WO2020042651A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2020042651A1
WO2020042651A1 PCT/CN2019/084869 CN2019084869W WO2020042651A1 WO 2020042651 A1 WO2020042651 A1 WO 2020042651A1 CN 2019084869 W CN2019084869 W CN 2019084869W WO 2020042651 A1 WO2020042651 A1 WO 2020042651A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
pixel unit
display panel
processing layer
Prior art date
Application number
PCT/CN2019/084869
Other languages
English (en)
French (fr)
Inventor
陈华山
杨小龙
邢汝博
韦冬
王建太
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Priority to US16/773,229 priority Critical patent/US11081621B2/en
Publication of WO2020042651A1 publication Critical patent/WO2020042651A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present application relates to the field of display technology, and particularly to a display panel.
  • the current display panel usually has the problem of uneven light emission. How to make the display panel emit light more uniformly to achieve a better display effect is the focus of attention of major panel manufacturers.
  • the technical problem mainly solved by this application is to provide a display panel, which can increase the uniformity of light conversion of the pixel unit.
  • a technical solution adopted in the embodiment of the present application is to provide a display panel including a substrate, a plurality of pixel units disposed on the substrate, each pixel unit including a plurality of sub-pixel units, Each sub-pixel unit includes a light-emitting layer, and at least one sub-pixel unit further includes a first light processing layer.
  • the first light processing layer includes at least a light diffusion material and a light conversion material doped with each other.
  • the first light processing layer is located on at least one The light emitting side of the light emitting layer of the sub-pixel unit.
  • the at least another sub-pixel unit further includes a second light processing layer, and the second light processing layer is disposed on the light emitting side of the light-emitting layer of the at least another sub-pixel unit.
  • the second light processing layer does not have a light conversion function.
  • the at least one sub-pixel unit includes a first sub-pixel unit and a second sub-pixel unit.
  • the light conversion material in the first sub-pixel unit is a quantum dot material with a first light conversion color, and the light conversion in the second sub-pixel unit.
  • the material is a quantum dot material with a second light-converted color.
  • the light-emitting layer has a light-emitting color different from the first light-converted color and the second light-converted color.
  • At least one other sub-pixel unit is a third sub-pixel unit, and the third sub-pixel unit emits color.
  • the luminous color of the luminous layer is a quantum dot material with a first light conversion color
  • the light conversion in the second sub-pixel unit is a quantum dot material with a second light-converted color.
  • the light-emitting layer has a light-emitting color different from the first light-converted color and the second light-converted color.
  • At least one other sub-pixel unit is
  • the first light-converted color is red and the second light-converted color is green.
  • the quantum dot material in the first sub-pixel unit is less than the quantum dot material in the second sub-pixel unit.
  • the first light-converted color is red
  • the second light-converted color is green
  • the light diffusion material in the first sub-pixel unit is more than the light diffusion material in the second sub-pixel unit.
  • the second light processing layer of the third sub-pixel unit includes a transparent matrix and a light diffusion material doped in the transparent matrix.
  • the light-emitting layer has a light-emitting color of blue, and the light diffusion material in the second sub-pixel unit is more than the light diffusion material in the third sub-pixel unit.
  • the light diffusing material is light diffusing particles.
  • the surface of the first light processing layer far from the substrate is flush with the surface of the second light processing layer far from the substrate.
  • the width of the first light processing layer is larger than the width of the light emitting layer of at least one sub-pixel unit, and the width of the second processing layer is larger than the width of the light emitting layer of at least another sub-pixel unit.
  • the first light treatment layer further includes a transparent matrix, the light diffusing material is uniformly distributed in the transparent matrix, and the light conversion material is uniformly distributed in the transparent matrix.
  • the display panel further includes a packaging film disposed on a pixel unit matrix formed by a plurality of pixel units, and the packaging film is disposed on a light emitting side of the pixel unit.
  • the display panel further includes a black matrix, and the black matrix is disposed between adjacent sub-pixel units.
  • the black matrix is disposed between the light emitting layers of the adjacent sub-pixel units.
  • the display panel further includes a black matrix.
  • the black matrix is disposed between the first light processing layers of the adjacent sub-pixel units or between the first light processing layer and the second light processing layer.
  • the light diffusing material is nano-sized barium sulfate, calcium carbonate, or silicon dioxide.
  • the display panel includes a substrate and a plurality of pixel units disposed on the substrate.
  • Each pixel unit includes a plurality of sub-pixel units.
  • Each sub-pixel unit includes a light-emitting layer.
  • At least one sub-pixel unit further includes:
  • the first light processing layer includes at least a light diffusion material and a light conversion material doped with each other.
  • the first light processing layer is located on a light emitting side of the light emitting layer of at least one sub-pixel unit.
  • the light diffusion material and the light conversion material doped with each other can improve the uniformity of light conversion of the light emitting layer, thereby improving the display effect of the display panel.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a display panel of the present application.
  • FIG. 2 is a schematic structural diagram of another implementation manner of a second type of sub-pixel unit in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another implementation manner of a second light processing layer in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a second embodiment of a display panel of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a display panel of the present application.
  • the display panel includes a substrate 10 and a plurality of pixel units 11.
  • the substrate 10 may be a substrate made of a hard material, for example, a glass substrate, a plastic substrate, or the like.
  • the substrate 10 may also be a substrate of soft material, which is not limited in the embodiment of the present application.
  • the plurality of pixel units 11 are arranged on the substrate 10 in a matrix.
