WO2020155531A1 - 永磁式磁悬浮轨道交通的道岔系统及其控制方法 - Google Patents

永磁式磁悬浮轨道交通的道岔系统及其控制方法 Download PDF

Info

Publication number
WO2020155531A1
WO2020155531A1 PCT/CN2019/092367 CN2019092367W WO2020155531A1 WO 2020155531 A1 WO2020155531 A1 WO 2020155531A1 CN 2019092367 W CN2019092367 W CN 2019092367W WO 2020155531 A1 WO2020155531 A1 WO 2020155531A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
main
permanent magnet
magnetic
main track
Prior art date
Application number
PCT/CN2019/092367
Other languages
English (en)
French (fr)
Inventor
邓永芳
杨斌
杨杰
邱哲睿
Original Assignee
江西理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910095254.9A external-priority patent/CN109895811B/zh
Priority claimed from CN201910095326.XA external-priority patent/CN109898372B/zh
Application filed by 江西理工大学 filed Critical 江西理工大学
Priority to EP19914146.6A priority Critical patent/EP3919343A4/en
Publication of WO2020155531A1 publication Critical patent/WO2020155531A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/06Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
    • B61L5/067Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means using electromagnetic driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/003Crossings; Points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L11/00Operation of points from the vehicle or by the passage of the vehicle
    • B61L11/08Operation of points from the vehicle or by the passage of the vehicle using electrical or magnetic interaction between vehicle and track
    • B61L11/083Magnetic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/002Control or safety means for heart-points and crossings of aerial railways, funicular rack-railway
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • E01B25/34Switches; Frogs; Crossings

