WO2020160770A1 - Corps de pompe multiétagée et pompe à gaz multiétagée - Google Patents

Corps de pompe multiétagée et pompe à gaz multiétagée Download PDF

Info

Publication number
WO2020160770A1
WO2020160770A1 PCT/EP2019/052939 EP2019052939W WO2020160770A1 WO 2020160770 A1 WO2020160770 A1 WO 2020160770A1 EP 2019052939 W EP2019052939 W EP 2019052939W WO 2020160770 A1 WO2020160770 A1 WO 2020160770A1
Authority
WO
WIPO (PCT)
Prior art keywords
pumping chamber
multistage pump
pump body
heat conduction
connecting duct
Prior art date
Application number
PCT/EP2019/052939
Other languages
English (en)
Inventor
Theodore Iltchev
Sergio DESSI
Stéphane VARRIN
Original Assignee
Ateliers Busch Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ateliers Busch Sa filed Critical Ateliers Busch Sa
Priority to CA3128727A priority Critical patent/CA3128727A1/fr
Priority to BR112021014163-4A priority patent/BR112021014163A2/pt
Priority to JP2021545806A priority patent/JP7390384B2/ja
Priority to CN201980091417.4A priority patent/CN113396272B/zh
Priority to AU2019427999A priority patent/AU2019427999A1/en
Priority to KR1020217028412A priority patent/KR102612571B1/ko
Priority to PCT/EP2019/052939 priority patent/WO2020160770A1/fr
Priority to EP19704770.7A priority patent/EP3921515B1/fr
Priority to ES19704770T priority patent/ES2951642T3/es
Priority to PL19704770.7T priority patent/PL3921515T3/pl
Priority to US17/424,513 priority patent/US12116895B2/en
Publication of WO2020160770A1 publication Critical patent/WO2020160770A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the present invention relates to a multistage pump body, as well as to a multistage pump, which may in particular be a vacuum pump.
  • a multistage pump which may in particular be a vacuum pump.
  • the term “pump” covers pumps for driving a gas, vacuum pumps and also compressors, while the expression “pump body” denotes a part which may belong to to such a pump for driving a gas, to such a vacuum pump or to such a compressor.
  • a multistage pump is a pump comprising several successive pumping chambers, which connecting conduits connect to each other so that the gas compressed in a pumping chamber other than the last one is led to the inlet of the pump. next pumping chamber.
  • cooling by means of a coolant is also provided.
  • This cooling is an external cooling insofar as the cooling liquid passes around the pumping chambers and around the connecting ducts connecting these pumping chambers to one another.
  • the invention is at least aimed at improving the efficiency of the removal of heat which is generated by the compression of gas in a multistage pump body of a multistage pump when the latter is in operation.
  • this object is achieved by means of a multistage pump body, comprising at least a first pumping chamber, a second pumping chamber, a connecting duct putting in
  • the connecting duct is a lateral duct of the multistage pump body which comprises at least one heat conduction wall partially delimiting the connecting duct and having an external surface on the outside. At least a portion of the connecting duct passes between this external surface of the heat conduction wall and the sealed gallery.
  • Each of the first and second pumping chambers is designed to receive at least one member capable of producing a downstream movement of gas.
  • the pumped gas heats up.
  • this gas is cooled via the heat conduction wall, which is itself cooled by ambient atmospheric air.
  • a first cooling of the multistage pump body takes place by natural convection and by radiation to the ambient atmospheric air.
  • a second cooling of the multistage pump body is produced by a transfer of heat to the cooling liquid circulating in the sealed gallery.
  • Double cooling of the multistage pump body according to the invention therefore takes place.
  • the invention enables better pumping efficiency, which is an advantage.
  • the maximum pumped flow rate can be increased.
  • the invention has the advantage of making it possible to obtain an increase in the maximum flow rate that a pump can pump.
  • the multistage pump body defined above may incorporate one or more other advantageous features, individually or in combination.
  • At least a portion of the sealed gallery passes between the connecting duct and at least one of the first and second pumping chambers.
  • the coolant circulating in the sealed gallery cools both the connecting duct and at least one of the first and second pumping chambers, which results in even more efficient cooling.
  • At least a portion of the sealed gallery passes between the first pumping chamber and the second pumping chamber.
  • the cooling liquid circulating in the sealed gallery effectively cools the first and second pumping chambers.
  • the multistage pump body comprises at least one heat conduction partition separating the connecting duct and the sealed gallery from one another.
  • a heat conduction partition effectively removes heat from the connecting duct to the cooling liquid circulating in the sealed gallery.
  • the multistage pump body comprises at least one heat conduction partition separating the sealed gallery and the first pumping chamber from one another.
  • a heat conduction partition effectively removes heat from the first pumping chamber to the cooling liquid circulating in the sealed gallery.
  • the sealed gallery partially envelops the first pumping chamber and / or the second pumping chamber.
  • the sealed gallery comprises at least one inlet for the cooling liquid and at least one outlet for the cooling liquid.
  • the multistage pump body comprises at least one axial passage for a rotary shaft, a segment of this axial passage connecting the first and second pumping chambers.
  • the multistage pump body has a first side and a second side opposite the first side with respect to the axial passage, the connecting duct passing at the level of the first side of the multistage pump body, the multistage pump body delimiting another duct connection putting the outlet of the first pumping chamber into communication with the inlet of the second pumping chamber, this other connecting duct passing through the second side of the multistage pump body.
  • the multistage pump body has a third side and a fourth side opposite to the third side with respect to the axial passage, the outlet of the first pumping chamber being located at the level of the third side of the multistage pump body, the inlet of the second pumping chamber located at the fourth side of the multistage pump body.
  • an inlet of the first pumping chamber is located at the level of the fourth side of the multistage pump body, an outlet of the second pumping chamber located at the level of the third side of the multistage pump body.
  • the connecting duct is a first connecting duct
  • the multistage pump body comprising a third pumping chamber and a second connecting duct which is a duct placing an outlet of the second pumping chamber in communication with an inlet of the pump.
  • the heat conduction wall being a first heat conduction wall
  • the multistage pump body comprising at least one second heat conduction wall, this second heat conduction wall partially delimiting the second connecting duct and having an external surface on the outside, at least a portion of the second connecting duct passing between this external surface of the second heat conduction wall and the sealed gallery.
  • the multistage pump body comprises two ends crossed by the or each axial passage, the external surface of the heat conduction wall forming part of a lateral surface extending between the two ends of the multistage pump body.
  • the heat conduction wall comprises two opposite main surfaces and a constant thickness or not between these two opposite main surfaces, one of which is the external surface of the heat conduction wall.
  • the connecting duct communicates the outlet of the first pumping chamber with the inlet of the second pumping chamber without passing between the first and the second pumping chamber.
  • the connecting duct has a cross section which is elongated in a direction substantially parallel to the axial passage.
  • the subject of the invention is also a multistage pump which comprises a multistage pump body as defined above.
  • the outer surface of the heat conduction wall is on the outside of the pump.
  • the multistage pump defined above can incorporate one or more other advantageous characteristics, individually or in combination, in particular among those defined below.
  • the multistage pump comprises at least a first rotor to produce a downstream movement of gas in the first pumping chamber, at least a second rotor to produce a
  • the multistage pump is a lobe pump or a lobe pump or a gear pump and, advantageously, it comprises at least one other first rotor in the first pumping chamber, at least one other second rotor in the second pump chamber. pumping and another rotating shaft carrying the other first and second rotors, the first rotor and the other first rotor being able to produce a
  • the second rotor and the other second rotor being able to produce a movement of gas downstream in the second pumping chamber by being driven in opposite directions.
  • FIG. 1 is a side view of a multistage pump according to one embodiment of the invention
  • FIG. 2 is a sectional view along the line II-II of Figure 1 and shows the same multistage pump as this Figure 1,
  • FIG. 3 is a perspective view of a multistage pump body which is according to one embodiment of the invention and which is part of the multistage pump of Figures 1 and 2,
