WO2020158674A1 - ナノカーボン材料集合体およびこれを含む電気化学反応用触媒 - Google Patents

ナノカーボン材料集合体およびこれを含む電気化学反応用触媒 Download PDF

Info

Publication number
WO2020158674A1
WO2020158674A1 PCT/JP2020/002807 JP2020002807W WO2020158674A1 WO 2020158674 A1 WO2020158674 A1 WO 2020158674A1 JP 2020002807 W JP2020002807 W JP 2020002807W WO 2020158674 A1 WO2020158674 A1 WO 2020158674A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanohorn
particles
aggregate
catalyst
carbon
Prior art date
Application number
PCT/JP2020/002807
Other languages
English (en)
French (fr)
Inventor
和紀 井原
眞子 隆志
亮太 弓削
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/426,115 priority Critical patent/US20220102735A1/en
Priority to JP2020569618A priority patent/JP7238909B2/ja
Publication of WO2020158674A1 publication Critical patent/WO2020158674A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a nanocarbon material aggregate, an electrochemical reaction catalyst containing the same, and a method for producing these.
  • Patent Document 1 describes a catalyst for a cathode of a fuel cell, which contains alloy fine particles using a plurality of metals as an alloy.
  • Patent Document 2 describes a fuel cell catalyst in which the surface of a carbon nanohorn aggregate is opened and metal fine particles as a catalyst are carried.
  • the carbon nanohorn aggregate described in Patent Document 2 is an aggregate of many carbon nanohorns in a spherical shape.
  • a fibrous carbon nanohorn aggregate composed of a plurality of carbon nanohorns including a carbon nanohorn having an opening, First particles encapsulated in the carbon nanohorn having the pores, a part of which is exposed to the outside of the carbon nanohorn,
  • the present invention relates to a nanocarbon material aggregate including.
  • 2 is a scanning transmission electron microscope image of a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate. It is a Z contrast image of a fibrous carbon nanohorn aggregate.
  • It is a schematic diagram which shows the structure of the tip of a carbon nanohorn. It is a schematic diagram which shows the structure of the carbon nanohorn after (a) oxidation treatment, (b) oxidation treatment, and (c) catalyst support in manufacture of a nanocarbon material aggregate.
  • the nanocarbon material aggregate of this embodiment will be described below.
  • One aspect of the nanocarbon material aggregate of the present embodiment is a fibrous carbon nanohorn aggregate composed of a plurality of carbon nanohorns including a carbon nanohorn having an opening portion, and a carbon nanohorn having the opening portion. And a first particle partially exposed to the outside of the carbon nanohorn.
  • Fibrous carbon nanohorn aggregate First, a fibrous carbon nanohorn aggregate that constitutes the nanocarbon material aggregate of the present embodiment will be described.
  • a fibrous carbon nanohorn aggregate is also called a carbon nanobrush (CNB), and has a structure in which a plurality of carbon nanohorns are radially aggregated and connected in a fibrous form. At first glance, this structure resembles a test tube brush or molding.
  • FIG. 1 shows a schematic view of the shape of a fibrous carbon nanohorn aggregate.
  • the fibrous carbon nanohorn aggregate can maintain the fibrous shape even if operations such as centrifugal separation and ultrasonic dispersion are performed, unlike the one in which a plurality of carbon nanohorns simply appear in a fibrous shape.
  • the carbon nanohorn is a carbon structure having a conical shape in which a tip of a structure in which a graphene sheet is wound is sharpened in a corner (horn) shape with a tip angle of about 20°.
  • the fibrous carbon nanohorn aggregate is formed by connecting carbon nanohorn aggregates such as seed type, bud type, dahlia type, petal dahlia type, and petal type (graphene sheet structure) further connected by carbon nanohorns.
  • the structure contains one or more of these carbon nanohorn aggregates.
  • Seed pattern is a shape with little or no angular protrusions on the surface of the aggregate
  • bud type is a shape with some angular protrusions on the surface of the aggregate
  • dahlia type is an aggregate
  • the surface of is a shape with many angular protrusions
  • the petal type is a shape with petal-shaped protrusions on the surface of the aggregate (graphene sheet structure).
  • the petal structure is a graphene sheet structure having a width of 50 nm to 200 nm and a thickness of 0.34 nm to 10 nm and 2 to 30 sheets.
  • the petal-dahlia type is an intermediate structure between the dahlia type and the petal type.
  • the fibrous carbon nanohorn aggregate is not limited to the above structure as long as the carbon nanohorns are aggregated in the fibrous form.
  • the fibrous carbon nanohorn aggregate is described in WO 2016/147909, and the disclosure content of this document is incorporated herein by reference.
  • the nanocarbon material aggregate of the present embodiment may include a spherical carbon nanohorn aggregate in addition to the fibrous carbon nanohorn aggregate.
  • a spherical carbon nanohorn aggregate is also produced at the same time.
  • FIG. 2 is a scanning transmission electron microscope (STEM) photograph of a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate.
  • Spherical carbon nanohorn aggregates are carbon nanohorn aggregates of the seed type, bud type, dahlia type, petal dahlia type, petal type (graphene sheet structure), etc. However, it may have other shapes such as an elliptical shape and a donut shape).
  • the shape and particle size of the generated carbon nanohorn aggregate vary depending on the type and flow rate of gas.
  • the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate may be simply referred to as “carbon nanohorn aggregate” or “aggregate”.
  • the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate can be separated according to the difference in size. Furthermore, when impurities other than the carbon nanohorn aggregates are contained, they can be removed by a centrifugation method, a difference in sedimentation speed, separation by size, or the like. Further, the ratio of the fibrous carbon nanohorn aggregates to the spherical carbon nanohorn aggregates can be changed by changing the production conditions.
  • the carbon nanohorns (single carbon nanohorns) that compose the fibrous carbon nanohorn aggregates and the spherical carbon nanohorn aggregates are not hollow cylinders with different tube diameters (ie , A carbon structure having a cylindrical structure having a horn-shaped tip.
  • FIG. 4 is a schematic view of the tip of the carbon nanohorn. Normally, a cylindrical carbon nanotube is covered with a graphite structure of a 6-membered ring, but by mixing a 5-membered ring or a 7-membered ring continuously in this 6-membered ring, the individual tube diameter is narrowed, Or, when it spreads, its diameter changes.
  • the conical carbon nanohorn in the present embodiment has a structure in which the 5-membered ring and the 7-membered ring are continuously mixed in the 6-membered ring structure so that the diameter of the horn is continuously changed.
  • the carbon structure of the carbon nanohorn may be a single layer or multiple layers, but is preferably a single layer.
  • each carbon nanohorn (single body) included in the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate is approximately 1 nm to 20 nm, and the length thereof is 30 nm to 100 nm.
  • the fibrous carbon nanohorn aggregate has a diameter of about 30 nm to 200 nm and a length of about 1 ⁇ m to 100 ⁇ m.
  • the aspect ratio (length/diameter) of the fibrous carbon nanohorn aggregate is generally 4 to 4000, for example, 5 to 3500.
  • the spherical carbon nanohorn aggregate has a diameter of approximately 30 nm to 200 nm, and has a substantially uniform size.
  • the carbon nanohorns forming the fibrous carbon nanohorn aggregates in the present embodiment may or may not be closed at one end that is the tip. Further, the conical apex at one end may end in a rounded shape. When the carbon nanohorn has a conical apex at one end that ends in a rounded shape, the carbon nanohorns gather radially with the rounded apex facing outward. Further, the fibrous carbon nanohorn aggregate may include carbon nanotubes.
  • the fibrous carbon nanohorn aggregate has high conductivity because the carbon nanohorns with high conductivity are connected in a fibrous shape and have a long conductive path. Furthermore, the fibrous carbon nanohorn aggregate has a high dispersibility as well, and is highly effective in imparting conductivity.
  • a fibrous carbon nanohorn aggregate is produced by evaporating a target containing a synthesis catalyst and carbon, as described later. Inside the carbon nanohorn that constitutes the fibrous carbon nanohorn aggregate, particles such as a catalyst for synthesis used during the production are included (black particles in the STEM photograph of FIG. 2, and Z contrast image of FIG. 3). Is a synthetic catalyst containing white particles).
  • FIG. 5( a) is a diagram schematically showing one aspect of the structure of a fibrous carbon nanohorn aggregate (before oxidation treatment).
  • the tip portion 1 of the carbon nanohorn has an angular shape, and particles 2 such as a synthesis catalyst are enclosed in a wall composed of a single layer of carbon.
  • the outer and inner spaces are substantially separated from each other by forming a structure in which the angular tips of the carbon nanohorns are radially compounded and connected to each other.
  • the metal of the catalyst for synthesis used when synthesizing the fibrous carbon nanohorn aggregate is present.
  • Some particles of the synthesis catalyst and the like exist inside the carbon nanohorn simple substance as shown in FIG. 5A, or the particles grow by being fused by the catalyst metals and move toward the center of the fiber. There is something.
  • Particles such as a catalyst for synthesis are also included in the inside of the carbon nanohorn that composes the spherical carbon nanohorn aggregate manufactured together with the fibrous carbon nanohorn aggregate.
  • the fibrous carbon nanohorn aggregate uses carbon containing a synthesis catalyst as a target (referred to as a synthesis catalyst-containing carbon target), and rotates the target in a container in which the synthesis catalyst-containing carbon target is placed, and a nitrogen atmosphere, It is manufactured by heating the target by laser ablation in an active atmosphere or a mixed atmosphere and evaporating the target. Fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates are obtained in the process of cooling the evaporated carbon and the catalyst.
  • an arc discharge method or a resistance heating method can be used as a method for producing the fibrous carbon nanohorn aggregate.
  • the laser ablation method is more preferable from the viewpoint of continuous production at room temperature and atmospheric pressure.
