WO2020151603A1 - Led显示屏及其制备方法 - Google Patents

Led显示屏及其制备方法 Download PDF

Info

Publication number
WO2020151603A1
WO2020151603A1 PCT/CN2020/072887 CN2020072887W WO2020151603A1 WO 2020151603 A1 WO2020151603 A1 WO 2020151603A1 CN 2020072887 W CN2020072887 W CN 2020072887W WO 2020151603 A1 WO2020151603 A1 WO 2020151603A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shielding layer
guide plate
led
light guide
Prior art date
Application number
PCT/CN2020/072887
Other languages
English (en)
French (fr)
Inventor
徐梦梦
胡飞
李士杰
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020151603A1 publication Critical patent/WO2020151603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the invention relates to an LED display screen and a preparation method thereof.
  • the LED display is a flat panel display with a dot matrix structure, which is an active light-emitting display device.
  • the display part of the screen is an LED array composed of many LED light-emitting units. When the red, green and blue LED light-emitting units are put together as a pixel, a full-color LED display for video display can be produced .
  • LED displays Compared with traditional display methods, LED displays have the advantages of high brightness, wide color gamut, less energy consumption, low failure rate, flexible configuration, long service life, diverse display content, and rich display methods. They are widely used in roads, Public places such as finance, squares, stations, docks and stadiums.
  • the LED light emission corresponding to each pixel in the LED display screen cannot fill the entire pixel size, and the distance between the LED beads is large, resulting in a strong image display, and the brightness distribution is extremely uneven, making the audience feel dazzling.
  • the existing solution is to install a diffusion film on the light-emitting side of the LED array, as shown in Fig. 1a and Fig. 1b, respectively, showing the pixelated distribution of light intensity of the LED display screen when there is no diffusion film and when the diffusion film is provided. Comparing Figures 1a and 1b, it can be seen that arranging the diffusion film K in front of the LED display screen S can effectively average the light intensity and color distribution in each pixel area and reduce the graininess of the display screen.
  • the existence of the diffusion film aggravates the crosstalk of the adjacent LED light-emitting units, which reduces the contrast of adjacent pixels and affects the image quality.
  • the technical solution of the application publication number CN104049374A provides an LED screen that can realize surface light emission.
  • the LED screen is provided with a barrier frame array 013 with a reflective film on the inner wall between the pixels of the LED pixel array 011 to ensure that adjacent LED pixels do not crosstalk; and further in the barrier frame array 013 A homogenizing plate 014 is set on it to improve the uniformity of light.
  • the barrier frame frame 013 is used to isolate the light emitted by the adjacent LED light-emitting elements on the one hand, and on the other hand, it also supports the light homogenizing plate 014; because the barrier frame frame 013 requires high reliability , Making the thickness of the barrier frame 013 larger, resulting in obvious black gaps between pixels due to the thickness of the barrier frame 013 when viewing the LED screen, and the pixel filling rate cannot be optimal.
  • the technical problem to be solved by the present invention is to provide an LED display screen and a preparation method thereof in view of the deficiencies of the prior art, on the basis of reducing the graininess of the screen of the LED display screen and preventing light crosstalk between the LED light emitting units , Improve the pixel fill rate of the LED display as much as possible.
  • An LED display screen including:
  • the LED array includes a plurality of LED light-emitting units
  • the light guide plate is arranged on the light emitting side of the LED array
  • the light shielding layer is distributed in the light guide plate
  • the light-shielding layer is used to divide the light guide plate into a plurality of pixel regions, and each pixel region corresponds to each LED light-emitting unit in the LED array one to one.
  • the light shielding layer divides the light guide plate into a plurality of rectangular pixel regions.
  • the light shielding layer divides the light guide plate into a plurality of regular hexagonal pixel regions.
  • the light guide plate is provided with a patterned groove array penetrating the thickness direction, and the light shielding layer is provided in the groove array of the light guide plate.
  • the light guide plate is provided with a non-through patterned groove array along the thickness direction, and the light shielding layer is provided in the groove array of the light guide plate.
  • a gap is left between the light shielding layer and the upper surface or/and the lower surface of the light guide plate, and the size of the gap is less than 2 mm.
  • the wall thickness of the light shielding layer is the same along the direction of the LED array.
  • the wall thickness of the light shielding layer is 0.2-1.2 mm, preferably 0.4-1.0 mm.
  • the thickness of the light shielding layer gradually increases along the direction of the LED array.
  • the wall thickness w1 on the light incident side of the light shielding layer ranges from 0.7 mm to 1.2 mm.
  • the wall thickness w2 of the light-emitting side of the light shielding layer ranges from 0.2 mm to 0.4 mm.
  • a gap is left between the LED array and the light guide plate.
  • the manufacturing method of the LED display screen of the present invention includes the following steps: forming a light guide plate on the LED array;
  • the light-shielding layer slurry is injected into the groove array, the unnecessary light-shielding layer slurry in the groove array of the light guide plate is removed, and the light-shielding layer slurry is cured to form a light-shielding layer.
  • the manufacturing method of the LED display screen of the present invention includes the following steps:
  • the sacrificial layer is removed, and the light guide plate containing the light shielding layer is arranged on the LED array by means of adhesive or mechanical connection.
  • the present invention provides an LED display screen and a preparation method thereof.
  • the preparation process of the present invention is simple. On the basis of reducing the graininess of the screen of the LED display screen and effectively preventing the light crosstalk between the LED light-emitting units,
  • the new shading layer preparation process can minimize the wall thickness of the shading layer and improve the pixel fill rate of the LED display.
  • Fig. 1a and Fig. 1b are respectively schematic diagrams of the pixelated distribution of light intensity of the LED display screen when there is no diffusion film and when the diffusion film is provided;
  • Figure 2 is a schematic diagram of a partial structure of an existing LED screen
  • 3a and 3b are respectively a schematic side view and a top view of the overall structure of an LED display screen according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of different thicknesses of the light-incoming side and the light-exiting side of the light-shielding layer in the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of a partial structure of an LED array according to an embodiment of the present invention.
  • 5a is a schematic diagram of the light intensity distribution of the light emitting surface of the LED light emitting unit when there is no light guide plate and light shielding layer in the first embodiment of the present invention
  • 6a to 6b are respectively schematic diagrams of light intensity distribution on the light-emitting surface of the LED light-emitting unit when covering the light guide plate and the light-shielding layer in the first embodiment of the present invention
  • FIG. 7 is a schematic diagram of the light intensity distribution of the LED display screen using the light guide plate containing scattering particles in the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the structure of the LED display screen of the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of comparison of light-shielding layers with different shapes in the second embodiment of the present invention.
  • Figure 10 is a side view of the overall structure of the LED display screen according to the third embodiment of the present invention.
  • FIG. 11 is a side view of the overall structure of the LED display screen according to the fourth embodiment of the present invention.
  • FIG. 12 is a side view of the overall structure of the LED display screen according to the fifth embodiment of the present invention.
