WO2020156567A1 - 用于无线通信系统的设备、方法和存储介质 - Google Patents

用于无线通信系统的设备、方法和存储介质 Download PDF

Info

Publication number
WO2020156567A1
WO2020156567A1 PCT/CN2020/074204 CN2020074204W WO2020156567A1 WO 2020156567 A1 WO2020156567 A1 WO 2020156567A1 CN 2020074204 W CN2020074204 W CN 2020074204W WO 2020156567 A1 WO2020156567 A1 WO 2020156567A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
location
information
positioning
terminal
Prior art date
Application number
PCT/CN2020/074204
Other languages
English (en)
French (fr)
Inventor
刘福良
王昭诚
曹建飞
Original Assignee
索尼公司
刘福良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 刘福良 filed Critical 索尼公司
Priority to JP2021544936A priority Critical patent/JP7472913B2/ja
Priority to EP20748048.4A priority patent/EP3920609A1/en
Priority to US17/414,960 priority patent/US20220060854A1/en
Priority to CN202080010916.9A priority patent/CN113383586A/zh
Publication of WO2020156567A1 publication Critical patent/WO2020156567A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present invention generally relates to wireless communication systems, and particularly relates to beam management techniques in wireless communication systems.
  • 3GPP considers using frequency bands above 6 GHz with rich spectrum resources to provide high-speed data services, and uses beamforming technology to overcome path loss in high frequency bands.
  • the terminal equipment on the vehicle needs to perform beam search to determine the optimal downlink transmission beam at the base station side, which often leads to a higher delay.
  • beam search failures will occur frequently, and higher overhead is required to achieve beam recovery and/or switching. Therefore, research on fast beam search and beam switching mechanisms is of great significance to high-speed train and vehicle communication systems.
  • the present disclosure proposes an improved technology for precise positioning of mobile devices on vehicles.
  • the present disclosure also proposes a technology for beam searching and/or beam switching based on the position of the accurately positioned mobile device.
  • the present disclosure provides devices, methods, and storage media for wireless communication systems.
  • the location management device includes a processing circuit configured to: obtain location information of at least one terminal device on the terminal side in the wireless communication system, wherein the at least one terminal device has a specific location configuration Information; and based on the specific location configuration information of the at least one terminal device and the location information of the at least one terminal device, determine the location information of the target terminal device in the at least one terminal device.
  • the electronic device includes a processing circuit configured to obtain positioning information of at least one terminal device on the terminal side in the wireless communication system served by the electronic device, wherein the at least one terminal device Having specific location configuration information; sending the location information of the at least one terminal device to the location management device in the wireless communication system for the location management device to use the location information and the specific location information of the at least one terminal device
  • the location configuration information is used to determine the location information of the terminal device; and the determined location information of the at least one terminal device is received from the location management device.
  • the terminal device includes a processing circuit configured to: obtain a positioning information measurement configuration of an electronic device from the control side of a wireless communication system serving the terminal device; determine according to the positioning information measurement configuration Location information of the terminal device; and sending the location information of the terminal device to the location management device in the wireless communication system for the location management device to base on the location information and at least one terminal including the terminal device
  • the specific location configuration information of the device determines the location information of the terminal device.
  • the method includes: a terminal device sending an indication of a communication scene in which the terminal device is located to a position management device, the communication scene including a communication scene in which the terminal device moves along a specific track; and the position management The device locates the terminal device based on the communication scenario instruction.
  • Another aspect of the present disclosure relates to a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the aforementioned method.
  • the wireless communication device includes a processor and a storage device, the storage device stores executable instructions, which when executed, implement the aforementioned method.
  • the present disclosure can accurately locate at least one mobile terminal device on a train or vehicle to improve positioning accuracy, thereby quickly and accurately determining the position of the mobile terminal device for positioning tracking. Moreover, the present disclosure can also perform a fast positioning-assisted beam search and beam switching solution with lower delay and overhead based on the position of each mobile terminal device that is accurately positioned, so as to meet the requirements of the mobile terminal device when the mobile terminal device moves quickly. Requirements for both delay and reliability of communication.
  • FIG. 1 is a diagram schematically showing a wireless communication system according to an embodiment of the present disclosure
  • Fig. 2 is a basic signaling flowchart schematically showing a cooperative positioning according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram schematically showing an example structure of a location management device according to an embodiment of the present disclosure
  • Fig. 4 schematically shows a flow chart of the operation of a location management device according to an embodiment of the present disclosure
  • FIG. 5 is a diagram schematically showing a plurality of terminal devices arranged along a specific trajectory according to an embodiment of the present disclosure
  • FIG. 6 is a diagram schematically showing the basic principle of OTDOA positioning according to an embodiment of the present disclosure
  • FIG. 7 is a diagram schematically showing the basic principle of downlink transmission beam positioning according to an embodiment of the present disclosure.
  • FIG. 8 is an exemplary signaling flowchart schematically showing cooperative positioning according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram schematically showing a linear fitting result of positioning and tracking a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram schematically showing a comparison of positioning distance errors between coordinated positioning assisted positioning tracking and individual positioning tracking according to an embodiment of the present disclosure
  • FIG. 11 is a diagram schematically showing a comparison of positioning angle errors between coordinated positioning assisted positioning tracking and individual positioning tracking according to an embodiment of the present disclosure
  • FIG. 12 is a diagram schematically showing a beam search of positioning assistance according to an embodiment of the present disclosure.
  • FIG. 13 is a signaling flowchart schematically showing a beam search of positioning assistance according to an embodiment of the present disclosure
  • FIG. 14 is a diagram schematically showing a comparison of the search times overhead required for positioning assisted beam search and traditional beam search according to an embodiment of the present disclosure
  • FIG. 15 is a diagram schematically showing positioning assisted beam switching according to an embodiment of the present disclosure.
  • FIG. 16 is a signaling flowchart schematically showing beam switching of positioning assistance according to an embodiment of the present disclosure
  • FIG. 17A is a diagram schematically showing the relationship between the success probability of positioning assisted beam switching and the time advance according to an embodiment of the present disclosure
  • FIG. 17B is a diagram schematically showing the relationship between the pilot signal overhead and the time advance for positioning-assisted beam switching according to an embodiment of the present disclosure
  • FIG. 18 is a block diagram schematically showing an example structure of an electronic device according to an embodiment of the present disclosure.
  • FIG. 19 is a flowchart schematically showing the operation of an electronic device according to an embodiment of the present disclosure.
  • FIG. 20 is a block diagram schematically showing an example structure of a terminal device according to an embodiment of the present disclosure.
  • FIG. 21 is a flowchart schematically showing the operation of a terminal device according to an embodiment of the present disclosure.
  • FIG. 22 is a block diagram schematically showing an example structure of a personal computer of an information processing device employable in an embodiment of the present disclosure
  • FIG. 23 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied;
  • 24 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied;
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • terminal devices 30A, 30B, and 30C are classified into terminal devices 30A, 30B, and 30C as appropriate, as shown in Fig. 1.
  • terminal devices 30A, 30B, and 30C will be simply designated as the terminal device 30.
  • a wireless communication system includes at least a control side and a terminal side, and a device on the control side can provide communication services for one or more devices on the terminal side.
  • control side of the wireless communication system has the full breadth of its usual meaning, and generally indicates the side of the communication system that transmits signal flow for control, for example, the side of the communication system that controls positioning.
  • terminal side has the full breadth of its usual meaning, and accordingly may indicate the side in the communication system that receives signal flow to operate according to control, for example, it may be the side in the communication system where the positioning is performed.
  • control side and terminal side may include different devices in the communication system.
  • the equipment on the “control side” may include the “base station” in the communication system, and the equipment on the “terminal side” may correspondingly include the “terminal equipment” in the communication system.
  • the equipment on the “control side” may include the “terminal equipment” in the communication system, and the equipment on the “terminal side” may correspondingly include the "base station” in the communication system.
  • the term "base station” has the full breadth of its usual meaning, and includes at least a wireless communication station that is a wireless communication system or a part of a radio system to facilitate communication.
  • the base station may be an eNB that conforms to the 4G communication standard, a gNB that conforms to the 5G communication standard, a remote radio head, a wireless access point, a drone control tower, or a communication device that performs similar functions.
  • “electronic equipment on the control side” has the full breadth of its usual meaning, and may include, for example, equipment that is a part of a wireless communication system or a radio system to facilitate positioning and tracking.
  • “electronic equipment on the control side” and “base station” may be used interchangeably, or “electronic equipment on the control side” may be implemented as a part of the “base station”.
  • location management device is a device on the control side of a wireless communication system, and the term “location management device” has the full breadth of its usual meaning, and may include, for example, being a part of a wireless communication system or a radio system to facilitate Location management equipment for positioning and tracking.
  • location management device and base station or “electronic equipment of base station” may be used interchangeably, or “location management device” may be implemented as a part of “base station” or “electronic equipment of base station”.
  • terminal device has the full breadth of its usual meaning, and includes at least terminal devices that are a wireless communication system or a part of a radio system to facilitate communication.
  • the terminal device may be, for example, a terminal device such as a wireless relay, a micro base station, a router, or the like, or a communication device that performs similar functions.
  • terminal device and “relay” may be used interchangeably, or “terminal device” may be implemented as a part of “relay”.
  • the term "user equipment (UE)" has the full breadth of its usual meaning, and at least includes user equipment that is a wireless communication system or a part of a radio system to facilitate communication.
  • the user equipment may be a terminal device such as a mobile phone, a laptop computer, a tablet computer, a vehicle-mounted communication device, or the like, or a communication device that performs similar functions.
  • terminal equipment is also combined with “user equipment”.
  • control side may correspond to the operation of the location management device, the base station, and the electronic device
  • operation on the terminal side may correspond to the operation of the terminal device accordingly.
  • FIG. 1 is a diagram schematically showing a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system is suitable for coordinated positioning and tracking according to embodiments of the present disclosure to perform beam search and beam switching with high reliability and low delay.
  • the wireless communication system according to this embodiment includes a location management device 10, an electronic device 20, a terminal device 30 and a user equipment 40. Among them, the terminal device 30 follows a specific trajectory 50 to move.
  • the location management device 10 is a device that locates and tracks the terminal device 30, and controls the electronic device 20 to perform beam search and beam switching. As shown in FIG. 1, the location management device 10 can locate and track the terminal devices 30A to 30C, and control the electronic devices 20A and 20B to perform beam search and beam switching. In one aspect, the location management device 10 may be implemented as a base station or a part of a base station, and as an example, may be referred to as a "primary base station".
  • the electronic device 20 is a device that provides radio communication services to the terminal device 30 and the UE 40. As shown in FIG. 1, there may be a plurality of electronic devices 20, and the electronic device 20A provides radio communication services to the terminal device 30A, and the electronic device 20B provides radio communication services to the terminal devices 30B and 30C.
  • the electronic device 20 may be implemented as a base station or a part of a base station, and as an example, may be referred to as a “secondary base station”.
  • the electronic devices 20A and 20B may be small cell base stations.
  • the location management device 10 may be a macro cell base station.
  • the macro cell base station has a function of cooperatively controlling radio communication performed by the small cell base stations 20A and 20B under its subordinate.
  • the electronic device 20 may be connected to be able to communicate with each other, and the electronic device 20 and the location management device 10 may be connected to be able to communicate with each other.
  • the location management device 10 may also be implemented as the electronic device 20 or as a part of the electronic device 20.
  • the location management device 10 and the electronic device 20 can also be used interchangeably.
  • the terminal device 30 is a device that communicates with the electronic device 20.
  • the terminal device 30 has high mobility and performs base station selection according to its movement.
  • the terminal device 30 may include at least one terminal device.
  • the terminal device 30 may be implemented as a mobile relay or a part of a mobile relay.
  • the position management device 10 or the electronic device 20 and the terminal device 30 form beam communication
  • the position management device 10 or the electronic device 20 can form an appropriate beam according to the movement of the terminal device 30 and perform the communication beam Search and beam tracking.
  • the UE 40 is a device that communicates with the terminal device 30.
  • there may be one or more UEs 40 and each terminal device acts as a relay to provide radio communication services to the UEs it serves.
  • the terminal device 30B provides radio communication services to the UE 40A and the UE 40B.
  • the location management device 10, the electronic device 20, the terminal device 30, and the UE 40 may operate according to the radio access technology in LTE of 4G, and may also operate according to the new radio access (NR) technology of 5G.
  • NR new radio access
  • a large number of antennas are often installed in base stations, and the antennas are used to form beams for communication with terminal devices.
  • a base station selects a beam suitable for communication with a terminal device based on a reference signal of downlink beamforming.
  • Such downlink reference signals are also called channel state information reference signals (CSI-RS).
  • the base station provides multiple CSI-RSs, and uses beams corresponding to the reception results in the terminal equipment to communicate with the terminal equipment.
  • the base station uses multiple beams to transmit multiple CSI-RSs. Then, the terminal device selects a desired beam among the multiple beams used to transmit the CSI-RS based on the reception results of the multiple provided CSI-RSs, and transmits information indicating the selection result to the base station.
  • the information indicating the selection result includes identification information (for example, beam number) of the desired beam. For example, the terminal device selects a desired beam based on the received signal strength of each beam. Then, the base station uses the selected beam to communicate with the terminal device.
  • the terminal device moves, especially at a high speed, the terminal device will easily leave the beam, and it is difficult to send data from the base station to the terminal device at this time.
  • the terminal device As the number of antenna elements increases, a sharper beam is formed, and at the same time, the terminal device is more likely to leave the beam. Therefore, beam tracking/searching needs to be performed on mobile terminal devices.
  • the tracking capability varies with the frequency of providing CSI-RS to the terminal device. For example, in a case where CSI-RS is provided at an interval of 100 ms, tracking is performed at a granularity of 100 ms. In the case where the terminal device moves at a speed of 100ms in the beam, good tracking can be performed with this granularity. However, if the speed of the terminal device increases, it will need to be tracked with a shorter granularity. In this case, the overhead of downlink resources for providing CSI-RS increases, making it difficult to perform effective communication. Therefore, it is necessary to be able to quickly and accurately search for a suitable beam for wireless communication.
  • the terminal device decides to perform handover to another beam and notifies the serving base station of the decision. Then, the serving base station performs handover to the other beam.
  • a wireless communication system on a vehicle usually has the following three characteristics.
  • the radius of curvature of the track followed by the train or vehicle is often larger than the radius of the cell, so the track within the cell can be regarded as a one-dimensional topology, and the vertical distance from the base station to the track is easy to obtain.
  • the closed compartment causes a great attenuation of communication signals (especially millimeter wave signals).
  • An effective solution is to install mobile devices on the top of the compartment, such as the relay 30 shown in FIG. 1, so that in the present disclosure The main concern is the communication between the base station and the relay when the train is running.
  • the present disclosure proposes a technology for accurately positioning a mobile device on a vehicle. Further, the present disclosure also proposes a technology for beam searching and/or beam switching by using the position of a precisely located mobile device in a wireless communication system of a vehicle. In particular, in the technology of the present disclosure, coordinated positioning and/or tracking of mobile devices on vehicles are used to improve positioning accuracy, thereby enabling positioning-assisted beam search and beam switching technology with lower delay and overhead .
  • the location management device 10 performs a positioning information measurement configuration on the electronic device 20.
  • the electronic device 20 performs a positioning information measurement configuration on the terminal device 30 according to the positioning information measurement configuration received from the location management device 10.
  • the location management device 10 may also directly perform location information on the terminal device 30. Measurement configuration.
  • the terminal device 30 measures the positioning information of the terminal device 30 according to the positioning information measurement configuration, and sends the measured positioning information of the terminal device 30 to the electronic device 20.
  • the electronic device 20 sends the received positioning information of the terminal device 30 to the location management device 10.
  • the location information of the terminal device is sent from the terminal device 30 to the location management device 10 via the electronic device 20
  • the present disclosure is not limited to this.
  • the terminal device 30 may directly send the location information of the terminal device 30 To location management device 10.
  • the location management device 10 performs cooperative positioning based on the received location information of the terminal device and the specific location configuration information of the terminal device, so as to determine the location information of the target terminal device in the terminal device.
  • multiple terminal devices are installed on the train or vehicle, and the specific location configuration information of the terminal device includes the specific position relationship between the multiple terminal devices, for example, the distance and direction angle between the multiple terminal devices, and many more.
  • the terminal device follows a specific trajectory arrangement, and the specific location configuration information further includes location information of the specific trajectory followed by the terminal device.
  • the location management device 10 sends the determined location of the target terminal device to the electronic device 20 to further realize the positioning of other terminal devices.
  • the electronic device can determine the location of other terminal devices according to the received location information of the target terminal device, so as to accurately communicate with the corresponding terminal device.
  • the location management device 10 can also implement the positioning of other terminal devices by itself, and send the location of the located terminal device to each electronic device, so that the electronic device can conveniently and accurately communicate with the corresponding Terminal equipment to communicate.
  • the positioning of the terminal device in addition to the positioning information of the terminal device itself, the positioning of the terminal device also considers the positional relationship between the terminal device and other terminal devices. Therefore, the positioning operation of the present disclosure may be referred to as cooperative positioning.
  • the positioning accuracy of the terminal device is significantly improved.
  • Such cooperative positioning is especially suitable for vehicles with specific arrangements, such as high-speed trains or vehicles.
  • Fig. 3 is a block diagram schematically showing an example structure of a location management device according to an embodiment of the present disclosure.
  • the location management device 10 includes a processing circuit 100, a memory 101, and a communication unit 102.
  • the processing circuit 100 may be configured to obtain location information of at least one terminal device on the terminal side in the wireless communication system, where at least one terminal device has specific location configuration information; and based on the specific location configuration of the at least one terminal device The information and the location information of the at least one terminal device determine the location information of the target terminal device in the at least one terminal device.
  • the processing circuit 100 may be in the form of a general-purpose processor, or may be a dedicated processing circuit, such as an ASIC.
  • the processing circuit 100 can be constructed by a circuit (hardware) or a central processing device (such as a central processing unit (CPU)).
  • the processing circuit 100 may carry a program (software) for operating the circuit (hardware) or the central processing device.
  • the program can be stored in the storage 101 (such as arranged in a storage) or an external storage medium connected from the outside, and downloaded via a network (such as the Internet).
  • the processing circuit 100 may include an information acquiring unit 1001 configured to acquire positioning information of at least one terminal device on the terminal side in the wireless communication system.
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • the positioning information when the control-side electronic device serving the terminal device is the first electronic device compliant with the 4G communication standard (that is, connected to the LTE network), the positioning information may be time-related positioning information, and the time-related positioning information includes but Not limited to the Observed Time Difference of Arrival (OTDOA) measurement result, it represents the time difference between the positioning reference signals (PRS) simultaneously sent by the two first electronic devices serving the terminal device and arriving at the terminal device.
  • the positioning information when the control-side electronic device serving the terminal device is a second electronic device that complies with the 5G communication standard (that is, connected to the NR network), the positioning information may be beam-related positioning information, and the beam-related positioning information includes the first 2.
  • the beam information of the downlink transmission beam that the electronic device communicates with the terminal device which indicates, for example, the angle or coverage information of the downlink transmission beam used for the terminal device.
  • the location information of the terminal device may be obtained by the location management device from the terminal device, or may be obtained from the control-side electronic device serving the terminal device.
  • the positioning information of the terminal device may be periodically acquired based on the positioning period.
  • the positioning period can be set to be equal to or less than the period in which the control-side electronic device compliant with the 4G communication standard transmits the positioning reference signal PRS to the terminal device.
  • the positioning information of the terminal device may be periodically acquired like time-related positioning information.
  • the positioning information of the terminal device may be acquired according to a period smaller than the period for acquiring the time-related positioning information. This acquisition period can be preset by the communication system.
  • the positioning information of the terminal device can be acquired in real time.
  • the location information of the terminal device can be acquired in response to a trigger of a specific event.
  • the control-side electronic device or the terminal device can send the location information of the terminal device to the location management device.
  • the location information of the terminal device can be obtained in real time in response to the request of the location management device, the control-side electronic device or other devices.
  • the location information of the terminal device can also be obtained in real time in response to other specific events.
  • the periodically acquired positioning information of the terminal device may generally be time-related positioning information
  • the real-time positioning information of the terminal device may generally be beam-related positioning information
  • the information acquiring unit 1001 may also be configured to acquire specific location configuration information of at least one terminal device.
  • the specific location configuration information of the terminal device includes a specific location relationship between at least one terminal device.
  • the specific location configuration information of the terminal device indicates the specific location relationship between the multiple terminal devices, including but not limited to spacing, direction angle, etc.
  • the terminal device is arranged to follow a specific trajectory, and the specific location configuration information further includes location information of the specific trajectory followed by the terminal device.
  • the specific location configuration information may be previously known/recorded in the communication system or notified to the location management device, or measured by the electronic device on the control side or a specific terminal device (for example, target terminal device) and provided to the location management device.
  • the processing circuit 100 may further include a cooperative positioning unit 1002.
  • the cooperative positioning unit 1002 may be configured to determine the location information of the target terminal device in the at least one terminal device based on the specific location configuration information of the at least one terminal device and the location information of the at least one terminal device.
  • the cooperative positioning unit 1002 may be configured to be based on the position information of the control-side electronic device serving the plurality of terminal devices, and the relationship between the plurality of terminal devices.
  • the specific position relationship and the positioning information of each terminal device are used to determine the position error function of each terminal device in the plurality of terminal devices with respect to the target terminal device; and the target terminal is determined based on the position error function of each terminal device of the plurality of terminal devices Location information of the device.
  • the position error function can be constructed according to a variety of ways, in particular, can be constructed with the location of the target terminal device as a variable, and can be solved according to multiple ways to determine the location information of the target terminal location.
  • the cooperative positioning unit 1002 may be configured to determine the position information of the target terminal device according to a weighted minimum mean square error criterion based on a position error function.
  • the cooperative positioning unit 1002 can be configured to further determine the location of the target terminal device based on the location information of the specific trajectory followed by the multiple terminal devices.
  • the location information of a specific trajectory can be obtained by fitting a previously determined position of a terminal device or obtained from a network map.
  • a plurality of terminal devices may be arranged, for example, following a linear trajectory, and the spacing between the plurality of terminal devices may be constant within a certain period of time, wherein the spacing between the plurality of terminal devices may be the same or different from each other.
  • the position error function of each terminal device in the plurality of terminal devices with respect to the target terminal device can be constructed according to the location information of each terminal device and the position information of a specific track, thereby determining the location information of the target terminal device.
  • the position error function can be constructed and solved as described above.
  • the target terminal device may be a specific terminal device among at least one terminal device.
  • the target terminal device may be the first terminal device or the final terminal device among the multiple terminal devices, or a terminal device at a specific location, which may be pre-designated.
  • each of the at least one terminal device may be sequentially regarded as a target terminal device, so that the location of the terminal device is determined according to the solution of the present disclosure.
  • the cooperative positioning unit 1002 may also be configured to determine the positions of other terminal devices among the plurality of terminal devices based on the determined position of the target terminal device and the specific positional relationship between the plurality of terminal devices, so that all terminal devices Realize positioning.
  • the position of the terminal device can be determined according to the relative position of the terminal device and the target terminal device, so that the position of each terminal device among multiple terminal devices can be determined.
  • other terminal devices can also be used as target terminal devices in turn, and their positions can be determined as described above, thereby realizing positioning for all terminal devices.
  • the processing circuit 100 may further include a location tracking unit 1003.
  • the location tracking unit 1003 may be configured to estimate the location of the target terminal device at a specific moment based on the previously determined location information and the location period of the target terminal device.
  • This estimation can be implemented in a variety of ways.
  • the estimation may be realized by fitting, especially linear fitting, to the previously determined location information of the target terminal device.
  • the speed of the terminal device can be regarded as substantially constant.
  • the specific moment may be the current moment, so that the location tracking unit can estimate the current location of the target terminal device.
  • the estimated position can be used to correct the current position calculated previously.
  • the specific time may be, for example, a certain time in the future, so the location tracking unit 1003 can track the location of the target terminal device at the future time.
  • the processing circuit 100 may further include a beam search control unit 1004.
  • the beam search control unit 1004 may be configured to enable the control-side electronic device serving the terminal device to estimate the current position of the terminal device based on the previously determined position of the terminal device; The electronic device configures the beam scanning sequence according to the estimated position of the terminal device to perform beam scanning on the terminal device.
  • beams whose beam directions are adjacent to the direction corresponding to the estimated position of the terminal device are scanned first.
  • a beam having a beam direction corresponding to the estimated direction may refer to a beam in which the beam direction is aligned or at least partially aligned with the estimated direction.
  • a beam having a beam direction corresponding to the estimated direction may be a beam adjacent to the estimated direction.
  • the beams can be scanned in a specific order. For example, scanning can be started from a beam whose beam direction is aligned or at least partially aligned with the estimated direction. Or, they are scanned sequentially according to the degree of proximity of the beam direction to the estimated direction, wherein the closest beam is scanned preferentially.
  • the beam search control unit 1004 may be configured to control the side electronic device to stop beam scanning.
  • the beam gain may include the strength of the beam received signal.
  • the beam search control unit 1004 configures and/or activates one or more CSI-RS resources to the terminal device through RRC (Radio Resource Control) signaling and/or downlink control signaling such as downlink control information DCI, These CSI-RS resources correspond to the beams adjacent to the direction corresponding to the estimated position of the terminal device, and then the control-side electronic device can transmit CSI-RS signals on these CSI-RS resources through the beams adjacent to the direction corresponding to the terminal position.
  • RRC Radio Resource Control
  • the beam search control unit 1004 may also configure and/or activate one or more CSI to the terminal device in advance through RRC (Radio Resource Control) signaling and/or downlink control signaling, such as downlink control information DCI.
  • RRC Radio Resource Control
  • -RS resources these CSI-RS resources correspond to the beams adjacent to the direction corresponding to the estimated position of the terminal device at a specific time in the future, and then at a specific time in the future, the control-side electronic device can pass the direction corresponding to the position of the terminal at a specific time in the future
  • Adjacent beams transmit CSI-RS signals on these CSI-RS resources for terminal equipment to receive (ie beam scanning).
  • the processing circuit 100 may further include a beam switching control unit 1005.
  • the beam search control unit 1005 may be configured to make the control-side electronic device serving the terminal device determine to perform beam switching for the terminal device according to the intersection point of the current downlink transmission beam for the terminal device and the next downlink transmission beam And the control-side electronic device serving the terminal device can estimate the time when the terminal device performs beam switching based on the determined position of the terminal device at a specific time and the determined beam switching position.
  • the control-side electronic device serving the terminal device sends a pilot signal to the terminal device before the estimated beam switching moment for beam switching.
  • the pilot signal may be the same signal as the above-mentioned reference signal CSI-RS, PRS, etc., or may be a different signal.
  • the control-side electronic device may apply the current downlink transmission beam and the next downlink transmission beam transmission pilot signal to perform beam communication with the terminal device to determine whether beam switching is possible.
  • the control-side electronic device serving the terminal device performs beam switching.
  • the beam switching control unit 1005 is further configured to stop sending the pilot signal for beam switching while causing the control-side electronic device serving the terminal device to perform beam switching.
  • the operations performed by the control-side electronic device serving the terminal device as described above can also be performed by the location management device. That is, the location management device can directly serve the terminal device to perform operations performed by the control-side electronic device, such as positioning and tracking of the terminal device, beam search and switching, and so on.
  • the control-side electronic device can serve some of the terminal devices to perform the above operations, while other terminal devices can directly perform the above operations by the location management device.
  • the location management device also known as the main base station
  • other base stations or similar devices can be used as the control-side electronic equipment, also known as It is the secondary base station.
  • the location management device 10 may further include a memory 101 and a communication unit 102 shown in dotted lines in the figure.
  • the location management device 10 may also include other components not shown, such as a radio frequency link, a baseband processing unit, a network interface, a processor, and a controller.
  • the processing circuit 100 may be associated with the memory 101 and/or the communication unit 102.
  • the processing circuit 100 may be directly or indirectly (for example, other components may be connected in between) connected to the memory 101 to access data.
  • the processing circuit 100 may be directly or indirectly connected to the communication unit 102 to transmit radio signals via the communication unit 102 and receive radio signals via the communication unit 102.
  • the memory 101 can store various information generated by the processing circuit 100 (for example, location information of the terminal device, location information of the determined target terminal, etc.), programs and data used for the operation of the location management device 10, and will be sent by the communication unit 102 Data etc.
  • the memory 101 is drawn with a dashed line because it can also be located inside the processing circuit 100 or outside the location management device 10.
  • the memory 101 may be a volatile memory and/or a non-volatile memory.
  • the memory 101 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the communication unit 102 may be configured to communicate with electronic devices and terminal devices under the control of the processing circuit 100.
  • the communication unit 102 may be implemented as a transmitter or transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 102 may send the location information of each terminal device determined in the processing circuit 100 to the control-side electronic device serving each terminal device.
  • the communication unit 102 may also send and receive signaling required for the procedures described in the embodiments of the present disclosure.
  • FIG. 3 shows that the processing circuit 100 is separated from the communication unit 102, the processing circuit 100 may also be implemented to include the communication unit 102. In addition, the processing circuit 100 may also be implemented to include one or more other components in the location management device 10, or the processing circuit 100 may be implemented as the location management device 10 itself. In actual implementation, the processing circuit 100 may be implemented as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • each of the foregoing units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the above-mentioned units are shown with dotted lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • FIG. 4 schematically shows a flowchart of the operation of the location management device according to an embodiment of the present disclosure.
  • the location management device obtains location information of at least one terminal device on the terminal side in the wireless communication system, where the at least one terminal device has specific location configuration information.
  • At least one terminal device may include multiple terminal devices, and the specific location configuration information may include a specific location relationship between the multiple terminal devices, such as a distance, a relative angle, and the like.
  • terminal devices located on the same train can be grouped in advance, and the specific positional relationship between multiple terminal devices can be recorded at the same time.
  • the terminal devices on the same train can be divided into one or more groups, and the specific positional relationship between all terminal devices or the specific positional relationship between terminal devices in each group can be pre-recorded in the communication network
  • a specific device in, for example, a specific base station or other device.
  • the location management device can query the grouping of terminal devices and the specific location relationship of multiple terminal devices in the communication system. The grouping can be effective for a long time, and the positional relationship of adjacent terminal devices in the group can remain unchanged for a certain period of time.
  • the grouping relationship and the specific location relationship between the terminal device can also be measured by the terminal device itself and reported to the network side or the location management device.
  • the plurality of terminal devices may be arranged following a specific trajectory, and the specific location configuration information includes location information of the specific trajectory followed by the plurality of terminal devices.
  • a plurality of terminal devices may be arranged following a straight track, and the spacing between the plurality of terminal devices may be constant within a certain period of time.
  • At least one relay is installed on a train as the at least one terminal device.
  • the track on which the high-speed train runs can be regarded as a one-dimensional topology
  • the coordinates of the first relay 30A are (x, d)
  • the coordinates of the next 2-8 relays are (xl, d), (x-2l, d),..., (x- 7l, d).
  • FIG. 5 only shows an example in which one relay is installed on each car and the distance between each relay is equal, it should be pointed out that the relay can be arranged in other ways. In some embodiments, multiple relays can be installed on each carriage or one relay can be installed every several carriages as required, and the spacing between the relays can also be unequal.
  • FIG. 5 only shows an example in which the track is regarded as a straight line, in some embodiments, the track may not be limited to a straight line. For example, it may also be regarded as a curve or a broken line, as long as the position between the relays is The relationship can be relatively fixed.
  • the positioning information of the terminal device may include time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • the location information of the terminal device may also include estimated location information of the terminal device.
  • the location information of the terminal device may be estimated in a variety of ways, for example, the time correlation method or the beam correlation method as described below, and is sent to the position management device as positioning information.
  • different relays on the same train are served by different base stations, and they may be connected to an LTE base station (eNB) or an NR base station (gNB).
  • eNB LTE base station
  • gNB NR base station
  • the relay can choose to access the LTE network, and when the relay is in an area where the LTE network cannot provide service or the relay serves
  • the relay can choose to access the NR network. Therefore, at least one of OTDOA positioning supported by LTE and downlink transmission beam positioning in NR can be used to implement coordinated positioning of all relays.
  • the positioning information is time-related positioning information.
  • the LTE base station supports the OTDOA positioning method.
  • the time-related positioning information includes the OTDOA measurement result, which represents the time difference between the positioning reference signal PRS simultaneously sent by the two electronic devices serving the terminal device and reaching the terminal device.
  • FIG. 6 is a diagram of the basic principle of OTDOA positioning according to an embodiment of the present disclosure.
  • the vertical coordinate d and the vertical coordinate Both can be obtained in advance, for example from a network map.
  • (x 1 , y 1 , h 1 ) and (x 2 , y 2 , h 2 ) are used to represent the three-dimensional coordinates of the base station 20A and the base station 20B to which the relay 30 is connected.
  • the base station 20A and the base station 20B simultaneously transmit the PRS to the relay 30 at a certain moment.
  • c represents the speed of light. Therefore, the position coordinates and d of the base stations 20A, 20B When it is known, the unknown quantity x can be obtained by using formula 1 to obtain the position of the relay 30.
  • the positioning information is beam-related positioning information.
  • the NR base station supports the downlink transmission beam positioning method.
  • the beam-related positioning information includes the beam information of the downlink transmission beam that the second electronic device communicates with the terminal device, which may indicate the angle or coverage information of the downlink transmission beam used for the terminal device.
  • FIG. 7 is a diagram schematically showing the basic principle of downlink transmission beam positioning according to an embodiment of the present disclosure.
  • the i-th downlink transmission beam of the base station 20 it can be obtained by the intersection point of the beam and two adjacent beams (for example, including but not limited to the intersection point of the main lobe)
  • the horizontal angle coverage is ( ⁇ i,l , ⁇ i,r ). Since the track on which the high-speed train runs can be regarded as a one-dimensional topology, the coverage range of the beam on the track can be expressed as a range in the horizontal direction (x i,l , x i,r ), as shown in FIG. 7.
  • the relay under the condition of LoS transmission, if the relay is within the coverage of beam i, beam i can provide the highest beam gain for the relay among all beams. Therefore, the position of the relay served by the downlink transmission beam i can be estimated by formula 2.
  • the downlink transmission beam can be used to locate the relay.
  • the positioning accuracy based on the downlink transmission beam positioning depends on the length of the coverage of the beam on the track, and the length of the coverage depends on the beam width and the distance between the base station and the relay served by the beam.
  • the beam width is
  • the coverage angles ⁇ i,l and ⁇ i,r of the beam can also be located on both sides of the base station 20 in the horizontal direction.
  • the value of ⁇ i,l can be a negative value. Therefore, the above formula 2 can still be used to determine the location of the relay.
  • the location information of the terminal device may be obtained by the location management device from the terminal device, or the location management device may be obtained from the control-side electronic device serving the terminal device.
  • the location management device can periodically acquire location information according to the location period to periodically determine the location of the target terminal device.
  • the positioning period may be set to be equal to or less than the period for the control-side electronic device complying with the 4G communication standard to send the PRS to the terminal device.
  • positioning information may be acquired in real time.
  • the PRS may be sent periodically, and its typical period value is, for example, 160ms, 320ms, 640ms, 1280ms, and so on. Therefore, the LTE base station can only periodically obtain the OTDOA measurement results reported by the relay to perform periodic coordinated positioning.
  • the LTE base station can only periodically obtain the OTDOA measurement results reported by the relay to perform periodic coordinated positioning.
  • the NR network for the relay connected to the NR base station, if the relay is in the connected state, the downlink transmission beam information it uses can be obtained at the NR base station at any time, if the relay is idle , The optimal downlink transmission beam information used by it can be obtained through beam scanning, and the period is usually less than the OTDOA measurement period. Therefore, for example, the period for obtaining the downlink transmission beam information can be set to one integral part of the OTDOA measurement period.
  • the beam positioning information can also be acquired triggered or acquired on request, as described above.
  • the position of a single relay can be determined according to Formula 1 or Formula 2 as described above, the position of a single relay thus obtained usually has a relatively large error.
  • the OTDOA positioning accuracy is still limited, which is mainly affected by factors such as LTE system bandwidth, base station clock deviation, multipath, and the distance between the relay and the base station.
  • the positioning distance error can range from a few meters to tens of meters.
  • the use of beam information for positioning also has a large positioning distance error.
  • the present disclosure proposes coordinated positioning, that is, using the positioning information of each relay and the specific position relationship between each relay to more accurately determine the position information of a single relay.
  • the location management device determines the location information of the target terminal device in the at least one terminal device based on the specific location configuration information of the at least one terminal device and the location information of the at least one terminal device.
  • At least one terminal device includes multiple terminal devices
  • the location management device may be based on the location information of the control-side electronic device serving the multiple terminal devices of the wireless communication system, and the specific location relationship between the multiple terminal devices.
  • the location information of each terminal device determine the location error function of each terminal device in the multiple terminal devices with respect to the target terminal device; and determine the location of the target terminal device based on the location error function of each terminal device of the multiple terminal devices information.
  • the i-th relay is connected to the LTE base station, and ⁇ t i is used to represent the OTDOA measurement result at time t reported by the i-th relay, and the i-th relay's information about the first relay position x
  • the position error function can be expressed as Equation 3.
  • (x i1 , y i1 , h i1 ) and (x i2 , y i2 , h i2 ) represent the three-dimensional coordinates of the two LTE base stations connected to the i-th relay.
  • ⁇ m 2 represents the measurement variance of c ⁇ t i estimated and configured by the base station.
  • the LTE base station can directly solve the position x i of the i-th relay on the track according to Formula 1. Considering that the ordinate and vertical coordinates of the relay are approximately equal to those of the first relay, the position error function of the i-th relay with respect to the first relay position x can also be expressed as a formula 4.