  • - Figure 4 is a longitudinal sectional view along the vertical plane IV of Figure 3 and shows the same multistage pump body as in Figure 3
  • - Figure 5 is a longitudinal sectional view along the horizontal line VV of Figure 4 and shows the same multistage pump body as Figures 3 and 4
  • FIG. 6 is a cross-sectional view along the line VI-VI of Figure 4 and shows the same multistage pump body as Figures 3 and 4,
  • FIG. 7 is a cross-sectional view along line VII-VII of Figure 4 and shows the same multistage pump body as Figures 3 and 4
  • - Figure 8 is a cross-sectional view along line VIII- VIII of figure 4 and shows the same multistage pump body as figures 3 and 4,
  • FIG. 9 is a cross-sectional view along the line IX-IX of Figure 4 and shows the same multistage pump body as Figures 3 and 4,
  • FIG. 10 is a cross-sectional view along the line X-X of Figure 4 and shows the same multistage pump body as Figures 3 and 4, and
  • FIG. 11 is a cross-sectional view along the line XI-XI of Figure 4 and shows the same multistage pump body as Figures 3 and 4.
  • a multistage pump 1 according to one embodiment of the invention is shown alone in FIG. 1. It comprises a multistage pump body 2, each end of which carries a housing 3 provided with one of two synchronized electric motors 4 and 5. with each other.
  • the multistage pump 1 is a lobe pump.
  • the invention is not however limited to lobe pumps.
  • a pin pump or a gear pump may be in accordance with the invention.
  • the multistage pump 1 comprises two rotary shafts 8, which are driven in rotation in opposite directions, one by the electric motor 4 and the other by the electric motor 5.
  • Each rotary shaft 8 carries three rotors, each of which is part of. a pair of complementary rotors 9.
  • Each rotor 9 has several lobes, of which there are four in the example shown. The number of lobes of the rotors 9 could however be different from four.
  • the multistage pump body 2 is shown on its own in FIG. 3. It consists of two housings 1 1 and 12, each of which has a discontinuous fixing flange 13. Visible only in Figure 1, screws 14 mounted at the mounting flanges 13 secure the housings 1 1 and 12 to each other by tightening.
  • the multistage pump body 2 has an inlet 16 for a cooling liquid, as well as two outlets 17 for this same cooling liquid. As can be seen in Figure 4, the multistage pump body 2 delimits several successive pumping chambers, which are aligned in a direction parallel to the rotary shafts 8 and which are a first pumping chamber 20, a second pumping chamber. pumping 21 succeeding the first pumping chamber 20 and a third pumping chamber 22 succeeding the second pumping chamber 21.
  • the pumping chambers 20 to 21 are 3 in number, but their number could be different from 3.
  • one of the pairs of complementary rotors 9 is located in the first pumping chamber 20.
  • a pair of complementary rotors is in each of the pumping chambers 21 and 22.
  • the two rotary shafts 8 and the rotors 9 of the multistage pump 1 are not shown in Figures 4 to 1. 1.
  • the suction 23 of the multistage pump 1 is extended by the inlet of the first pumping chamber 20, while the outlet of the third pumping chamber 22 is extended via the discharge 24 of the multistage pump 1.
  • the casing 1 1 partially delimits the first pumping chamber 20, which one of the casings 3 closes at the level of a face at the end 2a of the multistage pump body 2.
  • the casing 11 and the casing 12 together delimit the second pumping chamber 21.
  • the casing 12 partially delimits the third pumping chamber 22, which one of the housings 3 closes at the level of one face at the end 2b of the multistage pump body 2. Seals compressed in grooves provide sealing between the casings 11 and 12. They are referenced 25 in Figure 5.
  • two connecting conduits 26a and 26b symmetrical to each other connect the outlet 27 of the first pumping chamber 20 to the inlet 28 of the second pumping chamber 21.
  • the conduits 26a and 26b are the first connecting conduits.
  • a pair of second connecting conduits 29a and 29b symmetrical to one another connect the outlet 30 of the second pumping chamber 21 to the inlet 31 of the third pumping chamber 22.
  • the arrow C symbolizes the flow of gas from the suction 23 to the discharge 24.
  • the first connecting ducts 26a and 26b, as well as the second connecting ducts 29a and 29b, are lateral ducts of the multistage pump body 2.
  • Each of the first connecting ducts 26a and 26b is partially delimited by a side wall which is a heat conduction wall 33 having an outer surface 34 outside the multistage pump 1.
  • the heat conduction walls 33 are first heat conduction walls.
  • Each of the second connecting conduits 29a and 29b is partially delimited by one of two side walls which are second heat conduction walls 36 each having an external surface 37 on the outside of the multistage pump 1.
  • the multistage pump body 2 delimits a sealed gallery 40 for the circulation of the cooling liquid which can be, for example, water.
  • the sealed gallery 40 communicates with the outlets 17, through which the cooling fluid present in this sealed gallery can be discharged.
  • the sealed gallery 40 partially surrounds the first pumping chamber 20.
  • the sealed gallery 40 partially surrounds the second pumping chamber 21.
  • the sealed gallery 40 comprises a distribution chamber 40a, into which the inlet 16 opens, which allows the sealed gallery 40 to be supplied with cooling fluid.
  • the sealed gallery 40 partially surrounds the third pumping chamber 22.
  • the sealed gallery 40 passes between the first pumping chamber 20 and each of the first connecting ducts 26a and 26b.
  • a heat conduction partition 42 delimits
  • a heat conduction partition 42 delimits the first connecting duct 26b and the sealed gallery 40, which it separates from one another.
  • a heat conduction partition 43 delimits partially the first pumping chamber 20 and the sealed gallery 40, which it separates from one another.
  • the gas sucked by this pump 1 is compressed in the first, second and third pumping chambers 20 to 22, during which it heats up.
  • the heat of the gases passing through the first connecting ducts 26a and 26b is removed both by the heat conduction walls 33 and by the heat conduction partitions 42.
  • a first cooling takes place due to a heat transfer. to the ambient air by radiation and natural convection, at the level of the external surfaces 34 of the heat conduction walls 33.
  • a second cooling is carried out at the level of the heat conduction partitions 42, by the cooling liquid circulating in the sealed gallery 40.
  • the gases passing through the first connecting ducts 26a and 26b therefore undergo the accumulation of two simultaneous cooling, which takes place on the two wide sides of each first connecting duct 26a or 26b.
  • the cooling liquid circulating in the sealed gallery 40 cools the heat conduction partition 43 and therefore the first pumping chamber 20 by means of this heat conduction partition 43 .
  • the sealed gallery 40 passes between the second pumping chamber 21 and each of the second connecting conduits 29a and 29b.
  • a heat conduction partition 45 partially delimits the second connecting duct 29a and the sealed gallery 40, which it separates from one another.
  • Another heat conduction partition 45 partially delimits the second connecting duct 29b and the sealed gallery 40, which it separates from one another.
  • a heat conduction partition 46 partially delimits the second pumping chamber 21 and the sealed gallery 40, which it separates from one another.
  • the heat of the gases passing through the second connecting ducts 29a and 29b is discharged both through the heat conduction walls 36 and through the heat conduction partitions 45. Cooling takes place by natural convection and heat transfer to the heat.
  • the cooling liquid circulating in the sealed gallery 40 cools the heat conduction partition 46 and therefore the second pumping chamber 21 via this heat conduction partition 46
  • a portion of the sealed gallery 40 is located in the partition wall 50 between the first pumping chamber 20 and the second pumping chamber 21, between which it passes, which results in improved cooling of these first and second chambers. pumping chamber 20 and 21.
  • a portion of the sealed gallery 40 is located in the partition wall 51 between the second pumping chamber 21 and the third pumping chamber 23, between which it passes, which improves the cooling of these second and third pumping chambers 21 and 22.
  • a multistage pump body according to the invention may have only a single axial passage 53 for a single rotary shaft 8, for example in the case where it forms part of a vane pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Un corps de pompe multiétagé comprend une première chambre de pompage (20) et une deuxième chambre de pompage (21). Un conduit de liaison (26a) met en communication une sortie (27) de la première chambre de pompage (20) avec une entrée (28) de la deuxième chambre de pompage (21). Une galerie étanche (40) est prévue pour la circulation d'un liquide de refroidissement. Le conduit de liaison (26a) est un conduit latéral du corps de pompe multiétagé. Une paroi de conduction de chaleur (33) délimite partiellement le conduit de liaison (26a) et a une surface externe (34) à l'extérieur. Une portion au moins du conduit de liaison (26a) passe entre cette surface externe (34) de la paroi de conduction de chaleur (33) et la galerie étanche (40).