  • Figure 13 is a side view of the overall structure of the LED display screen according to the sixth embodiment of the present invention.
  • Fig. 14 is a schematic diagram of the light intensity distribution of the LED display screen according to the fifth embodiment of the present invention.
  • Figures 3a and 3b are respectively a schematic side view and a top view of the overall structure of the LED display screen of the present invention.
  • the present invention provides an LED display screen, including an LED array 11 and a light shielding layer 13 and a diffusion film (not shown in the figure) arranged on the LED array 11.
  • a light guide plate 12 is provided on the light exit side.
  • the light shielding layer 13 is distributed in the light guide plate 12, and the light guide plate 12 is divided into a plurality of pixel regions in the direction corresponding to the LED array 11, and each pixel region is connected to the LED array.
  • Each group of LED light-emitting units in 11 has a one-to-one correspondence, that is, a group of LED light-emitting units corresponds to one pixel area.
  • the light shielding layer 13 is disposed through the thickness direction of the light guide plate 12. That is, in this embodiment, the thickness of the light shielding layer 13 is the same as the thickness of the light guide plate 12.
  • each group of LED light-emitting units in the LED array 11 includes red, green, and blue LED light-emitting units at the same time. It is understood that, in one embodiment, each group of LED light-emitting units may only include red, green or blue. Any kind of LED light-emitting unit in the color.
  • the light-emitting side of the LED array 11 is provided with a light guide plate 12, and the light guide plate 12 and the LED array 11 are in direct contact with no gap.
  • the light guide plate 12 is made of a transparent material with an absorption rate of less than 10% in the visible light region. Further, the transparent The material can be one of silica gel, glass, sapphire or ceramic.
  • the light guide plate may be silica gel, sapphire, glass or ceramic containing pores; or, the light guide plate may be silica gel, sapphire, glass or ceramic containing scattering particles .
  • the light guide plate is preferably silica gel containing scattering particles, and the thickness of the light guide plate is preferably 3-6 mm.
  • the light-shielding layer 13 is used to divide the light guide plate into a plurality of pixel regions corresponding to the LED light-emitting unit. At this time, the light-shielding layer includes two specific material choices.
  • the first light-shielding layer is a light-reflective material. Can be: silver glue, aluminum-silver glue, silver powder or aluminum-silver powder and other light-reflecting materials, at this time the light-shielding layer has a reflectivity of visible light greater than 90%; the other light-shielding layer is a light-absorbing material, specifically black ink , Black paint, black colloid or black split body and other light-absorbing materials. The absorption rate of the light shielding layer to visible light is greater than 90%.
  • the light-shielding layer preferably adopts a light reflective material
  • the light-shielding layer 13 penetrates the thickness direction of the light guide plate 12, and the light-shielding layer 13 divides the light guide plate 12 into a plurality of pixel regions in the direction corresponding to the LED array 11.
  • Each pixel area corresponds to each group of LED light emitting units 11 in the LED array one to one.
  • the light-shielding layer 13 divides the light guide plate into a plurality of rectangular pixel regions, and each pixel region corresponds to a set of LED light-emitting units, where the LED light-emitting units are preferably arranged in each rectangular pixel area. Central location.
  • the thickness of the light shielding layer 13 in the light guide plate 12 of the present invention is the same, that is, the thickness of the light shielding layer 13 on the light entrance side and the light exit side of the light guide plate 12 are the same, that is, the thickness of the light shielding layer is along the direction of the LED array.
  • the "light incident side” here refers to the side of the light guide plate 12 close to the LED array 11
  • the “light exit side” refers to the side of the light guide plate 12 close to the diffusion film
  • the thickness of the light shielding layer is 0.2-1.2mm. , Preferably 0.4-1.0mm.
  • the wall thickness of the light shielding layer 13 in the light guide portion 12 of the present invention can be different, as shown in FIG. 4, where the wall thickness w1 of the light shielding layer 13 on the light entrance side of the light guide plate 12 is greater than that on the light guide plate 13
  • the wall thickness of the side wall w2 where the "light-incident side” refers to the side of the light guide plate 12 close to the LED array 11, and the “light-out side” refers to the side of the light guide plate 12 close to the diffusion film, which corresponds to the light guide plate 12 entering the light
  • the wall thickness w1 on the side is 0.7-1.2mm
  • the wall thickness w2 on the light-emitting side of the light guide plate 12 ranges from 0.2-0.4mm, that is, the wall thickness of the light-shielding layer gradually increases along the direction of the LED array, and the light-shielding layer 13 It has an inclined wall surface, and the corresponding inclination angle of the inclined wall surface is ⁇ , and the range of the
  • the preparation method of the LED display screen of the present invention is described as follows:
  • the light-shielding layer slurry is injected into the groove array, the unnecessary light-shielding layer slurry in the groove array of the light guide plate is removed, and the light-shielding layer slurry is cured to form a light-shielding layer.
  • the silica gel precursor and the scattering particle powder are uniformly mixed to obtain a uniformly mixed slurry.
  • the curing temperature of the silica gel is required to be lower than 200°C.
  • a layer of uniformly mixed slurry is covered on the LED array 11 by means of knife coating or injection molding.
  • the mixed slurry covering the chip array is cured by light curing to form the light guide plate 12.
  • An array of grooves in the thickness direction of the light guide plate 12 is formed on the light guide plate 12 by mechanical cutting, laser cutting, or etching.
  • the silver powder and/or aluminum powder and/or carbon black with the organic paste of silica gel precursor or photocurable glue precursor or glass powder uniformly to obtain the light-shielding layer paste, in order to prevent the light-shielding layer paste from damaging the LED during the curing process
  • the curing temperature of the silica gel used in the array, light guide plate, and light shielding layer paste is lower than 200°C.
  • the light-shielding layer paste is required to have lower viscosity and better fluidity.
  • the light-shielding layer slurry is injected into the groove array by a blade coating method, and then the light-shielding layer slurry remaining on the surface of the light guide plate 12 is erased.
  • the light-shielding layer slurry is cured by heating or exposure to form the light-shielding layer 13.
  • the presence of the light guide plate 12 can assist the formation of the light shielding layer 13, which is beneficial to obtain a light shielding layer with a thinner wall thickness, thereby increasing the pixel filling rate of the display screen.
  • the light emitted by the pixel chips of the LED array 11 exits through the silica gel light guide plate 12.
  • the large-angle light is incident on the light shielding layer 13 and then absorbed or reflected to reduce light crosstalk between pixels. 12 It can realize the homogenization of the light emitted by the LED light-emitting unit, and can reduce the graininess of the LED display screen.
  • FIG. 5 is a schematic diagram of a partial structure of an LED array according to an embodiment of the present invention.
  • the red, green and blue LED light-emitting units are squares with a side length of 0.1mm, and the spacing between the red, green and blue LED light-emitting units is 0.1mm. Two adjacent green LEDs emit light. The spacing between the units is 2.1mm.
  • Fig. 5a is a schematic diagram of the light intensity distribution on the light-emitting surface of the LED light-emitting unit without a light guide plate and a light-shielding layer in Embodiment 1 of the present invention.
  • FIGS. 6a to 6b are schematic diagrams of light intensity distribution on the light-emitting surface of the LED array after covering the light guide plate and the light-shielding layer in Embodiment 1 of the present invention.
  • the light guide plate 12 is silica gel with a thickness of 3 mm
