WO2020250894A1 - 複合部材 - Google Patents
複合部材 Download PDFInfo
- Publication number
- WO2020250894A1 WO2020250894A1 PCT/JP2020/022713 JP2020022713W WO2020250894A1 WO 2020250894 A1 WO2020250894 A1 WO 2020250894A1 JP 2020022713 W JP2020022713 W JP 2020022713W WO 2020250894 A1 WO2020250894 A1 WO 2020250894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon nanohorn
- nanohorn aggregate
- composite member
- porous body
- aggregate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/18—Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the present invention relates to a composite member, a gas sensor element, and a method for manufacturing the composite member.
- Patent Document 1 discloses a gas detection element including a sensitive layer containing carbon nanotubes as a main component.
- the fibrous carbon nanohorn aggregate is formed together with the spherical carbon nanohorn aggregate, it is used in the state of a mixture with the spherical carbon nanohorn aggregate. If this is made into a thin film, there will be many spherical carbon nanohorn aggregates as well as fibrous carbon nanohorn aggregates on the surface.
- the spherical carbon nanohorn aggregate does not form a conductive path as compared with the fibrous carbon nanohorn aggregate, and it is difficult to detect the resistance change. Therefore, the gas sensor element using the fibrous carbon nanohorn aggregate has a problem that the sensitivity is low.
- An object of the present invention is to provide a composite member for improving the sensitivity of a gas sensor element in view of the above-mentioned problems.
- the first composite member of the present embodiment includes a porous body and a carbon mixture containing a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate held on the surface and inside of the porous body.
- CNB means a fibrous carbon nanohorn aggregate.
- CNHs means spherical carbon nanohorn aggregates.
- Carbon nanohorn aggregate has the meaning of both a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate.
- the carbon mixture comprises a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate.
- the fibrous carbon nanohorn aggregate is also called a carbon nanobrush (CNB), and has a structure in which single-layer carbon nanohorns are radially assembled and fibrously connected.
- the single-layer carbon nanohorn is a conical carbon structure in which the tip of a structure in which a graphene sheet is wound is pointed like a horn with a tip angle of about 20 °.
- the fibrous carbon nanohorn aggregate is a fibrous carbon structure having a diameter of 30 nm to 200 nm and a length of 1 ⁇ m to 100 ⁇ m, for example, 2 ⁇ m to 30 ⁇ m.
- the fibrous carbon nanohorn aggregate is formed by connecting seed type, bud type, dahlia type, petal dahlia type, and petal type (graphene sheet structure) carbon nanohorn aggregates. That is, one or more of these carbon nanohorn aggregates are contained in the fibrous structure.
- the seed type has a shape with few or no horn-shaped protrusions on the surface of the aggregate
- the bud type has a shape with some horn-shaped protrusions on the surface of the aggregate
- the dalia type has the surface of the aggregate.
- the petal type has a shape with many horn-shaped protrusions
- the petal type has a shape with petal-shaped protrusions on the surface of the aggregate.
- the petal structure is a graphene sheet structure having a width of 50 nm to 200 nm and a thickness of 0.34 nm to 10 nm and 2 to 30 sheets.
- the petal-dahlia type is an intermediate structure between the dahlia type and the petal type.
- the form and particle size of the carbon nanohorn aggregate to be produced change depending on the type and flow rate of the gas.
- the fibrous carbon nanohorn assembly is also described in detail in International Publication No. 2016/147909. Transmission micrographs of fibrous carbon nanohorn assemblies are disclosed in FIGS. 1 and 2 of WO 2016/147909. In the fibrous carbon nanohorn aggregate shown in this transmission electron micrograph, single-layer carbon nanohorns (carbon nanohorn aggregate) that are radially assembled are connected in a fibrous form. All disclosures of WO 2016/147909 are incorporated herein by reference.
- Spherical carbon nanohorn aggregates are spherical carbon structures in which single-layer carbon nanohorns are radially assembled.
- the spherical carbon nanohorn aggregate has a diameter of about 30 nm to 200 nm and has a substantially uniform size.
- a part of the carbon skeleton may be replaced with a catalytic metal element, a nitrogen atom or the like.
- a catalyst-containing carbon is used as a target (referred to as a catalyst-containing carbon target), and while rotating the target in a container, a nitrogen atmosphere, an inert atmosphere, hydrogen, carbon dioxide, or , Heat and evaporate by laser ablation in a mixed atmosphere.
- a nitrogen atmosphere, an inert atmosphere, hydrogen, carbon dioxide, or , Heat and evaporate by laser ablation in a mixed atmosphere In the process of cooling the evaporated carbon and the catalyst, fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates are obtained.
- an arc discharge method or a resistance heating method can be used. However, the laser ablation method is more preferable from the viewpoint of continuous generation at room temperature and atmospheric pressure.
- the laser ablation method applied in the present invention irradiates a target with a laser in a pulsed or continuous manner, and when the irradiation intensity exceeds a threshold value, the target converts energy, and as a result, a plume is generated to produce a product.
- This is a method of depositing on a substrate provided downstream of the target or generating it in a space inside the apparatus and collecting it in a recovery chamber.
- a CO 2 laser, a YAG laser, an excimer laser, a semiconductor laser, or the like can be used, and the CO 2 laser, which can easily increase the output, is the most suitable.
- the CO 2 laser can use an output of 1 kW / cm 2 to 1000 kW / cm 2 , and can be performed by continuous irradiation and pulse irradiation. Continuous irradiation is preferable for the formation of fibrous carbon nanohorn aggregates.
- the laser light is focused by a ZnSe lens or the like and irradiated. In addition, it can be continuously synthesized by rotating the target.
- the target rotation speed can be set arbitrarily, but 0.1 rpm to 6 rpm is particularly preferable.
- Graphitization can be suppressed at 0.1 rpm or more, and an increase in amorphous carbon can be suppressed at 6 rpm or less.
- the laser output is preferably 15 kW / cm 2 or more, and 30 kW / cm 2 to 300 kW / cm 2 is the most effective.
- the target evaporates moderately, and the fibrous carbon nanohorn aggregate can be easily formed. Further, if it is 300 kW / cm 2 , the increase of amorphous carbon can be suppressed.
- the concentration of the catalyst can be appropriately selected, but is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 5% by mass, based on carbon. When it is 0.1% by mass or more, the formation of fibrous carbon nanohorn aggregates is ensured. Further, when it is 10% by mass or less, an increase in the target cost can be suppressed.
- the inside of the container can be used at any temperature, preferably 0 ° C to 100 ° C, and more preferably used at room temperature for mass synthesis and cost reduction.
- the above atmosphere is created by introducing nitrogen gas, inert gas, hydrogen gas, CO 2 gas, etc. into the container alone or in combination. From the viewpoint of cost, nitrogen gas and Ar gas are preferable. These gases circulate in the reaction vessel, and the produced substances can be recovered by this gas flow.
- the gas flow rate can be any amount, but preferably in the range of 0.5 L / min to 100 L / min. The gas flow rate is controlled to be constant in the process of evaporation of the target.
- the oxidation treatment When making fine holes (opening) in the carbon nanohorn aggregate, it can be done by oxidation treatment.
- oxidation treatment By this oxidation treatment, a surface functional group containing oxygen is formed in the pores.
- the oxidation treatment can use a gas phase process and a liquid phase process.
- heat treatment is performed in an atmospheric gas containing oxygen such as air, oxygen, and carbon dioxide. Above all, air is suitable from the viewpoint of cost.
- the temperature can be used in the range of 300 ° C. to 650 ° C., and 400 ° C. to 550 ° C. is more suitable. Holes can be reliably formed at 300 ° C. or higher. Further, at 650 ° C.
- the liquid phase process is carried out in a liquid containing an oxidizing substance such as nitric acid, sulfuric acid and hydrogen peroxide.
- an oxidizing substance such as nitric acid, sulfuric acid and hydrogen peroxide.
- nitric acid it can be used in the temperature range of room temperature to 120 ° C. If it is 120 ° C. or lower, it will not be oxidized more than necessary.