  • Each pixel unit 11 includes a plurality of sub-pixel units 11a, 11b. Only two sub-pixel units 11 a and 11 b are shown in FIG. 1, which is for illustration only, and may actually include multiple sub-pixel units 11 a and 11 b.
  • the multiple sub-pixel units may include red, green, and blue sub-pixel units, and the multiple sub-pixel units may also be red, green, blue, and white sub-pixel units. This embodiment of the present application does not limit this.
  • the multiple sub-pixel units 11a and 11b can be arranged side by side, and different colors can be displayed by mixing light.
  • Each of the sub-pixel units 11 a and 11 b includes a light-emitting layer 111.
  • the light-emitting layers 111 of all the sub-pixel units 11 a and 11 b are arranged in a matrix on the substrate 10 to form a light-emitting layer array.
  • the at least one sub-pixel unit 11 a (the first-type sub-pixel unit 11 a) includes a first light processing layer 112 in addition to the light-emitting layer 111.
  • the first light processing layer 112 includes a transparent substrate 112a, a light diffusion material 112b and a light conversion material 112c doped in the transparent substrate 112a.
  • the light diffusion material 112b and the light conversion material 112c are doped with each other.
  • the light diffusion material 112b is uniformly distributed in the transparent matrix 112a
  • the light conversion material 112c is uniformly distributed in the transparent matrix 112a.
  • the transparent matrix 112a may be a transparent resin, such as PMMA (Polymethylmethacrylate). It should be understood that the transparent substrate 112a may be other materials, which is not limited in the embodiment of the present application.
  • PMMA Polymethylmethacrylate
  • the light diffusing material 112b in the figure is referred to by an oval shape, and the light conversion material 112c is referred to by a circle, but it is not the actual shape of the two materials.
  • the figure is only for illustration, which is convenient for distinguishing the two materials.
  • the light diffusing material 112b may be nano barium sulfate, calcium carbonate, silicon dioxide, etc.
  • the light diffusing material 112b may be distributed in the form of particles in the transparent matrix 112a.
  • the light diffusing material 112b may be light diffusing particles.
  • the light diffusing material 112b is not limited to the above materials, and may be other materials having a light diffusing effect or a uniform light effect.
  • the light conversion material 112c may be a quantum dot material, and the excitation light emitted from the light emitting layer 111 excites the quantum dot material to emit light of a corresponding color.
  • the light conversion material 112c may be another material having a color conversion function for the excitation light. This embodiment of the present application does not limit this.
  • the first light processing layer 112 is located on the light emitting surface side of the light emitting layer 111 of the at least one sub-pixel unit 11a.
  • the at least one sub-pixel unit 11 a includes a light-emitting layer 111 and a first light-processing layer 112 that are sequentially stacked on the substrate 10 along the light emitting direction of the display panel 10.
  • the display panel further includes a packaging film 12 disposed on a pixel unit matrix formed by the plurality of pixel units 11.
  • the packaging film 12 is disposed on the light-emitting surface side of the pixel unit 11.
  • At least another sub-pixel unit 11b may include only the light-emitting layer 111 and not include any light processing layer.
  • FIG. 2 is a schematic structural diagram of another implementation manner of the second type of sub-pixel unit in the embodiment of the present application.
  • at least another sub-pixel unit 21b includes a second light processing layer 212 in addition to the light emitting layer 111, and the second light processing layer 212 is disposed on the at least another The light-emitting surface side of the light-emitting layer 111 of one sub-pixel unit 21b.
  • the light emission color of the at least another sub-pixel unit 21b is the light emission color of the light emitting layer 111.
  • the emission color of the at least another sub-pixel unit 21b is blue, and the excitation light emitted from the light-emitting layer 111 is also blue. Therefore, it is not necessary to provide a light conversion material to convert the color of the excitation light of the light-emitting layer 111.
  • the second light processing layer 212 does not have a light conversion function. Specifically, the second light processing layer 212 may have the following situations.
  • the second light processing layer 212 includes a transparent matrix and does not include a light diffusion material and a quantum dot material.
  • a surface of the first light processing layer 112 far from the substrate 10 is flush with a surface of the second light processing layer 212 far from the substrate 10.
  • the first type of sub-pixel unit 11a includes the first light processing layer 112, and the first light processing layer 112 generally requires a transparent substrate 112a, in order to ensure the first type of sub-pixel unit 11a and the second type of sub-pixel unit 11b
  • the light emission uniformity is provided with a second light processing layer 212 including only a transparent substrate.
  • a second light including only a transparent substrate is provided. Process layer 212.
  • FIG. 3 is a schematic structural diagram of another implementation manner of a second light processing layer in an embodiment of the present application.
  • the second light processing layer 312 includes a transparent substrate 312a and a light diffusion material 312b doped in the transparent substrate 312a, and the second light processing layer 312 does not include a light conversion material.
  • the first-type sub-pixel unit 11a includes a light diffusing material 112b, in order to ensure the uniformity of the light emission of the second-type sub-pixel unit 21b and the first-type sub-pixel unit 11a, and to ensure the light-emitting uniformity of the second-type sub-pixel unit 21b
  • a light diffusing material 312b is also provided in the second light processing layer 312.
  • the width of the first light processing layer 112 is larger than the width of the light emitting layer 111 of at least one sub-pixel unit 11a, and the width of the second light processing layer 212 or 312 is larger than the width of the light emitting layer 111 of at least another sub-pixel unit 11b.
  • the first type of sub-pixel unit 11a may include a first sub-pixel unit and a second sub-pixel unit.