Description

CORPS DE POMPE MULTIÉTAGÉE ET POMPE À GAZ MULTIÉTAGÉE
Domaine technique de l'invention
La présente invention concerne un corps de pompe multiétagé, ainsi qu’une pompe multiétagée, qui peut notamment être une pompe à vide. Dans ce qui suit et dans les revendications annexées, le terme « pompe » couvre les pompes d’entraînement d’un gaz, les pompes à vide et aussi les compresseurs, tandis que l’expression « corps de pompe » désigne une partie pouvant appartenir à une telle pompe d’entraînement d’un gaz, à une telle pompe à vide ou à un tel compresseur.
Etat de la technique
De manière connue, une pompe multiétagée est une pompe comprenant plusieurs chambres de pompage successives, que des conduits de liaison relient entre elles de manière que du gaz comprimé dans une chambre de pompage autre que la dernière soit conduit jusqu’à l’entrée de la chambre de pompage suivante.
La compression de gaz effectuée dans chaque chambre de pompage se traduit par un dégagement de chaleur pour l’évacuation de laquelle différents dispositifs de refroidissement ont été proposés.
Dans le brevet européen EP 2 626 562 B1 , il est décrit une pompe multiétagée dans laquelle, lors de son trajet entre deux chambres de pompage successives, le gaz s’écoule le long d’une plaque pourvue d’ailettes de refroidissement et destinée à évacuer la chaleur vers l’air atmosphérique extérieur, par simple convection naturelle.
Une autre solution pour évacuer la chaleur dégagée lors de la compression d’un gaz dans une pompe multiétagée utilise des échangeurs de chaleur, dans chacun desquels le gaz est refroidi lors de son trajet entre deux chambres de pompage successives. Le document JP 2001 -27190 propose un refroidissement basé sur cette autre solution.
Il est également connu de refroidir une pompe multiétagée au moyen d’une circulation d’un liquide de refroidissement tel que de l’eau. Dans le brevet US 8,573,956 B2, le circuit de refroidissement passe entre la dernière chambre de pompage et l’avant-dernière chambre de pompage, puis en-dessous des autres chambres de pompage. Dans le document JP 2014-55580, un tube rectiligne pour l’écoulement d’un liquide de refroidissement passe soit dans un conduit de liaison pour le gaz entre deux chambres de pompage, soit entre deux chambres de pompage consécutives.
Dans le document JP 2001 -20884 comme dans le document JP 2- 95792 (JPH 0295792 A), il est également proposé un refroidissement au moyen d’un liquide de refroidissement. Ce refroidissement est un refroidissement extérieur dans la mesure où le liquide de refroidissement passe autour des chambres de pompage et autour des conduits de liaison reliant ces chambres de pompage entre elles.
Le refroidissement des pompes multiétagées décrites dans les documents et brevets susmentionnés présente une efficacité qui n’est pas totalement satisfaisante.
Exposé sommaire de l'invention
L’invention a au moins pour but de permettre d’améliorer l’efficacité de l’évacuation de la chaleur qui est générée par la compression du gaz dans un corps de pompe multiétagé d’une pompe multiétagée lorsque celle-ci fonctionne.
Selon l’invention, ce but est atteint grâce à corps de pompe multiétagé, comprenant au moins une première chambre de pompage, une deuxième chambre de pompage, un conduit de liaison mettant en
communication une sortie de la première chambre de pompage avec une entrée de la deuxième chambre de pompage, ainsi qu’une galerie étanche pour la circulation d’un liquide de refroidissement. Le conduit de liaison est un conduit latéral du corps de pompe multiétagé qui comporte au moins une paroi de conduction de chaleur délimitant partiellement le conduit de liaison et ayant une surface externe à l’extérieur. Une portion au moins du conduit de liaison passe entre cette surface externe de la paroi de conduction de chaleur et la galerie étanche.
Chacune des première et deuxième chambres de pompage est prévue pour recevoir au moins un organe apte à produire un déplacement de gaz vers l’aval. Lors de sa compression dans chacune des première et deuxième chambres de pompage, le gaz pompé s’échauffe. Lorsqu’il passe dans le conduit de liaison, ce gaz est refroidi par l’intermédiaire de la paroi de conduction de chaleur, qui est elle-même refroidie par l’air atmosphérique ambiant. De la sorte, un premier refroidissement du corps de pompe multiétagé s’effectue par convection naturelle et par rayonnement vers l’air atmosphérique ambiant. Simultanément, un deuxième refroidissement du corps de pompe multiétagé est produit par un transfert de chaleur au liquide de refroidissement circulant dans la galerie étanche. Un double refroidissement du corps de pompe multiétagé selon l’invention a donc lieu. Comme elle permet d’améliorer le refroidissement, l’invention permet d’obtenir que l’efficacité du pompage soit meilleure, ce qui constitue un avantage. En particulier, grâce à une amélioration de l’efficacité du pompage, le débit maximal pompé peut être augmenté. En d’autres termes, l’invention a comme avantage de permettre d’obtenir une augmentation du débit maximal que peut pomper une pompe.
Le corps de pompe multiétagé défini ci-dessus peut incorporer une ou plusieurs autres caractéristiques avantageuses, isolément ou en
combinaison, en particulier parmi celles définies ci-après.
Avantageusement, une portion au moins de la galerie étanche passe entre le conduit de liaison et l’une au moins des première et deuxième chambres de pompage. Lorsque tel est le cas, le liquide de refroidissement circulant dans la galerie étanche refroidit à la fois le conduit de liaison et l’une au moins des première et deuxième chambres de pompage, ce qui se traduit par un refroidissement encore plus efficace.
Avantageusement, une portion au moins de la galerie étanche passe entre la première chambre de pompage et la deuxième chambre de pompage. Lorsque tel est le cas, le liquide de refroidissement circulant dans la galerie étanche refroidit efficacement les première et deuxième chambres de pompage.