  • the Laser Ablation (LA) method irradiates a target with a laser in a pulsed or continuous manner, and when the irradiation intensity exceeds a threshold value, the target converts energy, and as a result, a plume is generated and a product is generated. Is deposited on a substrate provided on the downstream side of the target, or is generated in a space inside the apparatus, and is recovered in a recovery chamber.
  • CO 2 lasers CO 2 lasers, YAG lasers, excimer lasers, semiconductor lasers and the like can be used, easily CO 2 laser high output is the most suitable.
  • the CO 2 laser can use an output of 1 kW/cm 2 to 1000 kW/cm 2 , and can perform continuous irradiation and pulse irradiation. Continuous irradiation is preferable for producing carbon nanohorn aggregates.
  • Laser light is condensed by a ZnSe lens or the like and irradiated. In addition, it is possible to continuously synthesize by rotating the target.
  • the target rotation speed can be arbitrarily set, but 0.1 to 6 rpm is particularly preferable, graphitization can be suppressed at 0.1 rpm or more, and increase of amorphous carbon can be suppressed at 6 rpm or less.
  • the laser output is preferably 15 kW/cm 2 or more, and 30 to 300 kW/cm 2 is most effective. When the laser output is 15 kW/cm 2 or more, the target vaporizes moderately and the synthesis becomes easy. Further, if it is 300 kW/cm 2 or less, an increase in amorphous carbon can be suppressed.
  • the pressure in the container (chamber) can be used at 13332.2 hPa (10000 Torr) or less, but as the pressure becomes closer to a vacuum, carbon nanotubes are more likely to be produced and a carbon nanohorn aggregate cannot be obtained. It is suitable to use 666.61 hPa (500 Torr) to 1266.56 hPa (950 Torr), more preferably around normal pressure (1013 hPa (1 atm ⁇ 760 Torr)) for large-scale synthesis and cost reduction. Also, the irradiation area can be controlled by the laser output and the degree of focusing by the lens, and 0.005 cm 2 to 1 cm 2 can be used.
  • any material can be used as long as the carbon nanohorn aggregate can be synthesized, but a metal such as a transition metal is preferable, and Fe, Cu, Co , At least one selected from the group consisting of Ni, Au, Pt, Ag, Pd, Ru, and Ti, and an alloy in which two or more of these are combined may be used. More preferably, it is at least one selected from the group consisting of Fe, Co and Ni.
  • the concentration of the catalyst can be appropriately selected, but it is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 5% by mass, based on carbon. When it is 0.1% by mass or more, the formation of fibrous carbon nanohorn aggregates is ensured. Moreover, when it is 10 mass% or less, an increase in target cost can be suppressed.
  • the temperature in the container used for producing the fibrous carbon nanohorn aggregate is not particularly limited, but is preferably 0 to 100° C., and more preferably used at room temperature for mass synthesis and cost reduction. Appropriate.
  • the above atmosphere is created by introducing nitrogen gas, inert gas, etc. into the container either individually or as a mixture. These gases circulate in the reaction vessel, and the produced substances can be recovered by the flow of this gas. Further, a closed atmosphere may be created depending on the introduced gas.
  • the atmosphere gas flow rate may be any amount, but is preferably in the range of 0.5 L/min to 100 L/min. In the process of vaporizing the target, the gas flow rate is controlled to be constant.
  • the gas flow rate can be made constant by combining the supply gas flow rate and the exhaust gas flow rate. When it is carried out near atmospheric pressure, it can be carried out by extruding the gas in the container with the supply gas and exhausting it.
  • Synthesis catalysts may be included in the carbon nanohorns that make up the fibrous carbon nanohorn aggregate during the synthesis process of the fibrous carbon nanohorn aggregate. Further, when synthesizing a fibrous carbon nanohorn aggregate, by mixing a target with a metal other than the catalyst for synthesis and/or a non-metal material such as a magnetic substance, particles derived from materials other than the catalyst for synthesis can be obtained. It may be included in the carbon nanohorn. In the present specification, the particles encapsulated inside the carbon nanohorn may be referred to as “synthesis catalyst or the like” or “particles of the synthesis catalyst or the like”.
  • the diameter of the particles included in the carbon nanohorn is preferably less than 50 nm, more preferably 20 nm or less, further preferably 10 nm or less, and the lower limit is not particularly limited, but it is larger than 0.7 nm, more preferably 1 nm or more. , More preferably larger than 3 nm, and even more preferably 5 nm or more.
  • the fibrous carbon nanohorn aggregate is subjected to an oxidation treatment or the like to form an opening on the carbon surface of the carbon nanohorn constituting the fibrous carbon nanohorn aggregate.
  • an opening is formed in the carbon nanohorn that contains particles such as a catalyst for synthesis, a part of the particles included in the carbon nanohorn is exposed from the opening to the outside of the carbon nanohorn.
  • a particle that is contained in a carbon nanohorn having an opening and that is partially exposed to the outside from the opening is called a "first particle". The details will be described below.
  • the fibrous or spherical carbon nanohorn aggregate produced by the laser ablation method or the like is hydrophobic because it has no or almost no surface functional group.
  • This carbon nanohorn aggregate can be introduced with a functional group by treatment with an oxidizing acid or an oxidation treatment with a heat treatment in a gas atmosphere, and pores can be formed on the carbon surface of the carbon nanohorn.
  • the oxidizing acid include sulfuric acid, nitric acid, a sulfuric acid-nitric acid mixed solution, hydrogen peroxide, and chloric acid. Oxidation treatment with these acids is carried out in a liquid phase, and is 0° C. to 180° C.
  • aqueous solution the temperature at which the aqueous solution exists as a liquid
  • the solvent used is a liquid in the case of an organic solvent system.
  • a hydrophilic functional group such as a nitro group and a sulfone group can be added to form an opening.
  • pores can be formed on the carbon surface of the fibrous carbon nanohorn aggregate, and it is preferable to treat at 20° C. to 80° C. It is particularly desirable to heat in the temperature range of 50 to 80°C.
  • the size of the holes can be adjusted by controlling the temperature within the above range and the processing time.
  • the treatment time can be appropriately adjusted, but is preferably changed within a range of about 0.5 hours to 3 hours.
  • the heat treatment temperature at that time is preferably in the range of 250 to 600°C.
  • the nanocarbon material aggregate of the present embodiment includes a carbon nanohorn that encloses particles (catalyst for synthesis, etc.), but a part of this particle is outside the carbon nanohorn from the opening formed on the carbon surface of the carbon nanohorn. Exposed to.
  • a first hole capable of passing particles having a particle size of 0.7 nm and an opening having a particle size of 0.7 nm are formed as openings on the surface of the carbon nanohorn by an oxidation treatment or the like.
  • a second hole is formed that does not allow the passage of particles.
  • the first hole which is a relatively large opening, is likely to be formed on the carbon surface in the vicinity of the encapsulated particles (synthesis catalyst etc.) in the carbon nanohorn that constitutes the fibrous carbon nanohorn aggregate. It is considered that this is because the interaction between the encapsulated particles and carbon enhances the oxidation reaction, resulting in the formation of large pores.
  • particles such as a synthesis catalyst represented by iron enhance the oxidation reaction of nearby carbon in hydrogen peroxide solution by using the particles themselves as a catalyst.
  • the opening portion spreads more quickly than the second hole described later, and a large hole is formed so as to expose a part of the encapsulated particles.
  • part of the first particles is exposed to the outside of the carbon nanohorn mainly through the first holes.
  • a part of the first particles may protrude from the first hole, or the first hole and the first particle may be separated from each other.
  • the first hole is formed in the vicinity of the first particle, and, for example, the distance (shortest distance) between the first particle and the first hole which are adjacent to each other is the particle size of the first particle. The following is preferable.
  • FIG. 5B is a schematic view of a carbon nanohorn in which openings are formed by oxidation treatment.
  • a first hole 4 is formed in the vicinity of the first particle 2, and a part of the first particle 2 is exposed to the outside from the first hole 4. Further, second holes 3 smaller than the first holes 4 are formed at positions apart from the first particles 2.
  • the size of the first pores is preferably within a range that allows passage of particles having a particle diameter of 0.7 nm and retains the inclusion of the first particles.
  • the diameter of the maximum inscribed circle inscribed in the circumference is preferably 0.7 nm or more and less than 50 nm, more preferably 0.7 nm or more and less than 20 nm, and further preferably 3 nm or more and 10 nm or less.
  • the size of the first hole can be adjusted by changing the oxidation treatment conditions.
  • the first particle is preferably a metal used as a catalyst for synthesizing fibrous carbon nanohorn aggregates, but other than that, other metal particles, alloy particles, magnetic particles mixed with the target Inorganic material particles such as, or two or more different particles combining them may be included.
  • the diameter distribution of the first particles it is possible to arrange the particles at different positions (for example, the horn tip or bottom of the carbon nanohorn).
  • the first particles are catalysts for electrochemical reactions including transition metals such as Fe, Cu, Co, Ni, Au, Pt, Ag, Pd, Ru, and Ti.
  • transition metals such as Fe, Cu, Co, Ni, Au, Pt, Ag, Pd, Ru, and Ti.
  • the effect of the electrochemical reaction catalyst can be exhibited on the metal surface exposed to the outside of the carbon nanohorn, and this can be used as a catalyst for fuel cells and the like.
  • a material having a deodorizing effect such as a metal oxide or a sulfate
  • a nanocarbon material aggregate as a catalyst that exhibits the deodorizing effect is obtained from the exposed particle surface. be able to.
  • One or more first holes may be formed on the surface of one carbon nanohorn.