  • the light conversion material in the first sub-pixel unit is a quantum dot material of a first light-conversion color, and the second sub-pixel.
  • the light conversion material in the unit is a quantum dot material of a second light conversion color, and the light emission color of the light emitting layer is different from the first light conversion color and the second light conversion color.
  • the second type of sub-pixel unit may be a third sub-pixel unit.
  • the light emission color of the three sub-pixel units is the light emission color of the light emitting layer.
  • the first light-converted color is red
  • the second light-converted color is green
  • the light-emitting layer has a light-emitting color of blue.
  • the first sub-pixel unit is a red sub-pixel unit
  • the second sub-pixel unit is a green sub-pixel unit
  • the third sub-pixel unit is a blue sub-pixel unit.
  • the quantum dot material of the first light conversion color may be a red quantum dot material.
  • the quantum dot material of the second light conversion color may be a green quantum dot material.
  • FIG. 4 is a schematic structural diagram of a second embodiment of a display panel of the present application.
  • the display panel includes a substrate 60, a plurality of pixel units 70, a black matrix 80, and a packaging film 90.
  • the substrate 60 may be a substrate made of a hard material, for example, a glass substrate.
  • the substrate 60 may also be a substrate made of a soft material, which is not limited in the embodiment of the present application.
  • the plurality of pixel units 70 are arranged on the substrate 60 in a matrix.
  • each pixel unit 70 includes a plurality of sub-pixel units 701, 702, and 703.
  • the plurality of sub-pixel units 701, 702, and 703 include a red sub-pixel unit 701, a green sub-pixel unit 702, and a blue sub-pixel unit 703.
  • the multiple sub-pixel units may also include a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit.
  • the red sub-pixel unit 701 includes a light-emitting layer 701 a and a first light-processing layer 701 b which are disposed away from the substrate 60 in this order.
  • the first light processing layer 701b is located on the light emitting surface side of the light emitting layer 701a.
  • the green sub-pixel unit 702 includes a light emitting layer 702a and a first light processing layer 702b, which are disposed away from the substrate 60 in this order.
  • the first light processing layer 702b is located on the light emitting surface side of the light emitting layer 702a.
  • the blue sub-pixel unit 703 includes a light-emitting layer 703 a and a second light-processing layer 703 b which are disposed away from the substrate 60 in this order.
  • the second light processing layer 703b is located on the light emitting surface side of the light emitting layer 703a.
  • the light emitting layers 701a, 702a, and 703a are blue in color.
  • the blue sub-pixel unit 703 may not include the second light processing layer 703b, and only the light-emitting layer 703a may be provided.
  • the structures of the first light processing layer 701b and the first light processing layer 702b are similar, and both include a transparent substrate and a light diffusing material and a light conversion material doped in the transparent substrate.
  • the light diffusion material and the light conversion material are doped with each other.
  • the light diffusion material is uniformly distributed in the transparent matrix, and the light conversion material is uniformly distributed in the transparent matrix.
  • the light conversion material in the first light processing layer 701b is a red quantum dot material.
  • the light conversion material in the first light processing layer 702b is a green quantum dot material.
  • the second light processing layer 703b includes a transparent matrix and a light diffusing material doped in the transparent matrix.
  • the red quantum dot material in the red sub-pixel unit 701 is less than the green quantum dot material in the green sub-pixel unit 702.
  • the green quantum dot material in the green sub-pixel unit 702 is set in a larger amount, and the red quantum dot material in the red sub-pixel unit 701 is set.
  • the small number can offset the loss of green light, increase the white light index of the display panel when displaying white light, and increase the life of the green sub-pixel unit 702.
  • the red sub-pixel unit 701 there are more light diffusing materials in the red sub-pixel unit 701 than in the green sub-pixel unit 702, and there are more light-diffusing materials in the green sub-pixel unit 702 than in the blue sub-pixel unit 703. .
  • the surface of the first light processing layer 701b away from the substrate 60, the surface of the first light processing layer 702b away from the substrate 60, and the surface of the second light processing layer 703b away from the substrate 60 are flush so that each sub-pixel unit is far away from the substrate
  • the surface of 60 is flattened, which facilitates the subsequent formation of the packaging film 90.
  • the width of the first light processing layer 701b is larger than the width of the light emitting layer 701a.
  • the width of the first light processing layer 702b is larger than the width of the light emitting layer 702a.
  • the width of the second light processing layer 703b is larger than the width of the light emitting layer 703a, so that the light processing layer can improve the utilization rate of light emitted from the light emitting layer.
  • the width of the light processing layer may be equal to the width of the corresponding light emitting layer, which is not limited in this embodiment of the present application.
  • first light processing layers 701b and 702b and the second light processing layer 703b in this embodiment may be understood in conjunction with the description in the first embodiment, and are not described herein again.
  • the black matrix 80 is disposed between adjacent sub-pixel units.
  • the black matrix 80 is disposed between adjacent light processing layers, and the black matrix 80 is not disposed between adjacent light emitting layers.
  • a black matrix 80 is provided between the first light processing layer 701b and the first light processing layer 702b, and a black matrix 80 is provided between the first light processing layer 702b and the second light processing layer 703b.
  • a black matrix 80 is also provided between two adjacent pixel units 70.
  • the main function of the black matrix 80 disposed between adjacent light processing layers is to prevent crosstalk between adjacent sub-pixel units (light conversion materials) due to different converted colors and between different colors of light (red, green, and blue). It also has the function of shielding light and preventing crosstalk between two adjacent light-emitting layers. There is no need to set a black matrix between adjacent light-emitting layers, which can save materials.