Definitions

  • the invention relates to the field of magnetic levitation rail transit, in particular to a permanent magnet type magnetic levitation rail transit switch system.
  • maglev trains have the characteristics of low energy consumption, fast speed, safety and convenience, and turnouts are indispensable equipment for rail transit to realize line conversion.
  • turnouts are indispensable equipment for rail transit to realize line conversion.
  • the invention patent "Mechanical Turnout and Steering Method Used in High-Temperature Superconducting Magnetic Levitation System” (Patent Application No.: 201610180047.X) relates to a mechanical turnout and steering method used in high-temperature superconducting magnetic levitation system.
  • the device is driven by a translational drive.
  • the translation of the magnetic track makes the two permanent magnetic tracks butt to complete the turnout.
  • the turnout is completed by driving the track, and the infrastructure and maintenance costs are high, the operating efficiency of the turnout is low, and the economy is poor.
  • the invention patent "An electromagnetic switch for a magnetic levitation system" (Patent Application No.: 201711013111.6) relates to an electromagnetic switch for a magnetic levitation system.
  • the device simulates the electromagnetic field of a permanent magnet by controlling the electromagnetic coil to make the magnetic field of the electromagnetic coil and permanent
  • the magnetic field coupling of the magnetic track realizes the turnout of the maglev train, but it is difficult to simulate the magnetic field of the permanent magnet by the electromagnetic coil, and the technical requirements are high.
  • the purpose of the present invention is to provide a permanent magnet magnetic levitation rail transit switch system, thereby improving the operating efficiency and utilization rate of the permanent magnet magnetic levitation rail line.
  • the invention discloses a permanent magnet type magnetic levitation rail transit switch system, which comprises: a switch track and a vehicle-mounted magnetic group running on the track.
  • the turnout track includes: a main track before branching, a main track 2 and a main track 3 after branching, a left telescopic guide rail 4, and a right telescopic guide rail 5 drive assembly;
  • the main track 1 is formed after passing through the switch structure
  • the telescopic guide magnetic rails are respectively laid on both sides of the main rail's bifurcation and turn, and respectively form a guide rail with the bifurcated main rail;
  • the drive assembly is used for Control the expansion and contraction of the guide rails on both sides;
  • the main rails 2 and 3 are laid along the branched main rails for connecting the main rails after the branching of the guiding rails, so that the train returns to the straight track.
  • Both the main track and the guide track are composed of permanent magnet arrays, and are laid along the turnout track.
  • the gauge of the guide rail is equal to the gauge between the main rails.
  • the vehicle-mounted magnetic group includes: a bogie, a main movement magnetic group, and a guide magnetic group; the magnetic group is arranged in four groups and installed on the bogie; the two main movement magnetic groups are respectively installed at two positions on the center line of the bogie Side, to ensure the stable operation of the train in the track; the guide magnetic group is installed on both sides of the bogie, and the main movement magnetic group on the same side is combined with the telescopic guide rail when it is in the extended state.
  • the main moving magnetic group and the guiding magnetic group are composed of permanent magnet arrays.
  • a group of main moving magnetic groups in the vehicle-mounted magnetic group interact with the main track to provide a levitation force and travel in the main track by the motor thrust; when the train is about to travel to
  • the train operator selects the direction to be driven in and gives a signal to the motor that controls the expansion and contraction of the side track.
  • the telescopic guide rail on the track extends under the control of the motor, and is affected by the telescopic guide rail and the on-board magnetic assembly.
  • the steering track magnetic field formed by the guiding magnetic group on the same side and the main moving magnetic group can slide the on-board magnetic group on the same side into the telescopic guide track without contact, and the telescopic guide track remains extended during the entire track bifurcation operation;
  • the main moving magnetic group is about to leave the main track and no longer provides levitation force.
  • the levitation force is provided by the guiding magnetic group, the main moving magnetic group and the telescopic guiding track; in the process of ending the bifurcation, the vehicle-mounted magnetic group
  • the main moving magnetic group on the upper side slides again into the straight main track after the bifurcation on the same side without contact; after the main moving magnetic group enters the branched main track, the guiding magnetic group and the main moving magnetic group are on the telescopic guiding track
  • the train completes the turnout operation, the motor controls the telescopic guide track on the same side to retract, and the main moving magnetic group on the train completes the docking with the main track after the branch, and returns to the straight-line operation state.
  • the switch control of the maglev rail train can be realized, the conversion of the permanent magnet maglev rail transit line can be completed, the operation efficiency of the maglev line is improved, the laying of the maglev rail line is optimized, the amount of magnetic track laying is saved, and the manufacturing of the maglev rail is reduced cost.
  • the present invention also provides a permanent magnet type magnetic levitation rail transit switch system and a control method thereof that can realize steering branching or merging.
  • a permanent magnet type magnetic levitation rail transit switch system which includes a rail system and a bogie assembly.
  • the track system includes: a main track on which is arranged a main track permanent magnet array arranged along the main direction; the left-turning main track is arranged on the left side of the main track in the main direction, and is not connected to the main track.
  • a turning angle of 10-45° is formed between the bifurcation directions;
  • the left-turn main track is provided with a left-turn main track permanent magnet array, and the magnetic field of the left-turn main track permanent magnet array is set to continue the main track
  • the magnetic field of the permanent magnet array turns to the left;
  • the right-turning main track is arranged on the right side of the main direction of the main track and forms a turning angle of 10-45° with the direction of the main track that is not branched;
  • the right A right-turning main track permanent magnet array is provided on the turning main track, and the magnetic field of the right-turning main track permanent magnet array is set to continue the magnetic field of the main track permanent magnet array to turn right;
  • the left turning track is set on the The outer side of the left-turning main track is provided with an arc that is bent along the direction parallel to the left-turning main track;
  • the left-hand steering track is provided with a left-hand steering track permanent magnet array, the The magnetic field of the permanent magnet array of the
  • the bogie assembly includes: a bogie body, which is arranged above the track system, and is used to support a load to realize operation or steering; a fixed magnetic group is arranged at the middle of the lower side of the bogie body, and the fixed magnetic group At least one set of guiding magnetic groups are respectively provided on both sides of the, and the fixed magnetic groups are arranged opposite to the main track permanent magnet or the left-turn main track permanent magnet array or the right-turn main track permanent magnet array.
  • the magnetic poles at the lower part of the fixed magnetic group are the same as the magnetic poles at the upper part of the main track permanent magnet array, the left-turn main track permanent magnet array, or the right-turn main track permanent magnet array, and are used to interact with its magnetic field to control the steering
  • the frame body provides upward thrust to maintain the bogie body in a suspended state with no direct contact with the track system;
  • the guide magnet group is respectively connected to the right steering track permanent magnet array or the left steering track permanent magnet
  • the arrays are arranged oppositely, and the magnetic poles at the lower part of the guide magnetic group are the same as the magnetic poles at the upper part of the right steering track permanent magnet array or the left steering track permanent magnet array, and are used to participate in the interaction of the magnetic field to affect the bogie
  • the body provides upward thrust to make the bogie body in a suspended state with no direct contact with the track system and steer along the right steering track permanent magnet array or the left steering track permanent magnet array;
  • the upper side of the bogie body is provided with a drive assembly, which
  • the main track includes two or more, and the main tracks are gradually branched outward by being arranged parallel to each other along the main direction, or by The branching arrangement gradually closes to be parallel to each other along the main direction;
  • the left-turning main track is arranged between the branches of the main track, and the left steering track is arranged on the outer side of the main track branching to the left
  • the right-turning main track is arranged between the branches of the main track, and the right-hand turning track is arranged on the outside of the main track that branches to the right.
  • the main track, the left-turning main track, and the left-hand turning track are arranged in parallel with each other; the main track, the At least part of the right-turning main track and the right-hand turning track are arranged in parallel with each other.
  • the parallel and opposite parts between the main track, the left-turning main track, and the left-hand turning track have a distance of 21-210mm; the main track , The parallel and opposite part between the right turn main track and the right turn track, the spacing is 21-210mm.
  • each of the permanent magnet arrays is a Halbach array.
  • the driving component is a linear stepping motor.
  • the linear stepping motor drives the guide magnet group on the steering side to fall or retract within a range of 12-120mm, or at least Half of the height of the permanent magnet array on the track system.
  • the distance between the guiding magnetic group and the fixed magnetic group is 10-100 mm.
  • a control method of a maglev rail transit switch system is also proposed, which is used in the above permanent magnet maglev rail transit switch system.
  • the steps include: supporting the load on the bogie body along the main When running in the direction, the magnetic field between the fixed magnetic group and the permanent magnet array of the main track interacts to maintain the bogie body to operate in a suspended state with no direct contact relative to the main track.
  • the bogie body bears the load and turns on one side relative to the main direction, the magnetic field between the fixed magnetic group and the main track permanent magnet array interacts to maintain the bogie assembly in a levitation and non-existent position relative to the track system.
  • the steering magnet group on the steering side is driven by the drive assembly to descend to face the steering track permanent magnet array on the steering side, and the magnetic poles at the lower part of the steering magnet group participate in the mutual magnetic field. It acts to provide upward thrust to the bogie body, so that the bogie body is in a suspended state with no direct contact with the track system and steers along the permanent magnet array of the steering track on the steering side; the steering The driving assembly provided on the frame body drives the steering magnetic assembly on the steering side to retract when the bogie body moves above the corresponding main track after the steering side is bifurcated.
  • the fixed magnetic assembly When the load supported by the bogie body is gradually moved closer to the main direction from one side of the main direction: when the bifurcation of the main track is about to close, the fixed magnetic assembly is first aligned with the close direction.
  • the magnetic field of the corresponding main track interacts to provide upward thrust to the bogie body, so that the bogie body is in a suspended state with no direct contact with the track system and gradually moves toward the main track in the approaching direction.
  • the main direction is close; when the bogie body is gradually close to the steering rail corresponding to the close direction, the drive assembly drives the guide magnetic assembly arranged on the close side to descend to the steering rail on the close side
  • the permanent magnet arrays are opposed to each other, and the guide magnet group is guided to the main direction by the magnetic field of the permanent magnet array of the turning track on the close side.
  • the drive assembly is driven and set at the close one.
  • the guiding magnetic group on the side retracts.
  • control method for a permanent magnet repulsive levitation system, a permanent magnet suction levitation system, and a permanent magnet tangential force levitation system.
  • Magnetic levitation system such as levitation system and electromagnetic attraction control.
  • the invention realizes the turnout control of the maglev rail train through the left and right turning main tracks arranged along the two sides of the main track and the guiding and guiding functions of the left and right turning tracks on the bogie body.
  • the invention can realize the conversion of the permanent magnet maglev rail transit line through the control of the switch system, improve the operation efficiency of the maglev line, optimize the laying of the maglev rail line, save the amount of magnetic track laying, and reduce the manufacturing cost of the maglev rail.
  • Figure 1 is a schematic diagram of the MAS-made permanent magnet maglev switch system of the present invention.
  • Fig. 2 is a schematic diagram of the structure of the MAS standard vehicle-mounted telescopic magnetic assembly of the present invention.
  • Fig. 3 is a schematic diagram of the track structure of the MAS standard switch track of the present invention.
  • Fig. 4 is a schematic diagram of the MAS-made permanent magnetic levitation transportation magnetic track arrangement of the present invention
  • Figure 5 is a schematic diagram of the MAS-made permanent magnet maglev traffic turnout process of the present invention.
  • Figure 6 is a schematic diagram of the MAS-made permanent magnet maglev transportation process of the present invention.
  • Fig. 7 is a schematic diagram of the turnout system of the Halbach array permanent magnet magnetic levitation traffic of the present invention.
  • Figure 8 is a schematic diagram of the structure of the Halbach array vehicle telescopic magnetic assembly of the present invention.
  • FIG. 9 is a schematic diagram of the Halbach array switch track structure of the present invention.
  • Fig. 10 is a schematic diagram of the arrangement of the permanent magnet magnetic levitation transportation magnetic track of the Halbach array of the present invention.
  • Figure 11 is a schematic diagram of the Halbach array permanent magnetic levitation traffic turnout process of the present invention.
  • Figure 12 is a schematic diagram of the MAS-made permanent magnet maglev switch system of the present invention.
  • FIG. 13 is a schematic diagram of the structure of the MAS standard vehicle-mounted telescopic magnetic assembly of the present invention.
  • Figure 14 is a schematic diagram of the MAS system switch track structure of the present invention.
  • Figure 15 is a schematic diagram of the MAS-made permanent magnetic levitation traffic magnetic track arrangement of the present invention.
  • Figure 16 is a schematic diagram of the MAS-made permanent magnet maglev traffic turnout process of the present invention.
  • Figure 17 is a schematic diagram of the MAS-made permanent magnet maglev transportation process of the present invention.
  • FIG. 19 is a schematic diagram of the structure of the Halbach array vehicle telescopic magnetic assembly of the present invention.
  • Fig. 21 is a schematic diagram of the arrangement of the permanent magnet magnetic levitation transportation magnetic track of the Halbach array of the present invention.
  • Fig. 22 is a schematic diagram of the process of the Halbach array permanent magnetic levitation traffic turnout of the present invention.
  • the meaning of "left and right” in the present invention means that when the user is facing the forward direction of the bogie assembly, the user's left is the left and the user's right is the right, not the device mechanism of the present invention Specific limits.
  • the meaning of "connection” in the present invention can be a direct connection between components or an indirect connection between components through other components.
  • the meaning of "up and down” in the present invention means that when the user is facing the forward direction of the bogie assembly, the direction from the track system to the bogie body is up, and the direction from the bogie body to the track system is The following is not a specific limitation to the device mechanism of the present invention.
  • the meaning of "main direction” in the present invention refers to the direction along the main rails that are parallel to each other or along the direction of the main rail without bifurcation, that is, the length of the bottom plate along the rail system shown in the figure. direction.
  • Figure 1 is a schematic diagram suitable for MAS-based maglev rail transit. It can be seen from the accompanying drawings that the permanent magnet maglev rail transit system includes the main track 1, the main track 2, the main track 3, the left telescopic guide track 4, and the right Side telescopic guide rail 5, bogie 6, main movement magnetic group 7 and guide magnetic group 8. The specific implementation of the present invention will be described below.
  • the main rail 1, the main rail 2, the main rail 3, the telescopic guide rail 4, and the telescopic guide rail 5 are laid by permanent magnet arrays.
  • the turning radius of the bifurcation is 30°.
  • a set of telescopic guide magnetic rails; the height of the track composed of the magnets is 34 mm and is laid along the "eight-shaped" shape; the telescopic guide rail is controlled by the motor to extend and contract, and the extension distance is 34 mm, as shown in FIG.
  • the arrangement of the track and on-board magnets is shown in FIG. 4.
  • the vehicle-mounted magnetic group is composed of a bogie 6, two main moving magnetic groups 7 and two guiding magnetic groups 8.
  • the main movement magnetic group 7 is provided with two groups respectively placed on both sides of the center line of the bogie with a spacing of 36mm; the two sets of guide magnetic groups 9 are respectively placed on both sides of the two main movement magnets 8 with a distance of 36mm from the main movement magnet .
