WO2020158681A1 - 除霜ヒータ、および、除霜ヒータを備えた冷蔵庫 - Google Patents

除霜ヒータ、および、除霜ヒータを備えた冷蔵庫 Download PDF

Info

Publication number
WO2020158681A1
WO2020158681A1 PCT/JP2020/002823 JP2020002823W WO2020158681A1 WO 2020158681 A1 WO2020158681 A1 WO 2020158681A1 JP 2020002823 W JP2020002823 W JP 2020002823W WO 2020158681 A1 WO2020158681 A1 WO 2020158681A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass tube
stopper
heater
space
peripheral surface
Prior art date
Application number
PCT/JP2020/002823
Other languages
English (en)
French (fr)
Inventor
前田 利樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080004107.7A priority Critical patent/CN112469951B/zh
Publication of WO2020158681A1 publication Critical patent/WO2020158681A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material

Definitions

  • the present disclosure relates to a defrost heater that defrosts frost attached or accumulated on an evaporator of a refrigeration cycle such as a refrigerator, and a refrigerator including a defrost heater.
  • a glass tube heater is an example of a defrost heater for a refrigerator (see, for example, Patent Document 1).
  • FIG. 9 is a sectional view of a main part of a conventional refrigerator 161.
  • a freezing room 162 is arranged at the bottom of the refrigerator 161.
  • a freezing compartment door 163 is provided on the front surface of the freezing compartment 162.
  • a refrigerating room 164 is arranged above the freezing room 162.
  • a refrigerating compartment door 165 is provided on the front surface of the refrigerating compartment 164.
  • a cooler 166, a glass tube heater 167 arranged below the cooler 166, and a fan 168 located above the cooler 166 are provided behind the lower part of the body of the refrigerator 161.
  • the glass tube heater 167 is a defrost heater.
  • the cooler 166 is cooled by the refrigerant flowing through the cooler 166, and the freezer compartment 162 and the refrigerating compartment 164 are cooled by the operation of the fan 168.
  • the air that is heat-exchanged in the cooler 166 is, for example, high-temperature outside air that flows into the refrigerator when the freezer compartment door 163 or the refrigerator compartment door 165 is opened and closed.
  • the air that is heat-exchanged in the cooler 166 is, for example, air that is highly humidified by evaporation of water contained in the food stored in the freezer compartment 162 or the refrigerator compartment 164. In the cooler 166 at low temperature, the water contained in the high-humidity air described above becomes frost and is frosted and accumulated.
  • the glass tube heater 167 is energized, and the radiant heat heats the cooler 166 to defrost it.
  • the temperature inside the glass tube which has risen due to the heat generated by the heater wire, decreases.
  • the pressure inside the glass tube also decreases.
  • defrosting water containing a corrosive substance in the vicinity of the glass tube heater may enter the inside of the glass tube heater to corrode or break the heater wire.
  • the defrost heater of the present disclosure includes a first glass tube, a second glass tube installed so as to cover the outer periphery of the first glass tube, and a metal resistor installed inside the first glass tube. And a heater wire having a body. Further, a first lead wire insertion hole is formed, and a first stopper for covering an end opening provided at one end of the first glass tube and the second glass tube, and a second lead. A wire insertion hole is formed, and a first glass tube and a second glass tube are provided with a second stopper that covers an end opening provided at the other end. Furthermore, a first lead wire that passes through the first lead wire insertion hole and is connected to one end of the heater wire, and a second lead wire insertion hole that is connected to the other end of the heater wire And a second lead wire.
  • Only the first stopper is formed by the gas in the inner space of the first glass tube and the outer peripheral surface of the first glass tube, the inner peripheral surface of the second glass tube, the first stopper and the second stopper.
  • a valve is provided that is configured to allow the gas in the enclosed space to flow out.
  • the gas in the inner space of the first glass tube is formed by the outer peripheral surface of the first glass tube, the inner peripheral surface of the second glass tube, the first stopper and the second stopper.
  • the defrost heater When the defrost heater is energized, the internal temperature rises and the pressure rises. When the energization of the defrost heater is terminated, the internal temperature decreases and the pressure becomes negative. Therefore, the gas outside the defrost heater enters the inside of the defrost heater. According to the above-described configuration, even when the defrost water or the gas containing the defrost water enters the inside of the defrost heater, when the heater wire is heated by energization, the defrost water is removed from the vicinity of the heater wire. Can be drained.
  • the refrigerator of the present disclosure includes the above defrost heater. And the defrost heater is arrange
  • the heater wire is caused to generate heat by energization.
  • defrost water can be made to flow out from the vicinity of the heater wire. Therefore, the corrosion and disconnection of the heater wire can be suppressed.
  • FIG. 1 is a cross-sectional view of a defrost heater according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the main parts of the defrosting heater.
  • FIG. 3 is an enlarged cross-sectional view of a main part of the defrosting heater.
  • FIG. 4 is a perspective view of a second plug of the defrost heater.
  • FIG. 5 is an enlarged cross-sectional view of a main part of the defrosting heater according to the second embodiment of the present disclosure.
  • FIG. 6 is a perspective view of a second plug of the defrost heater.
  • FIG. 7 is a front view showing the configuration of the partition plate in the embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a refrigerating cycle of a refrigerator using the defrosting heater of the present disclosure.
  • FIG. 9 is a schematic sectional drawing of the refrigerator provided with the conventional defrost heater.
  • the defrost heater of the present disclosure includes a first glass tube, a second glass tube installed so as to cover the outer periphery of the first glass tube, and a metal resistor installed inside the first glass tube. And a heater wire having a body. Further, a first lead wire insertion hole is formed, and a first stopper for covering an end opening provided at one end of the first glass tube and the second glass tube, and a second lead. A wire insertion hole is formed, and a first glass tube and a second glass tube are provided with a second stopper that covers an end opening provided at the other end. Furthermore, a first lead wire that passes through the first lead wire insertion hole and is connected to one end of the heater wire, and a second lead wire insertion hole that is connected to the other end of the heater wire And a second lead wire.
  • Only the first stopper is formed by the gas in the inner space of the first glass tube and the outer peripheral surface of the first glass tube, the inner peripheral surface of the second glass tube, the first stopper and the second stopper.
  • a valve is provided that is configured to allow the gas in the enclosed space to flow out.
  • the gas in the inner space of the first glass tube is formed by the outer peripheral surface of the first glass tube, the inner peripheral surface of the second glass tube, the first stopper and the second stopper.
  • the defrost heater When the defrost heater is energized, the internal temperature rises and the pressure rises. After that, when the energization ends, the internal temperature decreases and the pressure becomes negative. Therefore, the gas outside the defrost heater enters the inside of the defrost heater. According to the above configuration, even when defrosting water or a gas containing defrosting water enters the inside of the defrosting heater, when the heater wire is heated by energization, the defrosting water is supplied to the first plug. It is possible to allow the gas to flow out from the vicinity of the heater wire through the valve provided in the and the passage provided on the second plug side. Therefore, the corrosion and disconnection of the heater wire can be suppressed.
  • valve which is a relatively expensive component, is provided only in the first stopper, it is possible to use only one valve and suppress an increase in cost. Further, even when the heater wire generates heat due to energization and the internal pressure of the defrost heater rises, the valve provided only on the first plug allows the gas to flow out of the defrost heater. Therefore, the internal pressure of the defrost heater can be kept below a certain pressure, and the glass tube can be prevented from being damaged and the stopper can be prevented from coming off.
  • a first positioning member provided on the first connecting portion between the heater wire and the first lead wire, held by the first stopper, and configured to prevent the first connecting portion from moving.
  • a positioning plate may be further provided.
  • the passage includes a first space formed by the second stopper and the second positioning plate, and a second space formed by the second stopper and the outer peripheral surface of the first glass tube. May be.
  • the second plug does not have a complicated shape, it can be manufactured at low cost.
  • the passage can be easily provided.
  • the second space of the passage may be arranged below the first glass tube.
  • the lower side means the lower part in the vertical direction of the first glass tube, specifically, the lower half of the cylinder of the first glass tube.
  • the defrost water flowing out from the inside of the first glass tube through the second positioning plate moves in the direction of gravity. Therefore, when the heater is energized, the defrosted water can be more efficiently discharged, and the defrosted water can be prevented from staying near the heater wire. Therefore, the corrosion and disconnection of the heater wire can be further suppressed.
  • the cross-sectional area S1 on the inlet side of the passage and the cross-sectional area S2 on the outlet side of the passage may have a relationship of S1>S2.
  • the cross-sectional area S2 may be 10% or less of the cross-sectional area S3 between the outer peripheral surface of the first glass tube and the inner peripheral surface of the second glass tube.
  • the cross-sectional area of the second space of the passage may be 0.5 mm 2 or more.
  • the length L1 in the longitudinal direction of the second space of the passage may be 10 mm or more and 30 mm or less.
  • the length L1 may be 1 to 3 times the inner diameter of the first glass tube.
  • multiple second passage spaces may be installed.
  • the passages can be arranged according to the position, shape and number of the part where the defrost water flowing out from the inside of the first glass tube flows out from the positioning plate. Therefore, the defrost water that has entered the first glass tube can be more efficiently discharged from the vicinity of the heater wire. Furthermore, the corrosion and disconnection of the heater wire can be further suppressed.
  • the refrigerator of the present disclosure includes the above defrost heater.
  • the defrost heater may be arranged below the evaporator of the refrigeration cycle using a flammable refrigerant.
  • the surface of the defrost heater has a sufficiently low temperature, and even if the flammable refrigerant leaks, the safety during defrost can be increased.
  • the defrost heater 1 includes a first glass tube 2, a second glass tube 3 installed so as to cover the outer periphery of the first glass tube 2, and a first glass tube 2. And a heater wire 4 made of a metal resistor, which is installed inside.
  • the defrost heater 1 includes a first plug 6 that covers one end opening of the two ends of the first glass tube 2 and the second glass tube 3 on both sides, and the other end opening. And a second stopper 7 for covering.
  • a lead wire insertion hole 5 is formed in each of the first stopper 6 and the second stopper 7.
  • the first lead wire insertion hole 5A is provided in the first plug 6 and the second lead wire insertion hole 5B is provided in the second plug 7.