  • the material of the light shielding layer 13 is silver glue.
  • FIG. 5a it can be seen that after the light guide plate 12 and the light shielding layer 13 are provided, the pixel filling rate of the display screen can be close to 100%, and the intensity uniformity of the chip light emission is greatly improved, which solves the graininess of the display screen.
  • Figure 6b it is the light intensity distribution after one pixel of the LED display screen is turned off. It can be seen from the figure that the existence of the light shielding layer 13 in this embodiment can effectively prevent the light crosstalk between adjacent pixels, and obtain a higher The contrast of the display screen.
  • a diffusion film can be provided on the surface of the light guide plate 12 or the surface of the light guide plate 12 can be patterned.
  • adding appropriate scattering particles to the light guide plate 12 can further improve the uniformity of the light field distribution on the light exit side.
  • FIG. 7 is the light intensity distribution of the LED display screen using the light guide plate containing scattering particles in the first embodiment of the present invention.
  • silica gel with TiO 2 scattering particles can also be added as the light guide plate 12, and the light shielding layer 13 is silver glue.
  • the uniformity of the light intensity of the LED display screen is further improved.
  • FIG. 8 is a schematic top view of the structure of an LED display screen according to the second embodiment of the present invention.
  • An LED display screen is provided, including an LED array 11 and a light shielding layer 13 and a diffusion film (not shown in the figure) provided on the LED array 11.
  • a light guide plate 12 is provided on the light-emitting side of the LED array 11, and the light-shielding layer 13 is distributed in the light guide plate 12.
  • the light guide plate 12 is divided into a plurality of pixel regions in the direction corresponding to the LED array 11 to implement
  • the difference between the second embodiment and the first embodiment is that the light shielding layer 13 includes a plurality of regular hexagonal pixel regions, and each pixel region corresponds to a group of LED light-emitting units, and the LED light-emitting units are preferably arranged at the center of each regular hexagonal pixel region. .
  • the regular hexagonal light-shielding layer has the smallest area of the light-shielding layer per light-emitting surface when the resolution of the LED display remains unchanged, that is, when the thickness of the light-shielding layer is the same.
  • the light-shielding layer with regular hexagonal distribution has the shortest side length projection on the light-emitting surface, that is, when viewed from the audience side, the black gap between each pixel is the smallest and the pixel filling rate is the largest.
  • the difference between the second embodiment and the first embodiment lies in the shape and distribution of the light-shielding layer.
  • the material properties of other light-shielding layers, the surface material properties of the light-shielding layer, the positional relationship between the light-shielding layer and the LED, and the thickness of the light-shielding layer are all related to the implementation. One is the same, or the material properties of the light-shielding layer, the material properties of the surface of the light-shielding layer, the position relationship between the light-shielding layer and the LED, and the thickness of the light-shielding layer of the first embodiment can be directly applied to the second embodiment, and will not be described here.
  • the following describes the filling rate of light shielding layers with different shapes in combination with specific diagrams.
  • the light shielding layers are distributed in regular hexagons, squares, and circles, and the thickness of the light shielding layers of the LED display screen is equal, but different
  • the pixel area enclosed by the shading layer of the shape distribution is S1, S2, S3, respectively. Assuming that the pixel areas S1, S2, and S3 are all 1, the respective pixel perimeters are calculated to be regular hexagon 3.72, square 4, and circular 3.54. . It can be seen that the perimeter of the light-shielding layer is 7% shorter than the square distribution when the light-shielding layer is distributed in a regular hexagon.
  • the circular distribution is the limit case of the polygon, and its perimeter is the shortest, but because the circular pixel areas cannot be seamlessly connected to each other Therefore, the opaque area on the light-shielding layer is significantly larger, which is not suitable for increasing the pixel filling rate. Therefore, the LED display adopts a pixel area composed of a regular hexagonal light-shielding layer. Under the condition of the same resolution, the pixel is filled The rate is higher.
  • Fig. 10 is a side view of the overall structure of the LED display screen according to the third embodiment of the present invention.
  • the difference between this embodiment and the first embodiment is that the light shielding layer 13 is arranged in a different manner.
  • the light shielding layer 13 in this embodiment is not arranged in the thickness direction of the light guide plate.
  • the layer 13 is arranged in the thickness direction of the light guide plate 12 and leaves a gap L with the upper surface of the light guide plate 12.
  • the size of the gap L is less than 2mm, and no reflective or light-absorbing material is provided in the gap.
  • This structure can make The light emitted by the LED light-emitting unit in the LED array passes through the gap between the diffusion film and the light-shielding layer and irradiates the diffusion film above the light-shielding layer to increase the illuminance of this area, further increase the filling rate, and enhance the final display effect.
  • the difference between the third embodiment and the first embodiment is that the light-shielding layer 13 is arranged differently.
  • the light-shielding layer 13 in this embodiment is not provided in the thickness direction of the light guide plate.
  • There is a gap L in the thickness direction of the light guide plate 12 and the upper surface of the light guide plate 12, the material properties of other light-shielding layers, the surface material properties of the light-shielding layer, the positional relationship between the light-shielding layer and the LED, and the thickness of the light-shielding layer They are all the same as the first embodiment.
  • the material properties of the light-shielding layer, the surface material properties of the light-shielding layer, the positional relationship between the light-shielding layer and the LED, and the thickness of the light-shielding layer of the first embodiment can be directly applied to the third embodiment, and will not be used here anymore. Aoshu.
  • the processing method of this embodiment is basically the same as that of the first embodiment.
  • the depth of the grooves is the same as that of the first embodiment.
  • the difference is that when a small amount of the light-shielding layer slurry is injected into the groove array by means of scraping or injection molding, it is not necessary to fill all the opened groove space, but only partially fill it, or through The method of sucking removes excess light-shielding layer paste in the groove array from the upper surface.
  • Fig. 11 is a side view of the overall structure of the LED display screen according to the fourth embodiment of the present invention.
  • the difference between this embodiment and the first embodiment is that the light shielding layer 13 is arranged in a different manner.
  • the light shielding layer 13 in this embodiment is not arranged in the thickness direction of the light guide plate.
  • the light shielding layer 13 is arranged in the thickness direction of the light guide plate 12 and spaced apart from the lower surface of the light guide plate 12, that is, there is a gap between the lower surface of the light shielding layer and the lower surface of the light guide plate, and the size of the gap is Less than 2mm, no reflective or light-absorbing material is placed in the gap.
  • the difference between the fourth embodiment and the first embodiment is that the light-shielding layer 13 is arranged in a different manner.
  • the light-shielding layer 13 in this embodiment is not provided in the thickness direction of the light guide plate.
