WO2020155244A1 - 一种利用菱镁矿微波烧结制备高密度镁砂的方法 - Google Patents

一种利用菱镁矿微波烧结制备高密度镁砂的方法 Download PDF

Info

Publication number
WO2020155244A1
WO2020155244A1 PCT/CN2019/076095 CN2019076095W WO2020155244A1 WO 2020155244 A1 WO2020155244 A1 WO 2020155244A1 CN 2019076095 W CN2019076095 W CN 2019076095W WO 2020155244 A1 WO2020155244 A1 WO 2020155244A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesia
magnesite
microwave sintering
density
powder
Prior art date
Application number
PCT/CN2019/076095
Other languages
English (en)
French (fr)
Inventor
马北越
靳恩东
任鑫明
刘朝阳
付高峰
于景坤
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020155244A1 publication Critical patent/WO2020155244A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • C04B2/102Preheating, burning calcining or cooling of magnesia, e.g. dead burning
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite

Definitions

  • the invention belongs to the technical field of efficient utilization of metallurgical resources, and specifically relates to a method for preparing high-density magnesia by microwave sintering of magnesite.
  • refractory materials for clean steel metallurgy mainly include magnesia-calcium refractories and low-carbon magnesia-carbon refractories.
  • the magnesium oxide component in these two refractory materials has the characteristics of high melting point (2800°C) and good slag erosion resistance.
  • the bulk density of magnesia (or magnesia) is highly resistant to slag erosion and high temperature of refractory products. Strength has an important effect. therefore. Increasing the density of magnesia is of great significance to the development and longevity of high-performance magnesia refractories.
  • magnesite is mainly produced in large quantities using magnesite and brine as raw materials.
  • my country's magnesite reserves, output, and exports rank first in the world. Therefore, abundant magnesite resources provide a strong guarantee for the preparation of high-density magnesium oxide.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method for preparing high-density magnesia by microwave sintering of magnesite.
  • the main steps of the method are as follows: firstly, the magnesite is calcined in a high-temperature furnace to obtain the primary lightly burned magnesia powder; secondly, the primary lightly burned magnesia powder is placed in a ball milling tank with deionized water as the ball milling medium , At the same time, complete hydration and ball milling of light burned magnesia, and obtain magnesium hydroxide powder after drying treatment; then, the magnesium hydroxide powder is placed in a high-temperature furnace for secondary calcination, and then secondary light burned magnesia powder is obtained; Finally, the secondary light-fired magnesia powder is formed into a green body, and microwave sintering is performed at a certain temperature and time to obtain high-density magnesia.
  • a method for preparing high-density magnesia by microwave sintering of magnesite is carried out in the following steps:
  • the magnesite is calcined in a high-temperature furnace to obtain primary light-burned magnesia powder
  • Step 3 Second light burn
  • the magnesium hydroxide powder is calcined twice to obtain the second lightly burned magnesium oxide powder
  • Step 4 Microwave sintering
  • the formed green body After the formed green body is fully dried, it is placed in a microwave sintering furnace, sintered and kept in an air atmosphere to obtain high-density magnesia, wherein the sintering temperature is 1350-1500°C, and the sintering temperature is kept warm. The time is 1 ⁇ 3h.
  • the high-temperature furnace is one of a shaft kiln, a boiling furnace, and a suspension furnace; the calcination temperature is 800°C to 900°C, and the calcination time is 2 to 4 hours.
  • the ratio of the deionized water and the primary lightly burned magnesia powder is (3 ⁇ 4):1, the unit ml:g according to the liquid volume and the solid mass; the ball mill adopts vacuum Ball mill jar and ZrO 2 mill ball.
  • the drying temperature is 100-120°C, and the drying time is 20-24h.
  • the secondary calcination operation is performed in a high-temperature furnace, and the secondary lightly burned magnesia powder has a finer particle size than the primary lightly burned magnesia powder.
  • the high-temperature furnace is one of a shaft kiln, a boiling furnace, and a suspension furnace; the calcination temperature is 750-850°C, and the calcination time is 2 to 4 hours.
  • the molding pressure is 100-300 MPa.
  • the drying temperature of the blank is 100-120°C.
  • the magnesium oxide content in the prepared high-density magnesia is greater than 97.5%.
  • the volume density of the prepared high-density magnesia is 3.5-3.56 g ⁇ cm -3 .
  • the method of the present invention for preparing high-density magnesite by microwave sintering of magnesite improves the utilization rate of magnesite, not only saves costs, but also produces high value-added magnesia.