Avantageusement, le corps de pompe multiétagé comporte au moins une cloison de conduction de chaleur séparant le conduit de liaison et la galerie étanche l’un de l’autre. Une telle cloison de conduction de chaleur évacue efficacement de la chaleur depuis le conduit de liaison vers le liquide de refroidissement circulant dans la galerie étanche.
Avantageusement, le corps de pompe multiétagé comporte au moins une cloison de conduction de chaleur séparant la galerie étanche et la première chambre de pompage l’une de l’autre. Une telle cloison de conduction de chaleur évacue efficacement de la chaleur depuis la première chambre de pompage vers le liquide de refroidissement circulant dans la galerie étanche.
Avantageusement, la galerie étanche enveloppe partiellement la première chambre de pompage et/ou la deuxième chambre de pompage.
Lorsque tel est le cas, le refroidissement de l’une au moins des première et deuxième chambres de pompage est très efficace.
Avantageusement, la galerie étanche comprend au moins une entrée pour le liquide de refroidissement et au moins une sortie pour le liquide de refroidissement. Avantageusement, le corps de pompe multiétagé comprend au moins un passage axial pour un arbre rotatif, un segment de ce passage axial reliant les première et deuxième chambres de pompage. Avantageusement, le corps de pompe multiétagé a un premier côté et un deuxième côté opposé au premier côté par rapport au passage axial, le conduit de liaison passant au niveau du premier côté du corps de pompe multiétagé, le corps de pompe multiétagé délimitant un autre conduit de liaison mettant en communication la sortie de la première chambre de pompage avec l’entrée de la deuxième chambre de pompage, cet autre conduit de liaison passant au niveau du deuxième coté du corps de pompe multiétagé.
Avantageusement, le corps de pompe multiétagé a un troisième côté et un quatrième côté opposé au troisième côté par rapport au passage axial, la sortie de la première chambre de pompage se trouvant au niveau du troisième côté du corps de pompe multiétagé, l’entrée de la deuxième chambre de pompage se trouvant au niveau du quatrième coté du corps de pompe multiétagé.
Avantageusement, une entrée de la première chambre de pompage se trouve au niveau du quatrième coté du corps de pompe multiétagé, une sortie de la deuxième chambre de pompage se trouvant au niveau du troisième côté du corps de pompe multiétagé.
Avantageusement, le conduit de liaison est un premier conduit de liaison, le corps de pompe multiétagé comprenant une troisième chambre de pompage et un deuxième conduit de liaison qui est un conduit mettant en communication une sortie de la deuxième chambre de pompage avec une entrée de la troisième chambre de pompage, la paroi de conduction de chaleur étant une première paroi de conduction de chaleur, le corps de pompe multiétagé comportant au moins une deuxième paroi de conduction de chaleur, cette deuxième paroi de conduction de chaleur délimitant partiellement le deuxième conduit de liaison et ayant une surface externe à l’extérieur, une portion au moins du deuxième conduit de liaison passant entre cette surface externe de la deuxième paroi de conduction de chaleur et la galerie étanche. Lorsque tel est le cas, le gaz est refroidi à la fois lors de son passage dans le premier conduit de liaison et lors de son passage dans le deuxième conduit de liaison. Avantageusement, le corps de pompe multiétagé comprend deux extrémités traversées par le ou chaque passage axial, la surface externe de la paroi de conduction de chaleur faisant partie d’une surface latérale s’étendant entre les deux extrémités du corps de pompe multiétagé. Avantageusement, la paroi de conduction de chaleur comporte deux surfaces principales opposées et une épaisseur constante ou non entre ces deux surfaces principales opposées dont une est la surface externe de la paroi de conduction de chaleur.
Comme il s’agit d’un conduit latéral, le conduit de liaison met en communication la sortie de la première chambre de pompage avec l’entrée de la deuxième chambre de pompage sans passer entre la première et la deuxième chambre de pompage.
Avantageusement, sur la majeure partie de sa longueur, le conduit de liaison a une section transversale qui est allongée selon une direction sensiblement parallèle au passage axial.
L’invention a également pour objet une pompe multiétagée qui comprend un corps de pompe multiétagé tel que défini précédemment. La surface externe de la paroi de conduction de chaleur est à l’extérieur de la pompe. La pompe multiétagée définie ci-dessus peut incorporer une ou plusieurs autres caractéristiques avantageuses, isolément ou en combinaison, en particulier parmi celles définies ci-après.
Avantageusement, la pompe multiétagée comprend au moins un premier rotor pour produire un déplacement de gaz vers l’aval dans la première chambre de pompage, au moins un deuxième rotor pour produire un
déplacement de gaz vers l’aval dans la deuxième chambre de pompage et un arbre rotatif portant les premier et deuxième rotors. Avantageusement, la pompe multiétagée est une pompe à lobes ou une pompe à ergots ou une pompe à engrenage et, avantageusement, elle comprend au moins un autre premier rotor dans la première chambre de pompage, au moins un autre deuxième rotor dans la deuxième chambre de pompage et un autre arbre rotatif portant les autres premier et deuxième rotors, le premier rotor et l’autre premier rotor étant à même de produire un
déplacement de gaz vers l’aval dans la première chambre de pompage en étant entraînés en sens contraires, le deuxième rotor et l’autre deuxième rotor étant à même de produire un déplacement de gaz vers l’aval dans la deuxième chambre de pompage en étant entraînés en sens contraires.