  • There is a gap L in the thickness direction of the light guide plate 12 and the lower surface of the light guide plate 12, the material properties of other light-shielding layers, the material properties of the light-shielding layer surface, the positional relationship between the light-shielding layer and the LED, and the thickness of the light-shielding layer All are the same as the first embodiment, or the material properties of the light-shielding layer, the surface material properties of the light-shielding layer, the positional relationship between the light-shielding layer and the LED, and the thickness of the light-shielding layer of the first embodiment can be directly applied to the fourth embodiment, and will not be used here anymore. Aoshu.
  • the processing method of this embodiment is basically the same as that of the first embodiment. The difference is that when the groove array is formed in the thickness direction of the light guide plate 12 by means of mechanical cutting, laser cutting or etching, the depth of the grooves is lower than that of the embodiment. The groove depth in one is shallower. Subsequently, the light-shielding layer slurry is injected into the groove array by knife coating or injection molding, and then the remaining light-shielding layer slurry on the surface of the light guide plate 12 is erased, and the light-shielding layer slurry is cured by heating or exposure to form a light-shielding Layer 13.
  • Fig. 12 is a side view of the overall structure of the LED display screen according to the fifth embodiment of the present invention.
  • the difference between this embodiment and the above-mentioned first embodiment is that the light-shielding layer 13 is arranged in a different manner.
  • the light-shielding layer 13 is not arranged in the thickness direction of the light guide plate.
  • the layer 13 is arranged in the thickness direction of the light guide plate 12 with gaps between the upper and lower surfaces of the light guide plate 12, the size of the gap is less than 2 mm, and no reflective or light-absorbing material is provided in the gap.
  • the difference between the fifth embodiment and the first embodiment is that the light-shielding layer 13 is arranged differently.
  • the light-shielding layer 13 in this embodiment is not provided in the thickness direction of the light guide plate.
  • the thickness of the layer is the same as that of the first embodiment.
  • the material properties of the light-shielding layer, the surface material properties of the light-shielding layer, the position relationship between the light-shielding layer and the LED, and the thickness of the light-shielding layer of the first embodiment can be directly applied to the fifth embodiment. It is no longer mentioned here.
  • the processing method of this embodiment is basically the same as that of the first embodiment.
  • the difference is that when the groove array is formed in the thickness direction of the light guide plate 12 by means of mechanical cutting, laser cutting or etching, the depth of the grooves is lower than that of the embodiment.
  • the groove depth in the first one can be shallower.
  • injecting a small amount of shading layer slurry into the groove array by scraping or injection molding there is no need to fill the opened groove space completely, just fill it partially; or remove it by suction
  • the excess light-shielding layer paste in the groove array from the upper surface is cured by heating or exposing to form the light-shielding layer 13.
  • Fig. 13 is a schematic diagram of the overall structure of an LED display screen according to the sixth embodiment of the present invention.
  • the present invention provides an LED display screen, including an LED array 21 and a light shielding layer 23 and a diffusion film (not shown in the figure) provided on the LED array 21.
  • the surface of the film or light guide plate 22 is also provided with a patterned treatment layer 24.
  • a light guide plate 22 is provided on the light-emitting side of the LED array 21, and the light-shielding layer 23 is distributed in the light guide plate 22.
  • the light guide plate 22 is divided into a plurality of regions in a direction parallel to the LED array 21. The area corresponds to each LED light-emitting unit 21 in the LED array one to one.
  • the light-shielding layer 23 is provided through the thickness direction of the light guide plate 22.
  • the light guide plate 22 and the LED array 21 are bonded together by a glue layer 25 having a light shielding effect.
  • the difference between the sixth embodiment and the first embodiment is that the light guide plate and the LED array are connected differently.
  • the material properties of the light-shielding layer, the surface material properties of the light-shielding layer, the positional relationship between the light-shielding layer and the LED and the light-shielding of the other embodiment 1 The thickness of the layer can be directly applied to the sixth embodiment, which will not be described here.
  • each pixel of the LED array 21 corresponds to red, green, and blue LED light-emitting units.
  • the light guide plate 22 is made of a transparent material with an absorption rate of less than 10% in the visible light region. In this embodiment, it is preferably glass, sapphire, ceramic, etc.
  • the light guide plate 22 is connected to the LED array 21 through a mechanical structure such as adhesive or bolts.
  • the substrate is connected with the light emitting side of the LED light-emitting unit directly or there is a gap, and preferably there is a gap between the two.
  • the light-shielding layer 23 has a transmittance of less than 10% in the visible light region, and is preferably a reflective material in this embodiment; the light-shielding layer 23 penetrates the thickness direction of the light guide plate 22 and forms a light-emitting unit with the LED in a direction parallel to the LED array 21 One to one array.
  • the surface of the diffusion film or light guide plate 22 is also provided with a patterned treatment layer 24.
  • the sacrificial layer is removed, and the light guide plate containing the light shielding layer is arranged on the LED array by means of adhesive or mechanical connection.
  • a light guide plate made of glass material is taken as an example to further describe the preparation method of the LED display screen
  • the groove array does not penetrate the groove array, and a gap may be left at the upper surface or the lower surface of the light guide plate.
  • a gap may be left at the upper surface or the lower surface of the light guide plate.
  • the light-shielding layer slurry is scraped or injection molded. It is injected into the groove array, and then the remaining light-shielding layer paste on the surface of the light guide plate 22 is erased. The light-shielding layer paste is cured by heating or exposure to form the light-shielding layer 23.
  • the paraffin sacrificial layer adhered to the plate glass is removed, and the light guide plate 22 including the light shielding layer 23 is obtained.
  • the light guide plate 22 including the light shielding layer 23 is connected to the substrate of the LED light-emitting unit by means of adhesive or mechanical connection, so that there is a gap between the light emitting side of the LED and the light guide plate 22.
  • a diffusion film is pasted on the surface of the light guide plate 22.
  • this embodiment directly selects flat glass or sapphire or transparent ceramics as the light guide plate, the light guide plate and the LED array are separate structures, and the light guide plate is connected to the substrate of the LED array , To ensure that there is a gap between the light guide plate and the light emitting side of the LED light-emitting unit.
  • Fig. 14 is a schematic diagram of the light intensity distribution of the LED display screen according to the sixth embodiment of the present invention.
  • the flat glass is used as the light guide plate, and there is a gap between the light guide plate and the light-emitting side of the LED light-emitting unit.
  • the size of the light guide plate is 3mm.
  • the light intensity distribution of the LED screen is shown in Figure 14 As shown, compared with the case where there is no gap between the light guide plate and the light emitting side of the LED light emitting unit in the first embodiment, the light output intensity and color of the LED display screen in this embodiment are more uniform.
  • the present invention provides an LED display screen and a preparation method thereof.
  • the preparation process is simple.
  • the preparation process of the present invention is simple. It is effective in reducing the graininess of the screen of the LED display screen and effectively preventing light crosstalk between LED light-emitting units. Based on this, the pixel fill rate of the LED display is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED显示屏及其制备方法,其中LED显示屏,包括:LED阵列(11),LED阵列(11)包括多个LED发光单元;导光板(12),设置在LED阵列(11)的出光侧;遮光层(13),分布在导光板(12)中;遮光层(13)用于将导光板(12)分割成多个像素区域,每个像素区域与LED阵列(11)中的每个LED发光单元一一对应。其制备工艺简单,在减小LED显示屏的画面颗粒感和有效防止LED发光单元之间的光串扰的基础上,可最大化减小遮光层(13)壁厚,提升了LED显示屏的像素填充率。

Description

LED显示屏及其制备方法 技术领域
本发明涉及一种LED显示屏及其制备方法。
背景技术
LED显示屏是一种点阵结构的平板显示器,属于主动发光的显示器件。其屏体的显示部分由许多LED发光单元组成的LED阵列,当把红、绿、蓝三种LED发光单元放在一起作为一个像素时,就可以产出用于视频显示的全彩色LED显示屏。与传统显示方式相比,LED显示屏具有亮度高、色域广、能耗少、故障率低、组态灵活、使用寿命长、显示内容多样、显示方式丰富等优点,被广泛应用于道路、金融、广场、车站、码头和体育馆等公共场所。
但是,目前LED显示屏还存在一些问题。例如,LED显示屏中对应每个像素的LED发光无法填满整个像素尺寸,各LED灯珠之间间距大,导致图像显示的颗粒感较强,而且亮度分布极不均匀,使观众感觉刺眼。现有的解决方案是在LED阵列的出光侧设置扩散膜,如图1a和图1b分别为无扩散膜和设置扩散膜时LED显示屏的光强像素化分布示意图。对照图1a和图1b可知,在LED显示屏S前布置扩散膜K,可以有效的平均每个像素区域内的光强和颜色分布,减少显示画面的颗粒感。但扩散膜的存在加重了相邻LED发光单元发光的串扰,使得相邻像素的对比度降低,影响图像质量。
为解决扩散膜导致的光串扰问题,申请公布号为CN104049374A的技术方案,提供一种可实现面发光的LED屏。如图2所示,LED屏在LED像素点阵列011的像素之间设置了内壁为反射膜的障壁框框阵列013,用来保证相邻的LED像素点不发生串扰;并进一步在障壁框框阵列013上设置匀光板014,以提高光均匀性。
然而,该技术方案中,障壁框框013一方面用于对相邻LED发光 元件出射的光进行隔离,另一方面也起到支撑匀光板014的作用;由于对障壁框框013的可靠性要求很高,使得障壁框框013的厚度较大,导致观看LED屏时由于障壁框框013的厚度导致的像素之间黑色间隔缝较明显,无法做到像素填充率最佳。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种LED显示屏及其制备方法,在减小LED显示屏的画面颗粒感,和防止LED发光单元之间的光串扰的基础上,尽可能的提升LED显示屏的像素填充率。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种LED显示屏,包括:
LED阵列,所述LED阵列包括多个LED发光单元;
导光板,设置在LED阵列的出光侧;
遮光层,分布在所述导光板中;
所述遮光层用于将所述导光板分割成多个像素区域,每个所述像素区域与所述LED阵列中的每个LED发光单元一一对应。
进一步在一实施方式中,所述遮光层将所述导光板分割成矩形的多个像素区域。
进一步在一实施方式中,所述遮光层将所述导光板分割成正六边形的多个像素区域。
进一步在一实施方式中,所述导光板上设置有贯穿厚度方向的图案化凹槽阵列,所述遮光层设置在所述导光板的所述凹槽阵列中。
进一步在一实施方式中,所述导光板上设置有沿厚度方向的非贯穿图案化凹槽阵列,所述遮光层设置在所述导光板的所述凹槽阵列中。
进一步在一实施方式中,所述遮光层与所述导光板的上表面或/和下表面之间留有间隙,所述间隙的尺寸小于2mm。
进一步在一实施方式中,所述遮光层的壁厚沿LED阵列的方向相同。
进一步在一实施方式中,所述遮光层的壁厚为0.2-1.2mm,优选 为0.4-1.0mm。
进一步在一实施方式中,所述遮光层的壁厚沿LED阵列的方向逐渐增大。
进一步在一实施方式中,所述遮光层入光侧的壁厚w1的尺寸范围为0.7mm-1.2mm。
进一步在一实施方式中,所述遮光层出光侧的壁厚w2的尺寸范围为0.2mm-0.4mm。
进一步在一实施方式中,所述LED阵列与所述导光板之间留有间隙。
本发明的一种LED显示屏的制备方法,包括如下步骤:在所述LED阵列上形成导光板;
在所述导光板的厚度方向上形成图案化凹槽阵列;
将遮光层浆料注入所述凹槽阵列中,去除所述导光板的所述凹槽阵列中不需要的遮光层浆料,使遮光层浆料固化,形成遮光层。
本发明的一种LED显示屏的制备方法,包括如下步骤:
提供一带有牺牲层的透明导光板;
在所述导光板的厚度方向上形成图案化凹槽阵列;
将遮光层浆料注入所述凹槽阵列中,去除所述导光板的所述凹槽阵列中不需要的遮光层浆料,使遮光层浆料固化,形成遮光层;
去除所述牺牲层,将包含有所述遮光层的所述导光板通过胶粘或机械连接的方式设置在LED阵列上。
综上所述,本发明提供一种LED显示屏及其制备方法,本发明制备工艺简单,在减小LED显示屏的画面颗粒感和有效防止LED发光单元之间的光串扰的基础上,通过新型的遮光层制备工艺,可最大化减小遮光层壁厚,提升了LED显示屏的像素填充率。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1a和图1b分别为无扩散膜和设置扩散膜时LED显示屏幕的光强像素化分布示意图;
图2为现有LED屏局部结构示意图;
图3a和图3b分别为本发明实施例一LED显示屏的整体结构侧视和俯视示意图;
图4为本发明实施例一遮光层入光侧和出光侧的厚度不同示意图;
图5为本发明实施例一LED阵列的局部结构示意图;
图5a为本发明实施例一中无导光板和遮光层时LED发光单元发光面的光强分布示意图;
图6a至图6b分别为本发明实施例一中覆盖导光板和遮光层时LED发光单元发光面的光强分布示意图;
图7为本发明实施例一中使用包含散射颗粒的导光板的LED显示屏的光强分布示意图;
图8为本发明实施例二的LED显示屏结构示意图;
图9为本发明实施例二的不同形状分布的遮光层对比示意图;
图10为本发明实施例三LED显示屏的整体结构侧视图;
图11为本发明实施例四LED显示屏的整体结构侧视图;
图12为本发明实施例五LED显示屏的整体结构侧视图;
图13为本发明实施例六LED显示屏的整体结构侧视图;
图14为本发明实施例五LED显示屏的光强分布示意图。
具体实施方式
以下通过具体实施例,对本发明LED显示屏及其制备方法进行详细地说明。
实施例一
图3a和图3b分别为本发明LED显示屏的整体结构侧视和俯视示意图。在本实施例中,本发明提供一种LED显示屏,包括LED阵列11和设置在所述LED阵列11上的遮光层13和扩散膜(图中未示出),在所述LED阵列11的出光侧设有导光板12,所述遮光层13分布在所述 导光板12中,将导光板12在与LED阵列11对应的方向上分割成多个像素区域,每个像素区域与LED阵列中11的每组LED发光单元一一对应,即一组LED发光单元对应一个像素区域。具体来说,在如图3a和图3b所示的实施例中,所述遮光层13贯穿设置在导光板12的厚度方向上。也就是说,在本实施例中,遮光层13的厚度与导光板12的厚度相同。
通常情况下,LED阵列11中的每组LED发光单元同时包括红色、绿色和蓝色LED发光单元,可以理解的是,在一实施方式中,每组LED发光单元可以只包括红色、绿色或蓝色中的任意一种LED发光单元。
LED阵列11的出光侧设置导光板12,导光板12和LED阵列11之间是直接接触,无间隙,该导光板12为对可见光区吸收率小于10%的透明材料构成,进一步,所述透明材料可以为硅胶、玻璃、蓝宝石或陶瓷中的一种。具体而言,为增加导光板的匀光效果,所述导光板可为包含有气孔的硅胶、蓝宝石、玻璃或陶瓷;或,所述导光板可为包含散射颗粒的硅胶、蓝宝石、玻璃或陶瓷。在本实施例中,导光板优选为包含有散射颗粒的硅胶,导光板的厚度优选为3-6mm。
遮光层13用于将导光板分割成多个与所述LED发光单元一一对应的像素区域,此时的遮光层包含两种具体的材料选择,第一种遮光层为光反射性材料,具体可为:银胶、铝银胶、银粉或铝银粉等光反射材料,此时遮光层对可见光的反射率大于90%;另一种所述遮光层为光吸收性材料,具体可为黑色油墨、黑色油漆、黑色胶体或黑色分体等光吸收性材料。此种遮光层对可见光的吸收率大于90%。在本实施例中遮光层优选采用光反射性材料,遮光层13穿透导光板12的厚度方向,遮光层13将导光板12在与LED阵列11对应的方向上分割成多个像素区域,每个像素区域与LED阵列中11的每组LED发光单元一一对应。如图3b所示的俯视图,具体而已,遮光层13将导光板分割成多个矩形分布的像素区域,每一个像素区域对应一组LED发光单元,其中LED发光单元优选设置每个矩形像素区域的中心位置。
进一步,本发明的遮光层13在导光板12中的厚度一致,即遮光层13在导光板12入光侧的壁厚和出光侧的壁厚一致,即遮光层的壁 厚沿LED阵列的方向相同,此处的“入光侧”指的是导光板12靠近LED阵列11的一面,“出光侧”指的是导光板12靠近扩散膜的一面,进一步遮光层的壁厚为0.2-1.2mm,优选为0.4-1.0mm。
可以理解的是,本发明的遮光层13在导光部12中的壁厚可以不同,如图4所示,其中遮光层13在导光板12入光侧的壁厚w1大于在导光板13出光侧的壁厚w2,此处的“入光侧”指的是导光板12靠近LED阵列11的一面,“出光侧”指的是导光板12靠近扩散膜的一面,其中对应导光板12入光侧的壁厚w1范围为0.7-1.2mm,对应导光板12出光侧的壁厚w2范围为0.2-0.4mm,即遮光层的壁厚沿LED阵列的方向逐渐增大,此时的遮光层13具有一倾斜的壁面,倾斜壁面对应的倾斜角度为δ,其中倾斜角度δ的范围为3°-5°。
下面对本发明的的LED显示屏的制备方法进行如下说明:
在所述LED阵列上形成所述导光板;
在所述导光板的厚度方向上形成图案化凹槽阵列;
将遮光层浆料注入所述凹槽阵列中,去除所述导光板的所述凹槽阵列中不需要的遮光层浆料,使遮光层浆料固化,形成遮光层。
下面以硅胶材料的导光板为例进一步对LED显示屏的制备方法进行说明:
将硅胶前驱体,和散射颗粒粉末混合均匀,得到混合均匀的浆料。为了在后续固化过程中不损坏LED阵列,要求硅胶的固化温度低于200℃。
利用刮涂或注塑的方法,在LED阵列11上覆盖一层混合均匀的浆料。通过光固化的方式使得覆盖在芯片阵列上的混合浆料固化,形成导光板12。
在导光板12上通过机械切割或激光切割或腐蚀等方式形成导光板12厚度方向上的凹槽阵列。
将银粉和/或铝粉和/或炭黑与硅胶前驱体或光固化胶前驱体或玻璃粉的有机浆料混合均匀,得到遮光层浆料,为防止遮光层浆料在固化过程中损坏LED阵列和导光板,遮光层浆料所使用的硅胶的固化温度低于200℃。为使得遮光层浆料填充到凹槽阵列中,要求遮光层浆料 具有较低的粘度和较好的流动性。
通过刮涂的方式将遮光层浆料注入凹槽阵列中,之后擦除导光板12表面残留的遮光层浆料。通过加热或曝光的方式使遮光层浆料固化,形成遮光层13。另外,在本实施例中,导光板12的存在可辅助遮光层13的成型,有利于得到壁厚较薄的遮光层,从而提高显示屏的像素填充率。
在本实施例中,LED阵列11的像素芯片发出的光经硅胶导光板12出射,大角度的光入射至遮光层13后被吸收或反射,以减少像素之间的光串扰,另外由于导光板12可实现对LED发光单元出射光的匀化,可减小LED显示屏显示画面的颗粒感。
图5为本发明实施例一LED阵列的局部结构示意图。如图5所示,红色、绿色和蓝色LED发光单元分别为边长为0.1mm的正方形,红色、绿色和蓝色LED发光单元之间的间距为0.1mm,相邻的两个绿色LED发光单元之间的间距为2.1mm。图5a为本发明实施例一中无导光板和遮光层的LED发光单元发光面的光强分布示意图。以图5所示尺寸的2×2的LED阵列为例并结合图5a可知,在不使用导光板和遮光层的LED阵列的出光侧的光场分布,该结构中像素填充率极低,显示图像颗粒感明显,并且像素中红绿蓝三基色芯片发出的三色光明显分离,色散现象明显。
图6a至图6b为本发明实施例一中覆盖导光板和遮光层后LED阵列发光面的光强分布示意图。在本实施例中,导光板12为硅胶,厚度为3mm,遮光层13的材料为银胶。与图5a对比可知,设置导光板12和遮光层13后,显示屏的像素填充率可接近100%,并且芯片发光的强度均匀性有很大改善,很好的解决了显示画面的颗粒感。如图6b所示,为关闭LED显示屏的一个像素点后的光强度分布,从图中可知,本实施例中遮光层13的存在可以有效防止相邻像素之间的光串扰,得到较高的显示画面对比度。
为了进一步提高LED显示屏的光场分布均匀性,可在导光板12表面设置扩散膜或对导光板12的表面图案化处理。此外,导光板12中加入适当的散射粒子还可以进一步改善出光侧的光场分布均匀性。
进一步地,图7为本发明实施例一中使用包含散射颗粒的导光板的LED显示屏的光强分布。如图7所示,在本实施例中,还可以添加TiO 2散射粒子的硅胶作为导光板12,遮光层13为银胶。与图6a和图6b对比可知,使用含有TiO 2散射粒子的硅胶作为导光板12时,LED显示屏的出光强度均匀性进一步改善。
实施例二
图8为本发明实施例二LED显示屏结构俯视示意图,提供一种LED显示屏,包括LED阵列11和设置在所述LED阵列11上的遮光层13和扩散膜(图中未示出),在所述LED阵列11的出光侧设有导光板12,所述遮光层13分布在所述导光板12中,将导光板12在与LED阵列11对应的方向上分割成多个像素区域,实施例二与实施一的区别在于遮光层13包含多个正六边形分布的像素区域,每一个像素区域对应一组LED发光单元,其中LED发光单元优选设置在每个正六边形像素区域的中心位置。
相对于矩形分布的遮光层结构,正六边形分布的遮光层在LED显示屏的分辨率不变的情况下,单位出光面中的遮光层面积最小,即在遮光层的厚度一致的情况下,正六边形分布的遮光层在出光面中的边长投影最短,即从观众侧来观看时,每个像素之间的黑色缝隙最小,像素填充率最大。
需要说明的是,实施例二与实施一的区别在于遮光层形状分布的不同,其它遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都与实施一相同,或者说实施例一的遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都可以直接应用在实施例二,此处不再鳌述。
下面结合具体的图示对不同形状分布的遮光层的填充率进行说明,如图9所示,遮光层分别为正六边形、正方形和圆形分布,且LED显示屏的遮光层厚度相等,不同形状分布的遮光层围成的像素面积分别为S1、S2、S3,假定像素面积S1、S2、S3都为1,计算出各自的像素周长依次为正六边形3.72、正方形4、圆形3.54。可以看到,遮光 层为正六边形分布时的周长比正方形分布要短7%,圆形分布作为多边形的极限情况,其周长最短,但是由于圆形像素区域彼此之间无法无缝衔接,所以遮光层上不透光的面积显著变大,并不适用于提高像素填充率,从而LED显示器采用正六边形分布的遮光层组成的像素区域,在分辨率不变的情况下,像素填充率更高。
实施例三
图10为本发明实施例三LED显示屏的整体结构侧视图。如图10所示,本实施例与上述实施例一的区别在于,遮光层13的设置方式有所不同,本实施例所述遮光层13并非贯穿设置在导光板的厚度方向上,所述遮光层13设置在导光板12的厚度方向上且与所述导光板12的上表面留有间隙L,所述间隙L的尺寸小于2mm,在该间隙中不设置反射或吸光材料,此结构可以使得LED阵列中的LED发光单元发出光线通过扩散膜和遮光层之间的间隔,照射到遮光层上方扩散膜,增加此区域照度,进一步提升填充率,提升最终显示效果。