  • the first lead wire insertion hole 5A and the second lead wire insertion hole 5B may be collectively referred to as a lead wire insertion hole 5.
  • the defrost heater 1 passes through the lead wire insertion hole 5A of the first plug 6 and is connected to one end of the heater wire 4 and the first lead wire 8A and the lead wire of the second plug 7.
  • a second lead wire 8B passing through the insertion hole 5B and connected to the other end of the heater wire 4 is provided.
  • the first lead wire 8A and the second lead wire 8B may be collectively referred to as a lead wire 8.
  • the outer diameter of the first glass tube 2 is about 10.5 mm, and the thickness is about 1 mm.
  • the inner diameter of the second glass tube 3 is about 17 mm.
  • the heater wire 4 is formed by processing a metal resistor.
  • the heater wire 4 is a heat generating portion and includes a coiling portion 9 processed into a coil shape and a pair of linear portions 10 provided at both ends of the coiling portion 9 and processed into a linear shape.
  • the two connecting portions 15 electrically connect the straight portion 10 of the heater wire 4 and the two lead wires 8.
  • the first connecting portion 15A connects the linear portion 10 of the heater wire 4 to the lead wire 8A
  • the first connecting portion 15A connects the linear portion 10 of the heater wire 4 to the lead wire 8B.
  • the connection unit 15B performs this.
  • a positioning plate 11 is provided at the connecting portion 15 between each heater wire 4 and the corresponding lead wire 8. Of the two positioning plates 11, the first positioning plate 11A prevents the connection portion 15A held by the first stopper 6 from moving, and the second positioning plate 11B is held by the second stopper 7. The movement of the second connecting portion 15B is prevented.
  • FIG. 7 is a front view showing an example of the configuration of the positioning plate 11 according to the embodiment of the present disclosure.
  • the positioning plate 11 has a disc shape, and has a hole 31 into which the connecting portion 15 is inserted in the center when viewed from the front.
  • a hole 31 into which the connecting portion 15 is inserted in the center when viewed from the front.
  • three vent holes 32 are provided in a front view so that each center makes an angle of 120° with respect to the center of the hole 31. In the example of FIG. 7, the distance from the center of the hole 31 to each of the three ventilation holes 32 is equal.
  • the inner space of the first glass tube 2, the outer peripheral surface of the first glass tube 2, the inner peripheral surface of the second glass tube 3, the first stopper 6 and the second stopper 7 Communicates with the space formed by.
  • the outer diameter of the positioning plate 11 is the same as or slightly smaller than the outer diameter of the first glass tube 2.
  • the positioning plate 11B is sandwiched between the end surface of the first glass tube 2 and the back wall 121a (see FIG. 2) of the first glass tube insertion hole of the second stopper 7.
  • the lead wire 8 includes a first lead wire 8A and a second lead wire 8B.
  • the first lead wire 8A is inserted into the lead wire insertion hole 5A of the first stopper 6, and the second lead wire 8B is inserted into the lead wire insertion hole 5B of the second stopper 7.
  • the diameter of the lead wire 8 is about 2.6 mm.
  • Both the lead wire insertion hole 5A of the first stopper 6 and the lead wire insertion hole 5B of the second stopper 7 have a diameter of about 2.4 mm.
  • the diameter of the lead wire insertion hole 5 of each of the first stopper 6 and the second stopper 7 is set smaller than the diameter of the corresponding lead wire 8.
  • the lead wire 8 is fastened by the first stopper 6 and the second stopper 7. With such a configuration, between the outer circumference of the lead wire 8 (first lead wire 8A) and the first stopper 6, and between the outer circumference of the lead wire 8 (second lead wire 8B) and the second stopper 7. It is possible to prevent the defrosting water outside the defrosting heater 1 from entering from between.
  • the first stopper 6 and the second stopper 7 are made of silicone rubber.
  • the coating material of the lead wire 8 is made of silicone rubber.
  • At least one of the plug material and the lead wire coating material may be made of elastic rubber.
  • the tightening dimension can be optimally set, and the adhesion between the outer circumference of the lead wire and the plug can be improved.
  • the first stopper 6 covers one end opening of the openings at both ends of the first glass tube 2 and the second glass tube 3.
  • a rubber valve 13 is attached to the first stopper 6 via a resin tube 12.
  • the valve 13 is a check valve that opens with a predetermined pressure difference.
  • the second stopper 7 forms a pair with the first stopper 6 and covers the other end opening of both ends of the first glass tube 2 and the second glass tube 3. ..
  • the second stopper 7 covers the end opening of the first glass tube 2 and the second glass tube 3 at both ends, which is not covered by the first stopper 6.
  • the second stopper 7 is provided with a cylindrical protrusion 122.
  • the second stopper 7 is provided with a first glass tube insertion hole 121 into which the first glass tube 2 is inserted.
  • the first glass tube 2 is inserted into the first glass tube insertion hole 121 of the second stopper 7.
  • the second glass tube 3 is attached to the outer circumference of the cylindrical protrusion 122.
  • the second stopper 7 is not provided with the valve 13, and only the first stopper 6 is provided with the valve 13.
  • the second stopper 7 is provided with a passage 14.
  • the passage 14 allows the gas in the internal space of the first glass tube 2 to flow through the outer peripheral surface of the first glass tube 2, the inner peripheral surface of the second glass tube 3, the first stopper 6 and the second stopper 7. It is configured to flow into the space formed.
  • the passage 14 is provided on the second stopper 7 side where the valve 13 is not provided.
  • the passage 14 includes a first space 14a formed by the second stopper 7 and the positioning plate 11B, the second stopper 7 and the first glass tube 2. And an outer peripheral surface of the second space 14b.
  • a recess 16 is provided inside the second stopper 7 so as to face the end opening of the first glass tube 2.
  • the first space 14a is a space formed by the recess 16 of the second stopper 7 and the positioning plate 11B.
  • a groove 123 formed in the longitudinal direction is provided from the root to the tip (from the bottom to the opening) of the inner peripheral surface of the first glass tube insertion hole 121 (see FIG. 4).
  • the second space 14b is a space formed by the groove 123 provided on the inner wall of the first glass tube insertion hole 121 of the second stopper 7 and the outer peripheral surface of the first glass tube 2.
  • the positioning plate 11B is provided with the three ventilation holes 32, but the present disclosure is not limited to this.
  • a gap may be provided between the outer peripheral edge of the positioning plate 11B and the inner circumference of the cylindrical protrusion 122 to substitute for the ventilation hole.
  • FIG. 8 is a schematic diagram of a refrigerator refrigeration system using the defrost heater 1.
  • a flammable refrigerant is sealed inside the refrigeration cycle to which the compressor 53, the condenser 54, the pressure reducing mechanism 55, and the evaporator 52 are connected.
  • isobutane can be used as the flammable refrigerant
  • flammable refrigerants other than isobutane such as propane or butane
  • propane or butane may be used.
  • These refrigerants are preferable because they have extremely little influence on global warming as compared with, for example, hydrochlorofluorocarbons and hydrofluorocarbons.
  • the operation of the compressor 53 cools the evaporator 52 of the refrigeration cycle.
  • the fan 56 that rotates simultaneously with the operation of the compressor 53, the air inside the refrigerator passes through the cooled evaporator 52, and the air that has exchanged heat with the evaporator 52 is discharged into the inside of the refrigerator.
  • the compressor 53 stops its operation after an arbitrary operation time has elapsed. At this time, the heater wire 4 is energized through the lead wire 8 and the coiling portion 9 of the heater wire 4 generates heat.
  • the inner space of the first glass tube 2, the outer peripheral surface of the first glass tube 2, the inner peripheral surface of the second glass tube 3, the first stopper 6 and the second stopper 7 are formed.
  • the gas inside expands.
  • the expanded gas flows out to the outside by the valve 13 provided in the first stopper 6. Therefore, the rise of the internal pressure of the defrost heater 1 does not damage the glass tube or remove the plug.
  • valve 13 By providing the valve 13 in this way, it is possible to prevent the glass tube of the defrost heater 1 from being damaged and the stopper from coming off due to an increase in the internal pressure of the defrost heater 1.
  • the outer circumference of the coiling portion 9 of the heater wire 4, which rises in temperature when the defrost heater 1 is energized, is covered with the first glass tube 2 and the second glass tube 3. Therefore, it is possible to set the surface temperature of the second glass tube 3, which is the outer shell, below the ignition temperature of the flammable refrigerant while ensuring the defrosting ability.
  • defrosting water containing a corrosive substance enters the inside of the defrosting heater 1 from the outside of the defrosting heater 1, the defrosting water is removed by the valve 13 provided in the first plug 6. Can flow out of the defrost heater 1.
  • valve 13 Since the valve 13 is a relatively expensive component, mounting the valve 13 on each of the first stopper 6 and the second stopper 7, that is, the stoppers on both sides increases the cost.
  • the second stopper 7 not provided with the valve 13 is provided with a hole communicating with the outside of the defrost heater 1.
  • defrosting water containing a corrosive substance outside the defrosting heater 1 may enter from the holes, and promote corrosion and disconnection of the heater wire 4.
  • the second plug 7 that is not provided with the valve 13 is not provided with a hole that communicates from the inside of the defrost heater 1 to the outside. Then, the gas in the internal space of the first glass tube 2 is supplied to the second stopper 7, the outer peripheral surface of the first glass tube 2, the inner peripheral surface of the second glass tube 3, the first stopper 6 and A passage 14 is provided that allows the gas to flow into the space formed by the second stopper 7.
  • the defrost heater 1 When the defrost heater 1 is energized, the internal temperature rises and the pressure becomes high. When the energization of the defrost heater 1 is terminated, the internal temperature of the defrost heater 1 is reduced to a negative pressure, so that the gas outside the defrost heater 1 enters the defrost heater 1.
  • the defrost water even when defrost water or a gas containing defrost water enters the inside of the defrost heater 1, when the heater wire 4 generates heat due to energization, the defrost water is Through the valve 13 provided in the stopper 6 and the passage 14 provided in the second stopper 7, and flows out from the vicinity of the heater wire 4. Thereby, the corrosion and disconnection of the heater wire 4 can be suppressed.
  • valve 13 which is a relatively expensive component, is provided only on the first stopper 6, only one valve needs to be used, and an increase in cost can be suppressed.
  • the heater wire 4 generates heat due to the energization and the internal pressure of the defrost heater 1 rises, the gas provided to the outside of the defrost heater 1 by the valve 13 provided only on the first plug 6. Can be drained. Therefore, the internal pressure of the defrost heater 1 can be set to a certain pressure or less. Therefore, it is possible to prevent the glass tube from being broken and the stopper from coming off.
  • the passage 14 is formed by the first space 14a formed by the second stopper 7 and the positioning plate 11B, the second stopper 7 and the outer peripheral surface of the first glass tube 2.