  • ⁇ e 2 represents the variance of the estimation result.
  • the jth relay is connected to the NR base station, and the position of the jth relay on the track can be expressed as (x-(j-1)*l), and the jth relay station at time t
  • the used downlink transmit beam j * covers the orbit as
  • the position error function of the first relay position x can be expressed as formula 5.
  • the location management device determines the location information of the target terminal device according to the weighted minimum mean square error criterion based on the location error function.
  • the location information of a specific trajectory followed by multiple terminal devices is known, for example, d is known.
  • the optimal positioning result x * of the first relay at time t can be obtained using the weighted minimum mean square error criterion, as shown in formula 6.
  • the calculation method of e i (x) is selected from the OTDOA positioning method and the NR downlink transmission beam positioning method based on whether the i-th relay is connected to an LTE base station or an NR base station.
  • e i (x) may correspond to a relay connected to an LTE base station or a relay connected to an NR base station.
  • the N relays participating in the calculation may be all connected to the LTE base station or all to the NR base station at a certain moment, or may be partially connected to the LTE base station and partly connected to the NR base station.
  • a relay is only connected to an LTE base station or an NR base station at a certain moment.
  • the location information of a specific trajectory can be obtained by fitting a previously determined location of the terminal device or obtained from a network map.
  • the location information of the specific trajectory followed by multiple terminal devices is unknown, for example, d is unknown.
  • the position error function can be changed to e i (x, d) with two unknown quantities, so that the optimal positioning result of the first relay and d can be jointly optimized as a formula 7.
  • the orbital coordinates in the average sense can be obtained It can be applied to subsequent collaborative positioning.
  • the orbital coordinates It can also be continuously revised over time to improve the accuracy of collaborative positioning.
  • the location of the target relay can be located more accurately.
  • the target relay is not limited to this, it can be a specific relay among multiple relays, such as the last relay, a relay at an intermediate location, or a relay at a specific location, and in view of multiple relays
  • the location relationship between the multiple relays, the location of any other relay in the multiple relays can be represented based on the location of the specific relay, and thus the location of the target relay can still be calculated based on the above formula.
  • the location management device may determine the location of other terminal devices among the multiple terminal devices based on the determined location of the target terminal device and the specific location relationship between the multiple terminal devices.
  • the location of the other terminal device may be determined according to the location relationship between the other terminal device and the target terminal device.
  • each of the multiple terminal devices may be used as the target terminal device in turn to determine the position as described above.
  • the location of each target terminal device may be determined based on the estimated location of other terminal devices.
  • the Gauss-Newton iteration method may be used for calculation, wherein the position of the subsequent target terminal device may be determined iteratively based on the determined position of the previous target terminal device.
  • the location management device may send the determined location of each terminal device to the control-side electronic device serving each terminal device, so that the control-side electronic device can position each terminal device.
  • the location management device may send the determined location of the target terminal device to the control-side electronic device serving each terminal device, so that the control-side electronic device can locate each terminal device. For example, a control-side electronic device can locate several terminal devices it serves.
  • FIG. 8 is an exemplary signaling flowchart schematically showing cooperative positioning according to an embodiment of the present disclosure.
  • the location management device obtains specific location configuration information of the terminal device.
  • the specific location configuration information of the terminal device indicates the specific location relationship between the multiple terminal devices, for example, the distance and direction angle between the multiple terminal devices.
  • the specific location configuration information of the terminal device may be obtained by fitting a previously determined location of the terminal device or obtained in advance from a network map.
  • the location management device performs time-related positioning information measurement configuration on the LTE base station serving the terminal device 30A.
  • the LTE base station performs time-related positioning information measurement configuration on the terminal device 30A according to the time-related positioning information measurement configuration received from the location management device.
  • the location management device may also directly perform time-related positioning information on the terminal device 30A. Measurement configuration.
  • the terminal device 30A measures the time-related positioning information of the terminal device 30A according to the time-related positioning information measurement configuration, and sends the measured time-related positioning information of the terminal device 30A to the LTE base station. Subsequently, in S805, the LTE base station sends the received time-related positioning information of the terminal device 30A to the location management device.
  • the terminal device 30A may directly send the time-related positioning information to Location management equipment.
  • the time-related positioning information may include, for example, OTDOA measurement result information. According to an embodiment, the time-related positioning information may also include location information of the relay determined according to the OTDOA measurement result.
  • S812-S815 show the signaling flow when the terminal device 30B is connected to the NR base station.
  • the beam-related positioning information of the terminal device 30B is measured, configured and sent in S812-S815.
  • the specific process is the same as the measurement configuration and measurement of the time-related information of the terminal device 30A in S802-S805.
  • the sending process is similar, and its description is omitted here.
  • the beam-related positioning information includes the beam information of the downlink transmission beam that the NR base station communicates with the terminal device 30B, which indicates the angle or coverage information of the downlink transmission beam for the terminal device 30B.
  • the beam-related positioning information may also include the location information of the relay determined according to the beam information of the downlink transmission beam.
  • the location management device performs cooperative positioning based on the received location information of the terminal device and the specific location configuration information of the terminal device, so as to determine the location information of the target terminal device in the terminal device.
  • the positioning information of the terminal device may include both the time-related positioning information of the terminal device 30A and the beam-related positioning information of the terminal device 30B, or may include any one of the two.
  • the specific location configuration information of the terminal device indicates the specific location relationship between the multiple terminal devices, for example, the distance and the direction angle between the multiple terminal devices.
  • the location management device sends the determined location of the target terminal device to the LTE base station to further realize the coordinated positioning of all terminal devices.
  • the location management device sends the determined location of the target terminal device to the NR base station to further realize the coordinated positioning of all terminal devices.
  • the control-side electronic device can locate several terminal devices it serves according to the location of the target terminal device.
  • the location management device may also determine the locations of all terminal devices, as described above, and send the determined locations of all terminal devices to the control-side electronic device serving each terminal device, so as to control the side electronic device Position each terminal device.
  • the cooperative positioning operation performed by the location management device has been described above with reference to FIGS. 4 to 8 in the case where there are multiple terminal devices. According to the above-mentioned cooperative positioning process, the specific position configuration of the terminal device can be used, and the advantages of the two positioning methods of OTDOA positioning and downlink transmission beam positioning can be combined to improve positioning accuracy and reduce overhead.
  • each terminal device for example, a relay
  • each terminal device can be connected to only one of the LTE base station or the NR base station, and only upload one of time-related positioning information or beam-related positioning information, thereby simplifying the information transmitted , Can reduce communication overhead.
  • the location management device may also perform location tracking on the terminal device based on cooperative positioning. In some embodiments, the location management device may also estimate the location of the target terminal device at a specific moment based on the previously determined location information and the positioning period of the target terminal device. As an example, the position can be estimated by mathematical fitting, especially linear fitting.
  • the specific time may be the current time, so that the location of the target terminal device at the current time can be corrected. As an example, the specific time may be a future time or any time during the cycle, so that the location of the target terminal device at that time can be estimated.
  • the acceleration of the train is less than 1m/s 2 , so the speed of the train can be regarded as constant in a short time.
  • a linear fitting method can be used to obtain the speed information of the train, so as to correct the current position of the target terminal device to further improve the positioning accuracy, and further accurately estimate the position at any time.
  • the location management device may adopt a least squares linear fitting method to obtain the speed of the train.
  • the present disclosure can naturally also use other linear fitting methods to obtain the speed of the train.
  • use the position of the first relay to represent the position of the train, use T to represent the period of coordinated positioning, N LR to represent the number of coordinated positioning values required for linear fitting, and N LR should be small enough to ensure fitting
  • the speed in time can be regarded as a constant value, for example
  • the speed of the train can be linearly fitted And the origin coordinates of the fitted curve Then, the positioning result at time t can be updated to It can be used for the next fitting, so as to continuously modify the linear fitting curve to make the fitting result more accurate.
  • FIG. 9 is a diagram schematically showing a linear fitting result of positioning and tracking a terminal device according to an embodiment of the present disclosure. As shown in Fig. 9, the corresponding relationship curve between time t and relay position x is fitted according to the value of multiple cooperative positioning. Since the speed of the train can be regarded as constant in a short time, the fitting result here is approximately a straight line.
  • the position of the train at a future time can also be linearly predicted according to the fitting result.
  • the train position can be predicted as The prediction result is shown in the dotted line in Figure 9.
  • the position of the train at any time during the positioning period can be predicted based on the fitting result.
  • the present disclosure may also use other methods for positioning tracking, for example, an extended Kalman filtering method may be used to perform positioning tracking based on the previously determined position of the terminal device.
  • the position of the terminal device at the current moment can be further accurately determined through correction.
  • each base station provides 6 wide beams with a beam width of 30° to achieve 180° coverage of the railway, and each wide beam provides 6 narrow beams with a beam width of 5°, and the initial train speed is 100m/s ,
  • the acceleration obeys a Gaussian distribution with a mean value of 0 and a variance of 1.
  • the first, third, and seventh relays are connected to the NR base station, the remaining relays are connected to the LTE base station, and the No. 4 relay is used as the target relay.
  • the positioning distance error and the positioning angle error between cooperative positioning and individual positioning are measured.
  • FIG. 10 schematically compares the positioning distance error between coordinated positioning assisted positioning tracking and individual positioning tracking according to an embodiment of the present disclosure.
  • the positioning period is the same as the PRS period, for example, 160ms
  • the number of fitting values required for positioning tracking is 10.
  • the cumulative distribution function (CDF) of the positioning distance error of the coordinated positioning assisted positioning tracking and the single positioning tracking according to the embodiment of the present disclosure is counted.
  • the cumulative distribution function represents the sum of the probability that x is less than or equal to a certain value for the variable x.
  • each point on the curve represents the sum of the probability that the positioning distance error is less than or equal to a certain value. It can be seen that, compared with separate positioning tracking, the coordinated positioning assisted positioning tracking according to the embodiments of the present disclosure has a higher probability of corresponding to a lower positioning distance error.
  • the average distance error of the coordinated positioning assisted positioning tracking according to the embodiment of the present disclosure is 3.6m
  • the average distance error of the single positioning tracking is 8.7m.
  • Fig. 11 schematically compares the positioning angle error between coordinated positioning assisted positioning tracking and individual positioning tracking according to an embodiment of the present disclosure.
  • each point on the curve represents the sum of the probability that the positioning angle error is less than or equal to a certain value. It can be seen that, compared with separate positioning tracking, the coordinated positioning assisted positioning tracking according to the embodiments of the present disclosure has a higher probability of corresponding to a lower positioning angle error.
  • the average angular error of the coordinated positioning assisted positioning tracking according to the embodiment of the present disclosure is 0.45°
  • the average angular error of the single positioning tracking is 1.44°.
  • a positioning-assisted beam search may also be performed.
  • the positioning assisted beam search according to an embodiment of the present disclosure will be exemplarily described with reference to FIGS. 12 and 13.
  • the location management device may enable the control-side electronic device serving the terminal device to estimate the current position of the terminal device according to the previously determined position of the terminal device; and enable the control-side electronic device serving the terminal device to estimate Configure the beam scanning sequence based on the location of the terminal device to perform beam scanning on the terminal device.
  • the previously determined position of the terminal device may include the current position determined according to the aforementioned cooperative positioning operation.
  • the previously determined location of the terminal device may also be the location at a specific time determined by the last location tracking.
  • the position of the terminal device at the current moment can be estimated according to the aforementioned positioning tracking operation. It should be understood that the position of the terminal device at the current moment may also be estimated using other estimation methods.
  • FIG. 12 is a diagram schematically showing a beam search of positioning assistance according to an embodiment of the present disclosure.
  • the base station 20 estimates the target at the current time based on the current time and the position and speed at a certain previous time obtained through the most recent positioning tracking.
  • the direction angle of the target relay 30A relative to the base station 20 can be further estimated
  • the base station 20 configures the sequence of downlink transmission beam scanning.
  • beams whose beam directions are adjacent to the direction corresponding to the estimated position of the terminal device are scanned first. For example, among all candidate beams, the beam direction and the estimated The closer beam will be scanned preferentially.
  • the scanning sequence of the downlink transmit beam at the base station 20 will be configured as 5->4->6->3->2->1.
  • the beam when the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and the control-side electronic device stops beam scanning.
  • the target relay 30A measures the gain of the currently scanned beam, and when the beam gain is greater than a predetermined threshold, the beam will be selected for data transmission.
  • the predetermined threshold of beam gain may be configured according to the gain of the wide beam used before beam search, for example. Then, the target relay 30A feeds back the selected beam to the base station, and the base station stops beam scanning at the same time.
  • the base station usually performs beam scanning in a fixed order, such as 1->2->3->4->5->6.
  • the beams whose beam directions are adjacent to the direction corresponding to the estimated position of the terminal device are preferentially scanned, as described above, whereby the optimal downlink transmission beam can be found more quickly . This reduces the delay and overhead caused by beam search at the transmitting end.
  • the base station 20 may also calculate the direction angle of the target relay 30A estimated at the current moment Send to the target relay 30A, and the target relay 30A preferentially searches for and The closer beam. If the gain of the current beam is greater than the predetermined threshold, the beam will be selected for data transmission, and the target relay 30A will stop the beam search, thereby reducing the delay and overhead caused by the beam search at the receiving end.
  • FIG. 13 is a signaling flowchart schematically showing a beam search of positioning assistance according to an embodiment of the present disclosure.
  • the terminal device sends a beam search request to the base station to request the base station to perform beam search.
  • the base station performs real-time position estimation of the terminal device, thereby estimating the direction angle of the terminal device.
  • the base station configures the order of beam scanning according to the estimated direction angle.
  • the base station performs beam scanning based on the configured beam scanning sequence.
  • the terminal device measures the gain of the scanned beam, and when the scanned beam gain is greater than a predetermined threshold, selects the beam for communication.
  • the terminal device feeds back the selected beam to the base station, and the base station and the terminal device can use the beam to communicate. While the base station receives the beam feedback, in S1307, the base station stops beam scanning.
  • the base station in FIG. 13 may adopt a control-side electronic device serving the terminal device.
  • the base station in FIG. 13 may adopt the location management device.
  • the performance of the positioning assisted beam search is based on analysis with the parameters analyzed for cooperative positioning as described above.
  • Fig. 14 schematically compares the number of searches required for the positioning-assisted beam search and the traditional beam search according to an embodiment of the present disclosure before finding the optimal beam. It can be seen that, compared with the traditional beam search, the positioning-assisted beam search according to the embodiments of the present disclosure has a higher probability of corresponding to a lower search frequency overhead.
  • the beam search for positioning assistance according to the embodiments of the present disclosure only needs to search once, and the probability sum is 0.9, that is, 90%, while the traditional beam search only needs to search once, and the probability is 0.1, that is 10. %.
  • the average search frequency overhead of the positioning assisted beam search according to the embodiment of the present disclosure is 1.1 times, while the average search frequency overhead of the traditional beam search is 3.5 times.
  • positioning assisted beam switching based on the coordinated positioning may also be performed.
  • the base station needs to switch the downlink transmission beam from the current beam to the adjacent beam.
  • the base station will configure periodic pilot signals, such as CSI-RS, and require the relay to measure the gains of the current beam and adjacent beams.
  • the gain of the adjacent beam is greater than the gain of the current beam, beam switching is triggered.
  • the pilot cycle is too short, it will lead to higher pilot signal overhead, and if the pilot cycle is too long, it will lead to inability to switch beams in time, and even cause communication failure.
  • the present disclosure proposes positioning assisted beam switching based on the coordinated positioning, which can accurately perform beam switching based on the coordinated positioning as described above.
  • the positioning assisted beam switching according to an embodiment of the present disclosure will be exemplarily described with reference to FIGS. 15 and 16.
  • the position management device enables the control-side electronic device serving the terminal device to determine the position for beam switching for the terminal device according to the intersection point of the current downlink transmission beam for the terminal device and the next downlink transmission beam; and
  • the control-side electronic device serving the terminal device estimates the time when the terminal device performs beam switching based on the determined position of the terminal device at a specific time and the determined beam switching position.
  • FIG. 15 is a diagram schematically showing positioning assisted beam switching according to an embodiment of the present disclosure.
  • the base station 20 uses the LoS downlink transmission beam, it can determine the optimal beam switching position x according to the intersection point of the current beam and the adjacent beam (for example, including but not limited to the intersection point of the main lobe) s .
  • the base station obtains the location of the target relay at a specific time t And speed Based on this, the base station can estimate the optimal moment for beam switching, namely
  • the control-side electronic device serving the terminal device sends a pilot signal to the terminal device before the estimated beam switching moment for beam switching. Illustrated in FIG. 15, set in advance for an amount of time T a, from the time the base station Start sending periodic pilot signals.
  • T a the size of T a should consider both the positioning error and the train speed, for example, the train speed estimated according to the positioning tracking described above.
  • T a can be set in advance based on experience, for example.
  • the control-side electronic device serving the terminal device when the gain of the next downlink transmit beam is greater than the gain of the current beam, the control-side electronic device serving the terminal device performs beam switching. In some embodiments, the location management device causes the control-side electronic device serving the terminal device to stop sending the pilot signal for beam switching while performing beam switching. As illustrated in Figure 15, the target relay measures the gains of the current beam and adjacent beams. When the gain of the adjacent beam is greater than the gain of the current beam, the target relay informs the base station to perform beam switching and stop sending pilot signals. In this way, the periodic pilot signal needs to be sent only at the moment of beam switching, so that timely beam switching can be realized with lower pilot signal overhead.
  • FIG. 16 is a signaling flowchart schematically showing beam switching for positioning assistance according to an embodiment of the present disclosure.
  • the base station first estimates the optimal beam switching time of the target relay
  • the base station starts from time Since starts transmission of the pilot signal period, where T a is the amount of time set in advance.
  • the terminal device performs pilot measurement to obtain the gains of the current beam and adjacent beams.
  • the terminal device notifies the base station to perform beam switching and stops sending the pilot signal.
  • FIGS. 17A and 17B the performance of positioning assisted beam switching according to an embodiment of the present disclosure will be described with reference to FIGS. 17A and 17B.
  • the performance of positioning-assisted beam switching is analyzed based on the parameters analyzed for cooperative positioning as described above.
  • FIG. 17A and 17B schematically illustrate the relationship between the advance amount T a of the guide beam and the probability of success according to embodiments of the positioning assistance embodiment of the present disclosure and the switching time of the pilot signal overhead.
  • a successful handover is defined as the position of the target relay before the best beam switching point when the pilot is started to be sent.
  • the pilot signal overhead in FIG. 17B refers to the ratio of the pilot signal overhead required by the positioning assisted beam switching and the conventional mechanism using periodic pilots according to an embodiment of the present disclosure.
  • the increases as T a the handover success probability becomes high beam, while the overhead of the pilot signal is also growing, but positioning aid according to an embodiment of the present disclosure beam switching
  • the pilot signal overhead is much smaller than the pilot signal overhead required by the traditional mechanism, and specifically, is on the order of several tenths of the pilot signal overhead required by the traditional mechanism. According to this embodiment, further, by setting a reasonable T a , a compromise between the success probability of beam switching and the pilot signal overhead can be achieved.
  • the multi-relay coordinated positioning according to the present disclosure can achieve higher positioning accuracy.
  • real-time coordinated positioning is used to assist beam search, which can significantly reduce the number of searches and delay required for beam search.
  • real-time coordinated positioning is used to assist beam switching, which can achieve timely beam switching with lower pilot signal overhead.
  • the implementation of the present disclosure for the case where at least one terminal device is multiple terminal devices. It should be noted that the implementation of the present disclosure is not limited to this. The implementation of the present disclosure can still be effectively used in the case of a single terminal device, and also obtain advantageous effects. According to the embodiment, the implementation of the present disclosure can use the scene information of the specific scene in which a single terminal device is located to locate the terminal device, and further can still perform location tracking, beam search and handover based on the positioning result.
  • At least one terminal device includes only one terminal device.
  • At least one terminal device may include only one terminal device.
  • the location management device may receive an indication of the communication scene in which the terminal device is located from the terminal device.
  • the communication scene includes a communication scene in which the terminal device moves along a specific track, and the location management device determines a corresponding terminal positioning scheme based on the communication scene indication to be used for matching
  • the terminal equipment performs positioning.
  • the location management device can first confirm that the relay is located on the track, and then the location management device obtains the coordinates of the track and determines the corresponding positioning plan.
  • the positioning scheme may include, for example, an OTDOA positioning scheme, a downlink transmission beam positioning scheme, and so on.
  • ID a special identification
  • the coordinates of the track in an average sense can be given by fitting the long-term relay positioning results, or the track coordinates can be determined by accessing a network map.
  • the location management device determines to adopt the OTDOA positioning solution, and provides auxiliary information for the OTDOA positioning solution to the terminal device.
  • the auxiliary information includes configuration information of multiple candidate base stations.
  • the location management device receives the measurement results of two of the multiple candidate base stations fed back by the terminal device, and performs OTDOA positioning of the terminal device based on the information of the specific track and the measurement results of the two base stations.
  • the multiple candidate base stations include only 2 base stations.
  • the auxiliary information may include at least one of the following: the physical cell ID of the candidate base station, the global cell ID, the transmission point ID, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal of the candidate base station PRS configuration.
  • the base station may correspond to the control-side electronic device in the present disclosure.
  • the location management device can be implemented, for example, as the Enhanced Serving Mobile Location Center (E-SMLC) in the TS36.305 standard or the location management function (Location Management Function, LMF) defined in TS38.305. It can also be one of the base stations to directly serve the terminal device.
  • E-SMLC Enhanced Serving Mobile Location Center
  • LMF Location Management Function
  • the location management device determines to adopt the downlink transmission beam positioning scheme, and receives the measurement results of one or more beams fed back by the terminal device, and based on the information of the specific track and the terminal The device's beam measurement results perform downlink transmission beam positioning.
  • the terminal device only feeds back the measurement result of one beam to the location management device.
  • the measurement result of the beam fed back by the receiving terminal device includes, for example, the number of the beam, and the position management device can obtain the beam information of the beam based on the selected beam number, and then perform downlink transmission beam positioning.
  • the location management device can be implemented as an LMF defined in TS38.305, for example.
  • the terminal device may pass the beam measurement result to the location management via the control-side electronic device
  • the location management device may provide the determined beam information to the control-side electronic device, so that the control-side electronic device performs downlink transmission beam positioning for the terminal device.
  • FIG. 18 is a block diagram schematically showing an example structure of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 20 includes a processing circuit 200, a memory 201, and a communication unit 202.
  • the processing circuit 200 may be configured to obtain location information of at least one terminal device on the terminal side in the wireless communication system served by the electronic device, wherein the at least one terminal device has specific location configuration information;
  • the location information of the terminal device is sent to the location management device in the wireless communication system for the location management device to determine the location information of the terminal device based on the location information and the specific location configuration information of at least one terminal device; and to receive all information from the location management device Determined location information of at least one terminal device.
  • the processing circuit 200 may be in the form of a general-purpose processor, or may be a dedicated processing circuit, such as an ASIC.
  • the processing circuit 200 can be constructed by a circuit (hardware) or a central processing device (such as a central processing unit (CPU)).
  • the processing circuit 200 may carry a program (software) for operating the circuit (hardware) or the central processing device.
  • the program can be stored in the storage 201 (such as arranged in a storage) or an external storage medium connected from the outside, and downloaded via a network (such as the Internet).
  • the processing circuit 200 may include an information acquiring unit 2001, which may be configured to acquire location information of at least one terminal device on the terminal side in the wireless communication system served by the electronic device.
  • at least one terminal device may have specific location configuration information.
  • the positioning information of the terminal device may include time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with a control-side electronic device serving the terminal device.
  • the processing circuit 200 may further include a sending unit 2002, which may be configured to send the location information of at least one terminal device to the location management device in the wireless communication system.
  • the sending unit 2002 may also be configured to periodically send positioning information to the position management device according to the positioning period, so as to periodically determine the position of the terminal device.
  • the processing circuit 200 may further include a receiving unit 2003, which may be configured to receive the determined location information of the at least one terminal device from the location management device.
  • the processing circuit 200 may also be configured to locate other terminal devices according to the received position information of the determined terminal device.
  • the processing circuit 200 may further include a beam scanning unit 2004, which may be configured to estimate the position of the terminal device at the current moment according to the position of the terminal device previously received; and configure the beam according to the estimated position of the terminal device The sequence of scanning in order to perform beam scanning for the terminal device.
  • the beam scanning unit 2004 may also be configured to first scan a beam whose beam direction is adjacent to a direction corresponding to the estimated position of the terminal device.
  • the beam scanning unit 2004 may also be configured to select the beam for data transmission with the terminal device and stop beam scanning when the beam gain is greater than a certain threshold.
  • the processing circuit 200 may further include a beam switching unit 2005, which may be configured to determine the position of beam switching for the terminal device according to the intersection of the current downlink transmission beam for the terminal device and the next downlink transmission beam; And according to the determined position of the terminal device at a specific time and the determined beam switching position, the time when the terminal device performs beam switching is estimated.
  • the beam switching unit 2005 may also be configured to cause the sending unit 2002 to send a pilot signal to the terminal device for beam switching before the estimated beam switching time.
  • the beam switching unit 2005 may also be configured to perform beam switching to switch the downlink transmission beam to the next downlink transmission beam when the gain of the next downlink transmission beam is greater than the gain of the current beam.
  • the beam switching unit 2005 may also be configured to stop sending the pilot signal for beam switching while performing beam switching.
  • the electronic device 20 may further include a memory 201 and a communication unit 202 shown in dotted lines in the figure.
  • the electronic device 20 may also include other components not shown, such as a radio frequency link, a baseband processing unit, a network interface, a processor, a controller, and so on.
  • the processing circuit 200 may be associated with the memory 201 and/or the communication unit 202.
  • the processing circuit 200 may be directly or indirectly connected to the memory 201 (for example, other components may be connected in between) to access data.
  • the processing circuit 200 may be directly or indirectly connected to the communication unit 202 to transmit radio signals via the communication unit 202 and receive radio signals via the communication unit 202.
  • the memory 201 can store various information generated by the processing circuit 200 (for example, the position of the terminal device at the current moment, the selected beam, etc.), programs and data used for the operation of the electronic device 20, data to be transmitted by the communication unit 202, and the like.
  • the memory 201 is drawn with a dashed line because it can also be located inside the processing circuit 200 or outside the electronic device 20.
  • the memory 201 may be a volatile memory and/or a non-volatile memory.
  • the memory 201 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the communication unit 202 may be configured to communicate with the location management device and the terminal device under the control of the processing circuit 200.
  • the communication unit 202 may be implemented as a transmitter or transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 202 may send the location information of at least one terminal device acquired by the processing circuit 200 to the location management device in the wireless communication system.
  • the communication unit 202 may also send and receive signaling required for the procedures described in the embodiments of the present disclosure.
  • the processing circuit 200 may also be implemented to include the communication unit 202.
  • the processing circuit 200 may also be implemented to include one or more other components in the electronic device 20, or the processing circuit 200 may be implemented as the electronic device 20 itself.
  • the processing circuit 200 may be implemented as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • each of the foregoing units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the above-mentioned units are shown with dotted lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • FIG. 19 is a flowchart schematically showing the operation of the electronic device according to an embodiment of the present disclosure.
  • the electronic device obtains location information of at least one terminal device on the terminal side in the wireless communication system served by the electronic device, where at least one terminal device has specific location configuration information.
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with a control-side electronic device serving the terminal device.
  • step S1902 the electronic device sends the location information of the at least one terminal device to the location management device in the wireless communication system, so that the location management device can determine the terminal based on the location information and the specific location configuration information of the at least one terminal device.
  • Location information of the device In addition, in some embodiments, the electronic device may periodically send location information to the location management device according to the location period, so that the location management device periodically determines the location of the terminal device.
  • the specific details of the location management device determining the location of the terminal device have been described above, and the description will not be repeated here.
  • step S1903 the electronic device receives the determined location information of at least one terminal device from the location management device.
  • the electronic device may also estimate the position of the terminal device at the current moment according to the position of the terminal device previously received; and configure the beam scanning sequence according to the estimated position of the terminal device so as to perform the scanning on the terminal device. Beam scanning. In some embodiments, the electronic device first scans a beam whose beam direction is adjacent to a direction corresponding to the estimated position of the terminal device. In some embodiments, when the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and beam scanning is stopped. Among them, the specific details of the beam search have been described above, and the description will not be repeated here.
  • the electronic device may also determine the position of beam switching for the terminal device according to the intersection of the current downlink transmission beam used for the terminal device and the next downlink transmission beam; and according to the determined terminal device in a specific The time position and the determined beam switching position are used to estimate the time when the terminal device performs beam switching.
  • the electronic device sends a pilot signal to the terminal device before the estimated beam switching moment for beam switching.
  • the electronic device performs beam switching to switch the downlink transmission beam to the next downlink transmission beam, and at the same time stops sending the pilot signal for beam switching .
  • the electronic device may also locate other terminal devices according to the received position information of the determined terminal device.
  • FIG. 20 is a block diagram schematically showing an example structure of a terminal device 30 according to an embodiment of the present disclosure.
  • the terminal device 30 includes a processing circuit 300, a memory 301, and a communication unit 302.
  • the processing circuit 300 may be configured to obtain the positioning information measurement configuration of the electronic device from the control side of the wireless communication system serving the terminal device; determine the positioning information of the terminal device according to the positioning information measurement configuration; The location information of the device is sent to the location management device in the wireless communication system for the location management device to determine the location information of the terminal device based on the location information and the specific location configuration information of at least one terminal device including the terminal device.
  • the processing circuit 300 may be in the form of a general-purpose processor, or may be a dedicated processing circuit, such as an ASIC.
  • the processing circuit 300 can be constructed by a circuit (hardware) or a central processing device (such as a central processing unit (CPU)).
  • the processing circuit 300 may carry a program (software) for operating the circuit (hardware) or the central processing device.
  • the program can be stored in the storage 301 (such as arranged in a storage) or an external storage medium connected from the outside, and downloaded via a network (such as the Internet).
  • the processing circuit 300 may include an information acquisition unit 3001, which may be configured to acquire the positioning information measurement configuration of the electronic device from the control side of the wireless communication system serving the terminal device.
  • the processing circuit 300 may further include a positioning information measurement unit 3002, which may be configured to determine the positioning information of the terminal device according to the positioning information measurement configuration.
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with a control-side electronic device serving the terminal device.
  • the positioning information measuring unit 3002 may also be configured to periodically determine the positioning information according to the positioning period.
  • the processing circuit 300 may further include a sending unit 3003, which may be configured to send the location information of the terminal device to the location management device in the wireless communication system.
  • the sending unit 3003 may also be configured to send a beam search request to the control-side electronic device serving the terminal device.
  • the processing circuit 300 may further include a receiving unit 3004, which may be configured to receive the scanning beam from the control-side electronic device.
  • the receiving unit 3004 may also be configured to receive pilot signals from the control-side electronic device serving the terminal device.
  • the processing circuit 300 may further include a beam selection unit 3005, which may be configured to determine the beam gain of the scanning beam, and when the beam gain is greater than a certain threshold, select the beam for data transmission with the terminal device , And feedback the selected beam to the control-side electronic device.
  • a beam selection unit 3005 which may be configured to determine the beam gain of the scanning beam, and when the beam gain is greater than a certain threshold, select the beam for data transmission with the terminal device , And feedback the selected beam to the control-side electronic device.
  • the processing circuit 300 may further include a beam switching notification unit 3006, which may be configured to perform pilot measurement to determine the beam gain of the scanning beam, and in the case where the scanning beam gain is greater than the gain of the previous scanning beam, notify The control-side electronic device performs beam switching to switch to the scanning beam.
  • a beam switching notification unit 3006 may be configured to perform pilot measurement to determine the beam gain of the scanning beam, and in the case where the scanning beam gain is greater than the gain of the previous scanning beam, notify The control-side electronic device performs beam switching to switch to the scanning beam.
  • the terminal device 30 may further include a memory 301 and a communication unit 302 shown in dotted lines in the figure.
  • the terminal device 30 may also include other components not shown, such as a radio frequency link, a baseband processing unit, a network interface, a processor, and a controller.
  • the processing circuit 300 may be associated with the memory 301 and/or the communication unit 302.
  • the processing circuit 300 may be connected to the memory 301 directly or indirectly (for example, other components may be connected in between) to perform data access.
  • the processing circuit 300 may be directly or indirectly connected to the communication unit 302 to transmit radio signals via the communication unit 302 and receive radio signals via the communication unit 302.
  • the memory 301 may store various information generated by the processing circuit 300 (for example, positioning information of the terminal device, beam gain of a scanning beam, etc.), programs and data for operation of the terminal device 30, data to be transmitted by the communication unit 302, and the like.
  • the memory 301 is drawn with a dashed line because it can also be located in the processing circuit 300 or located outside the terminal device 30.
  • the memory 301 may be a volatile memory and/or a non-volatile memory.
  • the memory 301 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the communication unit 302 may be configured to communicate with electronic devices and terminal devices under the control of the processing circuit 300.
  • the communication unit 302 may be implemented as a transmitter or transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 302 may send the location information of the terminal device determined in the processing circuit 300 to the location management device in the wireless communication system.
  • the communication unit 302 may also send and receive signaling required for the procedures described in the embodiments of the present disclosure.
  • the processing circuit 300 may also be implemented to include the communication unit 302.
  • the processing circuit 300 may also be implemented as including one or more other components in the terminal device 30, or the processing circuit 300 may be implemented as the terminal device 30 itself.
  • the processing circuit 300 may be implemented as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • each of the foregoing units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the above-mentioned units are shown with dotted lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • FIG. 21 is a flowchart schematically showing the operation of the terminal device according to an embodiment of the present disclosure.
  • step S2101 the terminal device acquires the positioning information measurement configuration of the electronic device from the control side of the wireless communication system serving the terminal device.
  • step S2102 the terminal device determines the positioning information of the terminal device according to the positioning information measurement configuration.
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with a control-side electronic device serving the terminal device.
  • the terminal device may periodically determine the positioning information according to the positioning period.
  • the terminal device sends the location information of the terminal device to the location management device in the wireless communication system for the location management device to configure based on the location information and the specific location of at least one terminal device including the terminal device Information to determine the location of the terminal device.
  • the terminal device may send a beam search request to the control-side electronic device serving the terminal device; receive the scanning beam from the control-side electronic device; and determine the beam gain of the scanning beam, when the beam gain is greater than a certain threshold In the case of, the beam is selected for data transmission with the terminal device, and the selected beam is fed back to the control-side electronic device.
  • a beam search request to the control-side electronic device serving the terminal device; receive the scanning beam from the control-side electronic device; and determine the beam gain of the scanning beam, when the beam gain is greater than a certain threshold
  • the beam is selected for data transmission with the terminal device, and the selected beam is fed back to the control-side electronic device.
  • the terminal device may receive the pilot signal from the control-side electronic device serving the terminal device; and perform pilot measurement to determine the beam gain of the scanning beam, where the scanning beam gain is greater than the previous scanning beam In the case of gain, the control-side electronic device is notified to perform beam switching to switch to the scanning beam.
  • the specific details of beam search have been described, and the description will not be repeated here.
  • Examples of high-speed train communication scenarios are described in this disclosure, but it should be understood that the application scenarios of the present disclosure are not limited to high-speed train communication scenarios.
  • the improved solution proposed in the present disclosure can be applied to any mobile communication application scenario that has higher requirements on delay and reliability.
  • machine-readable storage medium or the machine-executable instructions in the program product may be configured to perform operations corresponding to the above-mentioned device and method embodiments.
  • the embodiments of the machine-readable storage medium or program product are clear to those skilled in the art, so the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-mentioned machine-executable instructions also fall within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and so on.
  • FIG. 22 is a block diagram showing an example structure of a personal computer of an information processing apparatus employable in an embodiment of the present disclosure.
  • the personal computer may correspond to the aforementioned exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 2201 performs various processes in accordance with a program stored in a read only memory (ROM) 2202 or a program loaded from a storage portion 2208 to a random access memory (RAM) 2203.
  • the RAM 2203 also stores data required when the CPU 2201 executes various processes and the like as necessary.
  • the CPU 2201, the ROM 2202, and the RAM 2203 are connected to each other via a bus 2204.
  • the input/output interface 2205 is also connected to the bus 2204.
  • input part 2206 including keyboard, mouse, etc.
  • output part 2207 including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.
  • storage part 2208 Including hard disk, etc.
  • communication part 2209 including network interface cards such as LAN cards, modems, etc.
  • the communication section 2209 performs communication processing via a network such as the Internet.
  • the driver 2210 is also connected to the input/output interface 2205 as required.
  • Removable media 2211 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc. are mounted on the drive 2210 as needed, so that the computer programs read from them are installed into the storage portion 2208 as needed.
  • the program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 2211.
  • this storage medium is not limited to the removable medium 2211 shown in FIG. 22 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 2211 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disc read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered trademarks) )) and semiconductor memory.
  • the storage medium may be a ROM 2202, a hard disk included in the storage portion 2208, or the like, in which programs are stored and distributed to users together with devices containing them.
  • the technology of the present disclosure can be applied to various products.
  • the location management device 10/electronic device 20 may be implemented as various control devices/base stations or included in various control devices/base stations.
  • the terminal device 30 according to the embodiment of the present disclosure may be implemented as various terminal devices or included in various terminal devices.
  • the control device/base station mentioned in this disclosure may be implemented as any type of base station, such as an eNB, such as a macro eNB and a small eNB.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • it may be implemented as gNB, such as macro gNB and small gNB.
  • the small gNB may be a gNB covering a cell smaller than a macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Head, RRH) arranged in a different place from the main body.
  • a main body also referred to as a base station device
  • RRH Remote Radio Head
  • various types of terminals to be described below can all operate as base stations by temporarily or semi-persistently performing base station functions.
  • the user equipment mentioned in the present disclosure can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and Digital camera) or vehicle-mounted terminal (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • the term base station in the present disclosure has the full breadth of its usual meaning and at least includes wireless communication stations used as a wireless communication system or a part of a radio system to facilitate communication.
  • the base station may be, for example, but not limited to the following: the base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, and may be a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • One or both of (RNC) and Node B may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (for example, gNB, eLTE that may appear in 5G communication systems) eNB, etc.).
  • Part of the functions in the base station of the present disclosure may also be implemented as an entity having a communication control function in D2D, M2M, and V2V communication scenarios,
  • FIG. 23 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB2300 includes multiple antennas 2310 and base station equipment 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via an RF cable.
  • the gNB 2300 (or base station device 2320) here may correspond to the location management device 10 or the electronic device 20 described above.
  • Each of the antennas 2310 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 2320 to transmit and receive wireless signals.
  • the gNB2300 may include multiple antennas 2310.
  • multiple antennas 2310 may be compatible with multiple frequency bands used by gNB 2300.
  • the base station equipment 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 2320. For example, the controller 2321 determines the location of the target terminal device in the at least one terminal device according to the location information of at least one terminal device on the terminal side in the wireless communication system and the specific location configuration information of the at least one terminal device acquired by the wireless communication interface 2325. location information.
  • the controller 2321 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, access control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2322 includes RAM and ROM, and stores programs executed by the controller 2321 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 2323 is a communication interface for connecting the base station equipment 2320 to the core network 2324.
  • the controller 2321 can communicate with the core network node or another gNB via the network interface 2323.
  • the gNB 2300 and the core network node or other gNB may be connected to each other through logical interfaces (such as S1 interface and X2 interface).
  • the network interface 2323 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the gNB 2300 via the antenna 2310.
  • the wireless communication interface 2325 may generally include, for example, a baseband (BB) processor 2326 and an RF circuit 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 2326 may have a part or all of the above-mentioned logical functions.
  • the BB processor 2326 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 2326.
  • the module may be a card or a blade inserted into the slot of the base station device 2320. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2310.
  • FIG. 23 shows an example in which one RF circuit 2327 is connected to one antenna 2310, the present disclosure is not limited to this illustration, but one RF circuit 2327 can connect multiple antennas 2310 at the same time.
  • the wireless communication interface 2325 may include a plurality of BB processors 2326.
  • multiple BB processors 2326 may be compatible with multiple frequency bands used by gNB 2300.
  • the wireless communication interface 2325 may include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 may be compatible with multiple antenna elements.
  • FIG. 23 shows an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • FIG. 24 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB2400 includes multiple antennas 2410, RRH 2420, and base station equipment 2430.
  • the RRH 2420 and each antenna 2410 may be connected to each other via an RF cable.
  • the base station device 2430 and the RRH 2420 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 2400 (or base station device 2430) here may correspond to the location management device 10 or the electronic device 20 described above.
  • Each of the antennas 2410 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the RRH 2420 to transmit and receive wireless signals.
  • the gNB 2400 may include multiple antennas 2410.
  • multiple antennas 2410 may be compatible with multiple frequency bands used by gNB 2400.
  • the base station equipment 2430 includes a controller 2431, a memory 2432, a network interface 2433, a wireless communication interface 2434, and a connection interface 2436.
  • the controller 2431, the memory 2432, and the network interface 2433 are the same as the controller 2321, the memory 2322, and the network interface 2323 described with reference to FIG. 23.
  • the wireless communication interface 2434 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 2420 via the RRH 2420 and the antenna 2410.
  • the wireless communication interface 2434 may generally include, for example, a BB processor 2435.
  • the BB processor 2435 is the same as the BB processor 2326 described with reference to FIG. 23 except that the BB processor 2435 is connected to the RF circuit 2422 of the RRH 2420 via the connection interface 2436.
  • the wireless communication interface 2434 may include a plurality of BB processors 2435.
  • multiple BB processors 2435 can be compatible with multiple frequency bands used by gNB 2400.
  • FIG. 24 shows an example in which the wireless communication interface 2434 includes a plurality of BB processors 2435, the wireless communication interface 2434 may also include a single BB processor 2435.
  • connection interface 2436 is an interface for connecting the base station device 2430 (wireless communication interface 2434) to the RRH 2420.
  • the connection interface 2436 may also be a communication module used to connect the base station device 2430 (wireless communication interface 2434) to the communication in the above-mentioned high-speed line of the RRH 2420.
  • the RRH 2420 includes a connection interface 2423 and a wireless communication interface 2421.
  • connection interface 2423 is an interface for connecting the RRH 2420 (wireless communication interface 2421) to the base station equipment 2430.
  • the connection interface 2423 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 2421 transmits and receives wireless signals via the antenna 2410.
  • the wireless communication interface 2421 may generally include, for example, an RF circuit 2422.
  • the RF circuit 2422 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2410.
  • FIG. 24 shows an example in which one RF circuit 2422 is connected to one antenna 2410, the present disclosure is not limited to this illustration, but one RF circuit 2422 can connect multiple antennas 2410 at the same time.
  • the wireless communication interface 2421 may include a plurality of RF circuits 2422.
  • multiple RF circuits 2422 may support multiple antenna elements.
  • FIG. 24 shows an example in which the wireless communication interface 2421 includes a plurality of RF circuits 2422, the wireless communication interface 2421 may also include a single RF circuit 2422.
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smart phone 2500 to which the technology of the present disclosure can be applied.
  • the smart phone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, a camera device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, one or more An antenna switch 2515, one or more antennas 2516, a bus 2517, a battery 2518, and an auxiliary controller 2519.
  • the smart phone 2500 (or the processor 2501) herein may correspond to the aforementioned user equipment UE40.
  • the processor 2501 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 2500.
  • the memory 2502 includes RAM and ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 2500.
  • USB universal serial bus
  • the camera 2506 includes an image sensor, such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 2507 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2508 converts the sound input to the smart phone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives operations or information input from the user.
  • the display device 2510 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smart phone 2500.
  • the speaker 2511 converts the audio signal output from the smart phone 2500 into sound.
  • the wireless communication interface 2512 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2512 may generally include, for example, a BB processor 2513 and an RF circuit 2514.
  • the BB processor 2513 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG.
  • the wireless communication interface 2512 may include a plurality of BB processors 2513 and a plurality of RF circuits 2514.
  • FIG. 25 shows an example in which the wireless communication interface 2512 includes a plurality of BB processors 2513 and a plurality of RF circuits 2514, the wireless communication interface 2512 may also include a single BB processor 2513 or a single RF circuit 2514.
  • the wireless communication interface 2512 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 2512 may include a BB processor 2513 and an RF circuit 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 among a plurality of circuits included in the wireless communication interface 2512 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2512 to transmit and receive wireless signals.
  • the smart phone 2500 may include multiple antennas 2516.
  • FIG. 25 shows an example in which the smart phone 2500 includes a plurality of antennas 2516, the smart phone 2500 may also include a single antenna 2516.
  • the smart phone 2500 may include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 may be omitted from the configuration of the smart phone 2500.
  • the bus 2517 connects the processor 2501, memory 2502, storage device 2503, external connection interface 2504, camera 2506, sensor 2507, microphone 2508, input device 2509, display device 2510, speaker 2511, wireless communication interface 2512, and auxiliary controller 2519 to each other. connection.
  • the battery 2518 supplies power to each block of the smart phone 2500 shown in FIG. 25 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 2519 operates the minimum necessary functions of the smartphone 2500 in the sleep mode, for example.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation device 2600 to which the technology of the present disclosure can be applied.
  • the car navigation device 2600 includes a processor 2601, a memory 2602, a global positioning system (GPS) module 2604, a sensor 2605, a data interface 2606, a content player 2607, a storage medium interface 2608, an input device 2609, a display device 2610, a speaker 2611, a wireless A communication interface 2613, one or more antenna switches 2616, one or more antennas 2617, and a battery 2618.
  • the car navigation device 2600 (or the processor 2601) herein may correspond to the terminal device 30.
  • the processor 2601 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 2600.
  • the memory 2602 includes RAM and ROM, and stores data and programs executed by the processor 2601.
  • the GPS module 2604 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2600.
  • the sensor 2605 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2606 is connected to, for example, an in-vehicle network 2621 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2607 reproduces content stored in a storage medium (such as CD and DVD), which is inserted into the storage medium interface 2608.
  • the input device 2609 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2610, and receives an operation or information input from the user.
  • the display device 2610 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2611 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2613 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2613 may generally include, for example, a BB processor 2614 and an RF circuit 2615.
  • the BB processor 2614 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2615 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via an antenna 2617.
  • the wireless communication interface 2613 can also be a chip module on which the BB processor 2614 and the RF circuit 2615 are integrated. As shown in FIG.
  • the wireless communication interface 2613 may include a plurality of BB processors 2614 and a plurality of RF circuits 2615.
  • FIG. 26 shows an example in which the wireless communication interface 2613 includes a plurality of BB processors 2614 and a plurality of RF circuits 2615, the wireless communication interface 2613 may also include a single BB processor 2614 or a single RF circuit 2615.
  • the wireless communication interface 2613 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2613 may include a BB processor 2614 and an RF circuit 2615.
  • Each of the antenna switches 2616 switches the connection destination of the antenna 2617 among a plurality of circuits included in the wireless communication interface 2613, such as circuits for different wireless communication schemes.
  • Each of the antennas 2617 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2613 to transmit and receive wireless signals.
  • the car navigation device 2600 may include multiple antennas 2617.
  • FIG. 26 shows an example in which the car navigation device 2600 includes a plurality of antennas 2617, the car navigation device 2600 may also include a single antenna 2617.
  • the car navigation device 2600 may include an antenna 2617 for each wireless communication scheme.
  • the antenna switch 2616 may be omitted from the configuration of the car navigation device 2600.
  • the battery 2618 supplies power to each block of the car navigation device 2600 shown in FIG. 26 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 2618 accumulates power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 2620 including one or more blocks in the car navigation device 2600, the in-vehicle network 2621, and the vehicle module 2622.
  • vehicle module 2622 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle network 2621.
  • the location management device can coordinate the location and tracking of the target terminal device in at least one terminal device based on the specific location configuration information of the at least one terminal device and the location information of the at least one terminal device.
  • the two positioning methods under the LTE network and the NR network are comprehensively used to realize real-time positioning of the terminal equipment at any time, and the specific position configuration of the terminal equipment is used to improve the accuracy of positioning and reduce Overhead, it further realizes fast positioning assisted beam search and beam switching with lower delay and overhead.
  • machine-readable storage medium or the machine-executable instructions in the program product may be configured to perform operations corresponding to the above-mentioned device and method embodiments.
  • the embodiments of the machine-readable storage medium or program product are clear to those skilled in the art, so the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-mentioned machine-executable instructions also fall within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and so on.
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be changed appropriately.
  • a location management device used on the control side of a wireless communication system including a processing circuit configured to:
  • the location information of the target terminal device in the at least one terminal device is determined.
  • Exemplary embodiment 2 The location management device according to exemplary embodiment 1, wherein
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • Exemplary embodiment 3 The location management device according to exemplary embodiment 2, wherein when the control-side electronic device serving the terminal device is the first electronic device compliant with the 4G communication standard, the positioning information is the time Related positioning information.
  • Exemplary embodiment 4 The location management device according to exemplary embodiment 3, wherein the time-related positioning information includes an observation time difference OTDOA measurement result, which indicates that two first electronic devices serving the terminal device simultaneously send The time difference of the positioning reference signal PRS to the terminal device.
  • the time-related positioning information includes an observation time difference OTDOA measurement result, which indicates that two first electronic devices serving the terminal device simultaneously send The time difference of the positioning reference signal PRS to the terminal device.
  • Exemplary embodiment 5 The location management device according to exemplary embodiment 2, wherein, when the control-side electronic device serving the terminal device is a second electronic device that complies with the 5G communication standard, the positioning information is the Beam-related positioning information.
  • Exemplary embodiment 6 The location management device according to exemplary embodiment 5, wherein the beam-related positioning information includes beam information of a downlink transmission beam that the second electronic device communicates with the terminal device, which indicates The angle or coverage information of the downlink transmission beam used for the terminal device.
  • Exemplary embodiment 7 The location management device according to exemplary embodiment 1, wherein the location information of the terminal device is obtained by the location management device from the terminal device, or is obtained from the control-side electronic device serving the terminal device.
  • Exemplary embodiment 8 The location management device according to exemplary embodiment 1, wherein the location management device periodically obtains the positioning information according to a positioning period to periodically determine the location of the target terminal device .
  • Exemplary embodiment 9 The location management device according to exemplary embodiment 8, wherein the positioning period can be set to be equal to or less than that of the 4G communication standard-compliant control-side electronic device sending the positioning reference signal PRS to the terminal device cycle.
  • Exemplary embodiment 10 The location management device of exemplary embodiment 8, wherein the processing circuit is further configured to:
  • linear fitting is used to correct the current location of the target terminal device, and the location of the target terminal device at a specific time is estimated.
  • Exemplary embodiment 11 The location management device according to exemplary embodiment 1, wherein the processing circuit is further configured to:
  • control-side electronic device serving the terminal device to estimate the current position of the terminal device based on the previously determined position of the terminal device
  • the control-side electronic device serving the terminal device is configured to configure the beam scanning sequence according to the estimated position of the terminal device to perform beam scanning on the terminal device.
  • Exemplary embodiment 12 The position management device according to exemplary embodiment 11, wherein beams whose beam directions are adjacent to the direction corresponding to the estimated position of the terminal device are scanned first.
  • Exemplary embodiment 13 The location management device according to exemplary embodiment 11, wherein, in a case where the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and the control-side electronic device Stop beam scanning.
  • Exemplary embodiment 14 The location management device of exemplary embodiment 1, wherein the processing circuit is further configured to:
  • control-side electronic device serving the terminal device Enabling the control-side electronic device serving the terminal device to determine the position of beam switching for the terminal device according to the intersection point of the current downlink transmission beam for the terminal device and the next downlink transmission beam;
  • the control-side electronic device serving the terminal device estimates the time when the terminal device performs beam switching based on the determined position of the terminal device at a specific time and the determined beam switching position.
  • Exemplary embodiment 15 The location management device according to exemplary embodiment 14, wherein the control-side electronic device serving the terminal device transmits a pilot signal to the terminal device before the estimated beam switching moment for beam switching.
  • Exemplary embodiment 16 The location management device according to exemplary embodiment 14, wherein, in a case where the next downlink transmission beam gain is greater than the gain of the current beam, the control-side electronic device serving the terminal device performs beam switching.
  • Exemplary embodiment 17 The location management device of exemplary embodiment 14, wherein the processing circuit is further configured to:
  • control-side electronic device serving the terminal device to stop sending the pilot signal for beam switching while performing beam switching.
  • Exemplary embodiment 18 The location management device according to exemplary embodiment 1, wherein the at least one terminal device includes a plurality of terminal devices, and the specific location configuration information includes information between the plurality of terminal devices Specific location relationship.
  • Exemplary embodiment 19 The location management device according to exemplary embodiment 18, wherein the processing circuit is further configured to:
  • the control-side electronic devices serving the plurality of terminal devices of the wireless communication system Based on the position information of the control-side electronic devices serving the plurality of terminal devices of the wireless communication system, the specific positional relationship between the plurality of terminal devices, and the positioning information of each terminal device, determine the plurality of The position error function of each terminal device in the terminal device with respect to the target terminal device;
  • the location information of the target terminal device is determined based on the location error function of each terminal device of the plurality of terminal devices.
  • Exemplary embodiment 20 The location management device of exemplary embodiment 19, wherein the location information of the target terminal device is determined according to a weighted minimum mean square error criterion based on a location error function.
  • Exemplary embodiment 21 The location management device according to exemplary embodiment 18, wherein the plurality of terminal devices follow a specific trajectory arrangement, and the specific location configuration information further includes what the plurality of terminal devices follow Location information of a specific track,
  • processing circuit is further configured as:
  • the location of the target terminal device is determined based on the location information of the specific trajectory followed by the multiple terminal devices, where the location information of the specific trajectory is obtained by fitting a previously determined location of the terminal device or obtained from a network map.
  • Exemplary embodiment 22 The location management device according to exemplary embodiment 18, wherein the plurality of terminal devices are arranged following a linear trajectory, and the interval between the plurality of terminal devices is constant within a certain period of time .
  • Exemplary embodiment 23 The location management device of exemplary embodiment 18, wherein the processing circuit is further configured to:
  • the location of other terminal devices among the multiple terminal devices is determined.
  • Exemplary embodiment 24 The location management device according to exemplary embodiment 23, wherein the processing circuit is further configured to:
  • the determined position of each terminal device is sent to the control-side electronic device serving each terminal device, so that the control-side electronic device can locate each terminal device.
  • Exemplary embodiment 25 The location management device according to exemplary embodiment 18, wherein the specific location relationship between the plurality of terminal devices is provided to the location management device in advance, or is measured and combined by the target terminal device Provided to the location management device.
  • Exemplary embodiment 26 An electronic device used on the control side of a wireless communication system, the electronic device comprising a processing circuit configured to:
  • Exemplary embodiment 27 The electronic device of exemplary embodiment 26, wherein
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • Exemplary embodiment 28 The electronic device of exemplary embodiment 26, wherein the processing circuit is further configured to:
  • the location information is periodically sent to the location management device according to the location period, so as to periodically determine the location of the terminal device.
  • Exemplary embodiment 29 The electronic device of exemplary embodiment 26, wherein the processing circuit is further configured to:
  • the sequence of beam scanning is configured according to the estimated position of the terminal device to perform beam scanning on the terminal device.
  • Exemplary embodiment 30 The electronic device of exemplary embodiment 29, wherein the processing circuit is further configured to:
  • the beams whose beam directions are adjacent to the direction corresponding to the estimated position of the terminal device are scanned.
  • Exemplary embodiment 31 The electronic device of exemplary embodiment 29, wherein the processing circuit is further configured to:
  • the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and beam scanning is stopped.
  • Exemplary embodiment 32 The electronic device of exemplary embodiment 26, wherein the processing circuit is further configured to:
  • the time when the terminal device performs beam switching is estimated according to the determined position of the terminal device at a specific time and the determined beam switching position.
  • Exemplary embodiment 33 The electronic device of exemplary embodiment 32, wherein the processing circuit is further configured to:
  • the pilot signal is sent to the terminal device before the estimated beam switching moment for beam switching.
  • Exemplary embodiment 34 The electronic device of exemplary embodiment 32, wherein the processing circuit is further configured to:
  • beam switching is performed to switch the downlink transmission beam to the next downlink transmission beam.
  • Exemplary embodiment 35 The electronic device of exemplary embodiment 32, wherein the processing circuit is further configured to:
  • While performing beam switching stop sending the pilot signal for beam switching.
  • Exemplary embodiment 36 The electronic device of exemplary embodiment 26, wherein the processing circuit is further configured to:
  • Exemplary embodiment 37 A terminal device used on a terminal side of a wireless communication system, the terminal device including a processing circuit configured to:
  • Exemplary embodiment 38 The terminal device of exemplary embodiment 37, wherein
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • Exemplary embodiment 39 The terminal device of exemplary embodiment 37, wherein the processing circuit is further configured to:
  • the positioning information is periodically determined according to the positioning period.
  • Exemplary embodiment 40 The terminal device according to exemplary embodiment 37, wherein the processing circuit is further configured to:
  • the beam gain of the scanning beam is determined, and when the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and the selected beam is fed back to the control-side electronic device.
  • Exemplary embodiment 41 The terminal device according to exemplary embodiment 37, wherein the processing circuit is further configured to:
  • a location management device for a control side of a wireless communication system comprising a processing circuit configured to:
  • the communication scene including a communication scene in which the terminal device moves along a specific track
  • Exemplary embodiment 43 The location management device according to exemplary embodiment 42, wherein the processing circuit is further configured to:
  • a positioning scheme is determined based on the communication scene indication for positioning the terminal device.
  • Exemplary embodiment 44 The location management device according to exemplary embodiment 42 or 43, wherein the processing circuit is further configured to: in a case where it is determined to adopt an OTDOA positioning solution based on the communication scene indication,
  • auxiliary information for performing an OTDOA positioning solution to the terminal device, where the auxiliary information includes configuration information of multiple candidate base stations for the terminal device to perform measurement;
  • OTDOA positioning is performed on the terminal device based on the information of the specific track and the measurement result from the terminal device on the two base stations of the multiple candidate base stations.
  • Exemplary embodiment 45 The location management device according to exemplary embodiment 44, wherein the plurality of candidate base stations includes only 2 base stations.
  • Exemplary embodiment 46 The location management device according to exemplary embodiment 44, wherein the auxiliary information includes at least one of the following:
  • the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station are defined by the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station.
  • Exemplary embodiment 47 The location management device of exemplary embodiment 44, wherein the measurement result includes at least one of the following:
  • the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station are the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station.
  • Exemplary embodiment 48 The location management device according to exemplary embodiment 42 or 43, wherein the processing circuit is further configured to: in a case where it is determined to adopt a downlink transmission beam positioning scheme based on a communication scenario indication,
  • Exemplary embodiment 49 The location management device according to exemplary embodiment 48, wherein the measurement result only includes a measurement result of a single beam.
  • Exemplary embodiment 50 The location management device according to exemplary embodiment 42, wherein the location management device is located in a serving base station of the terminal device or other control device on the control side.
  • a terminal device used on the terminal side of a wireless communication system comprising a processing circuit configured to:
  • the communication scene including a communication scene in which the terminal device moves along a specific track
  • Exemplary embodiment 52 The terminal device according to exemplary embodiment 51, wherein the processing circuit is further configured to: in a case where it is determined to adopt an OTDOA positioning solution based on the communication scene indication,
  • auxiliary information for performing an OTDOA positioning solution, where the auxiliary information includes configuration information of multiple candidate base stations for the terminal device to perform measurement;
  • the measurement result is sent to the device on the control side of the wireless communication system, so that OTDOA positioning of the terminal device can be performed based on the information of the specific track and the measurement result.
  • Exemplary embodiment 53 The terminal device according to exemplary embodiment 52, wherein the plurality of candidate base stations includes only 2 base stations.
  • Exemplary embodiment 54 The terminal device according to exemplary embodiment 52, wherein the auxiliary information includes at least one of the following:
  • the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station are defined by the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station.
  • Exemplary embodiment 55 The terminal device according to exemplary embodiment 52, wherein the measurement result includes at least one of the following:
  • the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station are the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station.
  • Exemplary embodiment 56 The terminal device according to exemplary embodiment 51, wherein the processing circuit is further configured to: in a case where it is determined to adopt a downlink transmission beam positioning scheme based on a communication scenario indication,
  • the measurement result is sent to the device on the control side of the wireless communication system, so that the terminal device can perform downlink transmission beam positioning based on the information of the specific track and the measurement result.
  • Exemplary embodiment 57 The terminal device according to exemplary embodiment 54, wherein the measurement result only includes a measurement result of a single beam.
  • Exemplary embodiment 58 The terminal device according to exemplary embodiment 51, wherein the serving base station of the terminal device may include a position management device on the control side of the wireless communication system or other control devices on the control side.
  • a location management method for a wireless communication system comprising:
  • the location information of the target terminal device in the at least one terminal device is determined.
  • Exemplary embodiment 60 The location management method according to exemplary embodiment 59, wherein
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • Exemplary embodiment 61 The location management method according to exemplary embodiment 60, wherein when the control-side electronic device serving the terminal device is the first electronic device compliant with the 4G communication standard, the location information is the time Related positioning information.
  • Exemplary embodiment 62 The location management method according to exemplary embodiment 61, wherein the time-related positioning information includes an observation time difference OTDOA measurement result, which indicates that two first electronic devices serving the terminal device simultaneously send The time difference of the positioning reference signal PRS to the terminal device.
  • the time-related positioning information includes an observation time difference OTDOA measurement result, which indicates that two first electronic devices serving the terminal device simultaneously send The time difference of the positioning reference signal PRS to the terminal device.
  • Exemplary embodiment 63 The location management method according to exemplary embodiment 61, wherein, when the control-side electronic device serving the terminal device is a second electronic device that complies with a 5G communication standard, the positioning information is the Beam-related positioning information.
  • Exemplary embodiment 64 The position management method according to exemplary embodiment 63, wherein the beam-related positioning information includes beam information of a downlink transmission beam that the second electronic device communicates with the terminal device, which indicates The angle or coverage information of the downlink transmission beam used for the terminal device.
  • Exemplary embodiment 65 The location management method according to exemplary embodiment 59, wherein the location information of the terminal device is obtained from the terminal device, or is obtained from a control-side electronic device serving the terminal device.
  • Exemplary embodiment 66 The position management method according to exemplary embodiment 59, wherein the positioning information is periodically acquired according to a positioning period to periodically determine the position of the target terminal device.
  • Exemplary embodiment 67 The position management method according to exemplary embodiment 66, wherein the positioning period can be set to be equal to or less than the time that the control-side electronic device that complies with the 4G communication standard sends the positioning reference signal PRS to the terminal device cycle.
  • Exemplary embodiment 68 The location management method according to exemplary embodiment 66, further comprising:
  • linear fitting is used to correct the current location of the target terminal device, and the location of the target terminal device at a specific time is estimated.
  • Exemplary embodiment 69 The location management method according to exemplary embodiment 59, further comprising:
  • control-side electronic device serving the terminal device to estimate the current position of the terminal device based on the previously determined position of the terminal device
  • the control-side electronic device serving the terminal device is configured to configure the beam scanning sequence according to the estimated position of the terminal device to perform beam scanning on the terminal device.
  • Exemplary embodiment 70 The position management method according to exemplary embodiment 69, wherein beams whose beam directions are adjacent to the direction corresponding to the estimated position of the terminal device are scanned first.
  • Exemplary embodiment 71 The location management method according to exemplary embodiment 69, wherein, in a case where the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and the control-side electronic device Stop beam scanning.
  • Exemplary embodiment 72 The location management method according to exemplary embodiment 59, further comprising:
  • control-side electronic device serving the terminal device Enabling the control-side electronic device serving the terminal device to determine the position of beam switching for the terminal device according to the intersection point of the current downlink transmission beam for the terminal device and the next downlink transmission beam;
  • the control-side electronic device serving the terminal device estimates the time when the terminal device performs beam switching based on the determined position of the terminal device at a specific time and the determined beam switching position.
  • Exemplary embodiment 73 The location management method according to exemplary embodiment 59, wherein the control-side electronic device serving the terminal device transmits a pilot signal to the terminal device before the estimated beam switching moment for beam switching.
  • Exemplary embodiment 74 The position management method according to exemplary embodiment 72, wherein, in a case where the next downlink transmission beam gain is greater than the gain of the current beam, the control-side electronic device serving the terminal device performs beam switching.
  • Exemplary embodiment 75 The location management method according to exemplary embodiment 72, further comprising:
  • control-side electronic device serving the terminal device to stop sending the pilot signal for beam switching while performing beam switching.
  • Exemplary embodiment 76 The location management method according to exemplary embodiment 59, wherein the at least one terminal device includes a plurality of terminal devices, and the specific location configuration information includes information between the plurality of terminal devices Specific location relationship.
  • Exemplary embodiment 77 The location management method according to exemplary embodiment 76, further comprising:
  • the control-side electronic devices serving the plurality of terminal devices of the wireless communication system Based on the position information of the control-side electronic devices serving the plurality of terminal devices of the wireless communication system, the specific positional relationship between the plurality of terminal devices, and the positioning information of each terminal device, determine the plurality of The position error function of each terminal device in the terminal device with respect to the target terminal device;
  • the location information of the target terminal device is determined based on the location error function of each terminal device of the multiple terminal devices.
  • Exemplary embodiment 78 The location management method according to exemplary embodiment 77, wherein the location information of the target terminal device is determined according to a weighted minimum mean square error criterion based on a location error function.
  • Exemplary embodiment 79 The location management method according to exemplary embodiment 59, wherein the plurality of terminal devices follow a specific track arrangement, and the specific location configuration information further includes Location information of a specific track,
  • the method further includes:
  • the location of the target terminal device is determined based on the location information of the specific trajectory followed by the multiple terminal devices, where the location information of the specific trajectory is obtained by fitting a previously determined location of the terminal device or obtained from a network map.
  • Exemplary embodiment 80 The location management method according to exemplary embodiment 79, wherein the plurality of terminal devices are arranged following a linear trajectory, and the distance between the plurality of terminal devices is constant within a certain period of time .
  • Exemplary embodiment 81 The location management method according to exemplary embodiment 76, further comprising:
  • the location of other terminal devices among the multiple terminal devices is determined.
  • Exemplary embodiment 82 The location management method according to exemplary embodiment 81, further comprising:
  • the determined position of each terminal device is sent to the control-side electronic device serving each terminal device, so that the control-side electronic device can locate each terminal device.
  • Exemplary embodiment 83 The location management method of exemplary embodiment 76, wherein the specific location relationship between the plurality of terminal devices is provided to the location management device in advance, or is measured and combined by the target terminal device Provided to the location management device.
  • Exemplary embodiment 84 A method for an electronic device on a control side of a wireless communication system, the method comprising:
  • Exemplary embodiment 85 The method of exemplary embodiment 84, wherein
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • Exemplary embodiment 86 The method of exemplary embodiment 84, further comprising:
  • Exemplary embodiment 87 The method of exemplary embodiment 84, further comprising:
  • the sequence of beam scanning is configured according to the estimated position of the terminal device to perform beam scanning on the terminal device.
  • Exemplary embodiment 88 The method of exemplary embodiment 87, further comprising:
  • the beams whose beam directions are adjacent to the direction corresponding to the estimated position of the terminal device are scanned.
  • Exemplary embodiment 89 The method of exemplary embodiment 87, further comprising:
  • the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and beam scanning is stopped.
  • Exemplary embodiment 90 The method of exemplary embodiment 84, further comprising:
  • the time when the terminal device performs beam switching is estimated according to the determined position of the terminal device at a specific time and the determined beam switching position.
  • Exemplary embodiment 91 The method of exemplary embodiment 90, further comprising:
  • the pilot signal is sent to the terminal device before the estimated beam switching moment for beam switching.
  • Exemplary embodiment 92 The method of exemplary embodiment 90, further comprising:
  • beam switching is performed to switch the downlink transmission beam to the next downlink transmission beam.
  • Exemplary embodiment 93 The method of exemplary embodiment 90, further comprising:
  • While performing beam switching stop sending the pilot signal for beam switching.
  • Exemplary embodiment 94 The method of exemplary embodiment 90, further comprising:
  • Exemplary embodiment 95 A method for a terminal device on a terminal side of a wireless communication system, comprising:
  • Exemplary embodiment 96 The method of exemplary embodiment 95, wherein
  • the positioning information of the terminal device includes time-related positioning information or beam-related positioning information determined by the terminal device in conjunction with the control-side electronic device serving the terminal device.
  • Exemplary embodiment 97 The method of exemplary embodiment 95, further comprising:
  • the positioning information is periodically determined according to the positioning period.
  • Exemplary embodiment 98 The method of exemplary embodiment 95, further comprising:
  • the beam gain of the scanning beam is determined, and when the beam gain is greater than a certain threshold, the beam is selected for data transmission with the terminal device, and the selected beam is fed back to the control-side electronic device.
  • Exemplary embodiment 99 The method of exemplary embodiment 95, further comprising:
  • a location management method for a wireless communication system including:
  • the communication scene including a communication scene in which the terminal device moves along a specific track
  • Exemplary embodiment 101 The location management method according to exemplary embodiment 100, further comprising:
  • a positioning scheme is determined based on the communication scene indication for positioning the terminal device.
  • Exemplary embodiment 102 The location management method according to exemplary embodiment 100 or 101, further comprising: in a case where it is determined to adopt an OTDOA positioning solution based on the communication scene indication,
  • auxiliary information for performing an OTDOA positioning solution to the terminal device, where the auxiliary information includes configuration information of multiple candidate base stations for the terminal device to perform measurement;
  • OTDOA positioning is performed on the terminal device based on the information of the specific track and the measurement result from the terminal device on the two base stations of the multiple candidate base stations.
  • Exemplary embodiment 103 The location management method according to exemplary embodiment 102, wherein the plurality of candidate base stations includes only 2 base stations.
  • Exemplary embodiment 104 The location management method according to exemplary embodiment 102, wherein the auxiliary information includes at least one of the following:
  • the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station are defined by the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station.
  • Exemplary embodiment 105 The location management method according to exemplary embodiment 102, wherein the measurement result includes at least one of the following:
  • the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station are the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station.
  • Exemplary embodiment 106 The position management method according to exemplary embodiment 100 or 101, further comprising: in a case where it is determined to adopt a downlink transmission beam positioning scheme based on the communication scene indication,
  • Exemplary embodiment 107 The location management method according to exemplary embodiment 106, wherein the measurement result only includes a measurement result of a single beam.
  • Exemplary embodiment 108 The location management method according to exemplary embodiment 100, wherein the location management method is executed in a serving base station of the terminal device or another control device on the control side.
  • Exemplary embodiment 109 A method for a terminal device on a terminal side of a wireless communication system, including:
  • the communication scene including a communication scene in which the terminal device moves along a specific track
  • Exemplary embodiment 110 The method according to exemplary embodiment 109, further comprising: in a case where it is determined to adopt an OTDOA positioning solution based on the communication scene indication,
  • auxiliary information for performing an OTDOA positioning solution, where the auxiliary information includes configuration information of multiple candidate base stations for the terminal device to perform measurement;
  • the measurement result is sent to the device on the control side of the wireless communication system, so that OTDOA positioning of the terminal device can be performed based on the information of the specific track and the measurement result.
  • Exemplary embodiment 111 The method according to exemplary embodiment 109, wherein the plurality of candidate base stations includes only 2 base stations.
  • Exemplary embodiment 112. The method according to exemplary embodiment 109, wherein the auxiliary information includes at least one of the following:
  • the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station are defined by the physical cell ID, the global cell ID, the transmission point ID of the candidate base station, the relative timing relationship between the candidate base station and the reference base station, and the positioning reference signal PRS configuration of the candidate base station.
  • Exemplary embodiment 113 The method of exemplary embodiment 110, wherein the measurement result includes at least one of the following:
  • the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station are the physical cell ID, global cell ID, transmission point ID of the base station, and the downlink timing measurement result of the base station.
  • Exemplary embodiment 114 The method according to exemplary embodiment 109, further comprising: in a case where it is determined to adopt a downlink transmission beam positioning solution based on the communication scenario indication,
  • the measurement result is sent to the device on the control side of the wireless communication system, so that the terminal device can perform downlink transmission beam positioning based on the information of the specific track and the measurement result.
  • Exemplary embodiment 115 The method of exemplary embodiment 114, wherein the measurement result includes only a single beam measurement result.
  • Exemplary embodiment 116 The method according to exemplary embodiment 109, wherein the serving base station of the terminal device may include a position management device on the control side of the wireless communication system or other control devices on the control side.
  • Exemplary embodiment 117 A non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the method of any one of exemplary embodiments 59-116.
  • a control-side device for a wireless communication system comprising a processing circuit configured to:
  • the communication scene including a communication scene in which the terminal device moves along a specific track for positioning
  • control-side transmit beam used to carry the one or more CSI-RS resources corresponds to the position of the terminal device.
  • the positioning mentioned in this exemplary embodiment may be performed by the positioning server instead of the gNB. It should also be pointed out that the correspondence between the beam and the position mentioned in this embodiment may cover selecting a beam in an adjacent direction, for example, a beam adjacent to the direction of the position.
  • a terminal device used in a terminal side of a wireless communication system comprising a processing circuit configured to:
  • the communication scene including a communication scene in which the terminal device moves along a specific track
  • control-side transmit beam used to carry the one or more CSI-RS resources corresponds to the position of the terminal device.
  • the positioning mentioned in this exemplary embodiment may be performed by the positioning server instead of the gNB. It should also be pointed out that the correspondence between the beam and the position mentioned in this embodiment may cover selecting a beam in an adjacent direction, for example, a beam adjacent to the direction of the position.
  • a wireless communication device comprising:
  • the storage device stores executable instructions that, when executed, implement the method according to any one of the exemplary embodiments 59-116.
  • Exemplary embodiment 121 A wireless communication device comprising means for performing the method of any of exemplary embodiments 59-116.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及用于无线通信系统的设备、方法和存储介质。在本公开的实施例中,获取无线通信系统中的终端侧的至少一个终端设备的定位信息,其中至少一个终端设备具有特定位置配置信息;以及基于至少一个终端设备的特定位置配置信息、以及至少一个终端设备的定位信息,确定至少一个终端设备中的目标终端设备的位置信息。

Description

用于无线通信系统的设备、方法和存储介质
相关申请的交叉引用
本申请要求于2019年2月2日递交的中国专利申请No.201910106818.4的优先权,其全文通过引用并入于此。
技术领域
本发明一般地涉及无线通信系统,并且特别地涉及无线通信系统中的波束管理技术。
背景技术
在世界范围内,各种类型的交通工具正在日益增多。交通工具上的越来越多的乘客及其设备带来了大量的通信服务需求,因此研究交通工具、尤其是高速交通工具上的无线通信系统变得十分重要。
3GPP考虑使用具有丰富频谱资源的6GHz以上的频段来提供高速的数据服务,并且使用波束赋形技术来克服在高频段的路径损耗。一般来说,在初始接入之后的使用过程中,交通工具上的终端设备需要进行波束搜索来确定基站端最优的下行发送波束,这往往会导致较高的时延。而且,在高速列车和车辆的场景下,随着高速列车和车辆的快速移动,波束搜索失败会频繁发生,进而需要较高的开销来实现波束恢复和/或切换。因此,研究快速的波束搜索和波束切换机制对高速列车和车辆通信系统具有十分重要的意义。
发明内容
针对上述情况,本公开提出了一种改进的对于交通工具上的移动设备进行精确定位的技术。此外,本公开还提出了一种基于被精确定位的移动设备的位置来进行波束搜索和/或波束切换的技术。
本公开提供了用于无线通信系统的设备、方法和存储介质。
本公开的一个方面涉及一种用于无线通信系统的控制侧的位置管理设备。根据一个实施例,该位置管理设备包括处理电路,该处理电路被配置为:获取所述无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特 定位置配置信息;以及基于所述至少一个终端设备的特定位置配置信息、以及所述至少一个终端设备的定位信息,确定所述至少一个终端设备中的目标终端设备的位置信息。
本公开的另一个方面涉及一种用于无线通信系统的控制侧的电子设备。根据一个实施例,该电子设备包括处理电路,该处理电路被配置为:获取所述电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;将所述至少一个终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及所述至少一个终端设备的特定位置配置信息来确定终端设备的位置信息;以及接收来自所述位置管理设备的所确定的所述至少一个终端设备的位置信息。
本公开的另一个方面涉及一种用于无线通信系统的终端侧的终端设备。根据一个实施例,该终端设备包括处理电路,该处理电路被配置为:获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置;根据所述定位信息测量配置来确定终端设备的定位信息;以及将终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及包含所述终端设备在内的至少一个终端设备的特定位置配置信息来确定终端设备的位置信息。
本公开的另一个方面涉及一种用于无线通信系统的位置管理方法。根据一个实施例,该方法包括:终端设备向位置管理设备发送关于所述终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;以及所述位置管理设备基于所述通信场景指示以对所述终端设备进行定位。
本公开的另一个方面涉及一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如前所述的方法。
本公开的另一个方面涉及一种无线通信装置。根据一个实施例,所述无线通信装置包括:处理器和存储装置,所述存储装置存储有可执行指令,所述可执行指令当被执行时实现如前所述的方法。
由此,本公开能够对列车或车辆上的至少一个移动终端设备进行准确定位以提高定位精度,从而快速且准确地确定移动终端设备的位置,以供进行定位追踪。而且,本公开还能够基于被精确定位的各移动终端设备的位置,以较低的延时和开销进行快速的定位辅助的波束搜索和波束切换的方案,从而满足在移动终端设备快速移动时对通信的延时和可靠性二者的要求。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1是示意性地示出了根据本公开的实施例的无线通信系统的示图;
图2是示意性地示出了根据本公开的实施例的协作定位的基本信令流程图;
图3是示意性地示出了根据本公开的实施例的位置管理设备的示例结构的框图;
图4示意性地示出了根据本公开的实施例的位置管理设备的操作的流程图;
图5是示意性地示出了根据本公开的实施例的沿特定轨迹布置的多个终端设备的示图;
图6是示意性地示出了根据本公开的实施例的OTDOA定位的基本原理的示图;
图7是示意性地示出了根据本公开的实施例的下行发送波束定位的基本原理的示图;
图8是示意性地示出了根据本公开的实施例的协作定位的示例性信令流程图;
图9是示意性地示出了根据本公开的实施例的对终端设备进行定位追踪的线性拟合结果的示图;
图10是示意性地示出了根据本公开的实施例的协作定位辅助的定位追踪与单独定位追踪之间的定位距离误差的比较示图;
图11是示意性地示出了根据本公开的实施例的协作定位辅助的定位追踪与单独定位追踪之间的定位角度误差的比较示图;
图12是示意性地示出了根据本公开的实施例的定位辅助的波束搜索的示图;
图13是示意性地示出了根据本公开的实施例的定位辅助的波束搜索的信令流程图;
图14是示意性地示出了根据本公开的实施例的定位辅助的波束搜索与传统波束搜索所需的搜索次数开销的比较示图;
图15是示意性地示出了根据本公开的实施例的定位辅助的波束切换的示图;
图16是示意性地示出了根据本公开的实施例的定位辅助的波束切换的信令流程图;
图17A是示意性地示出了根据本公开的实施例的定位辅助的波束切换的成功概率与时间提前量的关系的示图;
图17B是示意性地示出了根据本公开的实施例的定位辅助的波束切换的导频信号开销与时间提前量的关系的示图;
图18是示意性地示出了根据本公开的实施例的电子设备的示例结构的框图;
图19是示意性地示出了根据本公开的实施例的电子设备的操作的流程图;
图20是示意性地示出了根据本公开的实施例的终端设备的示例结构的框图;
图21是示意性地示出了根据本公开的实施例的终端设备的操作的流程图;
图22是示意性地示出了根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图;
图23是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图;
图24是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;
图25是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图;以及
图26是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
在下文中,将参照附图详细描述本公开的一个或多个优选实施例。在本说明书和附图中,用相同的附图标记表示具有基本相同的功能和结构的结构元件,并且省略对这些结构元件的重复说明。
而且,在本说明书和附图中,在某些情况下可以通过附加到相同符号的不同字母来区分具有基本相同的功能和结构的元件。例如,视情况将具有基本相同的功能和结 构的多个终端设备区分为终端设备30A、30B和30C,如图1所示。另一方面,当没有特别区分具有基本相同的功能和结构的多个元件中的每一个时,将仅给出相同的符号。例如,当未被特别区分时,终端设备30A、30B和30C将被简单地指定为终端设备30。
典型地,无线通信系统至少包括控制侧和终端侧,控制侧的设备可以为终端侧的一个或多个设备提供通信服务。
在本公开中,无线通信系统的“控制侧”具有其通常含义的全部广度,通常指示通信系统中发射信号流以进行控制的一侧,例如可以是通信系统中控制定位的一侧。类似地,术语“终端侧”具有其通常含义的全部广度,相应地可以指示通信系统中接收信号流以根据控制而进行操作的一侧,例如可以是通信系统中的被进行定位的一侧。作为示例,依赖于通信系统中信号流的方向,“控制侧”和“终端侧”可包含通信系统中的不同设备。例如对于上行信号传输,“控制侧”的设备可以包括通信系统中的“基站”,而“终端侧”的设备可以相应地包括通信系统中的“终端设备”。反之,对于下行信号传输,“控制侧”的设备可以包括通信系统中的“终端设备”,而“终端侧”的设备可以相应地包括通信系统中的“基站”。
在本公开中,术语“基站”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。作为例子,基站例如可以是遵循4G通信标准的eNB、遵循5G通信标准的gNB、远程无线电头端、无线接入点、无人机控制塔台或者执行类似功能的通信装置。
在本公开中,“控制侧的电子设备”具有其通常含义的全部广度,例如可以包括作为无线通信系统或无线电系统的一部分以便于进行定位和追踪的设备。在本公开中,“控制侧的电子设备”和“基站”可以互换地使用,或者“控制侧的电子设备”可以实现为“基站”的一部分。
在本公开中,“位置管理设备”是在无线通信系统的控制侧的设备,术语“位置管理设备”具有其通常含义的全部广度,例如可以包括作为无线通信系统或无线电系统的一部分以便于进行定位和追踪的位置管理设备。在本公开中,“位置管理设备”与“基站”或“基站的电子设备”可以互换地使用,或者“位置管理设备”可以实现为“基站”或“基站的电子设备”的一部分。
在本公开中,术语“终端设备”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的终端设备。作为例子,终端设备例如可以是无线中继、微基站、路由器等之类的终端设备或者执行类似功能的通信装置。在本公开中, “终端设备”和“中继”可以互换地使用,或者“终端设备”可以实现为“中继”的一部分。
在本公开中,术语“用户设备(UE)”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的用户端设备。作为例子,用户设备例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备等之类的终端设备或者执行类似功能的通信装置。在本公开中,“终端设备”也与“用户设备”结合在一起。
应指出,以下虽然主要基于包含位置管理设备、电子设备和终端设备的通信系统对本公开的实施例进行了描述,但是这些描述可以相应地扩展到包含任何其它类型的控制侧和终端侧的通信系统的情况。例如,控制侧的操作可对应于位置管理设备、基站、电子设备的操作,而终端侧的操作可相应地对应于终端设备的操作。
另外,描述将按以下顺序进行。
1.无线通信系统示例
2.无线通信系统中的波束管理的概述
3.协作定位原理
4.设备的结构配置
4.1.位置管理设备的结构配置
4.2.电子设备的结构配置
4.3.终端设备的结构配置
5.应用示例
6.结论
<<1.无线通信系统示例>>
在世界范围内,高速交通工具,例如高速列车,地铁等正在日益增多。高速交通工具上的越来越多的乘客及其设备带来了大量的通信服务需求,因此研究高速交通工具上的无线通信系统变得十分重要。
以下将参考图1描述根据本公开的实施例的无线通信系统的配置的示例。图1是示意性地示出了根据本公开的实施例的无线通信系统的示图。该无线通信系统适于根据本公开的实施例的协作定位和追踪以进行高可靠性低延时的波束搜索和波束切换。如图1所示,根据本实施例的无线通信系统包括位置管理设备10、电子设备20、终端设备30和用户设备40。其中,终端设备30遵循特定轨迹50移动。
位置管理设备10是对终端设备30进行定位和追踪,并控制电子设备20进行波束搜索和波束切换的装置。如图1所示,位置管理设备10可以对终端设备30A至30C进行定位和追踪,并控制电子设备20A和20B进行波束搜索和波束切换。在一个方面,位置管理设备10可以实现为基站或者基站的一部分,并且作为示例,可以被称为“主基站”。
电子设备20是向终端设备30和UE 40提供无线电通信服务的装置。如图1所示,可以存在多个电子设备20,并且电子设备20A向终端设备30A提供无线电通信服务,而电子设备20B向终端设备30B和30C提供无线电通信服务。在一个方面,电子设备20可以实现为基站或者基站的一部分,并且作为示例,可以被称为“辅基站”。在一些实施例中,电子设备20A和20B可以是小小区基站。另外,在一些实施例中,位置管理设备10可以是宏小区基站。宏小区基站具有协作地控制由其下属的小小区基站20A和20B执行的无线电通信的功能。另外,电子设备20可以被连接以便能够彼此通信,电子设备20和位置管理设备10可以被连接以便能够彼此通信。
尽管图中示出了位置管理设备10与电子设备20彼此分开的示例,但是位置管理设备10也可以实现为电子设备20或实现为电子设备20的一部分。此外,位置管理设备10与电子设备20也可以互换地使用。
终端设备30是与电子设备20进行通信的装置。在图1的场景下,终端设备30具有高移动性并根据其移动执行基站选择。在一些实施例中,终端设备30可以包括至少一个终端设备。在一个方面,终端设备30可以实现为移动中继或者移动中继的一部分。在另一方面,在由位置管理设备10或电子设备20与终端设备30形成波束通信的情况下,位置管理设备10或电子设备20可以根据终端设备30的移动形成适当波束,并进行通信的波束搜索和波束跟踪。
UE40是与终端设备30进行通信的装置。在图1的场景下,可以存在一个或多个UE40,并且各个终端设备作为中继向其所服务的UE提供无线电通信服务。例如,在图1中,终端设备30B向UE40A和UE40B提供无线电通信服务。
在下文中,位置管理设备10、电子设备20、终端设备30、UE40既可以根据4G的LTE中的无线电接入技术来操作,也可以根据5G的新无线电接入(NR)技术来操作。
<<2.无线通信系统中的波束管理的概述>>
基站中往往安装有大量天线(更具体而言,天线元件),利用天线来形成波束以用于与终端设备进行通信。作为示例,在3GPP中,基站基于下行链路波束形成的参 考信号选择适合于与终端设备的通信的波束。这种下行链路参考信号也称为信道状态信息参考信号(CSI-RS)。基站提供多个CSI-RS,并使用与终端设备中的接收结果相对应的波束与终端设备进行通信。
具体而言,首先,基站使用多个波束来发送多个CSI-RS。然后,终端设备基于多个提供的CSI-RS的接收结果在用于发送CSI-RS的多个波束中选择期望的波束,并且将指示选择结果的信息发送到基站。指示选择结果的信息包括期望波束的标识信息(例如,波束编号)。例如,终端设备基于每个波束的接收信号强度来选择期望波束。然后,基站利用所选择的波束与终端设备进行通信。
在终端设备移动、尤其是高速移动的情况下,终端设备会容易离开波束,此时则难以将数据从基站发送到终端设备。此外,随着天线元件数量的增加,会形成更尖锐的波束,同时终端设备则更容易离开波束。因此,需要对移动的终端设备进行波束跟踪/搜索。
跟踪能力随着向终端设备提供CSI-RS的频率而变化。例如,在以100ms的间隔提供CSI-RS的情况下,以100ms的粒度执行跟踪。在终端设备以其在波束中停留100ms的速度移动的情况下,以该粒度可以进行良好的跟踪。但是,如果终端设备的速度增加,则会需要以更短的粒度进行跟踪。在这种情况下,用于提供CSI-RS的下行链路资源的开销增加,从而难以执行有效的通信。因此,需要能够快速且准确地搜索到合适的波束以进行无线通信。
另外,还存在对高速移动的终端设备进行波束切换的需要。作为示例,存在如下情况:处于使用中的波束提供的下行链路质量(例如,下行链路参考信号的接收信号强度测量结果)是不可接受的,并且存在具有更好下行链路质量的另一个波束。在这种情况下,终端设备决定执行向另一个波束的切换,并向服务基站通知该决定。然后,由服务基站执行向该另一个波束的切换。
考虑到上述情况,当提供CSI-RS的周期太短时,会造成较高的信令开销或导频开销,而当提供CSI-RS的周期太长时,会导致波束切换不能及时地进行,甚至会导致通信失败。因此,需要能够准确地决定波束切换位置,进而决定波束切换定时,从而能够低开销且准确地切换波束以用于无线通信。
交通工具(例如列车或车辆,尤其是高速列车或车辆)上的无线通信系统通常具有以下三个特点。第一,列车或车辆所遵循的轨道的曲率半径往往大于小区半径,因此在小区内部轨道可被视为一维的拓扑结构,而且基站到轨道的垂直距离易于获取。 第二,封闭车厢对通信信号(尤其是毫米波信号)造成很大的衰减,一个有效的解决办法是在车厢顶部安装移动设备,例如如图1所示的中继30,从而在本公开中主要关注列车行驶过程中基站与中继之间的通信。第三,在列车或车辆沿轨道运行的场景下,基站和中继之间往往存在视距(LoS)传输,并且散射路径很少。因此,在这种情况下,通过提高定位精度来对列车上的中继实现快速的波束搜索和波束切换是可行的。
鉴于以上考虑,本公开提出了一种用于对于交通工具上的移动设备进行精确定位的技术。进一步地,本公开还提出了一种在交通工具的无线通信系统中利用被精确定位的移动设备的位置来进行波束搜索和/或波束切换的技术。特别地,在本公开的技术中,对交通工具上的移动设备进行协作定位和/或追踪以提高定位精度,进而能够以较低的延时和开销进行定位辅助的波束搜索和波束切换的技术。
以下将针对高速列车的应用场景来示例性地说明本公开的技术实现。但是应指出,本公开的技术实现并不局限于此,其还以同样应用于安装了多个终端设备的其它类型的交通工具,例如公交、地铁、车队等安装移动中继的场景和车联网场景,等等。
<<3.协作定位原理>>
下面将参考图2说明根据本公开的实施例的用于终端设备定位的基本信令流程200。
如图2中所示,首先,在S201,位置管理设备10对电子设备20进行定位信息测量配置。
接下来,在S202,电子设备20根据从位置管理设备10接收到的定位信息测量配置,对终端设备30进行定位信息测量配置。尽管这里示例性示出了位置管理设备10经由电子设备20对终端设备30进行定位信息测量配置的示例,但是本公开不限于此,例如,位置管理设备10也可以直接对终端设备30进行定位信息测量配置。
接下来,在S203,终端设备30根据该定位信息测量配置来测量终端设备30的定位信息,并将测得的终端设备30的定位信息发送至电子设备20。
随后,在S204,电子设备20将所接收的终端设备30的定位信息发送至位置管理设备10。尽管这里仅示出了终端设备的定位信息从终端设备30经由电子设备20发送至位置管理设备10的示例,但是本公开不限于此,例如,终端设备30可以直接将终端设备30的定位信息发送至位置管理设备10。
接下来,在S205,位置管理设备10基于接收到的终端设备的定位信息以及终端 设备的特定位置配置信息进行协作定位,从而确定终端设备中的目标终端设备的位置信息。在一些实施例中,列车或车辆上安装有多个终端设备,终端设备的特定位置配置信息包括多个终端设备之间的特定位置关系,例如,多个终端设备之间的间距、方向角,等等。在一些实施例中,终端设备遵循特定轨迹布置,特定位置配置信息还包括终端设备所遵循的特定轨迹的位置信息。
最后,在S206,位置管理设备10将所确定的目标终端设备的位置发送至电子设备20,以进一步实现对其他终端设备的定位。作为一个示例,电子设备可以根据所接收到的目标终端设备的位置信息,确定其他终端设备的位置,从而准确地与相应的终端设备进行通信。应指出,作为另一示例,位置管理设备10也可以自身实现对其他终端设备的定位,并且将所定位的终端设备的位置发送给各电子设备,由此电子设备可以方便地且准确地与相应的终端设备进行通信。
在本公开中,终端设备的定位除了考虑终端设备自身的定位信息之外,还考虑了该终端设备与其它终端设备的位置关系等等,因此本公开的定位操作可以被称为协作定位。
根据本公开,通过将至少一个终端设备的特定位置配置信息应用到协作定位中,从而显著提高了终端设备的定位精度。此种协作定位尤其适用于具有特定布置的交通工具,例如高速列车或车辆。
以下将参照附图详细描述本公开的各种设备的实现。
<<4.设备的结构配置>>
<4.1.位置管理设备的结构配置>
图3是示意性地示出了根据本公开的实施例的位置管理设备的示例结构的框图。如图3所示,位置管理设备10包括处理电路100、存储器101和通信单元102。
根据该实施例,处理电路100可以被配置为获取无线通信系统中的终端侧的至少一个终端设备的定位信息,其中至少一个终端设备具有特定位置配置信息;并且基于至少一个终端设备的特定位置配置信息、以及至少一个终端设备的定位信息,确定至少一个终端设备中的目标终端设备的位置信息。
在上述设备的结构示例中,处理电路100可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路100能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路100上可以承载用于使电路(硬件)或中央处 理设备工作的程序(软件)。该程序能够存储在存储器101(诸如,布置在存储器中)或从外面连接的外部存储介质中,以及经由网络(诸如,互联网)下载。
根据该实施例,处理电路100可以包括信息获取单元1001,其被配置为获取无线通信系统中的终端侧的至少一个终端设备的定位信息。根据该实施例,终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
根据该实施例,在服务于终端设备的控制侧电子设备为遵从4G通信标准(即,连接到LTE网络)的第一电子设备时,定位信息可以为时间相关定位信息,时间相关定位信息包括但不限于观测到达时间差(OTDOA)测量结果,其表示服务于该终端设备的两个第一电子设备同时发送的定位参考信号(PRS)到达该终端设备的时间差。作为附加或替代,在服务于终端设备的控制侧电子设备为遵从5G通信标准(即,连接到NR网络)的第二电子设备时,定位信息可以为波束相关定位信息,波束相关定位信息包括第二电子设备与终端设备通信的下行发送波束的波束信息,其指示例如用于所述终端设备的下行发送波束的角度或覆盖范围信息。
根据该实施例,终端设备的定位信息可以由位置管理设备从终端设备获取,也可以从服务于该终端设备的控制侧电子设备获取。
根据该实施例,终端设备的定位信息可以是基于定位周期而周期性地获取的。根据该实施例,定位周期可被设置为等于或者小于遵从4G通信标准的控制侧电子设备向终端设备发送定位参考信号PRS的周期。作为一个示例,可以如时间相关定位信息那样周期地获取终端设备的定位信息。作为另一示例,可根据比获取时间相关定位信息的周期小的周期来获取终端设备的定位信息。此获取周期可以由通信系统预先设定。
根据该实施例,终端设备的定位信息可以是实时地获取的。作为一个示例,可以响应于特定事件的触发而获取终端设备的定位信息。例如,当终端设备接入通信系统时,控制侧电子设备或者终端设备即可向位置管理设备发送终端设备的定位信息。例如,可以应位置管理设备、控制侧电子设备或者其它设备的请求而实时获取终端设备的定位信息。当然,还可以响应于其它特定事件而实时获取终端设备的定位信息。
作为示例,周期性获取的终端设备的定位信息可通常是时间相关定位信息,实时性获取的终端设备的定位信息可通常是波束相关定位信息。
此外,信息获取单元1001还可以被配置为获取至少一个终端设备的特定位置配置信息。
根据实施例,终端设备的特定位置配置信息包括至少一个终端设备之间的特定位置关系。根据实施例,在存在多个终端设备的情况下,终端设备的特定位置配置信息指示多个终端设备之间的特定位置关系,包括但不限于间距、方向角,等等。根据实施例,终端设备遵循特定轨迹布置,特定位置配置信息还包括终端设备所遵循的特定轨迹的位置信息。特定位置配置信息可以被预先获知/记录于通信系统中或者告知位置管理设备,或者由控制侧的电子设备或者特定终端设备(例如,目标终端设备)测量并提供给位置管理设备。
根据该实施例,处理电路100还可以包括协作定位单元1002。根据该实施例,协作定位单元1002可被配置为基于至少一个终端设备的特定位置配置信息、以及至少一个终端设备的定位信息,确定至少一个终端设备中的目标终端设备的位置信息。
根据该实施例,在至少一个终端设备包括多个终端设备的情况下,协作定位单元1002可被配置为基于服务于多个终端设备的控制侧电子设备的位置信息、多个终端设备之间的特定位置关系、以及各终端设备的定位信息,确定多个终端设备中的各终端设备的关于目标终端设备的位置误差函数;以及基于多个终端设备的各终端设备的位置误差函数来确定目标终端设备的位置信息。
作为示例,位置误差函数可以根据多种方式来构建,特别地,可以以目标终端设备的位置作为变量来构建,并且可以根据多种方式来进行求解以确定目标终端位置的位置信息。例如,协作定位单元1002可被配置为基于位置误差函数根据加权最小均方误差准则来确定目标终端设备的位置信息。
根据该实施例,在至少一个终端设备可以遵循特定轨迹布置的情况下,协作定位单元1002可被配置为进一步基于多个终端设备所遵循的特定轨迹的位置信息来确定目标终端设备位置。作为示例,其中,特定轨迹的位置信息可以例如利用先前确定的终端设备位置进行拟合得到或从网络地图获取得到。另外,作为示例,多个终端设备可以例如遵循直线轨迹布置,并且多个终端设备之间的间距在特定时段内可以是恒定的,其中多个终端设备之间的间距可以彼此相同或不同。
作为示例,可以根据各终端设备的定位信息以及特定轨迹的位置信息来构建多个终端设备中的各终端设备的关于目标终端设备的位置误差函数,由此来确定目标终端设备的位置信息。位置误差函数可以如上所述地被构建和求解。
根据实施例,目标终端设备可以是至少一个终端设备中的特定终端设备。作为一个示例,在存在多个终端设备的情况下,该目标终端设备可以是多个终端设备中的第一终端设 备或最终终端设备,或者处于特定位置的终端设备,其可以被预先指定。作为另一示例,所述至少一个终端设备中的每一个终端设备可被依次当作目标终端设备,从而根据本公开的方案来确定该终端设备的位置。
另外,协作定位单元1002还可被配置为基于所确定的目标终端设备的位置以及多个终端设备之间的特定位置关系,确定多个终端设备中的其它终端设备的位置,从而对所有终端设备实现定位。作为示例,对于任一终端设备,可以根据该终端设备与目标终端设备的相对位置而确定该终端设备的位置,从而可以确定多个终端设备中的各终端设备的位置。作为另一示例,还可以将其它终端设备依次当做目标终端设备而如上所述地确定其位置,由此对所有终端设备实现定位。
根据该实施例,处理电路100还可以包括定位追踪单元1003。根据该实施例,定位追踪单元1003可以被配置为基于先前确定的目标终端设备的位置信息以及定位周期,来估计目标终端设备在特定时刻的位置。该估计可以采用多种方式来实行。根据实施例,该估计可以通过先前确定的目标终端设备的位置信息的拟合,尤其是线性拟合,来实现。在一些实施例中,在进行拟合、尤其是线性拟合期间,终端设备的速度可视为基本恒定。
根据实施例,所述特定时刻可以是当前时刻,由此定位追踪单元可以估计得出目标终端设备当前时刻的位置。在此情况下,所估计出的位置可被用于对先前计算得到的当前时刻的位置进行修正。根据实施例,特定时刻可以例如为未来的某一时刻,因此定位追踪单元1003可以追踪目标终端设备在未来时刻的位置。
根据该实施例,处理电路100还可以包括波束搜索控制单元1004。根据该实施例,波束搜索控制单元1004可以被配置为使得服务于终端设备的控制侧电子设备根据先前确定的终端设备的位置来估计当前时刻终端设备的位置;以及使得服务于终端设备的控制侧电子设备根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
在一些实施例中,波束方向与所估计的终端设备的位置对应的方向邻近的波束被首先扫描。作为示例,具有与所估计的方向对应的波束方向的波束可以指的是波束方向与所估计的方向对齐或者至少部分对齐的波束。作为另一示例,具有与所估计的方向对应的波束方向的波束可以是与所估计的方向邻近的波束。由此,波束可以按照特定的顺序被扫描。例如,可以从波束方向与所估计的方向对齐或者至少部分对齐的波束开始扫描。或者,按照波束方向与所估计的方向邻近的程度依次被扫描,其中优先 扫描最邻近的波束。在一些实施例中,在波束增益大于特定阈值的情况下,该波束被选择用于进行与终端设备的数据传输,并且波束搜索控制单元1004可以被配置为控制侧电子设备停止波束扫描。在一些实施例中,波束增益可以包括波束接收信号的强度。在一个具体的示例中,波束搜索控制单元1004通过RRC(Radio Resource Control)信令以及/或者下行控制信令例如下行控制信息DCI向终端设备配置以及/或者激活一个或多个CSI-RS资源,这些CSI-RS资源对应于所估计的终端设备的位置对应的方向邻近的波束,接下来控制侧电子设备可通过与终端位置对应的方向邻近的波束在这些CSI-RS资源上发射CSI-RS信号以供终端设备进行接收(即波束扫描)。在另一个具体的示例中,波束搜索控制单元1004还可以通过RRC(Radio Resource Control)信令以及/或者下行控制信令例如下行控制信息DCI提前向终端设备配置以及/或者激活一个或多个CSI-RS资源,这些CSI-RS资源对应于所估计的终端设备的未来特定时刻的位置对应的方向邻近的波束,接下来在未来特定时刻控制侧电子设备可通过与终端未来特定时刻位置对应的方向邻近的波束在这些CSI-RS资源上发射CSI-RS信号以供终端设备进行接收(即波束扫描)。
根据该实施例,处理电路100还可以包括波束切换控制单元1005。根据该实施例,波束搜索控制单元1005可以被配置为使得服务于终端设备的控制侧电子设备根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及使得服务于终端设备的控制侧电子设备根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
在一些实施例中,服务于终端设备的控制侧电子设备在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。要指出的是,导频信号可以为与上述参考信号CSI-RS、PRS等相同的信号,也可以为不同的信号。作为示例,控制侧电子设备可以应用当前下行发送波束和下一下行发送波束发送导频信号来与终端设备进行波束通信,以判断是否能够进行波束切换。在一些实施例中,在下一下行发送波束增益大于当前波束的增益的情况下,服务于终端设备的控制侧电子设备执行波束切换。
另外,在一些实施例中,波束切换控制单元1005还被配置为在使得服务于终端设备的控制侧电子设备执行波束切换的同时,停止发送用于波束切换的导频信号。
应指出,上文所述的由服务于终端设备的控制侧电子设备所执行的操作也可以由位置管理设备来执行。也就是说,位置管理设备可以直接服务于终端设备以执行由控制侧电子设备所执行的操作,例如终端设备的定位和追踪、波束搜索和切换等等。作 为示例,在存在多个终端设备的情况下,控制侧电子设备可服务于其中一些终端设备以执行上述操作,而其他终端设备可由位置管理设备直接进行上述操作。例如,在通信系统中存在多个基站或者类似设备的情况下,可以选择其中之一作为位置管理设备,也被称为主基站,而其他基站或者类似设备可以作为控制侧电子设备,也被称为辅基站。
此外,可选地,位置管理设备10还可以包括图中以虚线示出的存储器101以及通信单元102。此外,位置管理设备10还可以包括未示出的其它部件,诸如射频链路、基带处理单元、网络接口、处理器、控制器等。处理电路100可以与存储器101和/或通信单元102关联。例如,处理电路100可以直接或间接(例如,中间可能连接有其它部件)连接到存储器101,以进行数据的存取。还例如,处理电路100可以直接或间接连接到通信单元102,以经由通信单元102发送无线电信号以及经由通信单元102接收无线电信号。
存储器101可以存储由处理电路100产生的各种信息(例如,终端设备的定位信息、所确定的目标终端的位置信息等)、用于位置管理设备10操作的程序和数据、将由通信单元102发送的数据等。存储器101用虚线绘出,因为它还可以位于处理电路100内或者位于位置管理设备10外。存储器101可以是易失性存储器和/或非易失性存储器。例如,存储器101可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
通信单元102可以被配置为在处理电路100的控制下与电子设备和终端设备进行通信。在一个示例中,通信单元102可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。在一个实施例中,该通信单元102可以将在处理电路100中确定的各终端设备的位置信息发送到服务于各终端设备的控制侧电子设备。在一个实施例中,通信单元102也可发送和接收用于根据本公开的实施例中所描述的过程所需的信令。
虽然图3中示出了处理电路100与通信单元102分离,但是处理电路100也可以被实现为包括通信单元102。此外,处理电路100还可以被实现为包括位置管理设备10中的一个或多个其它部件,或者处理电路100可以被实现为位置管理设备10本身。在实际实现时,处理电路100可以被实现为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或 DSP等)、集成电路等)来实现。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。
协作定位
下面将参考图4-图8说明位置管理设备所实施的协作定位操作。
图4示意性地示出了根据本公开的实施例的位置管理设备的操作的流程图。