  • the second hole which is a relatively small opening, is likely to be formed in a region of the carbon nanohorn constituting the fibrous carbon nanohorn aggregate, in which particles such as the catalyst for synthesis do not exist in the internal space close to the carbon surface. ..
  • the second hole is formed on the carbon surface of the carbon nanohorn, for example, at the tip portion and the side portion of the 5-membered ring portion, the 7-membered ring portion, or other highly reactive carbon portion.
  • the size of the second hole is a size that does not allow passage of particles having a particle size of 0.7 nm, and for example, the diameter (the diameter of the maximum inscribed circle inscribed in the inner circumference of the opening) is 0. .24 nm or more and less than 0.70 nm, and preferably the shortest distance d between carbon atoms that do not adjoin among the carbon atoms forming the pores is 0.24 nm or more and less than 0.70 nm.
  • 1 or more second holes are formed on the surface of one carbon nanohorn, but usually a plurality of second holes are formed almost uniformly on the carbon surface.
  • a carbon nanohorn including a synthesis catalyst and the like has both first and second holes formed therein, and does not include the synthesis catalyst and the like. Only the second hole is formed in the.
  • the carbon nanohorns forming the spherical carbon nanohorn aggregates are also provided with the first holes and/or the second holes by the oxidation treatment or the like.
  • the nanocarbon material aggregate of the present embodiment can be used as a catalyst or the like for an electrochemical reaction without the need to separately carry catalytic metal particles because the first particles are exposed from the openings.
  • the nanocarbon material aggregate of the present embodiment includes the fibrous carbon nanohorn aggregate, and thus has higher conductivity than the nanocarbon material aggregate including only the spherical carbon nanohorn aggregate.
  • nano-sized fine particles (second particles) of a metal, a metal complex, or a compound (such as an oxide) containing the metal are locally adsorbed in the open pores on the carbon surface of the carbon nanohorn. (Supported).
  • the particle size of the nano-sized fine particles to be adsorbed becomes smaller because the more the number of open holes is, the more the condensation of the fine particles is less likely to occur, and the second particles are made smaller.
  • the particle size of the second particles is not particularly limited, but if it is, for example, 3 nm or less, it is difficult for the second particles to fuse with each other, and it is possible to prevent the second particles from becoming coarse.
  • the lower limit of the diameter of the second particles is preferably about the diameter of the second pores, for example, about 0.7 nm.
  • the second particles are supported on the outside of the carbon nanohorn without entering the carbon nanohorn (that is, not passing through the pores formed on the surface of the carbon nanohorn, surrounding the pores, or covering the pores). It is preferable that the catalyst function is easily exhibited.
  • the second particles are preferably carried in the second pores, more preferably both the first pores and the second pores.
  • the second particles are preferably fine particles of a metal, a metal complex and a compound (oxide, etc.) containing the metal, such as Au, Pt, Pd, Ag, Cu, Fe, Ru, Ni, Sn, Co and Examples thereof include one or more metals selected from the group consisting of lanthanoid elements, metal complexes thereof, and compounds (such as oxides) containing the same.
  • the thus-supported (adsorbed) second particles exhibit an electrochemical catalytic effect on the surface of the fibrous carbon nanohorn aggregate, and become a surface-supported catalyst.
  • the type of the metal or the like forming the first particles and the type of the metal or the like forming the second particles may be the same or different.
  • FIG. 5( c) is a schematic diagram showing that the second particles 5 are adsorbed (supported) in the first and second holes of the carbon nanohorn that has been subjected to the oxidation treatment.
  • the catalytic function of both the first particles and the second particles can be exhibited.
  • the first particles and the second particles can exhibit different catalytic functions or higher catalytic activities.
  • the first particles are Fe particles (preferably having a particle size of 1 nm to 20 nm) and the second particles are Pt fine particles (preferably having a particle size of 0.7 nm to 3.0 nm).
  • the second particles are Pt fine particles (preferably having a particle size of 0.7 nm to 3.0 nm).
  • the nanocarbon material aggregate of the present embodiment can be suitably used as a catalyst for an electrochemical reaction, specifically, as a catalyst for a fuel cell, a hydrogen storage catalyst, a catalyst for adsorbing or decomposing odorous substances. Is preferred.
  • the second particles are a transition metal material such as Pt, Au, Ni, Pd, Ru. preferable.
  • the second particles are preferably palladium or the like.
  • the second particles are preferably copper sulfate, copper chloride or the like.
  • the second particles are preferentially adsorbed and immobilized so as to be caught in the first holes and the second holes formed on the surface of the fibrous carbon nanohorn aggregate.
  • a concentration-drying method, an impregnation method, a colloid method, or the like can be appropriately used, but a colloid method or a simple impregnation method, which can easily control the size, is preferable.
  • the colloid method is described in T.W. Yoshitake, Y.; Shimakawa, S.; Kuroshima, H.; Kimura, T.; Ichihashi, Y.
  • a catalyst can be supported by mixing a solution containing a catalytic metal with a fibrous carbon nanohorn aggregate, dispersing and stirring the mixture, and then collecting the mixture with a filter.
  • the atmosphere gas phase, liquid phase
  • conditions solvent, pH, temperature, etc.
  • FIG. 1 is a STEM photograph of Sample 1.
  • FIG. 2 is a Z-contrast image of Sample 1, in which the white particles are iron. From these observations, it was found that the particle size of iron is mainly 20 nm or less.
  • the BET specific surface area of the product before the oxidation treatment was 400 m 2 /g
  • the BET specific surface area of the product after the oxidation treatment was 450 m 2 /g, which was slightly increased.
  • TEM transmission electron microscope
  • Example 3 Evaluation of catalytic activity
  • the catalytic activity was evaluated by measuring the oxygen reduction reaction electrochemically.
  • the powder (Sample 2) prepared in Production Example 2, the Nafion (registered trademark) solution, and a solution in which water was dispersed were prepared, and the solution was added onto the rotating disk electrode as the working electrode to fix the sample (Electrode 2).
  • .. Ag/AgCl was used as the reference electrode, and platinum was used as the counter electrode.
  • the electrolyte solution used was 0.1 M KOH.
  • an electrode was prepared using the sample (Sample 1) of Production Example 1 before the oxidation treatment (electrode 1).
  • Example 4 Support of Pt catalyst
  • the nanocarbon material produced in Production Example 2 was used as a catalyst carrier for a fuel cell.
  • 1 g of chloroplatinic acid hydrate was dissolved in water at 70° C., 2 g of sodium sulfite was added, and the mixture was stirred.
  • After controlling the pH to about 5 with sodium hydroxide about 1.5 g of the sample 2 produced in Production Example 2 was added.
  • the pH was adjusted to 5 by adding 50 mL of 30% hydrogen peroxide.
  • the sample 2 carrying the Pt catalyst was separated by centrifugation and dried at 100° C. Then, it was reduced with hydrogen.
  • thermogravimetric analysis of Pt-supporting sample 2 in oxygen it was confirmed that the supporting rate was 20% based on the total weight (Pt-supporting sample 2).
  • the Pt particle size was about 2 nm, and it was uniformly supported on the carbon surface.
  • Pt was loaded on Sample 1 before the oxidation treatment by the same method (Pt-loaded Sample 1), and it was confirmed by thermogravimetric analysis that the loading rate was 20%.
  • a spherical carbon nanohorn aggregate (a fibrous carbon nanohorn aggregate was formed by performing a CO 2 laser ablation method under the same conditions as in the production method 1 except that a graphite target containing no catalyst was used.
  • This spherical carbon nanohorn aggregate was loaded with Pt in the same manner as in Pt-loaded samples 1 and 2 (Pt-loaded sample 3). It was confirmed by thermogravimetric analysis that the loading rate of Pt-loaded sample 3 was 20% based on the total weight.
  • the catalytic activity of the Pt catalyst was evaluated by a methanol oxidation reaction by an electrochemical method.
  • the working electrode was prepared by adding a sample onto the rotating disk electrode, Ag/AgCl was used as the reference electrode, and platinum was used as the counter electrode.
  • the electrolyte solution was prepared to be 1 M CH 3 OH and 0.5 MH 2 SO 4 . At that time, 0.5 V vs.
  • RHE Reversible Hydrogen Electrode
  • specific activity A/g-Pt was compared.
  • Pt-supported sample 2 35A/g-Pt was compared with Pt-supported sample 1 (25A/g-Pt). It was found that the specific activity of methanol oxidation was higher than that of Pt) and Pt-supporting sample 3 (20 A/g-Pt). It is presumed that the specific activity of methanol oxidation was increased because Fe was supported without agglomeration and the encapsulated Fe was exposed, and the results are shown in Table 1.
  • a fibrous carbon nanohorn aggregate composed of a plurality of carbon nanohorns including a carbon nanohorn having an opening, First particles encapsulated in the carbon nanohorn having the pores, a part of which is exposed to the outside of the carbon nanohorn, An aggregate of nanocarbon materials containing.
  • the opening is A first hole through which particles with a particle size of 0.7 nm can pass, and a second hole through which particles with a particle size of 0.7 nm cannot pass;
  • the second particles contain one or more metals selected from Au, Pt, Pd, Ag, Cu, Fe, Ru, Ni, Sn, Co and lanthanoid elements, a metal complex thereof, or a metal thereof. 6.
  • the nanocarbon material aggregate according to any one of appendices 3 to 5, which is a compound.
  • a catalyst for electrochemical reaction comprising the nanocarbon material aggregate according to any one of appendices 1 to 6.
  • Appendix 8 A step of heating the fibrous carbon nanohorn aggregate in a hydrogen peroxide solution in a temperature range of 20°C to 80°C. 7. The method for producing a nanocarbon material aggregate according to any one of appendices 1 to 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