  • the second space 14b is formed.
  • the corrosive substance retained in the vicinity of the straight portion 10 of the heater wire 4 on the second stopper 7 side inside the first glass tube 2 is passed through the passage of the corrosive substance by energization.
  • Through 14 it becomes possible to flow out into the space formed by the outer peripheral surface of the first glass tube 2, the inner peripheral surface of the second glass tube 3, the first stopper 6 and the second stopper 7.
  • the corrosion and disconnection of the heater wire 4 can be suppressed. That is, the corrosive substance that has accumulated in the vicinity of the straight portion 10 of the heater wire 4 can be moved away from the heater wire 4.
  • the second plug 7 does not have a complicated shape and can be manufactured at low cost.
  • the groove 123 is provided in the second stopper 7.
  • the passage 14 can be easily provided.
  • the present disclosure it is not necessary to provide a through hole from the inner peripheral surface of the first glass tube 2 to the outer peripheral surface of the first glass tube 2.
  • the outer peripheral surface of the first glass tube 2 from the space formed by the second stopper 7 and the positioning plate 11B, the outer peripheral surface of the first glass tube 2, the inner peripheral surface of the second glass tube 3, It is not necessary to provide a hole communicating with the space formed by the stopper 6 and the second stopper 7. According to the present disclosure, it is not necessary to provide a hole in a glass tube, which is a material that is difficult to process and high in processing cost.
  • the second space 14b is preferably installed below the defrosting heater 1.
  • the lower side means the lower side in the vertical direction of the first glass tube 2.
  • the second space 14b may be formed in the region of the second stopper 7 that contacts the lower half of the cylinder of the first glass tube 2.
  • the defrost water flowing out from the inside of the first glass tube 2 through the positioning plate 11B moves in the direction of gravity. Therefore, the defrost water can be more efficiently discharged when the heater is energized. In addition, it is possible to suppress the defrosting water from staying in the vicinity of the heater wire 4. Therefore, the corrosion and disconnection of the heater wire 4 can be further suppressed.
  • the sectional area S1 on the inlet side of the passage 14 for example, the total value of the sectional areas of the ventilation holes 32 and the sectional area on the outlet side of the passage 14, specifically, the disconnection of the second space 14b. It is desirable to set the relationship with the area S2 as S1>S2.
  • the cross-sectional area S2 of the second space 14b is 10% or less of the cross-sectional area S3 of the space between the outer peripheral surface of the first glass tube 2 and the inner peripheral surface of the second glass tube 3. Is preferable (condition 1).
  • the absolute value of the cross-sectional area S2 of the second space 14b be 0.5 mm 2 or more (condition 2). If the cross-sectional area S2 is less than 0.5 mm 2 , defrost water will not flow out easily.
  • the cross-sectional area S2 of the second space 14b is set so as to satisfy both of the above two conditions (condition 1 and condition 2). It is desirable to set.
  • the length L1 (see FIG. 2) in the longitudinal direction of the second space 14b to be 10 mm or more and 30 mm or less, it is possible to suppress the backflow and retention of the defrost water (condition 3). ). If the length L1 is less than 10 mm, backflow of defrosted water is likely to occur, and if the length L1 exceeds 30 mm, defrosted water is likely to stay.
  • the length L1 in the longitudinal direction of the second space 14b is 1 time or more and 3 times or less the inner diameter of the first glass tube 2, it is possible to suppress retention of defrost water (condition 4). ). If the length L1 is less than 1 time the inner diameter of the first glass tube 2, backflow of defrost water is likely to occur, and if the length L1 exceeds 3 times the inner diameter of the first glass tube 2, defrost water is generated. Retention is likely to occur.
  • the second space 14b is set so as to satisfy all of the above conditions 1 to 4, it is possible to more effectively discharge the defrost water while suppressing the retention and backflow.
  • the total value of the sectional areas of the ventilation holes 32 is shown as an example of the sectional area S1 on the inlet side of the passage 14 (FIG. 7), but the present disclosure is not limited to this example. All the cross-sectional areas of the opening on the inlet side of the first space 14a with respect to the internal space of the first glass tube 2 when defrosting water flows into the passage 14 from the first glass tube 2 are included.
  • the second plug 207 is not provided with a valve.
  • the second stopper 207 allows the gas in the internal space of the first glass tube 2 to pass through the outer peripheral surface of the first glass tube 2, the inner peripheral surface of the second glass tube 3, Of the plug (not shown) and a passage 114 for letting it flow out into the space formed by the second plug 207. That is, the passage 114 is provided on the second plug 207 side where no valve is provided.
  • the second stopper 207 has the same function as the second stopper 7 of the first embodiment.
  • the passage 114 has the same function as the passage 14 of the first embodiment.
  • the second stopper 207 has a cylindrical protrusion 222.
  • the first glass tube 2 is inserted into the first glass tube insertion hole 221 of the second stopper 207.
  • the second glass tube 3 is attached to the outer circumference of the cylindrical protrusion 222.
  • the passage 114 is formed by the first space 114a formed by the second stopper 207 and the positioning plate 11B, and the second stopper 207 and the outer peripheral surface of the first glass tube 2. And two second spaces 114b provided above and below.
  • a recess 116 is provided inside the second stopper 207 so as to face the end opening of the first glass tube 2.
  • the first space 114a is a space formed by the recess 116 of the second plug 207 and the positioning plate 11B.
  • two grooves 223 are provided on the inner peripheral surface of the first glass tube insertion hole 221 in the longitudinal direction from the root to the tip (from the bottom to the opening). ing.
  • the second space 114b is a space formed by the groove 223 provided in the first glass tube insertion hole 221 of the second stopper 207 and the outer peripheral surface of the first glass tube 2.
  • Two grooves 223 are provided in the upper part and the lower part of the first glass tube insertion hole 221 of the second stopper 207, which are provided in the longitudinal direction from the root to the tip.
  • the passage 114 has a lower second space 114b and an upper second space 114b.
  • the upper side means the upper side in the vertical direction of the first glass tube 2
  • the lower side means the lower side in the vertical direction of the first glass tube.
  • the upper second space 114b is provided on the inner surface of the second stopper 207 facing the upper half of the cylinder of the first glass tube 2.
  • the lower second space 114b is provided on the inner surface of the second stopper 207 that faces the lower half of the cylinder of the first glass tube 2.
  • the passage 114 can be arranged according to the position, shape and number of the portion where the defrosting water flowing out from the inside of the first glass tube 2 flows out from the positioning plate 11B.
  • the plurality of ventilation holes 32 of the positioning plate 11B are provided above and below in the vertical direction of the first glass tube 2.
  • the defrost water that has flowed out from the ventilation hole 32 above the positioning plate 11B flows out into the upper second space 114b.
  • the defrost water that has flowed out from the ventilation hole 32 below the positioning plate 11B flows out into the second space 114b on the lower side.
  • the defrost water that has entered the first glass tube 2 can be more efficiently discharged from the vicinity of the heater wire 4. Therefore, the corrosion and disconnection of the heater wire 4 can be further suppressed.
  • the sectional area S1 of the inlet of the passage 114 for example, the total value of the sectional areas of the vent holes 32 and the sectional area of the outlet of the passage 114, specifically, the two second spaces. It is desirable that the relationship with the cross-sectional area S2, which is the total cross-sectional area of 114b, be S1>S2.
  • cross-sectional area S2 of the second space 114b is preferably 10% or less of the cross-sectional area S3 between the outer peripheral surface of the first glass tube 2 and the inner peripheral surface of the second glass tube 3. (Condition 1).
  • the absolute value of the cross-sectional area of each of the plurality of second spaces 114b be 0.5 mm 2 or more (condition 2). If the cross-sectional area of the second space 114b is less than 0.5 mm 2 , impurities and foreign matter in the defrosted water may be accumulated in the passage, and clogging may occur, so the defrosted water flows out. It gets harder. Further, if the cross-sectional area of the second space 114b is less than 0.5 mm 2 , there is a possibility that clogging may occur if burrs remain during molding.
  • the cross-sectional area of the second space 114b is set so as to satisfy both of the above two conditions (condition 1 and condition 2). It is desirable to do.
  • the length L1 (see FIG. 5) in the longitudinal direction of each of the plurality of second spaces 114b to 10 mm or more and 30 mm or less, it is possible to suppress backflow and retention of defrost water. (Condition 3). If the length L1 is less than 10 mm, backflow of defrosted water is likely to occur, and if the length L1 exceeds 30 mm, defrosted water is likely to stay.
  • the length L1 in the longitudinal direction of each of the plurality of second spaces 114b is 1 time or more and 3 times or less the inner diameter of the first glass tube 2, it is possible to suppress retention of defrost water. (Condition 4). If the length L1 is less than 1 time the inner diameter of the first glass tube 2, backflow of defrost water is likely to occur, and if the length L1 exceeds 3 times the inner diameter of the first glass tube 2, defrost water is generated. Retention is likely to occur.
  • the defrost water is discharged more effectively while suppressing the retention and backflow of the defrost water. Can be made.
  • the total value of the cross-sectional areas of the ventilation holes 32 is shown as an example of the cross-sectional area S1 on the inlet side of the passage 114 (FIG. 7), but the present disclosure is not limited to this example. All the cross-sectional areas of the openings on the inlet side of the first space 114a with respect to the internal space of the first glass tube 2 when defrosting water flows from the first glass tube 2 into the passage 114 are included.
  • the refrigerator has been described as an example of the device to which the defrost heater 1 is applied, but the present disclosure is not limited to this.
  • the equipment to which the defrost heater 1 is applied may be a storage having a refrigeration cycle.
  • industrial storages such as showcases and vending machines, which are provided with a refrigeration cycle in which a flammable refrigerant is sealed, are also included in the refrigerator in the present application.
  • the defrost heater 1 of the present embodiment is applied not only to households but also to industrial storages.
  • the defrost heater according to the present disclosure can suppress intrusion of defrost water containing a corrosive substance from the outside of the defrost heater.
  • the defrosting water or the gas containing the defrosting water enters the inside of the defrosting heater, when the heater wire generates heat by energization, the defrosting heater removes the defrosting water from the vicinity of the heater wire. Equipped with a mechanism for outflow. As a result, it is possible to suppress corrosion and disconnection of the heater wire. Therefore, it is widely applicable and useful as a defrost heater for household storages such as refrigerators and industrial storages such as vending machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