- hydrogen peroxide it can be used in a temperature range of room temperature to 100 ° C., and 40 ° C. or higher is more preferable.
- the oxidizing power acts efficiently, and pores can be formed efficiently.
- it is more effective to use light irradiation together.
- the catalyst contained in the carbon nanohorn aggregate can be removed as needed.
- the metal used as a catalyst dissolves in nitric acid, sulfuric acid and hydrochloric acid and can be removed. Hydrochloric acid is suitable from the viewpoint of ease of use.
- the temperature at which the catalyst is dissolved can be appropriately selected, but when the catalyst is sufficiently removed, it is desirable to heat the catalyst to 70 ° C. or higher. Further, when nitric acid or sulfuric acid is used, the catalyst can be removed and the pores can be formed at the same time or continuously.
- the catalyst since the catalyst may be covered with a carbon film when the carbon nanohorn aggregate is formed, it is desirable to perform a pretreatment to remove the carbon film. For pretreatment, it is desirable to heat in air at about 250 ° C to 450 ° C. At 300 ° C. or higher, some openings may be formed as described above.
- the amount of catalyst in the carbon mixture may be reduced, or the carbon mixture may not contain a catalyst. If present, the amount of catalyst is preferably 3% by mass or less, more preferably 1% by mass or less, based on the fibrous carbon nanohorn aggregate. When present, the lower limit of the amount of the catalyst is not particularly limited, but is preferably 0.01% by mass or more with respect to, for example, the fibrous carbon nanohorn aggregate.
- the amount of graphite in the carbon mixture may be reduced, or the carbon mixture may not contain graphite.
- Graphite has a different density from carbon nanohorn aggregates and can be separated by sedimentation separation. Since graphite is spherical with a diameter of several ⁇ m, has a small specific surface area, and has poor gas adsorption efficiency, a composite member having high sensitivity to gas can be produced by reducing the amount of graphite.
- the amount of graphite is preferably 3% by mass or less, more preferably 1% by mass or less, based on the fibrous carbon nanohorn aggregate.
- the lower limit of graphite is not particularly limited, but is preferably 0.01% by mass or more with respect to, for example, a fibrous carbon nanohorn aggregate.
- the crystallinity of the carbon nanohorn aggregate can be improved by heat treatment in a non-oxidizing atmosphere such as an inert gas, hydrogen, or vacuum.
- the heat treatment temperature can be 800 ° C. to 2000 ° C., but is preferably 1000 ° C. to 1500 ° C.
- a surface functional group containing oxygen is formed in the pore opening portion, which can be removed by heat treatment.
- the heat treatment temperature can be 150 ° C. to 2000 ° C.
- 150 ° C to 600 ° C is desirable for removing carboxyl groups, hydroxyl groups and the like, which are surface functional groups.
- the carbonyl group or the like, which is a surface functional group is preferably 600 ° C. or higher.
- surface functional groups can be removed by reduction in a gas or liquid atmosphere.
- Hydrogen can be used for reduction in a gaseous atmosphere, and can be used in combination with the above-mentioned improvement in crystallinity. Hydrazine and the like can be used in a liquid atmosphere.
- the porous body has breathability and / or liquid permeability.
- the porous body include a filter paper, a non-woven fabric, a woven fabric, a porous film, and the like, and more specifically, a synthetic resin membrane filter such as a fluororesin, a cellulose membrane filter, and a glass fiber filter can be mentioned.
- the pore size of the porous body is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less. With such a pore size range, carbon nanohorn aggregates can be deposited in the porous body.
- the pore size of the porous body is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and particularly preferably 3 ⁇ m or more. With such a pore size range, carbon nanohorn aggregates, particularly spherical carbon nanohorn aggregates, can enter the inside of the porous body.
- the pore size can be measured by, for example, a mercury press-fitting method.
- the pore size of the porous body may be preferably 0.1 ⁇ m or more.
- the shape of the porous body is not particularly limited, but is preferably a sheet shape.
- the thickness of the porous body is not particularly limited, but is, for example, 10 ⁇ m to 500 ⁇ m, and more specifically 50 ⁇ m to 300 ⁇ m.
- the composite member according to the present embodiment includes a porous body and a carbon mixture containing a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate.
- the carbon mixture is retained on the surface and inside of the porous body.
- the composite member can be produced by a step of filtering the carbon mixture dispersion liquid through the porous body and, if necessary, a step of drying the solvent remaining in the porous body. In this production method, the carbon mixture dispersion is filtered by the porous body, and a carbon mixture containing a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate remains as a residue on the surface and inside of the porous body.
- the solvent for dispersing the carbon mixture is not particularly limited, but for example, an organic solvent such as ethanol or isopropyl alcohol is preferable.
- top and bottom represent top and bottom in the thickness direction, and the direction in which more fibrous carbon nanohorn aggregates are present is top.
- the "upper part” is an upper portion in the thickness direction, and is preferably 0 to 50, more preferably 0 to 30, when the depth is 100.
- the "lower portion” is a lower portion in the thickness direction, and is preferably 50 to 100, more preferably 70 to 100, when the depth is 100.
- the fibrous carbon nanohorn aggregate is mainly entwined with the porous body at the upper part.
- the fibrous carbon nanohorn aggregates are preferably present in the upper part rather than the lower part of the porous body.
- the fibrous carbon nanohorn aggregate may not be present at the bottom of the porous body.
- the fibrous carbon nanohorn aggregate may be exposed on the surface of the porous body, preferably only on the upper surface of the porous body.
- Spherical carbon nanohorn aggregates may also be present in the upper part of the porous body, but may also be present in the lower part of the porous body. Spherical carbon nanohorn aggregates are preferably present more in the lower part than in the upper part of the porous body.
- the spherical carbon nanohorn aggregate may be exposed on the surface of the porous body, preferably only on the upper surface of the porous body.
- the spherical carbon nanohorn aggregate may aggregate inside the porous body, and the aggregate may have a particle diameter equal to or larger than the pore diameter of the porous body.
- FIG. 2 schematically shows a cross-sectional view of the composite member according to the present embodiment.
- a filter made of fibers is used as the porous body.
- the fibrous carbon nanohorn assembly is entwined and caught on the top of the filter.
- the spherical carbon nanohorn aggregate passes through the upper part of the filter, but aggregates at the lower part and cannot pass through the filter.
- the upper part of the filter has many fibrous carbon nanohorn aggregates
- the lower part of the filter has many spherical carbon nanohorn aggregates. Therefore, there is a layer containing the fibrous carbon nanohorn aggregate at a high concentration and a layer containing the spherical carbon nanohorn aggregate at a high concentration inside the filter.
- the amount of the fibrous carbon nanohorn aggregate is preferably 0.5% by mass or more, more preferably 1% by mass or more, based on the porous body.
- the amount of the fibrous carbon nanohorn aggregate is preferably 30% by mass or less, more preferably 10% by mass or less, based on the porous body.
- the fibrous carbon nanohorn aggregate can be concentrated on the upper part of the porous body.
- the amount of the fibrous carbon nanohorn aggregate present on the upper part of the porous body is preferably more than 50% by mass, more preferably 70% by mass or more, and further preferably 80% by mass of the entire fibrous carbon nanohorn aggregate contained in the composite member. It is mass% or more, and may be 100 mass%.
- the main conductive path of the composite member is formed of fibrous carbon nanohorn aggregates, and increasing the amount of fibrous carbon nanohorn aggregates on the upper part can improve the sensitivity of the gas sensor.
- the amount of the spherical carbon nanohorn aggregate is preferably 10% by mass or less, more preferably 5% by mass or less, based on the porous body.
- the amount of the spherical carbon nanohorn aggregate may be, for example, 0.1% by mass or more with respect to the porous body.
- the amount of spherical carbon nanohorn aggregates can be determined depending on the amount of fibrous carbon nanohorn aggregates required and the concentration of spherical carbon nanohorn aggregates in the carbon mixture. In one embodiment, it may be, for example, 10% by mass or more, for example, 10% by mass to 500% by mass, based on the porous body.
- Spherical carbon nanohorn aggregates can be concentrated in the lower part of the porous body.