電気化学反応用触媒等として活性の高いナノカーボン材料集合体を提供する。本発明は、開孔部を有するカーボンナノホーンを含む複数のカーボンナノホーンから構成される繊維状のカーボンナノホーン集合体と、前記開孔部を有するカーボンナノホーンに内包され、一部がカーボンナノホーンの外側に露出している第1の粒子と、を含むナノカーボン材料集合体に関する。

Description

ナノカーボン材料集合体およびこれを含む電気化学反応用触媒
 本発明は、ナノカーボン材料集合体、これを含む電気化学反応用触媒、およびこれらの製造方法に関する。
 電気化学反応系を利用する燃料電池等においては、炭素などの担持体の表面に配置された金属微粒子が触媒として用いられる。これまでに、金属微粒子の微細化、担持体の比表面積の向上、担持体の電気伝導率の向上等による触媒の特性改善が幅広く試みられている。例えば、特許文献1には、複数の金属を合金として用いた合金微粒子を含む燃料電池のカソード用触媒が記載されている。
 また、近年では、カーボンナノチューブ、グラフェン、カーボンナノホーン集合体等のナノ炭素材料が、その比表面積の大きさおよび電気伝導性の高さから高品質な工業用の触媒担持体として注目されている。例えば、特許文献2には、カーボンナノホーン集合体の表面を開孔し、触媒としての金属微粒子を担持した燃料電池用触媒が記載されている。特許文献2に記載のカーボンナノホーン集合体は、多数のカーボンナノホーンが球状に集合したものである。
特開2004-253385号公報 特開2009-190928号公報
 しかしながら、特許文献1および特許文献2に記載の触媒よりさらに活性の高い触媒の開発が求められていた。
 本実施形態の一態様は、
 開孔部を有するカーボンナノホーンを含む複数のカーボンナノホーンから構成される繊維状のカーボンナノホーン集合体と、
 前記開孔部を有するカーボンナノホーンに内包され、一部がカーボンナノホーンの外側に露出している第1の粒子と、
を含むナノカーボン材料集合体に関する。
 本実施形態の一態様によれば、電気化学反応における触媒として優れたナノカーボン材料集合体を簡便な製造方法により提供することができる。
繊維状のカーボンナノホーン集合体の形状を示す模式図である。 繊維状のカーボンナノホーン集合体と球状のカーボンナノホーン集合体の走査透過型電子顕微鏡像である。 繊維状のカーボンナノホーン集合体のZコントラスト像である。 カーボンナノホーンの先端の構造を示す模式図である。 ナノカーボン材料集合体の製造における、(a)酸化処理前、(b)酸化処理後、および(c)触媒担持後のカーボンナノホーンの構造を示す模式図である。
 以下、本実施形態のナノカーボン材料集合体について説明する。
 本実施形態のナノカーボン材料集合体の一態様は、開孔部を有するカーボンナノホーンを含む複数のカーボンナノホーンから構成される繊維状のカーボンナノホーン集合体と、前記開孔部を有するカーボンナノホーンに内包され、一部がカーボンナノホーンの外側に露出している第1の粒子とを含む。
(繊維状のカーボンナノホーン集合体)
 まず、本実施形態のナノカーボン材料集合体を構成する繊維状のカーボンナノホーン集合体について説明する。
 繊維状のカーボンナノホーン集合体は、カーボンナノブラシ(CNB)とも呼ばれ、複数のカーボンナノホーンが、放射状に集合し、かつ、繊維状に繋がった構造を有する。この構造は、一見すると試験管ブラシやモールのような形状に似ている。図1に繊維状のカーボンナノホーン集合体の形状の模式図を示す。繊維状のカーボンナノホーン集合体は、単にカーボンナノホーンが複数連なって繊維状に見えるものとは異なり、遠心分離や超音波分散等の操作を行っても繊維状の形状を維持できる。カーボンナノホーンはグラフェンシートが巻かれた構造の先端が先端角約20°の角(ホーン)状に尖った、円錐型の形状を有する炭素構造体である。繊維状のカーボンナノホーン集合体は、種型、つぼみ型、ダリア型、ペタルダリア型、ペタル型(グラフェンシート構造)等のカーボンナノホーン集合体がさらにカーボンナノホーンで繋がって形成されており、すなわち、繊維状の構造体中に1種類または複数のこれらカーボンナノホーン集合体が含まれている。種型とは、集合体の表面に角状の突起がほとんどみられない、あるいは全くみられない形状、つぼみ型は集合体の表面に角状の突起が多少みられる形状、ダリア型は集合体の表面に角状の突起が多数みられる形状、ペタル型は集合体の表面に花びら状の突起がみられる形状である(グラフェンシート構造)。ペタル構造は、幅は50nm~200nm、厚みは0.34nm~10nm、2枚~30枚のグラフェンシート構造である。ペタル-ダリア型はダリア型とペタル型の中間的な構造である。繊維状のカーボンナノホーン集合体は、カーボンナノホーンが繊維状に集合していればよく、上記の構造のみに限定されない。なお、繊維状のカーボンナノホーン集合体については、国際公開第2016/147909号に記載されており、この文献の開示内容はその引用をもって本明細書に組み込み記載されているものとする。
 本実施形態のナノカーボン材料集合体は、繊維状のカーボンナノホーン集合体に加え、球状のカーボンナノホーン集合体を含んでもよい。後述するように、通常、繊維状のカーボンナノホーン集合体を製造する際、同時に球状のカーボンナノホーン集合体も生成される。図2は、繊維状のカーボンナノホーン集合体と球状のカーボンナノホーン集合体の走査透過型電子顕微鏡(STEM)写真である。球状のカーボンナノホーン集合体は、種型、つぼみ型、ダリア型、ペタルダリア型、ペタル型(グラフェンシート構造)等のカーボンナノホーン集合体が、単独で、または複合して球状構造(必ずしも真球という意味ではなく、楕円形状、ドーナツ状等その他の形状であってもよい)を有する。生成するカーボンナノホーン集合体は、ガスの種類や流量によってその形態および粒径が変わる。本明細書において、繊維状のカーボンナノホーン集合体及び球状のカーボンナノホーン集合体のことを、単に「カーボンナノホーン集合体」または「集合体」と記載する場合もある。なお、繊維状のカーボンナノホーン集合体と球状のカーボンナノホーン集合体とは、サイズの違いにより分離することが可能である。さらに、カーボンナノホーン集合体以外の不純物が含まれる場合、遠心分離法、沈降速度の違い、サイズによる分離等により除去できる。また、生成条件を変えることで、繊維状のカーボンナノホーン集合体と球状のカーボンナノホーン集合体の比率を変えることが可能である。
 繊維状のカーボンナノホーン集合体および球状のカーボンナノホーン集合体を構成するカーボンナノホーン(カーボンナノホーン単体)は、カーボンナノチューブのようにチューブ径が一定な円筒状構造ではなく、チューブ径が異なる中空円錐(すなわち、角(ホーン))状の先端部を有する円筒構造を有する炭素構造体である。図4はカーボンナノホーンの先端部の模式図である。通常、円筒状のカーボンナノチューブでは6員環のグラファイト構造で覆われているが、この6員環の中に5員環や7員環が連続的に混ざることにより、個々のチューブ径が狭く、あるいは広がることにより、その径が変化する。本実施形態における円錐状のカーボンナノホーンは、この6員環構造の中に5員環や7員環が連続的に混ざることにより、ホーンの径が連続的に変化した構造を持つ。なお、このカーボンナノホーンの炭素構造は、単層でも多層でもよいが、単層であるのが好ましい。
 繊維状のカーボンナノホーン集合体および球状のカーボンナノホーン集合体に含まれる各々のカーボンナノホーン(単体)の直径はおよそ1nm~20nmであり、長さは30nm~100nmである。繊維状のカーボンナノホーン集合体は、直径が30nm~200nm程度で、長さが1μm~100μm程度である。繊維状のカーボンナノホーン集合体のアスペクト比(長さ/直径)は、一般的に4~4000であり、例えば、5~3500である。球状のカーボンナノホーン集合体は、直径が30nm~200nm程度でほぼ均一なサイズである。
 本実施形態における繊維状のカーボンナノホーン集合体を構成するカーボンナノホーンは、先端となる一端が閉じているものでもよいし、閉じていないものでもよい。また、その一端の円錐形状の頂点が丸まった形状で終端していてもよい。カーボンナノホーンが、その一端の円錐形状の頂点が丸まった形状で終端している場合、頂点が丸まった部分を外側に向けて放射状に集合している。さらに、繊維状のカーボンナノホーン集合体は、カーボンナノチューブを含んでもよい。
 繊維状のカーボンナノホーン集合体は、導電性が高いカーボンナノホーンが繊維状に繋がり、長い導電性パスを持つ構造を特徴とするため、高い導電性を有する。更に、繊維状のカーボンナノホーン集合体は、高い分散性を併せ持っており、導電性付与の効果が高い。
 繊維状のカーボンナノホーン集合体は、後述するように、合成用触媒と炭素が含まれるターゲットを蒸発して作製される。繊維状のカーボンナノホーン集合体を構成するカーボンナノホーンの内部には、作製するときに用いた合成用触媒等の粒子が内包される(図2のSTEM写真の黒い粒子、および図3のZコントラストイメージの白い粒子が内包された合成用触媒である)。
 図5(a)は、繊維状のカーボンナノホーン集合体(酸化処理する前)の構造の一態様を模式的に示した図である。図5(a)において、カーボンナノホーンの先端部1は角状の形状を有しており、単層の炭素で構成された壁の中に合成用触媒等の粒子2が内包されている。繊維状のカーボンナノホーン集合体においては、カーボンナノホーンの角状の先端部を外側に向けて放射状に複合して接続された構造を構成することにより、外側と内側の空間がほぼ隔絶されている。そのようなカーボンナノホーン集合体の内側の空間には、繊維状のカーボンナノホーン集合体の合成時に用いた合成用触媒の金属等が存在する。合成用触媒等の粒子は、図5(a)のようにカーボンナノホーン単体の内側に存在するものもあるし、触媒金属どうしで融合して大きくなり、繊維の中心の方向に移動して存在するものある。
 繊維状のカーボンナノホーン集合体とともに製造される球状のカーボンナノホーン集合体を構成するカーボンナノホーンの内部にも同様に合成用触媒等の粒子が内包される。
 繊維状のカーボンナノホーン集合体は、合成用触媒を含有した炭素をターゲット(合成用触媒含有炭素ターゲットという)とし、合成用触媒含有炭素ターゲットを配置した容器内でターゲットを回転させながら窒素雰囲気、不活性雰囲気、又は、混合雰囲気下でレーザーアブレーションによりターゲットを加熱し、ターゲットを蒸発させることにより製造される。蒸発した炭素と触媒が冷える過程で繊維状のカーボンナノホーン集合体及び球状のカーボンナノホーン集合体が得られる。また、繊維状のカーボンナノホーン集合体の作製方法として、上記レーザーアブレーション法以外にアーク放電法や抵抗加熱法を用いることができる。しかしながら、レーザーアブレーション法は、室温、大気圧中で連続生成できる観点からより好ましい。
 レーザーアブレーション(Laser Ablation:LA)法は、レーザーをターゲットにパルス状又は連続して照射して、照射強度が閾値以上になると、ターゲットがエネルギーを変換し、その結果、プルームが生成され、生成物をターゲットの下流に設けた基板上に堆積させる、或いは装置内の空間に生成させ、回収室で回収する方法である。
 レーザーアブレーションには、COレーザー、YAGレーザー、エキシマレーザー、半導体レーザー等が使用でき、高出力化が容易なCOレーザーが最も適当である。COレーザーは、1kW/cm~1000kW/cmの出力が使用可能であり、連続照射及びパルス照射で行うことが出来る。カーボンナノホーン集合体の生成には連続照射の方が望ましい。レーザー光をZnSeレンズなどにより集光させ、照射させる。また、ターゲットを回転させることで連続的に合成することが出来る。ターゲット回転速度は任意に設定できるが、0.1~6rpmが特に好ましい、0.1rpm以上であればグラファイト化が抑制でき、また、6rpm以下であればアモルファスカーボンの増加を抑制できる。この時、レーザー出力は15kW/cm以上が好ましく、30~300kW/cmが最も効果的である。レーザー出力が15kW/cm以上であればターゲットが適度に蒸発し、合成が容易となる。また300kW/cm以下であれば、アモルファスカーボンの増加を抑制できる。容器(チャンバー)内の圧力は、13332.2hPa(10000Torr)以下で使用することができるが、圧力が真空に近くなるほど、カーボンナノチューブが生成しやすくなり、カーボンナノホーン集合体が得られなくなる。好ましくは666.61hPa(500Torr)~1266.56hPa(950Torr)で、より好ましくは常圧(1013hPa(1atm≒760Torr))付近で使用することが大量合成や低コスト化のためにも適当である。また照射面積もレーザー出力とレンズでの集光の度合いにより制御でき、0.005cm~1cmが使用できる。
 繊維状のカーボンナノホーン集合体の製造に用いる合成用触媒は、カーボンナノホーン集合体を合成可能であるならばいかなる材料をも用いることができるが、遷移金属等の金属が好ましく、Fe、Cu、Co、Ni、Au、Pt、Ag、Pd、Ru、およびTiからなる群から選ばれる少なくとも1種が好ましく、これらのうち2種以上を組み合わせた合金であってもよい。Fe、CoおよびNiからなる群から選ばれる少なくとも1種であるのがより好ましい。触媒の濃度は適宜選択できるが、炭素に対して、0.1質量%~10質量%が好ましく、0.5質量%~5質量%がより好ましい。0.1質量%以上であると、繊維状のカーボンナノホーン集合体の生成が確実となる。また、10質量%以下の場合は、ターゲットコストの増加を抑制できる。
 繊維状のカーボンナノホーン集合体の製造に用いる容器内の温度は特に限定されないが、好ましくは、0~100℃であり、より好ましくは室温で使用することが大量合成や低コスト化のためにも適当である。
 容器内には、窒素ガスや、不活性ガスなどを単独で又は混合して導入することで上記の雰囲気とする。これらのガスは反応容器内を流通し、生成する物質をこのガスの流れによって回収することが出来る。また導入したガスにより閉鎖雰囲気としてもよい。雰囲気ガス流量は、任意の量を使用できるが、好ましくは0.5L/min~100L/minの範囲が適当である。ターゲットが蒸発する過程ではガス流量を一定に制御する。ガス流量を一定にするには、供給ガス流量と排気ガス流量とを合わせることで行うことができる。常圧付近で行う場合は、供給ガスで容器内のガスを押出して排気することで行うことができる。
 合成用触媒は、繊維状のカーボンナノホーン集合体の合成過程において、繊維状のカーボンナノホーン集合体を構成するカーボンナノホーンの中に内包されるものがある。また、繊維状のカーボンナノホーン集合体を合成する際に、ターゲットに合成用触媒以外の金属および/または磁性体等の非金属材料を混合することにより、合成用触媒以外の材料に由来する粒子がカーボンナノホーンに内包される場合がある。本明細書において、カーボンナノホーンの内側に内包された粒子のことを「合成用触媒等」または「合成用触媒等の粒子」と記載する場合がある。カーボンナノホーンに内包された粒子の直径は、好ましくは50nm未満、より好ましくは20nm以下であり、さらに好ましくは10nm以下であり、下限は特に限定されないが、0.7nmより大きく、より好ましくは1nm以上、さらに好ましくは3nmより大きく、よりさらに好ましくは5nm以上である。
(カーボンナノホーン集合体の開孔処理)
 本実施形態においては、上記繊維状のカーボンナノホーン集合体が酸化処理等されることにより、繊維状のカーボンナノホーン集合体を構成するカーボンナノホーンの炭素表面に開孔部が形成される。合成用触媒等の粒子を内包するカーボンナノホーンに開孔部が形成されると、この開孔部からカーボンナノホーンに内包された粒子の一部がカーボンナノホーンの外側に露出する。本明細書においては、開孔部を有するカーボンナノホーンに内包され、かつ、その開孔部から一部外側に露出している粒子のことを、「第1の粒子」と呼ぶ。以下、詳細に説明する。
 上記レーザーアブレーション法等で生成された繊維状または球状のカーボンナノホーン集合体は、表面官能基を持たない、あるいは、ほとんどないため、疎水性である。このカーボンナノホーン集合体を、酸化性の酸による処理、または、ガス雰囲気下での熱処理による酸化処理を行うことによって官能基を導入し、かつ、カーボンナノホーンの炭素表面に孔を形成することができる。酸化性の酸としては、硫酸、硝酸、硫酸-硝酸混合溶液、過酸化水素、塩素酸等が挙げられる。これらの酸による酸化処理は液相中で行われ、水溶液系であれば0℃~180℃程度(水溶液が液体として存在する温度であればよい)、有機溶媒系であれば使用する溶媒が液体として存在する温度中において行われる。これにより、カーボンナノホーンの先端や側面などのグラファイト面が曲がっているところにある5員環や7員環やその他反応性の高い炭素部位にカルボニル基、カルボキシル基、水酸基、エーテル基、イミノ基、ニトロ基及びスルホン基等の親水性の官能基を付加し、開孔部を形成することができる。例えば過酸化水素水中において、室温から80℃の温度範囲で加熱することにより、繊維状のカーボンナノホーン集合体の炭素表面に孔を形成することができ、20℃~80℃で処理するのが好ましく、特に50~80℃の温度範囲で加熱するのが望ましい。孔の大きさは、上記範囲内の温度と、処理時間とを制御し調整することが可能である。処理時間としては、適宜調整できるが、0.5時間~3時間程度の範囲内で変化させることが好ましい。