除霜ヒータ(1)であって、第一のガラス管(2)と、第二のガラス管(3)と、ヒータ線(4)と、第一のガラス管(2)および第二のガラス管(3)の、一方の端部に設けられた端部開口部を覆う第一の栓(6)と、他方の端部に設けられた端部開口部を覆う第二の栓(7)とを備えている。第一の栓(6)のみに、第一のガラス管(2)の内部空間の気体、ならびに、第一のガラス管(2)の外周面、第二のガラス管(3)の内周面、第一の栓(6)および第二の栓(7)で形成された空間の気体を、外部へ流出させるように構成された弁(13)が設けられている。第二の栓(7)側に、第一のガラス管(2)の内部空間の気体を、第一のガラス管(2)の外周面、第二のガラス管(3)の内周面、第一の栓(6)および第二の栓(7)で形成される空間に流出させるように構成された通路(14)が設けられている。

Description

除霜ヒータ、および、除霜ヒータを備えた冷蔵庫
 本開示は、冷蔵庫等の冷凍サイクルの蒸発器に付着または堆積した霜を除霜する、除霜ヒータ、および、除霜ヒータを備えた冷蔵庫に関する。
 冷蔵庫等の除霜ヒータの一例として、ガラス管ヒータがある(例えば、特許文献1参照)。
 以下、図9に基づき、従来の除霜ヒータの構成について説明する。
 図9は、従来の冷蔵庫161の要部断面図である。
 冷蔵庫161の最下部には、冷凍室162が配置されている。冷凍室162の前面には、冷凍室扉163が設けられている。冷凍室162の上方には、冷蔵室164が配置されている。冷蔵室164の前面には、冷蔵室扉165が設けられている。
 冷蔵庫161の本体の下部後方には、冷却器166と、冷却器166の下方に配置されたガラス管ヒータ167と、冷却器166の上部に位置するファン168と、が設けられている。ガラス管ヒータ167は除霜ヒータである。
 以上のように構成された冷蔵庫161について、以下、その動作を説明する。
 冷却器166内を流通する冷媒によって、冷却器166が冷却されて、ファン168の作動によって、冷凍室162および冷蔵室164が冷却される。
 冷却器166において熱交換される空気は、例えば、冷凍室扉163または冷蔵室扉165の開閉に伴って、庫内に流入する高温外気である。また、冷却器166において熱交換される空気は、例えば、冷凍室162または冷蔵室164に保存された食品に含まれる水分の蒸発によって、高湿化された空気である。低温の冷却器166には、前述の高湿空気に含まれる水分が霜となって着霜し、堆積する。
 霜の堆積量が増加すると、冷却器166の表面と、熱交換される空気との伝熱が阻害されるとともに、霜が通風抵抗となって風量が低下する。これに伴って、熱通過率が低下し、冷却が不足する。
 そこで、冷却不足となる前に、ガラス管ヒータ167に通電し、放射熱によって冷却器166を暖めて除霜する。
特開2002-5553号公報
 ヒータ線への通電が停止されると、ヒータ線の発熱によって温度が上昇したガラス管内の温度が低下する。温度の低下とともに、ガラス管内の圧力も低下する。これに伴い、ガラス管ヒータの近傍にある、腐食性物質を含んだ除霜水が、ガラス管ヒータの内部に浸入し、ヒータ線を腐食させたり断線させたりする虞がある。
 本開示の除霜ヒータは、第一のガラス管と、第一のガラス管の外周を覆うように設置された第二のガラス管と、第一のガラス管の内部に設置された、金属抵抗体を有するヒータ線とを備えている。さらに、第一のリード線挿入孔が形成され、第一のガラス管および第二のガラス管の、一方の端部に設けられた端部開口部を覆う第一の栓と、第二のリード線挿入孔が形成され、第一のガラス管および第二のガラス管の、他方の端部に設けられた端部開口部を覆う第二の栓とを備えている。さらに、第一のリード線挿入孔を通り、ヒータ線の一方の端部に接続される第一のリード線と、第二のリード線挿入孔を通り、ヒータ線の他方の端部に接続される第二のリード線とを備えている。
 第一の栓のみに、第一のガラス管の内部空間の気体、ならびに、第一のガラス管の外周面、第二のガラス管の内周面、第一の栓および第二の栓で形成された空間の気体を、外部へ流出させるように構成された弁が設けられている。
 第二の栓側に、第一のガラス管の内部空間の気体を、第一のガラス管の外周面、第二のガラス管の内周面、第一の栓および第二の栓で形成された空間に流出させるように構成された通路が設けられている。
 除霜ヒータは、通電すると、内部の温度が上昇し、圧力は高くなる。除霜ヒータの通電を終了させると、内部の温度が低下し、負圧となる。このため、除霜ヒータの外部の気体が、除霜ヒータの内部に入り込む。上述した構成によれば、除霜水または除霜水を含んだ気体が除霜ヒータの内部に浸入した場合でも、通電によってヒータ線を発熱させた際に、除霜水をヒータ線の近傍から流出させることができる。
 本開示の冷蔵庫は、上述の除霜ヒータを備えている。そして、除霜ヒータが、可燃性冷媒を用いた冷凍サイクルの蒸発器の下方に配置されている。
 本開示の除霜ヒータおよび冷蔵庫によれば、除霜ヒータの外部にある除霜水または除霜水を含んだ気体が除霜ヒータの内部に浸入した場合にも、通電によりヒータ線を発熱させた際に、除霜水をヒータ線の近傍から流出させることができる。よって、ヒータ線の腐食および断線を抑制することできる。
図1は、本開示の第1の実施の形態における、除霜ヒータの断面図である。 図2は、同除霜ヒータの要部断面図である。 図3は、同除霜ヒータの要部拡大断面図である。 図4は、同除霜ヒータの第二の栓の斜視図である。 図5は、本開示の第2の実施の形態における、除霜ヒータの要部拡大断面図である。 図6は、同除霜ヒータの第二の栓の斜視図である。 図7は、本開示の実施の形態における仕切り板の構成を示す正面図である。 図8は、本開示の除霜ヒータを用いた冷蔵庫の冷凍サイクルの概略図である。 図9は、従来の除霜ヒータを備えた冷蔵庫の概略断面図である。
 本開示の除霜ヒータは、第一のガラス管と、第一のガラス管の外周を覆うように設置された第二のガラス管と、第一のガラス管の内部に設置された、金属抵抗体を有するヒータ線とを備えている。さらに、第一のリード線挿入孔が形成され、第一のガラス管および第二のガラス管の、一方の端部に設けられた端部開口部を覆う第一の栓と、第二のリード線挿入孔が形成され、第一のガラス管および第二のガラス管の、他方の端部に設けられた端部開口部を覆う第二の栓とを備えている。さらに、第一のリード線挿入孔を通り、ヒータ線の一方の端部に接続される第一のリード線と、第二のリード線挿入孔を通り、ヒータ線の他方の端部に接続される第二のリード線とを備えている。
 第一の栓のみに、第一のガラス管の内部空間の気体、ならびに、第一のガラス管の外周面、第二のガラス管の内周面、第一の栓および第二の栓で形成された空間の気体を、外部へ流出させるように構成された弁が設けられている。
 第二の栓側に、第一のガラス管の内部空間の気体を、第一のガラス管の外周面、第二のガラス管の内周面、第一の栓および第二の栓で形成された空間に流出させるように構成された通路が設けられている。
 除霜ヒータは、通電すると、内部の温度は上昇し、圧力は高くなる。その後、通電が終了すると、内部の温度が低下し、負圧となる。このため、除霜ヒータの外部の気体が除霜ヒータの内部に入り込む。上述した構成によれば、除霜水または除霜水を含んだ気体が除霜ヒータの内部に浸入した場合でも、通電によりヒータ線を発熱させた際に、除霜水を、第一の栓に設けられた弁、および、第二の栓側に設けられた通路を通じて、ヒータ線の近傍から流出させることができる。よって、ヒータ線の腐食および断線を抑制することができる。
 また、比較的高価な部品である弁を、第一の栓のみに設けるので、弁の使用が一つで済み、コストの増加を抑制することができる。また、通電によりヒータ線が発熱し、除霜ヒータの内部圧力が上昇した場合においても、第一の栓のみに設けられた弁により、除霜ヒータの外部に、気体を流出させることができる。よって、除霜ヒータの内部圧力を一定の圧力以下に保つことができ、ガラス管の破損、および、栓の抜けを防ぐことができる。
 また、ヒータ線と第一のリード線との第一の接続部に設けられ、第一の栓に保持され、第一の接続部が移動するのを防止するように構成された第一の位置決め板と、ヒータ線と第二のリード線との第二の接続部に設けられ、第二の栓に保持され、第二の接続部が移動するのを防止するように構成された第二の位置決め板とをさらに備えてもよい。通路は、第二の栓と第二の位置決め板とで形成される第一の空間と、第二の栓と第一のガラス管の外周面とで形成される第二の空間と、を備えていてもよい。
 これにより、第二の栓と第二の位置決め板とで形成される空間から、第一のガラス管の外周面、第二のガラス管の内周面、第一の栓および第二の栓で形成される空間に連通する孔を、第二の栓に個別に設けることが不要となる。よって、第二の栓が複雑な形状とならないため、安価に作製することができる。
 また、第一のガラス管の外径と第二のガラス管の内径との寸法差が小さく、通路を設ける空間が小さい場合においても、容易に通路を設けることができる。
 また、第一のガラス管の内周面から第一のガラス管の外周面に、孔を設ける必要がない。また、第一のガラス管に、第二の栓と位置決め板とで形成される空間から、第一のガラス管の外周面、第二のガラス管の内周面、第一の栓および第二の栓で形成される空間に連通する孔を設ける必要がない。このような、加工し難く、加工コストが高い材料であるガラス管に、孔を設ける加工が不要となる。
 また、通路の第二の空間は、第一のガラス管の下側に配置されていてもよい。
 ここで、下側とは、第一のガラス管の鉛直方向の下方、具体的には、第一のガラス管の円筒の下半分を意味する。