- the amount of the spherical carbon nanohorn aggregate present in the lower part of the porous body is preferably more than 50% by mass, more preferably 70% by mass or more, still more preferably 80% by mass of the entire spherical carbon nanohorn aggregate contained in the composite member. As mentioned above, it may be 100% by mass.
- the gas adsorbed on the spherical carbon nanohorn aggregate is unlikely to contribute to the change in resistance value. Therefore, if the amount of the upper spherical carbon nanohorn aggregate is reduced (that is, the amount of the lower spherical carbon nanohorn aggregate is increased), the sensitivity of the gas sensor can be improved.
- the mass ratio (CNB / CNHs) of the fibrous carbon nanohorn aggregates to the spherical carbon nanohorn aggregates in the upper part of the porous body is preferably 2 or more, more preferably 3 or more, and further preferably 5 or more.
- FIG. 3 is a cross-sectional view showing the configuration of the gas sensor element.
- the gas sensor element includes a substrate 11, a composite member 12 provided on the substrate 11, and electrodes 13 and electrodes 14 for electrical measurement provided at, for example, both ends of the composite member 12.
- the material of the substrate 11 is not particularly limited as long as it has an insulating property.
- Examples of the material of the substrate 11 include silicon, glass, quartz, and insulating polymers such as polyethylene terephthalate, polyimide, polyethylene naphthalate, polyethersulfone, polyetherketone, polycarbonate, polypropylene, polyamide, polyacrylic acid, and polyacrylic. Examples thereof include acid esters, polyolefin resins, phenol resins, and epoxy resins.
- the gas sensor element can also detect the resistance change of the fibrous carbon nanohorn aggregate existing inside. This improves the sensitivity of the gas sensor. Further, since the porous body serves as a support for the fibrous carbon nanohorn aggregate, a stable three-dimensional network structure is constructed, and the resistance value detected by the gas sensor is easily stable.
- the materials of the electrode 13 and the electrode 14 are not particularly limited as long as they have conductivity, and examples thereof include gold, silver, platinum, palladium, nickel, tungsten, carbon, and alloys thereof.
- the electrodes 13 and 14 can be formed by depositing these materials on the composite member 12 or applying a conductive paste.
- the width and distance between the electrode 13 and the electrode 14 are not particularly limited as long as the gas component can be detected, but the width is preferably 0.5 mm or more and the distance is 0.5 mm or more because a conductor is formed on the filter. It is preferably 20 mm.
- a gas sensor element can be connected to the measuring unit to form a gas sensor.
- a detection target gas is supplied to the gas sensor element while a constant current (voltage) is applied between the electrodes 13 and 14, the composite member 12 (particularly the fibrous carbon nanohorn aggregate) detects the detection target gas.
- the resistance value of the composite member 12 changes due to adsorption.
- the detection target gas is desorbed from the composite member 12, and the resistance value of the composite member 12 returns to the original state.
- the change in conductivity of the composite member 12 due to adsorption and desorption of the detection target gas can be measured by the two-terminal measurement method to detect the detection target gas.
- the detection target gas of the gas sensor element of the present embodiment is, for example, nitrogen acid (NO x ), carbon oxide (CO x ), sulfur oxide (SO x ), ozone, ammonia, oxygen, hydrogen, halogen, ethanol, etc.
- Alcohols such as methanol and isopropyl alcohol, aliphatic hydrocarbons such as hexane, aldehydes, ethers, ketones such as acetone and methyl ethyl ketone, aromatic hydrocarbons such as nitro compounds, benzene and toluene, and organics such as dichloroethane. Examples include halogen compounds.
- a carbon mixture containing a fibrous carbon nanohorn aggregate and a spherical carbon nanohorn aggregate was prepared by CO 2 laser ablation of an iron-containing carbon target in a chamber under a nitrogen atmosphere. Specifically, a graphite target containing 1% by mass of iron was rotated at 2 rpm and continuously irradiated with a CO 2 laser. The energy density of the CO 2 laser was 50 kW / cm 2 . The temperature inside the chamber was set to room temperature, and the flow rate of nitrogen supplied into the chamber was adjusted to 10 L / min. The pressure in the chamber was controlled to 933.254 hPa to 1266.559 hPa (700 Torr to 950 Torr).
- fibrous carbon nanohorn aggregate When the carbon mixture was observed by SEM, a fibrous substance (fibrous carbon nanohorn aggregate), a spherical substance (spherical carbon nanohorn aggregate), and graphite were observed.
- the fibrous carbon nanohorn aggregate had a diameter of about 30 nm to 100 nm and a length of several ⁇ m to several tens of ⁇ m.
- Most of the spherical carbon nanohorn aggregates had a diameter in the range of about 30 to 200 nm and had a substantially uniform size.
- Graphite had a size of 1 ⁇ m to several tens of ⁇ m.
- the carbon mixture was 4% by mass of fibrous carbon nanohorn aggregates, 62% by mass of spherical carbon nanohorn aggregates, 21% by mass of graphite, and 13% by mass of iron oxide. It was confirmed that it was included.
- Example 1 10 mL of the obtained carbon mixture dispersion was put into a filter (MILLIPORE omnipore membrane filter) having a diameter of 47 mm, a thickness of 78 ⁇ m, and a pore diameter of 5 ⁇ m (the amount of the dispersion in the filter portion was about 1 mL / cm 2 ), and filtered under reduced pressure. .. Only clear ethanol passed through the filter, and the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate remained on the filter. Analysis of the ethanol that passed through showed that neither spherical carbon nanohorn aggregates nor fibrous carbon nanohorn aggregates were contained, and neither was observed on the lower surface of the filter.
- FIG. 4 is an SEM image of the upper surface of this filter observed.
- fibrous carbon nanohorn aggregates are entwined with the filter to form a three-dimensional network structure, and there is a large gap between the fibrous carbon nanohorn aggregates, and the spherical carbon nanohorn aggregates penetrate deep inside. .. This was dried and the central portion was cut to a size of 1.5 ⁇ 2 cm.
- the lower surface of this filter was attached onto a polyimide substrate, and gold electrodes were produced by vapor deposition at both ends of the upper surface of the filter so that the distance between the electrodes was 1 cm.
- Toluene gas was supplied to the gas sensor element manufactured as described above by a bubbling method.
- nitrogen gas was bubbled into toluene (manufactured by Kanto Chemical Co., Inc. with a purity of 99.7% or more) under normal pressure at a temperature of 20 ° C. to vaporize the toluene.
- the concentration of toluene gas supplied to the gas sensor element was controlled by mixing toluene gas and nitrogen gas at a predetermined flow rate ratio using a mass flow controller (SEC-4500M, SEC-E40 manufactured by Horiba STEC, Inc.). Further, the flow rate of the supplied gas was adjusted to 1.0 L / min.
- the gas sensor element is housed in a gas-filled chamber, a semiconductor parameter analyzer (Agilent 4155C manufactured by Agilent Technologies) is connected to the gold electrode via a lead wire, and a voltage of 50 ⁇ A bias current is applied between the two electrodes.
- a semiconductor parameter analyzer Alignment 4155C manufactured by Agilent Technologies
- a voltage of 50 ⁇ A bias current is applied between the two electrodes.
- the resistance value of the gas sensor element was measured while only nitrogen gas was supplied, and this was set as the reference value R0 .
- toluene gas was supplied only for 30 seconds, and the resistance value R of the gas sensor element was measured after 30 seconds.
- only nitrogen gas was supplied, and after confirming that the resistance value of the gas sensor returned to R 0 , the concentration of toluene gas was changed and the same measurement was performed.
- Example 2 The carbon mixture dispersion prepared as described above was put into a filter (MILLIPORE omnipore membrane filter) having the same amount as in Example 1, having a diameter of 47 mm, a thickness of 68 ⁇ m, and a pore size of 0.2 ⁇ m (the amount of the dispersion in the filter portion is Approximately 1 mL / cm 2 ), filtered under reduced pressure. Only clear ethanol passed through the filter, and the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate remained on the filter.