  • a black matrix is also set between the light-emitting layers to avoid cross-light between two adjacent light-emitting layers, thereby preventing the light-emitting layer of the corresponding sub-pixel unit from being affected by interference from the light-emitting layer of the adjacent sub-pixel unit, thereby improving display control. Precision, which can improve display quality.
  • the packaging film 90 is disposed on the light-emitting surface side of the pixel unit 70. Specifically disposed on a pixel unit array composed of a plurality of pixel units 70.
  • a light emitting layer array including all light emitting layers is formed on a substrate, and then a light processing layer (a first light processing layer or a second light processing layer) is formed on the corresponding light emitting layer,
  • a light processing layer a first light processing layer or a second light processing layer
  • the process of forming a light emitting layer on a substrate is not limited to a mask making process, and the process of forming a light processing layer on a light emitting layer is not limited to a mask making process or a spray printing process.
  • the display panel includes a substrate and a plurality of pixel units disposed on the substrate.
  • Each pixel unit includes a plurality of sub-pixel units.
  • Each sub-pixel unit includes a light-emitting layer.
  • At least one sub-pixel unit further includes:
  • the first light processing layer includes at least a light diffusion material and a light conversion material doped with each other.
  • the first light processing layer is located on a light emitting side of the light emitting layer of at least one sub-pixel unit. There is a light-diffusion material and a light conversion material doped with each other, which can improve the uniformity of light conversion to the light emitting layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种显示面板,该显示面板包括基板、设置于基板上的多个像素单元,每个像素单元包括多个亚像素单元,每个亚像素单元均包括发光层,且至少一个亚像素单元还包括第一光处理层,第一光处理层至少包括相互掺杂的光扩散材料和光转换材料,第一光处理层位于至少一个亚像素单元的发光层的出光面那侧。通过上述方式,本申请能够提高对发光层的光转换的均匀性,从而提升显示面板的显示效果。

Description

显示面板 【技术领域】
本申请涉及显示技术领域,特别是涉及显示面板。
【背景技术】
随着科学技术的发展,显示面板已日渐成为人们生活的必需品,是各大厂商争相研发的焦点。
目前的显示面板通常会出现发光不均匀的问题,如何使显示面板发光更加均匀,从而实现更好的显示效果,是各大面板厂商关注的焦点问题。
【发明内容】
本申请主要解决的技术问题是提供一种显示面板,能够增加像素单元光转换的均匀性。
为解决上述技术问题,本申请实施例采用的一个技术方案是:提供一种显示面板,该显示面板包括基板、设置于基板上的多个像素单元,每个像素单元包括多个亚像素单元,每个亚像素单元均包括发光层,且至少一个亚像素单元还包括第一光处理层,第一光处理层至少包括相互掺杂的光扩散材料和光转换材料,第一光处理层位于至少一个亚像素单元的发光层的出光面那侧。其中,至少另一个亚像素单元还包括第二光处理层,第二光处理层设置于至少另一个亚像素单元的发光层的出光面那侧,第二光处理层不具有光转换功能。
其中,至少一个亚像素单元包括第一亚像素单元和第二亚像素单元,第一亚像素单元中的光转换材料为第一光转换颜色的量子点材料,第二亚像素单元中的光转换材料为第二光转换颜色的量子点材料,发光层的发光颜色不同于第一光转换颜色和第二光转换颜色,至少另一个亚像素单元为第三亚像素单元,第三亚像素单元的发光颜色为发光层的发光颜色。
其中,第一光转换颜色为红色,第二光转换颜色为绿色,第一亚像素单元 中的量子点材料少于第二亚像素单元中的量子点材料。
其中,第一光转换颜色为红色,第二光转换颜色为绿色,第一亚像素单元中的光扩散材料多于第二亚像素单元中的光扩散材料。
其中,第三亚像素单元的第二光处理层包括透明基质和掺杂于透明基质中的光扩散材料。