Brève description des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre d’un mode particulier de réalisation de l'invention donné à titre d'exemple non limitatif et représenté aux dessins annexés, parmi lesquels :
- la figure 1 est une vue latérale d’une pompe multiétagée selon un mode de réalisation de l’invention,
- la figure 2 est une vue en coupe selon la ligne ll-ll de la figure 1 et représente la même pompe multiétagée que cette figure 1 ,
- la figure 3 est une vue en perspective d’un corps de pompe multiétagé qui est selon un mode de réalisation de l’invention et qui fait partie de la pompe multiétagée des figures 1 et 2,
- la figure 4 est une vue en coupe longitudinale selon le plan vertical IV de la figure 3 et représente le même corps de pompe multiétagé que cette figure 3, - la figure 5 est une vue en coupe longitudinale selon la ligne horizontale V-V de la figure 4 et représente le même corps de pompe multiétagé que les figures 3 et 4,
- la figure 6 est une vue en coupe transversale selon la ligne VI-VI de la figure 4 et représente le même corps de pompe multiétagé que les figures 3 et 4,
- la figure 7 est une vue en coupe transversale selon la ligne VII-VII de la figure 4 et représente le même corps de pompe multiétagé que les figures 3 et 4, - la figure 8 est une vue en coupe transversale selon la ligne VIII-VIII de la figure 4 et représente le même corps de pompe multiétagé que les figures 3 et 4,
- la figure 9 est une vue en coupe transversale selon la ligne IX-IX de la figure 4 et représente le même corps de pompe multiétagé que les figures 3 et 4,
- la figure 10 est une vue en coupe transversale selon la ligne X-X de la figure 4 et représente le même corps de pompe multiétagé que les figures 3 et 4, et
- la figure 1 1 est une vue en coupe transversale selon la ligne XI-XI de la figure 4 et représente le même corps de pompe multiétagé que les figures 3 et 4.
Description d’un mode préférentiel de l’invention
Une pompe multiétagée 1 selon un mode de réalisation de l’invention est représentée seule à la figure 1. Elle comporte un corps de pompe multiétagé 2, dont chaque extrémité porte un boîtier 3 pourvu de l’un de deux moteurs électriques 4 et 5 synchronisés l’un avec l’autre. Ainsi qu’on peut le voir sur la figure 2, la pompe multiétagée 1 est une pompe à lobes. L’invention ne se limite toutefois pas aux pompes à lobes. Par exemple, une pompe à ergot ou une pompe à engrenage peut être conforme à l’invention. La pompe multiétagée 1 comporte deux arbres rotatifs 8, qui sont entraînés en rotation en sens contraires, l’un par le moteur électrique 4 et l’autre par le moteur électrique 5. Chaque arbre rotatif 8 porte trois rotors dont chacun fait partie d’une paire de rotors 9 complémentaires. Chaque rotor 9 comporte plusieurs lobes, qui sont au nombre de quatre dans l’exemple représenté. Le nombre de lobes des rotors 9 pourrait toutefois être différent de quatre.
Le corps de pompe multiétagé 2 est représenté seul à la figure 3. Il est constitué de deux carters 1 1 et 12, dont chacun possède une bride de fixation 13 discontinue. Visibles seulement à la figure 1 , des vis 14 montées au niveau des brides de fixation 13 fixent les carters 1 1 et 12 l’un à l’autre par serrage.
Le corps de pompe multiétagé 2 comporte une entrée 16 pour un liquide de refroidissement, ainsi que deux sorties 17 pour ce même liquide de refroidissement. Ainsi qu’on peut le voir à la figure 4, le corps de pompe multiétagé 2 délimite plusieurs chambres de pompage successives, qui sont alignées selon une direction parallèle aux arbres rotatifs 8 et qui sont une première chambre de pompage 20, une deuxième chambre de pompage 21 succédant à la première chambre de pompage 20 et une troisième chambre de pompage 22 succédant à la deuxième chambre de pompage 21.
Dans l’exemple représenté, les chambres de pompage 20 à 21 sont au nombre de 3, mais leur nombre pourrait être différent de 3.
Comme on peut le voir à la figure 2, une des paires de rotors 9 complémentaires se trouve dans la première chambre de pompage 20. De manière semblable, une paire de rotors complémentaires se trouve dans chacune des chambres de pompage 21 et 22. Dans un souci de clarté, les deux arbres rotatifs 8 et les rotors 9 de la pompe multiétagée 1 ne sont pas représentés sur les figures 4 à 1 1. Ainsi qu’on peut le voir sur la figure 4, l’aspiration 23 de la pompe multiétagée 1 se prolonge par l’entrée de la première chambre de pompage 20, tandis que la sortie de la troisième chambre de pompage 22 se prolonge par le refoulement 24 de la pompe multiétagée 1.
Le carter 1 1 délimite partiellement la première chambre de pompage 20, que l’un des boîtiers 3 ferme au niveau d’une face à l’extrémité 2a du corps de pompe multiétagé 2. Le carter 11 et le carter 12 délimitent ensemble la deuxième chambre de pompage 21. Le carter 12 délimite partiellement la troisième chambre de pompage 22, que l’un des boîtiers 3 ferme au niveau d’une face à l’extrémité 2b du corps de pompe multiétagé 2. Des joints d’étanchéité comprimés dans des gorges réalisent des étanchéités entre les carters 1 1 et 12. Ils sont référencés 25 sur la figure 5.
Ainsi qu’on peut le voir sur les figures 4 et 5 considérées ensemble, deux conduits de liaison 26a et 26b symétriques l’un de l’autre raccordent la sortie 27 de la première chambre de pompage 20 à l’entrée 28 de la deuxième chambre de pompage 21. Les conduits 26a et 26b sont des premiers conduits de liaison. Une paire de deuxièmes conduits de liaison 29a et 29b symétriques l’un de l’autre raccordent la sortie 30 de la deuxième chambre de pompage 21 à l’entrée 31 de la troisième chambre de pompage 22. Sur la figure 4, la flèche C symbolise le cheminement du gaz depuis l’aspiration 23 jusqu’au refoulement 24.
