机以及空气调节装置
JP6341741B2 (ja) 2014-04-22 2018-06-13 日本電産コパル株式会社 冊子搬送装置
JP6160725B1 (ja) * 2016-02-29 2017-07-12 ダイキン工業株式会社 冷凍装置
CN105758045A (zh) * 2016-04-25 2016-07-13 深圳市派沃新能源科技有限公司 一种超低温复叠式三联供热泵机组
CN109157861B (zh) * 2018-09-29 2024-02-06 南京五洲制冷集团有限公司 具有自除霜功能的间接冷凝式油气回收机组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177766A (ja) * 1989-12-06 1991-08-01 Hitachi Ltd 冷凍装置
JPH06341741A (ja) * 1993-06-01 1994-12-13 Daikin Ind Ltd 冷凍装置のデフロスト制御装置
JP5595245B2 (ja) 2010-11-26 2014-09-24 三菱電機株式会社 冷凍装置
JP2013002678A (ja) * 2011-06-14 2013-01-07 Daikin Industries Ltd コンデンシングユニットセット及び冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922928A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162730A1 (ja) * 2021-01-26 2022-08-04 三菱電機株式会社 冷凍装置の室外機およびそれを備える冷凍装置
JPWO2022162730A1 (ja) * 2021-01-26 2022-08-04
GB2616806A (en) * 2021-01-26 2023-09-20 Mitsubishi Electric Corp Outdoor unit for refrigeration device and refrigeration device equipped with same
JP7399322B2 (ja) 2021-01-26 2023-12-15 三菱電機株式会社 冷凍装置の室外機およびそれを備える冷凍装置
WO2022195727A1 (ja) * 2021-03-16 2022-09-22 三菱電機株式会社 冷凍装置の熱源機およびそれを備える冷凍装置
DE112021007291T5 (de) 2021-03-16 2024-01-18 Mitsubishi Electric Corporation Wärmequellenmaschine einer Kühlvorrichtung und Kühlvorrichtung einschließlich derselben
JP7523667B2 (ja) 2021-03-16 2024-07-26 三菱電機株式会社 冷凍装置の熱源機およびそれを備える冷凍装置
WO2022219666A1 (ja) * 2021-04-12 2022-10-20 三菱電機株式会社 冷凍装置の室外機およびそれを備える冷凍装置
DE112021007498T5 (de) 2021-04-12 2024-01-25 Mitsubishi Electric Corporation Außeneinheit für eine Kühlvorrichtung und Kühlvorrichtung einschließlich derselben
JP7493678B2 (ja) 2021-04-12 2024-05-31 三菱電機株式会社 冷凍装置の室外機およびそれを備える冷凍装置
CN116026052A (zh) * 2023-02-15 2023-04-28 中联云港数据科技股份有限公司 具有除湿功能的空调制冷系统

Also Published As

Publication number Publication date
EP3922928A1 (en) 2021-12-15
JPWO2020161803A1 (ja) 2021-10-21
EP3922928A4 (en) 2022-01-26
CN113348333B (zh) 2023-07-11
CN113348333A (zh) 2021-09-03
JP7105933B2 (ja) 2022-07-25

Similar Documents

Publication Publication Date Title
WO2020161803A1 (ja) 冷凍装置の室外機およびそれを備える冷凍装置
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
EP2378215B1 (en) Air conditioner
EP1752721A2 (en) Refrigerator and control method thereof
US20050284174A1 (en) Cooling cycle apparatus and method of operating the same
JP6545252B2 (ja) 冷凍サイクル装置
US7000423B2 (en) Dual economizer heat exchangers for heat pump
JP5404761B2 (ja) 冷凍装置
JP2007085569A (ja) 冷凍システム
CN107559953A (zh) 多联机系统及其过冷回路阀体的控制方法和装置
JP7391223B2 (ja) 冷凍装置の室外機およびそれを備える冷凍装置
JP2019184231A (ja) 冷凍装置
JP2009293887A (ja) 冷凍装置
JP2007127302A (ja) 冷凍装置
JP7399322B2 (ja) 冷凍装置の室外機およびそれを備える冷凍装置
JP2007085720A (ja) 冷凍システム
WO2022219666A1 (ja) 冷凍装置の室外機およびそれを備える冷凍装置
JP2007051795A (ja) 空気調和装置
JP7537489B2 (ja) 空気調和機
KR100871192B1 (ko) 공기조화 시스템의 제어방법
JP6835116B2 (ja) 冷凍装置
WO2022091722A1 (ja) 冷凍サイクル装置
CN107356009A (zh) 多联机系统及其低温控制方法
KR100878468B1 (ko) 공기조화기 및 그 과부하 제어방법
KR20220006334A (ko) 공기조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914434

Country of ref document: EP

Effective date: 20210906