 これにより、第一のガラス管の内部から、第二の位置決め板を通過して流出した除霜水は、重力方向に移動する。このため、ヒータ通電時には、除霜水を、より効率よく流出させることができ、また、除霜水の、ヒータ線の近傍での滞留を抑制することができる。このため、ヒータ線の腐食および断線を、より抑制することができる。
 また、通路の入口側の断面積S1と、通路の出口側の断面積S2とが、S1>S2の関係であってもよい。
 このような構成とすれば、さらに、このような通路を設けた際に発生し得る、流出した除霜水の第一のガラス管内への逆流を抑制できる。
 また、断面積S2が、第一のガラス管の外周面と第二のガラス管の内周面との間の断面積S3の10%以下であってもよい。
 このような構成によって、さらに、上述した除霜水の逆流を抑制することができる。
 また、通路の第二の空間の断面積が、0.5mm以上である構成であってもよい。
 これにより、除霜水の通路内での滞留を抑制し、効果的に排出することができる。
 また、通路の第二の空間の長手方向の長さL1が、10mm以上30mm以下である構成であってもよい。
 これにより、除霜水の滞留を抑制しつつ、通路を設けた際に問題となる、除霜水の逆流を抑制できる。
 また、長さL1が、第一のガラス管の内径の1倍以上3倍以下である構成であってもよい。
 このような構成により、上述した、除霜水の滞留および逆流を抑制することができる。
 また、通路の第二の空間が複数設置された構成であってもよい。
 これにより、第一のガラス管の内部から流出した除霜水が位置決め板から流出する部位の、位置、形状および数に合わせて、通路を配置することができる。よって、第一のガラス管内に浸入した除霜水を、ヒータ線の近傍から、より一層効率よく流出させることができる。さらに、ヒータ線の腐食および断線を、より一層抑制することができる。
 本開示の冷蔵庫は、上述の除霜ヒータを備えている。除霜ヒータが、可燃性冷媒を用いた冷凍サイクルの蒸発器の下方に配置された構成であってもよい。
 これにより、除霜ヒータの表面が、十分に低い温度となり、可燃性冷媒が漏れた場合においても、除霜時の安全性を高めることができる。
 以下、添付図面を参照しながら本開示の実施の形態について説明する。なお、これらの実施の形態によって、本開示が限定されるものではない。
 (第1の実施の形態)
 図1から図4、図7および図8の図面を用いて、本開示の第1の実施の形態を説明する。
 図1に示すように、除霜ヒータ1は、第一のガラス管2と、第一のガラス管2の外周を覆うように設置された第二のガラス管3と、第一のガラス管2の内部に設置された、金属抵抗体からなるヒータ線4とを備えている。
 除霜ヒータ1は、第一のガラス管2および第二のガラス管3の両側の二つの端部のうち、一方の端部開口部を覆う第一の栓6と、他方の端部開口部を覆う第二の栓7と、を備えている。
 第一の栓6および第二の栓7には、それぞれ、リード線挿入孔5が形成されている。二つのリード線挿入孔5のうち、第一のリード線挿入孔5Aは、第一の栓6に設けられ、第二のリード線挿入孔5Bは、第二の栓7に設けられる。ここで、第一のリード線挿入孔5Aと第二のリード線挿入孔5Bとを合わせてリード線挿入孔5と記すことがある。
 また、除霜ヒータ1は、第一の栓6のリード線挿入孔5Aを通り、ヒータ線4の一方の端部に接続する第一のリード線8A、および、第二の栓7のリード線挿入孔5Bを通り、ヒータ線4の他方の端部に接続する第二のリード線8Bを備えている。ここで、第一のリード線8Aと第二のリード線8Bとを合わせてリード線8と記すことがある。
 第一のガラス管2の外径は10.5mm程度、厚みは1mm程度である。第二のガラス管3の内径は17mm程度である。
 ヒータ線4は、金属抵抗体を加工することにより構成されている。ヒータ線4は、発熱部であって、コイル状に加工されたコイリング部9と、コイリング部9の両端に設けられ、直線状に加工された、一対の直線部10とを備えている。二つの接続部15によって、ヒータ線4の直線部10と二つのリード線8とが電気接続されている。二つの接続部15のうち、ヒータ線4の直線部10とリード線8Aとの接続を第一の接続部15Aが行い、ヒータ線4の直線部10とリード線8Bとの接続を第一の接続部15Bが行う。
 各ヒータ線4と対応するリード線8との接続部15には、位置決め板11が設けられている。二つの位置決め板11のうち、第一の位置決め板11Aは、第一の栓6で保持された接続部15Aの移動を防止し、第二の位置決め板11Bは、第二の栓7で保持された第二の接続部15Bの移動を防止する。
 図7は、本開示の実施の形態における位置決め板11の構成の一例を示す正面図である。
 位置決め板11は円板形状であり、正面視において中央に、接続部15が挿入される孔31を備えている。孔31の回りには、正面視において、三つの通気孔32が、孔31の中心に対して、それぞれの中心が、120°の角度をなすように設けられている。図7の例では、孔31の中心から三つの通気孔32それぞれとの距離は等しい。
 三つの通気孔32を通じて、第一のガラス管2の内部空間と、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓6および第二の栓7で形成される空間とが連通される。
 位置決め板11の外径は、第一のガラス管2の外径と同じか、わずかに小さく形成されている。
 位置決め板11Bは、第一のガラス管2の端面と、第二の栓7の、第一のガラス管挿入孔の奥壁121a(図2参照)に挟まれている。
 リード線8は、第一のリード線8Aと第二のリード線8Bとを含む。第一のリード線8Aが、第一の栓6のリード線挿入孔5Aに挿入され、第二のリード線8Bが、第二の栓7のリード線挿入孔5Bに挿入されている。
 リード線8の直径は、2.6mm程度である。
 第一の栓6のリード線挿入孔5A、および、第二の栓7のリード線挿入孔5Bは、ともに直径2.4mm程度である。
 第一の栓6および第二の栓7それぞれのリード線挿入孔5の直径は、対応するリード線8の直径より小さく設定されている。リード線8は、第一の栓6および第二の栓7により締め付けられている。このような構成により、リード線8(第一のリード線8A)の外周と第一の栓6との間、および、リード線8(第二のリード線8B)の外周と第二の栓7との間から、除霜ヒータ1の外部にある除霜水が浸入することを防ぐことができる。
 第一の栓6および第二の栓7は、シリコーンゴム製である。リード線8の被覆材料は、シリコーンゴム製である。
 栓の材料、および、リード線8の被覆材料として、ともにシリコーンゴムを用いることにより、リード線8の外周は、栓により締め付けられると、表面のシラノール基同士が接触状態となり分子反応する。これにより、密着性を、より高めることができる。よって、除霜ヒータ1の外部にある除霜水が、第一の栓6とリード線8Aとの間、および、第二の栓7とリード線8Bとの間から浸入することを防ぐことができる。
 なお、栓の材料、および、リード線の被覆材料のうち、少なくともいずれかが、弾性のあるゴム製であればよい。これにより、締め付ける寸法を最適に設定し、リード線の外周と栓との密着性を高めることができる。
 第一の栓6は、第一のガラス管2および第二のガラス管3の両端の開口部のうち、一方の端部開口部を覆っている。
 第一の栓6には、樹脂製の筒12を介して、ゴム製の弁13が取り付けられている。
 弁13は、所定の圧力差で開弁する逆止弁である。
 第二の栓7は、第一の栓6と対になるものであって、第一のガラス管2および第二のガラス管3の両端部のうち、他方の端部開口部を覆っている。
 第二の栓7は、第一のガラス管2および第二のガラス管3の両端の開口部のうち、第一の栓6が覆っていない側の端部開口部を覆っている。
 また、図4に示すように、第二の栓7は、円筒状突起122を備えている。
 第二の栓7には、第一のガラス管2が挿入される第一のガラス管挿入孔121が設けられている。第一のガラス管2は、第二の栓7の第一のガラス管挿入孔121に挿入される。
 第二のガラス管3は、円筒状突起122の外周に装着される。
 図1に示すように、第二の栓7には弁13が設けられておらず、第一の栓6のみに弁13が設けられている。
 第二の栓7は、通路14を備えている。通路14は、第一のガラス管2の内部空間の気体を、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓6および第二の栓7で形成される空間に流出させるように構成されている。
 すなわち、弁13が設けられていない第二の栓7側に、通路14が設けられている。
 より具体的には、図2に示すように、通路14は、第二の栓7と位置決め板11Bとで形成される第一の空間14aと、第二の栓7と第一のガラス管2の外周面とで形成される第二の空間14bとから構成されている。
 第二の栓7の内部には、第一のガラス管2の端部開口部と対向するように、凹部16が設けられている。第一の空間14aは、第二の栓7の凹部16と位置決め板11Bとで形成された空間である。
 第一のガラス管挿入孔121の内周面の根元から先端まで(底部から開口部まで)、長手方向に形成された溝123が設けられている(図4参照)。
 第二の空間14bは、第二の栓7の第一のガラス管挿入孔121の内壁に設けられた溝123と、第一のガラス管2の外周面とで形成された空間である。
 なお、本実施の形態では、位置決め板11Bに三つの通気孔32を設けたが、本開示はこれに限定されるものではない。例えば、通気孔32を設けずに、位置決め板11Bの外周縁と円筒状突起122の内周との間に隙間を設けて、通気孔の代用とすることも可能である。