Les premiers conduits de liaison 26a et 26b, ainsi que les deuxièmes conduits de liaison 29a et 29b, sont des conduits latéraux du corps de pompe multiétagé 2. Chacun des premiers conduits de liaison 26a et 26b est partiellement délimité par une paroi latérale qui est une paroi de conduction de chaleur 33 ayant une surface externe 34 à l’extérieur de la pompe multiétagée 1. Les parois de conduction de chaleur 33 sont des premières parois de conduction de chaleur. Chacun des deuxièmes conduits de liaison 29a et 29b est partiellement délimité par l’une de deux parois latérales qui sont des deuxièmes parois de conduction de chaleur 36 ayant chacune une surface externe 37 à l’extérieur de la pompe multiétagée 1.
Le corps de pompe multiétagé 2 délimite une galerie étanche 40 pour la circulation du liquide de refroidissement qui peut être, par exemple, de l’eau.
Ainsi qu’on peut le voir à la figure 6, la galerie étanche 40 communique avec les sorties 17, par lesquelles le fluide de refroidissement présent dans cette galerie étanche peut être évacué.
Ainsi qu’on peut le voir à la figure 7, la galerie étanche 40 entoure partiellement la première chambre de pompage 20.
Ainsi qu’on peut le voir à la figure 9, la galerie étanche 40 entoure partiellement la deuxième chambre de pompage 21.
Ainsi qu’on peut le voir à la figure 10, la galerie étanche 40 comporte une chambre de répartition 40a, dans laquelle débouche l’entrée 16, qui permet d’alimenter la galerie étanche 40 en fluide de refroidissement.
Ainsi qu’on peut le voir à la figure 11 , la galerie étanche 40 entoure partiellement la troisième chambre de pompage 22.
Ainsi qu’on peut le voir aux figures 5 à 7, la galerie étanche 40 passe entre la première chambre de pompage 20 et chacun des premiers conduits de liaison 26a et 26b. Une cloison de conduction de chaleur 42 délimite
partiellement le premier conduit de liaison 26a et la galerie étanche 40, qu’elle sépare l’un de l’autre. Une autre cloison de conduction de chaleur 42 délimite partiellement le premier conduit de liaison 26b et la galerie étanche 40, qu’elle sépare l’un de l’autre. Une cloison de conduction de chaleur 43 délimite partiellement la première chambre de pompage 20 et la galerie étanche 40, qu’elle sépare l’une de l’autre.
Lorsque la pompe 1 fonctionne, le gaz aspiré par cette pompe 1 est comprimé dans les première, deuxième et troisième chambres de pompage 20 à 22, lors de quoi il s’échauffe.
La chaleur des gaz passant dans les premiers conduits de liaison 26a et 26b est évacuée à la fois par les parois de conduction de chaleur 33 et par les cloisons de conduction de chaleur 42. Un premier refroidissement a lieu du fait d’un transfert de chaleur à l’air ambiant par rayonnement et convexion naturelle, au niveau des surfaces externes 34 des parois de conduction de chaleur 33. Un deuxième refroidissement est effectué au niveau des cloisons de conduction de chaleur 42, par le liquide de refroidissement circulant dans la galerie étanche 40. Les gaz passant dans les premiers conduits de liaison 26a et 26b subissent donc le cumul de deux refroidissements simultanés, qui s’effectuent sur les deux côtés larges de chaque premier conduit de liaison 26a ou 26b.
En plus de refroidir la cloison de conduction de chaleur 42, le liquide de refroidissement circulant dans la galerie étanche 40 refroidit la cloison de conduction de chaleur 43 et donc la première chambre de pompage 20 par l’intermédiaire de cette cloison de conduction de chaleur 43.
Ainsi qu’on peut le voir aux figures 5 et 9, la galerie étanche 40 passe entre la deuxième chambre de pompage 21 et chacun des deuxièmes conduits de liaison 29a et 29b. Une cloison de conduction de chaleur 45 délimite partiellement le deuxième conduit de liaison 29a et la galerie étanche 40, qu’elle sépare l’un de l’autre. Une autre cloison de conduction de chaleur 45 délimite partiellement le deuxième conduit de liaison 29b et la galerie étanche 40, qu’elle sépare l’un de l’autre. Une cloison de conduction de chaleur 46 délimite partiellement la deuxième chambre de pompage 21 et la galerie étanche 40, qu’elle sépare l’une de l’autre. La chaleur des gaz passant dans les deuxièmes conduits de liaison 29a et 29b est évacuée à la fois par les parois de conduction de chaleur 36 et par les cloisons de conduction de chaleur 45. Un refroidissement a lieu par convexion naturelle et transfert de chaleur à l’air ambiant au niveau des surfaces externes 37 des parois de conduction de chaleur 36. Un autre refroidissement est effectué au niveau des cloisons de conduction de chaleur 45, par le liquide de refroidissement circulant dans la galerie étanche 40. Les gaz passant dans les deuxièmes conduits de liaison 29a et 29b subissent donc le cumul de deux refroidissements simultanés, qui s’effectuent sur les deux côtés larges de chaque deuxième conduit de liaison 29a ou 29b.
En plus de refroidir la cloison de conduction de chaleur 45, le liquide de refroidissement circulant dans la galerie étanche 40 refroidit la cloison de conduction de chaleur 46 et donc la deuxième chambre de pompage 21 par l’intermédiaire de cette cloison de conduction de chaleur 46. Une portion de la galerie étanche 40 se trouve dans la paroi de séparation 50 entre la première chambre de pompage 20 et la deuxième chambre de pompage 21 , entre lesquels elle passe, ce qui se traduit par un refroidissement amélioré de ces première et deuxième chambres de pompage 20 et 21. Une portion de la galerie étanche 40 se trouve dans la paroi de séparation 51 entre la deuxième chambre de pompage 21 et la troisième chambre de pompage 23, entre lesquelles elle passe, ce qui améliore le refroidissement de ces deuxième et troisième chambres de pompage 21 et 22.
Sur les figures 6 à 10, deux passages axiaux chacun pour l’un des arbres rotatifs 8 sont référencés 53 et traversent de part en part la paroi de séparation 50 et la paroi de séparation 51.
L’invention ne se limite pas au mode de réalisation décrit plus haut. En particulier, un corps de pompe multiétagé conforme à l’invention peut comporter seulement un unique passage axial 53 pour un unique arbre rotatif 8, par exemple dans le cas où elle fait partie d’une pompe à palettes.