其中,发光层的发光颜色为蓝色,第二亚像素单元中的光扩散材料多于第三亚像素单元中的光扩散材料。
其中,光扩散材料为光扩散粒子。
其中,第一光处理层远离基板的表面与第二光处理层远离基板的表面齐平。
其中,第一光处理层的宽度大于至少一个亚像素单元的发光层的宽度,第二处理层的宽度大于至少另一个亚像素单元的发光层的宽度。
其中,第一光处理层进一步包括透明基质,光扩散材料均匀分布于透明基质中,光转换材料均匀分布于透明基质中。
其中,显示面板还包括设置于多个像素单元形成的像素单元矩阵上的封装薄膜,封装薄膜设置于像素单元的出光面那侧。
其中,显示面板进一步包括黑色矩阵,黑色矩阵设置于相邻的亚像素单元之间。
其中,黑色矩阵设置于相邻的亚像素单元的发光层之间。
其中,显示面板进一步包括黑色矩阵,黑色矩阵设置于相邻的亚像素单元的第一光处理层之间,或者设置于相邻的第一光处理层和第二光处理层之间。
其中,光扩散材料为纳米硫酸钡、碳酸钙或者二氧化硅。
本申请实施例通过设置显示面板包括基板、设置于基板上的多个像素单元,每个像素单元包括多个亚像素单元,每个亚像素单元均包括发光层,且至少一个亚像素单元还包括第一光处理层,第一光处理层至少包括相互掺杂的光扩散材料和光转换材料,第一光处理层位于至少一个亚像素单元的发光层的出光面那侧,由于在光处理层设置有相互掺杂的光扩散材料和光转换材料,能够提高 对发光层的光转换的均匀性,从而提升显示面板的显示效果。
【附图说明】
图1是本申请显示面板第一实施例的结构示意图;
图2是本申请实施例中第二类亚像素单元的另一种实施方式的结构示意图;
图3是本申请实施例中第二光处理层的另一种实施方式的结构示意图;
图4是本申请显示面板第二实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1是本申请显示面板第一实施例的结构示意图。在本实施例中,显示面板包括基板10和多个像素单元11。
基板10可以是硬材质的基板,例如,玻璃基板、塑料基板等。基板10也可以是软材质的基板,本申请实施例对此不做限定。
多个像素单元11呈矩阵设置于基板10上。
每个像素单元11包括多个亚像素单元11a、11b。图1中仅示出两个亚像素单元11a、11b,仅为示意,实际可以包括多个。例如,多个亚像素单元可以包括红绿蓝三色的亚像素单元,多个亚像素单元也可以是包括红绿蓝白四色的亚像素单元。本申请实施例对此不做限定。多个亚像素单元11a、11b可以为并排设置,通过混光实现不同颜色的显示。
每个亚像素单元11a、11b均包括发光层111。所有的亚像素单元11a、11b 的发光层111呈矩阵设置于基板10上形成发光层阵列。
至少一个亚像素单元11a(第一类亚像素单元11a)除了包括发光层111之外,还包括第一光处理层112。
第一光处理层112包括透明基质112a和掺杂于透明基质112a中的光扩散材料112b和光转换材料112c。光扩散材料112b和光转换材料112c相互掺杂。
可选地,光扩散材料112b均匀分布于透明基质112a中,光转换材料112c均匀分布于透明基质112a中。
可选地,透明基质112a可以是透明树脂,例如PMMA(聚甲基丙烯酸甲酯,Polymethyl methacrylate)。应理解,透明基质112a可以为其他的材料,本申请实施例对此不做限定。
图中的光扩散材料112b由椭圆形指代,光转换材料112c由圆形指代,但并非这两种材料的实际形状,图中仅为示意,便于区分两种材料。
光扩散材料112b可以是纳米硫酸钡、碳酸钙、二氧化硅等,光扩散材料112b可以是以粒子的形式分布于透明基质112a中,例如,光扩散材料112b可以是光扩散粒子。
光扩散材料112b不限于上述材料,也可以是其他具有光扩散作用或者匀光作用的材料。
光转换材料112c可以是量子点材料,发光层111发出的激发光激发量子点材料发出相应颜色的光。光转换材料112c也可以是其他具有对激发光进行颜色转换功能的材料。本申请实施例对此不做限定。
第一光处理层112位于该至少一个亚像素单元11a的发光层111的出光面那侧。换言之,该至少一个亚像素单元11a包括依次沿显示面板10出光方向层叠设置在基板10上的发光层111和第一光处理层112。
可选地,显示面板还包括设置于多个像素单元11形成的像素单元矩阵上的封装薄膜12。封装薄膜12设置于像素单元11的出光面那侧。
在本实施例中,至少另一个亚像素单元11b(第二类亚像素单元11b)可以 仅包括发光层111,而不包括任何的光处理层。
请参阅图2,图2是本申请实施例中第二类亚像素单元的另一种实施方式的结构示意图。在本实施例中,至少另一个亚像素单元21b(第二类亚像素单元21b)除了包括发光层111之外,还包括第二光处理层212,第二光处理层212设置于该至少另一个亚像素单元21b的发光层111的出光面那侧。
该至少另一个亚像素单元21b的发光颜色为发光层111的发光颜色。例如,该至少另一个亚像素单元21b的发光颜色为蓝色,而发光层111发出的激发光也为蓝色,因此,不必设置光转换材料来对发光层111的激发光的颜色进行转换。第二光处理层212不具有光转换功能。具体而言,第二光处理层212可以有以下几种情况。
如图2所示,在第一种情况下,第二光处理层212包括透明基质,且不包括光扩散材料和量子点材料。
可选地,第一光处理层112远离基板10的表面与第二光处理层212远离基板10的表面齐平。
由于第一类亚像素单元11a中包括第一光处理层112,而第一光处理层112中通常需要透明基质112a,因此为了保证第一类亚像素单元11a和第二类亚像素单元11b的发光均一性,设置了仅包括透明基质的第二光处理层212,另一方面,为了保证像素单元矩阵出光面的平坦化,便于封装薄膜12的形成,设置了仅包括透明基质的第二光处理层212。
请参阅图3,图3是本申请实施例中第二光处理层的另一种实施方式的结构示意图。在第二种情况下,第二光处理层312包括透明基质312a和掺杂于透明基质312a中的光扩散材料312b,且第二光处理层312不包括光转换材料。
由于第一类亚像素单元11a中包括光扩散材料112b,为了保证第二类亚像素单元21b与第一类亚像素单元11a的发光均一性,且保证第二类亚像素单元21b的发光均匀性,在第二光处理层312中也设置光扩散材料312b。