 ガス雰囲気下での熱処理により酸化処理を行う場合は、空気、酸素、または一酸化炭素中で行うことできるが、低コスト化のために空気雰囲気が望ましい。その際の熱処理温度は、250~600℃の範囲が好ましい。
 上記酸化処理により、繊維状のカーボンナノホーン集合体を構成するカーボンナノホーンの炭素表面に開孔部が形成される。本実施形態のナノカーボン材料集合体は、粒子(合成用触媒等)を内包するカーボンナノホーンを含むが、カーボンナノホーンの炭素表面に形成された開孔部からこの粒子の一部がカーボンナノホーンの外側に露出する。
 本実施形態の一態様において、カーボンナノホーンの表面上には、酸化処理等により開孔部として、粒径0.7nmの粒子を通過させることができる第1の孔と、粒径0.7nmの粒子を通過させることができない第2の孔とが形成される。
 比較的大きい開孔部である第1の孔は、繊維状のカーボンナノホーン集合体を構成するカーボンナノホーンにおいて、内包された粒子(合成用触媒等)に近接した炭素表面に形成されやすい。これは、内包された粒子と炭素との相互作用により、酸化反応が増強され、その結果として大きな孔が形成されるからであると考えられる。例えば、鉄に代表される合成用触媒等の粒子は、その粒子自体を触媒として、過酸化水素水中での近傍の炭素の酸化反応を増強する。その結果、炭素表面において、後述する第2の孔に比べて速やかにその開孔部が広がり、内包された粒子の一部を露出するような大きな孔が形成される。すなわち、主に第1の孔から、第1の粒子の一部がカーボンナノホーンの外側に露出する。第1の孔から第1の粒子の一部が飛び出ていてもよいし、第1の孔と第1の粒子が離れていてもよい。上記のとおり、第1の孔は、第1の粒子の近傍に形成され、例えば、近接する第1の粒子と第1の孔との距離(最短距離)が、その第1の粒子の粒径以下であるのが好ましい。
 図5(b)は、酸化処理により開孔部が形成されたカーボンナノホーンの模式図である。第1の粒子2の近傍に第1の孔4が形成され、第1の孔4から第1の粒子2の一部が外側に露出している。さらに、第1の粒子2から離れたところには、第1の孔4より小さい第2の孔3が形成されている。
 第1の孔の大きさは、粒径0.7nmの粒子を通過させることができ、かつ、第1の粒子の内包を保持することができる範囲が好ましく、例えば、直径(開孔部の内周に内接する最大内接円の直径)が、好ましくは0.7nm以上50nm未満、より好ましくは0.7nm以上20nm未満であり、さらに好ましくは3nm以上10nm以下である。第1の孔の大きさは、酸化処理条件を変えることにより調整することができる。
 また、第1の粒子は、繊維状のカーボンナノホーン集合体の合成用触媒として用いる金属であることを好適とするが、それ以外に、ターゲットに混成した他の金属粒子、合金粒子、磁性体粒子をはじめとする無機材料粒子、または、それらを組み合わせた二種以上の異なる粒子を含んでもよい。第1の粒子の直径分布を変えることにより、異なる位置(例えば、カーボンナノホーンのホーン先端部または底部)に粒子を配置することも可能である。
 ナノカーボン材料集合体の一態様において、第1の粒子が、例えば、Fe、Cu、Co、Ni、Au、Pt、Ag、Pd、Ru、Ti等の遷移金属をはじめとする電気化学反応の触媒として用いられる材料である場合、カーボンナノホーンの外側に露出した金属表面において電気化学反応用触媒の効果を発現することができ、これを燃料電池等の触媒として用いることができる。また、第1の粒子として、例えば金属酸化物や硫酸塩等の消臭効果をもつ材料を用いることにより、露出した粒子表面から消臭効果などを発現する触媒としてのナノカーボン材料集合体を得ることができる。
 第1の孔は、1つのカーボンナノホーンの表面上に1つまたは複数形成されてよい。
 比較的小さい開孔部である第2の孔は、繊維状のカーボンナノホーン集合体を構成するカーボンナノホーンにおいて、炭素表面に近接する内部空間に合成用触媒等の粒子が存在しない領域において形成されやすい。第2の孔は、例えば、カーボンナノホーンの先端部、および、側面部の5員環部分、7員環部分、またはその他反応性の高い炭素部位の炭素表面に形成される。第2の孔の大きさは、粒径0.7nmの粒子を通過させることができない大きさであり、例えば、直径(開孔部の内周に内接する最大内接円の直径)が、0.24nm以上0.70nm未満であり、好ましくは、孔を構成する炭素原子のうち隣接しない炭素原子間の最短距離dが、0.24nm以上0.70nm未満である。
 第2の孔は、1つのカーボンナノホーンの表面上に1つまたは複数形成されるが、通常炭素表面上にほぼ均一に複数形成される。
 本実施形態のナノカーボン材料集合体の一態様において、合成用触媒等を内包するカーボンナノホーンには、第1の孔と第2の孔の両方が形成され、合成用触媒等を内包しないカーボンナノホーンには、第2の孔のみが形成される。また、ナノカーボン材料集合体が球状のカーボンナノホーン集合体を含むときは、酸化処理等により球状のカーボンナノホーン集合体を構成するカーボンナノホーンにも第1の孔および/または第2の孔が形成される。
 本実施形態のナノカーボン材料集合体は、第1の粒子が開孔部から露出することにより、別途触媒金属粒子を担持させなくても、電気化学反応用の触媒等として用いることができる。また、本実施形態のナノカーボン材料集合体は、繊維状のカーボンナノホーン集合体を含むことにより、球状のカーボンナノホーン集合体のみからなるナノカーボン材料集合体に比べて、導電率が高い。
(カーボンナノホーン集合体への第2の粒子の担持)
 本実施形態の一態様においては、カーボンナノホーンの炭素表面の開孔部に、金属、金属錯体またはそれを含む化合物(酸化物等)のナノサイズの微粒子(第2の粒子)を局所的に吸着(担持)させることができる。このとき、吸着するナノサイズの微粒子の粒子径は、開孔した孔の数が多いほど微粒子の凝縮が起こりにくくなるので小さくなり、第2の粒子の微小化が実現される。第2の粒子の粒径は、特に限定されないが、例えば3nm以下であると、第2の粒子どうしの融合等がおこりにくく、第2の粒子が粗大化するのを防ぐことができる。第2の粒子の直径の下限は、第2の孔の径程度であるのが好ましく、例えば、約0.7nm程度であるのが好ましい。第2の粒子は、カーボンナノホーンの中に入らずに(すなわち、カーボンナノホーンの表面に開いた孔を通過せず、孔の周囲に、または孔を覆うように)、カーボンナノホーンの外側に担持されると、触媒機能を発揮しやすくなるため好ましい。
 第2の粒子は、好ましくは第2の孔に担持され、より好ましくは第1の孔および第2の孔の両方に担持される。
 第2の粒子は、金属、金属錯体及びこれを含む化合物(酸化物等)の微粒子であるのが好ましく、例えば、Au、Pt、Pd、Ag、Cu、Fe、Ru、Ni、Sn、Co及びランタノイド元素からなる群から選ばれる1種又は2種以上の金属、その金属錯体及びそれを含む化合物(酸化物等)を挙げることができる。このようにして担持(吸着)された第2の粒子は、繊維状のカーボンナノホーン集合体の表面において、電気化学的触媒効果を発現し、表面担持触媒となる。本実施形態において、第1の粒子を構成する金属等と、第2の粒子を構成する金属等の種類は、同一であっても異なっていてもよい。
 図5(c)は、酸化処理されたカーボンナノホーンの第1の孔および第2の孔に、第2の粒子5が吸着(担持)されたことを示す模式図である。カーボンナノホーンに第2の粒子が担持されることにより、第1の粒子と第2の粒子の両方による触媒機能を発現させることができる。例えば、第1の粒子と第2の粒子とで異なる触媒機能、または、より高い触媒活性を発現させることができる。
 本実施形態の一態様において、第1の粒子がFe粒子(好ましくは粒径が1nm~20nm)であり、第2の粒子がPt微粒子(好ましくは粒径が0.7nm~3.0nm)であるのが好ましい。
 本実施形態のナノカーボン材料集合体は、電気化学反応用触媒として好適に用いることができ、具体的には、燃料電池用触媒、水素吸蔵触媒、臭気物質の吸着または分解を行う触媒として用いるのが好ましい。
 本実施形態のナノカーボン材料集合体を燃料電池用触媒として用いる場合、優れた触媒能を有するので、第2の粒子が、Pt、Au、Ni、Pd、Ru等の遷移金属材料であるのが好ましい。水素吸蔵触媒として用いる場合は、第2の粒子がパラジウム等であるのが好ましい。臭気物質の吸着または分解を行う触媒として用いる場合は、第2の粒子が硫酸銅、塩化銅等であるのが好ましい。
 第2の粒子は、繊維状のカーボンナノホーン集合体の表面に形成された第1の孔および第2の孔に引っ掛かるように優先的に吸着して固定化される。第2の粒子の担持法は、濃縮乾固法、含侵法、コロイド法等適宜使用できるが、サイズ制御が容易な、コロイド法か簡便な含侵法が望ましい。コロイド法は、T.Yoshitake,Y.Shimakawa,S.Kuroshima,H.Kimura,T.Ichihashi,Y.Kubo,D.Kasuya,K.Takahashi,F.Kokai,M.Yudasaka,S.Iijima,Physica 2002,B323,124.により報告されている方法が使用できる。また、含侵法は、触媒金属を含んだ溶液と繊維状のカーボンナノホーン集合体とを混合させ、分散、撹拌した後、フィルターで集めることで触媒を担持できる。また、繊維状のカーボンナノホーン集合体に担持する際の雰囲気(気相、液相)や条件(溶媒、pH、温度など)を調節することで、被吸着物質の担持量を制御することができる。
 以下に実施例を示し、さらに詳しく本発明について説明するが、本発明は下記実施例によって限定されるものではない。
(製造例1:繊維状のカーボンナノホーン集合体の作製)
 繊維状のカーボンナノホーン集合体を含むナノカーボン材料集合体をCOレーザーアブレーション法により作製した。室温(約23℃)、窒素雰囲気下で、円柱状の触媒含有炭素ターゲットにCOレーザーを連続照射した。この時、レーザー出力を3.2kW、ターゲット回転速度を1rpmに調整した。触媒は、Feを使用した(炭素ターゲットに対して5質量%)。これにより得られた、すす状の物質を含むナノカーボン材料(「サンプル1」とする)を、走査透過型電子顕微鏡(STEM)を用いて観察した。図2は、サンプル1のSTEM写真である。繊維状のカーボンナノホーン集合体および球状のカーボンナノホーン集合体が生成されていることが分かった。図2において、黒い粒子は鉄触媒であり、カーボンナノホーン集合体の内部に取り込まれていることが観察された。図3は、サンプル1のZコントラストイメージであり、白い粒子が鉄である。これら観察により、鉄の粒径は、主に20nm以下であることが分かった。
(製造例2:カーボンナノホーン集合体の酸化処理)
 製造例1の生成物(サンプル1)100mgを、過酸化水素水(30重量%)200mLに入れ、スターラーを用い、300rpmで撹拌しながら、ウォーターバスで温度を50℃に調整して1時間加熱した。加熱後、過酸化水素水を0.2μmフィルターでろ過し、純水で2回洗浄した。その後、フィルター上のナノカーボン材料を真空100℃のオーブンで48時間乾燥した。得られた酸化処理後の生成物をサンプル2とした。酸化処理前後のナノカーボン材料の比表面積を、窒素ガス吸着等温線からBET法により算出した。酸化処理前の生成物(サンプル1)のBET比表面積は、400m/gであり、酸化処理後の生成物(サンプル2)のBET比表面積は450m/gであり、僅かに増加した。また、透過型電子顕微鏡(TEM)による観察により、サンプル2には異なる径の孔群が存在することと、露出した合成用触媒(内包金属触媒)を観察することができた。したがって、窒素ガスがほぼ透過できないサイズに開孔されていることが分かった。
(例3:触媒活性の評価)
 電気化学的な酸素還元反応測定により、触媒活性を評価した。製造例2で作製した粉末(サンプル2)とNafion(登録商標)溶液と水を分散させた溶液を作製し、作用極である回転ディスク電極上に添加することでサンプルを固定した(電極2)。参照電極はAg/AgClを使用し、対極は白金を使用した。電解質溶液は、0.1M KOHを使用した。また、比較のために、酸化処理前の製造例1の試料(サンプル1)を用いて電極を作製した(電極1)。0.1Vから-1.0Vまで5mV/sで走査した結果、電極2(-5A/g@-0.4V vs.Ag/Ag/Cl)の反応開始が電極1(-2A/g@-0.4V vs.Ag/Ag/Cl)より早く、サンプル2の方が触媒機能が高いことが分かった。これは、サンプル2の開孔部から露出した触媒金属(Fe)が作用したためであると考えられる。
(例4:Pt触媒の担持)
 製造例2で作製したナノカーボン材料を燃料電池用の触媒担持体として使用した。1gの塩化白金酸水和物を70℃の水に溶かし、亜硫酸ナトリウムを2g加えて撹拌した。水酸化ナトリウムによりpHを5程度に制御後、製造例2で作製したサンプル2をおよそ1.5g加えた。30%過酸化水素を50mL加え、pHが5になるように調整した。その後室温(約23℃)にして、遠心分離によりPt触媒を担持したサンプル2を分離し、100℃で乾燥した。その後、水素で還元した。Ptを担持したサンプル2を、酸素中での熱重量分析することで、担持率が、全重量に対して、20%であることを確認した(Pt担持サンプル2)。また、走査透過型電子顕微鏡像(STEM)で観察した結果、Pt粒子サイズは、2nm程度であり、炭素表面上に均一に担持されていた。また、比較のために酸化処理前のサンプル1にPtを同様の手法で担持し(Pt担持サンプル1)、熱重量分析によって担持率が20%であることを確認した。さらに比較のために、触媒を含まないグラファイトターゲットを用いた以外は製造方法1と同様の条件でCOレーザーアブレーション法を行うことにより、球状のカーボンナノホーン集合体(繊維状のカーボンナノホーン集合体を含まない)を作製した。この球状のカーボンナノホーン集合体を、上記Pt担持サンプル1および2と同様の方法によりPtを担持した(Pt担持サンプル3)。熱重量分析によって、Pt担持サンプル3の担持率が全重量に対して20%であることを確認した。Pt触媒の触媒活性を電気化学的手法によるメタノール酸化反応により評価した。作用極は、回転ディスク電極上にサンプルを添加することで作製し、参照電極はAg/AgClを使用し、対極は白金を使用した。電解質液は、1M CHOHと0.5M HSOになるように調製した。そのときの0.5Vvs.RHE(可逆水素電極(Reversible Hydrogen Electrode)での比活性(A/g-Pt)で比較した。その結果、Pt担持サンプル2(35A/g-Pt)は、Pt担持サンプル1(25A/g-Pt)、Pt担持サンプル3(20A/g-Pt)よりもメタノール酸化の比活性が増加していることが分かった。Pt担持サンプル2は、カーボンナノホーンの表面に開孔部を有することによりPtが凝集することなく担持され、かつ、内包されたFeが露出するため、メタノール酸化の比活性が高くなったと推察される。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、本出願の開示事項は以下の付記に限定されない。
(付記1)
 開孔部を有するカーボンナノホーンを含む複数のカーボンナノホーンから構成される繊維状のカーボンナノホーン集合体と、
 前記開孔部を有するカーボンナノホーンに内包され、一部がカーボンナノホーンの外側に露出している第1の粒子と、
を含むナノカーボン材料集合体。
(付記2)
 前記開孔部が、
 粒径0.7nmの粒子が通過することができる第1の孔と
 粒径0.7nmの粒子が通過することができない第2の孔と、
を含む、付記1に記載のナノカーボン材料集合体。
(付記3)
 さらに、前記開孔部に第2の粒子が吸着している、付記1または2に記載のナノカーボン材料集合体。
(付記4)
 前記第2の粒子の粒径が3nm以下である、付記3に記載のナノカーボン材料集合体。
(付記5)
 前記第1の粒子の粒径が20nm以下である、付記1~4のいずれかに記載のナノカーボン材料集合体。
(付記6)
 前記第2の粒子が、Au、Pt、Pd、Ag、Cu、Fe、Ru、Ni、Sn、Co及びランタノイド元素から選ばれる1種又は2種以上の金属、その金属錯体、または、それを含む化合物である、付記3~5のいずれかに記載のナノカーボン材料集合体。
(付記7)
 付記1~6のいずれかに記載のナノカーボン材料集合体を含む、電気化学反応用触媒。
(付記8)
 繊維状のカーボンナノホーン集合体を、過酸化水素水中で20℃から80℃の温度範囲で加熱する工程を含む、
 付記1~6のいずれかに記載のナノカーボン材料集合体の製造方法。
 この出願は、2019年1月28日に出願された日本出願特願2019-012024を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態(および実施例)を参照して本願発明を説明したが、本願発明は、上記実施形態(および実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1  カーボンナノホーンの先端部
2  合成用触媒等の粒子(第1の粒子)
3  第2の孔
4  第1の孔
5  第2の粒子
 

Claims (8)

  1.  開孔部を有するカーボンナノホーンを含む複数のカーボンナノホーンから構成される繊維状のカーボンナノホーン集合体と、
     前記開孔部を有するカーボンナノホーンに内包され、一部がカーボンナノホーンの外側に露出している第1の粒子と、
    を含むナノカーボン材料集合体。
  2.  前記開孔部が、
     粒径0.7nmの粒子が通過することができる第1の孔と
     粒径0.7nmの粒子が通過することができない第2の孔と、
    を含む、請求項1に記載のナノカーボン材料集合体。
  3.  さらに、前記開孔部に第2の粒子が吸着している、請求項1または2に記載のナノカーボン材料集合体。
  4.  前記第2の粒子の粒径が3nm以下である、請求項3に記載のナノカーボン材料集合体。
  5.  前記第1の粒子の粒径が20nm以下である、請求項1~4のいずれか一項に記載のナノカーボン材料集合体。
  6.  前記第2の粒子が、Au、Pt、Pd、Ag、Cu、Fe、Ru、Ni、Sn、Co及びランタノイド元素から選ばれる1種又は2種以上の金属、その金属錯体、または、それを含む化合物である、請求項3~5のいずれか一項に記載のナノカーボン材料集合体。
  7.  請求項1~6のいずれか一項に記載のナノカーボン材料集合体を含む、電気化学反応用触媒。
  8.  繊維状のカーボンナノホーン集合体を、過酸化水素水中で20℃から80℃の温度範囲で加熱する工程を含む、
     請求項1~6のいずれか一項に記載のナノカーボン材料集合体の製造方法。
PCT/JP2020/002807 2019-01-28 2020-01-27 ナノカーボン材料集合体およびこれを含む電気化学反応用触媒 WO2020158674A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/426,115 US20220102735A1 (en) 2019-01-28 2020-01-27 Nanocarbon material aggregate and catalyst for electrochemical reaction comprising same
JP2020569618A JP7238909B2 (ja) 2019-01-28 2020-01-27 ナノカーボン材料集合体およびこれを含む電気化学反応用触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-012024 2019-01-28
JP2019012024 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020158674A1 true WO2020158674A1 (ja) 2020-08-06

Family

ID=71841769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002807 WO2020158674A1 (ja) 2019-01-28 2020-01-27 ナノカーボン材料集合体およびこれを含む電気化学反応用触媒

Country Status (3)

Country Link
US (1) US20220102735A1 (ja)
JP (1) JP7238909B2 (ja)
WO (1) WO2020158674A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326032A (ja) * 2001-01-29 2002-11-12 Japan Science & Technology Corp カーボンナノホーン吸着材とその製造方法
JP2008147123A (ja) * 2006-12-13 2008-06-26 Nec Corp 燃料電池用触媒およびその製造方法、並びにそれを用いた燃料電池用電極
WO2008090728A1 (ja) * 2007-01-25 2008-07-31 Nec Corporation 触媒担持カーボンナノホーン複合体およびその製造方法
WO2011027636A1 (ja) * 2009-09-04 2011-03-10 日本電気株式会社 カーボンナノホーン複合体及びその作製方法
WO2016147909A1 (ja) * 2015-03-16 2016-09-22 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
JP2016536248A (ja) * 2013-10-25 2016-11-24 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research 酸素還元電極触媒用の窒素ドープカーボンナノホーンの製造方法
WO2017159351A1 (ja) * 2016-03-16 2017-09-21 日本電気株式会社 繊維状カーボンナノホーン集合体を含んだ平面構造体
WO2018042757A1 (ja) * 2016-09-05 2018-03-08 日本電気株式会社 電磁波吸収材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326032A (ja) * 2001-01-29 2002-11-12 Japan Science & Technology Corp カーボンナノホーン吸着材とその製造方法
JP2008147123A (ja) * 2006-12-13 2008-06-26 Nec Corp 燃料電池用触媒およびその製造方法、並びにそれを用いた燃料電池用電極
WO2008090728A1 (ja) * 2007-01-25 2008-07-31 Nec Corporation 触媒担持カーボンナノホーン複合体およびその製造方法
WO2011027636A1 (ja) * 2009-09-04 2011-03-10 日本電気株式会社 カーボンナノホーン複合体及びその作製方法
JP2016536248A (ja) * 2013-10-25 2016-11-24 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research 酸素還元電極触媒用の窒素ドープカーボンナノホーンの製造方法
WO2016147909A1 (ja) * 2015-03-16 2016-09-22 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
WO2017159351A1 (ja) * 2016-03-16 2017-09-21 日本電気株式会社 繊維状カーボンナノホーン集合体を含んだ平面構造体
WO2018042757A1 (ja) * 2016-09-05 2018-03-08 日本電気株式会社 電磁波吸収材料

Also Published As

Publication number Publication date
US20220102735A1 (en) 2022-03-31
JPWO2020158674A1 (ja) 2021-12-02
JP7238909B2 (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
JP5287256B2 (ja) ナノカーボン集合体、及び、その製造方法
JP4195299B2 (ja) 燃料電池用電極及びそれを用いた燃料電池
US8603934B2 (en) Carbon nanosphere with at least one opening, method for preparing the same, carbon nanosphere-impregnated catalyst using the carbon nanosphere, and fuel cell using the catalyst
US8541146B2 (en) Photocatalytic methods for preparation of electrocatalyst materials
Peng et al. NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/NC for oxygen reduction reaction and Zn-air battery
JP5294235B2 (ja) 電極材料
Li et al. Metal–nonmetal nanoarchitectures: quaternary PtPdNiP mesoporous nanospheres for enhanced oxygen reduction electrocatalysis
EP3509408B1 (en) Electromagnetic wave absorbent material
KR20120021385A (ko) 나노 구조 모양을 가지는 연료 전지용 촉매의 한 반응기 제조 방법
US10186711B2 (en) Photocatalytic methods for preparation of electrocatalyst materials
JP2010511997A (ja) 高分子電解質燃料電池用電気化学触媒の製造方法
Jiang et al. Mesoporous trimetallic PtPdRu spheres as superior electrocatalysts
JP5211733B2 (ja) カーボンナノホーン集合体の製造方法及び燃料電池用触媒担体
JP2005317373A (ja) 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法
Karuppasamy et al. Synthesis of shape-controlled Pd nanocrystals on carbon nanospheres and electrocatalytic oxidation performance for ethanol and ethylene glycol
US20070027029A1 (en) Catalyst support, gas storage body and method for producing these
WO2020250894A1 (ja) 複合部材
WO2020158674A1 (ja) ナノカーボン材料集合体およびこれを含む電気化学反応用触媒
JP7110377B2 (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
JP2013094705A (ja) カーボン粒子を備えた触媒材料とその製造方法
Payattikul et al. The doping and co-impregnation process for the synthesis of the third metal in Pt3Ni electrocatalysts
KR102337247B1 (ko) 금속 나노입자-탄소 복합체 및 이의 제조 방법
CN114481167B (zh) 一种O-Ni SAC/MWCNTs复合催化剂的制备方法及应用
Thongthai et al. Morphology and atalytic activity of gold core-platinum shell nanoparticles
Zhang et al. Pd@ MC-PVA composite electrocatalyst for ethanol electrochemical oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748427

Country of ref document: EP

Kind code of ref document: A1