 次に、除霜ヒータ1を用いた冷蔵庫の構成について説明する。
 図8は、除霜ヒータ1を用いた冷蔵庫の冷凍システムの概略図である。
 圧縮機53、凝縮器54、減圧機構55および蒸発器52が接続された冷凍サイクルの内部には、可燃性冷媒が封入されている。
 可燃性冷媒としては、イソブタンを用いることができるが、イソブタン以外の可燃性冷媒、例えば、プロパンまたはブタン等を用いてもよい。これらの冷媒は、例えば、ハイドロクロロフルオロカーボンおよびハイドロフルオロカーボンに比べて、地球温暖化への影響が極めて少ないため、好ましい。
 以上のように構成された冷蔵庫に搭載された除霜ヒータ1について、以下にその動作を説明する。
 圧縮機53の運転により、冷凍サイクルの蒸発器52が冷却される。圧縮機53の運転と同時に回転するファン56により、冷蔵庫の庫内空気が、冷却された蒸発器52を通過し、蒸発器52と熱交換された空気が庫内に吐出される。
 圧縮機53は、任意の運転時間が経過した後に運転を停止する。このとき、リード線8を通じてヒータ線4が通電され、ヒータ線4のコイリング部9が発熱する。
 ヒータ線4のコイリング部9が発熱すると、熱は、第一のガラス管2、第二のガラス管3の順に伝わる。第二のガラス管3の表面の温度が、可燃性冷媒の発火温度未満の温度に上昇して、熱が外部へ放出され、周辺部品の除霜が行われる。
 このとき、第一のガラス管2の内部空間、ならびに、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓6および第二の栓7で形成される空間において、温度上昇により、内部の気体が膨張する。そして、第一の栓6に設けられた弁13により、膨張した気体が外部に流出する。このため、除霜ヒータ1の内部圧力の上昇によって、ガラス管が破損したり、栓が抜けたりすることはない。
 このように、弁13を設けることにより、除霜ヒータ1の内部圧力の上昇による、除霜ヒータ1の、ガラス管の破損、および、栓の抜けを防ぐことができる。
 除霜ヒータ1の通電時に温度が上昇する、ヒータ線4のコイリング部9の外周は、第一のガラス管2と第二のガラス管3とで覆われている。このため、除霜能力を確保しつつ、外郭である第二のガラス管3の表面温度を、可燃性冷媒の発火温度未満に設定することができる。
 また、除霜ヒータ1の外部から、腐食性物質を含んだ除霜水が、除霜ヒータ1の内部に浸入した場合には、第一の栓6に設けられた弁13により、除霜水を除霜ヒータ1の外部に流出することが可能となる。
 弁13は比較的高価な部品であるため、第一の栓6および第二の栓7、すなわち、両側の栓それぞれに弁13を装着すると、コストが増加する。
 除霜ヒータ1の外部から、除霜水が、除霜ヒータ1の内部に浸入した場合を想定する。ヒータ線4を通電させた後、ヒータ線4のコイリング部9の温度は、直線部10の温度よりも高くなる。このため、浸入した除霜水は、第一の栓6側、および、第二の栓7側に流出することになる。
 弁13が設けられていない第二の栓7側の、ヒータ線4の直線部10の近傍(図1のX部)においては、腐食性物質が滞留して、ヒータ線4を腐食および断線させる虞がある。
 ここで、弁13が設けられていない第二の栓7に、除霜ヒータ1の外部へ通じる孔を設けることを想定する。この場合、その孔から、除霜ヒータ1の外部の腐食性物質を含んだ除霜水が浸入し、ヒータ線4の腐食および断線を促進する虞がある。
 これに対して、本開示では、弁13が設けられていない第二の栓7には、除霜ヒータ1の内部から外部へ通じる孔が設けられていない。そして、第二の栓7には、第一のガラス管2の内部空間の気体を、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓6および第二の栓7で形成される空間に流出させる通路14が設けられている。
 除霜ヒータ1は、通電すると、内部の温度が上昇し、高圧となる。除霜ヒータ1は、通電が終了すると、内部の温度が低下し、負圧となるので、除霜ヒータ1の外部の気体が、除霜ヒータ1の内部に入り込む。
 本開示によれば、除霜水、または、除霜水を含んだ気体が除霜ヒータ1の内部に浸入した場合でも、通電によりヒータ線4が発熱した際に、除霜水が、第一の栓6に設けられた弁13、および、第二の栓7に設けられた通路14を通って、ヒータ線4の近傍から流出する。これにより、ヒータ線4の腐食および断線を抑制することができる。
 また、比較的高価な部品である弁13は、第一の栓6のみに設けられるため、弁の使用が一つで済み、コストの増加を抑制することができる。
 また、通電により、ヒータ線4が発熱し、除霜ヒータ1の内部圧力が上昇した場合においても、第一の栓6のみに設けられた弁13により、除霜ヒータ1の外部に、気体を流出させることができる。このため、除霜ヒータ1の内部圧力を、一定の圧力以下に設定することができる。よって、ガラス管の破損、および、栓の抜けを防ぐことができる。
 図2に示すように、通路14は、第二の栓7と位置決め板11Bとで形成される第一の空間14aと、第二の栓7と第一のガラス管2の外周面とで形成される第二の空間14bと、から構成されている。
 これにより、図3において矢印で示すように、第一のガラス管2の内部の、第二の栓7側のヒータ線4の直線部10の近傍に滞留した腐食性物質を、通電により、通路14を通じて、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓6および第二の栓7で形成される空間に流出させることが可能となる。これにより、ヒータ線4の腐食および断線を抑制することができる。すなわち、ヒータ線4の直線部10の近傍に滞留した腐食性物質を、ヒータ線4から遠ざけることができる。
 このような構成により、第二の栓7に、第二の栓7と位置決め板11Bとで形成される空間から、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓6および第二の栓7で形成される空間に連通する孔を、個別に設けることが不要となる。よって、第二の栓7は、複雑な形状とならないため、安価に作製することができる。
 また、第一のガラス管2の外径と第二のガラス管3の内径の寸法差が小さく、通路14を設ける空間が小さい場合においても、第二の栓7に溝123を設けるという方法で、容易に通路14を設けることができる。
 本開示によれば、第一のガラス管2の内周面から、第一のガラス管2の外周面に、貫通孔を設ける必要がない。また、第一のガラス管2に、第二の栓7と位置決め板11Bとで形成される空間から、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓6および第二の栓7で形成される空間に連通する孔を設ける必要がない。本開示によれば、加工し難く加工コストの高い材料であるガラス管に、孔を設ける加工が不要となる。
 なお、第二の空間14bは、除霜ヒータ1の下側に設置されることが望ましい。ここで、下側とは、第一のガラス管2の鉛直方向の下方を意味する。具体的には、第一のガラス管2の円筒の下半分に接触する第二の栓7の領域に、第二の空間14bが形成されていればよい。
 これにより、第一のガラス管2の内部から、位置決め板11Bを通過して流出した除霜水は、重力方向へ移動する。このため、ヒータ通電時には、より効率よく除霜水を流出させることができる。また、ヒータ線4の近傍における除霜水の滞留を抑制することができる。よって、ヒータ線4の腐食および断線を、より抑制することができる。
 なお、本開示の構成において、通路14の入口側の断面積S1、例えば通気孔32の断面積の合計値と、通路14の出口側の断面積、具体的には第二の空間14bの断面積S2との関係を、S1>S2としておくことが望ましい。
 これは、断面積S2が断面積S1以上だと、流出した除霜水が逆流して、再度第一のガラス管2内に入る虞があり、この逆流の可能性を低くするためである。
 また、第二の空間14bの断面積S2が、第一のガラス管2の外周面と、第二のガラス管3の内周面との間の空間の断面積S3の10%以下であることが望ましい(条件1)。
 これによって、流出した除霜水が逆流して、再度第一のガラス管2内に入る可能性を低くすることができる。断面積S2が断面積S3の10%を超えると、除霜水が逆流しやすい。
 一方で、除霜水を第一のガラス管2から流出しやすくすることも必要である。このためには、第二の空間14bの断面積S2の絶対値を、0.5mm以上とすることが望ましい(条件2)。断面積S2が0.5mm未満となると、除霜水が流出しにくくなる。
 除霜水の逆流を抑制しつつ、除霜水を流出しやすくするためには、上述の二つの条件(条件1および条件2)をともに満たすように、第二の空間14bの断面積S2を設定することが望ましい。
 また、検討によれば、第二の空間14bの長手方向の長さL1(図2参照)を10mm以上30mm以下とすることで、除霜水の逆流および滞留を抑制することができる(条件3)。長さL1を10mm未満とすると、除霜水の逆流が起こりやすく、長さL1が30mmを超えると、除霜水の滞留が起こりやすい。
 さらに、第二の空間14bの長手方向の長さL1を、第一のガラス管2の内径の1倍以上3倍以下とすることで、除霜水の滞留を抑制することができる(条件4)。長さL1を第一のガラス管2の内径の1倍未満とすると、除霜水の逆流が起こりやすく、長さL1が第一のガラス管2の内径の3倍を超えると、除霜水の滞留が起こりやすい。
 第二の空間14bの長手方向の長さL1を、上述の二つの条件(条件3および条件4)を満たすように設定することで、除霜水の滞留を抑制しつつ、逆流をも抑制することができる。