需要说明的是,实施例三与实施一的区别在于遮光层13的设置方式有所不同,本实施例所述遮光层13并非贯穿设置在导光板的厚度方向上,所述遮光层13设置在导光板12的厚度方向上且与所述导光板12的上表面之间留有间隙L,其它遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都与实施一相同,或者说实施例一的遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都可以直接应用在实施例三,此处不再鳌述。
本实施例的加工方法与实施例一基本相同,当采用机械切割或激光切割或腐蚀等方式在导光板12的厚度方向上形成凹槽阵列时,凹槽的深度与实施例一是相同的,不同之处在于,通过刮涂或注塑等方式将少量的遮光层浆料注入凹槽阵列中时,无需将所开设的凹槽空间全部灌满,只需要将其部分灌满即可,或者通过吸取的方式去除所述凹槽阵列中的距离上表面的多余遮光层浆料。
鉴于本实施例的其他技术特征与实施例一相同,详情请参见上述 实施例一,在此不再赘述。
实施例四
图11为本发明实施例四LED显示屏的整体结构侧视图。如图11所示,同样地,本实施例与上述实施例一的区别在于,遮光层13的设置方式有所不同,本实施例所述遮光层13并非贯穿设置在导光板的厚度方向上,所述遮光层13设置在导光板12的厚度方向上且与所述导光板12的下表面间隔设置,即遮光层的下表面与导光板的下表面之间留有间隙,所述间隙的尺寸小于2mm,在该间隙中不设置反射或吸光材料。
需要说明的是,实施例四与实施一的区别在于遮光层13的设置方式有所不同,本实施例所述遮光层13并非贯穿设置在导光板的厚度方向上,所述遮光层13设置在导光板12的厚度方向上且与所述导光板12的下表面之间留有间隙L,其它遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都与实施一相同,或者说实施例一的遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都可以直接应用在实施例四,此处不再鳌述。
本实施例的加工方法与实施例一基本相同,不同之处在于,当采用机械切割或激光切割或腐蚀等方式在导光板12的厚度方向上形成凹槽阵列时,凹槽的深度比实施例一中的凹槽深度更浅。随后同样是通过刮涂或注塑等方式将遮光层浆料注入凹槽阵列中,之后擦除导光板12表面残留的遮光层浆料,通过加热或曝光的方式使遮光层浆料固化,形成遮光层13。
实施例五
图12为本发明实施例五LED显示屏的整体结构侧视图。如图12所示,同样地,本实施例与上述实施例一的区别在于,遮光层13的设置方式有所不同,所述遮光层13并非贯穿设置在导光板的厚度方向上,所述遮光层13设置在导光板12的厚度方向上且与所述导光板12的上 表面和下表面之间均留有间隙,所述间隙的尺寸小于2mm,在该间隙中不设置反射或吸光材料。
需要说明的是,实施例五与实施一的区别在于遮光层13的设置方式有所不同,本实施例所述遮光层13并非贯穿设置在导光板的厚度方向上,所述遮光层13设置在导光板12的厚度方向上且与所述导光板12的上表面和下表面之间均留有间隙L,其它遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都与实施一相同,或者说实施例一的遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都可以直接应用在实施例五,此处不再鳌述。
本实施例的加工方法与实施例一基本相同,不同之处在于,当采用机械切割或激光切割或腐蚀等方式在导光板12的厚度方向上形成凹槽阵列时,凹槽的深度比实施例一中的凹槽深度更浅即可。另外在通过刮涂或注塑等方式将少量的遮光层浆料注入凹槽阵列中,无需将所开设的凹槽空间全部灌满,只需要将其部分灌满即可;或者通过吸取的方式去除所述凹槽阵列中的距离上表面的多余遮光层浆料,通过加热或曝光的方式使遮光层浆料固化,形成遮光层13。
鉴于本实施例的其他技术特征与实施例一相同,详情请参见上述实施例一,在此不再赘述。
实施例六
图13为本发明实施例六LED显示屏的整体结构示意图。如图13所示,在本实施例中,本发明提供一种LED显示屏,包括LED阵列21和设置在所述LED阵列21上的遮光层23和扩散膜(图中未示出),扩散膜或导光板22的表面还设有图案化处理层24。在所述LED阵列21的出光侧设有导光板22,所述遮光层23分布在所述导光板22中,将导光板22在与LED阵列21平行的方向上分成多个区域,每个所述区域与LED阵列中21的每个LED发光单元一一对应。在本实施例中与上述实施例一相同,所述遮光层23贯穿设置在导光板22的厚度方向上。导光板22和LED阵列21之间通过具有遮光效果的胶层25粘接在一起。
需要说明的是,实施例六与实施一的区别在于导光板与LED阵列的连接方式不同,其它实施例一的遮光层的材料属性、遮光层表面材料属性、遮光层与LED的位置关系及遮光层的厚度大小都可以直接应用在实施例六,此处不再鳌述。
具体来说,LED阵列21的每个像素对应红色、绿色和蓝色LED发光单元。导光板22采用的是可见光区吸收率小于10%的透明材料制成,在本实施例中优选为玻璃、蓝宝石、陶瓷等,导光板22通过粘结剂或螺栓等机械结构与LED阵列21的基板相连,与LED发光单元的出光侧之间直接接触或有间隙,优选的二者之间存在间隙。遮光层23在可见光区透过率低于10%,在本实施例中优选为反射材料;遮光层23穿透导光板22的厚度方向,在与LED阵列21平行的方向上形成与LED发光单元一一对应的阵列。扩散膜或导光板22的表面还设有图案化处理层24。
本实施例中的LED显示屏的制备方法如下:
提供一带有牺牲层的透明导光板;
在所述导光板的厚度方向上形成图案化凹槽阵列;
将遮光层浆料注入所述凹槽阵列中,去除所述导光板的所述凹槽阵列中不需要的遮光层浆料,使遮光层浆料固化,形成遮光层;
去除所述牺牲层,将包含有所述遮光层的所述导光板通过胶粘或机械连接的方式设置在LED阵列上。
下面以玻璃材料的导光板为例进一步对LED显示屏的制备方法进行说明;
选取合适尺寸的平板玻璃,将平板玻璃粘结在石蜡牺牲层上,通过机械切割或激光切割或腐蚀等方式形成贯穿导光板平板玻璃,但不贯穿石蜡层的凹槽阵列,可以理解的是,在一变更实施例中,所述凹槽阵列并非贯穿所述凹槽阵列,可在距离导光板的上表面或下表面留有间隙,具体的间隙设置,可参照上述实施方式,此处不再鳌述。
将银粉和/或铝粉和/或炭黑与硅胶前驱体或光固化胶前驱体或玻璃粉的有机浆料混合均匀,得到遮光层浆料,通过刮涂或注塑等方式将遮光层浆料注入凹槽阵列中,之后擦除导光板22表面残留的遮光层 浆料。通过加热或曝光的方式使遮光层浆料固化,形成遮光层23。
去除粘结在平板玻璃上的石蜡牺牲层,得到包含遮光层23的导光板22。
将包含遮光层23的导光板22通过胶粘或机械连接等方式与LED发光单元的基板连接,使得LED出光侧与导光板22之间存在间隙。
在导光板22的表面贴上扩散膜。
由上述内容可知,本实施例与实施例一的区别在于,本实施例直接选取平板玻璃或蓝宝石或透明陶瓷等作为导光板,导光板与LED阵列为分立结构,导光板与LED阵列的基板连接,以保证导光板与LED发光单元出光侧之间具有间隙。
图14为本发明实施例六LED显示屏的光强分布示意图。本实施例中平板玻璃作为导光板,导光板与LED发光单元出光侧之间存在间隙,导光板尺寸为3mm,LED发光单元尺寸与实施例一中相同时,LED屏幕的光强分布如图14所示,与实施例一中导光板与LED发光单元出光侧之间没有间隙的情况相比,本实施例中LED显示屏的出光强度和色彩更加均匀。
综上所述,本发明提供一种LED显示屏及其制备方法,制备工艺简单,本发明制备工艺简单,在减小LED显示屏的画面颗粒感和有效防止LED发光单元之间的光串扰的基础上,提升了LED显示屏的像素填充率。

Claims (14)

  1. 一种LED显示屏,包括:
    LED阵列,所述LED阵列包括多个LED发光单元;
    导光板,设置在LED阵列的出光侧;
    遮光层,分布在所述导光板中;
    其特征在于,所述遮光层用于将所述导光板分割成多个像素区域,每个所述像素区域与所述LED阵列中的每个LED发光单元一一对应。
  2. 如权利要求1所述的LED显示屏,其特征在于,所述遮光层将所述导光板分割成矩形的多个像素区域。
  3. 如权利要求1所述的LED显示屏,其特征在于,所述遮光层将所述导光板分割成正六边形的多个像素区域。
  4. 如权利要求1-3任一所述的LED显示屏,其特征在于,所述导光板上设置有贯穿厚度方向的图案化凹槽阵列,所述遮光层设置在所述导光板的所述凹槽阵列中。
  5. 如权利要求1-3任一所述的LED显示屏,其特征在于,所述导光板上设置有沿厚度方向的非贯穿图案化凹槽阵列,所述遮光层设置在所述导光板的所述凹槽阵列中。
  6. 如权利要求5所述的LED显示屏,其特征在于,所述遮光层与所述导光板的上表面或/和下表面之间留有间隙,所述间隙的尺寸小于2mm。
  7. 如权利要求1-3任一所述的LED显示屏,其特征在于,所述遮光层的壁厚沿LED阵列的方向相同。
  8. 如权利要求7所述的LED显示屏,其特征在于,所述遮光层的 壁厚为0.2-1.2mm,优选为0.4-1.0mm。
  9. 如权利要求1-3任一所述的LED显示屏,其特征在于,所述遮光层的壁厚沿LED阵列的方向逐渐增大。
  10. 如权利要求9所述的LED显示屏,其特征在于,所述遮光层入光侧的壁厚w1的尺寸范围为0.7mm-1.2mm。
  11. 如权利要求9所述的LED显示屏,其特征在于,所述遮光层出光侧的壁厚w2的尺寸范围为0.2mm-0.4mm。
  12. 如权利要求1-3任一所述的LED显示屏,其特征在于,所述LED阵列与所述导光板之间留有间隙。
  13. 一种LED显示屏的制备方法,其特征在于,包括如下步骤:
    在所述LED阵列上形成导光板;
    在所述导光板的厚度方向上形成图案化凹槽阵列;
    将遮光层浆料注入所述凹槽阵列中,去除所述导光板的所述凹槽阵列中不需要的遮光层浆料,使遮光层浆料固化,形成遮光层。
  14. 一种LED显示屏的制备方法,其特征在于,包括如下步骤:
    提供一带有牺牲层的透明导光板;
    在所述导光板的厚度方向上形成图案化凹槽阵列;
    将遮光层浆料注入所述凹槽阵列中,去除所述导光板的所述凹槽阵列中不需要的遮光层浆料,使遮光层浆料固化,形成遮光层;
    去除所述牺牲层,将包含有所述遮光层的所述导光板通过胶粘或机械连接的方式设置在LED阵列上。
PCT/CN2020/072887 2019-01-24 2020-01-18 Led显示屏及其制备方法 WO2020151603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910068131.6 2019-01-24
CN201910068131.6A CN111477117A (zh) 2019-01-24 2019-01-24 Led显示屏及其制备方法

Publications (1)

Publication Number Publication Date
WO2020151603A1 true WO2020151603A1 (zh) 2020-07-30

Family

ID=71736758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072887 WO2020151603A1 (zh) 2019-01-24 2020-01-18 Led显示屏及其制备方法

Country Status (2)

Country Link
CN (1) CN111477117A (zh)
WO (1) WO2020151603A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820888A (zh) * 2021-09-29 2021-12-21 联想(北京)有限公司 背光组件及其制作方法及显示装置
WO2023132394A1 (ko) * 2022-01-10 2023-07-13 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597256A (zh) * 2021-07-29 2021-11-02 业成科技(成都)有限公司 显示模组及其制造方法
CN114122234A (zh) * 2021-11-03 2022-03-01 Tcl华星光电技术有限公司 显示面板及移动终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531108A (zh) * 2013-10-30 2014-01-22 广东威创视讯科技股份有限公司 一种led显示屏及其封装方法
CN103943039A (zh) * 2014-04-11 2014-07-23 广东威创视讯科技股份有限公司 一种led显示屏导光面罩的制作方法
CN203787035U (zh) * 2014-02-08 2014-08-20 惠州科锐半导体照明有限公司 固态显示器
CN204632804U (zh) * 2015-05-29 2015-09-09 广州市鸿利光电股份有限公司 芯片级封装led
CN205038923U (zh) * 2015-09-02 2016-02-17 佛山市国星光电股份有限公司 一种cob显示模块
CN105427754A (zh) * 2015-09-02 2016-03-23 吴冬梅 一种led显示屏
US9761753B2 (en) * 2016-01-07 2017-09-12 Nichia Corporation Method for manufacturing light-emitting device
CN107994109A (zh) * 2016-10-27 2018-05-04 佛山市国星光电股份有限公司 一种cob显示模组及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376976C (zh) * 2002-12-14 2008-03-26 鸿富锦精密工业(深圳)有限公司 导光板及其制造方法
CN1260583C (zh) * 2003-02-12 2006-06-21 精碟科技股份有限公司 背光模块、导光板及其制造方法
CN201032506Y (zh) * 2007-02-27 2008-03-05 邱维铭 高光散射性的光学元件
CN102182964A (zh) * 2011-04-29 2011-09-14 深圳市华星光电技术有限公司 背光模组及液晶显示装置
CN102967896A (zh) * 2012-11-19 2013-03-13 京东方科技集团股份有限公司 一种导光板、背光模组及显示装置
TW201533506A (zh) * 2014-02-27 2015-09-01 Chin-Piao Kuo 平面光源裝置
KR102391097B1 (ko) * 2015-10-30 2022-04-28 엘지디스플레이 주식회사 글래스 도광판 및 그를 포함하는 백라이트 유닛
CN107968101A (zh) * 2017-12-26 2018-04-27 上海得倍电子技术有限公司 一种高清led显示屏模组结构及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531108A (zh) * 2013-10-30 2014-01-22 广东威创视讯科技股份有限公司 一种led显示屏及其封装方法
CN203787035U (zh) * 2014-02-08 2014-08-20 惠州科锐半导体照明有限公司 固态显示器
CN103943039A (zh) * 2014-04-11 2014-07-23 广东威创视讯科技股份有限公司 一种led显示屏导光面罩的制作方法
CN204632804U (zh) * 2015-05-29 2015-09-09 广州市鸿利光电股份有限公司 芯片级封装led
CN205038923U (zh) * 2015-09-02 2016-02-17 佛山市国星光电股份有限公司 一种cob显示模块
CN105427754A (zh) * 2015-09-02 2016-03-23 吴冬梅 一种led显示屏
US9761753B2 (en) * 2016-01-07 2017-09-12 Nichia Corporation Method for manufacturing light-emitting device
CN107994109A (zh) * 2016-10-27 2018-05-04 佛山市国星光电股份有限公司 一种cob显示模组及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820888A (zh) * 2021-09-29 2021-12-21 联想(北京)有限公司 背光组件及其制作方法及显示装置
WO2023132394A1 (ko) * 2022-01-10 2023-07-13 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Also Published As

Publication number Publication date
CN111477117A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2020151603A1 (zh) Led显示屏及其制备方法
US10964674B2 (en) Micro-LED display panel
CN110858599B (zh) 像素阵列封装结构及显示面板
EP3568727B1 (en) Backlight and manufacturing method thereof, light guide plate and manufacturing method thereof, and display device
KR101969462B1 (ko) 광발광 디스플레이 장치 및 그 제조방법
WO2019019216A1 (zh) 直下式背光模组以及液晶显示器
US11289547B2 (en) Display panel enhancing uniformity of display by arranging light processing layers
KR101745599B1 (ko) 양자점 광학시트 및 이의 제조방법
CN112151567A (zh) 显示面板、显示装置及显示面板的制备方法
TW202028793A (zh) 發光模組
CN209843702U (zh) 面光源模组
WO2020029534A1 (zh) 背光源及液晶显示器
CN207198363U (zh) 一种导光板、背光模组及显示设备
WO2018228024A1 (zh) 显示基板及其制备方法、显示面板及显示装置
KR102464561B1 (ko) 마이크로 led 디스플레이 패널
WO2019227669A1 (zh) 显示面板及显示装置
WO2020063157A1 (zh) Led显示屏
WO2020151604A1 (zh) Led显示屏
CN207704179U (zh) 一种散热高效的荧光轮
CN110473892B (zh) 显示装置
CN112820205B (zh) 显示面板及其制备方法、显示装置
WO2020042651A1 (zh) 显示面板
CN110969959B (zh) 一种led显示屏
WO2016082495A1 (zh) 制作彩色滤光片的方法及彩色滤光片、显示装置
TWI643327B (zh) 光致發光led顯示裝置及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744666

Country of ref document: EP

Kind code of ref document: A1