第一光处理层112的宽度大于至少一个亚像素单元11a的发光层111的宽 度,第二光处理层212或312的宽度大于至少另一个亚像素单元11b的发光层111的宽度。通过上述方式,可以提高光处理层对发光层的光线利用率。可选地,第一类亚像素单元11a可以包括第一亚像素单元和第二亚像素单元,第一亚像素单元中的光转换材料为第一光转换颜色的量子点材料,第二亚像素单元中的光转换材料为第二光转换颜色的量子点材料,发光层的发光颜色不同于第一光转换颜色和第二光转换颜色,第二类亚像素单元可以为第三亚像素单元,第三亚像素单元的发光颜色为发光层的发光颜色。可选地,第一光转换颜色为红色,第二光转换颜色为绿色,发光层的发光颜色为蓝色。第一亚像素单元为红色亚像素单元,第二亚像素单元为绿色亚像素单元、第三亚像素单元为蓝色亚像素单元。第一光转换颜色的量子点材料可以为红色量子点材料。第二光转换颜色的量子点材料可以为绿色量子点材料。具体参见下文显示面板第二实施例的描述。
请参阅图4,图4是本申请显示面板第二实施例的结构示意图。在本实施例中,显示面板包括基板60、多个像素单元70、黑色矩阵80以及封装薄膜90。
基板60可以是硬材质的基板,例如,玻璃基板,基板60也可以是软材质的基板,本申请实施例对此不做限定。
多个像素单元70呈矩阵设置于基板60上。
可选地,每个像素单元70包括多个亚像素单元701、702、703。具体而言,多个亚像素单元701、702、703包括红色亚像素单元701、绿色亚像素单元702、蓝色亚像素单元703。
在其他实施例中,多个亚像素单元也可以是包括红色亚像素单元、绿色亚像素单元、蓝色亚像素单元、白色亚像素单元。
红色亚像素单元701包括依次远离基板60设置的发光层701a、第一光处理层701b。第一光处理层701b位于发光层701a的出光面那侧。
绿色亚像素单元702包括依次远离基板60设置的发光层702a、第一光处理层702b。第一光处理层702b位于发光层702a的出光面那侧。
蓝色亚像素单元703包括依次远离基板60设置的发光层703a、第二光处理层703b。第二光处理层703b位于发光层703a的出光面那侧。
发光层701a、702a、703a的发光颜色为蓝色。在其他实施例中,蓝色亚像素单元703可以不包括第二光处理层703b,仅设置发光层703a即可。
第一光处理层701b和第一光处理层702b的结构类似,均包括透明基质和掺杂于透明基质中的光扩散材料和光转换材料。光扩散材料和光转换材料相互掺杂。光扩散材料均匀分布于透明基质中,光转换材料均匀分布于透明基质中。
第一光处理层701b中的光转换材料为红色量子点材料。第一光处理层702b中的光转换材料为绿色量子点材料。
可选地,第二光处理层703b包括透明基质和掺杂于透明基质中的光扩散材料。
可选地,红色亚像素单元701中的红色量子点材料少于绿色亚像素单元702中的绿色量子点材料。
由于蓝光会被绿光和红光吸收,绿光会被红光吸收,将绿色亚像素单元702中的绿色量子点材料设置的数量较多,红色亚像素单元701中的红色量子点材料设置的数量较少,可以抵消掉绿光的耗损,提高显示面板在显示白光时的白光指数,增加绿色亚像素单元702的寿命。
可选地,红色亚像素单元701中的光扩散材料多于绿色亚像素单元702中的光扩散材料,绿色亚像素单元702中的光扩散材料多于蓝色亚像素单元703中的光扩散材料。
由于光扩散材料越多,亚像素单元的光扩散性就越强,该亚像素单元发出的光越容易被周边其他的亚像素单元吸收,因此,为了减少蓝光被绿光和红光的吸收,绿光被红光的吸收,将蓝色亚像素单元703的光扩散性设置为最小,绿色亚像素单元702其次,红色亚像素单元703扩散性设置的最强,可以减少蓝光和绿光的耗损,提高显示面板在显示白光时的白光指数,增加绿色亚像素单元702和蓝色亚像素单元703的寿命。
可选地,第一光处理层701b远离基板60的表面、第一光处理层702b远离基板60的表面、第二光处理层703b远离基板60的表面齐平,以使得各个亚像素单元远离基板60的表面平坦化,便于后续形成封装薄膜90。
可选地,第一光处理层701b的宽度大于发光层701a的宽度。第一光处理层702b的宽度大于发光层702a的宽度。第二光处理层703b的宽度大于发光层703a的宽度,从而可以提高光处理层对发光层发出的光线的利用率。在其他实施例中,光处理层也可以与对应的发光层的宽度相等,本申请实施例对此不做限定。
本实施例中的第一光处理层701b、702b和第二光处理层703b的具体结构可以结合第一实施例中的描述进行理解,此处不再赘述。
黑色矩阵80设置于相邻的亚像素单元之间。可选地,黑色矩阵80设置于相邻的光处理层之间,而相邻的发光层之间不设置黑色矩阵80。例如,第一光处理层701b和第一光处理层702b之间设置有黑色矩阵80,第一光处理层702b和第二光处理层703b之间设置有黑色矩阵80。相邻的两个像素单元70之间也设置有黑色矩阵80。
设置于相邻光处理层之间的黑色矩阵80的主要作用是为了防止相邻亚像素单元(光转换材料)之间由于转换的颜色不同,不同颜色光(红绿蓝)之间的串扰,也有对相邻两个发光层之间的遮光与防止串扰作用,相邻发光层之间可以不必设置黑矩阵,可以节省材料。
为了提高相邻两个发光层之间的防串扰的能力,以及为了避免仅设置在光处理层之间的黑色矩阵80遮不住相邻发光层之间的串扰,可根据需要在相邻的发光层之间也设置黑色矩阵,避免相邻两发光层之间串光,进而可以避免控制对应亚像素单元的发光层发光时,受到相邻的亚像素单元的发光层的干扰,提高显示控制精度,从而可以提升显示品质。
封装薄膜90设置于像素单元70的出光面那侧。具体设置于多个像素单元70构成的像素单元阵列上。
在本申请的任意一个实施例中,先在基板上形成包含所有发光层的发光层阵列,然后再在对应的发光层上形成光处理层(第一光处理层或者第二光处理层),一方面为了制作工艺的简化,另一方面,为了提高像素密度,提高显示的精细程度。在基板上形成发光层的工艺不限于掩膜制作工艺,在发光层上形成光处理层的工艺不限于掩膜制作工艺或者喷涂打印工艺。
本申请实施例通过设置显示面板包括基板、设置于基板上的多个像素单元,每个像素单元包括多个亚像素单元,每个亚像素单元均包括发光层,且至少一个亚像素单元还包括第一光处理层,第一光处理层至少包括相互掺杂的光扩散材料和光转换材料,第一光处理层位于至少一个亚像素单元的发光层的出光面那侧,由于在光处理层设置有相互掺杂的光扩散材料和光转换材料,能够提高对发光层的光转换的均匀性。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种显示面板,包括:
    基板;及
    设置于所述基板上的多个像素单元,每个所述像素单元包括多个亚像素单元,每个所述亚像素单元均包括发光层,且至少一个所述亚像素单元还包括第一光处理层,所述第一光处理层至少包括相互掺杂的光扩散材料和光转换材料,所述第一光处理层位于所述至少一个所述亚像素单元的所述发光层的出光面那侧。
  2. 根据权利要求1所述的显示面板,其中,至少另一个所述亚像素单元还包括第二光处理层,所述第二光处理层设置于所述至少另一个亚像素单元的所述发光层的出光面那侧,所述第二光处理层不具有光转换功能。
  3. 根据权利要求2所述显示面板,其中,所述至少一个所述亚像素单元包括第一亚像素单元和第二亚像素单元,所述第一亚像素单元中的光转换材料为第一光转换颜色的量子点材料,所述第二亚像素单元中的光转换材料为第二光转换颜色的量子点材料,所述发光层的发光颜色不同于所述第一光转换颜色和所述第二光转换颜色,所述至少另一个所述亚像素单元为第三亚像素单元,所述第三亚像素单元的发光颜色为所述发光层的发光颜色。
  4. 根据权利要求3所述的显示面板,其中,所述第一光转换颜色为红色,所述第二光转换颜色为绿色,所述第一亚像素单元中的量子点材料少于所述第二亚像素单元中的量子点材料。
  5. 根据权利要求3所述的显示面板,其中,所述第一光转换颜色为红色,所述第二光转换颜色为绿色,所述第一亚像素单元中的光扩散材料多于所述第二亚像素单元中的光扩散材料。
  6. 根据权利要求5所述的显示面板,其中,所述第三亚像素单元的所述第二光处理层包括透明基质和掺杂于所述透明基质中的光扩散材料。
  7. 根据权利要求6所述的显示面板,其中,所述发光层的发光颜色为蓝色, 所述第二亚像素单元中的光扩散材料多于所述第三亚像素单元中的光扩散材料。
  8. 根据权利要求1所述的显示面板,其中,所述光扩散材料为光扩散粒子。
  9. 根据权利要求2所述的显示面板,其中,所述第一光处理层远离所述基板的表面与所述第二光处理层远离基板的表面齐平。
  10. 根据权利要求2所述的显示面板,其中,所述第一光处理层的宽度大于所述至少一个亚像素单元的所述发光层的宽度,所述第二处理层的宽度大于所述至少另一个亚像素单元的所述发光层的宽度。
  11. 根据权利要求1所述的显示面板,其中,所述第一光处理层进一步包括透明基质,所述光扩散材料均匀分布于所述透明基质中,所述光转换材料均匀分布于所述透明基质中。
  12. 根据权利要求1所述的显示面板,其中,所述显示面板还包括设置于所述多个像素单元形成的像素单元矩阵上的封装薄膜,所述封装薄膜设置于所述像素单元的出光面那侧。
  13. 根据权利要求1所述的显示面板,其中,所述显示面板进一步包括黑色矩阵,所述黑色矩阵设置于相邻的所述亚像素单元之间。
  14. 根据权利要求13所述的显示面板,其中,所述黑色矩阵设置于相邻的所述亚像素单元的所述发光层之间。
  15. 根据权利要求2所述的显示面板,其中,所述显示面板进一步包括黑色矩阵,所述黑色矩阵设置于相邻的亚像素单元的所述第一光处理层之间,或者设置于相邻的所述第一光处理层和所述第二光处理层之间。
  16. 根据权利要求1所述的显示面板,其中,所述光扩散材料为纳米硫酸钡、碳酸钙或者二氧化硅。
PCT/CN2019/084869 2018-08-31 2019-04-28 显示面板 WO2020042651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/773,229 US11081621B2 (en) 2018-08-31 2020-01-27 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811013578.5A CN110875359A (zh) 2018-08-31 2018-08-31 显示面板
CN201811013578.5 2018-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/773,229 Continuation US11081621B2 (en) 2018-08-31 2020-01-27 Display panel

Publications (1)

Publication Number Publication Date
WO2020042651A1 true WO2020042651A1 (zh) 2020-03-05

Family

ID=69643343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084869 WO2020042651A1 (zh) 2018-08-31 2019-04-28 显示面板

Country Status (3)

Country Link
US (1) US11081621B2 (zh)
CN (1) CN110875359A (zh)
WO (1) WO2020042651A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242411A (zh) * 2019-07-16 2021-01-19 群创光电股份有限公司 显示装置
CN111524463B (zh) * 2020-05-29 2023-04-21 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163318A1 (en) * 2010-01-04 2011-07-07 Chan-Young Park Display device
KR20140076284A (ko) * 2012-12-12 2014-06-20 엘지디스플레이 주식회사 공간 광 변조 패널 및 이를 이용한 홀로그래피 입체 영상 표시장치
CN106526947A (zh) * 2015-09-10 2017-03-22 三星显示有限公司 颜色转换面板以及包括颜色转换面板的显示装置
CN107728368A (zh) * 2016-08-11 2018-02-23 三星显示有限公司 滤色器及其制造方法以及包括该滤色器的显示设备
CN107976835A (zh) * 2016-10-21 2018-05-01 三星显示有限公司 包括逆反射层的彩色基板和包括该彩色基板的显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496948B2 (ja) * 2004-12-13 2010-07-07 株式会社豊田自動織機 有機el素子
US8193705B2 (en) * 2005-11-02 2012-06-05 Ifire Ip Corporation Laminated conformal seal for electroluminescent displays
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
