WO2020152896A1 - 水質分析計及び水質分析方法 - Google Patents

水質分析計及び水質分析方法 Download PDF

Info

Publication number
WO2020152896A1
WO2020152896A1 PCT/JP2019/031711 JP2019031711W WO2020152896A1 WO 2020152896 A1 WO2020152896 A1 WO 2020152896A1 JP 2019031711 W JP2019031711 W JP 2019031711W WO 2020152896 A1 WO2020152896 A1 WO 2020152896A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
acid
concentration
analyzed
water quality
Prior art date
Application number
PCT/JP2019/031711
Other languages
English (en)
French (fr)
Inventor
佳夫 北田
雅人 矢幡
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020567356A priority Critical patent/JP7251556B2/ja
Priority to CN201980087586.0A priority patent/CN113260851A/zh
Publication of WO2020152896A1 publication Critical patent/WO2020152896A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a water quality analyzer, and particularly to a water quality analyzer and a water quality analysis method for measuring the total phosphorus concentration contained in a liquid sample to be analyzed.
  • the total phosphorus concentration in wastewater can be measured at wastewater facilities such as factories and sewage treatment plants.
  • a water quality analyzer is used to measure the total phosphorus concentration of a liquid to be analyzed such as wastewater (for example, Patent Document 1).
  • the analysis target liquid is collected in the storage section at a predetermined time interval (for example, every one hour) from the drainage flow path through which the analysis target liquid discharged from the drainage facility flows. Then, a predetermined amount of the liquid to be analyzed is collected as a sample liquid from the reservoir by a measuring means such as a syringe. Next, an aqueous potassium peroxodisulfate solution and sulfuric acid are added to the sample solution, and the solution is introduced into a reaction tank and irradiated with ultraviolet rays to decompose all phosphorus compounds contained in the sample solution into phosphate ions.
  • a coagulant is used to precipitate water-soluble phosphorus (such as phosphate ions) dissolved in sewage as a sparingly soluble (including insoluble) phosphorus compound and remove it.
  • the total phosphorus concentration of wastewater is reduced (for example, Patent Document 2).
  • the sparingly soluble phosphorus compound does not completely settle out, and a part of the phosphorus compound remains in the liquid and is discharged together with the wastewater.
  • the sparingly soluble phosphorus compound gradually settles, and a large amount of the sparingly soluble phosphorus compound is likely to collect at the bottom of the storage part.
  • the amount of phosphorus compounds contained in the sample liquid to be sampled may vary depending on the length of time from the collection of the liquid to be analyzed to the collection of the sample liquid and the position in the reservoir where the sample liquid is collected.
  • the total phosphorus concentration of the liquid to be analyzed there is a problem that it is difficult to accurately determine the total phosphorus concentration of the liquid to be analyzed.
  • the problem to be solved by the present invention is to provide a water quality analyzer in which the measurement results of the total phosphorus concentration do not vary even when the liquid to be analyzed contains a sparingly soluble phosphorus compound.
  • a storage unit for storing the liquid to be analyzed The analysis target liquid stored in the storage unit is assumed to be contained in the analysis target liquid, and an acid addition unit for adding an acid capable of dissolving a sparingly soluble phosphorus compound to the analysis target liquid.
  • a sample liquid collecting part that collects the analysis liquid to which the acid is added as a sample liquid, Generating a phosphate ion from the sample solution using an acid, a phosphate measuring unit for measuring the concentration of the phosphate ion, A total phosphorus concentration calculating unit for obtaining the total phosphorus concentration of the liquid to be analyzed from the concentration of the phosphate ions.
  • Analyte liquid storage step of collecting and storing liquid to be analyzed An acid addition step of adding an acid for dissolving the sparingly soluble phosphorus compound in the liquid to be analyzed, which is assumed to be contained in the liquid to be analyzed, to the stored liquid to be analyzed,
  • the stored analysis target liquid contains the analysis target liquid before the sample liquid is collected.
  • An acid capable of dissolving a sparingly soluble phosphorus compound in the liquid to be analyzed is added.
  • This acid which is typically strongly acidic such as hydrochloric acid or sulfuric acid, is capable of dissolving the sparingly soluble phosphorus compounds that are expected to result from the phosphorus removal treatment performed in the drainage facility that releases the analyte liquid. If so, it does not necessarily have to be a strong acid.
  • the phosphorus compound contained in the sample liquid It is possible to accurately measure the total phosphorus concentration of the liquid to be analyzed without causing variations in the amount of.
  • the water quality analyzer 1 of the present embodiment is a total nitrogen and total phosphorus meter, and is used for automatically measuring online the total nitrogen concentration and total phosphorus concentration contained in the liquid to be analyzed such as wastewater from a factory or a sewage treatment plant. ..
  • FIG. 1 shows the main configuration of the water quality analyzer 1 of this example.
  • the water quality analyzer 1 includes a sample collection unit 10, a measurement unit 20, a sample liquid processing unit 30, and a control unit 100 that controls the operation of each of these units.
  • the control unit 100 includes a storage unit 101, a measurement control unit 102, which is a functional block, and a concentration calculation unit 103.
  • the control unit 100 is a general computer, and the measurement control unit 102 and the concentration calculation unit 103 are embodied by executing a predetermined program by a processor. Information on the calibration curve for calculating the total nitrogen concentration and the calibration curve for calculating the total phosphorus concentration is stored in the storage unit 101.
  • the sample collection unit 10 includes a collection tank 11 provided with a drainage inlet 14, a drainage outlet 17, and a stored liquid outlet 16.
  • a partition 12 is provided inside the collection tank 11, and the partition divides a first space in which a drainage outlet 17 is provided and a second space in which a stored liquid outlet 16 is provided.
  • the bottom part of the second space is a storage part 15 for collecting and storing a part of the drainage, and the guide member 18 arranged immediately below the drainage inlet 14 is rotated and tilted at a predetermined angle. By this, the drainage flowing from the drainage inlet 14 can be distributed to the storage part 15.
  • a propeller-shaped stirring section 13 for stirring the liquid in the storage section 15 is arranged in the storage section 15.
  • the drive source of the guide member 18 and the stirring unit 13 is, for example, a motor.
  • the measurement unit 20 includes a light source 21, a measurement cell 22, a beam splitter 23, a first optical filter 24, a first detector 25, a second optical filter 26, and a second detector 27.
  • a xenon lamp for example, is used as the light source 21.
  • the first optical filter 24 is a bandpass filter that selectively passes light with a wavelength of 220 nm
  • the second optical filter 26 is a bandpass filter that selectively passes light with a wavelength of 880 nm.
  • the sample liquid processing unit 30 includes a first multiport valve 31 and a second multiport valve 32. Each of these is an 8-port valve having one common port and eight sub-ports (first port to eighth port), and any one of the eight ports can be connected to the common port.
  • the common port of the first multi-port valve 31 is connected to the first port of the second multi-port valve 32. Further, the first port of the first multi-port valve 31 is open, so that an offline sample can be introduced.
  • a liquid container (the description of the liquid container is omitted hereinafter) in which the storage unit 15 of the sampling unit 10 and the span liquid 61 are stored in order from the second port to the eighth port of the first multi-port valve 31.
  • the reactor 51, the drain passage, the dilution water (pure water) 64, the measurement cell 22, and the standard solution switching valve 65 are connected.
  • a UV lamp 52 for irradiating the liquid inside the reactor 51 with ultraviolet rays is attached to the reactor 51. Further, a pump 53 for discharging the liquid in the reactor 51 is connected.
  • a nitrogen standard solution 63 and a phosphorus standard solution 62 are connected to the standard solution switching valve 65.
  • the span solution 61 is a standard solution of nitrogen and phosphorus used for calibration measurement, and includes a standard sample of nitrogen and a standard sample of phosphorus having the same concentration as in the measurement range.
  • the nitrogen standard solution 63 and phosphorus standard solution 62 are the items of "4.2 Performance Standards and Management Standards" of "Water Pollution Load Measurement Method Manual (Revised Edition)" issued by Ministry of the Environment of Japan. It corresponds to the standard sample solution described in, and is used to confirm that the water quality analyzer satisfies the performance standard. The description of the calibration work of the water quality analyzer 1 is omitted.
  • a micro syringe 41 is connected to the common port of the second multi-port valve 32.
  • a stirring pump 42 for stirring the liquid collected in the microsyringe 41 and discharging the liquid in the microsyringe 41 is connected to the microsyringe 41.
  • the first port of the second multi-port valve 32 is connected to the common port of the first multi-port valve 31 as described above.
  • Sulfuric acid 73, ammonium molybdate aqueous solution 72, ascorbic acid 71, sodium hydroxide aqueous solution 76, potassium peroxodisulfate aqueous solution 75, and hydrochloric acid 74 are sequentially connected to the second to eighth ports of the second multiport valve 32. ing.
  • Step 1 Collection of liquid to be analyzed First, in the sample collecting unit 10, the guiding member 18 is rotated to face a predetermined angle, and a predetermined amount (S ml) of the liquid to be analyzed is stored in the storage unit 15. This predetermined amount is, for example, 50 ml.
  • Step 2 Measurement of total nitrogen concentration
  • the total nitrogen concentration of the liquid to be analyzed is measured by the ultraviolet absorptiometry.
  • a predetermined amount of the liquid to be analyzed is collected as a sample liquid from the reservoir 15 by the microsyringe 41 (step 2-1).
  • the predetermined amount is, for example, 4 ml (the amount after dilution becomes 10 ml).
  • the sixth port of the first multi-port valve 31 is connected to the common port, and a predetermined amount of dilution water 64 is sampled and added to the sample solution collected in the micro syringe 41. This dilutes the sample solution m times.
  • the liquid to be analyzed stored in the storage section 15 is discharged from the stored liquid outlet 16.
  • the fifth port of the second multi-port valve 32 is connected to the common port, and the sodium hydroxide aqueous solution 76 is added to the sample liquid collected in the microsyringe 41.
  • the sodium hydroxide aqueous solution 76 is added here to make the sample solution alkaline.
  • the sixth port of the second multi-port valve 32 is connected to the common port, and the potassium peroxodisulfate aqueous solution 75 is further added to the sample solution in the microsyringe 41.
  • the first port of the second multi-port valve 32 is connected to the common port, the fourth port of the first multi-port valve 31 is connected to the common port, and the sample solution is introduced into the reactor 51.
  • the UV lamp 52 is turned on, and the sample solution is irradiated with ultraviolet rays for a predetermined time.
  • This predetermined time is preset to a time sufficient to decompose all the nitrogen compounds in the sample solution into nitrate ions. This required time is, for example, 15 minutes. This time can be determined by preliminary experiments or the like. By this treatment, all nitrogen compounds in the sample solution are decomposed into nitrate ions.
  • the sixth port of the first multi-port valve 31 is connected to the common port and the dilution water 64 is collected in the microsyringe 41.
  • the seventh port of the first multi-port valve 31 is connected to the common port, and the dilution water is introduced into the measurement cell 22.
  • the light source 21 is turned on, the intensity I n0 (blank intensity) of the light of wavelength 220 nm that has passed through the measurement cell 22 and passed through the beam splitter 23 and the first optical filter 24 is detected by the first detector 25. taking measurement.
  • the fourth port of the first multiport valve 31 is connected to the common port, and the sample solution is introduced from the reactor 51 into the microsyringe 41.
  • the seventh port of the second multi-port valve 32 is connected to the common port, and hydrochloric acid 74 is added to the sample solution in the microsyringe 41.
  • the carbonate ion having an absorption band at a wavelength of 220 nm which is dissolved from the air during the treatment such as oxidation in an alkaline atmosphere, is changed to carbonic acid having no absorption band at a wavelength of 220 nm.
  • the seventh port of the first multi-port valve 31 is connected to the common port
  • the first port of the second multi-port valve 32 is connected to the common port
  • the sample solution in the microsyringe 41 is transferred to the measurement cell 22.
  • the light source 21 is turned on, the intensity I n of the light of wavelength 220 nm that has passed through the measurement cell 22 and passed through the beam splitter 23 and the first optical filter 24 is measured by the first detector 25 (step. 2-2).
  • Step 3 Storage of Analytical Solution
  • the guiding member 18 is rotated to face a predetermined angle and a predetermined amount (S ml) of the analytical solution is stored in the storage section 15.
  • This predetermined amount is, for example, 50 ml.
  • Step 4 Dissolution of sparingly soluble phosphorus compound
  • the seventh port of the second multi-port valve 32 is connected to the common port, and a predetermined amount (A ml) of hydrochloric acid 74 is collected by the microsyringe 41.
  • This predetermined amount is, for example, 1.5 ml, and the concentration of hydrochloric acid is, for example, 0.7 mol/L.
  • the first port of the second multi-port valve 32 is connected to the common port
  • the second port of the first multi-port valve 31 is connected to the common port
  • the hydrochloric acid 74 collected in the microsyringe 41 is stored in the storage unit 15. It is added to the liquid to be analyzed and the stirring unit 13 is operated to stir.
  • the phosphorus compound which is assumed to be contained in the liquid to be analyzed of this example and is sparingly soluble in the liquid to be analyzed is mainly calcium phosphate. Since calcium phosphate is dissolved in an acidic aqueous solution, in the present embodiment, 50 ml of the liquid to be analyzed was collected in the reservoir 15, and 1.5 ml of hydrochloric acid having a concentration of 0.7 mol/L was added thereto to adjust the pH to 2.0 or less and the calcium phosphate. Decomposes into calcium chloride and phosphate ions.
  • the coagulant is used to dissolve water-soluble phosphorus (such as phosphate ions) dissolved in the wastewater by precipitating and removing it as a sparingly soluble phosphorus compound.
  • the phosphorus concentration is reduced.
  • the sparingly soluble phosphorus compound does not completely settle out, and a part of the phosphorus compound remains in the liquid and is discharged together with the wastewater. Therefore, the sparingly soluble phosphorus compounds are suspended in the waste water (the liquid to be analyzed) collected in the storage section 15, and they gradually settle.
  • the sparingly soluble phosphorus compound contained in wastewater include aluminum phosphate and iron phosphate in addition to the above calcium phosphate.
  • Calcium phosphate, aluminum phosphate, and iron phosphate can be included in, for example, wastewater from sewage treatment plants.
  • the sparingly soluble phosphorus compound is dissolved by introducing a predetermined amount of hydrochloric acid 74 into the liquid to be analyzed in the storage section 15.
  • hydrochloric acid 74 is added to the liquid to be analyzed in the storage portion 15 in this embodiment
  • the sparingly soluble phosphorus compound can be dissolved by adding sulfuric acid 73 which is a strong acid like hydrochloric acid 74.
  • sulfuric acid 73 which is a strong acid like hydrochloric acid 74.
  • the sparingly soluble phosphorus compound is calcium phosphate, aluminum phosphate, and/or iron phosphate, they can be dissolved by adding an acid to make the pH less than 2.0.
  • the weak acid salt is liberated by adding an acid stronger than phosphoric acid to the liquid to be analyzed containing the weak acid phosphoric acid salt.
  • Step 5 Measurement of total phosphorus concentration
  • the total phosphorus concentration of the liquid to be analyzed is measured by the molybdenum blue method.
  • a predetermined amount of the liquid to be analyzed is collected as a sample liquid by the microsyringe 41 (step 5-1).
  • the predetermined amount is, for example, 4 ml (the amount after dilution becomes 10 ml).
  • the sixth port of the first multi-port valve 31 is connected to the common port, and a predetermined amount of dilution water 64 is sampled and added to the sample solution collected in the micro syringe 41. This dilutes the sample solution n times.
  • the liquid to be analyzed stored in the storage section 15 is discharged from the stored liquid outlet 16.
  • the second port of the second multi-port valve 32 is connected to the common port, and sulfuric acid 73 is added to the sample solution collected in the microsyringe 41.
  • the weakly acidic sample liquid is made acidic.
  • the sixth port of the second multi-port valve 32 is connected to the common port, and the potassium peroxodisulfate aqueous solution 75 is added to the sample solution in the microsyringe 41.
  • the first port of the second multi-port valve 32 is connected to the common port
  • the fourth port of the first multi-port valve 31 is connected to the common port
  • the sample solution is introduced into the reactor 51.
  • the UV lamp 52 is turned on, and the sample solution is irradiated with ultraviolet rays for a predetermined time.
  • the predetermined time is set in advance to a time sufficient to decompose all the phosphorus compounds in the sample solution into phosphate ions.