  • the method of the present invention for preparing high-density magnesia by microwave sintering of magnesite has simple operation and is convenient for industrialized production.
  • the method of the present invention for preparing high-density magnesia by microwave sintering of magnesite adopts microwave sintering, rapid heating, low sintering temperature, safety and pollution-free, saving time, greatly improving preparation efficiency, and convenient to obtain high-density magnesium sand.
  • Fig. 1 is a process flow diagram of the method for preparing high-density magnesia by microwave sintering of magnesite according to the present invention.
  • the main component of magnesite used in the following embodiments is MgCO 3 , and its mass percentage is 47% MgO, 52% CO 2 , and the balance is oxide impurities of Si, Ca, Fe, and Al.
  • Step 3 Second light burn
  • the obtained magnesium hydroxide powder was calcined in a 750° C. suspension furnace for 4 hours to obtain secondary lightly burned magnesium oxide powder.
  • Step 4 Microwave sintering
  • the formed green body is fully dried at a temperature of 100°C, and then placed in a microwave sintering furnace, sintered at 1400°C in an air atmosphere and kept for 2 hours to obtain high-density magnesia.
  • the obtained magnesia has a bulk density of 3.5 g ⁇ cm -3 , the content of magnesium oxide in the magnesia is greater than 97.5%, and the magnesium oxide crystal grains are well developed.
  • a method for preparing high-density magnesia by microwave sintering of magnesite is carried out in the following steps:
  • the magnesite is calcined in a shaft kiln at 850°C for 4 hours to obtain a lightly burned magnesia powder;
  • Step 3 Second light burn
  • the obtained magnesium hydroxide powder is calcined in a 800° C. shaft kiln for 3 hours to obtain secondary lightly burned magnesium oxide powder.
  • Step 4 Microwave sintering
  • the second light burnt magnesium oxide powder is molded under a pressure of 200MPa;
  • the formed green body is fully dried at a temperature of 120°C, and then placed in a microwave sintering furnace, sintered at 1400°C in an air atmosphere and kept for 3 hours to obtain high-density magnesia.
  • the obtained magnesia has a bulk density of 3.52 g ⁇ cm -3 , the content of magnesium oxide in the magnesia is greater than 97.5%, and the magnesium oxide crystal grains are well developed.
  • a method for preparing high-density magnesia by microwave sintering of magnesite is carried out in the following steps:
  • Step 3 Second light burn
  • the obtained magnesium hydroxide powder was calcined in a 800° C. boiling furnace for 4 hours to obtain secondary lightly burned magnesium oxide powder.
  • Step 4 Microwave sintering
  • the second light burnt magnesium oxide powder is molded under a pressure of 200MPa;
  • the formed green body is fully dried at a temperature of 120°C, and then placed in a microwave sintering furnace, sintered at 1450°C in an air atmosphere and kept for 6 hours to obtain high-density magnesia.
  • the obtained magnesia has a bulk density of 3.55 g ⁇ cm -3 , the content of magnesium oxide in the magnesia is greater than 97.5%, and the magnesium oxide crystal grains are well developed.
  • a method for preparing high-density magnesia by microwave sintering of magnesite is carried out in the following steps:
  • Step 3 Second light burn
  • the obtained magnesium hydroxide powder is calcined in a boiling furnace at 850° C. for 3 hours to obtain secondary lightly burned magnesium oxide fine powder.
  • Step 4 Microwave sintering
  • the formed green body is fully dried at a temperature of 120°C, and then placed in a microwave sintering furnace, sintered at 1450°C in an air atmosphere and kept for 4 hours to obtain high-density magnesia.
  • the obtained magnesia has a bulk density of 3.55 g ⁇ cm -3 , the content of magnesium oxide in the magnesia is greater than 97.5%, and the magnesium oxide crystal grains are well developed.
  • a method for preparing high-density magnesia by microwave sintering of magnesite is carried out in the following steps:
  • the magnesite is calcined in a shaft kiln at 850°C for 4 hours to obtain a lightly burned magnesia powder;
  • Step 3 Second light burn
  • the obtained magnesium hydroxide powder is calcined in a shaft kiln at 850° C. for 2 hours to obtain secondary light-burned magnesium oxide fine powder.
  • Step 4 Microwave sintering
  • the formed green body is fully dried at a temperature of 120°C, and then placed in a microwave sintering furnace, sintered at 1500°C in an air atmosphere and kept for 6 hours to obtain high-density magnesia.
  • the obtained magnesia has a bulk density of 3.56 g ⁇ cm -3 , the content of magnesium oxide in the magnesia is greater than 97.5%, and the magnesium oxide crystal grains are well developed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种利用菱镁矿微波烧结制备高密度镁砂的方法,属于冶金资源高效利用技术领域。具体制备方法为:将菱镁矿置于高温炉内煅烧,获得一次轻烧氧化镁粉;将轻烧氧化镁粉置于球磨罐中,以去离子水为球磨介质,同时对轻烧氧化镁完成水化和球磨处理,经过干燥处理,获得氢氧化镁粉;将氢氧化镁粉置于高温炉内二次煅烧,获得二次轻烧氧化镁粉;将二次轻烧氧化镁粉成型制成素坯,在一定温度、时间下进行微波烧结,制得高密度镁砂。

Description

一种利用菱镁矿微波烧结制备高密度镁砂的方法 技术领域:
本发明属于冶金资源高效利用技术领域,具体涉及一种利用菱镁矿微波烧结制备高密度镁砂的方法。
背景技术:
随着钢铁冶炼科学技术的发展,对耐火材料的质量要求越来越高。目前,洁净钢冶金用耐火材料主要包括镁钙耐火材料和低碳镁碳耐火材料。这两种耐火材料中的氧化镁组分具有熔点高(2800℃)、抗渣侵蚀性好等特点,同时,氧化镁(或镁砂)的体积密度对于耐火材料制品的抗渣侵蚀性和高温强度具有重要的影响。因此。提高镁砂的密度对高性能镁质耐火材料的开发和长寿化均具有重要的意义。
目前,镁砂主要利用菱镁矿、卤水为原料大量生产。其中,我国的菱镁矿储量、产量、出口量均居世界首位。因此,丰富的菱镁矿资源为制备高密度氧化镁提供了强力的保障。
发明内容:
本发明的目的是克服上述现有技术存在的不足,提供一种利用菱镁矿微波烧结制备高密度镁砂的方法。该方法的主要工序如下:首先,将菱镁矿置于高温炉内煅烧,获得一次轻烧氧化镁粉;其次,将一次轻烧氧化镁粉置于球磨罐中,以去离子水为球磨介质,同时对轻烧氧化镁完成水化和球磨处理,经过干燥处理,获得氢氧化镁粉;然后,将氢氧化镁粉置于高温炉内二次煅烧,再获得二次轻烧氧化镁粉;最后,将二次轻烧氧化镁粉成型制成素坯,在一定温度、时间下进行微波烧结,制得高密度镁砂。
为实现上述目的,本发明采用以下技术方案:
一种利用菱镁矿微波烧结制备高密度镁砂的方法,按以下步骤进行:
步骤1:一次轻烧
将菱镁矿置于高温炉中煅烧,获得一次轻烧氧化镁粉;
步骤2:水化+湿磨+干燥
(1)将一次轻烧氧化镁粉和去离子水置于球磨罐中进行湿磨,以200~300r·min -1转速单向运行10~15h,同时完成水化和湿磨处理,形成球磨后料浆;
(2)将球磨后料浆干燥,得到氢氧化镁粉;
步骤3:二次轻烧
将氢氧化镁粉进行二次煅烧,获得二次轻烧氧化镁粉;
步骤4:微波烧结
(1)将二次轻烧氧化镁粉加压成型,获得素坯;
(2)将成型后的素坯充分干燥后,置于微波烧结炉中,在空气气氛下烧结并保温,制得高密度镁砂,其中,所述的烧结温度为1350~1500℃,烧结保温时间为1~3h。
所述的步骤1中,所述高温炉为竖窑、沸腾炉、悬浮炉中的一种;煅烧温度为800℃~900℃,煅烧时间为2~4h。
所述的步骤2(1)中,所述的去离子水与一次轻烧氧化镁粉按液体积与固体质量比为(3~4):1,单位ml:g;所述的球磨采用真空球磨罐和ZrO 2磨球。
所述的步骤2(2)中,干燥温度为100~120℃,干燥时间20~24h。
所述的步骤3中,二次煅烧操作在高温炉中进行,所述的二次轻烧氧化镁粉比一次轻烧氧化镁粉粒度更细。
所述的步骤3中,所述高温炉为竖窑、沸腾炉、悬浮炉中的一种;煅烧温度为750~850℃,煅烧时间为2~4h。
所述的步骤4(1)中,所述的成型压力为100~300MPa。
所述的步骤4(2)中,素坯干燥温度为100~120℃。
所述的步骤4(2)中,制备的高密度镁砂中氧化镁含量大于97.5%。
所述的步骤4(2)中,经检测,制备的高密度镁砂的体积密度为3.5~3.56g·cm -3
本发明的有益效果:
1.本发明的利用菱镁矿微波烧结制备高密度镁砂的方法提高了菱镁矿的利用率,不仅节约了成本,而且制得高附加值的氧化镁。
2.本发明的利用菱镁矿微波烧结制备高密度镁砂的方法操作简单易行,便于工业化生产。
3.本发明的利用菱镁矿微波烧结制备高密度镁砂的方法,采用微波烧结的方式,快速升温,烧结温度低、安全无污染,节约时间且大幅提高制备效率,便于获得高密度的镁砂。
附图说明:
图1是本发明的利用菱镁矿微波烧结制备高密度镁砂的方法工艺流程图。
具体实施方式:
下面结合实施例对本发明作进一步的详细说明。
以下实施例中采用的菱镁矿的主要成分为MgCO 3,其质量百分比为47%MgO,52%CO 2,余量为Si、Ca、Fe、Al的氧化物杂质。
实施例1
一种利用菱镁矿微波烧结制备高密度镁砂的方法,其工艺流程图如图1所示,按以下步骤进行:
步骤1:一次轻烧
将菱镁矿置于900℃悬浮炉中煅烧2h,获得一次轻烧氧化镁粉;
步骤2:水化+湿磨+干燥
(1)将1000g的一次轻烧氧化镁粉和3倍体积分数,即3000ml的去离子水置于球磨罐中,以200r·min -1转速单向运行10h,同时完成水化和湿磨处理;
(2)将球磨后料浆在100℃下干燥24h,得到氢氧化镁粉;
步骤3:二次轻烧
将获得的氢氧化镁粉置于750℃悬浮炉中煅烧4h,获得二次轻烧氧化镁粉。
步骤4:微波烧结
(1)将二次轻烧氧化镁粉在100MPa的压力下成型;
(2)将成型后的素坯在100℃温度下充分干燥,再置于微波烧结炉中,空气气氛下以1400℃烧结并保温2h,制得高密度镁砂。
经检测,所得镁砂的体积密度为3.5g·cm -3,镁砂中氧化镁含量大于97.5%,且氧化镁晶粒发育良好。
实施例2
一种利用菱镁矿微波烧结制备高密度镁砂的方法,按以下步骤进行:
步骤1:一次轻烧
将菱镁矿置于850℃竖窑中煅烧4h,获得一次轻烧氧化镁粉;
步骤2:水化+湿磨+干燥
(1)将1000g的一次轻烧氧化镁粉和4倍体积分数,即4000ml的去离子水置于球磨罐中,以200r·min -1转速单向运行15h,同时完成水化和湿磨处理;
(2)将球磨后料浆在120℃下干燥20h,得到氢氧化镁粉;
步骤3:二次轻烧
将获得的氢氧化镁粉置于800℃竖窑中煅烧3h,获得二次轻烧氧化镁粉。
步骤4:微波烧结
(1)将二次轻烧氧化镁粉在200MPa的压力下成型;
(2)将成型后的素坯在120℃温度下充分干燥,再置于微波烧结炉中,空气气氛下以1400℃烧结并保温3h,制得高密度镁砂。
经检测,所得镁砂的体积密度为3.52g·cm -3,镁砂中氧化镁含量大于97.5%,且氧化镁晶 粒发育良好。
实施例3
一种利用菱镁矿微波烧结制备高密度镁砂的方法,按以下步骤进行:
步骤1:一次轻烧
将菱镁矿置于800℃沸腾炉中煅烧4h,获得一次轻烧氧化镁粉;
步骤2:水化+湿磨+干燥
(1)将1000g的轻烧氧化镁粉和3倍体积分数,即3000ml的去离子水置于球磨罐中,以300r·min -1转速单向运行10h,同时完成水化和湿磨处理;
(2)将球磨后料浆在120℃下干燥24h,得到氢氧化镁粉;
步骤3:二次轻烧
将获得的氢氧化镁粉置于800℃沸腾炉中煅烧4h,获得二次轻烧氧化镁粉。
步骤4:微波烧结
(1)将二次轻烧氧化镁粉在200MPa的压力下成型;
(2)将成型后的素坯在120℃温度下充分干燥,再置于微波烧结炉中,空气气氛下以1450℃烧结并保温6h,制得高密度镁砂。
经检测,所得镁砂的体积密度为3.55g·cm -3,镁砂中氧化镁含量大于97.5%,且氧化镁晶粒发育良好。
实施例4
一种利用菱镁矿微波烧结制备高密度镁砂的方法,按以下步骤进行:
步骤1:一次轻烧
将菱镁矿置于850℃沸腾炉中煅烧3h,获得一次轻烧氧化镁粉;
步骤2:水化+湿磨+干燥
(1)将1000g的轻烧氧化镁粉和4倍体积分数,即4000ml的去离子水置于球磨罐中,以300r·min -1转速单向运行15h,同时完成水化和湿磨处理;
(2)将球磨后料浆在120℃下干燥24h,得到氢氧化镁粉;
步骤3:二次轻烧
将获得的氢氧化镁粉置于850℃沸腾炉中煅烧3h,获得二次轻烧氧化镁细粉。
步骤4:微波烧结
(1)将二次轻烧氧化镁细粉在300MPa的压力下成型;
(2)将成型后的素坯在120℃温度下充分干燥,再置于微波烧结炉中,空气气氛下以1450℃烧结并保温4h,制得高密度镁砂。
经检测,所得镁砂的体积密度为3.55g·cm -3,镁砂中氧化镁含量大于97.5%,且氧化镁晶粒发育良好。
实施例5
一种利用菱镁矿微波烧结制备高密度镁砂的方法,按以下步骤进行:
步骤1:一次轻烧
将菱镁矿置于850℃竖窑中煅烧4h,获得一次轻烧氧化镁粉;
步骤2:水化+湿磨+干燥
(1)将1000g的轻烧氧化镁粉和4倍体积分数,即4000ml的去离子水置于球磨罐中,以300r·min -1转速单向运行12h,同时完成水化和湿磨处理;
(2)将球磨后料浆在120℃下干燥24h,得到氢氧化镁粉;
步骤3:二次轻烧
将获得的氢氧化镁粉置于850℃竖窑中煅烧2h,获得二次轻烧氧化镁细粉。
步骤4:微波烧结
(1)将二次轻烧氧化镁细粉在300MPa的压力下成型;
(2)将成型后的素坯在120℃温度下充分干燥,再置于微波烧结炉中,空气气氛下以1500℃烧结并保温6h,制得高密度镁砂。
经检测,所得镁砂的体积密度为3.56g·cm -3,镁砂中氧化镁含量大于97.5%,且氧化镁晶粒发育良好。

Claims (8)

  1. 一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,按以下步骤进行:
    步骤1:一次轻烧
    将菱镁矿置于高温炉中煅烧,获得一次轻烧氧化镁粉;
    步骤2:水化+湿磨+干燥
    (1)将一次轻烧氧化镁粉和去离子水置于球磨罐中进行湿磨,以200~300r·min -1转速单向运行10~15h,同时完成水化和湿磨处理,形成球磨后料浆;
    (2)将球磨后料浆干燥,得到氢氧化镁粉;
    步骤3:二次轻烧
    将氢氧化镁粉进行二次煅烧,获得二次轻烧氧化镁粉;
    步骤4:微波烧结
    (1)将二次轻烧氧化镁粉加压成型,获得素坯;
    (2)将成型后的素坯充分干燥后,置于微波烧结炉中,在空气气氛下烧结并保温,制得高密度镁砂,其中,所述的烧结温度为1350~1500℃,烧结保温时间为1~3h。
  2. 根据权利要求1所述的一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,所述的步骤1中,所述高温炉为竖窑、沸腾炉、悬浮炉中的一种;煅烧温度为800℃~900℃,煅烧时间为2~4h。
  3. 根据权利要求1所述的一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,所述的步骤2(1)中,所述的去离子水与一次轻烧氧化镁粉按液体积与固体质量比为(3~4):1添加,单位ml:g;所述的球磨采用真空球磨罐和ZrO 2磨球。
  4. 根据权利要求1所述的一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,所述的步骤2(2)中,干燥温度为100~120℃,干燥时间20~24h。
  5. 根据权利要求1所述的一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,所述的步骤3中,二次煅烧温度为750~850℃,煅烧时间为2~4h。
  6. 根据权利要求1所述的一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,所述的步骤4(1)中,所述的成型压力为100~300MPa。
  7. 根据权利要求1所述的一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,所述的步骤4(2)中,制备的高密度镁砂中氧化镁含量大于97.5%。
  8. 根据权利要求1所述的一种利用菱镁矿微波烧结制备高密度镁砂的方法,其特征在于,所述的步骤4(2)中,经检测,制备的高密度镁砂的体积密度为3.5~3.56g·cm -3
PCT/CN2019/076095 2019-02-01 2019-02-26 一种利用菱镁矿微波烧结制备高密度镁砂的方法 WO2020155244A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910107678.2 2019-02-01
CN201910107678.2A CN109553311B (zh) 2019-02-01 2019-02-01 一种利用菱镁矿微波烧结制备高密度镁砂的方法

Publications (1)

Publication Number Publication Date
WO2020155244A1 true WO2020155244A1 (zh) 2020-08-06

Family

ID=65874091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076095 WO2020155244A1 (zh) 2019-02-01 2019-02-26 一种利用菱镁矿微波烧结制备高密度镁砂的方法

Country Status (2)

Country Link
CN (1) CN109553311B (zh)
WO (1) WO2020155244A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572080A (zh) * 2022-11-09 2023-01-06 营口菱镁化工集团有限公司 一种饲料级氧化镁的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072049B (zh) * 2019-12-28 2022-09-27 海城市中昊镁业有限公司 一种高致密中档烧结镁砂的制备方法
CN113548874A (zh) * 2021-09-03 2021-10-26 辽宁荣邦科技有限公司 一种菱镁石微波/电弧加热联产电熔镁砂方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150131A (zh) * 1996-09-05 1997-05-21 辽宁镁矿耐火材料公司 一种制取高纯致密粗晶质烧结镁砂的方法
CN1709827A (zh) * 2005-07-06 2005-12-21 东北大学 一种烧结镁砂的制备方法
KR100890626B1 (ko) * 2008-08-29 2009-03-27 (주)원진월드와이드 제철/제강용 설비의 내화성 보수재 원료, 그 제조방법 및 그를 포함하는 보수재
CN102351441A (zh) * 2011-07-21 2012-02-15 辽宁科技大学 利用菱镁矿尾矿一步煅烧生产重烧镁砂的方法
CN103204641A (zh) * 2012-01-16 2013-07-17 东北大学 一种低品位菱镁矿的水化提纯方法
CN108046620A (zh) * 2017-12-08 2018-05-18 中南大学 一种由菱镁矿轻烧粉制备含铬镁砂的方法
CN109053159A (zh) * 2018-09-03 2018-12-21 东北大学 一种利用微波外场协同处理菱镁矿制备高密度镁锆砖的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150131A (zh) * 1996-09-05 1997-05-21 辽宁镁矿耐火材料公司 一种制取高纯致密粗晶质烧结镁砂的方法
CN1709827A (zh) * 2005-07-06 2005-12-21 东北大学 一种烧结镁砂的制备方法
KR100890626B1 (ko) * 2008-08-29 2009-03-27 (주)원진월드와이드 제철/제강용 설비의 내화성 보수재 원료, 그 제조방법 및 그를 포함하는 보수재
CN102351441A (zh) * 2011-07-21 2012-02-15 辽宁科技大学 利用菱镁矿尾矿一步煅烧生产重烧镁砂的方法
CN103204641A (zh) * 2012-01-16 2013-07-17 东北大学 一种低品位菱镁矿的水化提纯方法
CN108046620A (zh) * 2017-12-08 2018-05-18 中南大学 一种由菱镁矿轻烧粉制备含铬镁砂的方法
CN109053159A (zh) * 2018-09-03 2018-12-21 东北大学 一种利用微波外场协同处理菱镁矿制备高密度镁锆砖的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572080A (zh) * 2022-11-09 2023-01-06 营口菱镁化工集团有限公司 一种饲料级氧化镁的制备方法
CN115572080B (zh) * 2022-11-09 2024-01-16 营口菱镁化工集团有限公司 一种饲料级氧化镁的制备方法

Also Published As

Publication number Publication date
CN109553311B (zh) 2020-09-01
CN109553311A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2020155244A1 (zh) 一种利用菱镁矿微波烧结制备高密度镁砂的方法
CN102145993B (zh) 一种低温快速烧成高强氧化铝陶瓷及其制备方法
CN109095916B (zh) 一种sps烧结制备yag透明陶瓷的方法
CN104529449A (zh) 一种采用两步烧结制备氧化钇基透明陶瓷的方法
CN109650753B (zh) 一种利用菱镁矿放电等离子烧结制备高密度镁砂的方法
JP2014507509A (ja) α−アルミナ研磨材及びその調製方法
CN104446390A (zh) 一种含镁改性刚玉复相材料制备方法
CN107522485B (zh) 一种尖晶石纤维强化氧化锆耐火材料及其制备工艺
CN104761251B (zh) 一种制备镁铝尖晶石的反应烧结方法
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN108046620B (zh) 一种由菱镁矿轻烧粉制备含铬镁砂的方法
CN106830955B (zh) 一种微波干燥制备不烧改性高纯镁铝尖晶石复合砖的方法
CN108484139A (zh) 一种镁铬耐火材料的制备方法
CN106365654B (zh) 一种添加ZrN-SiAlON的抗锂电材料侵蚀耐火坩埚
CN105503216A (zh) 一种轻质高强氧化铝空心球制品的制备方法
CN110950671A (zh) 一种煤矸石合成高抗侵蚀堇青石材料的制备工艺
CN109020524A (zh) 一种中频感应电炉用炉衬材料及其制备方法
CN112341218A (zh) 放电等离子烧结高性能镁锆复合陶瓷砖制备方法
CN115286368B (zh) 一种高强度轻质耐火砖及其制备方法
CN111116174A (zh) 一种高热震高致密烧结镁砂的制备方法
CN106348773B (zh) 一种添加SiAlON-AlN-TiN的抗锂电材料侵蚀耐火坩埚
CN114380606A (zh) 一种机加工高强度耐火材料制备工艺
CN114956829A (zh) 一种干熄焦斜道用氮化硅结合碳化硅砖及其制备方法
CN104387031B (zh) 一种氧化铝陶瓷材料及其制备方法
CN115784723B (zh) 一种超细晶高透明双相氧化铝透明陶瓷的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912798

Country of ref document: EP

Kind code of ref document: A1