- FIG. 5 is an SEM image of the upper surface of this filter observed. It was observed that the spherical carbon nanohorn aggregates filled the gaps between the fibrous carbon nanohorn aggregates on the filter.
- a gas sensor element was produced and evaluated in the same manner as in Example 1 except that this filter was used instead of the filter of Example 1 in the gas adsorption portion.
- Example 1 The measurement results of Examples 1 and 2 and Comparative Example 1 are shown in Table 1.
- the gas sensor element detected toluene gas, but ⁇ R / R 0 , which indicates the sensitivity of the gas sensor, was higher in Examples 1 and 2 than in Comparative Example 1 at any concentration.
- ⁇ R is the amount of change in the resistance value R, and represents RR 0 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
ガスセンサー素子の感度を改善する複合部材を提供する。本実施形態の複合部材は、多孔体と、前記多孔体の表面および内部に保持されている繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物と、を有する。
Description
本発明は、複合部材、ガスセンサー素子、および複合部材の製造方法に関するものである。
空気中に浮遊する揮発性有機化合物(ガス)の種類は数十万種類あり、その中の特定のガスを検知したいという要求がある。複合材料として、これらのガスを吸着し易く、且つ導電性の良いナノカーボンが注目され、カーボンナノチューブや繊維状カーボンナノホーン集合体にガスを吸着させるガスセンサーが開発されている。例えば、特許文献1には、カーボンナノチューブを主成分とする感応層を備えるガス検知素子が開示されている。
しかし、カーボンナノチューブは凝集し易く、均一に分散しないため、均一な薄膜を作製することが困難である。このため、例えば特許文献1に記載されるガス検知素子を作製すると、全体的に厚みが不均一な薄膜が形成され、カーボンナノチューブの含有量も不均一だった。このように厚みが不均一な薄膜は、外部からの力によって容易に基板から剥離してしまい、基板上に安定に存在することが難しいという課題があった。一方、繊維状カーボンナノホーン集合体は分散性が良く、均一な薄膜を作製し易い。繊維状カーボンナノホーン集合体は、球状カーボンナノホーン集合体とともに生成するため、球状カーボンナノホーン集合体との混合物の状態で使用される。これを薄膜とすると、表面に繊維状カーボンナノホーン集合体とともに球状カーボンナノホーン集合体も多く存在することとなる。球状カーボンナノホーン集合体は、繊維状カーボンナノホーン集合体に比べて導電パスを形成せず、抵抗変化を検出しにくい。このため、繊維状カーボンナノホーン集合体を用いたガスセンサー素子は、感度が低いという問題点があった。
本発明の目的は、上述した課題を鑑み、ガスセンサー素子の感度を改善する複合部材を提供することにある。
本実施形態の第1の複合部材は、多孔体と、前記多孔体の表面および内部に保持されている繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物と、を有する。
本発明によれば、ガスセンサー素子の感度を改善する複合部材を提供できる。
この出願の発明は、上記の通りの特徴を持つものであるが、以下に実施の形態について説明する。但し、以下に述べる実施形態には本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
「CNB」は、繊維状カーボンナノホーン集合体を意味する。「CNHs」は、球状カーボンナノホーン集合体を意味する。「カーボンナノホーン集合体」は、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体の両方の意味を有する。
<炭素混合物>
炭素混合物は、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む。繊維状カーボンナノホーン集合体はカーボンナノブラシ(CNB)とも呼ばれ、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がった構造を有する。単層カーボンナノホーンはグラフェンシートが巻かれた構造の先端が先端角約20°の角(ホーン)状に尖った、円錐型の形状の炭素構造体である。繊維状カーボンナノホーン集合体は、直径が30nm~200nmであり、長さが1μm~100μm、例えば2μm~30μmである繊維状の炭素構造体である。繊維状カーボンナノホーン集合体の表面には、直径1nm~5nm、長さが30nm~100nmの単層カーボンナノホーンの突起を有している。導電性が高い単層カーボンナノホーンが繊維状に繋がり、長い導電性パスを持つ構造を特徴とするため、繊維状カーボンナノホーン集合体は高い導電性を有する。更に、繊維状カーボンナノホーン集合体は、高い分散性を併せ持っており、材料としての導電性付与の効果が高い。
炭素混合物は、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む。繊維状カーボンナノホーン集合体はカーボンナノブラシ(CNB)とも呼ばれ、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がった構造を有する。単層カーボンナノホーンはグラフェンシートが巻かれた構造の先端が先端角約20°の角(ホーン)状に尖った、円錐型の形状の炭素構造体である。繊維状カーボンナノホーン集合体は、直径が30nm~200nmであり、長さが1μm~100μm、例えば2μm~30μmである繊維状の炭素構造体である。繊維状カーボンナノホーン集合体の表面には、直径1nm~5nm、長さが30nm~100nmの単層カーボンナノホーンの突起を有している。導電性が高い単層カーボンナノホーンが繊維状に繋がり、長い導電性パスを持つ構造を特徴とするため、繊維状カーボンナノホーン集合体は高い導電性を有する。更に、繊維状カーボンナノホーン集合体は、高い分散性を併せ持っており、材料としての導電性付与の効果が高い。
繊維状カーボンナノホーン集合体は、種型、つぼみ型、ダリア型、ペタルダリア型、ペタル型(グラフェンシート構造)のカーボンナノホーン集合体が繋がって形成されている。すなわち、繊維状構造中に1種類または複数のこれらカーボンナノホーン集合体が含まれている。種型は集合体の表面に角状の突起がほとんどみられない、あるいは全くみられない形状、つぼみ型は集合体の表面に角状の突起が多少みられる形状、ダリア型は集合体の表面に角状の突起が多数みられる形状、ペタル型は集合体の表面に花びら状の突起がみられる形状である。ペタル構造は、幅は50nm~200nm、厚さは0.34nm~10nm、2枚~30枚のグラフェンシート構造である。ペタル-ダリア型はダリア型とペタル型の中間的な構造である。生成するカーボンナノホーン集合体は、ガスの種類や流量によってその形態および粒径が変わる。
繊維状カーボンナノホーン集合体は、国際公開第2016/147909号にも詳細に記載されている。国際公開第2016/147909号の図1および図2には繊維状カーボンナノホーン集合体の透過型顕微鏡写真が開示されている。この透過型顕微鏡写真で示される繊維状カーボンナノホーン集合体では、放射状に集合している単層カーボンナノホーン(カーボンナノホーン集合体)が、繊維状に繋がっている。国際公開第2016/147909号の開示の全てを引用によって本明細書に取り込む。
球状カーボンナノホーン集合体(CNHs)は、単層カーボンナノホーンが放射状に集合した球状の炭素構造体である。球状カーボンナノホーン集合体は、直径が30nm~200nm程度でほぼ均一なサイズである。
また、得られる繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体は、その炭素骨格の一部が触媒金属元素、窒素原子等で置換されていてもよい。
本実施形態に係る炭素混合物の作製方法では、触媒を含有した炭素をターゲット(触媒含有炭素ターゲットという)として、容器内でターゲットを回転させながら、窒素雰囲気、不活性雰囲気、水素、二酸化炭素、または、混合雰囲気下で、レーザーアブレーションにより加熱し、蒸発させる。蒸発した炭素と触媒が冷える過程で、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体が得られる。また、上記レーザーアブレーション法以外にアーク放電法や抵抗加熱法を用いることができる。しかしながら、レーザーアブレーション法は、室温、大気圧中で連続生成できる観点からより好ましい。