  • the required time is, for example, 20 minutes. This time can be determined by preliminary experiments or the like. By this treatment, all phosphorus compounds in the sample solution are decomposed into phosphate ions.
  • the sixth port of the first multi-port valve 31 is connected to the common port and the dilution water 64 is collected in the microsyringe 41.
  • the seventh port of the first multi-port valve 31 is connected to the common port, and the dilution water is introduced into the measurement cell 22.
  • the light source 21 is turned on, transmitted through the measurement cell 22, reflected by the beam splitter 23, and transmitted through the second optical filter 26, the intensity I P0 (blank density) of the light of wavelength 880 nm is secondly detected. Measure with instrument 27.
  • the fourth port of the first multiport valve 31 is connected to the common port, and the sample solution is introduced from the reactor 51 into the microsyringe 41.
  • the fifth port of the second multi-port valve 32 is connected to the common port, and the sodium hydroxide aqueous solution 76 is added to the sample solution in the microsyringe 41. This adjusts the pH value appropriately for the next color development step.
  • the fourth port of the second multiport valve 32 is connected to the common port, and ascorbic acid 71 is added to the sample solution in the microsyringe 41. Further, the third port of the second multi-port valve 32 is connected to the common port, and the ammonium molybdate aqueous solution 72 is added to the sample solution in the microsyringe 41. Then, stirring is performed using the pump 42.
  • the seventh port of the first multi-port valve 31 is connected to the common port
  • the first port of the second multi-port valve 32 is connected to the common port
  • the sample solution in the microsyringe 41 is introduced into the measurement cell 22.
  • the light source 21 is turned on, the intensity I P of the light having a wavelength of 880 nm that is transmitted through the measurement cell 22, reflected by the beam splitter 23, and passed through the second optical filter 26 is measured by the second detector 27. (Step 5-2).
  • the measurement control unit 102 and the concentration calculation unit 103 repeat the processing according to the above procedure at predetermined time intervals (for example, every one hour). As a result, the total nitrogen concentration and total phosphorus concentration of the liquid to be analyzed are automatically measured online.
  • hydrochloric acid 74 is added to the liquid to be analyzed stored in the storage unit 15 to make the sparingly soluble phosphorus compound contained in the liquid to be analyzed. Since the sample solution for measuring the total phosphorus is collected after the solution is dissolved, the amount of phosphorus compounds contained in the sample solution does not vary, and the total phosphorus concentration of the analyte liquid can be accurately measured.
  • the above embodiment is an example, and can be appropriately modified in accordance with the spirit of the present invention.
  • the analyte liquid was stored, and the acid was added only before measuring the total phosphorus concentration, but before measuring the total nitrogen concentration.
  • the stored liquid to be analyzed can be used as it is for the measurement of the total phosphorus concentration.
  • an acid is added before collecting the sample solution for the total phosphorus concentration (or before collecting the sample solution for measuring the total nitrogen concentration) to dissolve the sparingly soluble phosphorus compound contained in the analyte liquid,
  • the water quality analyzer of the above-described embodiment is designed to measure both total nitrogen concentration and total phosphorus concentration, but a water quality analyzer that measures only total phosphorus concentration may be used.
  • sulfuric acid 73 may be used to dissolve the sparingly soluble phosphorus compound.
  • the sparingly soluble phosphorus compound was dissolved with hydrochloric acid or sulfuric acid prepared for the measurement of the total nitrogen concentration or the total phosphorus concentration, but an acid other than these was prepared separately, and the acid It is also possible to dissolve the sparingly soluble phosphorus compound by using.
  • This acid is not limited to a strong acid similar to hydrochloric acid or sulfuric acid, but can dissolve a sparingly soluble phosphorus compound that is assumed to be generated from the phosphorus removal treatment performed in a drainage facility that releases the analyte liquid, for example, phosphoric acid.
  • the above strong acids can be used.
  • the water quality analyzer of the first aspect of the present invention is A storage unit for storing the liquid to be analyzed,
  • the analysis target liquid stored in the storage unit is assumed to be contained in the analysis target liquid, and an acid addition unit for adding an acid capable of dissolving a sparingly soluble phosphorus compound to the analysis target liquid.
  • a sample liquid collecting part that collects the analysis liquid to which the acid is added as a sample liquid, Generating a phosphate ion from the sample solution using an acid, a phosphate measuring unit for measuring the concentration of the phosphate ion,
  • a total phosphorus concentration calculating unit for obtaining the total phosphorus concentration of the liquid to be analyzed from the concentration of the phosphate ions.
  • the water quality analysis method of the fifth aspect of the present invention is Analyte liquid storage step of collecting and storing liquid to be analyzed, An acid addition step of adding an acid capable of dissolving the sparingly soluble phosphorus compound in the liquid to be analyzed, which is assumed to be contained in the liquid to be analyzed, to the stored liquid to be analyzed, A sample solution collecting step of collecting the analyte liquid to which the acid is added as a sample solution; Generating a phosphate ion from the sample solution using an acid, a phosphate measuring step of measuring the concentration of the phosphate ion, A total phosphorus concentration calculating step of obtaining a total phosphorus concentration of the liquid to be analyzed from the concentration of the phosphate ions.
  • the liquid to be analyzed is stored in the reservoir before the sample liquid is collected.
  • An acid capable of dissolving the sparingly soluble phosphorus compound which is supposed to be contained is added.
  • the sample liquid is sampled after the compound is dissolved. Therefore, the amount of the phosphorus compound contained in the sample liquid varies. Is not generated, and the total phosphorus concentration of the liquid to be analyzed can be accurately measured.
  • the water quality analyzer of the second aspect of the present invention is the water quality analyzer of the first aspect
  • the acid for dissolving the sparingly soluble phosphorus compound is the acid used in the phosphoric acid measurement unit.
  • the water quality analysis method of the sixth aspect of the present invention is the same as the water quality analysis method of the fifth aspect,
  • the acid for dissolving the sparingly soluble phosphorus compound is the acid used in the phosphoric acid measurement step.
  • the acid used for measuring the total phosphorus concentration is also used for dissolving the sparingly soluble phosphorus compound
  • the acid for dissolving the sparingly soluble phosphorus compound is used. There is no need to prepare it additionally.
  • the water quality analyzer of the third aspect of the present invention is the water quality analyzer of the first aspect, further comprising: A nitric acid measuring unit for generating a nitrate ion from the sample solution using an acid and measuring the concentration of the nitrate ion, A total nitrogen concentration calculating unit for obtaining the total nitrogen concentration of the liquid to be analyzed from the concentration of the nitrate ions.
  • the water quality analysis method of the seventh aspect of the present invention is the same as the water quality analysis method of the fifth aspect, further comprising: Generating a nitrate ion from the sample solution using an acid, a nitric acid measurement step of measuring the concentration of the nitrate ion, A total nitrogen concentration calculating step of obtaining the total nitrogen concentration of the liquid to be analyzed from the concentration of the nitrate ions.
  • both the total phosphorus concentration and the total nitrogen concentration of the liquid to be analyzed can be determined. Further, since the acid used for measuring the total nitrogen concentration is also used for dissolving the sparingly soluble phosphorus compound, it is not necessary to additionally prepare an acid for dissolving the sparingly soluble phosphorus compound.
  • the water quality analyzer of the fourth aspect of the present invention is the water quality analyzer of the third aspect, wherein
  • the acid for dissolving the sparingly soluble phosphorus compound is an acid used in the nitric acid measuring section.
  • the water quality analysis method of the eighth aspect of the present invention is the water quality analysis method of the seventh aspect, wherein The acid for dissolving the sparingly soluble phosphorus compound is the acid used in the nitric acid measurement step.
  • the acid used for measuring total nitrogen is used for decomposing the sparingly soluble phosphate compound
  • the acid for dissolving the sparingly soluble phosphorus compound is used. There is no need to prepare additional.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

分析対象液を貯留する貯留部(15)と、貯留部(15)に貯留された分析対象液に、該分析対象液に含まれることが想定される、該分析対象液に対して難溶性のリン化合物を溶解可能な酸(73;74)を添加する酸添加部(31;32;73;74;102)と、酸(73;74)が添加された分析対象液を試料液として採取する試料液採取部(31;32;41;102)と、酸(73)を用いて試料液からリン酸イオンを生成し、該リン酸イオンの濃度を測定する測定部(20)と、リン酸イオンの濃度から分析対象液の全リン濃度を求める全リン濃度算出部(103)とを備える水質分析計。

Description

水質分析計及び水質分析方法
 本発明は、水質分析計に関し、特に分析対象の液体試料に含まれる全リン濃度を測定する水質分析計及び水質分析方法に関する。
 下水処理場等からの排水による河川、湖沼、海の富栄養化現象、プランクトンの異常発生といった問題を受けて、工場や下水処理場等の排水施設では、排水に含まれる全リン濃度の測定が義務づけられている。排水等の分析対象液の全リン濃度の測定には水質分析計が用いられる(例えば特許文献1)。
 水質分析計を用いて分析対象液の全リン濃度を測定する手順を説明する。
 まず、排水施設から放出される分析対象液が流れる排水流路から、予め決められた時間間隔で(例えば1時間毎に)分析対象液を貯留部に採取する。そして、シリンジ等の計量手段によって貯留部から所定量の分析対象液を試料液として採取する。次に、試料液にペルオキソ二硫酸カリウム水溶液と硫酸を添加して反応槽に導入し、紫外線を照射することにより試料液に含まれる全てのリン化合物をリン酸イオンに分解する。続いて、その試料液に水酸化ナトリウム水溶液を加えて該試料液を中和し、さらにアスコルビン酸水溶液とモリブデン酸アンモニウム水溶液を添加した後、測定セルに導入し、キセノンランプを照射して波長880nmの透過光の強度を測定する。一方、分析対象液を含まないブランク試料を試料セルに導入して波長880nmの透過光の強度を測定しておき、ブランク試料測定時の透過光強度と試料液測定時の透過光強度から試料液に含まれるリン酸イオンの吸光度を求める。その後、リン酸イオンと吸光度の関係を示す検量線と照合することにより、分析対象液のリン酸イオン濃度、すなわち全リン濃度を求める。
特開2016-80441号公報 特開2010-36107号公報
 下水処理場では、凝集剤を使用して下水に溶解している水溶性のリン(リン酸イオンなど)を、難溶性(不溶性のものも含む。)のリン化合物として沈降させて除去することにより、排水の全リン濃度を低減している(例えば特許文献2)。しかし、難溶性のリン化合物は完全には沈降せず、一部は液中に浮遊したまま排水と共に排出される。こうした排水を貯留部に採取すると、難溶性のリン化合物が徐々に沈降していき、貯留部の底部に多くの難溶性のリン化合物が溜まりやすくなる。そのため、分析対象液を貯留部に採取してから試料液を採取するまでの時間の長短や、試料液を採取する貯留部内の位置によって、採取される試料液に含まれるリン化合物の量にばらつきが生じ、分析対象液の全リン濃度を正しく求めることが難しいという問題があった。
 本発明が解決しようとする課題は、分析対象液に難溶性のリン化合物が含まれている場合でも全リン濃度の測定結果にばらつきが生じることのない水質分析計を提供することである。
 上記課題を解決するために成された本発明に係る水質分析計は、
 分析対象液を貯留する貯留部と、
 前記貯留部に貯留された前記分析対象液に、該分析対象液に含まれることが想定される、該分析対象液に対して難溶性のリン化合物を溶解可能な酸を添加する酸添加部と、
 前記酸が添加された分析対象液を試料液として採取する試料液採取部と、
 酸を用いて前記試料液からリン酸イオンを生成し、該リン酸イオンの濃度を測定するリン酸測定部と、
 前記リン酸イオンの濃度から前記分析対象液の全リン濃度を求める全リン濃度算出部と
 を備える。
 また、上記課題を解決するために成された本発明に係る水質分析方法は、
 分析対象液を採取し貯留する分析対象液貯留ステップと、
 前記貯留した分析対象液に、該分析対象液に含まれることが想定される、該分析対象液中の難溶性リン化合物を溶解するための酸を添加する酸添加ステップと、
 前記酸が添加された分析対象液を試料液として採取する試料液採取ステップと、
 酸を用いて前記試料液からリン酸イオンを生成し、該リン酸イオンの濃度を測定するリン酸測定ステップと、
 前記リン酸イオンの濃度から前記分析対象液の全リン濃度を求める全リン濃度算出ステップと
 を有する。
 本発明に係る水質分析計及び水質分析方法では、分析対象液を貯留部に貯留したあと、試料液の採取前に、貯留した分析対象液に、該分析対象液に含まれることが想定される、該分析対象液に対して難溶性のリン化合物を溶解可能な酸を添加する。この酸は、典型的には塩酸や硫酸といった強酸性であるが、分析対象液を放出する排水施設で行われるリン除去処理から生じることが想定される難溶性のリン化合物を溶解可能なものであれば、必ずしも強酸でなくてもよい。本発明に係る水質分析計及び水質分析方法では、分析対象液に難溶性のリン化合物が含まれている場合でも、該化合物を溶解した後に試料液を採取するため、試料液に含まれるリン化合物の量にばらつきが生じず、分析対象液の全リン濃度を正しく測定することができる。
本発明に係る水質分析計の一実施例の要部構成図。 本発明に係る水質分析方法の一実施例のフローチャート。
 本発明に係る水質分析計の一実施例について、以下、図面を参照して説明する。
 本実施例の水質分析計1は全窒素全リン計であり、工場や下水処理場からの排水等の分析対象液に含まれる全窒素濃度及び全リン濃度をオンラインで自動測定するために用いられる。本実施例の水質分析計1の要部構成を図1に示す。
 本実施例の水質分析計1は、試料採取部10、測定部20、及び試料液処理部30と、これら各部の動作を制御する制御部100とを備えている。制御部100は、記憶部101と、機能ブロックである測定制御部102及び濃度算出部103とを備えている。制御部100は一般的なコンピュータであり、プロセッサにより所定のプログラムを実行することにより測定制御部102及び濃度算出部103が具現化される。記憶部101には、全窒素濃度算出用の検量線及び全リン濃度算出用の検量線の情報が保存されている。
 試料採取部10は、排水入口14、排水出口17、貯留液出口16が設けられた採取槽11を備えている。採取槽11の内部には隔壁12が設けられており、この隔壁によって排水出口17が設けられている第1空間と、貯留液出口16が設けられている第2空間に分画されている。第2空間の底部は、排水の一部を採取して貯留するための貯留部15となっており、排水入口14の直下に配置された誘導部材18を回動させて所定の角度に傾けることによって、排水入口14から流入する排水を貯留部15に振り分け可能となっている。また、貯留部15には、該貯留部15内の液体を攪拌するためのプロペラ状の攪拌部13が配置されている。誘導部材18及び攪拌部13の駆動源は、例えばモータである。
 測定部20は、光源21、測定セル22、ビームスプリッタ23、第1光学フィルタ24、第1検出器25、第2光学フィルタ26、及び第2検出器27を備えている。光源21には、例えばキセノンランプが用いられる。第1光学フィルタ24は、波長220nmの光を選択的に通過させるバンドパスフィルタであり、第2光学フィルタ26は、波長880nmの光を選択的に通過させるバンドパスフィルタである。
 試料液処理部30は、第1マルチポートバルブ31と第2マルチポートバルブ32を備えている。これらはいずれも、1個の共通ポートと8個のサブポート(第1ポート~第8ポート)を有する8ポートバルブであり、8ポートのいずれか1つを共通ポートに接続可能となっている。
 第1マルチポートバルブ31の共通ポートは第2マルチポートバルブ32の第1ポートに接続されている。また、第1マルチポートバルブ31の第1ポートは開放されており、オフラインの試料を導入可能となっている。第1マルチポートバルブ31の第2ポート~第8ポートには順に、試料採取部10の貯留部15、スパン液61が収容された液体容器(以降では、液体容器の記載を省略する。)、反応器51、ドレン流路、希釈水(純水)64、測定セル22、標準液切換弁65が接続されている。
 反応器51には、該反応器51内の液体に紫外線を照射するUVランプ52が取り付けられている。また反応器51内の液体を排出するためのポンプ53が接続されている。標準液切換弁65には、窒素標準液63とリン標準液62が接続されている。スパン液61は、校正測定に用いられる、窒素およびリンの標準液であり、測定レンジと同じ濃度の窒素の標準試料、リンの標準試料が含まれている。また、窒素標準液63及びリン標準液62は、環境省が発行する「窒素・りん自動計測器による水質汚濁負荷量測定方法マニュアル(改訂版)」の「4.2 性能基準と管理基準等」の項目に記載されている標準試料溶液に対応するものであり、水質分析計が性能基準を満足している事を確認するために用いられる。水質分析計1の校正作業等に関する記載は省略する。
 第2マルチポートバルブ32の共通ポートにはマイクロシリンジ41が接続されている。マイクロシリンジ41には、該マイクロシリンジ41に採取した液体を攪拌したり、マイクロシリンジ41内の液体を排出したりするための攪拌ポンプ42が接続されている。第2マルチポートバルブ32の第1ポートは、上述の通り、第1マルチポートバルブ31の共通ポートに接続されている。第2マルチポートバルブ32の第2ポート~第8ポートには順に、硫酸73、モリブデン酸アンモニウム水溶液72、アスコルビン酸71、水酸化ナトリウム水溶液76、ペルオキソ二硫酸カリウム水溶液75、及び塩酸74が接続されている。
 次に、本実施例の水質分析計を用いた、分析対象液の全窒素濃度及び全リン濃度を測定する手順を、図2のフローチャートを参照して説明する。
ステップ1.分析対象液の採取
 まず、試料採取部10において、誘導部材18を回動させて所定の角度に向け、所定量(S ml)の分析対象液を貯留部15に貯留する。この所定量は、例えば50mlである。
ステップ2.全窒素濃度の測定
 分析対象液の全窒素濃度は、紫外吸光光度法により測定する。
 貯留部15からマイクロシリンジ41で分析対象液を所定量、試料液として採取する(ステップ2-1)。所定量とは、例えば4ml(希釈後の量が10mlとなる量)である。次に、第1マルチポートバルブ31の第6ポートを共通ポートに接続し、所定量の希釈水64を採取してマイクロシリンジ41に採取した試料液に添加する。これにより試料液をm倍に希釈する。この所定量は、例えば6mlであり、その場合には試料液が2.5倍(m=2.5)に希釈される。試料液の採取後、貯留部15に貯留していた分析対象液を貯留液出口16から排出する。
 続いて、第2マルチポートバルブ32の第5ポートを共通ポートに接続し、マイクロシリンジ41に採取した試料液に水酸化ナトリウム水溶液76を添加する。ここで水酸化ナトリウム水溶液76を添加するのは、試料液をアルカリ性にするためである。さらに、第2マルチポートバルブ32の第6ポートを共通ポートに接続し、マイクロシリンジ41内の試料液に、さらにペルオキソ二硫酸カリウム水溶液75を添加する。そして、第2マルチポートバルブ32の第1ポートを共通ポートに接続し、第1マルチポートバルブ31の第4ポートを共通ポートに接続して、試料液を反応器51に導入する。続いて、UVランプ52を点灯させ、試料液に所定時間、紫外線を照射する。この所定時間には、試料液中の窒素化合物を全て硝酸イオンに分解するために十分な時間が予め設定されている。この所要時間は、例えば15分である。この時間は予備実験等により決めることができる。この処理により、試料液中の窒素化合物が全て硝酸イオンに分解される。
 反応器51に導入した試料液に紫外線を照射している間に、第1マルチポートバルブ31の第6ポートを共通ポートに接続し、マイクロシリンジ41に希釈水64を採取する。次に、第1マルチポートバルブ31の第7ポートを共通ポートに接続し、希釈水を測定セル22に導入する。これと並行して光源21を点灯させ、測定セル22を透過し、ビームスプリッタ23と第1光学フィルタ24を通過した、波長220nmの光の強度In0(ブランク強度)を第1検出器25で測定する。
 試料液に前記所定時間、紫外線を照射した後、第1マルチポートバルブ31の第4ポートを共通ポートに接続し、反応器51から試料液をマイクロシリンジ41に導入する。続いて、第2マルチポートバルブ32の第7ポートを共通ポートに接続し、マイクロシリンジ41内の試料液に塩酸74を添加する。これにより、アルカリ性雰囲気下で酸化などの処理をしている間に空気中から溶け込んだ、波長220nmに吸収帯を持つ炭酸イオンを、波長220nmに吸収帯を持たない炭酸へ変化させる。
 次に、第1マルチポートバルブ31の第7ポートを共通ポートに接続し、第2マルチポートバルブ32の第1ポートを共通ポートに接続して、マイクロシリンジ41内の試料液を測定セル22に導入する。これと並行して光源21を点灯させ、測定セル22を透過し、ビームスプリッタ23と第1光学フィルタ24を通過した、波長220nmの光の強度Inを第1検出器25で測定する(ステップ2-2)。
 試料液の透過光強度Inが得られると、濃度算出部103は次式により試料液の吸光度Absnを求め、記憶部101に保存する。
 Absn=-log10(In/In0)
 そして、Absnを、記憶部101に保存された全窒素濃度算出用の検量線と照合し、試料液の窒素濃度CNを算出する(ステップ2-3)。
ステップ3.分析対象液の貯留
 まず、試料採取部10において、誘導部材18を回動させて所定の角度に向け、所定量(S ml)の分析対象液を貯留部15に貯留する。この所定量は、例えば50mlである。
ステップ4.難溶性のリン化合物の溶解
 次に、第2マルチポートバルブ32の第7ポートを共通ポートに接続して、マイクロシリンジ41により所定量(A ml)の塩酸74を採取する。この所定量は、例えば1.5mlであり、塩酸の濃度は、例えば0.7mol/Lである。次に、第2マルチポートバルブ32の第1ポートを共通ポートに接続し、第1マルチポートバルブ31の第2ポートを共通ポートに接続して、マイクロシリンジ41に採取した塩酸74を貯留部15内の分析対象液に添加し、攪拌部13を動作させて攪拌する。本実施例の分析対象液に含まれることが想定されている、該分析対象液に対して難溶性のリン化合物は、主にリン酸カルシウムである。リン酸カルシウムは酸性の水溶液に溶解することから、本実施例では貯留部15に50mlの分析対象液を採取し、これに濃度0.7mol/Lの塩酸を1.5ml添加することによりpHを2.0以下としてリン酸カルシウムを塩化カルシウムとリン酸イオンに分解する。
 下水処理場等の排水施設では、凝集剤を使用して排水に溶解している水溶性のリン(リン酸イオンなど)を、難溶性のリン化合物として沈降させて除去することにより、排水の全リン濃度を低減している。しかし、難溶性のリン化合物は完全には沈降せず、一部は液中に浮遊したまま排水と共に排出される。そのため、貯留部15に採取した排水(分析対象液)の中にも難溶性のリン化合物が浮遊しており、それらは徐々に沈降していく。難溶性のリン化合物が貯留部15に沈降した状態で試料液を採取すると、採取される試料液に含まれるリン化合物の量にばらつきが生じ、分析対象液の全リン濃度を正しく求めることが難しい。排水に含まれる難溶性のリン化合物としては、例えば、上記リン酸カルシウムの他に、リン酸アルミニウム、リン酸鉄がある。リン酸カルシウム、リン酸アルミニウム、及びリン酸鉄は、例えば下水処理場からの排水に含まれうる。
 そこで、本実施例の水質分析計1では、上記のように、貯留部15内の分析対象液に所定量の塩酸74を導入することで、難溶性のリン化合物を溶解させる。これにより、貯留部15内でのリンの分布を均一にする。なお、本実施例では塩酸74を貯留部15内の分析対象液に添加したが、塩酸74と同様に強酸である硫酸73を添加しても難溶性のリン化合物を溶解することができる。例えば、難溶性のリン化合物がリン酸カルシウム、リン酸アルミニウム、及び/又はリン酸鉄である場合、酸を添加してpHを2.0未満とすることによりこれらを溶解することができる。このように、本実施例の水質分析計1では、弱酸であるリン酸の塩を含んだ分析対象液に、リン酸よりも強い酸を添加することによって、該弱酸の塩を遊離させる。
ステップ5.全リン濃度の測定
 分析対象液の全リン濃度は、モリブデンブルー法により測定する。
 マイクロシリンジ41で分析対象液を所定量、試料液として採取する(ステップ5-1)。所定量とは、例えば4ml(希釈後の量が10mlとなる量)である。次に、第1マルチポートバルブ31の第6ポートを共通ポートに接続し、所定量の希釈水64を採取してマイクロシリンジ41に採取した試料液に添加する。これにより試料液をn倍に希釈する。この所定量は、例えば6mlであり、その場合には試料液が2.5倍(n=2.5)に希釈される。試料液の採取後、貯留部15に貯留していた分析対象液を貯留液出口16から排出する。
 続いて、第2マルチポートバルブ32の第2ポートを共通ポートに接続し、マイクロシリンジ41に採取した試料液に硫酸73を添加する。これにより、弱酸性である試料液を酸性にする。さらに、第2マルチポートバルブ32の第6ポートを共通ポートに接続し、マイクロシリンジ41内の試料液に、ペルオキソ二硫酸カリウム水溶液75を添加する。
 そして、第2マルチポートバルブ32の第1ポートを共通ポートに接続し、第1マルチポートバルブ31の第4ポートを共通ポートに接続して、試料液を反応器51に導入する。続いて、UVランプ52を点灯させ、試料液に所定時間、紫外線を照射する。この所定時間には、試料液中のリン化合物を全てリン酸イオンに分解するために十分な時間が予め設定されている。所要時間は、例えば20分である。この時間は予備実験等により決めることができる。この処理により、試料液中のリン化合物が全てリン酸イオンに分解される。
 反応器51に導入した試料液に紫外線を照射している間に、第1マルチポートバルブ31の第6ポートを共通ポートに接続し、マイクロシリンジ41に希釈水64を採取する。次に、第1マルチポートバルブ31の第7ポートを共通ポートに接続し、希釈水を測定セル22に導入する。これと並行して光源21を点灯させ、測定セル22を透過し、ビームスプリッタ23で反射され、第2光学フィルタ26を通過した、波長880nmの光の強度IP0(ブランク濃度)を第2検出器27で測定する。
 試料液に前記所定時間、紫外線を照射した後、第1マルチポートバルブ31の第4ポートを共通ポートに接続し、反応器51から試料液をマイクロシリンジ41に導入する。続いて、第2マルチポートバルブ32の第5ポートを共通ポートに接続し、マイクロシリンジ41内の試料液に水酸化ナトリウム水溶液76を添加する。これにより、次の発色工程のためにpH値を適切に調整する。
 次に、第2マルチポートバルブ32の第4ポートを共通ポートに接続し、マイクロシリンジ41内の試料液にアスコルビン酸71を添加する。また、第2マルチポートバルブ32の第3ポートを共通ポートに接続し、マイクロシリンジ41内の試料液にモリブデン酸アンモニウム水溶液72を添加する。その後、ポンプ42を用いて攪拌を行う。
 そして、第1マルチポートバルブ31の第7ポートを共通ポートに接続し、第2マルチポートバルブ32の第1ポートを共通ポートに接続して、マイクロシリンジ41内の試料液を測定セル22に導入する。これと並行して光源21を点灯させ、測定セル22を透過し、ビームスプリッタ23で反射され、第2光学フィルタ26を通過した、波長880nmの光の強度IPを第2検出器27で測定する(ステップ5-2)。
 試料液の透過光強度IPが得られると、濃度算出部103は、次式により試料液の吸光度AbsPを求める。
 AbsP=-log10(IP/IP0)
 そして、記憶部101に保存された全リン濃度産出用の検量線とAbsPを照合し、試料液に含まれるリン濃度Bを算出する(ステップ5-3)。さらに、以下の式により、分析対象液の全リン濃度を補正する。
 Cp=(S+A)/S×B
 ここで、Cpは補正後濃度、Sは貯留部15に採取した分析対象液の量、Aは貯留部15に添加した塩酸の量、Bは補正前濃度である。これにより、分析対象液の全リン濃度Cpが求められる(ステップ5-4)。求められた全リン濃度の値は、分析対象液の採取時間と対応づけられて記憶部101に保存される。
 測定制御部102及び濃度算出部103は、上記の手順による処理を、所定の時間間隔で(例えば1時間毎に)繰り返し行う。これにより、分析対象液の全窒素濃度及び全リン濃度がオンラインで自動的に測定される。
 本実施例に係る水質分析計1では、分析対象液を貯留部15に貯留したあと、貯留部15に貯留した分析対象液に塩酸74を添加して分析対象液に含まれる難溶性のリン化合物を溶解してから全リン測定用の試料液を採取するため、試料液に含まれるリン化合物の量にばらつきが生じず、分析対象液の全リン濃度を正しく測定することができる。
 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
 上記実施例では、全窒素濃度の測定前と、全リン濃度の測定前にそれぞれ、分析対象液を貯留し、全リン濃度の測定前にのみ酸を添加したが、全窒素濃度の測定前に貯留した分析対象液を全リン濃度の測定にそのまま使用することもできる。その場合も、全リン濃度用の試料液採取前(又は全窒素濃度測定用の試料液採取前)に酸を添加し、分析対象液に含まれる難溶性のリン化合物を溶解させる、
 また、上記実施例の水質分析計は、全窒素濃度と全リン濃度の両方を測定するものとしたが、全リン濃度のみを測定する水質分析計であってもよい。その場合には、難溶性のリン化合物の溶解に硫酸73を用いればよい。
 さらに、上記実施例では、全窒素濃度の測定あるいは全リン濃度の測定のために用意された塩酸あるいは硫酸により、難溶性のリン化合物を溶解したが、これら以外の酸を別途用意し、その酸を用いて難溶性のリン化合物を溶解することもできる。この酸は、塩酸や硫酸と同様の強酸に限らず、分析対象液を放出する排水施設で行われるリン除去処理から生じることが想定される難溶性のリン化合物を溶解可能なもの、例えばリン酸以上の強酸を用いることができる。
 以上、図面を参照して本発明における種々の実施形態を詳細に説明したが、最後に、本発明の種々の態様について説明する。
 本発明の第1態様の水質分析計は、
 分析対象液を貯留する貯留部と、
 前記貯留部に貯留された前記分析対象液に、該分析対象液に含まれることが想定される、該分析対象液に対して難溶性のリン化合物を溶解可能な酸を添加する酸添加部と、
 前記酸が添加された分析対象液を試料液として採取する試料液採取部と、
 酸を用いて前記試料液からリン酸イオンを生成し、該リン酸イオンの濃度を測定するリン酸測定部と、
 前記リン酸イオンの濃度から前記分析対象液の全リン濃度を求める全リン濃度算出部と
 を備える。
 また、本発明の第5態様の水質分析方法は、
 分析対象液を採取し貯留する分析対象液貯留ステップと、
 前記貯留した分析対象液に、該分析対象液に含まれることが想定される、該分析対象液中の難溶性のリン化合物を溶解可能な酸を添加する酸添加ステップと、
 前記酸が添加された分析対象液を試料液として採取する試料液採取ステップと、
 酸を用いて前記試料液からリン酸イオンを生成し、該リン酸イオンの濃度を測定するリン酸測定ステップと、
 前記リン酸イオンの濃度から前記分析対象液の全リン濃度を求める全リン濃度算出ステップと
 を有する。
 第1態様の水質分析計及び第5態様の水質分析方法では、分析対象液を貯留部に貯留したあと、試料液の採取前に、貯留部に貯留した分析対象液に、該分析対象液に含まれることが想定される難溶性のリン化合物を溶解可能な酸を添加する。第1態様の水質分析計では、分析対象液に難溶性のリン化合物が含まれている場合でも、該化合物を溶解した後に試料液を採取するため、試料液に含まれるリン化合物の量にばらつきが生じず、分析対象液の全リン濃度を正しく測定することができる。
 本発明の第2態様の水質分析計は、第1態様の水質分析計において、
 前記難溶性リン化合物を溶解するための酸が、前記リン酸測定部において用いられる酸である。
 また、本発明の第6態様の水質分析方法は、上記第5態様の水質分析方法において、
 前記難溶性リン化合物を溶解するための酸が、前記リン酸測定ステップにおいて用いられる酸である。
 第2態様の水質分析計及び第6態様の水質分析方法では、全リン濃度の測定に用いられる酸を難溶性リン化合物の溶解にも使用するため、難溶性リン化合物を溶解させるための酸を追加で用意する必要がない。
 本発明の第3態様の水質分析計は、上記第1態様の水質分析計において、さらに、
 酸を用いて前記試料液から硝酸イオンを生成し、該硝酸イオンの濃度を測定する硝酸測定部と、
 前記硝酸イオンの濃度から前記分析対象液の全窒素濃度を求める全窒素濃度算出部と
 を備える。
 また、本発明の第7態様の水質分析方法は、上記第5態様の水質分析方法において、さらに、
 酸を用いて前記試料液から硝酸イオンを生成し、該硝酸イオンの濃度を測定する硝酸測定ステップと、
 前記硝酸イオンの濃度から前記分析対象液の全窒素濃度を求める全窒素濃度算出ステップと
 を有する。
 第3態様の水質分析計及び第7態様の水質分析方法では、分析対象液の全リン濃度と全窒素濃度の両方を求めることができる。また、全窒素濃度の測定に用いる酸を難溶性リン化合物の溶解にも使用するため、難溶性リン化合物を溶解させるための酸を追加で用意する必要がない。
 本発明の第4態様の水質分析計は、上記第3態様の水質分析計において、
 前記難溶性リン化合物を溶解するための酸が、前記硝酸測定部において用いられる酸である。
 また、本発明の第8態様の水質分析方法は、上記第7態様の水質分析方法において、
 前記難溶性リン化合物を溶解するための酸が、前記硝酸測定ステップにおいて用いられる酸である。
 第4態様の水質分析計及び第8態様の水質分析方法では、全窒素の測定に使用する酸を、難溶性のリン酸化合物の分解に使用するため、難溶性リン化合物を溶解させるための酸を追加で用意する必要がない。
1…水質分析計
10…試料採取部
 11…採取槽
 12…隔壁
 13…攪拌部
 14…排水入口
 15…貯留部
 16…貯留液出口
 17…排水出口
 18…誘導部材
20…測定部
 21…光源
 22…測定セル
 23…ビームスプリッタ
 24…第1光学フィルタ
 25…第1検出器
 26…第2光学フィルタ
 27…第2検出器
30…試料液処理部
 31…第1マルチポートバルブ
 32…第2マルチポートバルブ
 41…マイクロシリンジ
 42…攪拌ポンプ
 51…反応器
 52…UVランプ
 53…ポンプ
 61…スパン液
 62…リン標準液
 63…窒素標準液
 64…希釈水
 65…標準液切換弁
 71…アスコルビン酸
 72…モリブデン酸アンモニウム水溶液
 73…硫酸
 74…塩酸
 75…ペルオキソ二硫酸カリウム水溶液
 76…水酸化ナトリウム水溶液
100…制御部
 101…記憶部
 102…測定制御部
 103…濃度算出部