  • the protruding length of the magnetic group is 36mm.
  • the magnetic assembly is installed on the bogie 5.
  • the two main moving magnetic groups 7 in the on-board magnets interact with the main track 1 to provide levitation force.
  • the left telescopic guide rail 4 on the vehicle extends under the control of the motor, and is subject to the left telescopic guide rail and the guide magnet
  • the magnetic field of the steering track formed by the guiding track composed of the group 8 makes the guiding magnetic group 8 and the main moving magnetic group 7 slide into the telescopic guide rail 4 without contact, and the two main moving magnetic groups 7 leave the main
  • the track 1 no longer provides levitation force, and the telescopic guide track 4 remains extended during the entire track branching operation.
  • the switch system of the permanent magnet maglev rail transit can realize the merging of the maglev rail transit.
  • the two main moving magnetic groups 7 in the on-board magnets interact with the main track 3 to provide a levitation force.
  • the left telescopic guide track 4 on the vehicle extends under the control of the motor, and is guided by the same side guide magnet group 8, the main moving magnet
  • the magnetic field of the steering track formed by the group 7 and the telescopic guide rail on the same side makes the guide magnetic group 8 and the main moving magnetic group 7 slide into the telescopic guide rail 2 without contact.
  • the two main moving magnetic groups 7 leave the main track 3 without contact. Furthermore, the suspension force is provided, and the telescopic guide rail 4 remains extended during the entire track bifurcation operation of the vehicle.
  • the left main track turns more than 30°
  • the vehicle is about to complete the turnout, and the on-board main moving magnetic group 7 slides into the straight main track 1 without contact.
  • the vehicle-mounted magnetic group is about to move to the new linear main track 1 under the action of the magnetic field of the linear track 1, the two main moving magnetic groups 7 slide into the new track and work together with the linear track to provide levitation force.
  • the invention is also applicable to the turnout system of Halbach array type magnetic levitation rail transit.
  • Figure 7 is a schematic diagram of the Halbach array maglev rail transit.
  • the permanent magnet maglev rail transit system includes the main track 1, the main track 2, the main track 3, the left telescopic guide track 4, and the right Side telescopic guide rail 5, bogie 6, main movement magnetic group 7 and guide magnetic group 8.
  • the specific implementation of the present invention will be described below.
  • the main rail 1, the main rail 2, the main rail 3, the telescopic guide rail 4, and the telescopic guide rail 5 are laid by permanent magnet arrays.
  • the turning radius of the bifurcation is 30°.
  • a set of telescopic guide magnetic rails; the height of the track composed of the magnets is 34mm and is laid along the "eight-shaped" shape; the telescopic guide rail is controlled by the motor to extend and contract, and the extension distance is 34mm, as shown in FIG.
  • the arrangement of the track and on-board magnets is shown in FIG. 10.
  • the vehicle-mounted magnetic group is composed of a bogie 6, a main moving magnetic group 7 and a two-side guide magnetic group 8.
  • the main moving magnetic group 8 is placed in the middle position; the guiding magnetic group 9 is respectively placed on both sides of the main moving magnet 8 with a distance of 36 mm from the main moving magnet.
  • the protruding length of the magnetic group is 36mm.
  • the magnetic group and the linear motor are both installed on the bogie 6.
  • the main moving magnetic group 7 in the on-board magnet interacts with the main track 1 to provide levitation force, and levitation travels on the main track through the motor thrust.
  • the left telescopic guide rail 4 on the vehicle extends under the control of the motor, and is affected by the left telescopic guide rail and the guide magnetic assembly 8 Due to the magnetic field of the steering track formed by the composed guide track, the guide magnet group 8 slides into the telescopic guide track 4 without contact, and the main moving magnet group 7 leaves the main track 1, no longer providing levitation force, and the vehicle diverges across the track.
  • the telescopic guide rail 4 remains extended.
  • the main moving magnetic group 7 on the vehicle-mounted magnetic group slides into the new track, and cooperates with the linear track to provide levitation force.
  • the operation of the guiding magnetic group 8 on the same side in the telescopic guide rail 4 ends.
  • the train completes the turnout operation, and the motor controls the telescopic guide rail 4 on the same side.
  • the main moving magnetic group 7 on the train completes the docking with the main track 2 and returns to the straight-line running state.
  • the present invention discloses a permanent magnet type magnetic levitation rail transit switch system, which includes: a rail system on which a switch rail is arranged, and a vehicle-mounted magnetic assembly running on the rail system, which is mainly composed of a bogie assembly .
  • the turnout track includes: a main track 11 before branching, a left-turning main track 12 and a right-turning main track 13, a left-hand turning track 14, and a right-hand turning track 15;
  • the main track 11 is formed after passing through the switch structure
  • the left and right two new left-turning main tracks 12 and right-turning main tracks 13, the left-turning main tracks 12 and the right-turning main tracks 13 respectively serve as the main tracks of the turnout rear-stage track system
  • the left-hand steering track 14 or The right steering track 15 is used as a guiding magnetic track (hereinafter referred to as the guiding magnetic track), which are respectively laid on both sides of the main track's bifurcation and turn, and respectively form a guiding track with the branched main track
  • the rail 12 and the right-turning main rail 13 are the main rails formed by branching after the main rail 11 passes through the switch system, that is, the maglev vehicle enters a new main rail after the main rail 11 is branched, so that
  • Both the main track and the guide track are composed of a permanent magnet array (Halbach array, etc.), and the permanent magnet array is laid along the turnout track.
  • the gauge of the guide rail is equal to the gauge between the main rails.
  • the guide rails can be arranged on the left and right sides of the main rail, the height of the rail composed of the magnets is 22-34mm, and the gauge is 21-210mm.
  • the vehicle-mounted magnetic group includes: a fixed magnetic group connected to the bogie body 17, a guide magnetic group, and a driving assembly.
  • the driving assembly can be realized by a linear stepping motor.
  • the vehicle-mounted magnetic group includes a total of three magnetic groups installed on the bogie, among which: the fixed magnetic group is installed in the center of the bogie and is in a state of always extending to ensure the stable operation of the train in the track; the guiding magnet The group is installed on both sides of the bogie, and is in a retracted state when the system runs straight along the main direction; the drive assembly is used to control the expansion and contraction of the guiding magnetic groups on both sides.
  • the fixed magnetic group and the guiding magnetic group are composed of permanent magnetic arrays, such as Halbach arrays.
  • the turning angle of the bifurcation of the main track is 10-45°, and a set of guide rails are respectively provided on both sides of the bifurcation.
  • the fixed magnetic group, the guiding magnetic group and the linear stepping motor system are all arranged on the bogie body; the guiding magnetic group 19 is respectively placed on both sides of the fixed magnetic group 18, and the distance from the fixed magnetic group is 10- 100mm.
  • the guide magnetic assembly 19 is controlled by a linear stepping motor to expand and contract, and the extension distance is 12-120mm downward along the lower surface of the bogie body.
  • the fixed magnetic group 18 in the vehicle-mounted magnetic group interacts with the main track to provide a levitation force, and travels in the main track by the thrust provided by the electromagnetic levitation; when the train is about to travel
  • the one-side guide magnet group 19 on the vehicle extends under the control of the motor, and is acted by the steering track magnetic field formed by the side rail of the main track and the same side guide rail, and the guide magnet group slides without contact.
  • the fixed magnetic group remains extended during the entire track bifurcation process of the vehicle. Since the main track is divided into two groups of magnetic tracks after the turnout structure, the vehicle-mounted fixed magnetic group 18 is driving towards the main track magnetic track.
  • the magnetic tracks in the two directions keep moving away, and the levitation force provided by the track on the non-turning side is continuously reduced.
  • the levitation force in this process is mainly provided by the guiding magnetic group 19 and the guiding track on the turning side. .
  • the vehicle-mounted fixed magnetic group 18 will enter the branched main track, that is, the left-turn main track 12 or the right-turn main track 13 In the middle, under the action of the orbital magnetic field, the fixed magnetic assembly slides into the bifurcated main track and works together with the track to provide levitation.
  • the train After the fixed magnetic group 18 enters the branched main track, the travel of the guide magnetic group in the guide track ends, the train completes the turnout operation, the motor controls the steering magnetic group 19 on the steering side to retract, and the fixed magnetic group on the train and the branch After the turnout, the main track completes the docking and re-drives in a straight running state.
  • the above-mentioned permanent magnet type maglev rail transit switch system is not only suitable for permanent magnet type repulsive levitation trains, but also suitable for permanent magnet attraction, tangential force, electromagnetic attraction control and other levitation maglev rail transportation.
  • Figure 12 is a schematic diagram suitable for MAS maglev rail transit.
  • the guiding device used in the MAS model can be mechanically guided, that is, side walls are arranged on the rails, and guide wheels are installed on both sides of the bottom of the train. The guide wheels roll on the side walls to ensure the balance of the train in the horizontal direction.
  • the permanent magnet maglev rail transit system includes a main track 11, a left-turn main track 12, a right-turn main track 13, a left-hand steering track 14, a right-hand steering track 15, and a linear stepping motor 16. , Bogie body 17, fixed magnetic group 18 and guiding magnetic group 19. The specific implementation of the present invention will be described below.
  • the main track 11, the left-turn main track 12, the right-turn main track 13, and the guide track composed of the left-hand steering track 14 and the right-hand steering track 15 are all laid by permanent magnet arrays.
  • the turning radius of the bifurcation is 30°, and a set of guide magnetic rails are provided on both sides of the bifurcation; the rail composed of the magnets has a height of 34 mm and a gauge of 21 mm, as shown in FIG. 14.
  • the arrangement of the track and on-board magnets is shown in FIG. 15.
  • the vehicle-mounted magnetic group is composed of a linear stepping motor 16, a bogie body 17, a fixed magnetic group 18, and a guide magnetic group 19 on both sides.
  • the fixed magnetic group 18 is placed in the center position and maintained in an extended state;
  • the guide magnetic groups 19 are respectively placed on both sides of the fixed magnet 8 with an interval of 36 mm from the fixed magnet;
  • the linear stepping motor 16 controls the guide magnetic group 19 Telescopic, the extension distance is 12mm.
  • the magnetic assembly and the linear motor are both installed on the bogie body 17.
  • the fixed magnetic group 18 in the on-board magnet acts on the main track 11 to provide a levitation force, and travels on the main track 11 by the motor thrust.
  • the left-side guide magnet group 19 on the vehicle extends under the control of the motor 16, and is guided by the left rail of the main rail 11 and the same side guide.
  • the magnetic field of the steering track formed by the guide rail composed of the magnetic track causes the guide magnetic assembly 19 to slide into the guide track without contact, and the fixed magnetic assembly 3 remains extended during the entire track branching operation.
  • the vehicle-mounted fixed magnetic group 18 keeps moving away from the two magnetic tracks during the process of driving towards the magnetic track bifurcation of the main track 11.
  • the levitation force provided is continuously reduced, and the levitation force in this process is mainly provided by the guide magnetic group 19 and the guide rail.
  • the left main track turns more than 30°, the separation distance between the left and right side rails of the main track is large enough.
  • a magnetic track is laid at a distance of 21mm from the right track of the original left-turning main track 12, which is similar to the original The magnetic track of the main track forms a new left-turn guide track.
  • the vehicle-mounted magnetic assembly When the vehicle-mounted magnetic assembly is about to move to the new straight left-turning main track 12 for linear operation, under the action of the magnetic field of the left-turning main track 12, the vehicle-mounted magnetic assembly slides into the new track and interacts with the linear track to provide levitation force.
  • the operation of the guide magnetic group 18 in the guide rail ends.
  • the train completes the turnout operation, and the linear stepping motor 16 controls the same side guide magnetic group 19 is retracted, and the fixed magnetic group 18 on the train completes the docking with the new main track and returns to the straight-line running state.
  • the switch system of the permanent magnet maglev rail transit can realize the merging of the maglev rail transit.
  • the fixed magnetic group 4 in the on-board magnet acts on the right-turning main track 13 to provide a levitation force, and the vehicle is levitation driven by the motor thrust. Turn right into the main track 13.
  • the left-side guide magnetic group 19 on the vehicle is extended under the control of the motor 16, and is subject to the left-hand rail of the right-turn main rail 13 and the same-side guide magnetic rail.
  • the guide magnetic assembly 19 slides into the guide track without contact, and the fixed magnetic assembly 18 remains extended during the entire track bifurcation operation. Since the main track 11 passes through the turnout structure and forms a left-turning main track 12 and a right-turning main track 13, the vehicle-mounted fixed magnetic group 18 enters the magnetic track branch when driving out of the right-turning main track 13, and the suspension force in this process Mainly provided by the guiding magnetic group 19 and the guiding track. When the left main track turns more than 30°, the vehicle-mounted fixed magnetic group 18 slides into the straight main track 11 without contact.
  • the left magnetic track of the left main track 13 and the other side main track magnetic Under the combined action of the new linear main track 11, when the vehicle magnetic group is about to move to the new linear main track 11, under the action of the magnetic field of the linear track 1, the vehicle fixed magnetic group 18 slides into the new track, and the linear The orbits work together to provide levitation.
  • the operation of the guide magnetic group 19 in the guide rail ends.
  • the linear stepping motor 16 controls the same side guide magnetic group 19
  • the fixed magnetic group 18 on the train travels on the main track 11 again.
  • the invention is also applicable to the turnout system of Halbach array type magnetic levitation rail transit.
  • Figure 18 is a schematic diagram of the Halbach array maglev rail transit.
  • the permanent magnet maglev rail transit system includes a main track 11, a left turn main track 12, a right turn main track 13, and a left turn track 14.
  • the specific implementation of the present invention will be described below.
  • the main track 11, the left turn main track 12, the right turn main track 13, the left turn track 14, and the right turn track 15 are laid by the Halbach array.
  • the turning radius of the branch is 30°.
  • Both sides of the bifurcation outlet are arranged as a set of guiding magnetic tracks; the track composed of the magnets has a height of 34 mm and a track pitch of 21 mm, as shown in FIG. 20.
  • the arrangement of the track and on-board magnets is shown in FIG. 21.
  • the vehicle-mounted magnetic group is composed of a linear stepping motor 16, a bogie body 17, a fixed magnetic group 18 and a guide magnetic group 19 on both sides.
  • the fixed magnetic group 18 is placed in the middle position and maintained in an extended state; the guide magnetic groups 19 are respectively placed on both sides of the fixed magnetic group 18 and the distance between the fixed magnets is 36mm; the linear stepping motor 16 controls the guide magnetic group 19 The extension distance is 12mm.
  • the magnetic assembly and the linear motor are both installed on the bogie body 17.
  • the fixed magnetic group 18 in the on-board magnet acts on the main track 11 to provide a levitation force, and travels on the main track 11 by the motor thrust.
  • the left-side guide magnetic group 19 on the vehicle extends under the control of the motor 6, and is steered by the left-side guide magnetic track group. Due to the effect of the track magnetic field, the guide magnetic assembly 19 runs on the guide track without contact, and runs in the direction of the left-turning main track 12, and the fixed magnetic assembly 18 remains extended during the entire track branching operation.
  • the fixed magnetic group 18 When the vehicle-mounted fixed magnetic group 18 is heading to the bifurcation of the main track 11, the fixed magnetic group 18 is driven out of the main track 11. At this time, the main track 11 no longer interacts with the fixed magnetic group 18, and the suspension force is mainly guided by A magnetic group 19 and a guide rail in the direction of the left-turn main rail 12 are provided. When the left main track turns more than 30°, at this time, the fixed magnetic group 18 is about to drive into the branch magnetic track of the original main track and turn left to the main track 12.
  • the vehicle-mounted magnetic group When the vehicle-mounted magnetic group is about to move to the new left-turning main track 12 to move in a straight line, under the action of the magnetic field of the left-turning main track 12, the vehicle-mounted magnetic group runs on the new track without contact, and cooperates with the linear track to provide levitation force.
  • the guiding magnetic group 19 runs on the guiding track.
  • the train completes the turnout operation, and the linear stepping motor 16 controls the guidance on the same side.
  • the magnetic group 19 is retracted, and the fixed magnetic group 18 on the train completes the docking with the main track 11, and returns to the linear running state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