Claims

Revendications
1. Corps de pompe multiétagé, comprenant au moins :
¨ une première chambre de pompage (20),
¨ une deuxième chambre de pompage (21 ), ¨ un conduit de liaison (26a) mettant en communication une sortie
(27) de la première chambre de pompage (20) avec une entrée (28) de la deuxième chambre de pompage (21 ), et
¨ une galerie étanche (40) pour la circulation d’un liquide de refroidissement, caractérisé en ce que le conduit de liaison (26a) est un conduit latéral du corps de pompe multiétagé qui comporte au moins une paroi de conduction de chaleur (33) délimitant partiellement le conduit de liaison (26a) et ayant une surface externe (34) à l’extérieur, une portion au moins du conduit de liaison (26a) passant entre cette surface externe (34) de la paroi de conduction de chaleur (33) et la galerie étanche (40).
2. Corps de pompe multiétagé selon la revendication 1 , caractérisé en ce qu’une portion au moins de la galerie étanche (40) passe entre le conduit de liaison (26a) et l’une au moins des première et deuxième chambres de pompage (20, 21 ). 3. Corps de pompe multiétagé selon l’une quelconque des revendications 1 et 2, caractérisé en ce qu’une portion au moins de la galerie étanche (40) passe entre la première chambre de pompage (20) et la deuxième chambre de pompage (21 ).
4. Corps de pompe multiétagé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte au moins une cloison de conduction de chaleur (42) séparant le conduit de liaison (26a) et la galerie étanche (40) l’un de l’autre.
5. Corps de pompe multiétagé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte au moins une cloison de conduction de chaleur (43) séparant la galerie étanche (40) et la première chambre de pompage (20) l’une de l’autre.
6. Corps de pompe multiétagé selon l’une quelconque des revendications précédentes, caractérisé en ce que la galerie étanche (40) enveloppe partiellement la première chambre de pompage (20) et/ou la deuxième chambre de pompage (21 ).
7. Corps de pompe multiétagé selon l’une quelconque des revendications précédentes, caractérisé en ce que la galerie étanche (40) comprend au moins une entrée (16) pour le liquide de refroidissement et au moins une sortie (17) pour le liquide de refroidissement. 8. Corps de pompe multiétagé selon l’une quelconque des revendications précédentes, caractérisé en ce que le corps de pompe multiétagé comprend au moins un passage axial (53) pour un arbre rotatif (8), un segment de ce passage axial (53) reliant les première et deuxième chambres de pompage (20, 21 ). 9. Corps de pompe multiétagé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il a un premier côté et un deuxième côté opposé au premier côté par rapport au passage axial (53), le conduit de liaison (26a) passant au niveau du premier côté du corps de pompe multiétagé, le corps de pompe multiétagé délimitant un autre conduit de liaison (26b) mettant en communication la sortie (27) de la première chambre de pompage (20) avec l’entrée (28) de la deuxième chambre de pompage (21 ), cet autre conduit de liaison (26b) passant au niveau du deuxième coté du corps de pompe multiétagé. 10. Corps de pompe multiétagé selon l’une quelconque des revendications précédentes, caractérisé en ce que le conduit de liaison (26a) est un premier conduit de liaison (26a), le corps de pompe multiétagé
comprenant une troisième chambre de pompage (22) et un deuxième conduit de liaison (29a) qui est un conduit mettant en communication une sortie (30) de la deuxième chambre de pompage (21 ) avec une entrée (31 ) de la troisième chambre de pompage, la paroi de conduction de chaleur (33) étant une première paroi de conduction de chaleur (33), le corps de pompe multiétagé comportant au moins une deuxième paroi de conduction de chaleur (36), cette deuxième paroi de conduction de chaleur (36) délimitant partiellement le deuxième conduit de liaison (29a) et ayant une surface externe (37) à l’extérieur, une portion au moins du deuxième conduit de liaison (29a) passant entre cette surface externe (37) de la deuxième paroi de conduction de chaleur (36) et la galerie étanche (40). 11. Pompe multiétagée, caractérisée en ce qu’elle comprend un corps de pompe multiétagé (2) selon l’une quelconque des revendications précédentes, la surface externe (34) de la paroi de conduction de chaleur (33) étant à l’extérieur de la pompe.
12. Pompe multiétagée selon la revendication 1 1 , caractérisée en ce qu’elle comprend au moins un premier rotor (9) pour produire un déplacement de gaz vers l’aval dans la première chambre de pompage (20), au moins un deuxième rotor pour produire un déplacement de gaz vers l’aval dans la deuxième chambre de pompage (21 ) et un arbre rotatif (8) portant les premier et deuxième rotors. 13. Pompe multiétagée selon l’une quelconque des revendications
11 et 12, caractérisée en ce qu’elle est une pompe à lobes ou une pompe à ergots ou une pope à engrenage et en ce qu’elle comprend au moins un autre premier rotor (9) dans la première chambre de pompage (20), au moins un autre deuxième rotor dans la deuxième chambre de pompage (21 ) et un autre arbre rotatif (8) portant les autres premier et deuxième rotors, le premier rotor et l’autre premier rotor (9) étant à même de produire un déplacement de gaz vers l’aval dans la première chambre de pompage (20) en étant entraînés en sens contraires, le deuxième rotor et l’autre deuxième rotor étant à même de produire un déplacement de gaz vers l’aval dans la deuxième chambre de pompage (21 ) en étant entraînés en sens contraires.
PCT/EP2019/052939 2019-02-06 2019-02-06 Corps de pompe multiétagée et pompe à gaz multiétagée WO2020160770A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA3128727A CA3128727A1 (fr) 2019-02-06 2019-02-06 Corps de pompe multietagee et pompe a gaz multietagee
BR112021014163-4A BR112021014163A2 (pt) 2019-02-06 2019-02-06 Corpo de bomba de múltiplos estágios e bomba de múltiplos estágios
JP2021545806A JP7390384B2 (ja) 2019-02-06 2019-02-06 多段ポンプ本体、及びアプリケーションを含む多段ポンプ
CN201980091417.4A CN113396272B (zh) 2019-02-06 2019-02-06 多级泵体以及多级气体泵
AU2019427999A AU2019427999A1 (en) 2019-02-06 2019-02-06 Multistage pump body and multistage gas pump
KR1020217028412A KR102612571B1 (ko) 2019-02-06 2019-02-06 다단 펌프 본체 및 다단 가스 펌프
PCT/EP2019/052939 WO2020160770A1 (fr) 2019-02-06 2019-02-06 Corps de pompe multiétagée et pompe à gaz multiétagée
EP19704770.7A EP3921515B1 (fr) 2019-02-06 2019-02-06 Corps de pompe multiétagée et pompe à gaz multiétagée
ES19704770T ES2951642T3 (es) 2019-02-06 2019-02-06 Cuerpo de bomba multietapa y bomba de gas multietapa
PL19704770.7T PL3921515T3 (pl) 2019-02-06 2019-02-06 Korpus pompy wielostopniowej i wielostopniowa pompa gazowa
US17/424,513 US12116895B2 (en) 2019-02-06 2019-02-06 Multistage pump body and multistage gas pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/052939 WO2020160770A1 (fr) 2019-02-06 2019-02-06 Corps de pompe multiétagée et pompe à gaz multiétagée

Publications (1)

Publication Number Publication Date
WO2020160770A1 true WO2020160770A1 (fr) 2020-08-13

Family

ID=65409067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/052939 WO2020160770A1 (fr) 2019-02-06 2019-02-06 Corps de pompe multiétagée et pompe à gaz multiétagée

Country Status (11)