US20070201056A1 (en) * 2006-02-24 2007-08-30 Eastman Kodak Company Light-scattering color-conversion material layer
TWI367465B (en) * 2008-02-15 2012-07-01 Foxsemicon Integrated Tech Inc Led display
CN101515422B (zh) * 2008-02-18 2010-12-29 富士迈半导体精密工业(上海)有限公司 Led显示装置
CN103633109B (zh) * 2012-08-29 2016-05-25 固安翌光科技有限公司 具有高光取出率的有机电致发光显示器件及其制备方法
DE102013112602B4 (de) * 2012-12-18 2020-11-12 Lg Display Co., Ltd. Weiße organische Lichtemissionsvorrichtung
US9111464B2 (en) * 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
CN104269427B (zh) * 2014-09-05 2017-03-29 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制作方法、显示装置
WO2017149521A1 (en) * 2016-03-04 2017-09-08 Vuereal Inc. Micro device integration into system substrate
CN104868026B (zh) * 2015-05-22 2019-02-22 深圳市华星光电技术有限公司 量子点发光元件
US10712614B2 (en) * 2015-09-30 2020-07-14 Samsung Display Co., Ltd. Color conversion panel and display device including the same
KR20180064616A (ko) * 2016-12-05 2018-06-15 삼성디스플레이 주식회사 포토루미네센스 장치 및 그것을 포함하는 디스플레이 패널
CN107546338B (zh) * 2017-08-29 2019-08-02 上海天马微电子有限公司 有机发光显示面板及有机发光显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163318A1 (en) * 2010-01-04 2011-07-07 Chan-Young Park Display device
KR20140076284A (ko) * 2012-12-12 2014-06-20 엘지디스플레이 주식회사 공간 광 변조 패널 및 이를 이용한 홀로그래피 입체 영상 표시장치
CN106526947A (zh) * 2015-09-10 2017-03-22 三星显示有限公司 颜色转换面板以及包括颜色转换面板的显示装置
CN107728368A (zh) * 2016-08-11 2018-02-23 三星显示有限公司 滤色器及其制造方法以及包括该滤色器的显示设备
CN107976835A (zh) * 2016-10-21 2018-05-01 三星显示有限公司 包括逆反射层的彩色基板和包括该彩色基板的显示装置

Also Published As

Publication number Publication date
US20200161503A1 (en) 2020-05-21
CN110875359A (zh) 2020-03-10
US11081621B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2020042650A1 (zh) 显示面板
WO2020113913A1 (zh) 一种显示面板及显示装置
JP4853945B2 (ja) 表示装置の製造方法
JP5540610B2 (ja) 光量制御部材、面光源装置及び表示装置
TWI428673B (zh) 背光模組
CN105204221B (zh) 彩膜基板、显示面板及显示装置
JP2010272245A (ja) バックライトユニットおよびこれを備えた液晶表示装置
US10175527B2 (en) Display panel and liquid crystal display
JP2006202533A (ja) 照明装置
US20180067363A1 (en) Display substrate, display panel, and display apparatus having the same
KR20140004882A (ko) 표시 장치 및 그 제조 방법
WO2020042651A1 (zh) 显示面板
WO2019227669A1 (zh) 显示面板及显示装置
WO2020168669A1 (zh) 量子点液晶显示器
US20200150327A1 (en) Display panel and display device
WO2020151603A1 (zh) Led显示屏及其制备方法
CN107688255A (zh) 一种背光模组、量子点膜片及其制作方法
US10330265B2 (en) Front light source and display device comprising the front light source
WO2019144478A1 (zh) 背光模组及显示装置
WO2019161596A1 (zh) 一种光学膜片、背光模组及显示装置
CN108279460B (zh) 一种量子点导光板、背光模组及显示装置
CN110473892B (zh) 显示装置
WO2020133816A1 (zh) 显示面板及其制备方法
WO2019161595A1 (zh) 一种光学膜片、背光模组及显示装置
US11131879B2 (en) Backlight module and applications thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853662

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19853662

Country of ref document: EP

Kind code of ref document: A1