一种永磁式磁悬浮轨道交通的道岔系统及其控制方法。通过沿主轨道(11)的分岔两侧而设置的左、右转主轨道(12、13),以及左、右侧转向轨道(14、15)对转向架本体(17)的导向、引导作用,实现了磁悬浮轨道列车的道岔控制。能够通过该道岔系统的控制实现永磁式磁悬浮轨道交通线路的转换,提高磁悬浮线路的运行效率,优化了磁浮轨道线路的铺设,节约磁轨铺设量,降低了磁悬浮轨道制造成本。

Description

永磁式磁悬浮轨道交通的道岔系统及其控制方法 技术领域
本发明涉及磁悬浮轨道交通领域,具体涉及一种永磁式磁悬浮轨道交通的道岔系统。
背景技术
磁悬浮列车作为现代轨道交通系统,有着耗能低、速度快、安全便捷的特点,而道岔是轨道交通实现线路转换不可或缺的设备。现有技术中对于永磁式磁悬浮列车道岔的研究较少,目前为止只有少量研究涉及磁悬浮道岔,限制了磁悬浮特别是永磁式磁悬浮轨道线路运行效率的提高。
发明专利“应用于高温超导磁悬浮系统的机械道岔及转向方法”(专利申请号:201610180047.X)涉及一种应用于高温超导磁悬浮系统的机械道岔及转向方法,该装置通过平移驱动件驱动磁轨平移,使两个永磁轨道对接完成道岔,但通过驱动轨道进行道岔,基础建设费用、维护费用高,道岔的运行效率较低,经济性较差。
发明专利“一种用于磁悬浮系统的电磁道岔”(专利申请号:201711013111.6)涉及一种用于磁悬浮系统的电磁道岔,该装置通过控制电磁线圈模拟永磁体的电磁场,使电磁线圈的磁场与永磁轨道的磁场耦合实现磁悬浮列车道岔,而利用电磁线圈对永磁体磁场进行模拟难度较大,技术要求较高。
发明内容
本发明的目的在于提供一种永磁磁悬浮轨道交通的道岔系统,从而提高永磁磁悬浮轨道线路的运行效率和使用率。
本发明公开了一种永磁式磁悬浮轨道交通的道岔系统,其包括:道岔轨道与行驶于轨道上的车载磁组。
所述道岔轨道包括:分岔前的主轨道1、分岔后的主轨道2和主轨道3、左侧伸缩导向轨道4、右侧伸缩导向轨道5驱动组件;主轨道1经过道岔结构后形成左右两根新的主轨道2和主轨道3;所述伸缩导向磁轨分别铺设于主轨道分岔转弯处的两侧,分别与分岔后的主轨道组成导向轨道;所述驱动组件用于控制两侧导向轨道伸缩;所述主轨道2、3沿分岔后的主轨道铺设,用于衔接经过导向轨道分岔后的主轨道,使列车重新 回到直线轨道。
所述主轨道、导向轨道均由永磁阵列组成,沿所述道岔轨道铺设。
所述导向轨道的轨距与主轨道之间的轨距相等。
所述车载磁组包括:转向架、主运动磁组、导向磁组;所述磁组共设置四组安装于转向架上;所述两组主运动磁组分别安装于转向架中心线位置两侧,保证列车在轨道内的运行稳定;所述导向磁组安装于转向架两侧,和同侧主运动磁组组合与处于伸出状态时的伸缩导向轨道作用。
所述主运动磁组、导向磁组均由永磁阵列组成。
所述车辆在直线主轨道上运行时,所述车载磁组中的一组主运动磁组与主轨道作用,提供悬浮力,通过电机推力的作用悬浮行驶于主轨道中;当列车即将行驶至轨道分岔口时,列车操作人员对需要驶入的方向进行选择并给予控制该侧轨道伸缩的电机一个信号,轨道上的伸缩导向轨道在电机的控制下伸出,受到伸缩导向轨道与车载磁组同侧导向磁组、主运动磁组形成的转向轨道磁场的作用,同侧车载磁组无接触的滑入伸缩导向轨道上,车辆在整个轨道分叉运行过程中伸缩导向轨道保持伸出状态;所述主运动磁组即将离开主轨道,不再提供悬浮力,此过程悬浮力由导向磁组、主运动磁组与伸缩导向轨道提供;在即将结束分岔的过程中,所述车载磁组上的一组主运动磁组重新无接触的滑入同侧分岔后的直线主轨道;所述主运动磁组进入分岔后主轨道后,导向磁组、主运动磁组在伸缩导向轨道中的运行结束,列车完成道岔运行,电机控制同侧伸缩导向轨道收回,列车上主运动磁组与分岔后主轨道完成对接,重新回到直线运行状态。
以上方案的有益效果
通过本发明可以实现磁悬浮轨道列车的道岔控制,能够完成永磁式磁悬浮轨道交通线路的转换,提高磁悬浮线路的运行效率,优化了磁浮轨道线路的铺设,节约磁轨铺设量,降低了磁悬浮轨道制造成本。
另外,本发明针对现有技术的不足,还提供一种能够实现转向分岔或者并线的永磁式磁悬浮轨道交通的道岔系统及其控制方法。
首先,为实现上述目的,提出一种永磁式磁悬浮轨道交通的道岔系统,包括:轨道系统以及转向架组件。其中,所述轨道系统包括:主轨道,其上设置有沿主方向排布的主轨道永磁体阵列;左转主轨道设置在所述主轨道的主方向的左侧,与所述主轨道未分叉的方向之间成10-45°的转弯角度;所述左转主轨道上设置有左转主轨道永磁体阵列,所述左转主轨道永磁体阵列的磁场设置为延续所述主轨道永磁体阵列的磁场向左转 向;右转主轨道设置在所述主轨道的主方向的右侧,与所述主轨道未分岔的方向之间成10-45°的转弯角度;所述右转主轨道上设置有右转主轨道永磁体阵列,所述右转主轨道永磁体阵列的磁场设置为延续所述主轨道永磁体阵列的磁场向右转向;左侧转向轨道,设置在所述左转主轨道的外侧,并设置有沿所述主轨道向与所述左转主轨道平行的方向弯折的弧度;所述左侧转向轨道上设置有左侧转向轨道永磁体阵列,所述左侧转向轨道永磁体阵列的磁场设置为衔接所述左转主轨道永磁体阵列的磁场以及所述主轨道永磁体阵列的磁场;右侧转向轨道,设置在所述左转主轨道的外侧,并设置有沿所述主轨道向与所述右转主轨道平行的方向弯折的弧度;所述右侧转向轨道上设置有右侧转向轨道永磁体阵列,所述右侧转向轨道永磁体阵列的磁场设置为衔接所述右转主轨道永磁体阵列的磁场以及所述主轨道永磁体阵列的磁场。所述转向架组件包括:转向架本体,设置在所述轨道系统的上方,用于承托负载实现运行或转向;所述转向架本体的下侧中部设置有固定磁组,所述固定磁组的两侧分别设置有至少一组导向磁组,所述固定磁组与所述主轨道永磁体或所述左转主轨道永磁体阵列或所述右转主轨道永磁体阵列相对设置,所述固定磁组下部的磁极与所述主轨道永磁体阵列、所述左转主轨道永磁体阵列或所述右转主轨道永磁体阵列上部的磁极相同,用于与其磁场相互作用以对所述转向架本体提供向上的推力,维持所述转向架本体相对所述轨道系统处于悬浮、无直接接触的状态;所述导向磁组分别与右侧转向轨道永磁体阵列或所述左侧转向轨道永磁体阵列相对设置,所述导向磁组下部的磁极与所述右侧转向轨道永磁体阵列或所述左侧转向轨道永磁体阵列上部的磁极相同,用于参与磁场的相互作用以对所述转向架本体提供向上的推力,使所述转向架本体相对所述轨道系统处于悬浮、无直接接触的状态并沿所述右侧转向轨道永磁体阵列或所述左侧转向轨道永磁体阵列转向;所述转向架本体的上侧设置有驱动组件,用于在所述转向架本体运行到所述左侧转向轨道、所述右侧转向轨道的上方时,驱动设置于转向一侧的所述导向磁组下降;在所述转向架本体运行到所述左转主轨道或所述右转主轨道的上方时,驱动转向侧的所述导向磁组收回。
可选的,上述的永磁式磁悬浮轨道交通的道岔系统中,所述主轨道包括有2条或以上,所述各主轨道由相互之间沿主方向平行设置逐渐向外分叉,或由分叉设置逐渐靠拢为沿主方向相互平行;所述左转主轨道设置在所述主轨道的分岔之间,所述左侧转向轨道设置在向左侧分叉的所述主轨道的外侧;所述右转主轨道设置在所述主轨道的分岔之间,所述右侧转向轨道设置在向右侧分叉的所述主轨道的外侧。
可选的,上述的永磁式磁悬浮轨道交通的道岔系统中,所述主轨道、所述左转主 轨道、左侧转向轨道之间至少设置有部分位置平行相对;所述主轨道、所述右转主轨道、右侧转向轨道之间至少设置有部分位置平行相对。
可选的,上述的永磁式磁悬浮轨道交通的道岔系统中,所述主轨道、所述左转主轨道、左侧转向轨道之间平行相对的部分,间距为21-210mm;所述主轨道、所述右转主轨道、右侧转向轨道之间平行相对的部分,间距为21-210mm。
可选的,上述的永磁式磁悬浮轨道交通的道岔系统中,所述各永磁体阵列为海尔贝克阵列。
可选的,上述的永磁式磁悬浮轨道交通的道岔系统中,所述驱动组件为直线步进电机。
可选的,上述的永磁式磁悬浮轨道交通的道岔系统中,所述直线步进电机驱动所述转向侧的所述导向磁组下降或收回的范围在12-120mm之间,或至少为所述轨道系统上永磁体阵列高度的一半。
可选的,上述的永磁式磁悬浮轨道交通的道岔系统中,所述导向磁组与所述固定磁组之间的间距为10-100mm。
其次,为实现上述目的,还提出一种磁悬浮轨道交通的道岔系统的控制方法,用于上述的永磁式磁悬浮轨道交通的道岔系统,其步骤包括:在所述转向架本体承托负载沿主方向运行时,所述固定磁组与主轨道永磁体阵列之间的磁场相互作用,维持所述转向架本体相对所述主轨道处于悬浮、无直接接触的状态运行。在所述转向架本体承托负载相对主方向一侧转向时,所述固定磁组与主轨道永磁体阵列之间的磁场相互作用,维持所述转向架组件相对所述轨道系统处于悬浮、无直接接触的状态运行;同时,转向一侧的所述导向磁组由所述驱动组件驱动而下降至与转向一侧的转向轨道永磁体阵列相对,所述导向磁组下部的磁极参与磁场的相互作用以对所述转向架本体提供向上的推力,使所述转向架本体相对所述轨道系统处于悬浮、无直接接触的状态并沿转向一侧的所述转向轨道永磁体阵列转向;所述转向架本体上设置的驱动组件,在所述转向架本体运行到转向一侧分叉后对应的所述主轨道上方时,驱动转向侧的所述导向磁组收回。在所述转向架本体承托负载由所述主方向的一侧逐渐靠拢至所述主方向时:在所述主轨道的分叉即将靠拢的过程中,所述固定磁组首先与靠拢方向所对应的主轨道的磁场相互作用,对所述转向架本体提供向上的推力,使所述转向架本体相对所述轨道系统处于悬浮、无直接接触的状态并沿靠拢方向的所述主轨道逐渐向主方向靠拢;在所述转向架本体逐渐靠拢至所述靠拢方向所对应的转向轨道上方时,所述驱动组件驱动设置于靠拢一侧的 所述导向磁组下降至与靠拢一侧的转向轨道永磁体阵列相对,所述导向磁组受所述靠拢一侧的转向轨道永磁体阵列的磁场引导运行至主方向,靠拢至所述主轨道的主方向上时所述驱动组件驱动设置于靠拢一侧的所述导向磁组收回。