Country Link
US (1) US12116895B2 (fr)
EP (1) EP3921515B1 (fr)
JP (1) JP7390384B2 (fr)
KR (1) KR102612571B1 (fr)
CN (1) CN113396272B (fr)
AU (1) AU2019427999A1 (fr)
BR (1) BR112021014163A2 (fr)
CA (1) CA3128727A1 (fr)
ES (1) ES2951642T3 (fr)
PL (1) PL3921515T3 (fr)
WO (1) WO2020160770A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320036B2 (en) 2019-09-23 2022-05-03 Ovg Vacuum Technology (Shanghai) Co., Ltd Transmission structure of motor connection of roots pump
US11339783B2 (en) 2019-09-23 2022-05-24 OVG Vacuum Technology (Shanghai) Co., Ltd. Pump housing structure of three-axis multi-stage Roots pump
US11441564B2 (en) 2019-09-23 2022-09-13 OVG Vacuum Technology (Shanghai) Co., Ltd. Driving structure of three-axis multi-stage roots pump
US11608829B2 (en) 2019-10-10 2023-03-21 OVG Vacuum Technology (Shanghai) Co., Ltd. Structure of rotor connection of multi-axial multi-stage roots pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116838609B (zh) * 2023-07-05 2024-02-27 山东亿宁环保科技有限公司 爪式真空泵冷却系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295792A (ja) 1988-09-30 1990-04-06 Unozawagumi Tekkosho:Kk 多段ロータリー形真空ポンプ
JP2001020884A (ja) 1999-07-05 2001-01-23 Unozawa Gumi Iron Works Ltd 冷却器により形成される外壁をもつ気体流路を有するロータリ形多段真空ポンプ
JP2001027190A (ja) 1999-07-15 2001-01-30 Unozawa Gumi Iron Works Ltd ロータリ形多段真空ポンプ
DE10106111A1 (de) * 2001-02-10 2002-08-14 Becker Kg Gebr Tankfahrzeug-Verdichter
US20120121442A1 (en) * 2010-11-17 2012-05-17 David Kim Multistage dry vacuum pump
US8573956B2 (en) 2008-10-10 2013-11-05 Ulvac, Inc. Multiple stage dry pump
JP2014055580A (ja) 2012-09-14 2014-03-27 Ulvac Japan Ltd 真空ポンプ
EP2626562B1 (fr) 2012-02-08 2016-05-04 Edwards Limited Pompe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2453452A1 (de) * 1974-11-12 1976-05-13 Leybold Heraeus Gmbh & Co Kg Waelzkolbenpumpe zur vakuumerzeugung
JPH03145594A (ja) * 1989-10-30 1991-06-20 Anlet Co Ltd 多段型ルーツ式真空ポンプの冷却装置
JP2618826B2 (ja) * 1994-03-10 1997-06-11 株式会社アンレット インタークーラーレス水冷式4段ルーツ型真空ポンプ
KR100408153B1 (ko) * 2001-08-14 2003-12-01 주식회사 우성진공 드라이 진공펌프
JP2003083273A (ja) * 2001-09-12 2003-03-19 Ebara Corp ドライ真空ポンプ
JP4062001B2 (ja) * 2001-10-19 2008-03-19 株式会社デンソー 気体圧縮装置
JP3758550B2 (ja) * 2001-10-24 2006-03-22 アイシン精機株式会社 多段真空ポンプ
GB2487376A (en) * 2011-01-19 2012-07-25 Edwards Ltd Two material pump stator for corrosion resistance and thermal conductivity
JP5793004B2 (ja) * 2011-06-02 2015-10-14 株式会社荏原製作所 真空ポンプ
KR101286187B1 (ko) * 2011-11-08 2013-07-15 데이비드 김 다단형 건식 진공펌프
GB2498807A (en) * 2012-01-30 2013-07-31 Edwards Ltd Multi-stage vacuum pump with solid stator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295792A (ja) 1988-09-30 1990-04-06 Unozawagumi Tekkosho:Kk 多段ロータリー形真空ポンプ
JP2001020884A (ja) 1999-07-05 2001-01-23 Unozawa Gumi Iron Works Ltd 冷却器により形成される外壁をもつ気体流路を有するロータリ形多段真空ポンプ
JP2001027190A (ja) 1999-07-15 2001-01-30 Unozawa Gumi Iron Works Ltd ロータリ形多段真空ポンプ
DE10106111A1 (de) * 2001-02-10 2002-08-14 Becker Kg Gebr Tankfahrzeug-Verdichter
US8573956B2 (en) 2008-10-10 2013-11-05 Ulvac, Inc. Multiple stage dry pump
US20120121442A1 (en) * 2010-11-17 2012-05-17 David Kim Multistage dry vacuum pump
EP2626562B1 (fr) 2012-02-08 2016-05-04 Edwards Limited Pompe
JP2014055580A (ja) 2012-09-14 2014-03-27 Ulvac Japan Ltd 真空ポンプ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320036B2 (en) 2019-09-23 2022-05-03 Ovg Vacuum Technology (Shanghai) Co., Ltd Transmission structure of motor connection of roots pump
US11339783B2 (en) 2019-09-23 2022-05-24 OVG Vacuum Technology (Shanghai) Co., Ltd. Pump housing structure of three-axis multi-stage Roots pump
US11441564B2 (en) 2019-09-23 2022-09-13 OVG Vacuum Technology (Shanghai) Co., Ltd. Driving structure of three-axis multi-stage roots pump
US11608829B2 (en) 2019-10-10 2023-03-21 OVG Vacuum Technology (Shanghai) Co., Ltd. Structure of rotor connection of multi-axial multi-stage roots pump

Also Published As

Publication number Publication date
CA3128727A1 (fr) 2020-08-13
PL3921515T3 (pl) 2023-10-09
CN113396272B (zh) 2024-07-19
EP3921515B1 (fr) 2023-06-07
CN113396272A (zh) 2021-09-14
US20220127962A1 (en) 2022-04-28
ES2951642T3 (es) 2023-10-24
EP3921515C0 (fr) 2023-06-07
KR20210124385A (ko) 2021-10-14
JP7390384B2 (ja) 2023-12-01
JP2022522108A (ja) 2022-04-14
BR112021014163A2 (pt) 2021-09-21
EP3921515A1 (fr) 2021-12-15
AU2019427999A1 (en) 2021-08-12
US12116895B2 (en) 2024-10-15
KR102612571B1 (ko) 2023-12-11

Similar Documents

Publication Publication Date Title
EP3921515B1 (fr) Corps de pompe multiétagée et pompe à gaz multiétagée
EP0435291B1 (fr) Pompe à vide turbomoléculaire mixte, à deux arbres de rotation et à refoulement à la pression atmosphérique
FR2559847A1 (fr) Machine a volutes pour comprimer un fluide
EP0362757B1 (fr) Machine rotative du type pompe à vis
BE1019083A5 (fr) Compresseur a vis.
FR2723766A1 (fr) Pompe a vide a vis
WO2006125909A1 (fr) Compresseur frigorifique a spirales
FR2962772A1 (fr) Machine a fluide de type roots
FR2559848A1 (fr) Machine a volutes pour comprimer un fluide
FR3011592A1 (fr)
FR2689185A1 (fr) Ensemble à pompe à huile pour moteur.
JPH0230989A (ja) 真空ポンプ装置
EP2042739B1 (fr) Pompe à vide à deux rotors hélicoïdaux
FR2627238A1 (fr) Compresseur d'air ondulatoire
FR2794189A1 (fr) Compresseur a volute
TWI770196B (zh) 多級式魯氏泵
JPS6217389A (ja) 機械ポンプ
FR3106630A1 (fr) Pompe à vide sèche
FR3107575A1 (fr) Pompe à vide sèche
EP0296218B1 (fr) Profils de rotors, du type a vis, pour machines tournantes vehiculant un fluide gazeux
RU2780601C1 (ru) Корпус многоступенчатого насоса и многоступенчатый насос для газа
FR3141517A1 (fr) Echangeur thermique et dispositif de refroidissement comprenant un échangeur thermique
WO2024088855A1 (fr) Bloc de connexion pour échangeur thermique et dispositif de refroidissement les comportant
BE501006A (fr)
FR2624217A1 (fr) Moto-pompe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19704770

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021014163

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3128727

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021545806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019427999

Country of ref document: AU

Date of ref document: 20190206

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217028412

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019704770

Country of ref document: EP

Effective date: 20210906

ENP Entry into the national phase

Ref document number: 112021014163

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210719