Claims (8)

  1.  分析対象液を貯留する貯留部と、
     前記貯留部に貯留された前記分析対象液に、該分析対象液に含まれることが想定される、該分析対象液中の難溶性リン化合物を溶解するための酸を添加する酸添加部と、
     前記酸が添加された分析対象液を試料液として採取する試料液採取部と、
     酸を用いて前記試料液からリン酸イオンを生成し、該リン酸イオンの濃度を測定するリン酸測定部と、
     前記リン酸イオンの濃度から前記分析対象液の全リン濃度を求める全リン濃度算出部と
     を備える水質分析計。
  2.  前記難溶性リン化合物を溶解するための酸が、前記リン酸測定部において用いられる酸である、請求項1に記載の水質分析計。
  3.  さらに、
     酸を用いて前記試料液から硝酸イオンを生成し、該硝酸イオンの濃度を測定する硝酸測定部と、
     前記硝酸イオンの濃度から前記分析対象液の全窒素濃度を求める全窒素濃度算出部と
     を備える、請求項1に記載の水質分析計。
  4.  前記難溶性リン化合物を溶解するための酸が、前記硝酸測定部において用いられる酸である、請求項3に記載の水質分析計。
  5.  分析対象液を採取し貯留する分析対象液貯留ステップと、
     前記貯留した分析対象液に、該分析対象液に含まれることが想定される、該分析対象液中の難溶性リン化合物を溶解するための酸を添加する酸添加ステップと、
     前記酸が添加された分析対象液を試料液として採取する試料液採取ステップと、
     酸を用いて前記試料液からリン酸イオンを生成し、該リン酸イオンの濃度を測定するリン酸測定ステップと、
     前記リン酸イオンの濃度から前記分析対象液の全リン濃度を求める全リン濃度算出ステップと
     を有する水質分析方法。
  6.  前記難溶性リン化合物を溶解するための酸が、前記リン酸測定ステップにおいて用いられる酸である、請求項5に記載の水質分析方法。
  7.  さらに、
     酸を用いて前記試料液から硝酸イオンを生成し、該硝酸イオンの濃度を測定する硝酸測定ステップと、
     前記硝酸イオンの濃度から前記分析対象液の全窒素濃度を求める全窒素濃度算出ステップと
     を有する、請求項5に記載の水質分析計。
  8.  前記難溶性リン化合物を溶解するための酸が、前記硝酸測定ステップにおいて用いられる酸である、請求項7に記載の水質分析計。
PCT/JP2019/031711 2019-01-21 2019-08-09 水質分析計及び水質分析方法 WO2020152896A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020567356A JP7251556B2 (ja) 2019-01-21 2019-08-09 水質分析計及び水質分析方法
CN201980087586.0A CN113260851A (zh) 2019-01-21 2019-08-09 水质分析仪和水质分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019007629 2019-01-21
JP2019-007629 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020152896A1 true WO2020152896A1 (ja) 2020-07-30

Family

ID=71736307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031711 WO2020152896A1 (ja) 2019-01-21 2019-08-09 水質分析計及び水質分析方法

Country Status (3)

Country Link
JP (1) JP7251556B2 (ja)
CN (1) CN113260851A (ja)
WO (1) WO2020152896A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022095521A1 (zh) * 2020-11-04 2022-05-12 海南聚能科技创新研究院有限公司 一种水质监测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156391A (ja) * 1996-12-02 1998-06-16 Ishigaki:Kk 下水処理水から回収したリンの処理方法
JP2001083136A (ja) * 1999-09-14 2001-03-30 Dkk Toa Corp 全リン、全窒素の測定方法及び測定装置
JP2002048782A (ja) * 2000-05-26 2002-02-15 Shimadzu Corp 分析用水溶液の計量・送液機構及びそれを用いた水質分析装置
JP2005345316A (ja) * 2004-06-04 2005-12-15 Shimadzu Corp 全リン測定装置
US20080314837A1 (en) * 2007-06-19 2008-12-25 Vanotti Matias B Wastewater treatment system with simultaneous separation of phosphorus and manure solids
JP2010012430A (ja) * 2008-07-04 2010-01-21 Japan Organo Co Ltd リン酸含有水の処理装置及びリン酸含有水の処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184132A (ja) * 2002-11-29 2004-07-02 Shimadzu Corp 水質分析装置
CN102207463A (zh) * 2010-03-30 2011-10-05 鞍钢股份有限公司 一种测定钛铁中磷、铜含量的方法
JP6394263B2 (ja) * 2014-10-14 2018-09-26 株式会社島津製作所 水質分析計
DE112015006435B4 (de) * 2015-04-10 2023-02-16 Shimadzu Corporation Wasserqualitätsanalysevorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156391A (ja) * 1996-12-02 1998-06-16 Ishigaki:Kk 下水処理水から回収したリンの処理方法
JP2001083136A (ja) * 1999-09-14 2001-03-30 Dkk Toa Corp 全リン、全窒素の測定方法及び測定装置
JP2002048782A (ja) * 2000-05-26 2002-02-15 Shimadzu Corp 分析用水溶液の計量・送液機構及びそれを用いた水質分析装置
JP2005345316A (ja) * 2004-06-04 2005-12-15 Shimadzu Corp 全リン測定装置
US20080314837A1 (en) * 2007-06-19 2008-12-25 Vanotti Matias B Wastewater treatment system with simultaneous separation of phosphorus and manure solids
JP2010012430A (ja) * 2008-07-04 2010-01-21 Japan Organo Co Ltd リン酸含有水の処理装置及びリン酸含有水の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITA SHINGO, NAKAMURA EIKO: "Interference from chlorine and its elimination on the determination of total phosphorus in sea water by the peroxodisulfate digestion/ Molybdenum blue method", BUNSEKI KAPAKU, vol. 53, no. 9, 2004, pages 1045 - 1049, XP055728058 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022095521A1 (zh) * 2020-11-04 2022-05-12 海南聚能科技创新研究院有限公司 一种水质监测装置

Also Published As

Publication number Publication date
JPWO2020152896A1 (ja) 2021-11-11
JP7251556B2 (ja) 2023-04-04
CN113260851A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP5150853B2 (ja) 焼却飛灰中の重金属を固定化するための固定剤の適正添加量を決定する方法および装置
WO2012016350A1 (en) Simultaneous determination of multiple analytes in industrial water system
CN101815938A (zh) 测量溴酸根离子的方法和设备
WO2020152896A1 (ja) 水質分析計及び水質分析方法
JP7264888B2 (ja) フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置
JP2009122077A (ja) 亜塩素酸イオンの測定方法
de Chanvalon et al. Mn speciation at nanomolar concentrations with a porphyrin competitive ligand and UV–vis measurements
Miller et al. Automated iodometric method for determination of trace chlorate ion using flow injection analysis
EP4166929A1 (en) Water quality analyzer and water quality analysis method
JPH07294509A (ja) 混合酸の分析方法および酸洗液の管理方法
Gumbi et al. Direct spectrophotometric detection of the endpoint in metachromatic titration of polydiallyldimethylammonium chloride in water
CN105000650A (zh) 一种利用复合剂去除废水中六价铬的化学方法
JP2009115758A (ja) 海水中の溶存態無機窒素の測定方法
JP3172745B2 (ja) 排水中のペルオキソ二硫酸の測定方法
US11714050B2 (en) Method for determining phosphate
Xiong et al. A novel WH-flags method based on reducing the acidity of molybdenum blue (MB) reaction and stabilization by EDTA for quickly detecting phosphorus in water
US10677717B2 (en) Colorimetric analyzer with reagent diagnostics
JP2020037079A (ja) 脱硫排水試料あるいは脱硫吸収液試料からのhatsの分離方法及び分析方法並びに脱硫装置の運用方法
WO2022039125A1 (ja) アンモニウムイオン化学発光測定用増感剤、並びに、アンモニウムイオン分析方法、及びアンモニウムイオン分析装置
Wang et al. Experimental exploration for measurement of ammonia nitrogen in water by Nessler's reagent colorimetry
Nisbeth et al. Analysis of oxygen isotopes of inorganic phosphate (δ18Op) in freshwater: A detailed method description for obtaining oxygen isotopes of inorganic phosphate in environmental water samples
WO2020006217A1 (en) Facile colorimetric detection of ambient aerosols
JP3651821B2 (ja) 全窒素測定装置
Bulatov et al. Photometric cyclic-injection determination of phosphate and silicate ions simultaneously present in aqueous solutions
Basova et al. Spectrophotometric determination of thiocyanate ions in stratal waters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911473

Country of ref document: EP

Kind code of ref document: A1