可选的,上述的磁悬浮轨道交通的道岔系统的控制方法中,所述控制方法用于永磁式斥力悬浮方式的系统,永磁式吸力悬浮方式的系统、永磁式切向力悬浮方式的系统以及电磁吸引控制等悬浮方式的磁悬浮系统。
以上方案的有益效果
本发明通过沿主轨道的分岔两侧而设置的左、右转主轨道,以及左、右侧转向轨道对转向架本体的导向、引导作用,实现了磁悬浮轨道列车的道岔控制。本发明能够通过该道岔系统的控制实现永磁式磁悬浮轨道交通线路的转换,提高磁悬浮线路的运行效率,优化了磁浮轨道线路的铺设,节约磁轨铺设量,降低了磁悬浮轨道制造成本。
附图说明
图1是本发明的MAS制永磁式磁悬浮交通的道岔系统示意图,
图2是本发明的MAS制式车载伸缩式磁组结构示意图,
图3是本发明的MAS制式道岔轨道结构示意图,
图4是本发明的MAS制永磁式磁悬浮交通磁轨排布示意简图,
图5是本发明的MAS制永磁式磁悬浮交通道岔过程示意图,
图6是本发明的MAS制永磁式磁悬浮交通并轨过程示意图,
图7是本发明的海尔贝克阵列永磁式磁悬浮交通的道岔系统示意图,
图8是本发明的海尔贝克阵列式车载伸缩式磁组结构示意图,
图9是本发明的海尔贝克阵列式道岔轨道结构示意图,
图10是本发明的海尔贝克阵列永磁式磁悬浮交通磁轨排布示意简图,
图11是本发明的海尔贝克阵列永磁式磁悬浮交通道岔过程示意图,
图12是本发明的MAS制永磁式磁悬浮交通的道岔系统示意图,
图13是本发明的MAS制式车载伸缩式磁组结构示意图,
图14是本发明的MAS制式道岔轨道结构示意图,
图15是本发明的MAS制永磁式磁悬浮交通磁轨排布示意简图,
图16是本发明的MAS制永磁式磁悬浮交通道岔过程示意图,
图17是本发明的MAS制永磁式磁悬浮交通并轨过程示意图,
图18是本发明的海尔贝克阵列永磁式磁悬浮交通的道岔系统示意图,
图19是本发明的海尔贝克阵列式车载伸缩式磁组结构示意图,
图20是本发明的海尔贝克阵列式道岔轨道结构示意图,
图21是本发明的海尔贝克阵列永磁式磁悬浮交通磁轨排布示意简图,
图22是本发明的海尔贝克阵列永磁式磁悬浮交通道岔过程示意图。
附图标记
1、主轨道1;2、主轨道2;3、主轨道3;4、左侧伸缩导向轨道;5、右侧伸缩导向轨道;6、转向架;7、主运动磁组;8、导向磁组;11、主轨道;12、左转主轨道;13、右转主轨道;14、左侧转向轨道;15、右侧转向轨道;16、直线步进电机;17、转向架本体;18、固定磁组;19、导向磁组。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明。应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。本发明中所述的“和/或”的含义指的是各自单独存在或两者同时存在的情况均包括在内。本发明中所述的“内、外”的含义指的是相对于轨道系统本身而言,指向轨道系统内部的方向为内,反之为外;而非对本发明的装置机构的特定限定。本发明中所述的“左、右”的含义指的是使用者正对转向架组件前进方向时,使用者的左边即为左,使用者的右边即为右,而非对本发明的装置机构的特定限定。本发明中所述的“连接”的含义可以是部件之间的直接连接也可以是部件间通过其它部件的间接连接。本发明中所述的“上、下”的含义指的是使用者正对转向架组件前进方向时,由轨道系统指向转向架本体的方向即为上,由转向架本体指向轨道系统的方向即为下,而非对本发明的装置机构的特定限定。本发明中所述的“主方向”的含义指的是沿相互平行的主轨道的方向或沿未分叉的所述主轨道的方向即,图示中显示出来的沿轨道系统的底板的长度方向。
实施例1:
图1是适用于MAS制式磁浮轨道交通的示意图,结合附图可见,本永磁式磁浮轨道交通的道岔系统,包括主轨道1、主轨道2、主轨道3、左侧伸缩导向轨道4、右侧伸缩导向轨道5、转向架6、主运动磁组7和导向磁组8。下面就本发明的具体实施,加以说明。
如图1所示,所述主轨道1、主轨道2、主轨道3、伸缩导向轨道4和伸缩导向轨道5由永磁阵列铺设,分岔口转弯半径为30°,在分岔口出两侧均设由一组伸缩导向磁轨;所述磁体组成的轨道高度为34mm,沿“八字”型铺设;所述伸缩导向轨道由电机控制伸缩,伸出距离为34mm,如图5所示。所述轨道及车载磁体排布方式如图4所示。
如图2所示,所述车载磁组由转向架6、两组主运动磁组7和两组导向磁组8组成。所述主运动磁组7设置两组分别置于转向架中心线两侧,间距为36mm;所述两组导向磁组9分别置于两组主运动磁体8两侧与主运动磁体间隔为36mm。所述磁组伸出长度为36mm。所述磁组均安装于转向架5上。
如图5(a)所示,车辆在直线主轨道1上运行时,所述车载磁体中的两组主运动磁组7与主轨道1作用,提供悬浮力,通过电机推力的作用悬浮行驶于主轨道1中,当车辆需要向左侧分岔时,如图5(b)所示,车辆上的左侧伸缩导向轨道4在电机的控制下伸出,受到左侧伸缩导向轨道与导向磁组8、主运动磁组7组成的导向轨道形成的转向轨道磁场的作用,导向磁组8、主运动磁组7无接触的滑入伸缩导向轨道4上,两组主运动磁组7离开主轨道1,不再提供悬浮力,车辆在整个轨道分岔运行过程中伸缩导向轨道4保持伸出状态。当车载磁组即将运行到新的直线主轨道2时,在直线轨道2磁场的作用下,车载磁组上的两组主运动磁组7滑入新轨道中,与直线轨道共同作用,提供悬浮力。在主运动磁组7进入直线轨道2后,同侧导向磁组8、主运动磁组7在伸缩导向轨道4中的运行结束,如图5(c)所示,列车完成道岔运行,电机控制同侧伸缩导向轨道4收回,列车上主运动磁组7与主轨道2完成对接,重新回到直线运行状态。
该永磁磁浮轨道交通的道岔系统能够实现磁悬浮轨道交通的并轨。如图6(a)所示,车辆在直线主轨道3上运行时,所述车载磁体中的两组主运动磁组7与主轨道3作用,提供悬浮力,通过电机推力的作用悬浮行驶于主轨道3上,当车辆行驶至并轨区域时,如图6(b)所示,车辆上的左侧伸缩导向轨道4在电机的控制下伸出,受到同侧导向磁组8、主运动磁组7与同侧伸缩导向轨道形成的转向轨道磁场的作用,导向磁组8、主运动磁组7无接触的滑入伸缩导向轨道2上,两组主运动磁组7离开主轨道3,不再提供悬浮力,车辆在整个轨道分叉运行过程中伸缩导向轨道4保持伸出状态。当左侧主 轨道转弯超过30°时,车辆即将完成道岔,车载主运动磁组7无接触滑入直线主轨道1。当车载磁组即将运行到新的直线主轨道1时,在直线轨道1磁场的作用下,两组主运动磁组7滑入新轨道中,与直线轨道共同作用,提供悬浮力。在主运动磁组7进入直线轨道1后,导向磁组8、主运动磁组7在伸缩导向轨道4中的运行结束,如图6(c)所示,当列车完成并轨,电机控制同侧伸缩导向轨道4收回,列车上主运动磁组3重新行驶于主轨道1上。
实施例2:
本发明亦适用于海尔贝克阵列式磁悬浮轨道交通的到道岔系统。
图7是海尔贝克阵列式磁悬浮轨道交通的示意图,结合附图可见,本永磁式磁浮轨道交通的道岔系统,包括主轨道1、主轨道2、主轨道3、左侧伸缩导向轨道4、右侧伸缩导向轨道5、、转向架6、主运动磁组7和导向磁组8。下面就本发明的具体实施,加以说明。
如图6所示,所述主轨道1、主轨道2、主轨道3、伸缩导向轨道4和伸缩导向轨道5由永磁阵列铺设,分岔口转弯半径为30°,在分岔口出两侧均设由一组伸缩导向磁轨;所述磁体组成的轨道高度为34mm,沿“八字”型铺设;所述伸缩导向轨道由电机控制伸缩,伸出距离为34mm,如图9所示。所述轨道及车载磁体排布方式如图10所示。
如图8所示,所述车载磁组由转向架6、主运动磁组7和两侧导向磁组8组成。所述主运动磁组8置于正中位置;所述导向磁组9分别置于主运动磁体8两侧与主运动磁体间隔为36mm。所述磁组伸出长度为36mm。所述磁组与直线电机均安装于转向架6上。
如图11(a)所示,车辆在直线主轨道1上运行时,所述车载磁体中的主运动磁组7与主轨道1作用,提供悬浮力,通过电机推力的作用悬浮行驶于主轨道1中,当车辆需要向左侧分岔时,如图11(b)所示,车辆上的左侧伸缩导向轨道4在电机的控制下伸出,受到左侧伸缩导向轨道与导向磁组8组成的导向轨道形成的转向轨道磁场的作用,导向磁组8无接触的滑入伸缩导向轨道4上,主运动磁组7离开主轨道1,不再提供悬浮力,车辆在整个轨道分岔运行过程中伸缩导向轨道4保持伸出状态。当车载磁组即将运行到新的直线主轨道2时,在直线轨道2磁场的作用下,车载磁组上的主运动磁组7滑入新轨道中,与直线轨道共同作用,提供悬浮力。在主运动磁组7进入直线轨道2后,同侧导向磁组8在伸缩导向轨道4中的运行结束,如图11(c)所示,列车完成道岔运行,电机控制同侧伸缩导向轨道4收回,列车上主运动磁组7与主轨道2完成对接,重 新回到直线运行状态。
另一方面,本发明公开了一种永磁式磁悬浮轨道交通的道岔系统,其包括:轨道系统其上设置有道岔轨道,以及行驶于轨道系统上的车载磁组,其主要由转向架组件构成。
所述道岔轨道包括:分岔前的主轨道11、分岔后的左转主轨道12和右转主轨道13、左侧转向轨道14、右侧转向轨道15;主轨道11经过道岔结构后形成左右两根新的左转主轨道12和右转主轨道13,所述的左转主轨道12和右转主轨道13分别作为道岔后级轨道系统的主轨道;所述左侧转向轨道14或右侧转向轨道15作为用于导向的磁轨(以下简称导向磁轨),分别铺设于主轨道分岔转弯处的两侧,分别与分岔后的主轨道组成导向轨道;所述左转主轨道12、右转主轨道13为主轨道11经过道岔系统后分岔形成的主轨道,即,磁悬浮车辆在主轨道11分岔后所进入新的主轨道,使列车重新回到直线轨道运行。
所述主轨道、导向轨道均由永磁阵列(海尔贝克阵列等)组成,永磁阵列沿所述道岔轨道铺设。
所述导向轨道的轨距与主轨道之间的轨距相等。例如,所述导向轨道可设置在主轨道的左右两侧,所述磁体组成的轨道高度为22-34mm,轨距为21-210mm。
所述车载磁组包括:与所述转向架本体17连接的固定磁组、导向磁组、驱动组件。所述驱动组件可由直线步进电机实现。所述车载磁组共包括有三组磁组安装于转向架上,其中:所述固定磁组安装于转向架中央,处于始终伸出的状态,保证列车在轨道内的运行稳定;所述导向磁组安装于转向架两侧,在系统沿主方向直线运行时处于收回状态;所述驱动组件用于控制两侧的导向磁组伸缩。所述固定磁组、导向磁组均由永磁阵列,例如海尔贝克阵列等组成。
该系统中,所述主轨道的分岔部分,其岔口的转弯角度为10-45°,在分岔口出去的两侧均分别设有一组导向轨道。
系统中,所述固定磁组、导向磁组和直线步进电机系统均设置在转向架本体上;所述导向磁组19分别置于固定磁组18两侧,与固定磁组间隔为10-100mm。所述导向磁组19通过直线步进电机控制伸缩,伸出距离为沿转向架本体下表面向下12-120mm。
所述车辆在直线主轨道上运行时,所述车载磁组中的固定磁组18与主轨道作用,提供悬浮力,通过电磁所提供的推力的作用悬浮行驶于主轨道中;当列车即将行驶至轨道分岔口时,车辆上的一侧导向磁组19在电机的控制下伸出,受到主轨道一侧轨和同 侧导向轨道所形成的转向轨道磁场的作用,导向磁组无接触的滑入导向轨道中,车辆在整个轨道分叉运行过程中,固定磁组保持伸出状态,由于在主轨道经过道岔结构后分为两组磁轨,车载固定磁组18在驶向主轨道磁轨分岔口的过程中,两个方向的磁轨不断远离,非转向一侧的轨道所提供的悬浮力不断减小,此过程中的悬浮力主要由导向磁组19以及转向一侧的导向轨道提供。当所述固定磁组18运行至与主轨道非转向一侧磁轨分离距离较大区域时,车载固定磁组18会驶入分岔后主轨道即左转主轨道12或者右转主轨道13中,在轨道磁场的作用下,固定磁组滑入分岔后的主轨道中,与轨道共同作用,提供悬浮力。所述固定磁组18进入分岔后的主轨道后,导向磁组在导向轨道中的行程结束,列车完成道岔运行,电机控制转向一侧的导向磁组19收回,列车上固定磁组与分岔后主轨道完成对接,重新按照直线运行状态行驶。
上述的永磁式磁浮轨道交通的道岔系统,不仅适用于永磁式斥力悬浮方式的列车,还能适用于永磁吸力、切向力以及电磁吸引控制等悬浮方式的磁悬浮轨道交通。
下面提供两种更为具体的实现方式以便理解本发明。
实施例1:
图12是适用于MAS制式磁浮轨道交通的示意图。MAS制模型中使用的导向装置可以是机械导向,也就是在路轨上设侧壁,列车底部两侧装有导轮,导轮在侧壁上滚动,从而保证列车在水平方向上的平衡。结合附图可见,本永磁式磁浮轨道交通的道岔系统,包括主轨道11、左转主轨道12、右转主轨道13、左侧转向轨道14、右侧转向轨道15、直线步进电机16、转向架本体17、固定磁组18和导向磁组19。下面就本发明的具体实施,加以说明。
如图12所示,所述主轨道11、左转主轨道12、右转主轨道13、由左侧转向轨道14和右侧转向轨道15构成的导向轨道均由永磁阵列铺设而成。分岔口转弯半径为30°,在分岔口出两侧均设由一组导向磁轨;所述各磁体所组成的轨道高度为34mm,轨距为21mm,如图14所示。所述轨道及车载磁体排布方式如图15所示。
如图13所示,所述车载磁组由直线步进电机16、转向架本体17、固定磁组18和两侧的导向磁组19组成。所述固定磁组18置于正中位置并保持伸出状态;所述导向磁组19分别置于固定磁体8两侧与固定磁体间隔为36mm;所述直线步进电机16控制导向磁组19的伸缩,伸出距离为12mm。所述磁组与直线电机均安装于转向架本体17上。
如图16的上侧所示,车辆在直线主轨道11上运行时,所述车载磁体中的固定磁组18与主轨道11作用,提供悬浮力,通过电机推力的作用悬浮行驶于主轨道11中, 当车辆需要向左侧分岔时,如图16的中侧所示,车辆上的左侧导向磁组19在电机16的控制下伸出,受到主轨道11左侧轨和同侧导向磁轨组成的导向轨道所形成的转向轨道磁场的作用,导向磁组19无接触的滑入导向轨道中,车辆在整个轨道分岔运行过程中固定磁组3保持伸出状态。由于在主轨道11经过道岔结构分岔后形成左转主轨道12、右转主轨道13,车载固定磁组18在驶向主轨道11磁轨分岔口的过程中,两根磁轨不断远离,提供的悬浮力不断减小,此过程中的悬浮力主要由导向磁组19以及导向轨道提供。当左侧主轨道转弯超过30°时,主轨道左右侧轨分离距离足够大,此时,在与原左转主轨道12的右侧轨距为21mm的地方铺设一根磁轨,和原有的主轨道磁轨组成新的左转导向轨道。当车载磁组即将运行到新的直线左转主轨道12进行直线运行时,在左转主轨道12磁场的作用下,车载磁组滑入新轨道中,与直线轨道共同作用,提供悬浮力。在固定磁组18进入左转主轨道12后,导向磁组18在导向轨道中的运行结束,如图16的下侧所示,列车完成道岔运行,直线步进电机16控制同侧导向磁组19收回,列车上固定磁组18与新的主轨道完成对接,重新回到直线运行状态。
该永磁磁浮轨道交通的道岔系统能够实现磁悬浮轨道交通的并轨。如图17的上侧所示,车辆在直线右转主轨道13上运行时,所述车载磁体中的固定磁组4与右转主轨道13作用,提供悬浮力,通过电机推力的作用悬浮行驶于右转主轨道13中。当车辆行驶至并轨区域时,如图17的中侧所示,车辆上的左侧导向磁组19在电机16的控制下伸出,受到右转主轨道13左侧轨和同侧导向磁轨的转向轨道磁场的作用,导向磁组19无接触的滑入导向轨道中,车辆在整个轨道分叉运行过程中固定磁组18保持伸出状态。由于在主轨道11经过道岔结构分岔后形成左转主轨道12、右转主轨道13,车载固定磁组18在驶出右转主轨道13时进入磁轨分岔口,此过程中的悬浮力主要由导向磁组19以及导向轨道提供。当左侧主轨道转弯超过30°时,车载固定磁组18无接触滑入直线主轨道11,此时,在与原左侧右转主轨道13的左侧磁轨和另一侧主轨道磁轨组成新的直线主轨道11的共同作用下,当车载磁组即将运行到新的直线主轨道11时,在直线轨道1磁场的作用下,车载固定磁组18滑入新轨道中,与直线轨道共同作用,提供悬浮力。在固定磁组18进入直线主轨道11后,导向磁组19在导向轨道中的运行结束,如图17的下侧所示,当列车完成并轨,直线步进电机16控制同侧导向磁组19收回,列车上固定磁组18重新行驶于主轨道11上。
实施例2:
本发明亦适用于海尔贝克阵列式磁悬浮轨道交通的到道岔系统。
图18是海尔贝克阵列式磁悬浮轨道交通的示意图,结合附图可见,本永磁式磁浮轨道交通的道岔系统,包括主轨道11、左转主轨道12、右转主轨道13、左侧转向轨道14、右侧转向轨道15、直线步进电机16、转向架本体17、固定磁组18和导向磁组19。下面就本发明的具体实施,加以说明。
如图17所示,所述主轨道11、左转主轨道12、右转主轨道13、左侧转向轨道14、右侧转向轨道15由海尔贝克阵列铺设,分岔口转弯半径为30°,在分岔口出两侧均设置成一组导向磁轨;所述磁体组成的轨道高度为34mm,轨距为21mm,如图20所示。所述轨道及车载磁体排布方式如图21所示。
如图19所示,所述车载磁组由直线步进电机16、转向架本体17、固定磁组18和两侧导向磁组19组成。所述固定磁组18置于正中位置并保持伸出状态;所述导向磁组19分别置于固定磁组18两侧与固定磁体间隔为36mm;所述直线步进电机16控制导向磁组19的伸缩,伸出距离为12mm。所述磁组与直线电机均安装于转向架本体17上。
如图22的上侧所示,车辆在直线主轨道11上运行时,所述车载磁体中的固定磁组18与主轨道11作用,提供悬浮力,通过电机推力的作用悬浮行驶于主轨道11中,当车辆需要向左侧分岔时,如图22的中侧所示,车辆上的左侧导向磁组19在电机6的控制下伸出,受到左侧导向磁轨组所形成的转向轨道磁场的作用,导向磁组19无接触的运行于导向轨道上,沿左转主轨道12的方向运行,车辆在整个轨道分岔运行过程中固定磁组18保持伸出状态。在车载固定磁组18在驶向主轨道11磁轨分岔口的过程中,固定磁组18驶出主轨道11,此时主轨道11不再为与固定磁组18作用,悬浮力主要由导向磁组19以及沿左转主轨道12方向的导向轨道提供。当左侧主轨道转弯超过30°时,此时,固定磁组18即将驶入和原主轨道的分支磁轨左转主轨道12。当车载磁组即将运行到新的左转主轨道12直线运行时,在左转主轨道12磁场的作用下,车载磁组无接触运行于新轨道上,与直线轨道共同作用,提供悬浮力。在固定磁组18进入左转主轨道12直线运行后,导向磁组19在导向轨道上的运行结束,如图22的下侧所示,列车完成道岔运行,直线步进电机16控制同侧导向磁组19收回,列车上固定磁组18与主轨道11完成对接,重新回到直线运行状态。
以上仅为本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括 由以上技术特征任意组合所组成的技术方案。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (20)

  1. 一种磁悬浮轨道交通的道岔系统,其特征在于,包括:道岔轨道与行驶于轨道上的车载磁组,
    所述道岔轨道包括:分岔前的主轨道(1)、分岔后的主轨道(2)、分岔后的主轨道(3)、伸缩导向轨道,
    所述车载磁体包括:主运动磁组、导向磁组和转向架。
  2. 根据权利要求1所述的磁悬浮轨道交通的道岔系统,其特征在于,主轨道、导向轨道、主运动磁组与导向磁组均由永磁阵列(海尔贝克阵列等)组成。
  3. 根据权利要求1所述的磁悬浮轨道交通的道岔系统,其特征在于,主轨道分岔口转弯半径为10-45°,沿“八字”型铺设,在分岔口出两侧均设有一组导向轨道。
  4. 根据权利要求3所述的磁悬浮轨道交通的道岔系统,其特征在于,伸缩导向轨道设置在主轨道的左右两侧。
  5. 根据权利要求3所述的永磁式磁浮轨道交通的道岔系统,其特征在于,所述伸缩导向轨道通过电机控制伸缩,伸出距离为12-120mm。
  6. 根据权利要求1所述的永磁式磁浮轨道交通的道岔系统,其特征在于,所述主运动磁组、导向磁组均设置在转向架上;所述主运动磁组(3)设置两组沿中心线分布于转向架两侧,间隔为10-100mm;所述导向磁组(8)分别置于主运动磁组(7)两侧与主运动磁组间隔为10-100mm。
  7. 根据权利要求1所述的永磁式磁浮轨道交通的道岔系统,其特征在于,所述车辆在直线主轨道上运行时,所述车载磁组中的主运动磁组与主轨道作用,提供悬浮力,通过电机推力的作用悬浮行驶于主轨道中。
  8. 根据权利要求7所述的永磁式磁浮轨道交通的道岔系统,其特征在于,所述列车在行驶至轨道分岔口时,轨道上的左侧伸缩导向轨道在电机的控制下伸出,受到伸缩导向轨道与车载磁组同侧导向磁组、主运动磁组形成的转向轨道磁场的作用,同侧车载磁组无接触的滑入伸缩导向轨道上,车辆在整个轨道分叉运行过程中伸缩导向轨道保持伸出状态,此过程悬浮力由导向磁组、主运动磁组与伸缩导向轨道提供。
  9. 根据权利要求8所述的永磁式磁浮轨道交通的道岔系统,其特征在于,所述列车在即将结束分岔的过程中,车载磁组上的一组主运动磁组重新无接触的滑入同侧分岔后的直线主轨道,主运动磁组进入分岔后主轨道后,导向磁组、主运动磁组在伸缩导向轨道中的运行结束,列车完成道岔运行,电机控制同侧伸缩导向轨道收回,列车上主运 动磁组与分岔后主轨道完成对接,重新回到直线运行状态。
  10. 根据权利要求1所述的永磁式磁浮轨道交通的道岔系统,不仅适用于永磁式斥力悬浮方式的列车,还能适用于永磁吸力、感应斥力(切向力)以及电磁吸引控制等悬浮方式的磁悬浮轨道交通。
  11. 一种永磁式磁悬浮轨道交通的道岔系统,其特征在于,包括:
    轨道系统以及转向架组件,所述轨道系统包括:
    主轨道(11),其上设置有沿主方向排布的主轨道永磁体阵列;
    左转主轨道(12)设置在所述主轨道(11)的主方向的左侧,与所述主轨道(11)未分叉的方向之间成10-45°的转弯角度;所述左转主轨道(12)上设置有左转主轨道永磁体阵列,所述左转主轨道永磁体阵列的磁场设置为延续所述主轨道永磁体阵列的磁场向左转向;
    右转主轨道(13)设置在所述主轨道(11)的主方向的右侧,与所述主轨道(11)未分岔的方向之间成10-45°的转弯角度;所述右转主轨道(13)上设置有右转主轨道永磁体阵列,所述右转主轨道永磁体阵列的磁场设置为延续所述主轨道永磁体阵列的磁场向右转向;
    左侧转向轨道(14),设置在所述左转主轨道(12)的外侧,并设置有沿所述主轨道(11)向与所述左转主轨道(12)平行的方向弯折的弧度;所述左侧转向轨道(14)上设置有左侧转向轨道永磁体阵列,所述左侧转向轨道永磁体阵列的磁场设置为衔接所述左转主轨道永磁体阵列的磁场以及所述主轨道永磁体阵列的磁场;
    右侧转向轨道(15),设置在所述左转主轨道(13)的外侧,并设置有沿所述主轨道(11)向与所述右转主轨道(13)平行的方向弯折的弧度;所述右侧转向轨道(15)上设置有右侧转向轨道永磁体阵列,所述右侧转向轨道永磁体阵列的磁场设置为衔接所述右转主轨道永磁体阵列的磁场以及所述主轨道永磁体阵列的磁场;
    所述转向架组件包括:
    转向架本体(17),设置在所述轨道系统的上方,用于承托负载实现运行或转向;所述转向架本体(17)的下侧中部设置有固定磁组(18),所述固定磁组(18)的两侧分别设置有至少一组导向磁组(19),所述固定磁组(8)与所述主轨道永磁体或所述左转主轨道永磁体阵列或所述右转主轨道永磁体阵列相对设置,所述固定磁组(18)下部的磁极与所述主轨道永磁体阵列、所述左转主轨道永磁体阵列或所述右转主轨道永磁体阵列上部的磁极相同,用于与其磁场相互作用以对所述转向架本体(17)提供向上的推 力,维持所述转向架本体(17)相对所述轨道系统处于悬浮、无直接接触的状态;所述导向磁组(19)分别与右侧转向轨道永磁体阵列或所述左侧转向轨道永磁体阵列相对设置,所述导向磁组(19)下部的磁极与所述右侧转向轨道永磁体阵列或所述左侧转向轨道永磁体阵列上部的磁极相同,用于参与磁场的相互作用以对所述转向架本体(17)提供向上的推力,使所述转向架本体(17)相对所述轨道系统处于悬浮、无直接接触的状态并沿所述右侧转向轨道永磁体阵列或所述左侧转向轨道永磁体阵列转向;所述转向架本体(17)的上侧设置有驱动组件,用于在所述转向架本体(17)运行到所述左侧转向轨道(14)、所述右侧转向轨道(15)的上方时,驱动设置于转向一侧的所述导向磁组(19)下降;在所述转向架本体(17)运行到所述左转主轨道(12)或所述右转主轨道(13)的上方时,驱动转向侧的所述导向磁组(19)收回。
  12. 根据权利要求11所述的永磁式磁悬浮轨道交通的道岔系统,其特征在于,所述主轨道(11)包括有2条或以上,所述各主轨道(11)由相互之间沿主方向平行设置逐渐向外分叉,或由分叉设置逐渐靠拢为沿主方向相互平行;所述左转主轨道(12)设置在所述主轨道(11)的分岔之间,所述左侧转向轨道(14)设置在向左侧分叉的所述主轨道(11)的外侧;
    所述右转主轨道(13)设置在所述主轨道(11)的分岔之间,所述右侧转向轨道(15)设置在向右侧分叉的所述主轨道(11)的外侧。
  13. 根据权利要求11所述的永磁式磁悬浮轨道交通的道岔系统,其特征在于,所述主轨道(11)、所述左转主轨道(12)、左侧转向轨道(14)之间至少设置有部分位置平行相对;
    所述主轨道(11)、所述右转主轨道(13)、右侧转向轨道(15)之间至少设置有部分位置平行相对。
  14. 根据权利要求11-13中任意一项所述的永磁式磁悬浮轨道交通的道岔系统,其特征在于,所述主轨道(11)、所述左转主轨道(12)、左侧转向轨道(14)之间平行相对的部分,间距为21-210mm;所述主轨道(11)、所述右转主轨道(13)、右侧转向轨道(15)之间平行相对的部分,间距为21-210mm。
  15. 根据权利要求11-13中任意一项所述的永磁式磁悬浮轨道交通的道岔系统,其特征在于,所述各永磁体阵列为海尔贝克阵列。
  16. 如权利要求11-13中任意一项所述的永磁式磁悬浮轨道交通的道岔系统,其特征在于,所述驱动组件为直线步进电机(16)。
  17. 根据权利要求16所述的永磁式磁悬浮轨道交通的道岔系统,其特征在于,所述直线步进电机(16)驱动所述转向侧的所述导向磁组(19)下降或收回的范围在12-120mm之间,或至少为所述轨道系统上永磁体阵列高度的一半。
  18. 根据权利要求16-17中任意一项所述的永磁式磁悬浮轨道交通的道岔系统,其特征在于,所述导向磁组(19)与所述固定磁组(18)之间的间距为10-100mm。
  19. 一种磁悬浮轨道交通的道岔系统的控制方法,其特征在于,用于如权利要求11至18中任意一项所述的永磁式磁悬浮轨道交通的道岔系统,其步骤包括:
    在所述转向架本体(17)承托负载沿主方向运行时,所述固定磁组(18)与主轨道永磁体阵列之间的磁场相互作用,维持所述转向架本体(17)相对所述主轨道(11)处于悬浮、无直接接触的状态运行;
    在所述转向架本体(17)承托负载相对主方向一侧转向时,所述固定磁组(18)与主轨道永磁体阵列之间的磁场相互作用,维持所述转向架组件相对所述轨道系统处于悬浮、无直接接触的状态运行;同时,转向一侧的所述导向磁组(19)由所述驱动组件驱动而下降至与转向一侧的转向轨道永磁体阵列相对,所述导向磁组(19)下部的磁极参与磁场的相互作用以对所述转向架本体(17)提供向上的推力,使所述转向架本体(17)相对所述轨道系统处于悬浮、无直接接触的状态并沿转向一侧的所述转向轨道永磁体阵列转向;所述转向架本体(17)上设置的驱动组件,在所述转向架本体(17)运行到转向一侧分叉后对应的所述主轨道上方时,驱动转向侧的所述导向磁组(19)收回;
    在所述转向架本体(17)承托负载由所述主方向的一侧逐渐靠拢至所述主方向时:在所述主轨道(11)的分叉即将靠拢的过程中,所述固定磁组(18)首先与靠拢方向所对应的主轨道的磁场相互作用,对所述转向架本体(17)提供向上的推力,使所述转向架本体(17)相对所述轨道系统处于悬浮、无直接接触的状态并沿靠拢方向的所述主轨道逐渐向主方向靠拢;在所述转向架本体(17)逐渐靠拢至所述靠拢方向所对应的转向轨道上方时,所述驱动组件驱动设置于靠拢一侧的所述导向磁组(19)下降至与靠拢一侧的转向轨道永磁体阵列相对,所述导向磁组(19)受所述靠拢一侧的转向轨道永磁体阵列的磁场引导运行至主方向,靠拢至所述主轨道(11)的主方向上时所述驱动组件驱动设置于靠拢一侧的所述导向磁组(19)收回。
  20. 根据权利要求11所述的磁悬浮轨道交通的道岔系统的控制方法,其特征在于,所述控制方法用于永磁式斥力悬浮方式的系统,永磁式吸力悬浮方式的系统、永磁式切向力悬浮方式的系统以及电磁吸引控制等悬浮方式的磁悬浮系统。
PCT/CN2019/092367 2019-01-31 2019-06-21 永磁式磁悬浮轨道交通的道岔系统及其控制方法 WO2020155531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19914146.6A EP3919343A4 (en) 2019-01-31 2019-06-21 PERMANENT MAGNET MAGNETIC LIFTING RAIL TRANSIT TURNING SYSTEM AND CONTROL METHOD THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910095254.9 2019-01-31
CN201910095254.9A CN109895811B (zh) 2019-01-31 2019-01-31 永磁式磁悬浮轨道系统及其道岔转向控制方法
CN201910095326.X 2019-01-31
CN201910095326.XA CN109898372B (zh) 2019-01-31 2019-01-31 永磁式磁悬浮轨道交通的道岔系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2020155531A1 true WO2020155531A1 (zh) 2020-08-06

Family

ID=71840619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092367 WO2020155531A1 (zh) 2019-01-31 2019-06-21 永磁式磁悬浮轨道交通的道岔系统及其控制方法

Country Status (2)

Country Link
EP (1) EP3919343A4 (zh)
WO (1) WO2020155531A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357959A (zh) * 2021-07-19 2021-09-07 福建师范大学 一种高温超导磁悬浮发射与过渡永磁轨道
CN114194221A (zh) * 2021-12-30 2022-03-18 江苏添仂智能科技有限公司 一种基于两侧导向机构的prt车辆快速变轨系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087910A (ja) * 2001-09-12 2003-03-20 Nsk Ltd 磁気浮上搬送装置及びその制御方法
CN103276643A (zh) * 2013-06-20 2013-09-04 湖南农业大学 一种采用升降并行式道岔的单轨电车轨道
CN104029686A (zh) * 2014-06-25 2014-09-10 中国人民解放军国防科学技术大学 一种磁悬浮列车的轨道组件
CN107170545A (zh) * 2017-06-23 2017-09-15 西南交通大学 带超导带材的电磁铁、电磁道岔及转辙方法
CN207391954U (zh) * 2017-10-31 2018-05-22 中铁第四勘察设计院集团有限公司 一种升降型跨座式单轨道岔
CN109895811A (zh) * 2019-01-31 2019-06-18 江西理工大学 永磁式磁悬浮轨道系统及其道岔转向控制方法
CN109898372A (zh) * 2019-01-31 2019-06-18 江西理工大学 永磁式磁悬浮轨道交通的道岔系统及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2241789C2 (de) * 1972-08-25 1974-04-18 Siemens Ag, 1000 Berlin U. 8000 Muenchen Mechanisch stellbare Weiche für eine magnetische Schwebebahn
DE2436466A1 (de) * 1974-07-29 1976-02-12 Weh Herbert Weiche ohne bewegliche teile fuer beruehrungslose fahrtechnik
EP2019880A1 (de) * 2006-05-24 2009-02-04 Siemens Aktiengesellschaft Abzweigung für fahrbahnen von fahrzeugen, insbesondere von magnetschwebebahnen
US11155281B2 (en) * 2016-12-29 2021-10-26 Hyperloop Technologies, Inc. Vehicle guidance system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087910A (ja) * 2001-09-12 2003-03-20 Nsk Ltd 磁気浮上搬送装置及びその制御方法
CN103276643A (zh) * 2013-06-20 2013-09-04 湖南农业大学 一种采用升降并行式道岔的单轨电车轨道
CN104029686A (zh) * 2014-06-25 2014-09-10 中国人民解放军国防科学技术大学 一种磁悬浮列车的轨道组件
CN107170545A (zh) * 2017-06-23 2017-09-15 西南交通大学 带超导带材的电磁铁、电磁道岔及转辙方法
CN207391954U (zh) * 2017-10-31 2018-05-22 中铁第四勘察设计院集团有限公司 一种升降型跨座式单轨道岔
CN109895811A (zh) * 2019-01-31 2019-06-18 江西理工大学 永磁式磁悬浮轨道系统及其道岔转向控制方法
CN109898372A (zh) * 2019-01-31 2019-06-18 江西理工大学 永磁式磁悬浮轨道交通的道岔系统及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919343A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357959A (zh) * 2021-07-19 2021-09-07 福建师范大学 一种高温超导磁悬浮发射与过渡永磁轨道
CN114194221A (zh) * 2021-12-30 2022-03-18 江苏添仂智能科技有限公司 一种基于两侧导向机构的prt车辆快速变轨系统

Also Published As

Publication number Publication date
EP3919343A4 (en) 2023-03-15
EP3919343A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
CN109895811B (zh) 永磁式磁悬浮轨道系统及其道岔转向控制方法
CN109898372B (zh) 永磁式磁悬浮轨道交通的道岔系统及其控制方法
CN107190595B (zh) 永磁悬浮列车轨道系统
US7757609B2 (en) Track switching for a magnetically levitated transportation system and method
CN206308561U (zh) 一种用于跨座式单轨列车的电动道岔装置
CN112127217B (zh) 轨道交通道岔系统
CN101481893A (zh) 轮轨磁悬浮通用技术
WO2020155531A1 (zh) 永磁式磁悬浮轨道交通的道岔系统及其控制方法
CN201824897U (zh) 新型磁悬浮列车
CN109208410B (zh) 悬挂式单轨道岔摆动式补偿轨装置及其补偿方法
CN201941767U (zh) 高空悬挂运输系统
CN107476145B (zh) 一种悬挂空铁单侧车轮悬空道岔系统
CN105150875A (zh) 一种曲线通过能力强的高温超导磁浮车
CN110315992A (zh) 一种轨道交通系统
BR112021006105A2 (pt) unidade de comutação de trilho
CN208594440U (zh) 一种磁浮道岔
CN102953299A (zh) 一种矿用滑动式单轨吊道岔系统
CN200974948Y (zh) 道岔铺设纵移平车
TW201620755A (zh) 用於運輸系統之懸浮控制系統
CN207141067U (zh) 一种双侧轮空间轨道变轨系统
CN207812182U (zh) 一种局部分步平移型单渡线单轨道岔
CN207997856U (zh) 一种悬挂单轨主动导向装置及具有主动导向装置的转向架
CN107858880A (zh) 一种局部分步平移型单渡线单轨道岔
CN212047373U (zh) Prt悬吊车轨道转换系统、控制系统、轨道系统和驱动系统
US4862809A (en) Supports for railway linear synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914146

Country of ref document: EP

Effective date: 20210831