 さらに、上述の条件1~条件4をすべて満たすように第二の空間14bを設定すれば、より効果的に、除霜水を、滞留および逆流を抑制しながら排出させることができる。
 なお、上述の説明では、通路14の入口側の断面積S1の一例として、通気孔32の断面積の合計値を示した(図7)が、本開示はこの例に限定されない。第一のガラス管2から通路14に除霜水が流入する際の、第一の空間14aの入口側の、第一のガラス管2の内部空間に対する開口の断面積はすべて含まれる。
 (第2の実施の形態)
 図5および図6を用いて、本開示の第2の実施の形態における除霜ヒータについて説明する。
 なお、第1の実施の形態と同一の構成については、同一符号を付して、詳細な説明を省略する。
 第1の実施の形態においては、第二の栓7に、通路14が一つ設けられた構造を説明した。
 本実施の形態においても、第二の栓207には、弁が設けられていない。図5に示すように、第二の栓207は、第一のガラス管2の内部空間の気体を、第一のガラス管2の外周面、第二のガラス管3の内周面、第一の栓(図示せず)、および、第二の栓207で形成される空間に流出させる通路114を有している。つまり、弁が設けられていない第二の栓207側に、通路114が設けられている。
 第二の栓207は、第1の実施の形態の第二の栓7と同じ機能を有する。
 通路114は、第1の実施の形態の通路14と同様の機能を有する。
 ここでは、図3および図4の構成と比較して、異なる点を中心に説明する。
 図6に示すように、第二の栓207は、円筒状突起222を有している。
 第一のガラス管2は、第二の栓207の第一のガラス管挿入孔221に挿入される。第二のガラス管3は、円筒状突起222の外周に装着される。
 図5に示すように、通路114は、第二の栓207と位置決め板11Bとで形成される第一の空間114aと、第二の栓207と第一のガラス管2の外周面とで形成される、上下に設けられた二つの第二の空間114bと、を有している。
 第二の栓207の内部には、第一のガラス管2の端部開口部と対向するように、凹部116が設けられている。第一の空間114aは、第二の栓207の凹部116と位置決め板11Bとで形成された空間である。
 図6に示すように、第一のガラス管挿入孔221の内周面には、根元から先端まで(底部から開口部まで)、長手方向に設けられた溝223が、上下に二つ設けられている。
 第二の空間114bは、第二の栓207の第一のガラス管挿入孔221に設けられた溝223と、第一のガラス管2の外周面とで形成された空間である。
 第二の栓207の、第一のガラス管挿入孔221の上部と下部には、根元から先端まで長手方向に設けられた、二つの溝223が設けられている。
 すなわち、第二の空間114bは二つ設けられている。通路114は、下側の第二の空間114bと、上側の第二の空間114bと、を有している。
 ここで、上側とは、第一のガラス管2の鉛直方向における上方を、下側とは、第一のガラス管の鉛直方向の下方を、それぞれ意味する。上側の第二の空間114bは、第一のガラス管2の円筒の上半分と対向する第二の栓207の内表面に設けられる。下側の第二の空間114bは、第一のガラス管2の円筒の下半分と対向する第二の栓207の内表面に設けられる。
 このような構成により、第一のガラス管2の内部から流出した除霜水が位置決め板11Bから流出する部位の位置、形状および数に合わせて、通路114を配置することができる。
 ここで、位置決め板11Bの複数の通気孔32が、第一のガラス管2の鉛直方向おける上方および下方に設けられた場合を想定する。この場合、位置決め板11Bの上方の通気孔32から流出した除霜水は、上側の第二の空間114bへ流出する。そして、位置決め板11Bの下方の通気孔32から流出した除霜水は、下側の第二の空間114bへ流出する。
 これにより、第一のガラス管2内に侵入した除霜水を、ヒータ線4の近傍から、より一層効率よく流出させることができる。よって、ヒータ線4の腐食および断線を、より一層抑制することができる。
 なお、本実施の形態では、第二の栓7に、通路114の第二の空間114bが二つ設けられた例を示したが、通路114の第二の空間114bが3つ以上設けられてもよい。
 なお、本開示の実施の形態において、通路114の入口の断面積S1、例えば、通気孔32の断面積の合計値と、通路114の出口の断面積、具体的には二つの第二の空間114bの断面積を合計した断面積S2との関係を、S1>S2としておくことが望ましい。
 これは、断面積S2が断面積S1以上だと、流出した除霜水が逆流して、再度第一のガラス管2内に入る虞があり、この逆流の可能性を低くするためである。
 また、第二の空間114bの断面積S2が、第一のガラス管2の外周面と、第二のガラス管3の内周面との間の断面積S3の10%以下であることが望ましい(条件1)。
 これによって、流出した除霜水が逆流して、再度第一のガラス管2内に入る可能性を低くすることができる。断面積S2が断面積S3の10%を超えると、除霜水が逆流しやすい。
 一方で、除霜水を第一のガラス管2から流出しやすくすることも必要である。このためには、複数の第二の空間114bそれぞれの断面積の絶対値を、0.5mm以上とすることが望ましい(条件2)。第二の空間114bの断面積が0.5mm未満となると、除霜水中の不純物および異物が通路に蓄積される虞があり、詰まりが発生する可能性があるので、除霜水が流出しにくくなる。また、第二の空間114bの断面積が0.5mm未満となると、成型時のバリが残留した場合に、詰まりが発生する可能性がある。
 除霜水の逆流を抑制しつつ、除霜水を流出しやすくするためには、上述の二つの条件(条件1および条件2)をともに満たすように、第二の空間114bの断面積を設定することが望ましい。
 また、検討によれば、複数の第二の空間114bそれぞれの長手方向の長さL1(図5参照)を10mm以上30mm以下とすることで、除霜水の逆流および滞留を抑制することができる(条件3)。長さL1を10mm未満とすると、除霜水の逆流が起こりやすく、長さL1が30mmを超えると、除霜水の滞留が起こりやすい。
 さらに、複数の第二の空間114bそれぞれの長手方向の長さL1を、第一のガラス管2の内径の1倍以上3倍以下とすることで、除霜水の滞留を抑制することができる(条件4)。長さL1を第一のガラス管2の内径の1倍未満とすると、除霜水の逆流が起こりやすく、長さL1が第一のガラス管2の内径の3倍を超えると、除霜水の滞留が起こりやすい。
 複数の第二の空間114bそれぞれの長手方向の長さL1を、上述の二つの条件(条件3および条件4)を満たすように設定することで、より効果的に、除霜水の滞留を抑制しつつ、逆流をも抑制することができる。
 さらに、上述の条件1~条件4をすべて満たすように、通路114の第二の空間114bを設定すれば、さらに効果的に、除霜水の滞留および逆流を抑制しながら、除霜水を排出させることができる。
 なお、上述の説明では、通路114の入口側の断面積S1の一例として、通気孔32の断面積の合計値を示した(図7)が、本開示はこの例に限定されない。第一のガラス管2から通路114に除霜水が流入する際の、第一の空間114aの入口側の、第一のガラス管2の内部空間に対する開口の断面積はすべて含まれる。
 また、上述の実施の形態においては、除霜ヒータ1を適用される機器として冷蔵庫を例に挙げて説明したが、本開示はこれに限定されるものではない。除霜ヒータ1が適用される機器は、冷凍サイクルを有する貯蔵庫であればよい。たとえば、可燃性冷媒が封入された冷凍サイクルを備えた、ショーケースおよび自動販売機等の産業用の貯蔵庫も、本願における冷蔵庫に含まれる。家庭用だけでなく、産業用の貯蔵庫にも、本実施の形態の除霜ヒータ1は適用される。
 上記説明から、当業者にとっては、本開示の多くの改良および他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実施する最良の態様を当業者に教示する目的で、提供されたものである。本開示の精神を逸脱することなく、その構造および機能の詳細を実質的に変更できる。
 本開示にかかる除霜ヒータは、除霜ヒータの外部からの、腐食性物質を含んだ除霜水の浸入を抑制することができる。また、除霜ヒータは、除霜水または除霜水を含んだ気体が、除霜ヒータの内部に浸入した場合に、通電によりヒータ線が発熱した際に、除霜水をヒータ線の近傍から流出させる機構を備える。これにより、ヒータ線の腐食および断線を抑制することができる。よって、冷蔵庫等の家庭用の貯蔵庫、および、自動販売機等の産業用の貯蔵庫の除霜ヒータとして、広く適用でき、有用である。
 1  除霜ヒータ
 2  第一のガラス管
 3  第二のガラス管
 4  ヒータ線
 5,5A,5B  リード線挿入孔
 6  第一の栓
 7  第二の栓
 8,8A,8B  リード線
 9  コイリング部
 10  直線部
 11,11A,11B  位置決め板
 12  筒
 13  弁
 14  通路
 14a  第一の空間
 14b  第二の空間
 15,15A,15B  接続部
 16  凹部
 31  孔
 32  通気孔
 52  蒸発器
 53  圧縮機
 54  凝縮器
 55  減圧機構
 56  ファン
 114  通路
 114a  第一の空間
 114b  第二の空間
 116  凹部
 121  第一のガラス管挿入孔
 121a  第一のガラス管挿入孔の奥壁
 122  円筒状突起
 123  溝
 207  第二の栓
 221  第一のガラス管挿入孔
 222  円筒状突起
 223  溝