本発明で適用するレーザーアブレーション法は、レーザーをターゲットにパルス状または連続して照射して、照射強度が閾値以上になると、ターゲットがエネルギーを変換し、その結果、プルームが生成され、生成物をターゲットの下流に設けた基板上に堆積させる、或いは装置内の空間に生成させ、回収室で回収する方法である。
レーザーアブレーションには、CO2レーザー、YAGレーザー、エキシマレーザー、半導体レーザー等が使用可能で、高出力化が容易なCO2レーザーが最も適当である。CO2レーザーは、1kW/cm2~1000kW/cm2の出力が使用可能であり、連続照射およびパルス照射で行うことができる。繊維状カーボンナノホーン集合体の生成には連続照射の方が望ましい。レーザー光をZnSeレンズ等により集光させ、照射させる。また、ターゲットを回転させることで連続的に合成することが出来る。ターゲット回転速度は任意に設定できるが、0.1rpm~6rpmが特に好ましい、0.1rpm以上であればグラファイト化を抑制でき、また、6rpm以下であればアモルファスカーボンの増加を抑制できる。この時、レーザー出力は15kW/cm2以上が好ましく、30kW/cm2~300kW/cm2が最も効果的である。レーザー出力が15kW/cm2以上であれば、ターゲットが適度に蒸発し、繊維状カーボンナノホーン集合体の生成が容易となる。また300kW/cm2であれば、アモルファスカーボンの増加を抑制できる。容器(チャンバー)内の圧力は、13332.2hPa(10000Torr)以下で使用することができるが、圧力が真空に近くなるほど、カーボンナノチューブが生成しやすくなり、繊維状カーボンナノホーン集合体が得られなくなる。好ましくは666.61hPa(500Torr)~1266.56hPa(950Torr)で、より好ましくは常圧(1013hPa(1atm≒760Torr))付近で使用することが大量合成や低コスト化のためにも適当である。また照射面積もレーザー出力とレンズでの集光の度合いにより制御でき、0.005cm2~1cm2が使用できる。
触媒は、Fe、Ni、Coを単体で、または混合して使用することができる。触媒の濃度は適宜選択できるが、炭素に対して、0.1質量%~10質量%が好ましく、0.5質量%~5質量%がより好ましい。0.1質量%以上であると、繊維状カーボンナノホーン集合体の生成が確実となる。また、10質量%以下の場合は、ターゲットコストの増加を抑制できる。
容器内は任意の温度で使用でき、好ましくは、0℃~100℃であり、より好ましくは室温で使用することが大量合成や低コスト化のためにも適当である。
容器内には、窒素ガスや、不活性ガス、水素ガス、CO2ガス等を単独でまたは混合して導入することで上記の雰囲気とする。コストの面からは、窒素ガス、Arガスが好ましい。これらのガスは反応容器内を流通し、生成する物質をこのガスの流れによって回収することができる。ガス流量は、任意の量を使用できるが、好ましくは0.5L/min~100L/minの範囲が適当である。ターゲットが蒸発する過程ではガス流量を一定に制御する。
カーボンナノホーン集合体に微細な孔を開ける(開孔)場合は、酸化処理によって行うことができる。この酸化処理により、開孔部に酸素を含んだ表面官能基が形成される。また酸化処理は、気相プロセスと液相プロセスを使用できる。気相プロセスの場合は、空気、酸素、二酸化炭素等の酸素を含む雰囲気ガス中で熱処理して行う。中でも、コストの観点から空気が適している。また、温度は、300℃~650℃の範囲が使用でき、400℃~550℃がより適している。300℃以上で確実に開孔を形成できる。また、650℃以下ではカーボンナノホーン集合体の全体が燃焼することを抑制できる。液相プロセスの場合、硝酸、硫酸、過酸化水素等の酸化性物質を含む液体中で行う。硝酸の場合は、室温~120℃の温度範囲で使用できる。120℃以下であれば、必要以上に酸化されることがない。過酸化水素の場合、室温~100℃の温度範囲で使用でき、40℃以上がより好ましい。40℃~100℃の温度範囲では酸化力が効率的に作用し、効率よく開孔を形成できる。また液相プロセスのとき、光照射を併用するとより効果的である。
カーボンナノホーン集合体に含まれる触媒は、必要に応じて除去することができる。触媒として使用される金属は硝酸、硫酸、塩酸中で溶解するため除去できる。使いやすさの観点から、塩酸が適している。触媒を溶解する温度は適宜選択できるが、触媒を十分に除去する場合は、70℃以上に加熱して行うことが望ましい。また、硝酸、硫酸を用いる場合、触媒除去と開孔の形成とを同時にあるいは連続して行うことができる。また、触媒がカーボンナノホーン集合体の生成時に炭素被膜で覆われる場合があるため、炭素被膜を除去するために前処理を行うことが望ましい。前処理は空気中、250℃~450℃程度で加熱することが望ましい。300℃以上では上記のように一部開孔が形成されることがある。
本発明の一実施形態では、炭素混合物における触媒の量が低減されていてよく、または炭素混合物が触媒を含まなくてよい。存在する場合、触媒の量は、繊維状カーボンナノホーン集合体に対して、好ましくは3質量%以下、より好ましくは1質量%以下である。存在する場合、触媒の下限量は特に制限されないが、例えば繊維状カーボンナノホーン集合体に対して、好ましくは0.01質量%以上である。
本発明の一実施形態では、炭素混合物における触媒の量は低減されていなくてもよい。触媒の量は、例えば、繊維状カーボンナノホーン集合体に対して、500質量%以下であり、または繊維状カーボンナノホーン集合体に対して、50質量%以上である。
本発明の一実施形態では、炭素混合物におけるグラファイトの量が低減されていてよく、または炭素混合物がグラファイトを含まなくてよい。グラファイトは、カーボンナノホーン集合体と密度が異なり、沈降分離により分離できる。グラファイトは直径数μmの球状で比表面積が少なく、ガスの吸着効率が悪いため、グラファイトの量を低減することで、ガスに対する感度の高い複合部材を作製できる。存在する場合、グラファイトの量は、繊維状カーボンナノホーン集合体に対して、好ましくは3質量%以下、より好ましくは1質量%以下である。存在する場合、グラファイトの下限量は特に制限されないが、例えば繊維状カーボンナノホーン集合体に対して、好ましくは0.01質量%以上である。
カーボンナノホーン集合体は、不活性ガス、水素、真空中等の非酸化性雰囲気で熱処理することで結晶性を向上させることができる。熱処理温度は、800℃~2000℃が使用できるが、好ましくは1000℃~1500℃である。また、開孔処理後では、開孔部に酸素を含んだ表面官能基が形成されるが、熱処理により除去することもできる。その熱処理温度は、150℃~2000℃が使用できる。表面官能基であるカルボキシル基、水酸基等を除去するには150℃~600℃が望ましい。表面官能基であるカルボニル基等は、600℃以上が望ましい。また、表面官能基は、気体または液体雰囲気下で還元することによって除去することができる。気体雰囲気下での還元には、水素が使用でき、上記の結晶性の向上と兼用することができる。液体雰囲気下では、ヒドラジン等が利用できる。
<多孔体>
多孔体は、通気性および/または通液性を有する。多孔体としては、例えば、ろ紙、不織布、織布、多孔質膜等が挙げられ、より具体的には、フッ素樹脂等の合成樹脂メンブレンフィルター、セルロースメンブレンフィルター、ガラス繊維フィルターが挙げられる。
多孔体は、通気性および/または通液性を有する。多孔体としては、例えば、ろ紙、不織布、織布、多孔質膜等が挙げられ、より具体的には、フッ素樹脂等の合成樹脂メンブレンフィルター、セルロースメンブレンフィルター、ガラス繊維フィルターが挙げられる。
多孔体の孔径は、好ましくは20μm以下、より好ましくは15μm以下、特に好ましくは10μm以下である。このような孔径範囲とすることで、カーボンナノホーン集合体を多孔体内に堆積させることができる。多孔体の孔径は、好ましくは1μm以上、より好ましくは2μm以上、特に好ましくは3μm以上である。このような孔径範囲とすることで、カーボンナノホーン集合体、特には球状カーボンナノホーン集合体が多孔体の内部に入り込むことができる。孔径は、例えば水銀圧入法により測定することができる。本実施形態の一態様においては、多孔体の孔径は、好ましくは、0.1μm以上であってもよい。
多孔体の形状は特には限定されないが、好ましくはシート状である。多孔体の厚さは、特に限定されないが、例えば、10μm~500μm、より具体的には50μm~300μmである。
<複合部材>
本実施形態に係る複合部材は、多孔体と、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物と、を有する。炭素混合物は、多孔体の表面および内部に保持されている。複合部材は、炭素混合物分散液を多孔体でろ過する工程、および必要に応じて多孔体に残留した溶媒を乾燥させる工程により製造できる。この製造方法において、炭素混合物分散液は、多孔体によりろ過され、残渣として繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物が多孔体の表面および内部に残留する。ろ過は、自然ろ過、減圧ろ過、加圧ろ過等公知の方法を用いることができる。この製造方法は、低コストであり、さらに量産性に優れている。炭素混合物を分散する溶媒は、特に限定されないが、例えば、エタノール、イソプロピルアルコール等の有機溶媒が好ましい。