首先,在步骤S401中,位置管理设备获取无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息。
根据该实施例,至少一个终端设备可以包括多个终端设备,特定位置配置信息可以包括多个终端设备之间的特定位置关系,诸如间距、相对角度等。
另外,在一些实施例中,可以在事先将位于同一辆列车上的终端设备分组,同时记录多个终端设备之间的特定位置关系。作为示例,可以将同一辆列车上的终端设备分为一组或者多组,并且所有终端设备之间的特定位置关系或者各组中的终端设备之间的特定位置关系可以被预先记录在通信网络中的特定设备中,例如特定基站或者其它设备中。位置管理设备可以在通信系统中查询出终端设备的分组以及多个终端设备的特定位置关系。其中该分组可以长期有效,且组内相邻终端设备的位置关系可以在特定时间内保持不变。例如可以长期保持不变,和/或可以由运营商定期更新和维护。在另一些实施例中,分组关系和终端设备之间的特定位置关系也可以由终端设备自行测量并上报至网络侧或位置管理设备。
在一些实施例中,所述多个终端设备可以遵循特定轨迹布置,并且特定位置配置信息包括多个终端设备所遵循的特定轨迹的位置信息。作为示例,多个终端设备可以遵循直线轨迹布置,并且多个终端设备之间的间距在特定时段内可以是恒定的。
以高速列车为例,考虑到高速列车的长度和列车上巨量的数据服务需求,例如,在一辆列车上安装有至少一个中继作为所述至少一个终端设备。如图5所例示,考虑到高速列车所运行于的轨道可视为一维拓扑结构,其轨迹可视为直线,在坐标系中可以用y=d表示。假定第1个中继30A的坐标为(x,d),则接下来的第2-8个中继的坐标依次为(x-l,d),(x-2l,d),…,(x-7l,d)。
应当理解,尽管图5仅仅示出了在每个车厢上安装1个中继,并且各个中继之间的间距相等的示例,但是应指出,中继可以按照其它方式被安置。在一些实施例中,也可以根据需要在每个车厢上安装多个中继或者每隔若干个车厢安装1个中继,并且各个中继之间的间距也可以不相等。另外,尽管图5仅仅示出了将轨道视为直线的示 例,但是,在一些实施例中,轨道也可以不限于直线,例如,也可以视为曲线或折线等,只要中继之间的位置关系相对固定即可。
根据该实施例,终端设备的定位信息可以包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
根据实施例,终端设备的定位信息还可以包括被估计得到的终端设备的位置信息。作为示例,终端设备的位置信息可以采用多种方式来估计得到,例如如下所述的时间相关方式或者波束相关方式,并且作为定位信息被发送给位置管理设备。
在高速列车通信场景下,同一辆列车上不同中继由不同的基站服务,其有可能接入LTE基站(eNB)或者NR基站(gNB)。当中继处于NR网络无法提供服务的区域或者中继所服务的用户数据传输需求较低时,中继可选择接入LTE网络,而在当中继处于LTE网络无法提供服务的区域或者中继所服务的用户数据传输需求较高时,中继可选择接入NR网络。因此,LTE所支持的OTDOA定位和NR中的下行发送波束定位中的至少一个可以被用来实现对所有中继的协作定位。
根据该实施例,在服务于终端设备的控制侧电子设备为遵从4G通信标准的电子设备(例如,LTE基站)时,定位信息为时间相关定位信息。LTE基站支持OTDOA定位方法。另外,根据该实施例,时间相关定位信息包括OTDOA测量结果,其表示服务于该终端设备的两个电子设备同时发送的定位参考信号PRS到达该终端设备的时间差。
图6是根据本公开的实施例的OTDOA定位的基本原理的示图。如图6中所示,考虑到在列车行驶过程中,中继30的高度变化对定位结果的影响很小,用
Figure PCTCN2020074204-appb-000001
表示中继30在小区内部行驶过程中的平均高度,因此中继30的三维坐标可表示为
Figure PCTCN2020074204-appb-000002
在一些实施例中,纵坐标d和竖坐标
Figure PCTCN2020074204-appb-000003
均可以提前得到,例如可以从网络地图获取。作为示例,利用(x 1,y 1,h 1)和(x 2,y 2,h 2)表示该中继30连接的基站20A和基站20B的三维坐标。基站20A和基站20B在某一时刻同时向中继30发送PRS。中继30通过将接收信号与不同基站的PRS信号进行相关来估计PRS的到达时间t 1和t 2。为避免基站20与中继30之间的时钟偏差较大的影响,中继30将观测到达时间差Δt=t 2-t 1上报给基站20。考虑到在高速列车的场景下基站和中继之间为LoS传输,则基站20A、20B与中继30之间的距离满足公式1。
[公式1]
Figure PCTCN2020074204-appb-000004
其中,c表示光速。因此,在基站20A,20B的位置坐标以及d,
Figure PCTCN2020074204-appb-000005
已知的情况下,可以利用公式1可以求出未知量x,从而得到中继30的位置。
根据该实施例,在服务于终端设备的控制侧电子设备为遵从5G通信标准的电子设备(例如,NR基站)时,定位信息为波束相关定位信息。NR基站支持下行发送波束定位方法。根据该实施例,波束相关定位信息包括第二电子设备与终端设备通信的下行发送波束的波束信息,其可以指示用于终端设备的下行发送波束的角度或覆盖范围信息。
图7是示意性地示出了根据本公开的实施例的下行发送波束定位的基本原理的示图。在NR网络中,如图7中所示,对于基站20的第i个下行发送波束,可通过该波束与两个相邻波束的交点(例如,包括但不限于主瓣的交点)得出其水平角度覆盖范围为(θ i,l,θ i,r)。由于高速列车所运行于的轨道可视为一维拓扑结构,因此该波束在轨道上的覆盖范围可表示为水平方向的范围(x i,l,x i,r),如图7所示。另外,在LoS传输的条件下,若中继处于波束i的覆盖范围内,则在所有波束中波束i可为该中继提供最高的波束增益。因此,被下行发送波束i服务的中继,其在轨道上的位置可以通过公式2估计得到。
[公式2]
Figure PCTCN2020074204-appb-000006
其中,
Figure PCTCN2020074204-appb-000007
如上所述,在NR网络中,可以利用下行发送波束来对中继进行定位。但是,应当理解,基于下行发送波束定位的定位精度取决于波束在轨道上的覆盖范围的长度,而覆盖范围的长度取决于波束宽度和基站与该波束所服务中继的距离。如图7中所示,例如,波束宽度为|θ i,ri,l|。
容易理解,波束的覆盖角度θ i,l和θ i,r也可以在水平方向上位于基站20两侧。在此情况下,θ i,l的取值可以为负值。由此仍可利用上述公式2来确定中继的位置。
另外,根据该实施例,终端设备的定位信息可以由位置管理设备从终端设备获取,或者由位置管理设备从服务于该终端设备的控制侧电子设备获取。
另外,根据该实施例,位置管理设备可以根据定位周期而周期性地获取定位信息以便周期性地确定所述目标终端设备的位置。在一些实施例中,定位周期可被设置为等于或者小于遵从4G通信标准的控制侧电子设备向终端设备发送PRS的周期。在一些实施例中,定位信息可以被实时地获取。
在一些实施例中,在LTE网络中,PRS可以周期地进行发送,其典型周期值例如为160ms、320ms、640ms、1280ms,等等。因此,LTE基站只能周期性地得到中继上报的OTDOA测量结果,从而进行周期的协作定位。而在NR网络中,对接入到NR基站的中继来说,如果该中继处于连接状态,则它所使用的下行发送波束信息在NR基站端可以随时获取,如果该 中继处于空闲状态,则可以通过波束扫描获得它所使用的最优下行发送波束信息,其周期通常小于OTDOA测量周期。因此,例如,获得下行发送波束信息的周期可以设置为OTDOA测量周期的整数分之一。作为示例,波束定位信息也可被触发地获取或者应要求而获取,如上所述。
应指出,尽管如上所述地可以按照公式1或者公式2来确定单个中继的位置,但是由此所获得的单个中继的位置通常存在较大的误差。例如,如上所述,在利用OTDOA测量结果来对中继进行定位的情况下,OTDOA定位精度仍受到限制,其主要受到LTE系统带宽、基站时钟偏差、多径以及中继与基站的距离等因素的影响,定位距离误差可从数米到数十米。类似地,利用波束信息进行定位也存在较大的定位距离误差。
由此,本公开提出了协作定位,即利用各中继的定位信息以及各中继之间的特定位置关系,更加准确地确定单个中继的位置信息。
返回图4,在步骤S401之后,位置管理设备基于至少一个终端设备的特定位置配置信息、以及至少一个终端设备的定位信息,确定至少一个终端设备中的目标终端设备的位置信息。
在一些实施例中,至少一个终端设备包含多个终端设备,位置管理设备可以基于无线通信系统的服务于多个终端设备的控制侧电子设备的位置信息、多个终端设备之间的特定位置关系、以及各终端设备的定位信息,确定多个终端设备中的各终端设备的关于目标终端设备的位置误差函数;以及基于多个终端设备的各终端设备的位置误差函数来确定目标终端设备的位置信息。
作为示例,考虑在同一辆高速列车上等间隔安装N个中继,并且每个中继之间的间隔为l。用
Figure PCTCN2020074204-appb-000008
表示作为目标中继的第1个中继的位置,则第i个中继的位置可表示为
Figure PCTCN2020074204-appb-000009
Figure PCTCN2020074204-appb-000010
在一些实施例中,第i个中继连接到LTE基站,用Δt i表示第i个中继上报的在t时刻的OTDOA测量结果,则第i个中继关于第1个中继位置x的位置误差函数可表示为公式3。
[公式3]
Figure PCTCN2020074204-appb-000011
其中,(x i1,y i1,h i1)和(x i2,y i2,h i2)表示第i个中继所连接的两个LTE基站的三维坐标。σ m 2表示由基站进行估计和配置的cΔt i的测量方差。
另外,作为公式3的替代,LTE基站可根据公式1直接解出第i个中继在轨道上的位置x i。 考虑到中继的纵坐标和竖坐标与第1个中继的纵坐标和竖坐标近似相等,因此,第i个中继关于第1个中继位置x的位置误差函数也可被表示为公式4。
[公式4]
Figure PCTCN2020074204-appb-000012
其中,σ e 2表示该估计结果的方差。
在一些实施例中,第j个中继连接到NR基站,第j个中继在轨道上的位置可表示为(x-(j-1)*l),在t时刻第j个中继所使用的下行发送波束j *在轨道上的覆盖范围为
Figure PCTCN2020074204-appb-000013
其关于第1个中继位置x的位置误差函数可表示为公式5。
[公式5]
Figure PCTCN2020074204-appb-000014
其中,
Figure PCTCN2020074204-appb-000015
表示根据下行发送波束覆盖范围进行定位的方差。
应指出在上述公式5中,
Figure PCTCN2020074204-appb-000016
也可由直接求解得到的各中继的位置来替代。
在一些实施例中,位置管理设备基于位置误差函数根据加权最小均方误差准则来确定目标终端设备的位置信息。在一些实施例中,已知多个终端设备所遵循的特定轨迹的位置信息,例如d已知。在这种情况下,位置管理设备可以进一步基于多个终端设备所遵循的特定轨迹的位置信息(例如,y=d)来确定目标终端设备位置。例如,在t时刻第1个中继的最优定位结果x *可利用加权最小均方误差准则得到,具体如公式6所示。
[公式6]
Figure PCTCN2020074204-appb-000017
在一些实施例中,e i(x)的计算方式基于第i个中继连接了LTE基站还是NR基站而在OTDOA定位方法和NR下行发送波束定位方法中进行选择。e i(x)既可以对应于连接到LTE基站的中继,也可以对应于连接到NR基站的中继。应当理解,参与计算的N个中继在某一时刻可能全部连接到LTE基站或全部连接到NR基站,也可能部分连接到LTE基站且部分连接到NR基站。在一些实施例中,在特定时刻一个中继只连接到LTE基站或NR基站。在一些实施例中,特定轨迹的位置信息可以利用先前确定的终端设备位置进行拟合得到或从网络地图获取。
在一些实施例中,多个终端设备所遵循的特定轨迹的位置信息未知,例如d未知。特别地,在d未知的情况下,可以将位置误差函数改为存在两个未知量的e i(x,d),如此第1个中继的最优定位结果和d可被联合优化为公式7。
[公式7]
Figure PCTCN2020074204-appb-000018
在一些实施例中,根据公式7,通过对一段时间内的中继定位结果进行平均,能够得到平均意义上的轨道坐标
Figure PCTCN2020074204-appb-000019
其可以被应用到之后的协作定位中。另外,在一些实施例中,轨道坐标
Figure PCTCN2020074204-appb-000020
也可以随着时间被不断修正,从而提高协作定位的精度。
通过上述过程,可以更加精确地定位出目标中继的位置。
上文以第1个中继作为目标中继来描述了协作定位的操作。应指出,目标中继不限于此,其可以为多个中继中的特定中继,例如最后1个中继、中间位置的中继、或者位于特定位置的中继,并且鉴于多个中继之间的位置关系,多个中继中的任何其它中继的位置可以基于该特定中继的位置被表示,由此仍可基于上述公式来计算得到目标中继的位置。
在一些实施例中,位置管理设备可以基于所确定的目标终端设备的位置以及多个终端设备之间的特定位置关系,确定多个终端设备中的其它终端设备的位置。作为示例,可以根据其它终端设备与目标终端设备之间的位置关系来确定其它终端设备的位置。作为另一示例,可以将多个终端设备中的每一个依次作为目标终端设备来如上所述地位置确定。例如,每一目标终端设备的位置可以基于其他终端设备的估计位置来确定。还例如,可以利用高斯-牛顿迭代法来进行计算,其中在后的目标终端设备的位置可以基于在先的目标终端设备的所确定的位置被迭代地确定。
另外,在一些实施例中,位置管理设备可以将所确定的各终端设备的位置发送到服务于各终端设备的控制侧电子设备,以便控制侧电子设备对于各终端设备进行定位。在一些实施例中,位置管理设备可以将所确定的目标终端设备的位置发送到服务于各终端设备的控制侧电子设备,由此控制侧电子设备可以各终端设备进行定位。例如,一个控制侧电子设备可以对于其所服务于的若干终端设备进行定位。
接下来,将结合图8来说明在该协作定位的具体示例中的信令流程800。图8是示意性地示出了根据本公开的实施例的协作定位的示例性信令流程图。
首先,在S801中,位置管理设备获取终端设备的特定位置配置信息。其中,终端设备的特定位置配置信息指示多个终端设备之间的特定位置关系,例如,多个终端设备之间的间距、方向角等等。例如,终端设备的特定位置配置信息可以是利用先前确定的终端设备位置进行拟合得到的或从网络地图预先获取的。
接下来,在S802中,在终端设备30A连接到LTE基站的情况下,位置管理设备对服务于终端设备30A的LTE基站进行时间相关定位信息测量配置。
接下来,在S803中,LTE基站根据从位置管理设备接收到的时间相关定位信息测 量配置,对终端设备30A进行时间相关定位信息测量配置。尽管这里仅示出了位置管理设备经由LTE基站对终端设备30A进行时间相关定位信息测量配置的示例,但是本公开不限于此,例如,位置管理设备也可以直接对终端设备30A进行时间相关定位信息测量配置。
接下来,在S804中,终端设备30A根据该时间相关定位信息测量配置来测量终端设备30A的时间相关定位信息,并将测得的终端设备30A的时间相关定位信息发送至LTE基站。随后,在S805中,LTE基站将所接收的终端设备30A的时间相关定位信息发送至位置管理设备。尽管这里仅示出了终端设备30A的时间相关定位信息从终端设备30A经由LTE基站发送至位置管理设备的示例,但是本公开不限于此,例如,终端设备30A可以直接将时间相关定位信息发送至位置管理设备。
根据实施例,时间相关定位信息可以包括例如OTDOA测量结果信息。根据实施例,时间相关定位信息也可以包括根据OTDOA测量结果所确定的中继的位置信息。
另外,与上述S802-S805类似地,S812-S815示出了终端设备30B连接到NR基站的情况下的信令流程。代替S802-S805中的时间相关定位信息,S812-S815中对终端设备30B的波束相关定位信息进行测量配置和发送,其中具体过程与S802-S805中对终端设备30A的时间相关信息进行测量配置和发送的过程类似,在此省略其描述。
根据该实施例,波束相关定位信息包括NR基站与终端设备30B通信的下行发送波束的波束信息,其指示用于终端设备30B的下行发送波束的角度或覆盖范围信息。根据实施例,波束相关定位信息也可以包括根据下行发送波束的波束信息所确定的中继的位置信息。
接下来,在S806中,位置管理设备基于接收到的终端设备的定位信息以及终端设备的特定位置配置信息进行协作定位,从而确定终端设备中的目标终端设备的位置信息。根据该实施例,终端设备的定位信息可以包括终端设备30A的时间相关定位信息和终端设备30B的波束相关定位信息两者,也可以包括这两者中的任意一者。其中,终端设备的特定位置配置信息指示多个终端设备之间的特定位置关系,例如,多个终端设备之间的间距、方向角,等等。
最后,在S807中,位置管理设备将所确定的目标终端设备的位置发送至LTE基站,以进一步实现对所有终端设备的协作定位。类似地,在S817中,位置管理设备将所确定的目标终端设备的位置发送至NR基站,以进一步实现对所有终端设备的协作定位。作为示例,控制侧电子设备可以根据目标终端设备的位置对于其所服务于的 若干终端设备进行定位。
应指出,作为示例,位置管理设备也可以确定所有终端设备的位置,如上所述,并且将所确定的所有终端设备的位置发送到服务于各终端设备的控制侧电子设备,以便控制侧电子设备对于各终端设备进行定位。
应理解,这里仅示出了根据本公开的实施例的协作定位的具体示例中的主要信令流程,根据本公开的协作定位自然还包括为完成协作定位所需的其他辅助信令。根据如上所述的协作定位的原理和信令流程,完成根据本公开的实施例的协作定位。
以上已经参考图4到图8说明了在存在多个终端设备的情况下,位置管理设备所实施的协作定位操作。根据如上所述的协作定位过程,可以利用终端设备的特定位置配置,并且综合利用OTDOA定位和下行发送波束定位两种定位方式的优势,提高定位精度并降低开销。
而且,本公开中每个终端设备(例如,中继)可以仅连接到LTE基站或者NR基站之一,并且仅上传时间相关定位信息或波束相关定位信息之一,由此所传递的信息得到简化,可以降低通信开销。
上面已经描述了在存在多个终端设备的情况下位置管理设备对终端设备进行协作定位的过程。基于通过协作定位所获得的精确的位置信息,可以实现对终端设备在任何时间的实时定位,同时有助于以较低的延时和开销来进行波束搜索和切换。下文将对此进一步详细描述。
定位追踪
在一些实施例中,位置管理设备还可以基于协作定位,对终端设备进行定位追踪。在一些实施例中,位置管理设备还可以基于先前确定的目标终端设备的位置信息以及定位周期,可以估计得到目标终端设备在特定时刻的位置。作为示例,可以通过数学拟合、尤其是线性拟合来估计位置。作为示例,特定时刻可以为当前时刻,由此可以修正目标终端设备当前时刻的位置。作为示例,特定时刻可以为未来时刻或者周期期间的任意时刻,由此可以估计目标终端设备在该时刻的位置。
在一些实施例中,为了得到中继在特定时刻的位置,还需要知道列车的速度信息。一般情况下,列车的加速度小于1m/s 2,因此在短时间内列车的速度可视为是恒定的。根据一些实施例,可以使用线性拟合方法来获取列车的速度信息,从而修正目标终端设备当前时刻的位置以进一步提高定位精度,也可以进一步精确地估计任意时刻的位置。
在一些实施例中,位置管理设备可以采用最小二乘法线性拟合来获取列车的速度。但是应当理解,本公开自然也可以使用其他线性拟合方法来获取列车的速度。
作为示例,以第1个中继的位置表示列车的位置,用T表示进行协作定位的周期,N LR表示线性拟合所需的协作定位值的个数,N LR应该足够小以保证拟合时间内速度可视为恒定值,例如
Figure PCTCN2020074204-appb-000021
Figure PCTCN2020074204-appb-000022
表示利用上述协作定位计算出的第1个中继在时刻t的协作定位值,
Figure PCTCN2020074204-appb-000023
分别表示前N LR-1个定位结果(前N LR-1个定位结果由之前的线性拟合得出)。利用最小二乘法构建线性估计模型如公式8所示。
[公式8]
Figure PCTCN2020074204-appb-000024
具体而言,
Figure PCTCN2020074204-appb-000025
表示待估计的速度;
Figure PCTCN2020074204-appb-000026
根据公式8,可以线性拟合出列车的速度
Figure PCTCN2020074204-appb-000027
和拟合曲线的原点坐标
Figure PCTCN2020074204-appb-000028
然后,时刻t的定位结果可被更新为
Figure PCTCN2020074204-appb-000029
以供下一次拟合所需,从而不断修正线性拟合曲线,使得拟合结果更加精确。
图9是示意性地示出了根据本公开的实施例的对终端设备进行定位追踪的线性拟合结果的示图。如图9所示,根据多次协作定位的值拟合出时间t与中继的位置x的对应关系曲线。由于在短时间内列车的速度可视为恒定,这里的拟合结果近似为直线。
此外,进一步地,根据本公开的实施例,还可以根据拟合结果对列车在未来时刻的位置进行线性预测。例如,对于时刻t之后的任意未来时刻t a,列车位置可被预测为
Figure PCTCN2020074204-appb-000030
Figure PCTCN2020074204-appb-000031
预测结果如图9中虚线部分所示。作为示例,可以根据拟合结果对列车在定位周期期间的任何时刻的位置进行预测。
根据实施例,本公开还可以采用其它方法来进行定位追踪,例如可以采用扩展卡尔曼滤波方法,基于先前确定的终端设备的位置来进行定位追踪。
通过在协作定位的基础上进一步进行位置估计,可以通过修正来进一步精确地确定当前时刻的终端设备的位置。此外,还可以进一步准确地拟合和预测特定时刻的终端设备的位置,由此实现更加准确的终端设备定位。
性能分析
下面将参考图10和图11,对根据本公开的实施例的协作定位辅助的定位追踪的性能进行说明。
作为示例,假定无线通信系统中的各个参数如表1中所示进行配置。
Figure PCTCN2020074204-appb-000032
表1
其中,假定每个基站提供6个波束宽度为30°的宽波束对铁路实现180°的覆盖,每个宽波束内提供6个波束宽度为5°的窄波束,列车运行初始速度为100m/s,加速度服从均值为0、方差为1的高斯分布。在列车行驶过程中第1、3、7号中继连接到NR基站,其余中继连接到LTE基站,并且4号中继作为目标中继。
作为示例,根据上述参数,测算出协作定位与单独定位之间的定位距离误差和定位角度误差。
图10示意性地比较了根据本公开的实施例的协作定位辅助的定位追踪与单独定位追踪之间的定位距离误差。如图10所示,假定定位周期与PRS周期相同,例如为160ms,定位追踪所需的拟合值数目为10。根据上述参数,统计了根据本公开的实施例的协作定位辅助的定位追踪以及单独定位追踪的定位距离误差的累积分布函数(CDF)。累积分布函数表示对变量x而言,x小于等于某一值出现概率的和。
在图10中,曲线上的每一点即代表定位距离误差小于等于某一值的情况出现的概率之和。可以看出,与单独定位追踪相比,根据本公开的实施例的协作定位辅助的定位追踪对应于较低的定位距离误差的概率更大。作为示例,经统计,根据本公开的实施例的协作定位辅助的定位追踪的平均距离误差为3.6m,而单独定位追踪的平均距离误差为8.7m。
图11示意性地比较了根据本公开的实施例的协作定位辅助的定位追踪与单独定位追踪之间的定位角度误差。在图11中,曲线上的每一点即代表定位角度误差小于等于某一值的情况出现的概率之和。可以看出,与单独定位追踪相比,根据本公开的实施例的协作定位辅助的定位追踪对应于较低的定位角度误差的概率更大。作为示例,经统计,根据本公开的实施例的协作定位辅助的定位追踪的平均角度误差为0.45°,而单独定位追踪的平均角度误差为1.44°。
定位辅助的波束搜索
在一些实施例中,基于如上所述的协作定位,还可以进行定位辅助的波束搜索。下面将参考图12和图13来示例性地描述根据本公开的实施例的定位辅助的波束搜索。
在一些实施例中,位置管理设备可以使得服务于终端设备的控制侧电子设备根据先前确定的终端设备的位置来估计当前时刻终端设备的位置;以及使得服务于终端设备的控制侧电子设备根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
应指出,根据实施例,先前确定的终端设备的位置可以包括根据上述的协作定位操作而被确定的当前时刻的位置。另外,先前确定的终端设备的位置还可以最近一次定位追踪所确定的特定时刻的位置。由此,可以根据前述的定位追踪操作来估计当前时刻的终端设备的位置。应理解,当前时刻的终端设备的位置也可以采用其它估计方法被估计得到。
图12是示意性地示出了根据本公开的实施例的定位辅助的波束搜索的示图。如图12所示,当基站20收到来自目标中继30A的波束搜索的请求时,基站20根据当前时刻和通过最近一次定位追踪获取的某一先前时刻的位置和速度估计出当前时刻目标中继30A的位置
Figure PCTCN2020074204-appb-000033
假定基站20的二维坐标为(x 1,y 1),则可以进而估计出目标中继30A相对于基站20的方向角
Figure PCTCN2020074204-appb-000034
接下来,根据估计出的
Figure PCTCN2020074204-appb-000035
基站20配置下行发送波束扫描的顺序。在一些实施例中,波束方向与所估计的终端设备的位置对应的方向邻近的波束被首先扫描。例如,在所有候选波束中波束方向与估计出的
Figure PCTCN2020074204-appb-000036
较接近的波束会被优先扫描。如图12所示,根据估计出的方向角
Figure PCTCN2020074204-appb-000037
基站20端的下行发送波束扫描顺序将被配置为5->4->6->3->2->1。
在一些实施例中,在波束增益大于特定阈值的情况下,该波束被选择用于进行与终端设备的数据传输,并且控制侧电子设备停止波束扫描。作为示例,目标中继30A测量当前所扫描波束的增益,当波束增益大于预定阈值时,该波束会被选择用于数据传输。在一些 实施例中,波束增益的预定阈值例如可以根据波束搜索前所使用宽波束的增益进行配置。然后,目标中继30A将所选择的波束反馈至基站,同时基站停止波束扫描。
例如,在传统的波束搜索方案中,基站通常以固定的顺序进行波束扫描,如1->2->3->4->5->6。相比之下,在本公开的实施例中,优先扫描波束方向与所估计的终端设备的位置对应的方向邻近的波束,如上所述,由此,可以更快地找到最优的下行发送波束。从而降低了发送端波束搜索带来的延时和开销。
作为替代,基站20也可以将当前时刻估计出的目标中继30A的方向角
Figure PCTCN2020074204-appb-000038
发送至目标中继30A,目标中继30A在下行接收波束搜索中优先搜索与
Figure PCTCN2020074204-appb-000039
较接近的波束。若当前波束的增益大于预定阈值,则该波束会被选择用于数据传输,并且目标中继30A停止波束搜索,从而降低了接收端波束搜索带来的延时和开销。
图13是示意性地示出了根据本公开的实施例的定位辅助的波束搜索的信令流程图。如图13所示,在S1301中,终端设备向基站发送波束搜索请求,以请求基站进行波束搜索。接下来,在S1302中,基站对终端设备进行实时位置估计,从而估计出终端设备的方向角。接下来,在S1303中,基站根据估计出的方向角来配置波束扫描的顺序。随后,在S1304中,基站基于配置的波束扫描顺序来进行波束扫描。接下来,在S1305中,终端设备测量所扫描的波束的增益,当所扫描的波束增益大于预定阈值时,选择该波束用于通信。接下来,在S1306中,终端设备将所选择的波束反馈给基站,基站和终端设备便可以利用该波束进行通信。在基站接收到波束反馈的同时,在S1307中,基站停止波束扫描。
应指出,在本公开的实施例中,图13中的基站可以采用服务于该终端设备的控制侧电子设备。此外,在位置管理设备直接服务于该终端设备的情况下,图13中的基站可以采用该位置管理设备。
定位辅助的波束搜索性能分析
下面将参考图14,对根据本公开的实施例的定位辅助的波束搜索的性能进行说明。如图14中所示,定位辅助的波束搜索的性能是基于与如上所述对协作定位进行分析的参数进行分析的。
图14示意性地比较了根据本公开的实施例的定位辅助的波束搜索与传统波束搜索在找到最优波束前所需的搜索次数开销。可以看出,与传统波束搜索相比,根据本公开的实施例的定位辅助的波束搜索对应于较低的搜索次数开销的概率更大。作为示例,经统计,根据本公开的实施例的定位辅助的波束搜索只需要搜索1次的概率和为0.9,即90%,而传统波束搜索只需要搜索1次的概率和为0.1,即10%。作为示例,经统计,根据本公开 的实施例的定位辅助的波束搜索的平均搜索次数开销为1.1次,而传统波束搜索的平均搜索次数开销为3.5次。
定位辅助的波束切换
在一些实施例中,,还可以进行基于该协作定位的定位辅助的波束切换。
通常,当列车从一个波束的覆盖范围移动到相邻波束的覆盖范围时,为了保证可靠的数据传输,基站需要将下行发送波束从当前波束切换到相邻波束。通常情况下,基站会配置周期的导频信号,例如CSI-RS,并要求中继测量当前波束和相邻波束的增益。当相邻波束的增益大于当前波束的增益时,会触发波束切换。然而,如果导频周期太短,会导致较高的导频信号开销,而如果导频周期太长,又会导致不能及时进行波束切换,甚至会导致通信失败。
对于此,本公开提出了基于该协作定位的定位辅助的波束切换,其可通过基于如上所述的协作定位来准确地进行波束切换。下面将参考图15和图16来示例性地描述根据本公开的实施例的定位辅助的波束切换。
在一些实施例中,位置管理设备使得服务于终端设备的控制侧电子设备根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及使得服务于终端设备的控制侧电子设备根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
图15是示意性地示出了根据本公开的实施例的定位辅助的波束切换的示图。作为示例,如图15所示,当基站20使用LoS下行发送波束时,可以根据当前波束与相邻波束交点(例如,包括但不限于主瓣的交点)确定最优的进行波束切换的位置x s
另外,通过最近一次的定位追踪,例如上文所述的定位追踪,基站获得了在某一特定时刻t目标中继的位置
Figure PCTCN2020074204-appb-000040
和速度
Figure PCTCN2020074204-appb-000041
据此基站可以估计出最优的进行波束切换的时刻,即
Figure PCTCN2020074204-appb-000042
然而,考虑到定位误差的存在,为了避免切换太迟,基站最好在估计的最优波束切换时刻的前一段时间开始发送周期的导频信号。因此,在一些实施例中,服务于终端设备的控制侧电子设备在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。如图15所例示,设定时间提前量为T a,则基站从时刻
Figure PCTCN2020074204-appb-000043
起开始发送周期的导频信号。根据该实施例,T a的大小应同时考虑定位误差和列车的速度,例如根据上文所述的定位追踪所估计的列车速度。当然,T a例如可以提前根据经验进行设置。
另外,在一些实施例中,在下一下行发送波束增益大于当前波束的增益的情况下,服务于终端设备的控制侧电子设备执行波束切换。在一些实施例中,位置管理设备使得服务于终端设备的控制侧电子设备在执行波束切换的同时,停止发送用于波束切换的导频信号。如图15所例示,目标中继测量当前波束和相邻波束的增益,当相邻波束的增益大于当前波束的增益时,目标中继通知基站执行波束切换并停止发送导频信号。通过这种方式,只需要在临近波束切换的时刻才需要发送周期的导频信号,从而能够以较低的导频信号开销实现及时的波束切换。
下面描述上述定位辅助的波束切换的信令过程。图16是示意性地示出了根据本公开的实施例的定位辅助的波束切换的信令流程图。如图16所示,在S1601中,基站首先估计目标中继的最优波束切换时间
Figure PCTCN2020074204-appb-000044
接下来,在S1602中,基站从时刻
Figure PCTCN2020074204-appb-000045
起开始发送周期的导频信号,其中T a为设定的时间提前量。接下来,在S1603中,终端设备进行导频测量,得到当前波束和相邻波束的增益。当相邻波束的增益大于当前波束的增益时,在S1604中,终端设备通知基站执行波束切换并停止导频信号发送。
定位辅助的波束切换性能分析
下面将参考图17A和图17B,对根据本公开的实施例的定位辅助的波束切换的性能进行说明。如图17A和图17B中所示,定位辅助的波束切换的性能是基于与如上所述对协作定位进行分析的参数进行分析的。
图17A和图17B分别示意性地示出了根据本公开的实施例的定位辅助的波束切换的成功概率和导频信号开销与时间提前量T a的关系。根据该实施例,将切换成功定义为在开始发送导频时,目标中继的位置在最佳波束切换点之前。此外,图17B中的导频信号开销指代根据本公开的实施例的定位辅助的波束切换与使用周期导频的传统机制所需导频信号开销的比值。
根据图17A和图17B可以看出,随着T a的增大,波束切换成功概率变高,同时导频信号开销也越来越大,但根据本公开的实施例的定位辅助的波束切换的导频信号开销远远小于传统机制所需的导频信号开销,具体地,为传统机制所需的导频信号开销的几十分之一的量级。根据该实施例,进一步地,通过设置合理的T a,可以取得波束切换成功概率和导频信号开销的折中。
如上所述,相比于单中继定位,根据本公开的多中继协作定位能够实现更高的定位精度。此外,通过实时协作定位来辅助波束搜索,能够显著降低波束搜索所需的搜索次数和延时,而且,通过实时协作定位来辅助波束切换,能够以较低的导频信号开销实现及时的 波束切换。
以上针对至少一个终端设备为多个终端设备的情况描述了本公开的实现。应指出,本公开的实现不限于此。本公开的实现仍可以有效地用于单个终端设备的情况下,并且同样获得有利的效果。根据实施例,本公开的实现可以利用单个终端设备所处的特定场景的场景信息来对终端设备进行定位,而且进一步仍可以基于定位结果来进行定位追踪、波束搜索和切换。
下文将针对至少一个终端设备仅包含一个终端设备的实施例来进行描述本公开的实现。
在一些实施例中,至少一个终端设备可以仅包含一个终端设备。位置管理设备可以从终端设备接收关于终端设备所处的通信场景指示,通信场景包括终端设备沿特定轨道运动的通信场景,并且位置管理设备基于通信场景指示,确定相应的终端定位方案以用于对终端设备进行定位。
作为示例,当中继、基站或网络发起定位请求后,位置管理设备首先可以确认该中继位于轨道上,随后位置管理设备获取轨道的坐标并确定相应的定位方案。在一些实施例中,定位方案可以包括例如OTDOA定位方案、下行发送波束定位方案,等等。
在一些实施例中,可以例如通过为轨道上的中继分配特殊的标识(ID)或通过速度传感器给出的高速标志将其确认为列车上的中继。在一些实施例中,可以通过对长期的中继定位结果进行拟合来给出平均意义下轨道的坐标,或者可以访问网络地图来确定轨道坐标。
在一些实施例中,该终端设备处于LTE网络中,则位置管理设备确定采用OTDOA定位方案,并向终端设备提供进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供终端设备进行测量,位置管理设备接收终端设备反馈的对多个候选基站中的2个基站的测量结果,并基于特定轨道的信息以及这2个基站的测量结果对终端设备进行OTDOA定位。在一些实施例中,多个候选基站仅包括2个基站。在一些实施例中,辅助信息可以包括以下各项中的至少一项:候选基站的物理小区ID、全球小区ID、传输点ID、候选基站与参考基站的相对定时关系以及候选基站的定位参考信号PRS配置。这里基站可对应于本公开中的控制侧电子设备。应理解,位置管理设备例如可以实现为TS36.305标准中的增强服务移动位置中心(Enhanced Serving Mobile Location Center,E-SMLC)或TS38.305中定义的位置管理功能(Location Management Function,LMF),也可以为基站之一,以直接服务于该终端设备。
在一些实施例中,该终端设备处于NR网络中,则位置管理设备确定采用下行发送波束 定位方案,接收终端设备反馈的对1个或多个波束的测量结果,并且基于特定轨道的信息以及终端设备的波束测量结果进行下行发送波束定位。在一些实施例中,终端设备仅反馈1个波束的测量结果至位置管理设备。在一些实施例中,接收终端设备所反馈的对波束的测量结果包括例如波束的编号,位置管理设备基于所选择的波束编号可以获得该波束的波束信息,进而进行下行发送波束定位。位置管理设备例如可以实现为TS38.305中定义的LMF。
应理解,作为另外的示例,在NR网络的情况下,仍可存在单个控制侧电子设备来与终端设备进行波束通信,并且终端设备可以将波束的测量结果经由该控制侧电子设备传递至位置管理设备,位置管理设备可以将确定的波束信息提供给该控制侧电子设备,以便该控制侧电子设备对于该终端设备进行下行发送波束定位。
如上所述,在仅存在一个终端设备的情况下,针对例如列车或车辆这些沿特定轨迹行进的场景,通过利用轨道的信息,可以降低对该中继进行定位所需的与中继间存在视距传输的基站的数目,具体地,OTDOA定位仅需两个基站,而下行发送波束定位仅需一个基站。从而,可以降低非视距传输导致的定位误差。
<4.2.电子设备的结构配置>
图18是示意性地示出了根据本公开的实施例的电子设备的示例结构的框图。如图18所示,电子设备20包括处理电路200、存储器201和通信单元202。
根据该实施例,处理电路200可以被配置为获取电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;将至少一个终端设备的定位信息发送至无线通信系统中的位置管理设备,以供位置管理设备基于定位信息以及至少一个终端设备的特定位置配置信息来确定终端设备的位置信息;以及接收来自位置管理设备的所确定的至少一个终端设备的位置信息。
在电子设备20的结构示例中,处理电路200可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路200能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路200上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器201(诸如,布置在存储器中)或从外面连接的外部存储介质中,以及经由网络(诸如,互联网)下载。
根据该实施例,处理电路200可以包括信息获取单元2001,其可以被配置为获取电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息。在一些实施例 中,至少一个终端设备可以具有特定位置配置信息。另外,在一些实施例中,终端设备的定位信息可以包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
根据该实施例,处理电路200还可以包括发送单元2002,其可以被配置为将至少一个终端设备的定位信息发送至无线通信系统中的位置管理设备。另外,在一些实施例中,发送单元2002还可以被配置为根据定位周期而周期性地发送定位信息至位置管理设备,以便周期性地确定终端设备的位置。
根据该实施例,处理电路200还可以包括接收单元2003,其可以被配置为接收来自位置管理设备的所确定的至少一个终端设备的位置信息。另外,在一些实施例中,处理电路200还可以被配置为根据所接收到的所确定的终端设备的位置信息对其他终端设备进行定位。
根据该实施例,处理电路200还可以包括波束扫描单元2004,其可以被配置为根据先前接收的终端设备的位置来估计当前时刻终端设备的位置;以及根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。在一些实施例中,波束扫描单元2004还可以被配置为首先扫描波束方向与所估计的终端设备的位置对应的方向邻近的波束。另外,在一些实施例中,波束扫描单元2004还可以被配置为在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且停止波束扫描。
根据该实施例,处理电路200还可以包括波束切换单元2005,其可以被配置为根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。在一些实施例中,波束切换单元2005还可以被配置为在所估计的波束切换时刻之前使得发送单元2002发送导频信号至终端设备以便波束切换。另外,在一些实施例中,波束切换单元2005还可以被配置为在下一下行发送波束增益大于当前波束的增益的情况下,执行波束切换以将下行发送波束切换到所述下一下行发送波束。另外,在一些实施例中,波束切换单元2005还可以被配置为在执行波束切换的同时,停止发送用于波束切换的导频信号。
此外,可选地,电子设备20还可以包括图中以虚线示出的存储器201以及通信单元202。此外,电子设备20还可以包括未示出的其它部件,诸如射频链路、基带处理单元、网络接口、处理器、控制器等。处理电路200可以与存储器201和/或通信单元202关联。 例如,处理电路200可以直接或间接(例如,中间可能连接有其它部件)连接到存储器201,以进行数据的存取。还例如,处理电路200可以直接或间接连接到通信单元202,以经由通信单元202发送无线电信号以及经由通信单元202接收无线电信号。
存储器201可以存储由处理电路200产生的各种信息(例如,当前时刻终端设备的位置、所选择的波束等)、用于电子设备20操作的程序和数据、将由通信单元202发送的数据等。存储器201用虚线绘出,因为它还可以位于处理电路200内或者位于电子设备20外。存储器201可以是易失性存储器和/或非易失性存储器。例如,存储器201可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
通信单元202可以被配置为在处理电路200的控制下与位置管理设备和终端设备进行通信。在一个示例中,通信单元202可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。在一个实施例中,该通信单元202可以根据处理电路200获取的至少一个终端设备的定位信息发送至无线通信系统中的位置管理设备。在一个实施例中,通信单元202也可发送和接收用于根据本公开的实施例中所描述的过程所需的信令。
虽然图18中示出了处理电路200与通信单元202分离,但是处理电路200也可以被实现为包括通信单元202。此外,处理电路200还可以被实现为包括电子设备20中的一个或多个其它部件,或者处理电路200可以被实现为电子设备20本身。在实际实现时,处理电路200可以被实现为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。
图19是示意性地示出了根据本公开的实施例的电子设备的操作的流程图。
如图19所示,在步骤S1901中,电子设备获取电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息,其中至少一个终端设备具有特定位置配置信息。在一些实施例中,终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
接下来,在步骤S1902中,电子设备将至少一个终端设备的定位信息发送至无线通 信系统中的位置管理设备,以供位置管理设备基于定位信息以及至少一个终端设备的特定位置配置信息来确定终端设备的位置信息。另外,在一些实施例中,电子设备可以根据定位周期而周期性地发送定位信息至位置管理设备,以便位置管理设备周期性地确定终端设备的位置。其中,上面已经描述了位置管理设备确定终端设备的位置的具体细节,在此不再重复描述。
接下来,在步骤S1903中,电子设备接收来自位置管理设备的所确定的至少一个终端设备的位置信息。
另外,在一些实施例中,电子设备还可以根据先前接收的终端设备的位置来估计当前时刻终端设备的位置;以及根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。在一些实施例中,电子设备首先扫描波束方向与所估计的终端设备的位置对应的方向邻近的波束。在一些实施例中,在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且停止波束扫描。其中,上面已经描述了波束搜索的具体细节,在此不再重复描述。
另外,在一些实施例中,电子设备还可以根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。在一些实施例中,电子设备在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。在一些实施例中,在下一下行发送波束增益大于当前波束的增益的情况下,电子设备执行波束切换以将下行发送波束切换到下一下行发送波束,同时停止发送用于波束切换的导频信号。其中,上面已经描述了波束切换的具体细节,在此不再重复描述。
另外,在一些实施例中,电子设备还可以根据所接收到的所确定的终端设备的位置信息对其他终端设备进行定位。
<4.3.终端设备的结构配置>
图20是示意性地示出了根据本公开的实施例的终端设备30的示例结构的框图。如图20所示,终端设备30包括处理电路300、存储器301和通信单元302。
根据该实施例,处理电路300可以被配置为获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置;根据定位信息测量配置来确定终端设备的定位信息;以及将终端设备的定位信息发送至无线通信系统中的位置管理设备,以供位置管理设备基于定位信息以及包含终端设备在内的至少一个终端设备的特定位置配置信息来确定终端设备的位置信息。
在上述终端设备30的结构示例中,处理电路300可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路300能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路300上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器301(诸如,布置在存储器中)或从外面连接的外部存储介质中,以及经由网络(诸如,互联网)下载。
根据该实施例,处理电路300可以包括信息获取单元3001,其可以被配置为获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置。
根据该实施例,处理电路300还可以包括定位信息测量单元3002,其可以被配置为根据定位信息测量配置来确定终端设备的定位信息。在一些实施例中,终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。另外,在一些实施例中,定位信息测量单元3002还可以被配置为根据定位周期而周期性地确定定位信息。
根据该实施例,处理电路300还可以包括发送单元3003,其可以被配置为将终端设备的定位信息发送至无线通信系统中的位置管理设备。在一些实施例中,发送单元3003还可以被配置为向服务于终端设备的控制侧电子设备发送波束搜索请求。
根据该实施例,处理电路300还可以包括接收单元3004,其可以被配置为接收来自控制侧电子设备的扫描波束。在一些实施例中,接收单元3004还可以被配置为接收来自服务于终端设备的控制侧电子设备的导频信号。
根据该实施例,处理电路300还可以包括波束选择单元3005,其可以被配置为确定扫描波束的波束增益,在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且反馈所选择的波束给控制侧电子设备。
根据该实施例,处理电路300还可以包括波束切换通知单元3006,其可以被配置为执行导频测量以确定扫描波束的波束增益,在扫描波束增益大于前一扫描波束的增益的情况下,通知控制侧电子设备执行切换至扫描波束的波束切换。
此外,可选地,终端设备30还可以包括图中以虚线示出的存储器301以及通信单元302。此外,终端设备30还可以包括未示出的其它部件,诸如射频链路、基带处理单元、网络接口、处理器、控制器等。处理电路300可以与存储器301和/或通信单元302关联。例如,处理电路300可以直接或间接(例如,中间可能连接有其它部件)连接到存储器301,以进行数据的存取。还例如,处理电路300可以直接或间接连接到通信单元302,以经由通信单元302发送无线电信号以及经由通信单元302接收无线电信号。
存储器301可以存储由处理电路300产生的各种信息(例如,终端设备的定位信息、扫描波束的波束增益等)、用于终端设备30操作的程序和数据、将由通信单元302发送的数据等。存储器301用虚线绘出,因为它还可以位于处理电路300内或者位于终端设备30外。存储器301可以是易失性存储器和/或非易失性存储器。例如,存储器301可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
通信单元302可以被配置为在处理电路300的控制下与电子设备和终端设备进行通信。在一个示例中,通信单元302可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。在一个实施例中,该通信单元302可以将在处理电路300中确定的终端设备的定位信息发送至无线通信系统中的位置管理设备。在一个实施例中,通信单元302也可发送和接收用于根据本公开的实施例中所描述的过程所需的信令。
虽然图20中示出了处理电路300与通信单元302分离,但是处理电路300也可以被实现为包括通信单元302。此外,处理电路300还可以被实现为包括终端设备30中的一个或多个其它部件,或者处理电路300可以被实现为终端设备30本身。在实际实现时,处理电路300可以被实现为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。
图21是示意性地示出了根据本公开的实施例的终端设备的操作的流程图。
如图21所示,在步骤S2101中,终端设备获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置。接下来,在步骤S2102中,终端设备根据定位信息测量配置来确定终端设备的定位信息。在一些实施例中,终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。在一些实施例中,终端设备可以根据定位周期而周期性地确定定位信息。
接下来,在步骤S2103中,终端设备将终端设备的定位信息发送至无线通信系统中的位置管理设备,以供位置管理设备基于定位信息以及包含终端设备在内的至少一 个终端设备的特定位置配置信息来确定终端设备的位置信息。
另外,在一些实施例中,终端设备可以向服务于终端设备的控制侧电子设备发送波束搜索请求;接收来自控制侧电子设备的扫描波束;以及确定扫描波束的波束增益,在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且反馈所选择的波束给控制侧电子设备。如上所述,已经描述了波束搜索的具体细节,在此不再重复描述。
另外,在一些实施例中,终端设备可以接收来自服务于终端设备的控制侧电子设备的导频信号;以及执行导频测量以确定扫描波束的波束增益,在扫描波束增益大于前一扫描波束的增益的情况下,通知控制侧电子设备执行切换至扫描波束的波束切换。如上所述,已经描述了波束搜索的具体细节,在此不再重复描述。
<<5.应用示例>>
在本公开中描述了高速列车通信场景的示例,但是应当理解,本公开的应用场景不限于高速列车通信场景。本公开所提出的改进方案可应用于对延时和可靠性有较高要求的任何移动通信应用场景。
应指出,上述描述仅仅是示例性的。本公开的实施例还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图22所示的通用个人计算机2200安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图22是示出根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图22中,中央处理单元(CPU)2201根据只读存储器(ROM)2202中存储的程序或从存储部分2208加载到随机存取存储器(RAM)2203的程序执行各种处理。在RAM2203中, 也根据需要存储当CPU2201执行各种处理等时所需的数据。
CPU2201、ROM2202和RAM2203经由总线2204彼此连接。输入/输出接口2205也连接到总线2204。
下述部件连接到输入/输出接口2205:输入部分2206,包括键盘、鼠标等;输出部分2207,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分2208,包括硬盘等;和通信部分2209,包括网络接口卡比如LAN卡、调制解调器等。通信部分2209经由网络比如因特网执行通信处理。
根据需要,驱动器2210也连接到输入/输出接口2205。可拆卸介质2211比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2210上,使得从中读出的计算机程序根据需要被安装到存储部分2208中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质2211安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图22所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质2211。可拆卸介质2211的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM2202、存储部分2208中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的位置管理设备10/电子设备20可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中。例如,根据本公开的实施例的终端设备30可以被实现为各种终端设备或者被包含在各种终端设备中。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。还例如,可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的用户设备,在一些实施例中可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图23至图26描述根据本公开的应用示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图23是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB2300包括多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 2300(或基站设备2320)可以对应于上述位置管理设备10或电子设备20。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图23所示,gNB2300可以包括多个天线2310。例如,多个天线2310可以与gNB 2300使用的多个频段兼容。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325获取的无线通信系统中的终端侧的至少一个终端设备的定位信息和至少一个终端设备的特定位置配置信息来确定至少一个终端设备中的目标终端设备的位置信息。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接入控制和调度。该控制可以结合附近的gNB 或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2300与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频段相比,网络接口2323可以使用较高频段用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-Advanced),并且经由天线2310来提供到位于gNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如基带(BB)处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。虽然图23示出一个RF电路2327与一根天线2310连接的示例,但是本公开并不限于该图示,而是一个RF电路2327可以同时连接多根天线2310。
如图23所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与gNB 2300使用的多个频段兼容。如图23所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图23示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
第二示例
图24是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB2400包括多个天线2410、RRH 2420和基站设备2430。RRH 2420和每个天线2410可以经由RF线缆而彼此连接。基站设备2430和RRH 2420可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 2400(或基站设备2430)可以对应于上述位置管理设备10 或电子设备20。
天线2410中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于RRH 2420发送和接收无线信号。如图24所示,gNB 2400可以包括多个天线2410。例如,多个天线2410可以与gNB 2400使用的多个频段兼容。
基站设备2430包括控制器2431、存储器2432、网络接口2433、无线通信接口2434以及连接接口2436。控制器2431、存储器2432和网络接口2433与参照图23描述的控制器2321、存储器2322和网络接口2323相同。
无线通信接口2434支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且经由RRH2420和天线2410来提供到位于与RRH 2420对应的扇区中的终端的无线通信。无线通信接口2434通常可以包括例如BB处理器2435。除了BB处理器2435经由连接接口2436连接到RRH2420的RF电路2422之外,BB处理器2435与参照图23描述的BB处理器2326相同。如图24所示,无线通信接口2434可以包括多个BB处理器2435。例如,多个BB处理器2435可以与gNB 2400使用的多个频段兼容。虽然图24示出其中无线通信接口2434包括多个BB处理器2435的示例,但是无线通信接口2434也可以包括单个BB处理器2435。
连接接口2436为用于将基站设备2430(无线通信接口2434)连接至RRH 2420的接口。连接接口2436还可以为用于将基站设备2430(无线通信接口2434)连接至RRH 2420的上述高速线路中的通信的通信模块。
RRH 2420包括连接接口2423和无线通信接口2421。
连接接口2423为用于将RRH 2420(无线通信接口2421)连接至基站设备2430的接口。连接接口2423还可以为用于上述高速线路中的通信的通信模块。
无线通信接口2421经由天线2410来传送和接收无线信号。无线通信接口2421通常可以包括例如RF电路2422。RF电路2422可以包括例如混频器、滤波器和放大器,并且经由天线2410来传送和接收无线信号。虽然图24示出一个RF电路2422与一根天线2410连接的示例,但是本公开并不限于该图示,而是一个RF电路2422可以同时连接多根天线2410。
如图24所示,无线通信接口2421可以包括多个RF电路2422。例如,多个RF电路2422可以支持多个天线元件。虽然图24示出其中无线通信接口2421包括多个RF电路2422的示例,但是无线通信接口2421也可以包括单个RF电路2422。
[关于用户设备的示例]
第一示例
图25是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。 智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。在一种实现方式中,此处的智能电话2500(或处理器2501)可以对应于上述用户设备UE40。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口2512通常可以包括例如BB处理器2513和RF电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图25所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图25示出其中无线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线 元件),并且用于无线通信接口2512传送和接收无线信号。如图25所示,智能电话2500可以包括多个天线2516。虽然图25示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图25所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
第二示例
图26是示出可以应用本公开内容的技术的汽车导航设备2600的示意性配置的示例的框图。汽车导航设备2600包括处理器2601、存储器2602、全球定位系统(GPS)模块2604、传感器2605、数据接口2606、内容播放器2607、存储介质接口2608、输入装置2609、显示装置2610、扬声器2611、无线通信接口2613、一个或多个天线开关2616、一个或多个天线2617以及电池2618。在一种实现方式中,此处的汽车导航设备2600(或处理器2601)可以对应于终端设备30。
处理器2601可以为例如CPU或SoC,并且控制汽车导航设备2600的导航功能和另外的功能。存储器2602包括RAM和ROM,并且存储数据和由处理器2601执行的程序。
GPS模块2604使用从GPS卫星接收的GPS信号来测量汽车导航设备2600的位置(诸如纬度、经度和高度)。传感器2605可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2606经由未示出的终端而连接到例如车载网络2621,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2607再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2608中。输入装置2609包括例如被配置为检测显示装置2610的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2610包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2611输出导航功能的声音或再现的内容。
无线通信接口2613支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口2613通常可以包括例如BB处理器2614和RF电路2615。BB处理器2614可 以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2615可以包括例如混频器、滤波器和放大器,并且经由天线2617来传送和接收无线信号。无线通信接口2613还可以为其上集成有BB处理器2614和RF电路2615的一个芯片模块。如图26所示,无线通信接口2613可以包括多个BB处理器2614和多个RF电路2615。虽然图26示出其中无线通信接口2613包括多个BB处理器2614和多个RF电路2615的示例,但是无线通信接口2613也可以包括单个BB处理器2614或单个RF电路2615。
此外,除了蜂窝通信方案之外,无线通信接口2613可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2613可以包括BB处理器2614和RF电路2615。
天线开关2616中的每一个在包括在无线通信接口2613中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2617的连接目的地。
天线2617中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2613传送和接收无线信号。如图26所示,汽车导航设备2600可以包括多个天线2617。虽然图26示出其中汽车导航设备2600包括多个天线2617的示例,但是汽车导航设备2600也可以包括单个天线2617。
此外,汽车导航设备2600可以包括针对每种无线通信方案的天线2617。在此情况下,天线开关2616可以从汽车导航设备2600的配置中省略。
电池2618经由馈线向图26所示的汽车导航设备2600的各个块提供电力,馈线在图中被部分地示为虚线。电池2618累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备2600、车载网络2621以及车辆模块2622中的一个或多个块的车载系统(或车辆)2620。车辆模块2622生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2621。
<<6.结论>>
上面已经参考图1至图26详细描述了本公开的实施例。如上所述,根据本公开的实施例的位置管理设备可以基于至少一个终端设备的特定位置配置信息以及至少一个终端设备的定位信息,对至少一个终端设备中的目标终端设备的进行协作定位和追踪。根据本公开的实施例综合利用LTE网络和NR网络下的两种定位方法,实现了对终端设备在任何时间的实时定位,而且利用了终端设备的特定位置配置,提高了定位的精度并降低了开销,进一步地实现以较低的延时和开销进行快速的定位辅助的波束搜索和波束切换。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领 域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质存储构成相应软件的相应程序,当所述程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
本公开的示例性实施例实现
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
示例性实施例1.一种用于无线通信系统的控制侧的位置管理设备,所述位置管理设备包括处理电路,所述处理电路被配置为:
获取所述无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;以及
基于所述至少一个终端设备的特定位置配置信息、以及所述至少一个终端设备的定位信息,确定所述至少一个终端设备中的目标终端设备的位置信息。
示例性实施例2.如示例性实施例1所述的位置管理设备,其中
终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
示例性实施例3.如示例性实施例2所述的位置管理设备,其中在服务于终端设备的控制侧电子设备为遵从4G通信标准的第一电子设备时,所述定位信息为所述时间相关定位信息。
示例性实施例4.如示例性实施例3所述的位置管理设备,其中所述时间相关定位信息包括观测到达时间差OTDOA测量结果,其表示服务于该终端设备的两个第一电子设备同时发送的定位参考信号PRS到达该终端设备的时间差。
示例性实施例5.如示例性实施例2所述的位置管理设备,其中,在服务于终端设备的控制侧电子设备为遵从5G通信标准的第二电子设备时,所述定位信息为所述波束相关定位信息。
示例性实施例6.如示例性实施例5所述的位置管理设备,其中,所述波束相关定位信息包括所述第二电子设备与所述终端设备通信的下行发送波束的波束信息,其指示用于所述终端设备的下行发送波束的角度或覆盖范围信息。
示例性实施例7.如示例性实施例1所述的位置管理设备,其中,终端设备的定位信息由位置管理设备从终端设备获取,或者从服务于该终端设备的控制侧电子设备获取。
示例性实施例8.如示例性实施例1所述的位置管理设备,其中,所述位置管理设备根据定位周期而周期性地获取所述定位信息以便周期性地确定所述目标终端设备的位置。
示例性实施例9.如示例性实施例8所述的位置管理设备,其中,所述定位周期可被设置为等于或者小于遵从4G通信标准的控制侧电子设备向终端设备发送定位参考信号PRS的周期。
示例性实施例10.如示例性实施例8所述的位置管理设备,其中,所述处理电路进一步被配置为:
基于先前确定的目标终端设备的位置信息以及定位周期,利用线性拟合修正目标终端设备当前时刻的位置,并估计出目标终端设备在特定时刻的位置。
示例性实施例11.如示例性实施例1所述的位置管理设备,其中,所述处理电路进一步被配置为:
使得服务于终端设备的控制侧电子设备根据先前确定的终端设备的位置来估计当前时刻终端设备的位置;以及
使得服务于终端设备的控制侧电子设备根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
示例性实施例12.如示例性实施例11所述的位置管理设备,其中,波束方向与所估计的终端设备的位置对应的方向邻近的波束被首先扫描。
示例性实施例13.如示例性实施例11所述的位置管理设备,其中,在波束增益大于特定阈值的情况下,该波束被选择用于进行与终端设备的数据传输,并且控制侧电子设备停 止波束扫描。
示例性实施例14.如示例性实施例1所述的位置管理设备,其中,所述处理电路进一步被配置为:
使得服务于终端设备的控制侧电子设备根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
使得服务于终端设备的控制侧电子设备根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
示例性实施例15.如示例性实施例14所述的位置管理设备,其中,服务于终端设备的控制侧电子设备在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
示例性实施例16.如示例性实施例14所述的位置管理设备,其中,在下一下行发送波束增益大于当前波束的增益的情况下,服务于终端设备的控制侧电子设备执行波束切换。
示例性实施例17.如示例性实施例14所述的位置管理设备,其中,所述处理电路进一步被配置为:
使得服务于终端设备的控制侧电子设备在执行波束切换的同时,停止发送用于波束切换的导频信号。
示例性实施例18.如示例性实施例1所述的位置管理设备,其中,所述至少一个终端设备包括多个终端设备,并且所述特定位置配置信息包括所述多个终端设备之间的特定位置关系。
示例性实施例19.如示例性实施例18所述的位置管理设备,其中,所述处理电路进一步被配置为:
基于所述无线通信系统的服务于所述多个终端设备的控制侧电子设备的位置信息、所述多个终端设备之间的特定位置关系、以及各终端设备的定位信息,确定所述多个终端设备中的各终端设备的关于所述目标终端设备的位置误差函数;以及
基于所述多个终端设备的各终端设备的位置误差函数来确定所述目标终端设备的位置信息。
示例性实施例20.如示例性实施例19所述的位置管理设备,其中,基于位置误差函数根据加权最小均方误差准则来确定所述目标终端设备的位置信息。
示例性实施例21.如示例性实施例18所述的位置管理设备,其中,所述多个终端设备遵循特定轨迹布置,并且所述特定位置配置信息还包括所述多个终端设备所遵循的特定轨迹的位置信息,
其中,所述处理电路进一步被配置为:
基于所述多个终端设备所遵循的特定轨迹的位置信息来确定目标终端设备位置,其中所述特定轨迹的位置信息利用先前确定的终端设备位置进行拟合得到或从网络地图获取。
示例性实施例22.如示例性实施例18所述的位置管理设备,其中,所述多个终端设备遵循直线轨迹布置,并且所述多个终端设备之间的间距在特定时段内是恒定的。
示例性实施例23.如示例性实施例18所述的位置管理设备,其中,所述处理电路进一步被配置为:
基于所确定的目标终端设备的位置以及所述多个终端设备之间的特定位置关系,确定所述多个终端设备中的其它终端设备的位置。
示例性实施例24.如示例性实施例23所述的位置管理设备,其中,所述处理电路进一步被配置为:
将所确定的各终端设备的位置发送到服务于各终端设备的控制侧电子设备,以便控制侧电子设备对于各终端设备进行定位。
示例性实施例25.如示例性实施例18所述的位置管理设备,其中,所述多个终端设备之间的特定位置关系被预先提供给所述位置管理设备,或者由目标终端设备测量并提供给所述位置管理设备。
示例性实施例26.一种用于无线通信系统的控制侧的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
获取所述电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;
将所述至少一个终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及所述至少一个终端设备的特定位置配置信息来确定终端设备的位置信息;以及
接收来自所述位置管理设备的所确定的所述至少一个终端设备的位置信息。
示例性实施例27.如示例性实施例26所述的电子设备,其中
终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
示例性实施例28.如示例性实施例26所述的电子设备,其中,所述处理电路被进一步配置为:
根据定位周期而周期性地发送定位信息至所述位置管理设备,以便周期性地确定终端 设备的位置。
示例性实施例29.如示例性实施例26所述的电子设备,其中,所述处理电路进一步被配置为:
根据先前接收的终端设备的位置来估计当前时刻终端设备的位置;以及
根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
示例性实施例30.如示例性实施例29所述的电子设备,其中,所述处理电路进一步被配置为:
首先扫描波束方向与所估计的终端设备的位置对应的方向邻近的波束。
示例性实施例31.如示例性实施例29所述的电子设备,其中,所述处理电路进一步被配置为:
在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且停止波束扫描。
示例性实施例32.如示例性实施例26所述的电子设备,其中,所述处理电路进一步被配置为:
根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
示例性实施例33.如示例性实施例32所述的电子设备,其中,所述处理电路进一步被配置为:
在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
示例性实施例34.如示例性实施例32所述的电子设备,其中,所述处理电路进一步被配置为:
在下一下行发送波束增益大于当前波束的增益的情况下,执行波束切换以将下行发送波束切换到所述下一下行发送波束。
示例性实施例35.如示例性实施例32所述的电子设备,其中,所述处理电路进一步被配置为:
在执行波束切换的同时,停止发送用于波束切换的导频信号。
示例性实施例36.如示例性实施例26所述的电子设备,其中,所述处理电路进一步被 配置为:
根据所接收到的所确定的终端设备的位置信息对其他终端设备进行定位。
示例性实施例37.一种用于无线通信系统的终端侧的终端设备,所述终端设备包括处理电路,所述处理电路被配置为:
获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置;
根据所述定位信息测量配置来确定终端设备的定位信息;以及
将终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及包含所述终端设备在内的至少一个终端设备的特定位置配置信息来确定终端设备的位置信息。
示例性实施例38.如示例性实施例37所述的终端设备,其中
终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
示例性实施例39.如示例性实施例37所述的终端设备,其中,所述处理电路被进一步配置为:
根据定位周期而周期性地确定定位信息。
示例性实施例40.如示例性实施例37所述的终端设备,其中,所述处理电路被进一步配置为:
向服务于所述终端设备的控制侧电子设备发送波束搜索请求;
接收来自控制侧电子设备的扫描波束;以及
确定所述扫描波束的波束增益,在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且反馈所选择的波束给所述控制侧电子设备。
示例性实施例41.如示例性实施例37所述的终端设备,其中,所述处理电路被进一步配置为:
接收来自服务于所述终端设备的控制侧电子设备的导频信号;
执行导频测量以确定扫描波束的波束增益,在所述扫描波束增益大于前一扫描波束的增益的情况下,通知所述控制侧电子设备执行切换至所述扫描波束的波束切换。
示例性实施例42.一种用于无线通信系统的控制侧的位置管理设备,包括处理电路,所述处理电路被配置为:
接收关于所述无线通信系统中的终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;以及
基于所述通信场景指示对所述终端设备进行定位。
示例性实施例43.如示例性实施例42所述的位置管理设备,其中所述处理电路进一步配置为:
基于所述通信场景指示确定定位方案以用于对所述终端设备进行定位。
示例性实施例44.如示例性实施例42或43所述的位置管理设备,其中所述处理电路进一步配置为:在基于通信场景指示确定采用OTDOA定位方案的情况下,
向所述终端设备提供进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;以及
基于所述特定轨道的信息以及来自所述终端设备对于所述多个候选基站中的2个基站的测量结果对所述终端设备进行OTDOA定位。
示例性实施例45.如示例性实施例44所述的位置管理设备,其中,所述多个候选基站仅包括2个基站。
示例性实施例46.如示例性实施例44所述的位置管理设备,其中,所述辅助信息包括以下至少之一:
所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
示例性实施例47.如示例性实施例44所述的位置管理设备,其中,所述测量结果包括以下至少之一:
所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
示例性实施例48.如示例性实施例42或43所述的位置管理设备,其中所述处理电路进一步被配置为:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
使得该终端设备的服务基站对于所述终端设备发送下行发送波束;以及
基于所述特定轨道的信息以及来自所述终端设备的对于一个或多个下行发送波束的测量结果进行下行发送波束定位。
示例性实施例49.如示例性实施例48所述的位置管理设备,其中,所述测量结果仅包括单个波束的测量结果。
示例性实施例50.如示例性实施例42所述的位置管理设备,其中,所述位置管理设备位于所述终端设备的服务基站中或者控制侧的其他控制装置中。
示例性实施例51.一种用于无线通信系统的终端侧的终端设备,包括处理电路,所述处理电路被配置为:
获取关于所述终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;
将所述通信场景指示发送至所述无线通信系统的控制侧的设备,使得能够基于所述通信场景指示以对所述终端设备进行定位。
示例性实施例52.如示例性实施例51所述的终端设备,其中所述处理电路进一步配置为:在基于通信场景指示确定采用OTDOA定位方案的情况下,
接收进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;
基于所述辅助信息对所述多个候选基站中的2个基站进行测量;以及
将测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和所述测量结果对所述终端设备进行OTDOA定位。
示例性实施例53.如示例性实施例52所述的终端设备,其中,所述多个候选基站仅包括2个基站。
示例性实施例54.如示例性实施例52所述的终端设备,其中,所述辅助信息包括以下至少之一:
所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
示例性实施例55.如示例性实施例52所述的终端设备,其中,所述测量结果包括以下至少之一:
所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
示例性实施例56.如示例性实施例51所述的终端设备,其中所述处理电路进一步被配置为:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
接收来自该终端设备的服务基站的下行发送波束;
对于一个或多个下行发送波束进行测量;以及
将测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和所述测量结果对所述终端设备进行下行发送波束定位。
示例性实施例57.如示例性实施例54所述的终端设备,其中,所述测量结果仅包括单个波束的测量结果。
示例性实施例58.如示例性实施例51所述的终端设备,其中,所述终端设备的服务基站可包含所述无线通信系统的控制侧的位置管理设备或者控制侧的其他控制装置。
示例性实施例59.一种用于无线通信系统的位置管理方法,包括:
获取所述无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;以及
基于所述至少一个终端设备的特定位置配置信息、以及所述至少一个终端设备的定位信息,确定所述至少一个终端设备中的目标终端设备的位置信息。
示例性实施例60.如示例性实施例59所述的位置管理方法,其中
终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
示例性实施例61.如示例性实施例60所述的位置管理方法,其中在服务于终端设备的控制侧电子设备为遵从4G通信标准的第一电子设备时,所述定位信息为所述时间相关定位信息。
示例性实施例62.如示例性实施例61所述的位置管理方法,其中所述时间相关定位信息包括观测到达时间差OTDOA测量结果,其表示服务于该终端设备的两个第一电子设备同时发送的定位参考信号PRS到达该终端设备的时间差。
示例性实施例63.如示例性实施例61所述的位置管理方法,其中,在服务于终端设备的控制侧电子设备为遵从5G通信标准的第二电子设备时,所述定位信息为所述波束相关定位信息。
示例性实施例64.如示例性实施例63所述的位置管理方法,其中,所述波束相关定位信息包括所述第二电子设备与所述终端设备通信的下行发送波束的波束信息,其指示用于所述终端设备的下行发送波束的角度或覆盖范围信息。
示例性实施例65.如示例性实施例59所述的位置管理方法,其中,终端设备的定位信息被从终端设备获取,或者从服务于该终端设备的控制侧电子设备获取。
示例性实施例66.如示例性实施例59所述的位置管理方法,其中,根据定位周期而周期性地获取所述定位信息以便周期性地确定所述目标终端设备的位置。
示例性实施例67.如示例性实施例66所述的位置管理方法,其中,所述定位周期可被设置为等于或者小于遵从4G通信标准的控制侧电子设备向终端设备发送定位参考信号PRS的周期。
示例性实施例68.如示例性实施例66所述的位置管理方法,进一步包括:
基于先前确定的目标终端设备的位置信息以及定位周期,利用线性拟合修正目标终端设备当前时刻的位置,并估计出目标终端设备在特定时刻的位置。
示例性实施例69.如示例性实施例59所述的位置管理方法,进一步包括:
使得服务于终端设备的控制侧电子设备根据先前确定的终端设备的位置来估计当前时刻终端设备的位置;以及
使得服务于终端设备的控制侧电子设备根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
示例性实施例70.如示例性实施例69所述的位置管理方法,其中,波束方向与所估计的终端设备的位置对应的方向邻近的波束被首先扫描。
示例性实施例71.如示例性实施例69所述的位置管理方法,其中,在波束增益大于特定阈值的情况下,该波束被选择用于进行与终端设备的数据传输,并且控制侧电子设备停止波束扫描。
示例性实施例72.如示例性实施例59所述的位置管理方法,进一步包括:
使得服务于终端设备的控制侧电子设备根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
使得服务于终端设备的控制侧电子设备根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
示例性实施例73.如示例性实施例59所述的位置管理方法,其中,服务于终端设备的控制侧电子设备在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
示例性实施例74.如示例性实施例72所述的位置管理方法,其中,在下一下行发送波束增益大于当前波束的增益的情况下,服务于终端设备的控制侧电子设备执行波束切换。
示例性实施例75.如示例性实施例72所述的位置管理方法,进一步包括:
使得服务于终端设备的控制侧电子设备在执行波束切换的同时,停止发送用于波束切换的导频信号。
示例性实施例76.如示例性实施例59所述的位置管理方法,其中,所述至少一个终端设备包括多个终端设备,并且所述特定位置配置信息包括所述多个终端设备之间的特定位置关系。
示例性实施例77.如示例性实施例76所述的位置管理方法,进一步包括:
基于所述无线通信系统的服务于所述多个终端设备的控制侧电子设备的位置信息、所述多个终端设备之间的特定位置关系、以及各终端设备的定位信息,确定所述多个终端设备中的各终端设备的关于所述目标终端设备的位置误差函数;以及
基于所述多个终端设备的各终端设备的位置误差函数来确定所述目标终端设备的位 置信息。
示例性实施例78.如示例性实施例77所述的位置管理方法,其中,基于位置误差函数根据加权最小均方误差准则来确定所述目标终端设备的位置信息。
示例性实施例79.如示例性实施例59所述的位置管理方法,其中,所述多个终端设备遵循特定轨迹布置,并且所述特定位置配置信息还包括所述多个终端设备所遵循的特定轨迹的位置信息,
其中,所述方法进一步包括:
基于所述多个终端设备所遵循的特定轨迹的位置信息来确定目标终端设备位置,其中所述特定轨迹的位置信息利用先前确定的终端设备位置进行拟合得到或从网络地图获取。
示例性实施例80.如示例性实施例79所述的位置管理方法,其中,所述多个终端设备遵循直线轨迹布置,并且所述多个终端设备之间的间距在特定时段内是恒定的。
示例性实施例81.如示例性实施例76所述的位置管理方法,进一步包括:
基于所确定的目标终端设备的位置以及所述多个终端设备之间的特定位置关系,确定所述多个终端设备中的其它终端设备的位置。
示例性实施例82.如示例性实施例81所述的位置管理方法,进一步包括:
将所确定的各终端设备的位置发送到服务于各终端设备的控制侧电子设备,以便控制侧电子设备对于各终端设备进行定位。
示例性实施例83.如示例性实施例76所述的位置管理方法,其中,所述多个终端设备之间的特定位置关系被预先提供给所述位置管理设备,或者由目标终端设备测量并提供给所述位置管理设备。
示例性实施例84.一种用于无线通信系统的控制侧的电子设备的方法,所述方法包括:
获取所述电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;
将所述至少一个终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及所述至少一个终端设备的特定位置配置信息来确定终端设备的位置信息;以及
接收来自所述位置管理设备的所确定的所述至少一个终端设备的位置信息。
示例性实施例85.如示例性实施例84所述的方法,其中
终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
示例性实施例86.如示例性实施例84所述的方法,进一步包括:
根据定位周期而周期性地发送定位信息至所述位置管理设备,以便周期性地确定终端设备的位置。
示例性实施例87.如示例性实施例84所述的方法,进一步包括:
根据先前接收的终端设备的位置来估计当前时刻终端设备的位置;以及
根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
示例性实施例88.如示例性实施例87所述的方法,进一步包括:
首先扫描波束方向与所估计的终端设备的位置对应的方向邻近的波束。
示例性实施例89.如示例性实施例87所述的方法,进一步包括:
在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且停止波束扫描。
示例性实施例90.如示例性实施例84所述的方法,进一步包括:
根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
示例性实施例91.如示例性实施例90所述的方法,进一步包括:
在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
示例性实施例92.如示例性实施例90所述的方法,进一步包括:
在下一下行发送波束增益大于当前波束的增益的情况下,执行波束切换以将下行发送波束切换到所述下一下行发送波束。
示例性实施例93.如示例性实施例90所述的方法,进一步包括:
在执行波束切换的同时,停止发送用于波束切换的导频信号。
示例性实施例94.如示例性实施例90所述的方法,进一步包括:
根据所接收到的所确定的终端设备的位置信息对其他终端设备进行定位。
示例性实施例95.一种用于无线通信系统的终端侧的终端设备的方法,包括:
获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置;
根据所述定位信息测量配置来确定终端设备的定位信息;以及
将终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位 置管理设备基于所述定位信息以及包含所述终端设备在内的至少一个终端设备的特定位置配置信息来确定终端设备的位置信息。
示例性实施例96.如示例性实施例95所述的方法,其中
终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
示例性实施例97.如示例性实施例95所述的方法,进一步包括:
根据定位周期而周期性地确定定位信息。
示例性实施例98.如示例性实施例95所述的方法,进一步包括:
向服务于所述终端设备的控制侧电子设备发送波束搜索请求;
接收来自控制侧电子设备的扫描波束;以及
确定所述扫描波束的波束增益,在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且反馈所选择的波束给所述控制侧电子设备。
示例性实施例99.如示例性实施例95所述的方法,进一步包括:
接收来自服务于所述终端设备的控制侧电子设备的导频信号;
执行导频测量以确定扫描波束的波束增益,在所述扫描波束增益大于前一扫描波束的增益的情况下,通知所述控制侧电子设备执行切换至所述扫描波束的波束切换。
示例性实施例100.一种用于无线通信系统的位置管理方法,包括:
接收关于所述无线通信系统中的终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;以及
基于所述通信场景指示对所述终端设备进行定位。
示例性实施例101.如示例性实施例100所述的位置管理方法,进一步包括:
基于所述通信场景指示确定定位方案以用于对所述终端设备进行定位。
示例性实施例102.如示例性实施例100或101所述的位置管理方法,进一步包括:在基于通信场景指示确定采用OTDOA定位方案的情况下,
向所述终端设备提供进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;以及
基于所述特定轨道的信息以及来自所述终端设备对于所述多个候选基站中的2个基站的测量结果对所述终端设备进行OTDOA定位。
示例性实施例103.如示例性实施例102所述的位置管理方法,其中,所述多个候选基站仅包括2个基站。
示例性实施例104.如示例性实施例102所述的位置管理方法,其中,所述辅助信息包括以下至少之一:
所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
示例性实施例105.如示例性实施例102所述的位置管理方法,其中,所述测量结果包括以下至少之一:
所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
示例性实施例106.如示例性实施例100或101所述的位置管理方法,进一步包括:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
使得该终端设备的服务基站对于所述终端设备发送下行发送波束;以及
基于所述特定轨道的信息以及来自所述终端设备的对于一个或多个下行发送波束的测量结果进行下行发送波束定位。
示例性实施例107.如示例性实施例106所述的位置管理方法,其中,所述测量结果仅包括单个波束的测量结果。
示例性实施例108.如示例性实施例100所述的位置管理方法,其中,所述位置管理方法在所述终端设备的服务基站中或者控制侧的其他控制装置中被执行。
示例性实施例109.一种用于无线通信系统的终端侧的终端设备的方法,包括:
获取关于所述终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;
将所述通信场景指示发送至所述无线通信系统的控制侧的设备,使得能够基于所述通信场景指示以对所述终端设备进行定位。
示例性实施例110.如示例性实施例109所述的方法,进一步包括:在基于通信场景指示确定采用OTDOA定位方案的情况下,
接收进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;
基于所述辅助信息对所述多个候选基站中的2个基站进行测量;以及
将测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和所述测量结果对所述终端设备进行OTDOA定位。
示例性实施例111.如示例性实施例109所述的方法,其中,所述多个候选基站仅包括2个基站。
示例性实施例112.如示例性实施例109所述的方法,其中,所述辅助信息包括以下至少之一:
所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
示例性实施例113.如示例性实施例110所述的方法,其中,所述测量结果包括以下至少之一:
所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
示例性实施例114.如示例性实施例109所述的方法,进一步包括:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
接收来自该终端设备的服务基站的下行发送波束;
对于一个或多个下行发送波束进行测量;以及
将测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和所述测量结果对所述终端设备进行下行发送波束定位。
示例性实施例115.如示例性实施例114所述的方法,其中,所述测量结果仅包括单个波束的测量结果。
示例性实施例116.如示例性实施例109所述的方法,其中,所述终端设备的服务基站可包含所述无线通信系统的控制侧的位置管理设备或者控制侧的其他控制装置。
示例性实施例117.一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如示例性实施例59-116中任一项所述的方法。
示例性实施例118.一种用于无线通信系统的控制侧设备,包括处理电路,所述处理电路被配置为:
接收关于所述无线通信系统中的终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景以用于定位;
向所述终端设备发送指示一个或多个CSI-RS资源的控制信息;
在所述一个或多个CSI-RS资源上进行CSI-RS信号的波束发射,以便所述终端设备确定CSI-RS信号接收强度满足预定条件的控制侧发射波束;
从所述终端设备接收满足预定条件的控制侧发射波束对应的CSI-RS资源的指示信息,
其中,用于承载所述一个或多个CSI-RS资源的控制侧发射波束与所述终端设备的位置相对应。
应指出,此示例性实施例中所提及的定位可以是由定位服务器来进行的,而不是由gNB 来进行的。还应指出,此实施例中所提及的波束与位置相对应可涵盖选择邻近方向的波束,例如与位置的方向邻近的波束。
示例性实施例119.一种用于无线通信系统的终端侧的终端设备,包括处理电路,所述处理电路被配置为:
获取关于所述终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;
将所述通信场景指示发送至所述无线通信系统的控制侧的设备,使得能够基于所述通信场景指示以对所述终端设备进行定位;
从控制侧的设备接收指示一个或多个CSI-RS资源的控制信息;
在所述一个或多个CSI-RS资源上进行波束接收,以确定CSI-RS信号接收强度满足预定条件的控制侧发射波束;
将满足预定条件的控制侧发射波束对应的CSI-RS资源的指示信息报告至所述控制侧设备,
其中,用于承载所述一个或多个CSI-RS资源的控制侧发射波束与所述终端设备的位置相对应。
应指出,此示例性实施例中所提及的定位可以是由定位服务器来进行的,而不是由gNB来进行的。还应指出,此实施例中所提及的波束与位置相对应可涵盖选择邻近方向的波束,例如与位置的方向邻近的波束。
示例性实施例120.一种无线通信装置,包括:
处理器,
存储装置,存储有可执行指令,所述可执行指令当被执行时实现如示例性实施例59-116中任一项所述的方法。
示例性实施例121.一种无线通信装置,包括用于执行如示例性实施例59-116中任一项所述的方法的部件。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方 法、物品或者设备中还存在另外的相同要素。

Claims (121)

  1. 一种用于无线通信系统的控制侧的位置管理设备,所述位置管理设备包括处理电路,所述处理电路被配置为:
    获取所述无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;以及
    基于所述至少一个终端设备的特定位置配置信息、以及所述至少一个终端设备的定位信息,确定所述至少一个终端设备中的目标终端设备的位置信息。
  2. 如权利要求1所述的位置管理设备,其中
    终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
  3. 如权利要求2所述的位置管理设备,其中在服务于终端设备的控制侧电子设备为遵从4G通信标准的第一电子设备时,所述定位信息为所述时间相关定位信息。
  4. 如权利要求3所述的位置管理设备,其中所述时间相关定位信息包括观测到达时间差OTDOA测量结果,其表示服务于该终端设备的两个第一电子设备同时发送的定位参考信号PRS到达该终端设备的时间差。
  5. 如权利要求2所述的位置管理设备,其中,在服务于终端设备的控制侧电子设备为遵从5G通信标准的第二电子设备时,所述定位信息为所述波束相关定位信息。
  6. 如权利要求5所述的位置管理设备,其中,所述波束相关定位信息包括所述第二电子设备与所述终端设备通信的下行发送波束的波束信息,其指示用于所述终端设备的下行发送波束的角度或覆盖范围信息。
  7. 如权利要求1所述的位置管理设备,其中,终端设备的定位信息由位置管理设备从终端设备获取,或者从服务于该终端设备的控制侧电子设备获取。
  8. 如权利要求1所述的位置管理设备,其中,所述位置管理设备根据定位周期而周期性地获取所述定位信息以便周期性地确定所述目标终端设备的位置。
  9. 如权利要求8所述的位置管理设备,其中,所述定位周期可被设置为等于或者小于遵从4G通信标准的控制侧电子设备向终端设备发送定位参考信号PRS的周期。
  10. 如权利要求8所述的位置管理设备,其中,所述处理电路进一步被配置为:
    基于先前确定的目标终端设备的位置信息以及定位周期,利用线性拟合修正目标终端设备当前时刻的位置,并估计出目标终端设备在特定时刻的位置。
  11. 如权利要求1所述的位置管理设备,其中,所述处理电路进一步被配置为:
    使得服务于终端设备的控制侧电子设备根据先前确定的终端设备的位置来估计当前时刻终端设备的位置;以及
    使得服务于终端设备的控制侧电子设备根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
  12. 如权利要求11所述的位置管理设备,其中,波束方向与所估计的终端设备的位置对应的方向邻近的波束被首先扫描。
  13. 如权利要求11所述的位置管理设备,其中,在波束增益大于特定阈值的情况下,波束被选择用于进行与终端设备的数据传输,并且控制侧电子设备停止波束扫描。
  14. 如权利要求1所述的位置管理设备,其中,所述处理电路进一步被配置为:
    使得服务于终端设备的控制侧电子设备根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
    使得服务于终端设备的控制侧电子设备根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
  15. 如权利要求14所述的位置管理设备,其中,服务于终端设备的控制侧电子 设备在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
  16. 如权利要求14所述的位置管理设备,其中,在下一下行发送波束增益大于当前波束的增益的情况下,服务于终端设备的控制侧电子设备执行波束切换。
  17. 如权利要求14所述的位置管理设备,其中,所述处理电路进一步被配置为:
    使得服务于终端设备的控制侧电子设备在执行波束切换的同时,停止发送用于波束切换的导频信号。
  18. 如权利要求1所述的位置管理设备,其中,所述至少一个终端设备包括多个终端设备,并且所述特定位置配置信息包括所述多个终端设备之间的特定位置关系。
  19. 如权利要求18所述的位置管理设备,其中,所述处理电路进一步被配置为:
    基于所述无线通信系统的服务于所述多个终端设备的控制侧电子设备的位置信息、所述多个终端设备之间的特定位置关系、以及各终端设备的定位信息,确定所述多个终端设备中的各终端设备的关于所述目标终端设备的位置误差函数;以及
    基于所述多个终端设备的各终端设备的位置误差函数来确定所述目标终端设备的位置信息。
  20. 如权利要求19所述的位置管理设备,其中,基于位置误差函数根据加权最小均方误差准则来确定所述目标终端设备的位置信息。
  21. 如权利要求18所述的位置管理设备,其中,所述多个终端设备遵循特定轨迹布置,并且所述特定位置配置信息还包括所述多个终端设备所遵循的特定轨迹的位置信息,
    其中,所述处理电路进一步被配置为:
    基于所述多个终端设备所遵循的特定轨迹的位置信息来确定目标终端设备位置,其中所述特定轨迹的位置信息利用先前确定的终端设备位置进行拟合得到或从网络地图获取。
  22. 如权利要求18所述的位置管理设备,其中,所述多个终端设备遵循直线轨迹布置,并且所述多个终端设备之间的间距在特定时段内是恒定的。
  23. 如权利要求18所述的位置管理设备,其中,所述处理电路进一步被配置为:
    基于所确定的目标终端设备的位置以及所述多个终端设备之间的特定位置关系,确定所述多个终端设备中的其它终端设备的位置。
  24. 如权利要求23所述的位置管理设备,其中,所述处理电路进一步被配置为:
    将所确定的各终端设备的位置发送到服务于各终端设备的控制侧电子设备,以便控制侧电子设备对于各终端设备进行定位。
  25. 如权利要求18所述的位置管理设备,其中,所述多个终端设备之间的特定位置关系被预先提供给所述位置管理设备,或者由目标终端设备测量并提供给所述位置管理设备。
  26. 一种用于无线通信系统的控制侧的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
    获取所述电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;
    将所述至少一个终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及所述至少一个终端设备的特定位置配置信息来确定终端设备的位置信息;以及
    接收来自所述位置管理设备的所确定的所述至少一个终端设备的位置信息。
  27. 如权利要求26所述的电子设备,其中
    终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
  28. 如权利要求26所述的电子设备,其中,所述处理电路被进一步配置为:
    根据定位周期而周期性地发送定位信息至所述位置管理设备,以便周期性地确 定终端设备的位置。
  29. 如权利要求26所述的电子设备,其中,所述处理电路进一步被配置为:
    根据先前接收的终端设备的位置来估计当前时刻终端设备的位置;以及
    根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
  30. 如权利要求29所述的电子设备,其中,所述处理电路进一步被配置为:
    首先扫描波束方向与所估计的终端设备的位置对应的方向邻近的波束。
  31. 如权利要求29所述的电子设备,其中,所述处理电路进一步被配置为:
    在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且停止波束扫描。
  32. 如权利要求26所述的电子设备,其中,所述处理电路进一步被配置为:
    根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
    根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
  33. 如权利要求32所述的电子设备,其中,所述处理电路进一步被配置为:
    在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
  34. 如权利要求32所述的电子设备,其中,所述处理电路进一步被配置为:
    在下一下行发送波束增益大于当前波束的增益的情况下,执行波束切换以将下行发送波束切换到所述下一下行发送波束。
  35. 如权利要求32所述的电子设备,其中,所述处理电路进一步被配置为:
    在执行波束切换的同时,停止发送用于波束切换的导频信号。
  36. 如权利要求26所述的电子设备,其中,所述处理电路进一步被配置为:
    根据所接收到的所确定的终端设备的位置信息对其他终端设备进行定位。
  37. 一种用于无线通信系统的终端侧的终端设备,所述终端设备包括处理电路,所述处理电路被配置为:
    获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置;
    根据所述定位信息测量配置来确定终端设备的定位信息;以及
    将终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及包含所述终端设备在内的至少一个终端设备的特定位置配置信息来确定终端设备的位置信息。
  38. 如权利要求37所述的终端设备,其中
    终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
  39. 如权利要求37所述的终端设备,其中,所述处理电路被进一步配置为:
    根据定位周期而周期性地确定定位信息。
  40. 如权利要求37所述的终端设备,其中,所述处理电路被进一步配置为:
    向服务于所述终端设备的控制侧电子设备发送波束搜索请求;
    接收来自控制侧电子设备的扫描波束;以及
    确定所述扫描波束的波束增益,在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且反馈所选择的波束给所述控制侧电子设备。
  41. 如权利要求37所述的终端设备,其中,所述处理电路被进一步配置为:
    接收来自服务于所述终端设备的控制侧电子设备的导频信号;
    执行导频测量以确定扫描波束的波束增益,在所述扫描波束增益大于前一扫描波束的增益的情况下,通知所述控制侧电子设备执行切换至所述扫描波束的波束切换。
  42. 一种用于无线通信系统的控制侧的位置管理设备,包括处理电路,所述处理电路被配置为:
    接收关于所述无线通信系统中的终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;以及
    基于所述通信场景指示对所述终端设备进行定位。
  43. 如权利要求42所述的位置管理设备,其中所述处理电路进一步配置为:
    基于所述通信场景指示确定定位方案以用于对所述终端设备进行定位。
  44. 如权利要求42或43所述的位置管理设备,其中所述处理电路进一步配置为:在基于通信场景指示确定采用OTDOA定位方案的情况下,
    向所述终端设备提供进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;以及
    基于所述特定轨道的信息以及来自所述终端设备对于所述多个候选基站中的2个基站的测量结果对所述终端设备进行OTDOA定位。
  45. 如权利要求44所述的位置管理设备,其中,所述多个候选基站仅包括2个基站。
  46. 如权利要求44所述的位置管理设备,其中,所述辅助信息包括以下至少之一:
    所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
  47. 如权利要求44所述的位置管理设备,其中,所述测量结果包括以下至少之一:
    所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
  48. 如权利要求42或43所述的位置管理设备,其中所述处理电路进一步被配 置为:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
    使得该终端设备的服务基站对于所述终端设备发送下行发送波束;以及
    基于所述特定轨道的信息以及来自所述终端设备的对于一个或多个下行发送波束的测量结果进行下行发送波束定位。
  49. 如权利要求48所述的位置管理设备,其中,所述测量结果仅包括单个波束的测量结果。
  50. 如权利要求42所述的位置管理设备,其中,所述位置管理设备位于所述终端设备的服务基站中或者控制侧的其他控制装置中。
  51. 一种用于无线通信系统的终端侧的终端设备,包括处理电路,所述处理电路被配置为:
    获取关于所述终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;
    将所述通信场景指示发送至所述无线通信系统的控制侧的设备,使得能够基于所述通信场景指示以对所述终端设备进行定位。
  52. 如权利要求51所述的终端设备,其中所述处理电路进一步配置为:在基于通信场景指示确定采用OTDOA定位方案的情况下,
    接收进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;
    基于所述辅助信息对所述多个候选基站中的2个基站进行测量;以及
    将该测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和该测量结果对所述终端设备进行OTDOA定位。
  53. 如权利要求52所述的终端设备,其中,所述多个候选基站仅包括2个基站。
  54. 如权利要求52所述的终端设备,其中,所述辅助信息包括以下至少之一:
    所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考 基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
  55. 如权利要求52所述的终端设备,其中,所述测量结果包括以下至少之一:
    所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
  56. 如权利要求51所述的终端设备,其中所述处理电路进一步被配置为:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
    接收来自该终端设备的服务基站的下行发送波束;
    对于一个或多个下行发送波束进行测量;以及
    将该测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和该测量结果对所述终端设备进行下行发送波束定位。
  57. 如权利要求56所述的终端设备,其中,所述测量结果仅包括单个波束的测量结果。
  58. 如权利要求51所述的终端设备,其中,所述终端设备的服务基站可包含所述无线通信系统的控制侧的位置管理设备或者控制侧的其他控制装置。
  59. 一种用于无线通信系统的位置管理方法,包括:
    获取所述无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;以及
    基于所述至少一个终端设备的特定位置配置信息、以及所述至少一个终端设备的定位信息,确定所述至少一个终端设备中的目标终端设备的位置信息。
  60. 如权利要求59所述的位置管理方法,其中
    终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
  61. 如权利要求60所述的位置管理方法,其中在服务于终端设备的控制侧电子设备为遵从4G通信标准的第一电子设备时,所述定位信息为所述时间相关定位信 息。
  62. 如权利要求61所述的位置管理方法,其中所述时间相关定位信息包括观测到达时间差OTDOA测量结果,其表示服务于该终端设备的两个第一电子设备同时发送的定位参考信号PRS到达该终端设备的时间差。
  63. 如权利要求61所述的位置管理方法,其中,在服务于终端设备的控制侧电子设备为遵从5G通信标准的第二电子设备时,所述定位信息为所述波束相关定位信息。
  64. 如权利要求63所述的位置管理方法,其中,所述波束相关定位信息包括所述第二电子设备与所述终端设备通信的下行发送波束的波束信息,其指示用于所述终端设备的下行发送波束的角度或覆盖范围信息。
  65. 如权利要求59所述的位置管理方法,其中,终端设备的定位信息被从终端设备获取,或者从服务于该终端设备的控制侧电子设备获取。
  66. 如权利要求59所述的位置管理方法,其中,根据定位周期而周期性地获取所述定位信息以便周期性地确定所述目标终端设备的位置。
  67. 如权利要求66所述的位置管理方法,其中,所述定位周期可被设置为等于或者小于遵从4G通信标准的控制侧电子设备向终端设备发送定位参考信号PRS的周期。
  68. 如权利要求66所述的位置管理方法,进一步包括:
    基于先前确定的目标终端设备的位置信息以及定位周期,利用线性拟合修正目标终端设备当前时刻的位置,并估计出目标终端设备在特定时刻的位置。
  69. 如权利要求59所述的位置管理方法,进一步包括:
    使得服务于终端设备的控制侧电子设备根据先前确定的终端设备的位置来估计 当前时刻终端设备的位置;以及
    使得服务于终端设备的控制侧电子设备根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
  70. 如权利要求69所述的位置管理方法,其中,波束方向与所估计的终端设备的位置对应的方向邻近的波束被首先扫描。
  71. 如权利要求69所述的位置管理方法,其中,在波束增益大于特定阈值的情况下,该波束被选择用于进行与终端设备的数据传输,并且控制侧电子设备停止波束扫描。
  72. 如权利要求59所述的位置管理方法,进一步包括:
    使得服务于终端设备的控制侧电子设备根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
    使得服务于终端设备的控制侧电子设备根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
  73. 如权利要求59所述的位置管理方法,其中,服务于终端设备的控制侧电子设备在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
  74. 如权利要求72所述的位置管理方法,其中,在下一下行发送波束增益大于当前波束的增益的情况下,服务于终端设备的控制侧电子设备执行波束切换。
  75. 如权利要求72所述的位置管理方法,进一步包括:
    使得服务于终端设备的控制侧电子设备在执行波束切换的同时,停止发送用于波束切换的导频信号。
  76. 如权利要求59所述的位置管理方法,其中,所述至少一个终端设备包括多个终端设备,并且所述特定位置配置信息包括所述多个终端设备之间的特定位置关系。
  77. 如权利要求76所述的位置管理方法,进一步包括:
    基于所述无线通信系统的服务于所述多个终端设备的控制侧电子设备的位置信息、所述多个终端设备之间的特定位置关系、以及各终端设备的定位信息,确定所述多个终端设备中的各终端设备的关于所述目标终端设备的位置误差函数;以及
    基于所述多个终端设备的各终端设备的位置误差函数来确定所述目标终端设备的位置信息。
  78. 如权利要求77所述的位置管理方法,其中,基于位置误差函数根据加权最小均方误差准则来确定所述目标终端设备的位置信息。
  79. 如权利要求59所述的位置管理方法,其中,所述多个终端设备遵循特定轨迹布置,并且所述特定位置配置信息还包括所述多个终端设备所遵循的特定轨迹的位置信息,
    其中,所述方法进一步包括:
    基于所述多个终端设备所遵循的特定轨迹的位置信息来确定目标终端设备位置,其中所述特定轨迹的位置信息利用先前确定的终端设备位置进行拟合得到或从网络地图获取。
  80. 如权利要求79所述的位置管理方法,其中,所述多个终端设备遵循直线轨迹布置,并且所述多个终端设备之间的间距在特定时段内是恒定的。
  81. 如权利要求76所述的位置管理方法,进一步包括:
    基于所确定的目标终端设备的位置以及所述多个终端设备之间的特定位置关系,确定所述多个终端设备中的其它终端设备的位置。
  82. 如权利要求81所述的位置管理方法,进一步包括:
    将所确定的各终端设备的位置发送到服务于各终端设备的控制侧电子设备,以便控制侧电子设备对于各终端设备进行定位。
  83. 如权利要求76所述的位置管理方法,其中,所述多个终端设备之间的特定 位置关系被预先提供给所述位置管理设备,或者由目标终端设备测量并提供给所述位置管理设备。
  84. 一种用于无线通信系统的控制侧的电子设备的方法,所述方法包括:
    获取所述电子设备服务于的无线通信系统中的终端侧的至少一个终端设备的定位信息,其中所述至少一个终端设备具有特定位置配置信息;
    将所述至少一个终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及所述至少一个终端设备的特定位置配置信息来确定终端设备的位置信息;以及
    接收来自所述位置管理设备的所确定的所述至少一个终端设备的位置信息。
  85. 如权利要求84所述的方法,其中
    终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而确定的时间相关定位信息或波束相关定位信息。
  86. 如权利要求84所述的方法,进一步包括:
    根据定位周期而周期性地发送定位信息至所述位置管理设备,以便周期性地确定终端设备的位置。
  87. 如权利要求84所述的方法,进一步包括:
    根据先前接收的终端设备的位置来估计当前时刻终端设备的位置;以及
    根据估计出的终端设备的位置来配置波束扫描的顺序以便对于该终端设备进行波束扫描。
  88. 如权利要求87所述的方法,进一步包括:
    首先扫描波束方向与所估计的终端设备的位置对应的方向邻近的波束。
  89. 如权利要求87所述的方法,进一步包括:
    在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且停止波束扫描。
  90. 如权利要求84所述的方法,进一步包括:
    根据用于终端设备的当前下行发送波束与下一下行发送波束的交点,确定对于终端设备进行波束切换的位置;以及
    根据所确定的终端设备在特定时刻的位置以及所确定的波束切换位置来估计终端设备进行波束切换的时刻。
  91. 如权利要求90所述的方法,进一步包括:
    在所估计的波束切换时刻之前发送导频信号至终端设备以便波束切换。
  92. 如权利要求90所述的方法,进一步包括:
    在下一下行发送波束增益大于当前波束的增益的情况下,执行波束切换以将下行发送波束切换到所述下一下行发送波束。
  93. 如权利要求90所述的方法,进一步包括:
    在执行波束切换的同时,停止发送用于波束切换的导频信号。
  94. 如权利要求90所述的方法,进一步包括:
    根据所接收到的所确定的终端设备的位置信息对其他终端设备进行定位。
  95. 一种用于无线通信系统的终端侧的终端设备的方法,包括:
    获取来自服务于终端设备的无线通信系统的控制侧的电子设备的定位信息测量配置;
    根据所述定位信息测量配置来确定终端设备的定位信息;以及
    将终端设备的定位信息发送至所述无线通信系统中的位置管理设备,以供所述位置管理设备基于所述定位信息以及包含所述终端设备在内的至少一个终端设备的特定位置配置信息来确定终端设备的位置信息。
  96. 如权利要求95所述的方法,其中
    终端设备的定位信息包括终端设备结合服务于该终端设备的控制侧电子设备而 确定的时间相关定位信息或波束相关定位信息。
  97. 如权利要求95所述的方法,进一步包括:
    根据定位周期而周期性地确定定位信息。
  98. 如权利要求95所述的方法,进一步包括:
    向服务于所述终端设备的控制侧电子设备发送波束搜索请求;
    接收来自控制侧电子设备的扫描波束;以及
    确定所述扫描波束的波束增益,在波束增益大于特定阈值的情况下,选择该波束用于进行与终端设备的数据传输,并且反馈所选择的波束给所述控制侧电子设备。
  99. 如权利要求95所述的方法,进一步包括:
    接收来自服务于所述终端设备的控制侧电子设备的导频信号;
    执行导频测量以确定扫描波束的波束增益,在所述扫描波束增益大于前一扫描波束的增益的情况下,通知所述控制侧电子设备执行切换至所述扫描波束的波束切换。
  100. 一种用于无线通信系统的位置管理方法,包括:
    接收关于所述无线通信系统中的终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;以及
    基于所述通信场景指示对所述终端设备进行定位。
  101. 如权利要求100所述的位置管理方法,进一步包括:
    基于所述通信场景指示确定定位方案以用于对所述终端设备进行定位。
  102. 如权利要求100或101所述的位置管理方法,进一步包括:在基于通信场景指示确定采用OTDOA定位方案的情况下,
    向所述终端设备提供进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;以及
    基于所述特定轨道的信息以及来自所述终端设备对于所述多个候选基站中的2个基站的测量结果对所述终端设备进行OTDOA定位。
  103. 如权利要求102所述的位置管理方法,其中,所述多个候选基站仅包括2个基站。
  104. 如权利要求102所述的位置管理方法,其中,所述辅助信息包括以下至少之一:
    所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
  105. 如权利要求102所述的位置管理方法,其中,所述测量结果包括以下至少之一:
    所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
  106. 如权利要求100或101所述的位置管理方法,进一步包括:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
    使得该终端设备的服务基站对于所述终端设备发送下行发送波束;以及
    基于所述特定轨道的信息以及来自所述终端设备的对于一个或多个下行发送波束的测量结果进行下行发送波束定位。
  107. 如权利要求106所述的位置管理方法,其中,所述测量结果仅包括单个波束的测量结果。
  108. 如权利要求100所述的位置管理方法,其中,所述位置管理方法在所述终端设备的服务基站中或者控制侧的其他控制装置中被执行。
  109. 一种用于无线通信系统的终端侧的终端设备的方法,包括:
    获取关于所述终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;
    将所述通信场景指示发送至所述无线通信系统的控制侧的设备,使得能够基于所述通信场景指示以对所述终端设备进行定位。
  110. 如权利要求109所述的方法,进一步包括:在基于通信场景指示确定采用OTDOA定位方案的情况下,
    接收进行OTDOA定位方案的辅助信息,所述辅助信息包括多个候选基站的配置信息以供所述终端设备进行测量;
    基于所述辅助信息对所述多个候选基站中的2个基站进行测量;以及
    将该测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和该测量结果对所述终端设备进行OTDOA定位。
  111. 如权利要求109所述的方法,其中,所述多个候选基站仅包括2个基站。
  112. 如权利要求109所述的方法,其中,所述辅助信息包括以下至少之一:
    所述候选基站的物理小区ID、全球小区ID、传输点ID、所述候选基站与参考基站的相对定时关系以及所述候选基站的定位参考信号PRS配置。
  113. 如权利要求110所述的方法,其中,所述测量结果包括以下至少之一:
    所述基站的物理小区ID、全球小区ID、传输点ID以及所述基站下行定时测量结果。
  114. 如权利要求109所述的方法,进一步包括:在基于通信场景指示确定采用下行发送波束定位方案的情况下,
    接收来自该终端设备的服务基站的下行发送波束;
    对于一个或多个下行发送波束进行测量;以及
    将该测量结果发送至所述无线通信系统的控制侧的设备,使得能够基于所述特定轨道的信息和该测量结果对所述终端设备进行下行发送波束定位。
  115. 如权利要求114所述的方法,其中,所述测量结果仅包括单个波束的测量结果。
  116. 如权利要求109所述的方法,其中,所述终端设备的服务基站可包含所述无线通信系统的控制侧的位置管理设备或者控制侧的其他控制装置。
  117. 一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如权利要求59-116中任一项所述的方法。
  118. 一种用于无线通信系统的控制侧设备,包括处理电路,所述处理电路被配置为:
    接收关于所述无线通信系统中的终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景以用于定位;
    向所述终端设备发送指示一个或多个CSI-RS资源的控制信息;
    在所述一个或多个CSI-RS资源上进行CSI-RS信号的波束发射,以便所述终端设备确定CSI-RS信号接收强度满足预定条件的控制侧发射波束;
    从所述终端设备接收满足预定条件的控制侧发射波束对应的CSI-RS资源的指示信息,
    其中,用于承载所述一个或多个CSI-RS资源的控制侧发射波束与所述终端设备的位置相对应。
  119. 一种用于无线通信系统的终端侧的终端设备,包括处理电路,所述处理电路被配置为:
    获取关于所述终端设备所处的通信场景指示,所述通信场景包括所述终端设备沿特定轨道运动的通信场景;
    将所述通信场景指示发送至所述无线通信系统的控制侧的设备,使得能够基于所述通信场景指示以对所述终端设备进行定位;
    从控制侧的设备接收指示一个或多个CSI-RS资源的控制信息;
    在所述一个或多个CSI-RS资源上进行波束接收,以确定CSI-RS信号接收强度满足预定条件的控制侧发射波束;
    将满足预定条件的控制侧发射波束对应的CSI-RS资源的指示信息报告至所述控制侧设备,
    其中,用于承载所述一个或多个CSI-RS资源的控制侧发射波束与所述终端设备的位置相对应。
  120. 一种无线通信装置,包括:
    处理器,
    存储装置,存储有可执行指令,所述可执行指令当被执行时实现如权利要求59-116中任一项所述的方法。
  121. 一种无线通信装置,包括用于执行如权利要求59-116中任一项所述的方法的部件。
PCT/CN2020/074204 2019-02-02 2020-02-03 用于无线通信系统的设备、方法和存储介质 WO2020156567A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021544936A JP7472913B2 (ja) 2019-02-02 2020-02-03 無線通信システムに用いられる位置管理装置及び位置管理方法
EP20748048.4A EP3920609A1 (en) 2019-02-02 2020-02-03 Device and method for wireless communication system and storage medium
US17/414,960 US20220060854A1 (en) 2019-02-02 2020-02-03 Device, method for wireless communication system, and storage medium
CN202080010916.9A CN113383586A (zh) 2019-02-02 2020-02-03 用于无线通信系统的设备、方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910106818.4A CN111526484A (zh) 2019-02-02 2019-02-02 用于无线通信系统的设备、方法和存储介质
CN201910106818.4 2019-02-02

Publications (1)

Publication Number Publication Date
WO2020156567A1 true WO2020156567A1 (zh) 2020-08-06

Family

ID=71840371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074204 WO2020156567A1 (zh) 2019-02-02 2020-02-03 用于无线通信系统的设备、方法和存储介质

Country Status (5)

Country Link
US (1) US20220060854A1 (zh)
EP (1) EP3920609A1 (zh)
JP (1) JP7472913B2 (zh)
CN (2) CN111526484A (zh)
WO (1) WO2020156567A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11671846B2 (en) * 2019-06-07 2023-06-06 Qualcomm Incorporated Adjacent beam determination
CN112104431B (zh) * 2020-11-23 2021-01-26 成都天锐星通科技有限公司 相控阵天线测量误差修正方法、装置和测量系统
US20220416967A1 (en) * 2021-06-29 2022-12-29 Qualcomm Incorporated Resource allocation for repeater-assisted positioning reference signal (prs) transmission
CN116074949A (zh) * 2021-11-03 2023-05-05 维沃移动通信有限公司 定位方法、装置及相关设备
WO2024012658A1 (en) * 2022-07-12 2024-01-18 Nokia Solutions And Networks Oy Repeater assisted mobility
US20240120984A1 (en) * 2022-10-07 2024-04-11 Samsung Electronics Co., Ltd. Positioning based system design for smart repeaters with adaptive beamforming capabilities

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298098A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 多基站协作中调整数据同步的方法及系统
CN103379429A (zh) * 2012-04-16 2013-10-30 中兴通讯股份有限公司 一种联合定位的方法及装置
CN107872253A (zh) * 2016-09-27 2018-04-03 华为技术有限公司 波束跟踪方法、设备及系统
CN107942287A (zh) * 2017-12-13 2018-04-20 西安Tcl软件开发有限公司 无线设备的定位方法、无线设备及计算机可读存储介质
CN108702726A (zh) * 2016-03-24 2018-10-23 英特尔公司 用于5g系统的定位方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016019354A1 (en) 2014-08-01 2016-02-04 Invisitrack, Inc. Partially synchronized multilateration/trilateration method and system for positional finding using rf
US8798639B2 (en) 2007-01-17 2014-08-05 Qualcomm Incorporated Method and apparatus for using historic network information for determining approximate position
CN105578591A (zh) 2014-10-10 2016-05-11 华为技术有限公司 定位的方法、定位服务器和终端
WO2016099079A1 (ko) * 2014-12-16 2016-06-23 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
JP6305575B2 (ja) 2015-01-22 2018-04-04 三菱電機株式会社 列車位置検知装置
WO2016157727A1 (ja) 2015-03-27 2016-10-06 パナソニック株式会社 無線通信装置および無線通信制御方法
US11639981B2 (en) * 2015-07-17 2023-05-02 Origin Wireless, Inc. Method, apparatus, and system for movement tracking
US9707961B1 (en) * 2016-01-29 2017-07-18 Ford Global Technologies, Llc Tracking objects within a dynamic environment for improved localization
US11871442B2 (en) * 2018-09-14 2024-01-09 Nec Corporation Methods and devices for resource selection
US11172325B1 (en) * 2019-05-01 2021-11-09 Compology, Inc. Method and system for location measurement analysis
WO2022039354A1 (en) * 2020-08-21 2022-02-24 Samsung Electronics Co., Ltd. Electronic device and method, performed by electronic device, of obtaining location information
US11696312B2 (en) * 2020-11-24 2023-07-04 Qualcomm Incorporated Frequency and state dependent user equipment beam patterns

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298098A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 多基站协作中调整数据同步的方法及系统
CN103379429A (zh) * 2012-04-16 2013-10-30 中兴通讯股份有限公司 一种联合定位的方法及装置
CN108702726A (zh) * 2016-03-24 2018-10-23 英特尔公司 用于5g系统的定位方法
CN107872253A (zh) * 2016-09-27 2018-04-03 华为技术有限公司 波束跟踪方法、设备及系统
CN107942287A (zh) * 2017-12-13 2018-04-20 西安Tcl软件开发有限公司 无线设备的定位方法、无线设备及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Potential Techniques for NR Positioning", 3GPP TSG RAN WG1 MEETING #95 R1-1812236, 16 November 2018 (2018-11-16), XP051554108, DOI: 20200422142058 *

Also Published As

Publication number Publication date
US20220060854A1 (en) 2022-02-24
CN111526484A (zh) 2020-08-11
EP3920609A1 (en) 2021-12-08
JP2022523137A (ja) 2022-04-21
CN113383586A (zh) 2021-09-10
JP7472913B2 (ja) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2020156567A1 (zh) 用于无线通信系统的设备、方法和存储介质
US20220110088A1 (en) Anchor selection for ue positioning
US11889336B2 (en) System and methods for rapid round-trip-time measurement
TW202226850A (zh) 側鏈路定位參考訊號配置
JP2023532394A (ja) ユーザ機器測位信号測定および/または送信
Chukhno et al. D2D-based cooperative positioning paradigm for future wireless systems: A survey
JP2023554263A (ja) Ue間測位
US11963202B2 (en) UE receive-transmit time difference measurement reporting
US20240012084A1 (en) Hierarchical ue positioning
JP2023541899A (ja) 測位基準信号構成および管理
WO2021037011A1 (zh) 用于无线通信系统的设备、方法和存储介质
KR20240037985A (ko) 머신 러닝 알고리즘을 트레이닝하기 위한 데이터 수집 및 데이터 선택
US11991108B2 (en) Receive-signal path allocation for multiple positioning frequency layer processing
US11950210B2 (en) Selective symbol measurement for positioning
WO2023061346A1 (zh) 侧链路通信方法、终端及网络侧设备
US20240064498A1 (en) Directional wireless message transmission
US20240179665A1 (en) Moving anchor nodes for positioning operations
US20240172169A1 (en) On-demand positioning reference signal scheduling
US20220326371A1 (en) Position estimation for emtiters outside line of sight of fixed network nodes
US20220286998A1 (en) Network-assisted inter-drone positioning
WO2024075088A1 (en) Combined one-to-many and many-to-one sidelink positioning
WO2023242798A1 (en) Wireless angle-based positioning
CN116601904A (zh) 参考信号rs配置和管理

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020748048

Country of ref document: EP

Effective date: 20210902