Claims (10)

  1. 第一のガラス管と、
    前記第一のガラス管の外周を覆うように設置された第二のガラス管と、
    前記第一のガラス管の内部に設置された、金属抵抗体を有するヒータ線と、
    第一のリード線挿入孔が形成され、前記第一のガラス管および前記第二のガラス管の、一方の端部に設けられた端部開口部を覆う第一の栓と、
    第二のリード線挿入孔が形成され、前記第一のガラス管および前記第二のガラス管の、他方の端部に設けられた端部開口部を覆う第二の栓と、
    前記第一のリード線挿入孔を通り、前記ヒータ線の一方の端部に接続される第一のリード線と、
    前記第二のリード線挿入孔を通り、前記ヒータ線の他方の端部に接続される第二のリード線と、
    を備え、
    前記第一の栓のみに、前記第一のガラス管の内部空間の気体、ならびに、前記第一のガラス管の外周面、前記第二のガラス管の内周面、前記第一の栓および前記第二の栓で形成された空間の気体を、外部へ流出させるように構成された弁が設けられ、
    前記第二の栓側に、前記第一のガラス管の前記内部空間の前記気体を、前記第一のガラス管の前記外周面、前記第二のガラス管の前記内周面、前記第一の栓および前記第二の栓で形成された前記空間に流出させるように構成された通路が設けられた
    除霜ヒータ。
  2. 前記ヒータ線と前記第一のリード線との第一の接続部に設けられ、前記第一の栓に保持され、前記第一の接続部が移動するのを防止するように構成された第一の位置決め板と、
    前記ヒータ線と前記第二のリード線との第二の接続部に設けられ、前記第二の栓に保持され、前記第二の接続部が移動するのを防止するように構成された第二の位置決め板と、
    をさらに備え、
    前記通路は、前記第二の栓と前記第二の位置決め板とで形成される第一の空間と、前記第二の栓と前記第一のガラス管の前記外周面とで形成される第二の空間と、を備えた
    請求項1に記載の除霜ヒータ。
  3. 前記通路の前記第二の空間は、前記第一のガラス管の下側に配置された
    請求項2に記載の除霜ヒータ。
  4. 前記通路の入口側の断面積S1と、前記通路の出口側の断面積S2とが、
    S1>S2の関係である
    請求項1から請求項3までのいずれか1項に記載の除霜ヒータ。
  5. 前記断面積S2が、前記第一のガラス管の前記外周面と前記第二のガラス管の前記内周面との間の断面積S3の10%以下である
    請求項4に記載の除霜ヒータ。
  6. 前記通路の前記第二の空間の断面積が、0.5mm以上である
    請求項2から請求項5までのいずれか1項に記載の除霜ヒータ。
  7. 前記通路の前記第二の空間の長手方向の長さL1が、10mm以上30mm以下である
    請求項2から請求項6までのいずれか1項に記載の除霜ヒータ。
  8. 前記長さL1が、前記第一のガラス管の内径の1倍以上3倍以下である
    請求項7に記載の除霜ヒータ。
  9. 前記通路の前記第二の空間が複数設置された
    請求項2から請求項8までのいずれか一項に記載の除霜ヒータ。
  10. 請求項1から請求項9までのいずれか一項に記載の除霜ヒータを備え、
    前記除霜ヒータが、可燃性冷媒を用いた冷凍サイクルの蒸発器の下方に配置された
    冷蔵庫。
PCT/JP2020/002823 2019-01-31 2020-01-27 除霜ヒータ、および、除霜ヒータを備えた冷蔵庫 WO2020158681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080004107.7A CN112469951B (zh) 2019-01-31 2020-01-27 除霜加热器和具有除霜加热器的冷藏库

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019015364 2019-01-31
JP2019-015364 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158681A1 true WO2020158681A1 (ja) 2020-08-06

Family

ID=71840151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002823 WO2020158681A1 (ja) 2019-01-31 2020-01-27 除霜ヒータ、および、除霜ヒータを備えた冷蔵庫

Country Status (2)

Country Link
CN (1) CN112469951B (ja)
WO (1) WO2020158681A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090672A (ja) * 2001-07-12 2003-03-28 Matsushita Refrig Co Ltd 冷蔵庫
JP2004257618A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd 除霜ヒーター及びこの除霜ヒーターを備えた冷蔵庫
JP2005134030A (ja) * 2003-10-30 2005-05-26 Matsushita Electric Ind Co Ltd 冷蔵庫
US20180299183A1 (en) * 2017-04-13 2018-10-18 Haier Us Appliance Solutions, Inc. Refrigeration System and Heating Assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077625A (ja) * 2001-09-05 2003-03-14 Matsushita Refrig Co Ltd 除霜用ヒータ及びこの除霜用ヒータを備えた冷蔵庫
EP1429094A4 (en) * 2001-09-28 2009-08-05 Panasonic Corp DEGRADING HEATING ELEMENT AND REFRIGERATOR CONTAINING SAID HEATING ELEMENT
JP4000908B2 (ja) * 2002-05-27 2007-10-31 三菱電機株式会社 冷蔵庫
JP2004271014A (ja) * 2003-03-07 2004-09-30 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2006112657A (ja) * 2004-10-12 2006-04-27 Hitachi Home & Life Solutions Inc 冷蔵庫
JP4332485B2 (ja) * 2004-10-12 2009-09-16 日立アプライアンス株式会社 冷蔵庫
JP2011075202A (ja) * 2009-09-30 2011-04-14 Panasonic Corp ヒーター装置
JP2011158124A (ja) * 2010-01-29 2011-08-18 Panasonic Corp 除霜ヒーターおよび冷却装置
CN102647817A (zh) * 2012-04-12 2012-08-22 合肥晶弘电器有限公司 一种带有自动启闭透气孔的双层石英管加热器
CN208269494U (zh) * 2018-04-27 2018-12-21 藤泽电工(上海)有限公司 一种冰箱化霜加热管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090672A (ja) * 2001-07-12 2003-03-28 Matsushita Refrig Co Ltd 冷蔵庫
JP2004257618A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd 除霜ヒーター及びこの除霜ヒーターを備えた冷蔵庫
JP2005134030A (ja) * 2003-10-30 2005-05-26 Matsushita Electric Ind Co Ltd 冷蔵庫
US20180299183A1 (en) * 2017-04-13 2018-10-18 Haier Us Appliance Solutions, Inc. Refrigeration System and Heating Assembly

Also Published As

Publication number Publication date
CN112469951B (zh) 2022-04-08
CN112469951A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
US9644887B2 (en) Heat exchanger assembly, refrigerator, and method of controlling a refrigerator
JP2000329447A (ja) 冷蔵庫および除霜用ヒーター
JP2009093468A (ja) 自動販売機
CN107543351B (zh) 冰箱及其控制方法
JP2000018796A (ja) 冷蔵庫の結露防止装置
KR20180013539A (ko) 증발기 및 이를 구비하는 냉장고
JP5369157B2 (ja) 冷凍冷蔵庫
WO2020158681A1 (ja) 除霜ヒータ、および、除霜ヒータを備えた冷蔵庫
KR101330936B1 (ko) 냉장고
JP2007093153A (ja) 冷蔵庫
JP6149921B2 (ja) 冷凍装置
JP2007155200A (ja) 冷却器およびこの冷却器を備えた冷蔵庫
RU2708761C1 (ru) Холодильное и/или морозильное устройство
JP3552715B1 (ja) 除霜ヒーター
TWI694230B (zh) 冰箱
CN108278824B (zh) 冰箱
JP2017040398A (ja) 冷蔵庫
JP2007085613A (ja) 冷蔵庫
WO2004074751A1 (ja) 除霜ヒータ及びその製造方法
JP2008051368A (ja) 冷却ユニットと冷却ユニットを備えた貯蔵庫
US11828523B2 (en) Connector for increasing heat transfer between a refrigerant loop and a refrigerator appliance casing
JP2005134030A (ja) 冷蔵庫
KR20100085259A (ko) 김치냉장고
KR100693191B1 (ko) 바텀 프리저 타입 냉장고의 석션 파이프 고정장치
KR20180090420A (ko) 냉장고용 열교환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP