WO2020156413A1 - 旋转激光装置和激光测距方法 - Google Patents
旋转激光装置和激光测距方法 Download PDFInfo
- Publication number
- WO2020156413A1 WO2020156413A1 PCT/CN2020/073734 CN2020073734W WO2020156413A1 WO 2020156413 A1 WO2020156413 A1 WO 2020156413A1 CN 2020073734 W CN2020073734 W CN 2020073734W WO 2020156413 A1 WO2020156413 A1 WO 2020156413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- rotating
- emitting module
- rotation axis
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/10—Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
- G01S7/4815—Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
Definitions
- the present invention relates to the field of surveying and mapping.
- the present invention relates to a rotating laser device and a laser ranging method for laser ranging by means of the rotating laser device.
- Swinger is an instrument that provides a plane or straight line reference.
- the swinger can cooperate with the laser detector to control the level of any measuring point within a certain radius.
- the sweeper only emits a laser beam, first the first laser (this laser can be oriented horizontally or not), and then pass Tilting mechanism (such as the leveling device 54 or the tilting device 61 inside the leveler or the height adjusting device 16 on the tripod) to tilt the emitted laser to form the second laser, and then obtain the tilt angle through the angle sensor, Finally, the distance between the sweeper and the laser detector is calculated by receiving and obtaining the height difference between the two laser beams on the laser detector.
- Tilting mechanism such as the leveling device 54 or the tilting device 61 inside the leveler or the height adjusting device 16 on the tripod
- the first aspect of the present invention proposes a rotating laser device, which is characterized in that the rotating laser device includes:
- a laser emitting module configured to emit a first laser and a second laser, wherein a first angle is formed between the first laser and the second laser;
- a rotating module configured to make the first laser and the second laser rotate around a first rotation axis to form a first laser surface and a second laser surface that do not overlap
- the base is connected to the laser emitting module and the rotating module and is configured to support the laser emitting module and the rotating module.
- the rotating laser device By enabling the rotating laser device to have the ability to emit the first laser and the second laser at a first included angle, there is no need to design an additional tilt mechanism such as a leveling device, thereby simplifying the structure of the rotating laser device; at the same time, due to The first included angle between the first laser and the second laser is pre-configured, so that there is no angular error, and the measured distance is more accurate.
- the laser emitting module includes a first laser emitter and a second laser emitter, wherein the first laser emitter is configured to generate the first laser and The second laser emitter is configured to generate the second laser.
- two independent laser transmitters can be used to generate the first laser and the second laser, so that the emission angles and wavelength ranges of the first laser and the second laser can be controlled respectively, so that different To configure the first laser and the second laser separately.
- the first laser and the second laser have different wavelengths.
- an object such as a laser detector that receives the first laser light and the second laser light can distinguish the first laser light from the second laser light by wavelength, so as to provide assistance for subsequent laser ranging.
- the first laser light is visible light and the second laser light is invisible light.
- an object such as a laser detector that receives the first laser and the second laser can distinguish the first laser from the second laser by whether the laser is visible, so as to provide for subsequent laser ranging help.
- the laser emitting module includes a laser emitter and an optical device for adjusting the direction of the laser light generated by the laser emitter, wherein the optical device is configured to be based on The laser light generated by the laser transmitter is adjusted to generate the first laser light and the second laser light. In this way, it is possible to generate two laser beams for laser distance measurement with only one laser transmitter, thereby further simplifying the structure of the rotating laser device and reducing its manufacturing cost.
- the projections of the first laser and the second laser on a plane perpendicular to the first rotation axis form a second included angle. Therefore, it is possible to synthesize the above-mentioned first and second included angles to determine the included angle between the first laser surface and the second laser surface that do not coincide, so as to determine the distance between the laser detector and the rotating laser device for the subsequent provide help.
- the vertical projections of the first laser and the second laser on a plane perpendicular to the first rotation axis are on the same straight line.
- the first laser and the first laser are either in the same direction or 180 degrees apart on the plane perpendicular to the first rotation axis, so that the laser detector and the rotating laser device can be determined more accurately the distance between.
- any one of the first laser surface and the second laser surface is perpendicular to the first rotation axis.
- the first axis of rotation that is, an included angle with the first axis of rotation, so that the laser detector can receive the first laser and the second laser and irradiate on the basis of the first laser and the second laser.
- the position on the laser detector determines the position difference data to provide help for the subsequent determination of the distance between the laser detector and the rotating laser device.
- the first laser surface and the second laser surface are symmetric about a plane perpendicular to the first rotation axis. In this way, it can be ensured that although any one of the first laser and the second laser is not perpendicular to the first rotation axis, all the laser beams formed by the first laser and the second laser respectively.
- the first laser surface and the second laser surface are symmetrical about a plane perpendicular to the first rotation axis, so that the laser detector can receive the first laser and the second laser and is based on the first laser and the The position of the second laser irradiated on the laser detector determines the position difference data, and provides help for the subsequent determination of the distance between the laser detector and the rotating laser device.
- the first rotation axis is a vertical rotation axis or a horizontal rotation axis.
- the rotating laser device can not only scan the laser horizontally to measure the distance between the laser detector and the rotating laser device, but also scan the laser vertically to measure the distance between the laser detector and the rotating laser device. distance.
- the rotating laser device further includes:
- a laser detector which is a first distance away from the laser emitting module and is configured to receive the first laser and the second laser and irradiate it based on the first laser and the second laser
- the position on the laser detector determines the position difference data. In this way, the first laser and the second laser at the first included angle can be received, and the position difference data can be determined based on the position where the first laser and the second laser irradiate on the laser detector, thereby The subsequent determination of the distance between the laser detector and the rotating laser device will help.
- the rotating laser device further includes:
- a processing module configured to determine a first distance between the laser emitting module and the laser detector based on the position difference data and the first included angle.
- the rotating laser device further includes a processing module capable of processing the acquired data to obtain the first distance between the laser emitting module and the laser detector, which can implement the present disclosure in an advantageous manner The purpose of the content.
- the processing module is configured to be fixedly connected to the base or fixedly connected to the laser detector. In this way, it is shown that the processing module can be installed or set at the base, that is, at the body of the rotating laser device, or at the laser detector.
- the second aspect of the present disclosure also provides a laser ranging method, characterized in that the laser ranging method includes:
- a laser emitting module to generate a first laser and a second laser, wherein a first angle is formed between the first laser and the second laser;
- a rotating module to make the first laser and the second laser rotate around a first rotation axis respectively to form a first laser surface and a second laser surface that do not overlap
- a processing module is used to determine the first distance between the laser emitting module and the laser detector based on the position difference data and the first included angle.
- the rotating laser device have the ability to emit the first laser and the second laser at a first included angle, thereby eliminating the need to design an additional tilting mechanism such as a leveling device, thereby simplifying the structure of the rotating laser device; and
- the first angle between the first laser and the second laser is pre-configured, there is no angle error, making the measured distance more accurate; furthermore, because there is no need to perform a distance measurement every time Operate the tilt angle of the laser at all times, thereby simplifying the distance measurement operation, thereby improving the user experience of using the rotating laser device for distance measurement.
- generating the first laser light and the second laser light using the laser emitting module further includes:
- the second laser is generated by using a second laser transmitter included in the laser emitting module.
- two independent laser transmitters can be used to generate the first laser and the second laser, so that the emission angles and wavelength ranges of the first laser and the second laser can be controlled respectively, so that different To configure the first laser and the second laser separately.
- the first laser and the second laser have different wavelengths.