本実施形態に係る複合部材は、多孔体と、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物と、を有する。炭素混合物は、多孔体の表面および内部に保持されている。複合部材は、炭素混合物分散液を多孔体でろ過する工程、および必要に応じて多孔体に残留した溶媒を乾燥させる工程により製造できる。この製造方法において、炭素混合物分散液は、多孔体によりろ過され、残渣として繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物が多孔体の表面および内部に残留する。ろ過は、自然ろ過、減圧ろ過、加圧ろ過等公知の方法を用いることができる。この製造方法は、低コストであり、さらに量産性に優れている。炭素混合物を分散する溶媒は、特に限定されないが、例えば、エタノール、イソプロピルアルコール等の有機溶媒が好ましい。
多孔体または複合部材の厚さ方向で繊維状カーボンナノホーン集合体の含有量に差があってよい。本明細書では、他に記載がなければ、「上」および「下」は、厚さ方向における上および下を表し、繊維状カーボンナノホーン集合体がより多く存在する方向を上とする。本明細書では、「上部」は、厚さ方向における上側の部分であり、深さを100としたときに、好ましくは0~50、より好ましくは0~30の深さである。本明細書では、「下部」は、厚さ方向における下側の部分であり、深さを100としたときに、好ましくは50~100、より好ましくは70~100の深さである。
繊維状カーボンナノホーン集合体は、主には上部にて多孔体に絡みついている。繊維状カーボンナノホーン集合体は、好ましくは多孔体の下部よりも上部に多く存在する。これにより、複合部材をガスセンサーに用いたときにガスセンサーの感度を向上させることができる。繊維状カーボンナノホーン集合体は多孔体の下部には存在しなくてもよい。繊維状カーボンナノホーン集合体は、多孔体の表面に露出してよく、好ましくは多孔体の上表面のみに露出する。
球状カーボンナノホーン集合体も多孔体の上部に存在してよいが、多孔体の下部にも存在してよい。球状カーボンナノホーン集合体は、好ましくは多孔体の上部よりも下部に多く存在する。球状カーボンナノホーン集合体は、多孔体の表面に露出してよく、好ましくは多孔体の上表面のみに露出する。本発明の一実施形態においては、球状カーボンナノホーン集合体は、多孔体内部にて凝集してよく、凝集体は、多孔体の孔径以上の粒子径であってよい。
図2に本実施形態に係る複合部材の断面図を模式的に示す。図2の複合部材では、多孔体として繊維から成るフィルターを使用している。繊維状カーボンナノホーン集合体はフィルターの上部に絡みついて引っ掛かっている。また、球状カーボンナノホーン集合体はフィルターの上部を通過するが、下部で凝集して、フィルターを通過できなくなっている。フィルターの上部は繊維状カーボンナノホーン集合体が多く、フィルターの下部では球状カーボンナノホーン集合体が多くなる。従って、フィルター内部に繊維状カーボンナノホーン集合体を高濃度で含む層と球状カーボンナノホーン集合体を高濃度で含む層が存在することとなる。
繊維状カーボンナノホーン集合体の量は、多孔体に対して、好ましくは0.5質量%以上、より好ましくは1質量%以上である。繊維状カーボンナノホーン集合体の量は、多孔体に対して、好ましくは30質量%以下、より好ましくは10質量%以下である。
繊維状カーボンナノホーン集合体は、多孔体の上部に集中して存在し得る。多孔体の上部に存在する繊維状カーボンナノホーン集合体の量は、好ましくは、複合部材に含まれる繊維状カーボンナノホーン集合体全体の50質量%超、より好ましくは70質量%以上、さらに好ましくは80質量%以上であり、100質量%であってもよい。複合部材の主な導電パスは繊維状カーボンナノホーン集合体で形成されており、上部の繊維状カーボンナノホーン集合体の量を増加させると、ガスセンサーの感度を向上させることができる。
球状カーボンナノホーン集合体の量は、多孔体に対して、好ましくは10質量%以下、より好ましくは5質量%以下である。球状カーボンナノホーン集合体の量は、多孔体に対して、例えば0.1質量%以上であってよい。球状カーボンナノホーン集合体の量は、必要とする繊維状カーボンナノホーン集合体の量と、炭素混合物中の球状カーボンナノホーン集合体の濃度に応じて決定され得る。一実施形態においては、例えば、多孔体に対して、10質量%以上、例えば10質量%~500質量%であってもよい。
球状カーボンナノホーン集合体は、多孔体の下部に集中して存在し得る。多孔体の下部に存在する球状カーボンナノホーン集合体の量は、好ましくは、複合部材に含まれる球状カーボンナノホーン集合体全体の50質量%超、より好ましくは70質量%以上、さらに好ましくは80質量%以上であり、100質量%であってもよい。球状カーボンナノホーン集合体に吸着したガスは抵抗値の変化に寄与しにくい。このため、上部の球状カーボンナノホーン集合体の量を低減させる(即ち、下部の球状カーボンナノホーン集合体の量を増加させる)と、ガスセンサーの感度を向上させることができる。
多孔体の上部における球状カーボンナノホーン集合体に対する繊維状カーボンナノホーン集合体の質量比率(CNB/CNHs)は、好ましくは2以上であり、より好ましくは3以上であり、さらに好ましくは5以上である。
<ガスセンサー素子>
本実施形態に係る複合部材をガスセンサー素子のガス吸着部として用いることができる。図3は、ガスセンサー素子の構成を示す断面図である。ガスセンサー素子は、基板11と、基板11上に設けられる複合部材12と、複合部材12の例えば両端に設けられる電気測定用の電極13および電極14とを含む。繊維状カーボンナノホーン集合体の含有量が少ない、複合部材12の下側(下表面)が、基板と対向している。繊維状カーボンナノホーン集合体の含有量が多い、複合部材12の上側(上表面)が、電極13および電極14と対向している。
本実施形態に係る複合部材をガスセンサー素子のガス吸着部として用いることができる。図3は、ガスセンサー素子の構成を示す断面図である。ガスセンサー素子は、基板11と、基板11上に設けられる複合部材12と、複合部材12の例えば両端に設けられる電気測定用の電極13および電極14とを含む。繊維状カーボンナノホーン集合体の含有量が少ない、複合部材12の下側(下表面)が、基板と対向している。繊維状カーボンナノホーン集合体の含有量が多い、複合部材12の上側(上表面)が、電極13および電極14と対向している。
基板11の材料は、絶縁性を有するものであれば特に限定されない。基板11の材料としては、例えば、シリコン、ガラス、石英、絶縁性ポリマー、例えば、ポリエチレンテレフタレート、ポリイミド、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルケトン、ポリカーボネート、ポリプロピレン、ポリアミド、ポリアクリル酸、ポリアクリル酸エステル、ポリオレフィン系樹脂、フェノール樹脂、エポキシ樹脂等が挙げられる。
繊維状カーボンナノホーン集合体は多孔体に絡みつき、三次元網目構造を形成するため、ガスセンサー素子は内部に存在する繊維状カーボンナノホーン集合体の抵抗変化も検出できる。これによりガスセンサーの感度が向上する。また、多孔体が繊維状カーボンナノホーン集合体の支持体となっているため、安定した三次元網目構造が構築され、ガスセンサーが検出する抵抗値も安定し易い。
電極13と電極14の材料は導電性を有するものであれば特に限定されないが、例えば、金、銀、白金、パラジウム、ニッケル、タングステン、カーボンまたはそれらの合金が挙げられる。電極13と電極14は、これらの材料を複合部材12上に蒸着あるいは導電性ペーストを塗布する等の方法で形成できる。電極13と電極14の幅や距離はガス成分を検出可能な範囲であれば特に限定されないが、フィルター上に導電体を形成するため、幅は0.5mm以上が好ましく、距離は0.5mm~20mmであることが好ましい。
ガスセンサー素子を測定部に接続し、ガスセンサーとすることができる。電極13と電極14間に一定電流(電圧)が印加された状態で、検知対象ガスがガスセンサー素子に供給されると、複合部材12(特には繊維状カーボンナノホーン集合体)が検知対象ガスを吸着し、複合部材12の抵抗値が変化する。検知対象ガスの供給が停止すると、複合部材12から検知対象ガスが脱離し、複合部材12の抵抗値が元の状態に戻る。検知対象ガスの吸着脱離による複合部材12の導電性変化を二端子測定法で測定し、検知対象ガスを検出することができる。
本実施形態のガスセンサー素子の検知対象ガスは、例えば、窒素酸(NOx)、炭素酸化物(COx)、硫黄酸化物(SOx)、オゾン、アンモニア、酸素、水素、ハロゲン、エタノール、メタノール、イソプロピルアルコール等のアルコール類、ヘキサン等の脂肪族炭化水素類、アルデヒド類、エーテル類、アセトン、メチルエチルケトン等のケトン類、ニトロ化合物、ベンゼン、トルエン等の芳香族炭化水素類、ジクロロエタン等の有機ハロゲン化合物等が挙げられる。
<炭素混合物分散液>
窒素雰囲気下のチャンバー内で、鉄を含有した炭素ターゲットをCO2レーザーアブレーションすることで繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物を作製した。詳細には、鉄を1質量%含有するグラファイトターゲットを、2rpmで回転させて、これにCO2レーザーを連続的に照射した。CO2レーザーのエネルギー密度は、50kW/cm2であった。チャンバー内の温度は室温とし、チャンバー内に供給する窒素の流量を10L/minになるように調整した。チャンバー内の圧力は933.254hPa~1266.559hPa(700Torr~950Torr)に制御した。
窒素雰囲気下のチャンバー内で、鉄を含有した炭素ターゲットをCO2レーザーアブレーションすることで繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物を作製した。詳細には、鉄を1質量%含有するグラファイトターゲットを、2rpmで回転させて、これにCO2レーザーを連続的に照射した。CO2レーザーのエネルギー密度は、50kW/cm2であった。チャンバー内の温度は室温とし、チャンバー内に供給する窒素の流量を10L/minになるように調整した。チャンバー内の圧力は933.254hPa~1266.559hPa(700Torr~950Torr)に制御した。
炭素混合物をSEM観察すると、繊維状の物質(繊維状カーボンナノホーン集合体)と球状の物質(球状カーボンナノホーン集合体)とグラファイトが観察された。繊維状カーボンナノホーン集合体は、直径が30nm~100nm程度で、長さが数μm~数10μmであった。球状カーボンナノホーン集合体は、直径が30~200nm程度の範囲でほぼ均一なサイズのものが多くを占めていた。グラファイトは、大きさが1μm~数10μmであった。
熱重量分析、および動的光散乱法による粒度分布測定から、炭素混合物は、繊維状カーボンナノホーン集合体4質量%、球状カーボンナノホーン集合体62質量%、グラファイト21質量%、酸化鉄13質量%を含んでいることが確認された。
得られた炭素混合物100mgをエタノール100mLに分散させ、12時間以上静置した。静置した液全体の50%の量の上澄みを回収して、グラファイトを除去した炭素混合物分散液を作製した。
<実施例1>
得られた炭素混合物分散液10mLを直径47mm、膜厚78μm、孔径5μmのフィルター(MILLIPORE社製オムニポアメンブレンフィルター)に投入し(フィルター部分の分散液量は約1mL/cm2)、減圧ろ過した。透明なエタノールのみフィルターを通り抜け、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体はフィルターに留まった。通り抜けたエタノールを分析すると、球状カーボンナノホーン集合体も繊維状カーボンナノホーン集合体も含まれておらず、フィルターの下表面にも両者は観察されなかった。図4はこのフィルターの上表面を観察したSEM像である。フィルター上部では繊維状カーボンナノホーン集合体がフィルターに絡みついて三次元網目構造を形成し、繊維状カーボンナノホーン集合体間には大きな隙間が空いており、球状カーボンナノホーン集合体は内部奥に入り込んでいる。これを乾燥させ、中央部分を1.5×2cmの大きさに切断した。このフィルターの下表面をポリイミド製基板の上に貼りつけ、フィルターの上表面の両端に電極間距離が1cmになるように金電極を蒸着で作製した。
得られた炭素混合物分散液10mLを直径47mm、膜厚78μm、孔径5μmのフィルター(MILLIPORE社製オムニポアメンブレンフィルター)に投入し(フィルター部分の分散液量は約1mL/cm2)、減圧ろ過した。透明なエタノールのみフィルターを通り抜け、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体はフィルターに留まった。通り抜けたエタノールを分析すると、球状カーボンナノホーン集合体も繊維状カーボンナノホーン集合体も含まれておらず、フィルターの下表面にも両者は観察されなかった。図4はこのフィルターの上表面を観察したSEM像である。フィルター上部では繊維状カーボンナノホーン集合体がフィルターに絡みついて三次元網目構造を形成し、繊維状カーボンナノホーン集合体間には大きな隙間が空いており、球状カーボンナノホーン集合体は内部奥に入り込んでいる。これを乾燥させ、中央部分を1.5×2cmの大きさに切断した。このフィルターの下表面をポリイミド製基板の上に貼りつけ、フィルターの上表面の両端に電極間距離が1cmになるように金電極を蒸着で作製した。
上記のように作製したガスセンサー素子に、バブリング方式でトルエンガスを供給した。ここでは、温度20℃、常圧下で窒素ガスをトルエン(関東化学社製 純度99.7%以上)中にバブリングしてトルエンを気化させた。トルエンガスと窒素ガスをマスフローコントローラー(堀場エステック社製 SEC-4500M、SEC-E40)を用いて所定の流量比で混合することにより、ガスセンサー素子に供給するトルエンガス濃度を制御した。また、供給するガスの流量は1.0L/minになるように調整した。
ガスセンサー素子をガス封入チャンバーに格納し、金電極にリード線を介して、半導体パラメータアナライザ(Agilent Technologies社製Agilent 4155C)を接続し、2つの電極間に50μAのバイアス電流を印加した状態で電圧を測定した。まず、窒素ガスのみが供給された状態でガスセンサー素子の抵抗値を測定し、これを基準値R0とした。次に、トルエンガスを30秒間のみ供給し、30秒後のガスセンサー素子の抵抗値Rを測定した。その後、窒素ガスのみを供給し、ガスセンサーの抵抗値がR0に戻ったことを確認後、トルエンガスの濃度を変更して同様の測定を行った。
<比較例1>
上記の通り調製した炭素混合物分散液を実施例1と単位面積あたり同量、1.5×2cmの大きさのポリイミドフィルム上に投入して乾燥を繰り返し、キャスト膜を作製した。キャスト膜の表面を観察したSEM像を図1に示す。図1では、繊維状カーボンナノホーン集合体の隙間をびっしりと球状カーボンナノホーン集合体が埋めている様子が観察されている。ガス吸着部に実施例1のフィルターの代わりにこのキャスト膜を用いた以外は実施例1と同様にガスセンサー素子の作製、評価を行った。
上記の通り調製した炭素混合物分散液を実施例1と単位面積あたり同量、1.5×2cmの大きさのポリイミドフィルム上に投入して乾燥を繰り返し、キャスト膜を作製した。キャスト膜の表面を観察したSEM像を図1に示す。図1では、繊維状カーボンナノホーン集合体の隙間をびっしりと球状カーボンナノホーン集合体が埋めている様子が観察されている。ガス吸着部に実施例1のフィルターの代わりにこのキャスト膜を用いた以外は実施例1と同様にガスセンサー素子の作製、評価を行った。
<実施例2>
上記の通り調製した炭素混合物分散液を実施例1と同量、直径47mm、膜厚68μm、孔径0.2μmのフィルター(MILLIPORE社製オムニポアメンブレンフィルター)に投入し(フィルター部分の分散液量は約1mL/cm2)、減圧ろ過した。透明なエタノールのみフィルターを通り抜け、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体はフィルターに留まった。図5はこのフィルターの上表面を観察したSEM像である。フィルター上で繊維状カーボンナノホーン集合体の隙間を球状カーボンナノホーン集合体が埋めている様子が観察された。ガス吸着部に実施例1のフィルターの代わりにこのフィルターを用いた以外は実施例1と同様にガスセンサー素子の作製、評価を行った。
上記の通り調製した炭素混合物分散液を実施例1と同量、直径47mm、膜厚68μm、孔径0.2μmのフィルター(MILLIPORE社製オムニポアメンブレンフィルター)に投入し(フィルター部分の分散液量は約1mL/cm2)、減圧ろ過した。透明なエタノールのみフィルターを通り抜け、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体はフィルターに留まった。図5はこのフィルターの上表面を観察したSEM像である。フィルター上で繊維状カーボンナノホーン集合体の隙間を球状カーボンナノホーン集合体が埋めている様子が観察された。ガス吸着部に実施例1のフィルターの代わりにこのフィルターを用いた以外は実施例1と同様にガスセンサー素子の作製、評価を行った。
実施例1と2および比較例1の測定結果を表1に示す。いずれの例でも、ガスセンサー素子は、トルエンガスを検出したが、ガスセンサーの感度を示す△R/R0は、いずれの濃度においても、実施例1と2は比較例1よりも高かった。△Rは抵抗値Rの変化量であり、R-R0を表す。
この出願は、2019年6月12日に出願された日本出願特願2019-109409を基礎とする優先権を主張し、その開示の全てをここに取り込む。
以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
11 基板
12 複合部材
13 電極
14 電極
12 複合部材
13 電極
14 電極
Claims (9)
- 多孔体と、前記多孔体の表面および内部に保持されている繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体を含む炭素混合物と、を有する複合部材。
- 前記多孔体の孔径が1μm以上20μm以下である、請求項1に記載の複合部材。
- 厚さ方向下部よりも厚さ方向上部に前記繊維状カーボンナノホーン集合体が多く存在する、請求項1または2に記載の複合部材。
- 厚さ方向上部よりも厚さ方向下部に前記球状カーボンナノホーン集合体が多く存在する、請求項1~3のいずれか1項に記載の複合部材。
- 前記繊維状カーボンナノホーン集合体に対して3質量%以下の量で触媒を含む、または触媒を含まない、請求項1~4のいずれか1項に記載の複合部材。
- 前記繊維状カーボンナノホーン集合体が開孔を有する、請求項1~5のいずれか1項に記載の複合部材。
- 前記多孔体が、織布、不織布、または多孔質膜である、請求項1~6のいずれか1項に記載の複合部材。
- 請求項1~7のいずれか1項に記載の複合部材を含むガスセンサー素子。
- 球状カーボンナノホーン集合体をおよび繊維状カーボンナノホーン集合体を含む炭素混合物分散液を多孔体でろ過する工程を含む、請求項1~7のいずれか1項に記載の複合部材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021526098A JP7192988B2 (ja) | 2019-06-12 | 2020-06-09 | 複合部材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-109409 | 2019-06-12 | ||
JP2019109409 | 2019-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020250894A1 true WO2020250894A1 (ja) | 2020-12-17 |
Family
ID=73780767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022713 WO2020250894A1 (ja) | 2019-06-12 | 2020-06-09 | 複合部材 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7192988B2 (ja) |
WO (1) | WO2020250894A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230083817A (ko) * | 2021-12-03 | 2023-06-12 | 주식회사 제이오 | 1-step 공정으로 제조한 이종 나노카본 및 이종 나노카본 제조방법 |
WO2024043324A1 (ja) * | 2022-08-25 | 2024-02-29 | 三菱マテリアル株式会社 | ガスセンサ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003261312A (ja) * | 2002-03-07 | 2003-09-16 | Japan Science & Technology Corp | ナノホーン担持体とその製造方法 |
JP2014130050A (ja) * | 2012-12-28 | 2014-07-10 | Environment Energy Nanotech Research Institute Co Ltd | カーボンナノホーンを含む放射線遮蔽剤及び放射線遮蔽用組成物並びにその利用 |
EP3235559A1 (en) * | 2014-12-19 | 2017-10-25 | Bioneer Corporation | Binder-coupled carbon nanostructure nano-porous membrane and manufacturing method therefor |
WO2018146810A1 (ja) * | 2017-02-13 | 2018-08-16 | 日本電気株式会社 | 分散液およびその製造方法、ガスセンサおよびその製造方法 |
-
2020
- 2020-06-09 WO PCT/JP2020/022713 patent/WO2020250894A1/ja active Application Filing
- 2020-06-09 JP JP2021526098A patent/JP7192988B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003261312A (ja) * | 2002-03-07 | 2003-09-16 | Japan Science & Technology Corp | ナノホーン担持体とその製造方法 |
JP2014130050A (ja) * | 2012-12-28 | 2014-07-10 | Environment Energy Nanotech Research Institute Co Ltd | カーボンナノホーンを含む放射線遮蔽剤及び放射線遮蔽用組成物並びにその利用 |
EP3235559A1 (en) * | 2014-12-19 | 2017-10-25 | Bioneer Corporation | Binder-coupled carbon nanostructure nano-porous membrane and manufacturing method therefor |
WO2018146810A1 (ja) * | 2017-02-13 | 2018-08-16 | 日本電気株式会社 | 分散液およびその製造方法、ガスセンサおよびその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230083817A (ko) * | 2021-12-03 | 2023-06-12 | 주식회사 제이오 | 1-step 공정으로 제조한 이종 나노카본 및 이종 나노카본 제조방법 |
KR102626027B1 (ko) | 2021-12-03 | 2024-01-17 | 주식회사 제이오 | 1-step 공정으로 제조한 이종 나노카본 및 이종 나노카본 제조방법 |
WO2024043324A1 (ja) * | 2022-08-25 | 2024-02-29 | 三菱マテリアル株式会社 | ガスセンサ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020250894A1 (ja) | 2020-12-17 |
JP7192988B2 (ja) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102182553B1 (ko) | 탄소 담체 상에 담지된 단일원자 촉매의 제조방법 | |
JP6198810B2 (ja) | 触媒担体用炭素材料 | |
JP7260141B2 (ja) | 繊維状カーボンナノホーン集合体を含んだ平面構造体 | |
AU2006314401B2 (en) | Carbon nanotubes functionalized with fullerenes | |
WO2020250894A1 (ja) | 複合部材 | |
JP7088014B2 (ja) | 電磁波吸収材料 | |
US20180162735A1 (en) | Nanocarbon composite material and method for manufacturing same | |
EP2305601B1 (en) | Nanotube-nanohorn composite and process for production thereof | |
JP5412848B2 (ja) | 微細構造材料の製造方法 | |
JP6856079B2 (ja) | 分散液およびその製造方法、ガスセンサおよびその製造方法 | |
JP6922893B2 (ja) | 吸着材 | |
US20070027029A1 (en) | Catalyst support, gas storage body and method for producing these | |
JP2018174078A (ja) | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法、並びに前記触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体 | |
JP7107394B2 (ja) | 延伸成形体 | |
WO2020158674A1 (ja) | ナノカーボン材料集合体およびこれを含む電気化学反応用触媒 | |
KR20170120908A (ko) | 탄소 담지체 제조방법 및 이에 의하여 제조된 탄소 담지체 | |
WO2019116893A1 (ja) | 繊維状のカーボンナノホーン集合体の短尺化方法及び短尺化された繊維状のカーボンナノホーン集合体 | |
TW202140380A (zh) | 碳材及碳材的製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20822958 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021526098 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20822958 Country of ref document: EP Kind code of ref document: A1 |