- an object such as a laser detector that receives the first laser light and the second laser light can distinguish the first laser light from the second laser light by wavelength, so as to provide assistance for subsequent laser ranging.
- the first laser light is visible light and the second laser light is invisible light.
- an object such as a laser detector that receives the first laser and the second laser can distinguish the first laser from the second laser by whether the laser is visible, so as to provide for subsequent laser ranging help.
- generating the first laser light and the second laser light using the laser emitting module further includes:
- the optical device included in the laser emitting module is used to adjust the laser light generated by the laser transmitter to generate the first laser light and the second laser light.
- any one of the first laser surface and the second laser surface is perpendicular to the first rotation axis.
- the first axis of rotation that is, an included angle with the first axis of rotation, so that the laser detector can receive the first laser and the second laser and irradiate on the basis of the first laser and the second laser.
- the position on the laser detector determines the position difference data to provide help for the subsequent determination of the distance between the laser detector and the rotating laser device.
- the first laser surface and the second laser surface are symmetric about a plane perpendicular to the first rotation axis. In this way, it can be ensured that although any one of the first laser and the second laser is not perpendicular to the first rotation axis, all the laser beams formed by the first laser and the second laser respectively.
- the first laser surface and the second laser surface are symmetrical about a plane perpendicular to the first rotation axis, so that the laser detector can receive the first laser and the second laser and is based on the first laser and the The position of the second laser irradiated on the laser detector determines the position difference data, and provides help for the subsequent determination of the distance between the laser detector and the rotating laser device.
- the projections of the first laser and the second laser on a plane perpendicular to the first rotation axis are on the same straight line.
- the first laser and the first laser are either in the same direction or 180 degrees apart on the plane perpendicular to the first rotation axis, so that the laser detector and the rotating laser device can be determined more accurately the distance between.
- the first rotation axis is a vertical rotation axis or a horizontal rotation axis.
- the rotating laser device can not only scan the laser horizontally to measure the distance between the laser detector and the rotating laser device, but also scan the laser vertically to measure the distance between the laser detector and the rotating laser device. distance.
- Fig. 1 shows a schematic diagram of a rotating laser device 100 according to the present invention
- FIG. 2 shows a schematic diagram of an embodiment 210 of the laser emitting module of the rotating laser device 100 according to the present invention
- FIG. 3 shows a schematic diagram of another embodiment 310 of the laser emitting module of the rotating laser device 100 according to the present invention.
- FIG. 4 shows a schematic flowchart of a laser ranging method 400 for distance measurement by means of the aforementioned rotating laser device.
- the rotating laser device 100 can include a laser emitting module 110 configured to emit a first laser. 112 and the second laser 114, where the first laser 112 and the second laser 114 form a first angle (not marked with angle symbols in the figure); in addition, the rotating laser device 100 can also include A rotating module 120, the rotating module 120 is configured to make the first laser 112 and the second laser 114 rotate around the first rotation axis 116 to form a first laser surface and a second laser surface that do not overlap; Alternatively, the rotating laser device 100 can further include a base 130 connected to the laser emitting module 110 and the rotating module 120 and configured to support the laser emitting module 110 and the rotating module 120.
- the base 130 can be set on the working surface 140, so that a laser beam emitted by the rotating laser device 100, for example, the plane 150 formed by the first laser 112 and the working surface 140 parallel.
- the rotating laser device 100 can further include a laser detector 160, so that the laser detector 160 can receive the first laser light 112 and the second laser light 114, and sense at the areas 112a and 114a on the surface respectively. To the first laser 112 and the second laser 114.
- the rotating module 120 is located outside the laser emitting module 110, this does not mean that the laser emitting module 110 must be rotated as a whole, so that the first laser 112 and the second laser 114 respectively surround The first rotating shaft 116 rotates to form a first laser surface and a second laser surface that do not overlap.
- the rotating module 120 can only rotate the laser light emitted by the laser emitter without rotating the laser emitter itself to form the first laser surface and the second laser surface that do not overlap.
- the rotating laser device By enabling the rotating laser device to have the ability to emit the first laser and the second laser at a first included angle, there is no need to design an additional tilt mechanism such as a leveling device, thereby simplifying the structure of the rotating laser device; at the same time, due to The first included angle between the first laser and the second laser is pre-configured, so that there is no angular error, and the measured distance is more accurate.
- the laser emitting module 210 includes a first laser emitter 211 and a second laser.
- two independent laser emitters 211 and 213 can be used to generate the first laser 212 and the second laser 214, so that the emission angles of the first laser 212 and the second laser 214 can be controlled respectively.
- the wavelength range, so that the first laser and the second laser can be configured separately for different application scenarios.
- the first laser 212 and the second laser 214 have different wavelengths.
- an object such as a laser detector that receives the first laser 212 and the second laser 214 can distinguish the first laser 212 and the second laser 214 by wavelength, so that it can be used for subsequent laser measurement.
- the first laser 212 is visible light and the second laser 214 is invisible light.
- the first laser 212 can also be set to invisible light and the second laser 214 is set to visible light.
- the laser emission module 210 can include a laser direction adjustment module 218, which can adjust the emission angles of the first laser 212 and the second laser 214 as required.
- FIG. 3 shows a schematic diagram of another embodiment 310 of the laser emitting module of the rotating laser device 100 according to the present invention.
- the laser emitting module only includes one laser emitter 215.
- the first laser 312 and the second laser 314 with different directions are realized by the optical device 318 included in the laser emitting module for adjusting the direction of the laser light generated by the laser emitter 315, wherein the optical device 318 is configured to generate the first laser light 312 and the second laser light 314 based on adjusting the laser light generated by the laser emitter 315.
- two laser beams 312 and 314 for laser ranging can be generated by only one laser transmitter 315, thereby further simplifying the structure of the rotating laser device 100 and reducing its manufacturing cost.
- the laser light generated by the rotating laser device 100 including the laser emitting modules 210 and 310 shown in FIGS. 2 and 3 preferably meets the following requirements, that is, in an embodiment according to the present disclosure, the first laser 212 , 312 and the projection of the second laser 214, 314 on a plane perpendicular to the first rotation axis 116 form a second included angle. Therefore, it is possible to synthesize the above-mentioned first and second included angles to determine the included angle between the first laser surface and the second laser surface that do not coincide, so as to determine the distance between the laser detector and the rotating laser device for the subsequent provide help.
- the vertical projections of the first laser light 212, 312 and the second laser light 214, 314 on a plane perpendicular to the first rotation axis 116 are on the same straight line.
- the first laser and the first laser are either in the same direction or 180 degrees apart on the plane perpendicular to the first rotation axis, so that the laser detector and the rotating laser device can be determined more accurately the distance between.
- any one of the first laser surface and the second laser surface is perpendicular to the first rotation axis 116.
- the laser detector 160 can receive the first laser 112, 212, 312 and the second laser 114, 214, 314 and is based on the first laser 112, 212, 312 and the second laser 114, 214 314
- the positions 112a and 114a irradiated on the laser detector 160 determine the position difference data, and provide help for the subsequent determination of the distance between the laser detector 160 and the laser emitting module 110 included in the rotating laser device.
- the distance between the positions 112a and 114a where the first laser 112, 212, 312 and the second laser 114, 214, 314 irradiated on the laser detector 160 differ by h
- the included angle between the non-coincident first laser surface and the second laser surface is ⁇
- the distance d between the laser emitting module 110 and the laser detector 160 can be obtained as:
- the first laser surface and the second laser surface are symmetric about a plane perpendicular to the first rotation axis. In this way, it can be ensured that although any one of the first laser 112, 212, 312 and the second laser 114, 214, 314 is not perpendicular to the first rotation axis 116, the The first laser surface and the second laser surface formed by the lasers 112, 212, 312 and the second lasers 114, 214, 314 are symmetrical about a plane perpendicular to the first rotation axis 116, so that the laser detector 160 can receive the first laser 112, 212, 312 and the second laser 114, 214, 314 and irradiate all the lights based on the first laser 112, 212, 312 and the second laser 114, 214, 314
- the positions 112a and 114a on the laser detector 160 determine the position difference data, and provide help for the subsequent determination of the distance between the laser detector and the rotating laser device.
- the distance between the positions 112a and 114a where the first laser 112, 212, 312 and the second laser 114, 214, 314 irradiated on the laser detector 160 differ by h, and The angle between the non-coincident first laser surface and the second laser surface is ⁇ , then according to the Pythagorean theorem, the distance d between the laser emitting module 110 and the laser detector 160 can be obtained as:
- the first rotation axis is a vertical rotation axis or a horizontal rotation axis.
- the rotating laser device can not only scan the laser horizontally to measure the distance between the laser detector and the rotating laser device, but also scan the laser vertically to measure the distance between the laser detector and the rotating laser device. distance.
- the rotating laser device further includes:
- a laser detector which is a first distance away from the laser emitting module and is configured to receive the first laser and the second laser and irradiate it based on the first laser and the second laser
- the position on the laser detector determines the position difference data. In this way, the first laser and the second laser at the first included angle can be received, and the position difference data can be determined based on the position where the first laser and the second laser irradiate on the laser detector, thereby The subsequent determination of the distance between the laser detector and the rotating laser device will help.
- the rotating laser device further includes:
- a processing module configured to determine a first distance between the laser emitting module and the laser detector based on the position difference data and the first included angle.
- the rotating laser device further includes a processing module capable of processing the acquired data to obtain the first distance between the laser emitting module and the laser detector, which can implement the present disclosure in an advantageous manner The purpose of the content.
- the processing module is configured to be fixedly connected to the base or fixedly connected to the laser detector. In this way, it is shown that the processing module can be installed or set at the base, that is, at the body of the rotating laser device, or at the laser detector.
- FIG. 4 shows a schematic flow chart of the laser ranging method 400 for distance measurement by means of the aforementioned rotating laser device. It can be seen from the figure , The laser ranging method 400 includes the following steps:
- a laser emitting module is used to generate a first laser and a second laser, where the first laser and the second laser form a first angle;
- a rotating module will be used to make the first laser and the second laser rotate around a first rotation axis respectively to form a first laser surface and a second laser surface that do not overlap;
- a laser detector at a first distance from the laser emitting module is used to receive the first laser and the second laser, and based on the first laser and the second laser The position irradiated on the laser detector determines the position difference data;
- a processing module is used to determine the first distance between the laser emitting module and the laser detector based on the position difference data and the first included angle.
- the rotating laser device have the ability to emit the first laser and the second laser at a first included angle, thereby eliminating the need to design an additional tilting mechanism such as a leveling device, thereby simplifying the structure of the rotating laser device; and
- the first angle between the first laser and the second laser is pre-configured, there is no angle error, making the measured distance more accurate; furthermore, because there is no need to perform a distance measurement every time Operate the tilt angle of the laser at all times, thereby simplifying the distance measurement operation, thereby improving the user experience of using the rotating laser device for distance measurement.
- the detection surface of the laser detector for receiving the first laser and the second laser is perpendicular to the first laser or the second laser. Therefore, it can be realized that the line segment between the first laser and the second laser from the starting point of the laser emission to the irradiation point on the laser detector and the line segment between the two irradiation points form a right-angled triangle, thereby enabling subsequent Calculate the length of the side formed by the laser perpendicular to the detection surface of the laser detector in the first laser and the second laser according to the Pythagorean theorem, that is, the first laser beam between the laser emitting module and the laser detector. distance.
- generating the first laser light and the second laser light using the laser emitting module further includes:
- the second laser is generated by using a second laser transmitter included in the laser emitting module.
- two independent laser transmitters can be used to generate the first laser and the second laser, so that the emission angles and wavelength ranges of the first laser and the second laser can be controlled respectively, so that different To configure the first laser and the second laser separately.
- the first laser and the second laser have different wavelengths.
- an object such as a laser detector that receives the first laser light and the second laser light can distinguish the first laser light from the second laser light by wavelength, so as to provide assistance for subsequent laser ranging.
- the first laser light is visible light and the second laser light is invisible light.
- an object such as a laser detector that receives the first laser and the second laser can distinguish the first laser from the second laser by whether the laser is visible, so as to provide for subsequent laser ranging help.
- generating the first laser light and the second laser light using the laser emitting module further includes:
- the optical device included in the laser emitting module is used to adjust the laser light generated by the laser transmitter to generate the first laser light and the second laser light.
- any one of the first laser surface and the second laser surface is perpendicular to the first rotation axis.
- the first axis of rotation that is, an included angle with the first axis of rotation, so that the laser detector can receive the first laser and the second laser and irradiate on the basis of the first laser and the second laser.
- the position on the laser detector determines the position difference data to provide help for the subsequent determination of the distance between the laser detector and the rotating laser device.
- the first laser surface and the second laser surface are symmetric about a plane perpendicular to the first rotation axis. In this way, it can be ensured that although any one of the first laser and the second laser is not perpendicular to the first rotation axis, all the laser beams formed by the first laser and the second laser respectively.
- the first laser surface and the second laser surface are symmetrical about a plane perpendicular to the first rotation axis, so that the laser detector can receive the first laser and the second laser and is based on the first laser and the The position of the second laser irradiated on the laser detector determines the position difference data, and provides help for the subsequent determination of the distance between the laser detector and the rotating laser device.
- the projections of the first laser and the second laser on a plane perpendicular to the first rotation axis are on the same straight line.
- the first laser and the first laser are either in the same direction or 180 degrees apart on the plane perpendicular to the first rotation axis, so that the laser detector and the rotating laser device can be determined more accurately the distance between.
- the first rotation axis is a vertical rotation axis or a horizontal rotation axis.
- the rotating laser device can not only scan the laser horizontally to measure the distance between the laser detector and the rotating laser device, but also scan the laser vertically to measure the distance between the laser detector and the rotating laser device. distance.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种旋转激光装置(100),包括:激光发射模块(110),被构造为发射第一激光(112)和第二激光(114),第一激光(112)和第二激光(114)之间呈第一夹角;转动模块(120),被构造为使得第一激光(112)和第二激光(114)分别围绕第一旋转轴(116)旋转从而形成不重合的第一激光面和第二激光面;以及基座(130),与激光发射模块(110)以及转动模块(120)连接并且被构造为用于支撑激光发射模块(110)和转动模块(120)。不需要设计额外的倾斜机构,能够简化旋转激光装置(100)的结构;由于第一激光(112)和第二激光(114)之间的第一夹角是预先配置的,从而不存在角度误差,使得测量出的距离更为精确。
Description
本发明涉及测绘领域,具体地,本发明涉及一种旋转激光装置以及一种借助于该旋转激光装置进行激光测距的激光测距方法。
扫平仪是一种提供平面或直线基准的仪器。扫平仪能够与激光探测器配合,从而可以在一定的半径范围内控制任一测点的水平高度。
常见的扫平仪仅有提供水平基准的功能,并不具备测距功能。一般涉及到距离的测量,都是通过专门的测距仪来获取距离数据,因此,有尝试在扫平仪上设置接收器,用来接收发射出去的激光从而来确定距离,但这种方式实现结构复杂、成本高,而且由于在旋转的缘故,测距模块采样时间非常短,从而造成测量精度低。
喜利得在中国专利申请CN 10829 1809 A中提到了一种测距方案,扫平仪仅仅会发射一束激光,先发射第一激光(这束激光可以定向为水平激光,或不水平),再通过倾斜机构(例如扫平仪内部的校平装置54或倾斜装置61校平装置或者位于三脚架上的高度调节装置16)来使发射激光倾斜,从而形成第二激光,再通过角度传感器来获取倾斜角度,最后通过在激光探测器上接收并获取两束激光在激光探测器上的高度差来计算扫平仪与激光探测器之间的距离。这种实现方案的缺点在于:该方案的实现前后两束激光的形成需要每次调节倾斜角度,从而增加了倾斜机构的运行频率以及角度传感器的工作频率,而且每个点的测量都需要重复操作,过程繁琐并且容易造成误差。
因此,如何简化结构,提高测量精度,是本领域技术人员亟待解决的技术难题。
发明内容
针对上述的技术问题,即如何在保障扫平仪现有的功能的同时使其兼 具测距功能,最终做到能够最大限度地简化结构及操作步骤,进而节约成本并且使测量操作简单,并且能够为用户带来便捷、人性化的使用体验。
为了解决现有技术中的上述技术问题,本发明的第一方面提出了一种旋转激光装置,其特征在于,所述旋转激光装置包括:
激光发射模块,所述激光发射模块被构造为发射第一激光和第二激光,其中,所述第一激光和所述第二激光之间呈第一夹角;
转动模块,所述转动模块被构造为使得所述第一激光和所述第二激光分别围绕第一旋转轴旋转从而形成不重合的第一激光面和第二激光面;以及
基座,所述基座与所述激光发射模块以及所述转动模块连接并且被构造用于支撑所述激光发射模块和所述转动模块。
通过使得旋转激光装置具有发射呈第一夹角第一激光和第二激光的能力,从而不需要设计额外的诸如校平装置的倾斜机构,从而能够简化旋转激光装置的结构;与此同时,由于第一激光和第二激光之间的第一夹角是预先配置的,从而不存在了角度误差,使得测量出的距离更为精确。
在依据本公开内容的一个实施例中,所述激光发射模块包括第一激光发射器和第二激光发射器,其中,所述第一激光发射器被构造为用于产生所述第一激光并且所述第二激光发射器被构造为用于产生所述第二激光。
以这样的方式能够分别采用两个独立的激光发射器来产生所述第一激光和所述第二激光,从而能够分别控制第一激光和第二激光的出射角度以及波长范围,从而能够针对不同的应用场景来对所述第一激光和第二激光分别作出配置。
在依据本公开内容的一个实施例中,所述第一激光和所述第二激光具有不同的波长。以这样的方式能够使得接收到所述第一激光和所述第二激光的诸如激光探测器的物体能够通过波长来区分第一激光和第二激光,从而能够为后续的激光测距提供帮助。
在依据本公开内容的一个实施例中,所述第一激光为可见光并且所述第二激光为不可见光。以这样的方式能够使得接收到所述第一激光和所述第二激光的诸如激光探测器的物体能够通过激光是否可见来区分第一激光 和第二激光,从而能够为后续的激光测距提供帮助。
在依据本公开内容的一个实施例中,所述激光发射模块包括激光发射器和用于调节所述激光发射器所产生的激光的方向的光学器件,其中,所述光学器件被构造为基于对所述激光发射器所产生的激光进行调节以产生所述第一激光和所述第二激光。以这样的方式能够仅仅通过一个激光发射器便能够产生用于激光测距的两束激光,从而能够进一步简化旋转激光装置的结构,降低其制造成本。
在依据本公开内容的一个实施例中,所述第一激光与所述第二激光在垂直于所述第一旋转轴的平面上的投影呈第二夹角。由此能够综合上述的第一夹角和第二夹角确定不重合的第一激光面和第二激光面之间的夹角,从而为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述第一激光和所述第二激光在垂直于所述第一旋转轴的平面上的垂直投影在同一直线上。以这样的方式使得第一激光和第一激光在垂直于所述第一旋转轴的平面上要么在同一个方向上,要么相差180度,从而能够更为精确地确定激光探测器和旋转激光装置之间的距离。
在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面中的任一激光面垂直于所述第一旋转轴。以这样的方式能够确保所述第一激光和所述第二激光中的一束激光垂直于第一旋转轴,而所述第一激光和所述第二激光中的另一束激光不垂直于第一旋转轴,即与第一旋转轴呈现一个夹角,从而能够使得激光探测器能够接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称。以这样的方式能够确保虽然所述第一激光和所述第二激光中的任何一束激光都不垂直于第一旋转轴,但是由所述第一激光和所述第二激光分别形成的所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称,从而使得激光探测器能够接收所述 第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述第一旋转轴为竖直方向的旋转轴或者水平方向的旋转轴。以这样的方式能够使得所述旋转激光装置既能够水平地扫射激光来测量激光探测器和旋转激光装置之间的距离,也能够竖直地扫射激光来测量激光探测器和旋转激光装置之间的距离。
在依据本公开内容的一个实施例中,所述旋转激光装置还包括:
激光探测器,所述激光探测器与所述激光发射模块相距第一距离并且被构造为接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据。以这样的方式能够接收呈第一夹角的第一激光和第二激光,并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,从而为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述旋转激光装置还包括:
处理模块,所述处理模块被构造为基于所述位置差数据、所述第一夹角确定所述激光发射模块和所述激光探测器之间的第一距离。
以这样的方式使得旋转激光装置还包括一个能够对所获取的数据进行处理从而获得所述激光发射模块和所述激光探测器之间的第一距离的处理模块,能够以有利的方式实现本公开内容的目的。
在依据本公开内容的一个实施例中,所述处理模块被构造为与所述基座固定连接或者与所述激光探测器固定连接。以这样的方式表明所述处理模块既可以安装或者设置在基座处即设置在旋转激光装置的本体处,也可以安装或者设置在激光探测器处。
此外,本公开内容的第二方面还提供了一种激光测距方法,其特征在于,所述激光测距方法包括:
利用激光发射模块产生第一激光和第二激光,其中,所述第一激光和所述第二激光之间呈第一夹角;
利用转动模块使得所述第一激光和所述第二激光分别围绕第一旋转轴 旋转从而形成不重合的第一激光面和第二激光面;
利用与所述激光发射模块相距第一距离的激光探测器接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据;以及
利用处理模块基于所述位置差数据、所述第一夹角确定所述激光发射模块和所述激光探测器之间的第一距离。
由此能够通过使得旋转激光装置具有发射呈第一夹角第一激光和第二激光的能力,从而不需要设计额外的诸如校平装置的倾斜机构,从而能够简化旋转激光装置的结构;与此同时,由于第一激光和第二激光之间的第一夹角是预先配置的,从而不存在了角度误差,使得测量出的距离更为精确;再者,由于不需要在每次进行距离测量时都去操作激光的倾斜角度,从而使得测距操作得以简化,进而改善了用户使用旋转激光装置进行距离测量的用户体验。
在依据本公开内容的一个实施例中,利用激光发射模块产生第一激光和第二激光进一步包括:
利用所述激光发射模块所包括的第一激光发射器产生所述第一激光;以及
利用所述激光发射模块所包括的第二激光发射器产生所述第二激光。
以这样的方式能够分别采用两个独立的激光发射器来产生所述第一激光和所述第二激光,从而能够分别控制第一激光和第二激光的出射角度以及波长范围,从而能够针对不同的应用场景来对所述第一激光和第二激光分别作出配置。
在依据本公开内容的一个实施例中,所述第一激光和所述第二激光具有不同的波长。以这样的方式能够使得接收到所述第一激光和所述第二激光的诸如激光探测器的物体能够通过波长来区分第一激光和第二激光,从而能够为后续的激光测距提供帮助。
在依据本公开内容的一个实施例中,所述第一激光为可见光并且所述第二激光为不可见光。以这样的方式能够使得接收到所述第一激光和所述第二激光的诸如激光探测器的物体能够通过激光是否可见来区分第一激光 和第二激光,从而能够为后续的激光测距提供帮助。
在依据本公开内容的一个实施例中,利用激光发射模块产生第一激光和第二激光进一步包括:
利用所述激光发射模块所包括的激光发射器产生激光;以及
利用所述激光发射模块所包括的光学器件基于对所述激光发射器所产生的激光进行调节以产生所述第一激光和所述第二激光。
以这样的方式能够仅仅通过一个激光发射器便能够产生用于激光测距的两束激光,从而能够进一步简化旋转激光装置的结构,降低其制造成本。
在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面中的任一激光面垂直于所述第一旋转轴。以这样的方式能够确保所述第一激光和所述第二激光中的一束激光垂直于第一旋转轴,而所述第一激光和所述第二激光中的另一束激光不垂直于第一旋转轴,即与第一旋转轴呈现一个夹角,从而能够使得激光探测器能够接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称。以这样的方式能够确保虽然所述第一激光和所述第二激光中的任何一束激光都不垂直于第一旋转轴,但是由所述第一激光和所述第二激光分别形成的所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称,从而使得激光探测器能够接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述第一激光和所述第二激光在垂直于所述第一旋转轴的平面上的投影在同一直线上。以这样的方式使得第一激光和第一激光在垂直于所述第一旋转轴的平面上要么在同一个方向上,要么相差180度,从而能够更为精确地确定激光探测器和旋转激光装置之间的距离。
在依据本公开内容的一个实施例中,所述第一旋转轴为竖直方向的旋转轴或者水平方向的旋转轴。以这样的方式能够使得所述旋转激光装置既能够水平地扫射激光来测量激光探测器和旋转激光装置之间的距离,也能够竖直地扫射激光来测量激光探测器和旋转激光装置之间的距离。
参考附图示出并阐明实施例。这些附图用于阐明基本原理,从而仅仅示出了对于理解基本原理必要的方面。这些附图不是按比例的。在附图中,相同的附图标记表示相似的特征。
图1示出了依据本发明所提出的旋转激光装置100的示意图;
图2示出了依据本发明所提出的旋转激光装置100的激光发射模块的一个实施例210的示意图;
图3示出了依据本发明所提出的旋转激光装置100的激光发射模块的另一个实施例310的示意图;以及
图4示出了借助于前述的旋转激光装置进行距离测量的激光测距方法400的流程示意图。
本发明的其它特征、特点、优点和益处通过以下结合附图的详细描述将变得更加显而易见。
在以下优选的实施例的具体描述中,将参考构成本发明一部分的所附的附图。所附的附图通过示例的方式示出了能够实现本发明的特定的实施例。示例的实施例并不旨在穷尽根据本发明的所有实施例。可以理解,在不偏离本发明的范围的前提下,可以利用其他实施例,也可以进行结构性或者逻辑性的修改。因此,以下的具体描述并非限制性的,且本发明的范围由所附的权利要求所限定。
图1示出了依据本发明所提出的旋转激光装置100的示意图,从图中可以看出,该旋转激光装置100能够包括激光发射模块110,所述激光发射模块110被构造为发射第一激光112和第二激光114,其中,所述第一激光 112和所述第二激光114之间呈第一夹角(图中未以角度符号予以标记);此外,该旋转激光装置100还能够包括转动模块120,所述转动模块120被构造为使得所述第一激光112和所述第二激光114分别围绕第一旋转轴116旋转从而形成不重合的第一激光面和第二激光面;再者,该旋转激光装置100还能够包括基座130,所述基座130与所述激光发射模块110以及所述转动模块120连接并且被构造用于支撑所述激光发射模块110和所述转动模块120。从图中可以看出,该基座130能够被设置在工作表面140之上,从而使得该旋转激光装置100所发射出的一束激光例如第一激光112所扫射形成的平面150与该工作表面140平行。可选地,该旋转激光装置100还能够包括一个激光探测器160,从而使得该激光探测器160能够接收到第一激光112和第二激光114,并且在其表面的区域112a和114a处分别感知到该第一激光112和第二激光114。
该图仅仅是示意性的,而非限制性的,从图中似乎看出第一激光112和第二激光114同时会被照射到激光探测器160之上,但是这只是其中一个实施形式,其他实施形式当然也是可行的,其他实施形式将在接下来的实施例中予以阐述。
此外,虽然从图1中看出转动模块120处于激光发射模块110的外部,但是这并不代表激光发射模块110必须整体转动,从而使得所述第一激光112和所述第二激光114分别围绕第一旋转轴116旋转从而形成不重合的第一激光面和第二激光面。本领域的技术人员应当了解,也能够例如通过转动模块120仅仅转动激光发射器所发射出的激光而不转动激光发射器本身来形成不重合的第一激光面和第二激光面。
通过使得旋转激光装置具有发射呈第一夹角第一激光和第二激光的能力,从而不需要设计额外的诸如校平装置的倾斜机构,从而能够简化旋转激光装置的结构;与此同时,由于第一激光和第二激光之间的第一夹角是预先配置的,从而不存在了角度误差,使得测量出的距离更为精确。
图2示出了依据本发明所提出的旋转激光装置100的激光发射模块的一个实施例210的示意图,在该实施例中,所述激光发射模块210包括第一激光发射器211和第二激光发射器213,其中,所述第一激光发射器211 被构造为用于产生第一激光212并且所述第二激光发射器213被构造为用于产生第二激光214。以这样的方式能够分别采用两个独立的激光发射器211和213来产生所述第一激光212和所述第二激光214,从而能够分别控制第一激光212和第二激光214的出射角度以及波长范围,从而能够针对不同的应用场景来对所述第一激光和第二激光分别作出配置。优选地,所述第一激光212和所述第二激光214具有不同的波长。以这样的方式能够使得接收到所述第一激光212和所述第二激光214的诸如激光探测器的物体能够通过波长来区分第一激光212和第二激光214,从而能够为后续的激光测距提供帮助。进一步优选地,所述第一激光212为可见光并且所述第二激光214为不可见光,当然,也可以将所述第一激光212设置为不可见光而将所述第二激光214设置为可见光。以这样的方式能够使得接收到所述第一激光和所述第二激光的诸如激光探测器的物体能够通过激光是否可见来区分第一激光和第二激光,从而能够为后续的激光测距提供帮助。可选地,该激光发射模块210能够包括激光方向调节模块218,其能够根据需要调节第一激光212和第二激光214的出射角度。
图3示出了依据本发明所提出的旋转激光装置100的激光发射模块的另一个实施例310的示意图,在该实施例中,所述激光发射模块仅仅包括一个激光发射器215,此时,方向不同的第一激光312和第二激光314是通过该激光发射模块所包括的用于调节所述激光发射器315所产生的激光的方向的光学器件318来实现的,其中,所述光学器件318被构造为基于对所述激光发射器315所产生的激光进行调节以产生所述第一激光312和所述第二激光314。以这样的方式能够仅仅通过一个激光发射器315便能够产生用于激光测距的两束激光312和314,从而能够进一步简化旋转激光装置100的结构,降低其制造成本。
包括在图2和图3所示出的激光发射模块210和310的旋转激光装置100所产生的激光优选地满足以下要求,即在依据本公开内容的一个实施例中,所述第一激光212、312与所述第二激光214、314在垂直于所述第一旋转轴116的平面上的投影呈第二夹角。由此能够综合上述的第一夹角和第二夹角确定不重合的第一激光面和第二激光面之间的夹角,从而为后续 的确定激光探测器和旋转激光装置之间的距离提供帮助。在依据本公开内容的一个实施例中,所述第一激光212、312与所述第二激光214、314在垂直于所述第一旋转轴116的平面上的垂直投影在同一直线上。以这样的方式使得第一激光和第一激光在垂直于所述第一旋转轴的平面上要么在同一个方向上,要么相差180度,从而能够更为精确地确定激光探测器和旋转激光装置之间的距离。在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面中的任一激光面垂直于所述第一旋转轴116。以这样的方式能够确保所述第一激光112、212、312与所述第二激光114、214、314中的一束激光垂直于第一旋转轴116,而所述第一激光112、212、312与所述第二激光114、214、314中的另一束激光不垂直于第一旋转轴116,即与第一旋转轴116呈现一个夹角,从而能够使得激光探测器(诸如图1中的激光探测器160)能够接收所述第一激光112、212、312与所述第二激光114、214、314并且基于所述第一激光112、212、312与所述第二激光114、214、314照射在所述激光探测器160上的位置112a和114a确定位置差数据,为后续的确定激光探测器160和旋转激光装置所包括的激光发射模块110之间的距离提供帮助。
此时,如图1所示,假设所述第一激光112、212、312与所述第二激光114、214、314照射在所述激光探测器160上的位置112a和114a的距离相差为h,而不重合的第一激光面和第二激光面之间的夹角为θ,那么根据勾股定理能够得出激光发射模块110和所述激光探测器160之间的距离d为:
d=h/tan(θ)。
在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称。以这样的方式能够确保虽然所述第一激光112、212、312与所述第二激光114、214、314中的任何一束激光都不垂直于第一旋转轴116,但是由所述第一激光112、212、312与所述第二激光114、214、314分别形成的所述第一激光面和所述第二激光面关于垂直于第一旋转轴116的平面对称,从而使得激光探测器160能够接收所述第一激光112、212、312与所述第二激光114、214、314并且基于所述 第一激光112、212、312与所述第二激光114、214、314照射在所述激光探测器160上的位置112a和114a确定位置差数据,为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。在这样的实施例中,假设所述第一激光112、212、312与所述第二激光114、214、314照射在所述激光探测器160上的位置112a和114a的距离相差为h,而不重合的第一激光面和第二激光面之间的夹角为θ,那么根据勾股定理能够得出激光发射模块110和所述激光探测器160之间的距离d为:
d=(h/2)/tan(θ/2)。
在依据本公开内容的一个实施例中,所述第一旋转轴为竖直方向的旋转轴或者水平方向的旋转轴。以这样的方式能够使得所述旋转激光装置既能够水平地扫射激光来测量激光探测器和旋转激光装置之间的距离,也能够竖直地扫射激光来测量激光探测器和旋转激光装置之间的距离。
在依据本公开内容的一个实施例中,所述旋转激光装置还包括:
激光探测器,所述激光探测器与所述激光发射模块相距第一距离并且被构造为接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据。以这样的方式能够接收呈第一夹角的第一激光和第二激光,并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,从而为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述旋转激光装置还包括:
处理模块,所述处理模块被构造为基于所述位置差数据、所述第一夹角确定所述激光发射模块和所述激光探测器之间的第一距离。
以这样的方式使得旋转激光装置还包括一个能够对所获取的数据进行处理从而获得所述激光发射模块和所述激光探测器之间的第一距离的处理模块,能够以有利的方式实现本公开内容的目的。
在依据本公开内容的一个实施例中,所述处理模块被构造为与所述基座固定连接或者与所述激光探测器固定连接。以这样的方式表明所述处理模块既可以安装或者设置在基座处即设置在旋转激光装置的本体处,也可以安装或者设置在激光探测器处。
此外,本公开内容的第二方面还提供了一种激光测距方法,图4示出了借助于前述的旋转激光装置进行距离测量的激光测距方法400的流程示意图,从图中可以看出,所述激光测距方法400包括以下步骤:
首先,在方法步骤410中将会利用激光发射模块产生第一激光和第二激光,其中,所述第一激光和所述第二激光之间呈第一夹角;
其次,在方法步骤420中将会利用转动模块使得所述第一激光和所述第二激光分别围绕第一旋转轴旋转从而形成不重合的第一激光面和第二激光面;
接下来,在方法步骤430中将会利用与所述激光发射模块相距第一距离的激光探测器接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据;以及
最后,在方法步骤440中将会利用处理模块基于所述位置差数据、所述第一夹角确定所述激光发射模块和所述激光探测器之间的第一距离。
由此能够通过使得旋转激光装置具有发射呈第一夹角第一激光和第二激光的能力,从而不需要设计额外的诸如校平装置的倾斜机构,从而能够简化旋转激光装置的结构;与此同时,由于第一激光和第二激光之间的第一夹角是预先配置的,从而不存在了角度误差,使得测量出的距离更为精确;再者,由于不需要在每次进行距离测量时都去操作激光的倾斜角度,从而使得测距操作得以简化,进而改善了用户使用旋转激光装置进行距离测量的用户体验。
在此,优选地,所述激光探测器用于接收所述第一激光和所述第二激光的探测面垂直于所述第一激光或者所述第二激光。由此能够实现所述第一激光和所述第二激光从激光发射起点到激光探测器上的照射点之间的线段以及两个照射点之间的线段构成一个直角三角形,从而能够使得后续能够根据勾股定理来计算所述第一激光和所述第二激光中垂直于激光探测器的探测面的激光所形成的边的长度,即激光发射模块和所述激光探测器之间的第一距离。
在依据本公开内容的一个实施例中,利用激光发射模块产生第一激光和第二激光进一步包括:
利用所述激光发射模块所包括的第一激光发射器产生所述第一激光;以及
利用所述激光发射模块所包括的第二激光发射器产生所述第二激光。
以这样的方式能够分别采用两个独立的激光发射器来产生所述第一激光和所述第二激光,从而能够分别控制第一激光和第二激光的出射角度以及波长范围,从而能够针对不同的应用场景来对所述第一激光和第二激光分别作出配置。
在依据本公开内容的一个实施例中,所述第一激光和所述第二激光具有不同的波长。以这样的方式能够使得接收到所述第一激光和所述第二激光的诸如激光探测器的物体能够通过波长来区分第一激光和第二激光,从而能够为后续的激光测距提供帮助。
在依据本公开内容的一个实施例中,所述第一激光为可见光并且所述第二激光为不可见光。以这样的方式能够使得接收到所述第一激光和所述第二激光的诸如激光探测器的物体能够通过激光是否可见来区分第一激光和第二激光,从而能够为后续的激光测距提供帮助。
在依据本公开内容的一个实施例中,利用激光发射模块产生第一激光和第二激光进一步包括:
利用所述激光发射模块所包括的激光发射器产生激光;以及
利用所述激光发射模块所包括的光学器件基于对所述激光发射器所产生的激光进行调节以产生所述第一激光和所述第二激光。
以这样的方式能够仅仅通过一个激光发射器便能够产生用于激光测距的两束激光,从而能够进一步简化旋转激光装置的结构,降低其制造成本。
在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面中的任一激光面垂直于所述第一旋转轴。以这样的方式能够确保所述第一激光和所述第二激光中的一束激光垂直于第一旋转轴,而所述第一激光和所述第二激光中的另一束激光不垂直于第一旋转轴,即与第一旋转轴呈现一个夹角,从而能够使得激光探测器能够接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,为后续的确定激光探测器和旋转激光装置之间的距离 提供帮助。
在依据本公开内容的一个实施例中,所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称。以这样的方式能够确保虽然所述第一激光和所述第二激光中的任何一束激光都不垂直于第一旋转轴,但是由所述第一激光和所述第二激光分别形成的所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称,从而使得激光探测器能够接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据,为后续的确定激光探测器和旋转激光装置之间的距离提供帮助。
在依据本公开内容的一个实施例中,所述第一激光和所述第二激光在垂直于所述第一旋转轴的平面上的投影在同一直线上。以这样的方式使得第一激光和第一激光在垂直于所述第一旋转轴的平面上要么在同一个方向上,要么相差180度,从而能够更为精确地确定激光探测器和旋转激光装置之间的距离。
在依据本公开内容的一个实施例中,所述第一旋转轴为竖直方向的旋转轴或者水平方向的旋转轴。以这样的方式能够使得所述旋转激光装置既能够水平地扫射激光来测量激光探测器和旋转激光装置之间的距离,也能够竖直地扫射激光来测量激光探测器和旋转激光装置之间的距离。
基于本公开内容所公开的激光测距方法能够测量同一平面上的若干点,以便构成轮廓线或轨迹线,然后再进一步例如通过切分正方形法进行面积计算。
本领域技术人员应当理解,上面公开的各个实施例可以在不偏离发明实质的情况下做出各种变形和修改。因此,本发明的保护范围应当由所附的权利要求书来限定。
尽管已经描述了本发明的不同示例性的实施例,但对于本领域技术人员而言显而易见的是,能够进行不同的改变和修改,其能够实现本发明的优点中的一些而不背离本发明的精神和范畴。对于那些在本领域技术中相当熟练的人员来说,执行相同功能的其他部件可以适当地被替换。应提到,在此参考特定的附图解释的特征可以与其他附图的特征组合,即使是在那 些没有明确提及此的情况中。此外,可以或者在所有使用恰当的处理器指令的软件实现方式中或者在利用硬件逻辑和软件逻辑组合来获得同样结果的混合实现方式中实现本发明的方法。这样的对根据本发明的方案的修改旨在被所附权利要求所覆盖。
Claims (22)
- 一种旋转激光装置,其特征在于,所述旋转激光装置包括:激光发射模块,所述激光发射模块被构造为发射第一激光和第二激光,其中,所述第一激光和所述第二激光之间呈第一夹角;转动模块,所述转动模块被构造为使得所述第一激光和所述第二激光分别围绕第一旋转轴旋转从而形成不重合的第一激光面和第二激光面;以及基座,所述基座与所述激光发射模块以及所述转动模块连接并且被构造用于支撑所述激光发射模块和所述转动模块。
- 根据权利要求1所述的旋转激光装置,其特征在于,所述激光发射模块包括第一激光发射器和第二激光发射器,其中,所述第一激光发射器被构造为用于产生所述第一激光并且所述第二激光发射器被构造为用于产生所述第二激光。
- 根据权利要求2所述的旋转激光装置,其特征在于,所述第一激光和所述第二激光具有不同的波长。
- 根据权利要求1所述的旋转激光装置,其特征在于,所述第一激光为可见光并且所述第二激光为不可见光。
- 根据权利要求1所述的旋转激光装置,其特征在于,所述激光发射模块包括激光发射器和用于调节所述激光发射器所产生的激光的方向的光学器件,其中,所述光学器件被构造为基于对所述激光发射器所产生的激光进行调节以产生所述第一激光和所述第二激光。
- 根据权利要求1所述的旋转激光装置,其特征在于,所述第一激光与所述第二激光在垂直于所述第一旋转轴的平面上的投影呈第二夹角。
- 根据权利要求1所述的旋转激光装置,其特征在于,所述第一激光和所述第二激光在垂直于所述第一旋转轴的平面上的垂直投影在同一直线上。
- 根据权利要求1所述的旋转激光装置,其特征在于,所述第一激光面和所述第二激光面中的任一激光面垂直于所述第一旋转轴。
- 根据权利要求1所述的旋转激光装置,其特征在于,所述第一激光 面和所述第二激光面关于垂直于第一旋转轴的平面对称。
- 根据权利要求1至9任一所述的旋转激光装置,其特征在于,所述第一旋转轴为竖直方向的旋转轴或者水平方向的旋转轴。
- 根据前述权利要求中任一项所述的旋转激光装置,其特征在于,所述旋转激光装置还包括:激光探测器,所述激光探测器与所述激光发射模块相距第一距离并且被构造为接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据。
- 根据权利要求11所述的旋转激光装置,其特征在于,所述旋转激光装置还包括:处理模块,所述处理模块被构造为基于所述位置差数据、所述第一夹角确定所述激光发射模块和所述激光探测器之间的第一距离。
- 根据权利要求12所述的旋转激光装置,其特征在于,所述处理模块被构造为与所述基座固定连接或者与所述激光探测器固定连接。
- 一种激光测距方法,其特征在于,所述激光测距方法包括:利用激光发射模块产生第一激光和第二激光,其中,所述第一激光和所述第二激光之间呈第一夹角;利用转动模块使得所述第一激光和所述第二激光分别围绕第一旋转轴旋转从而形成不重合的第一激光面和第二激光面;利用与所述激光发射模块相距第一距离的激光探测器接收所述第一激光和所述第二激光并且基于所述第一激光和所述第二激光照射在所述激光探测器上的位置确定位置差数据;以及利用处理模块基于所述位置差数据、所述第一夹角确定所述激光发射模块和所述激光探测器之间的第一距离。
- 根据权利要求14所述的激光测距方法,其特征在于,利用激光发射模块产生第一激光和第二激光进一步包括:利用所述激光发射模块所包括的第一激光发射器产生所述第一激光;以及利用所述激光发射模块所包括的第二激光发射器产生所述第二激光。
- 根据权利要求15所述的激光测距方法,其特征在于,所述第一激 光和所述第二激光具有不同的波长。
- 根据权利要求14所述的激光测距方法,其特征在于,所述第一激光为可见光并且所述第二激光为不可见光。
- 根据权利要求14所述的激光测距方法,其特征在于,利用激光发射模块产生第一激光和第二激光进一步包括:利用所述激光发射模块所包括的激光发射器产生激光;以及利用所述激光发射模块所包括的光学器件基于对所述激光发射器所产生的激光进行调节以产生所述第一激光和所述第二激光。
- 根据权利要求14所述的激光测距方法,其特征在于,所述第一激光面和所述第二激光面中的任一激光面垂直于所述第一旋转轴。
- 根据权利要求14所述的激光测距方法,其特征在于,所述第一激光面和所述第二激光面关于垂直于第一旋转轴的平面对称。
- 根据权利要求14所述的激光测距方法,其特征在于,所述第一激光和所述第二激光在垂直于所述第一旋转轴的平面上的投影在同一直线上。
- 根据权利要求14所述的激光测距方法,其特征在于,所述第一旋转轴为竖直方向的旋转轴或者水平方向的旋转轴。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20748041.9A EP3919858A4 (en) | 2019-02-03 | 2020-01-22 | ROTARY LASER DEVICE AND LASER DISTANCE MEASUREMENT METHOD |
US17/391,597 US20210364285A1 (en) | 2019-02-03 | 2021-08-02 | Rotating laser apparatus and laser ranging method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910108750.3A CN109655034B (zh) | 2019-02-03 | 2019-02-03 | 旋转激光装置和激光测距方法 |
CN201910108750.3 | 2019-02-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/391,597 Continuation US20210364285A1 (en) | 2019-02-03 | 2021-08-02 | Rotating laser apparatus and laser ranging method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020156413A1 true WO2020156413A1 (zh) | 2020-08-06 |
Family
ID=66122423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073734 WO2020156413A1 (zh) | 2019-02-03 | 2020-01-22 | 旋转激光装置和激光测距方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210364285A1 (zh) |
EP (1) | EP3919858A4 (zh) |
CN (1) | CN109655034B (zh) |
WO (1) | WO2020156413A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777562A (zh) * | 2021-11-12 | 2021-12-10 | 山东柏源技术有限公司 | 一种石油勘探可调节的激光测量距离器 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109655034B (zh) * | 2019-02-03 | 2022-03-11 | 美国西北仪器公司 | 旋转激光装置和激光测距方法 |
CN112268524B (zh) * | 2020-10-09 | 2023-03-10 | 华中科技大学鄂州工业技术研究院 | 一种激光三维测量仪及测量方法 |
CN112611395B (zh) * | 2020-12-31 | 2022-07-08 | 美国西北仪器公司 | 校准激光扫平仪的方法和系统 |
CN118129723B (zh) * | 2024-05-06 | 2024-07-12 | 潍坊恒锣机械有限公司 | 一种用于土地测绘的测绘仪 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030136901A1 (en) * | 2002-01-21 | 2003-07-24 | Fumio Ohtomo | Position determining apparatus and rotary laser apparatus used with the same |
CN101010563A (zh) * | 2004-07-13 | 2007-08-01 | 天宝导航有限公司 | 组合激光系统和全球导航卫星系统 |
CN101329165A (zh) * | 2008-07-18 | 2008-12-24 | 西安交通大学 | 基于双旋转激光平面发射机网络的空间定位方法 |
CN102971657A (zh) * | 2010-07-22 | 2013-03-13 | 瑞尼斯豪公司 | 激光扫描设备和使用方法 |
CN108291809A (zh) | 2015-11-30 | 2018-07-17 | 喜利得股份公司 | 用于检验和/或校准旋转激光器的竖直轴线的方法 |
CN109655034A (zh) * | 2019-02-03 | 2019-04-19 | 美国西北仪器公司 | 旋转激光装置和激光测距方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4531965B2 (ja) * | 2000-12-04 | 2010-08-25 | 株式会社トプコン | 振れ検出装置、振れ検出装置付き回転レーザ装置及び振れ検出補正装置付き位置測定設定システム |
US6693706B2 (en) * | 2002-01-08 | 2004-02-17 | Trimble Navigation Limited | Laser reference system and method of determining grade rake |
CN209342094U (zh) * | 2019-02-03 | 2019-09-03 | 美国西北仪器公司 | 旋转激光装置 |
-
2019
- 2019-02-03 CN CN201910108750.3A patent/CN109655034B/zh active Active
-
2020
- 2020-01-22 WO PCT/CN2020/073734 patent/WO2020156413A1/zh active Application Filing
- 2020-01-22 EP EP20748041.9A patent/EP3919858A4/en active Pending
-
2021
- 2021-08-02 US US17/391,597 patent/US20210364285A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030136901A1 (en) * | 2002-01-21 | 2003-07-24 | Fumio Ohtomo | Position determining apparatus and rotary laser apparatus used with the same |
CN101010563A (zh) * | 2004-07-13 | 2007-08-01 | 天宝导航有限公司 | 组合激光系统和全球导航卫星系统 |
CN101329165A (zh) * | 2008-07-18 | 2008-12-24 | 西安交通大学 | 基于双旋转激光平面发射机网络的空间定位方法 |
CN102971657A (zh) * | 2010-07-22 | 2013-03-13 | 瑞尼斯豪公司 | 激光扫描设备和使用方法 |
CN108291809A (zh) | 2015-11-30 | 2018-07-17 | 喜利得股份公司 | 用于检验和/或校准旋转激光器的竖直轴线的方法 |
CN109655034A (zh) * | 2019-02-03 | 2019-04-19 | 美国西北仪器公司 | 旋转激光装置和激光测距方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3919858A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777562A (zh) * | 2021-11-12 | 2021-12-10 | 山东柏源技术有限公司 | 一种石油勘探可调节的激光测量距离器 |
CN113777562B (zh) * | 2021-11-12 | 2022-01-18 | 山东柏源技术有限公司 | 一种石油勘探可调节的激光测量距离器 |
Also Published As
Publication number | Publication date |
---|---|
CN109655034A (zh) | 2019-04-19 |
EP3919858A4 (en) | 2022-10-19 |
EP3919858A1 (en) | 2021-12-08 |
CN109655034B (zh) | 2022-03-11 |
US20210364285A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020156413A1 (zh) | 旋转激光装置和激光测距方法 | |
JP4328654B2 (ja) | レーザ測定方法及びレーザ測定システム | |
CN105424011B (zh) | 测量装置以及测量装置的设置方法 | |
JP6560596B2 (ja) | 測量装置 | |
JP4531965B2 (ja) | 振れ検出装置、振れ検出装置付き回転レーザ装置及び振れ検出補正装置付き位置測定設定システム | |
US20120300191A1 (en) | Distance-measuring method for a device projecting a reference line, and such a device | |
WO2022142248A1 (zh) | 校准激光扫平仪的方法和系统 | |
US10088570B2 (en) | Laser scanner system | |
US20190162853A1 (en) | Surveying Instrument | |
CN109313027B (zh) | 用于对投射到激光接收器上的接收射线与旋转的激光射线进行比较的方法 | |
WO2018153008A1 (zh) | 激光定位装置及激光定位方法 | |
WO2022142247A1 (zh) | 使用激光扫平仪追踪探测器的方法及激光追踪系统 | |
CN209342094U (zh) | 旋转激光装置 | |
JP2018054408A (ja) | 測量装置 | |
JP4074967B2 (ja) | レーザー照射装置 | |
US11598637B2 (en) | Surveying instrument | |
EP4257923A1 (en) | Surveying instrument | |
JP2736558B2 (ja) | 位置測定方法及びその装置 | |
CN112611396B (zh) | 用于校准激光扫平仪的方法 | |
WO2024171632A1 (ja) | 距離測定装置、距離測定方法、及びプログラム | |
WO2024070215A1 (ja) | レーザースキャン装置、レーザースキャン方法およびレーザースキャン用プログラム | |
JP2023109404A (ja) | レーザースキャンデータ処理装置、レーザースキャン方法およびプログラム | |
JP2018048867A (ja) | スキャナ装置および測量装置 | |
JP6996961B2 (ja) | 測量装置 | |
JPH1194552A (ja) | 直角視準可能なレベル及びレベル用アダプタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748041 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020748041 Country of ref document: EP |